1 /*
2 * Support PCI/PCIe on PowerNV platforms
3 *
4 * Copyright 2011 Benjamin Herrenschmidt, IBM Corp.
5 *
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public License
8 * as published by the Free Software Foundation; either version
9 * 2 of the License, or (at your option) any later version.
10 */
11
12 #undef DEBUG
13
14 #include <linux/kernel.h>
15 #include <linux/pci.h>
16 #include <linux/crash_dump.h>
17 #include <linux/delay.h>
18 #include <linux/string.h>
19 #include <linux/init.h>
20 #include <linux/bootmem.h>
21 #include <linux/irq.h>
22 #include <linux/io.h>
23 #include <linux/msi.h>
24 #include <linux/memblock.h>
25 #include <linux/iommu.h>
26 #include <linux/rculist.h>
27 #include <linux/sizes.h>
28
29 #include <asm/sections.h>
30 #include <asm/io.h>
31 #include <asm/prom.h>
32 #include <asm/pci-bridge.h>
33 #include <asm/machdep.h>
34 #include <asm/msi_bitmap.h>
35 #include <asm/ppc-pci.h>
36 #include <asm/opal.h>
37 #include <asm/iommu.h>
38 #include <asm/tce.h>
39 #include <asm/xics.h>
40 #include <asm/debugfs.h>
41 #include <asm/firmware.h>
42 #include <asm/pnv-pci.h>
43 #include <asm/mmzone.h>
44
45 #include <misc/cxl-base.h>
46
47 #include "powernv.h"
48 #include "pci.h"
49 #include "../../../../drivers/pci/pci.h"
50
51 #define PNV_IODA1_M64_NUM 16 /* Number of M64 BARs */
52 #define PNV_IODA1_M64_SEGS 8 /* Segments per M64 BAR */
53 #define PNV_IODA1_DMA32_SEGSIZE 0x10000000
54
55 static const char * const pnv_phb_names[] = { "IODA1", "IODA2", "NPU_NVLINK",
56 "NPU_OCAPI" };
57
pe_level_printk(const struct pnv_ioda_pe * pe,const char * level,const char * fmt,...)58 void pe_level_printk(const struct pnv_ioda_pe *pe, const char *level,
59 const char *fmt, ...)
60 {
61 struct va_format vaf;
62 va_list args;
63 char pfix[32];
64
65 va_start(args, fmt);
66
67 vaf.fmt = fmt;
68 vaf.va = &args;
69
70 if (pe->flags & PNV_IODA_PE_DEV)
71 strlcpy(pfix, dev_name(&pe->pdev->dev), sizeof(pfix));
72 else if (pe->flags & (PNV_IODA_PE_BUS | PNV_IODA_PE_BUS_ALL))
73 sprintf(pfix, "%04x:%02x ",
74 pci_domain_nr(pe->pbus), pe->pbus->number);
75 #ifdef CONFIG_PCI_IOV
76 else if (pe->flags & PNV_IODA_PE_VF)
77 sprintf(pfix, "%04x:%02x:%2x.%d",
78 pci_domain_nr(pe->parent_dev->bus),
79 (pe->rid & 0xff00) >> 8,
80 PCI_SLOT(pe->rid), PCI_FUNC(pe->rid));
81 #endif /* CONFIG_PCI_IOV*/
82
83 printk("%spci %s: [PE# %.2x] %pV",
84 level, pfix, pe->pe_number, &vaf);
85
86 va_end(args);
87 }
88
89 static bool pnv_iommu_bypass_disabled __read_mostly;
90 static bool pci_reset_phbs __read_mostly;
91
iommu_setup(char * str)92 static int __init iommu_setup(char *str)
93 {
94 if (!str)
95 return -EINVAL;
96
97 while (*str) {
98 if (!strncmp(str, "nobypass", 8)) {
99 pnv_iommu_bypass_disabled = true;
100 pr_info("PowerNV: IOMMU bypass window disabled.\n");
101 break;
102 }
103 str += strcspn(str, ",");
104 if (*str == ',')
105 str++;
106 }
107
108 return 0;
109 }
110 early_param("iommu", iommu_setup);
111
pci_reset_phbs_setup(char * str)112 static int __init pci_reset_phbs_setup(char *str)
113 {
114 pci_reset_phbs = true;
115 return 0;
116 }
117
118 early_param("ppc_pci_reset_phbs", pci_reset_phbs_setup);
119
pnv_pci_is_m64(struct pnv_phb * phb,struct resource * r)120 static inline bool pnv_pci_is_m64(struct pnv_phb *phb, struct resource *r)
121 {
122 /*
123 * WARNING: We cannot rely on the resource flags. The Linux PCI
124 * allocation code sometimes decides to put a 64-bit prefetchable
125 * BAR in the 32-bit window, so we have to compare the addresses.
126 *
127 * For simplicity we only test resource start.
128 */
129 return (r->start >= phb->ioda.m64_base &&
130 r->start < (phb->ioda.m64_base + phb->ioda.m64_size));
131 }
132
pnv_pci_is_m64_flags(unsigned long resource_flags)133 static inline bool pnv_pci_is_m64_flags(unsigned long resource_flags)
134 {
135 unsigned long flags = (IORESOURCE_MEM_64 | IORESOURCE_PREFETCH);
136
137 return (resource_flags & flags) == flags;
138 }
139
pnv_ioda_init_pe(struct pnv_phb * phb,int pe_no)140 static struct pnv_ioda_pe *pnv_ioda_init_pe(struct pnv_phb *phb, int pe_no)
141 {
142 s64 rc;
143
144 phb->ioda.pe_array[pe_no].phb = phb;
145 phb->ioda.pe_array[pe_no].pe_number = pe_no;
146
147 /*
148 * Clear the PE frozen state as it might be put into frozen state
149 * in the last PCI remove path. It's not harmful to do so when the
150 * PE is already in unfrozen state.
151 */
152 rc = opal_pci_eeh_freeze_clear(phb->opal_id, pe_no,
153 OPAL_EEH_ACTION_CLEAR_FREEZE_ALL);
154 if (rc != OPAL_SUCCESS && rc != OPAL_UNSUPPORTED)
155 pr_warn("%s: Error %lld unfreezing PHB#%x-PE#%x\n",
156 __func__, rc, phb->hose->global_number, pe_no);
157
158 return &phb->ioda.pe_array[pe_no];
159 }
160
pnv_ioda_reserve_pe(struct pnv_phb * phb,int pe_no)161 static void pnv_ioda_reserve_pe(struct pnv_phb *phb, int pe_no)
162 {
163 if (!(pe_no >= 0 && pe_no < phb->ioda.total_pe_num)) {
164 pr_warn("%s: Invalid PE %x on PHB#%x\n",
165 __func__, pe_no, phb->hose->global_number);
166 return;
167 }
168
169 if (test_and_set_bit(pe_no, phb->ioda.pe_alloc))
170 pr_debug("%s: PE %x was reserved on PHB#%x\n",
171 __func__, pe_no, phb->hose->global_number);
172
173 pnv_ioda_init_pe(phb, pe_no);
174 }
175
pnv_ioda_alloc_pe(struct pnv_phb * phb)176 static struct pnv_ioda_pe *pnv_ioda_alloc_pe(struct pnv_phb *phb)
177 {
178 long pe;
179
180 for (pe = phb->ioda.total_pe_num - 1; pe >= 0; pe--) {
181 if (!test_and_set_bit(pe, phb->ioda.pe_alloc))
182 return pnv_ioda_init_pe(phb, pe);
183 }
184
185 return NULL;
186 }
187
pnv_ioda_free_pe(struct pnv_ioda_pe * pe)188 static void pnv_ioda_free_pe(struct pnv_ioda_pe *pe)
189 {
190 struct pnv_phb *phb = pe->phb;
191 unsigned int pe_num = pe->pe_number;
192
193 WARN_ON(pe->pdev);
194
195 memset(pe, 0, sizeof(struct pnv_ioda_pe));
196 clear_bit(pe_num, phb->ioda.pe_alloc);
197 }
198
199 /* The default M64 BAR is shared by all PEs */
pnv_ioda2_init_m64(struct pnv_phb * phb)200 static int pnv_ioda2_init_m64(struct pnv_phb *phb)
201 {
202 const char *desc;
203 struct resource *r;
204 s64 rc;
205
206 /* Configure the default M64 BAR */
207 rc = opal_pci_set_phb_mem_window(phb->opal_id,
208 OPAL_M64_WINDOW_TYPE,
209 phb->ioda.m64_bar_idx,
210 phb->ioda.m64_base,
211 0, /* unused */
212 phb->ioda.m64_size);
213 if (rc != OPAL_SUCCESS) {
214 desc = "configuring";
215 goto fail;
216 }
217
218 /* Enable the default M64 BAR */
219 rc = opal_pci_phb_mmio_enable(phb->opal_id,
220 OPAL_M64_WINDOW_TYPE,
221 phb->ioda.m64_bar_idx,
222 OPAL_ENABLE_M64_SPLIT);
223 if (rc != OPAL_SUCCESS) {
224 desc = "enabling";
225 goto fail;
226 }
227
228 /*
229 * Exclude the segments for reserved and root bus PE, which
230 * are first or last two PEs.
231 */
232 r = &phb->hose->mem_resources[1];
233 if (phb->ioda.reserved_pe_idx == 0)
234 r->start += (2 * phb->ioda.m64_segsize);
235 else if (phb->ioda.reserved_pe_idx == (phb->ioda.total_pe_num - 1))
236 r->end -= (2 * phb->ioda.m64_segsize);
237 else
238 pr_warn(" Cannot strip M64 segment for reserved PE#%x\n",
239 phb->ioda.reserved_pe_idx);
240
241 return 0;
242
243 fail:
244 pr_warn(" Failure %lld %s M64 BAR#%d\n",
245 rc, desc, phb->ioda.m64_bar_idx);
246 opal_pci_phb_mmio_enable(phb->opal_id,
247 OPAL_M64_WINDOW_TYPE,
248 phb->ioda.m64_bar_idx,
249 OPAL_DISABLE_M64);
250 return -EIO;
251 }
252
pnv_ioda_reserve_dev_m64_pe(struct pci_dev * pdev,unsigned long * pe_bitmap)253 static void pnv_ioda_reserve_dev_m64_pe(struct pci_dev *pdev,
254 unsigned long *pe_bitmap)
255 {
256 struct pci_controller *hose = pci_bus_to_host(pdev->bus);
257 struct pnv_phb *phb = hose->private_data;
258 struct resource *r;
259 resource_size_t base, sgsz, start, end;
260 int segno, i;
261
262 base = phb->ioda.m64_base;
263 sgsz = phb->ioda.m64_segsize;
264 for (i = 0; i <= PCI_ROM_RESOURCE; i++) {
265 r = &pdev->resource[i];
266 if (!r->parent || !pnv_pci_is_m64(phb, r))
267 continue;
268
269 start = _ALIGN_DOWN(r->start - base, sgsz);
270 end = _ALIGN_UP(r->end - base, sgsz);
271 for (segno = start / sgsz; segno < end / sgsz; segno++) {
272 if (pe_bitmap)
273 set_bit(segno, pe_bitmap);
274 else
275 pnv_ioda_reserve_pe(phb, segno);
276 }
277 }
278 }
279
pnv_ioda1_init_m64(struct pnv_phb * phb)280 static int pnv_ioda1_init_m64(struct pnv_phb *phb)
281 {
282 struct resource *r;
283 int index;
284
285 /*
286 * There are 16 M64 BARs, each of which has 8 segments. So
287 * there are as many M64 segments as the maximum number of
288 * PEs, which is 128.
289 */
290 for (index = 0; index < PNV_IODA1_M64_NUM; index++) {
291 unsigned long base, segsz = phb->ioda.m64_segsize;
292 int64_t rc;
293
294 base = phb->ioda.m64_base +
295 index * PNV_IODA1_M64_SEGS * segsz;
296 rc = opal_pci_set_phb_mem_window(phb->opal_id,
297 OPAL_M64_WINDOW_TYPE, index, base, 0,
298 PNV_IODA1_M64_SEGS * segsz);
299 if (rc != OPAL_SUCCESS) {
300 pr_warn(" Error %lld setting M64 PHB#%x-BAR#%d\n",
301 rc, phb->hose->global_number, index);
302 goto fail;
303 }
304
305 rc = opal_pci_phb_mmio_enable(phb->opal_id,
306 OPAL_M64_WINDOW_TYPE, index,
307 OPAL_ENABLE_M64_SPLIT);
308 if (rc != OPAL_SUCCESS) {
309 pr_warn(" Error %lld enabling M64 PHB#%x-BAR#%d\n",
310 rc, phb->hose->global_number, index);
311 goto fail;
312 }
313 }
314
315 /*
316 * Exclude the segments for reserved and root bus PE, which
317 * are first or last two PEs.
318 */
319 r = &phb->hose->mem_resources[1];
320 if (phb->ioda.reserved_pe_idx == 0)
321 r->start += (2 * phb->ioda.m64_segsize);
322 else if (phb->ioda.reserved_pe_idx == (phb->ioda.total_pe_num - 1))
323 r->end -= (2 * phb->ioda.m64_segsize);
324 else
325 WARN(1, "Wrong reserved PE#%x on PHB#%x\n",
326 phb->ioda.reserved_pe_idx, phb->hose->global_number);
327
328 return 0;
329
330 fail:
331 for ( ; index >= 0; index--)
332 opal_pci_phb_mmio_enable(phb->opal_id,
333 OPAL_M64_WINDOW_TYPE, index, OPAL_DISABLE_M64);
334
335 return -EIO;
336 }
337
pnv_ioda_reserve_m64_pe(struct pci_bus * bus,unsigned long * pe_bitmap,bool all)338 static void pnv_ioda_reserve_m64_pe(struct pci_bus *bus,
339 unsigned long *pe_bitmap,
340 bool all)
341 {
342 struct pci_dev *pdev;
343
344 list_for_each_entry(pdev, &bus->devices, bus_list) {
345 pnv_ioda_reserve_dev_m64_pe(pdev, pe_bitmap);
346
347 if (all && pdev->subordinate)
348 pnv_ioda_reserve_m64_pe(pdev->subordinate,
349 pe_bitmap, all);
350 }
351 }
352
pnv_ioda_pick_m64_pe(struct pci_bus * bus,bool all)353 static struct pnv_ioda_pe *pnv_ioda_pick_m64_pe(struct pci_bus *bus, bool all)
354 {
355 struct pci_controller *hose = pci_bus_to_host(bus);
356 struct pnv_phb *phb = hose->private_data;
357 struct pnv_ioda_pe *master_pe, *pe;
358 unsigned long size, *pe_alloc;
359 int i;
360
361 /* Root bus shouldn't use M64 */
362 if (pci_is_root_bus(bus))
363 return NULL;
364
365 /* Allocate bitmap */
366 size = _ALIGN_UP(phb->ioda.total_pe_num / 8, sizeof(unsigned long));
367 pe_alloc = kzalloc(size, GFP_KERNEL);
368 if (!pe_alloc) {
369 pr_warn("%s: Out of memory !\n",
370 __func__);
371 return NULL;
372 }
373
374 /* Figure out reserved PE numbers by the PE */
375 pnv_ioda_reserve_m64_pe(bus, pe_alloc, all);
376
377 /*
378 * the current bus might not own M64 window and that's all
379 * contributed by its child buses. For the case, we needn't
380 * pick M64 dependent PE#.
381 */
382 if (bitmap_empty(pe_alloc, phb->ioda.total_pe_num)) {
383 kfree(pe_alloc);
384 return NULL;
385 }
386
387 /*
388 * Figure out the master PE and put all slave PEs to master
389 * PE's list to form compound PE.
390 */
391 master_pe = NULL;
392 i = -1;
393 while ((i = find_next_bit(pe_alloc, phb->ioda.total_pe_num, i + 1)) <
394 phb->ioda.total_pe_num) {
395 pe = &phb->ioda.pe_array[i];
396
397 phb->ioda.m64_segmap[pe->pe_number] = pe->pe_number;
398 if (!master_pe) {
399 pe->flags |= PNV_IODA_PE_MASTER;
400 INIT_LIST_HEAD(&pe->slaves);
401 master_pe = pe;
402 } else {
403 pe->flags |= PNV_IODA_PE_SLAVE;
404 pe->master = master_pe;
405 list_add_tail(&pe->list, &master_pe->slaves);
406 }
407
408 /*
409 * P7IOC supports M64DT, which helps mapping M64 segment
410 * to one particular PE#. However, PHB3 has fixed mapping
411 * between M64 segment and PE#. In order to have same logic
412 * for P7IOC and PHB3, we enforce fixed mapping between M64
413 * segment and PE# on P7IOC.
414 */
415 if (phb->type == PNV_PHB_IODA1) {
416 int64_t rc;
417
418 rc = opal_pci_map_pe_mmio_window(phb->opal_id,
419 pe->pe_number, OPAL_M64_WINDOW_TYPE,
420 pe->pe_number / PNV_IODA1_M64_SEGS,
421 pe->pe_number % PNV_IODA1_M64_SEGS);
422 if (rc != OPAL_SUCCESS)
423 pr_warn("%s: Error %lld mapping M64 for PHB#%x-PE#%x\n",
424 __func__, rc, phb->hose->global_number,
425 pe->pe_number);
426 }
427 }
428
429 kfree(pe_alloc);
430 return master_pe;
431 }
432
pnv_ioda_parse_m64_window(struct pnv_phb * phb)433 static void __init pnv_ioda_parse_m64_window(struct pnv_phb *phb)
434 {
435 struct pci_controller *hose = phb->hose;
436 struct device_node *dn = hose->dn;
437 struct resource *res;
438 u32 m64_range[2], i;
439 const __be32 *r;
440 u64 pci_addr;
441
442 if (phb->type != PNV_PHB_IODA1 && phb->type != PNV_PHB_IODA2) {
443 pr_info(" Not support M64 window\n");
444 return;
445 }
446
447 if (!firmware_has_feature(FW_FEATURE_OPAL)) {
448 pr_info(" Firmware too old to support M64 window\n");
449 return;
450 }
451
452 r = of_get_property(dn, "ibm,opal-m64-window", NULL);
453 if (!r) {
454 pr_info(" No <ibm,opal-m64-window> on %pOF\n",
455 dn);
456 return;
457 }
458
459 /*
460 * Find the available M64 BAR range and pickup the last one for
461 * covering the whole 64-bits space. We support only one range.
462 */
463 if (of_property_read_u32_array(dn, "ibm,opal-available-m64-ranges",
464 m64_range, 2)) {
465 /* In absence of the property, assume 0..15 */
466 m64_range[0] = 0;
467 m64_range[1] = 16;
468 }
469 /* We only support 64 bits in our allocator */
470 if (m64_range[1] > 63) {
471 pr_warn("%s: Limiting M64 range to 63 (from %d) on PHB#%x\n",
472 __func__, m64_range[1], phb->hose->global_number);
473 m64_range[1] = 63;
474 }
475 /* Empty range, no m64 */
476 if (m64_range[1] <= m64_range[0]) {
477 pr_warn("%s: M64 empty, disabling M64 usage on PHB#%x\n",
478 __func__, phb->hose->global_number);
479 return;
480 }
481
482 /* Configure M64 informations */
483 res = &hose->mem_resources[1];
484 res->name = dn->full_name;
485 res->start = of_translate_address(dn, r + 2);
486 res->end = res->start + of_read_number(r + 4, 2) - 1;
487 res->flags = (IORESOURCE_MEM | IORESOURCE_MEM_64 | IORESOURCE_PREFETCH);
488 pci_addr = of_read_number(r, 2);
489 hose->mem_offset[1] = res->start - pci_addr;
490
491 phb->ioda.m64_size = resource_size(res);
492 phb->ioda.m64_segsize = phb->ioda.m64_size / phb->ioda.total_pe_num;
493 phb->ioda.m64_base = pci_addr;
494
495 /* This lines up nicely with the display from processing OF ranges */
496 pr_info(" MEM 0x%016llx..0x%016llx -> 0x%016llx (M64 #%d..%d)\n",
497 res->start, res->end, pci_addr, m64_range[0],
498 m64_range[0] + m64_range[1] - 1);
499
500 /* Mark all M64 used up by default */
501 phb->ioda.m64_bar_alloc = (unsigned long)-1;
502
503 /* Use last M64 BAR to cover M64 window */
504 m64_range[1]--;
505 phb->ioda.m64_bar_idx = m64_range[0] + m64_range[1];
506
507 pr_info(" Using M64 #%d as default window\n", phb->ioda.m64_bar_idx);
508
509 /* Mark remaining ones free */
510 for (i = m64_range[0]; i < m64_range[1]; i++)
511 clear_bit(i, &phb->ioda.m64_bar_alloc);
512
513 /*
514 * Setup init functions for M64 based on IODA version, IODA3 uses
515 * the IODA2 code.
516 */
517 if (phb->type == PNV_PHB_IODA1)
518 phb->init_m64 = pnv_ioda1_init_m64;
519 else
520 phb->init_m64 = pnv_ioda2_init_m64;
521 phb->reserve_m64_pe = pnv_ioda_reserve_m64_pe;
522 phb->pick_m64_pe = pnv_ioda_pick_m64_pe;
523 }
524
pnv_ioda_freeze_pe(struct pnv_phb * phb,int pe_no)525 static void pnv_ioda_freeze_pe(struct pnv_phb *phb, int pe_no)
526 {
527 struct pnv_ioda_pe *pe = &phb->ioda.pe_array[pe_no];
528 struct pnv_ioda_pe *slave;
529 s64 rc;
530
531 /* Fetch master PE */
532 if (pe->flags & PNV_IODA_PE_SLAVE) {
533 pe = pe->master;
534 if (WARN_ON(!pe || !(pe->flags & PNV_IODA_PE_MASTER)))
535 return;
536
537 pe_no = pe->pe_number;
538 }
539
540 /* Freeze master PE */
541 rc = opal_pci_eeh_freeze_set(phb->opal_id,
542 pe_no,
543 OPAL_EEH_ACTION_SET_FREEZE_ALL);
544 if (rc != OPAL_SUCCESS) {
545 pr_warn("%s: Failure %lld freezing PHB#%x-PE#%x\n",
546 __func__, rc, phb->hose->global_number, pe_no);
547 return;
548 }
549
550 /* Freeze slave PEs */
551 if (!(pe->flags & PNV_IODA_PE_MASTER))
552 return;
553
554 list_for_each_entry(slave, &pe->slaves, list) {
555 rc = opal_pci_eeh_freeze_set(phb->opal_id,
556 slave->pe_number,
557 OPAL_EEH_ACTION_SET_FREEZE_ALL);
558 if (rc != OPAL_SUCCESS)
559 pr_warn("%s: Failure %lld freezing PHB#%x-PE#%x\n",
560 __func__, rc, phb->hose->global_number,
561 slave->pe_number);
562 }
563 }
564
pnv_ioda_unfreeze_pe(struct pnv_phb * phb,int pe_no,int opt)565 static int pnv_ioda_unfreeze_pe(struct pnv_phb *phb, int pe_no, int opt)
566 {
567 struct pnv_ioda_pe *pe, *slave;
568 s64 rc;
569
570 /* Find master PE */
571 pe = &phb->ioda.pe_array[pe_no];
572 if (pe->flags & PNV_IODA_PE_SLAVE) {
573 pe = pe->master;
574 WARN_ON(!pe || !(pe->flags & PNV_IODA_PE_MASTER));
575 pe_no = pe->pe_number;
576 }
577
578 /* Clear frozen state for master PE */
579 rc = opal_pci_eeh_freeze_clear(phb->opal_id, pe_no, opt);
580 if (rc != OPAL_SUCCESS) {
581 pr_warn("%s: Failure %lld clear %d on PHB#%x-PE#%x\n",
582 __func__, rc, opt, phb->hose->global_number, pe_no);
583 return -EIO;
584 }
585
586 if (!(pe->flags & PNV_IODA_PE_MASTER))
587 return 0;
588
589 /* Clear frozen state for slave PEs */
590 list_for_each_entry(slave, &pe->slaves, list) {
591 rc = opal_pci_eeh_freeze_clear(phb->opal_id,
592 slave->pe_number,
593 opt);
594 if (rc != OPAL_SUCCESS) {
595 pr_warn("%s: Failure %lld clear %d on PHB#%x-PE#%x\n",
596 __func__, rc, opt, phb->hose->global_number,
597 slave->pe_number);
598 return -EIO;
599 }
600 }
601
602 return 0;
603 }
604
pnv_ioda_get_pe_state(struct pnv_phb * phb,int pe_no)605 static int pnv_ioda_get_pe_state(struct pnv_phb *phb, int pe_no)
606 {
607 struct pnv_ioda_pe *slave, *pe;
608 u8 fstate = 0, state;
609 __be16 pcierr = 0;
610 s64 rc;
611
612 /* Sanity check on PE number */
613 if (pe_no < 0 || pe_no >= phb->ioda.total_pe_num)
614 return OPAL_EEH_STOPPED_PERM_UNAVAIL;
615
616 /*
617 * Fetch the master PE and the PE instance might be
618 * not initialized yet.
619 */
620 pe = &phb->ioda.pe_array[pe_no];
621 if (pe->flags & PNV_IODA_PE_SLAVE) {
622 pe = pe->master;
623 WARN_ON(!pe || !(pe->flags & PNV_IODA_PE_MASTER));
624 pe_no = pe->pe_number;
625 }
626
627 /* Check the master PE */
628 rc = opal_pci_eeh_freeze_status(phb->opal_id, pe_no,
629 &state, &pcierr, NULL);
630 if (rc != OPAL_SUCCESS) {
631 pr_warn("%s: Failure %lld getting "
632 "PHB#%x-PE#%x state\n",
633 __func__, rc,
634 phb->hose->global_number, pe_no);
635 return OPAL_EEH_STOPPED_TEMP_UNAVAIL;
636 }
637
638 /* Check the slave PE */
639 if (!(pe->flags & PNV_IODA_PE_MASTER))
640 return state;
641
642 list_for_each_entry(slave, &pe->slaves, list) {
643 rc = opal_pci_eeh_freeze_status(phb->opal_id,
644 slave->pe_number,
645 &fstate,
646 &pcierr,
647 NULL);
648 if (rc != OPAL_SUCCESS) {
649 pr_warn("%s: Failure %lld getting "
650 "PHB#%x-PE#%x state\n",
651 __func__, rc,
652 phb->hose->global_number, slave->pe_number);
653 return OPAL_EEH_STOPPED_TEMP_UNAVAIL;
654 }
655
656 /*
657 * Override the result based on the ascending
658 * priority.
659 */
660 if (fstate > state)
661 state = fstate;
662 }
663
664 return state;
665 }
666
667 /* Currently those 2 are only used when MSIs are enabled, this will change
668 * but in the meantime, we need to protect them to avoid warnings
669 */
670 #ifdef CONFIG_PCI_MSI
pnv_ioda_get_pe(struct pci_dev * dev)671 struct pnv_ioda_pe *pnv_ioda_get_pe(struct pci_dev *dev)
672 {
673 struct pci_controller *hose = pci_bus_to_host(dev->bus);
674 struct pnv_phb *phb = hose->private_data;
675 struct pci_dn *pdn = pci_get_pdn(dev);
676
677 if (!pdn)
678 return NULL;
679 if (pdn->pe_number == IODA_INVALID_PE)
680 return NULL;
681 return &phb->ioda.pe_array[pdn->pe_number];
682 }
683 #endif /* CONFIG_PCI_MSI */
684
pnv_ioda_set_one_peltv(struct pnv_phb * phb,struct pnv_ioda_pe * parent,struct pnv_ioda_pe * child,bool is_add)685 static int pnv_ioda_set_one_peltv(struct pnv_phb *phb,
686 struct pnv_ioda_pe *parent,
687 struct pnv_ioda_pe *child,
688 bool is_add)
689 {
690 const char *desc = is_add ? "adding" : "removing";
691 uint8_t op = is_add ? OPAL_ADD_PE_TO_DOMAIN :
692 OPAL_REMOVE_PE_FROM_DOMAIN;
693 struct pnv_ioda_pe *slave;
694 long rc;
695
696 /* Parent PE affects child PE */
697 rc = opal_pci_set_peltv(phb->opal_id, parent->pe_number,
698 child->pe_number, op);
699 if (rc != OPAL_SUCCESS) {
700 pe_warn(child, "OPAL error %ld %s to parent PELTV\n",
701 rc, desc);
702 return -ENXIO;
703 }
704
705 if (!(child->flags & PNV_IODA_PE_MASTER))
706 return 0;
707
708 /* Compound case: parent PE affects slave PEs */
709 list_for_each_entry(slave, &child->slaves, list) {
710 rc = opal_pci_set_peltv(phb->opal_id, parent->pe_number,
711 slave->pe_number, op);
712 if (rc != OPAL_SUCCESS) {
713 pe_warn(slave, "OPAL error %ld %s to parent PELTV\n",
714 rc, desc);
715 return -ENXIO;
716 }
717 }
718
719 return 0;
720 }
721
pnv_ioda_set_peltv(struct pnv_phb * phb,struct pnv_ioda_pe * pe,bool is_add)722 static int pnv_ioda_set_peltv(struct pnv_phb *phb,
723 struct pnv_ioda_pe *pe,
724 bool is_add)
725 {
726 struct pnv_ioda_pe *slave;
727 struct pci_dev *pdev = NULL;
728 int ret;
729
730 /*
731 * Clear PE frozen state. If it's master PE, we need
732 * clear slave PE frozen state as well.
733 */
734 if (is_add) {
735 opal_pci_eeh_freeze_clear(phb->opal_id, pe->pe_number,
736 OPAL_EEH_ACTION_CLEAR_FREEZE_ALL);
737 if (pe->flags & PNV_IODA_PE_MASTER) {
738 list_for_each_entry(slave, &pe->slaves, list)
739 opal_pci_eeh_freeze_clear(phb->opal_id,
740 slave->pe_number,
741 OPAL_EEH_ACTION_CLEAR_FREEZE_ALL);
742 }
743 }
744
745 /*
746 * Associate PE in PELT. We need add the PE into the
747 * corresponding PELT-V as well. Otherwise, the error
748 * originated from the PE might contribute to other
749 * PEs.
750 */
751 ret = pnv_ioda_set_one_peltv(phb, pe, pe, is_add);
752 if (ret)
753 return ret;
754
755 /* For compound PEs, any one affects all of them */
756 if (pe->flags & PNV_IODA_PE_MASTER) {
757 list_for_each_entry(slave, &pe->slaves, list) {
758 ret = pnv_ioda_set_one_peltv(phb, slave, pe, is_add);
759 if (ret)
760 return ret;
761 }
762 }
763
764 if (pe->flags & (PNV_IODA_PE_BUS_ALL | PNV_IODA_PE_BUS))
765 pdev = pe->pbus->self;
766 else if (pe->flags & PNV_IODA_PE_DEV)
767 pdev = pe->pdev->bus->self;
768 #ifdef CONFIG_PCI_IOV
769 else if (pe->flags & PNV_IODA_PE_VF)
770 pdev = pe->parent_dev;
771 #endif /* CONFIG_PCI_IOV */
772 while (pdev) {
773 struct pci_dn *pdn = pci_get_pdn(pdev);
774 struct pnv_ioda_pe *parent;
775
776 if (pdn && pdn->pe_number != IODA_INVALID_PE) {
777 parent = &phb->ioda.pe_array[pdn->pe_number];
778 ret = pnv_ioda_set_one_peltv(phb, parent, pe, is_add);
779 if (ret)
780 return ret;
781 }
782
783 pdev = pdev->bus->self;
784 }
785
786 return 0;
787 }
788
pnv_ioda_deconfigure_pe(struct pnv_phb * phb,struct pnv_ioda_pe * pe)789 static int pnv_ioda_deconfigure_pe(struct pnv_phb *phb, struct pnv_ioda_pe *pe)
790 {
791 struct pci_dev *parent;
792 uint8_t bcomp, dcomp, fcomp;
793 int64_t rc;
794 long rid_end, rid;
795
796 /* Currently, we just deconfigure VF PE. Bus PE will always there.*/
797 if (pe->pbus) {
798 int count;
799
800 dcomp = OPAL_IGNORE_RID_DEVICE_NUMBER;
801 fcomp = OPAL_IGNORE_RID_FUNCTION_NUMBER;
802 parent = pe->pbus->self;
803 if (pe->flags & PNV_IODA_PE_BUS_ALL)
804 count = pe->pbus->busn_res.end - pe->pbus->busn_res.start + 1;
805 else
806 count = 1;
807
808 switch(count) {
809 case 1: bcomp = OpalPciBusAll; break;
810 case 2: bcomp = OpalPciBus7Bits; break;
811 case 4: bcomp = OpalPciBus6Bits; break;
812 case 8: bcomp = OpalPciBus5Bits; break;
813 case 16: bcomp = OpalPciBus4Bits; break;
814 case 32: bcomp = OpalPciBus3Bits; break;
815 default:
816 dev_err(&pe->pbus->dev, "Number of subordinate buses %d unsupported\n",
817 count);
818 /* Do an exact match only */
819 bcomp = OpalPciBusAll;
820 }
821 rid_end = pe->rid + (count << 8);
822 } else {
823 #ifdef CONFIG_PCI_IOV
824 if (pe->flags & PNV_IODA_PE_VF)
825 parent = pe->parent_dev;
826 else
827 #endif
828 parent = pe->pdev->bus->self;
829 bcomp = OpalPciBusAll;
830 dcomp = OPAL_COMPARE_RID_DEVICE_NUMBER;
831 fcomp = OPAL_COMPARE_RID_FUNCTION_NUMBER;
832 rid_end = pe->rid + 1;
833 }
834
835 /* Clear the reverse map */
836 for (rid = pe->rid; rid < rid_end; rid++)
837 phb->ioda.pe_rmap[rid] = IODA_INVALID_PE;
838
839 /* Release from all parents PELT-V */
840 while (parent) {
841 struct pci_dn *pdn = pci_get_pdn(parent);
842 if (pdn && pdn->pe_number != IODA_INVALID_PE) {
843 rc = opal_pci_set_peltv(phb->opal_id, pdn->pe_number,
844 pe->pe_number, OPAL_REMOVE_PE_FROM_DOMAIN);
845 /* XXX What to do in case of error ? */
846 }
847 parent = parent->bus->self;
848 }
849
850 opal_pci_eeh_freeze_clear(phb->opal_id, pe->pe_number,
851 OPAL_EEH_ACTION_CLEAR_FREEZE_ALL);
852
853 /* Disassociate PE in PELT */
854 rc = opal_pci_set_peltv(phb->opal_id, pe->pe_number,
855 pe->pe_number, OPAL_REMOVE_PE_FROM_DOMAIN);
856 if (rc)
857 pe_warn(pe, "OPAL error %ld remove self from PELTV\n", rc);
858 rc = opal_pci_set_pe(phb->opal_id, pe->pe_number, pe->rid,
859 bcomp, dcomp, fcomp, OPAL_UNMAP_PE);
860 if (rc)
861 pe_err(pe, "OPAL error %ld trying to setup PELT table\n", rc);
862
863 pe->pbus = NULL;
864 pe->pdev = NULL;
865 #ifdef CONFIG_PCI_IOV
866 pe->parent_dev = NULL;
867 #endif
868
869 return 0;
870 }
871
pnv_ioda_configure_pe(struct pnv_phb * phb,struct pnv_ioda_pe * pe)872 static int pnv_ioda_configure_pe(struct pnv_phb *phb, struct pnv_ioda_pe *pe)
873 {
874 struct pci_dev *parent;
875 uint8_t bcomp, dcomp, fcomp;
876 long rc, rid_end, rid;
877
878 /* Bus validation ? */
879 if (pe->pbus) {
880 int count;
881
882 dcomp = OPAL_IGNORE_RID_DEVICE_NUMBER;
883 fcomp = OPAL_IGNORE_RID_FUNCTION_NUMBER;
884 parent = pe->pbus->self;
885 if (pe->flags & PNV_IODA_PE_BUS_ALL)
886 count = pe->pbus->busn_res.end - pe->pbus->busn_res.start + 1;
887 else
888 count = 1;
889
890 switch(count) {
891 case 1: bcomp = OpalPciBusAll; break;
892 case 2: bcomp = OpalPciBus7Bits; break;
893 case 4: bcomp = OpalPciBus6Bits; break;
894 case 8: bcomp = OpalPciBus5Bits; break;
895 case 16: bcomp = OpalPciBus4Bits; break;
896 case 32: bcomp = OpalPciBus3Bits; break;
897 default:
898 dev_err(&pe->pbus->dev, "Number of subordinate buses %d unsupported\n",
899 count);
900 /* Do an exact match only */
901 bcomp = OpalPciBusAll;
902 }
903 rid_end = pe->rid + (count << 8);
904 } else {
905 #ifdef CONFIG_PCI_IOV
906 if (pe->flags & PNV_IODA_PE_VF)
907 parent = pe->parent_dev;
908 else
909 #endif /* CONFIG_PCI_IOV */
910 parent = pe->pdev->bus->self;
911 bcomp = OpalPciBusAll;
912 dcomp = OPAL_COMPARE_RID_DEVICE_NUMBER;
913 fcomp = OPAL_COMPARE_RID_FUNCTION_NUMBER;
914 rid_end = pe->rid + 1;
915 }
916
917 /*
918 * Associate PE in PELT. We need add the PE into the
919 * corresponding PELT-V as well. Otherwise, the error
920 * originated from the PE might contribute to other
921 * PEs.
922 */
923 rc = opal_pci_set_pe(phb->opal_id, pe->pe_number, pe->rid,
924 bcomp, dcomp, fcomp, OPAL_MAP_PE);
925 if (rc) {
926 pe_err(pe, "OPAL error %ld trying to setup PELT table\n", rc);
927 return -ENXIO;
928 }
929
930 /*
931 * Configure PELTV. NPUs don't have a PELTV table so skip
932 * configuration on them.
933 */
934 if (phb->type != PNV_PHB_NPU_NVLINK && phb->type != PNV_PHB_NPU_OCAPI)
935 pnv_ioda_set_peltv(phb, pe, true);
936
937 /* Setup reverse map */
938 for (rid = pe->rid; rid < rid_end; rid++)
939 phb->ioda.pe_rmap[rid] = pe->pe_number;
940
941 /* Setup one MVTs on IODA1 */
942 if (phb->type != PNV_PHB_IODA1) {
943 pe->mve_number = 0;
944 goto out;
945 }
946
947 pe->mve_number = pe->pe_number;
948 rc = opal_pci_set_mve(phb->opal_id, pe->mve_number, pe->pe_number);
949 if (rc != OPAL_SUCCESS) {
950 pe_err(pe, "OPAL error %ld setting up MVE %x\n",
951 rc, pe->mve_number);
952 pe->mve_number = -1;
953 } else {
954 rc = opal_pci_set_mve_enable(phb->opal_id,
955 pe->mve_number, OPAL_ENABLE_MVE);
956 if (rc) {
957 pe_err(pe, "OPAL error %ld enabling MVE %x\n",
958 rc, pe->mve_number);
959 pe->mve_number = -1;
960 }
961 }
962
963 out:
964 return 0;
965 }
966
967 #ifdef CONFIG_PCI_IOV
pnv_pci_vf_resource_shift(struct pci_dev * dev,int offset)968 static int pnv_pci_vf_resource_shift(struct pci_dev *dev, int offset)
969 {
970 struct pci_dn *pdn = pci_get_pdn(dev);
971 int i;
972 struct resource *res, res2;
973 resource_size_t size;
974 u16 num_vfs;
975
976 if (!dev->is_physfn)
977 return -EINVAL;
978
979 /*
980 * "offset" is in VFs. The M64 windows are sized so that when they
981 * are segmented, each segment is the same size as the IOV BAR.
982 * Each segment is in a separate PE, and the high order bits of the
983 * address are the PE number. Therefore, each VF's BAR is in a
984 * separate PE, and changing the IOV BAR start address changes the
985 * range of PEs the VFs are in.
986 */
987 num_vfs = pdn->num_vfs;
988 for (i = 0; i < PCI_SRIOV_NUM_BARS; i++) {
989 res = &dev->resource[i + PCI_IOV_RESOURCES];
990 if (!res->flags || !res->parent)
991 continue;
992
993 /*
994 * The actual IOV BAR range is determined by the start address
995 * and the actual size for num_vfs VFs BAR. This check is to
996 * make sure that after shifting, the range will not overlap
997 * with another device.
998 */
999 size = pci_iov_resource_size(dev, i + PCI_IOV_RESOURCES);
1000 res2.flags = res->flags;
1001 res2.start = res->start + (size * offset);
1002 res2.end = res2.start + (size * num_vfs) - 1;
1003
1004 if (res2.end > res->end) {
1005 dev_err(&dev->dev, "VF BAR%d: %pR would extend past %pR (trying to enable %d VFs shifted by %d)\n",
1006 i, &res2, res, num_vfs, offset);
1007 return -EBUSY;
1008 }
1009 }
1010
1011 /*
1012 * Since M64 BAR shares segments among all possible 256 PEs,
1013 * we have to shift the beginning of PF IOV BAR to make it start from
1014 * the segment which belongs to the PE number assigned to the first VF.
1015 * This creates a "hole" in the /proc/iomem which could be used for
1016 * allocating other resources so we reserve this area below and
1017 * release when IOV is released.
1018 */
1019 for (i = 0; i < PCI_SRIOV_NUM_BARS; i++) {
1020 res = &dev->resource[i + PCI_IOV_RESOURCES];
1021 if (!res->flags || !res->parent)
1022 continue;
1023
1024 size = pci_iov_resource_size(dev, i + PCI_IOV_RESOURCES);
1025 res2 = *res;
1026 res->start += size * offset;
1027
1028 dev_info(&dev->dev, "VF BAR%d: %pR shifted to %pR (%sabling %d VFs shifted by %d)\n",
1029 i, &res2, res, (offset > 0) ? "En" : "Dis",
1030 num_vfs, offset);
1031
1032 if (offset < 0) {
1033 devm_release_resource(&dev->dev, &pdn->holes[i]);
1034 memset(&pdn->holes[i], 0, sizeof(pdn->holes[i]));
1035 }
1036
1037 pci_update_resource(dev, i + PCI_IOV_RESOURCES);
1038
1039 if (offset > 0) {
1040 pdn->holes[i].start = res2.start;
1041 pdn->holes[i].end = res2.start + size * offset - 1;
1042 pdn->holes[i].flags = IORESOURCE_BUS;
1043 pdn->holes[i].name = "pnv_iov_reserved";
1044 devm_request_resource(&dev->dev, res->parent,
1045 &pdn->holes[i]);
1046 }
1047 }
1048 return 0;
1049 }
1050 #endif /* CONFIG_PCI_IOV */
1051
pnv_ioda_setup_dev_PE(struct pci_dev * dev)1052 static struct pnv_ioda_pe *pnv_ioda_setup_dev_PE(struct pci_dev *dev)
1053 {
1054 struct pci_controller *hose = pci_bus_to_host(dev->bus);
1055 struct pnv_phb *phb = hose->private_data;
1056 struct pci_dn *pdn = pci_get_pdn(dev);
1057 struct pnv_ioda_pe *pe;
1058
1059 if (!pdn) {
1060 pr_err("%s: Device tree node not associated properly\n",
1061 pci_name(dev));
1062 return NULL;
1063 }
1064 if (pdn->pe_number != IODA_INVALID_PE)
1065 return NULL;
1066
1067 pe = pnv_ioda_alloc_pe(phb);
1068 if (!pe) {
1069 pr_warn("%s: Not enough PE# available, disabling device\n",
1070 pci_name(dev));
1071 return NULL;
1072 }
1073
1074 /* NOTE: We get only one ref to the pci_dev for the pdn, not for the
1075 * pointer in the PE data structure, both should be destroyed at the
1076 * same time. However, this needs to be looked at more closely again
1077 * once we actually start removing things (Hotplug, SR-IOV, ...)
1078 *
1079 * At some point we want to remove the PDN completely anyways
1080 */
1081 pci_dev_get(dev);
1082 pdn->pe_number = pe->pe_number;
1083 pe->flags = PNV_IODA_PE_DEV;
1084 pe->pdev = dev;
1085 pe->pbus = NULL;
1086 pe->mve_number = -1;
1087 pe->rid = dev->bus->number << 8 | pdn->devfn;
1088
1089 pe_info(pe, "Associated device to PE\n");
1090
1091 if (pnv_ioda_configure_pe(phb, pe)) {
1092 /* XXX What do we do here ? */
1093 pnv_ioda_free_pe(pe);
1094 pdn->pe_number = IODA_INVALID_PE;
1095 pe->pdev = NULL;
1096 pci_dev_put(dev);
1097 return NULL;
1098 }
1099
1100 /* Put PE to the list */
1101 list_add_tail(&pe->list, &phb->ioda.pe_list);
1102
1103 return pe;
1104 }
1105
pnv_ioda_setup_same_PE(struct pci_bus * bus,struct pnv_ioda_pe * pe)1106 static void pnv_ioda_setup_same_PE(struct pci_bus *bus, struct pnv_ioda_pe *pe)
1107 {
1108 struct pci_dev *dev;
1109
1110 list_for_each_entry(dev, &bus->devices, bus_list) {
1111 struct pci_dn *pdn = pci_get_pdn(dev);
1112
1113 if (pdn == NULL) {
1114 pr_warn("%s: No device node associated with device !\n",
1115 pci_name(dev));
1116 continue;
1117 }
1118
1119 /*
1120 * In partial hotplug case, the PCI device might be still
1121 * associated with the PE and needn't attach it to the PE
1122 * again.
1123 */
1124 if (pdn->pe_number != IODA_INVALID_PE)
1125 continue;
1126
1127 pe->device_count++;
1128 pdn->pe_number = pe->pe_number;
1129 if ((pe->flags & PNV_IODA_PE_BUS_ALL) && dev->subordinate)
1130 pnv_ioda_setup_same_PE(dev->subordinate, pe);
1131 }
1132 }
1133
1134 /*
1135 * There're 2 types of PCI bus sensitive PEs: One that is compromised of
1136 * single PCI bus. Another one that contains the primary PCI bus and its
1137 * subordinate PCI devices and buses. The second type of PE is normally
1138 * orgiriated by PCIe-to-PCI bridge or PLX switch downstream ports.
1139 */
pnv_ioda_setup_bus_PE(struct pci_bus * bus,bool all)1140 static struct pnv_ioda_pe *pnv_ioda_setup_bus_PE(struct pci_bus *bus, bool all)
1141 {
1142 struct pci_controller *hose = pci_bus_to_host(bus);
1143 struct pnv_phb *phb = hose->private_data;
1144 struct pnv_ioda_pe *pe = NULL;
1145 unsigned int pe_num;
1146
1147 /*
1148 * In partial hotplug case, the PE instance might be still alive.
1149 * We should reuse it instead of allocating a new one.
1150 */
1151 pe_num = phb->ioda.pe_rmap[bus->number << 8];
1152 if (pe_num != IODA_INVALID_PE) {
1153 pe = &phb->ioda.pe_array[pe_num];
1154 pnv_ioda_setup_same_PE(bus, pe);
1155 return NULL;
1156 }
1157
1158 /* PE number for root bus should have been reserved */
1159 if (pci_is_root_bus(bus) &&
1160 phb->ioda.root_pe_idx != IODA_INVALID_PE)
1161 pe = &phb->ioda.pe_array[phb->ioda.root_pe_idx];
1162
1163 /* Check if PE is determined by M64 */
1164 if (!pe && phb->pick_m64_pe)
1165 pe = phb->pick_m64_pe(bus, all);
1166
1167 /* The PE number isn't pinned by M64 */
1168 if (!pe)
1169 pe = pnv_ioda_alloc_pe(phb);
1170
1171 if (!pe) {
1172 pr_warn("%s: Not enough PE# available for PCI bus %04x:%02x\n",
1173 __func__, pci_domain_nr(bus), bus->number);
1174 return NULL;
1175 }
1176
1177 pe->flags |= (all ? PNV_IODA_PE_BUS_ALL : PNV_IODA_PE_BUS);
1178 pe->pbus = bus;
1179 pe->pdev = NULL;
1180 pe->mve_number = -1;
1181 pe->rid = bus->busn_res.start << 8;
1182
1183 if (all)
1184 pe_info(pe, "Secondary bus %d..%d associated with PE#%x\n",
1185 bus->busn_res.start, bus->busn_res.end, pe->pe_number);
1186 else
1187 pe_info(pe, "Secondary bus %d associated with PE#%x\n",
1188 bus->busn_res.start, pe->pe_number);
1189
1190 if (pnv_ioda_configure_pe(phb, pe)) {
1191 /* XXX What do we do here ? */
1192 pnv_ioda_free_pe(pe);
1193 pe->pbus = NULL;
1194 return NULL;
1195 }
1196
1197 /* Associate it with all child devices */
1198 pnv_ioda_setup_same_PE(bus, pe);
1199
1200 /* Put PE to the list */
1201 list_add_tail(&pe->list, &phb->ioda.pe_list);
1202
1203 return pe;
1204 }
1205
pnv_ioda_setup_npu_PE(struct pci_dev * npu_pdev)1206 static struct pnv_ioda_pe *pnv_ioda_setup_npu_PE(struct pci_dev *npu_pdev)
1207 {
1208 int pe_num, found_pe = false, rc;
1209 long rid;
1210 struct pnv_ioda_pe *pe;
1211 struct pci_dev *gpu_pdev;
1212 struct pci_dn *npu_pdn;
1213 struct pci_controller *hose = pci_bus_to_host(npu_pdev->bus);
1214 struct pnv_phb *phb = hose->private_data;
1215
1216 /*
1217 * Due to a hardware errata PE#0 on the NPU is reserved for
1218 * error handling. This means we only have three PEs remaining
1219 * which need to be assigned to four links, implying some
1220 * links must share PEs.
1221 *
1222 * To achieve this we assign PEs such that NPUs linking the
1223 * same GPU get assigned the same PE.
1224 */
1225 gpu_pdev = pnv_pci_get_gpu_dev(npu_pdev);
1226 for (pe_num = 0; pe_num < phb->ioda.total_pe_num; pe_num++) {
1227 pe = &phb->ioda.pe_array[pe_num];
1228 if (!pe->pdev)
1229 continue;
1230
1231 if (pnv_pci_get_gpu_dev(pe->pdev) == gpu_pdev) {
1232 /*
1233 * This device has the same peer GPU so should
1234 * be assigned the same PE as the existing
1235 * peer NPU.
1236 */
1237 dev_info(&npu_pdev->dev,
1238 "Associating to existing PE %x\n", pe_num);
1239 pci_dev_get(npu_pdev);
1240 npu_pdn = pci_get_pdn(npu_pdev);
1241 rid = npu_pdev->bus->number << 8 | npu_pdn->devfn;
1242 npu_pdn->pe_number = pe_num;
1243 phb->ioda.pe_rmap[rid] = pe->pe_number;
1244
1245 /* Map the PE to this link */
1246 rc = opal_pci_set_pe(phb->opal_id, pe_num, rid,
1247 OpalPciBusAll,
1248 OPAL_COMPARE_RID_DEVICE_NUMBER,
1249 OPAL_COMPARE_RID_FUNCTION_NUMBER,
1250 OPAL_MAP_PE);
1251 WARN_ON(rc != OPAL_SUCCESS);
1252 found_pe = true;
1253 break;
1254 }
1255 }
1256
1257 if (!found_pe)
1258 /*
1259 * Could not find an existing PE so allocate a new
1260 * one.
1261 */
1262 return pnv_ioda_setup_dev_PE(npu_pdev);
1263 else
1264 return pe;
1265 }
1266
pnv_ioda_setup_npu_PEs(struct pci_bus * bus)1267 static void pnv_ioda_setup_npu_PEs(struct pci_bus *bus)
1268 {
1269 struct pci_dev *pdev;
1270
1271 list_for_each_entry(pdev, &bus->devices, bus_list)
1272 pnv_ioda_setup_npu_PE(pdev);
1273 }
1274
pnv_pci_ioda_setup_PEs(void)1275 static void pnv_pci_ioda_setup_PEs(void)
1276 {
1277 struct pci_controller *hose, *tmp;
1278 struct pnv_phb *phb;
1279 struct pci_bus *bus;
1280 struct pci_dev *pdev;
1281
1282 list_for_each_entry_safe(hose, tmp, &hose_list, list_node) {
1283 phb = hose->private_data;
1284 if (phb->type == PNV_PHB_NPU_NVLINK) {
1285 /* PE#0 is needed for error reporting */
1286 pnv_ioda_reserve_pe(phb, 0);
1287 pnv_ioda_setup_npu_PEs(hose->bus);
1288 if (phb->model == PNV_PHB_MODEL_NPU2)
1289 pnv_npu2_init(phb);
1290 }
1291 if (phb->type == PNV_PHB_NPU_OCAPI) {
1292 bus = hose->bus;
1293 list_for_each_entry(pdev, &bus->devices, bus_list)
1294 pnv_ioda_setup_dev_PE(pdev);
1295 }
1296 }
1297 }
1298
1299 #ifdef CONFIG_PCI_IOV
pnv_pci_vf_release_m64(struct pci_dev * pdev,u16 num_vfs)1300 static int pnv_pci_vf_release_m64(struct pci_dev *pdev, u16 num_vfs)
1301 {
1302 struct pci_bus *bus;
1303 struct pci_controller *hose;
1304 struct pnv_phb *phb;
1305 struct pci_dn *pdn;
1306 int i, j;
1307 int m64_bars;
1308
1309 bus = pdev->bus;
1310 hose = pci_bus_to_host(bus);
1311 phb = hose->private_data;
1312 pdn = pci_get_pdn(pdev);
1313
1314 if (pdn->m64_single_mode)
1315 m64_bars = num_vfs;
1316 else
1317 m64_bars = 1;
1318
1319 for (i = 0; i < PCI_SRIOV_NUM_BARS; i++)
1320 for (j = 0; j < m64_bars; j++) {
1321 if (pdn->m64_map[j][i] == IODA_INVALID_M64)
1322 continue;
1323 opal_pci_phb_mmio_enable(phb->opal_id,
1324 OPAL_M64_WINDOW_TYPE, pdn->m64_map[j][i], 0);
1325 clear_bit(pdn->m64_map[j][i], &phb->ioda.m64_bar_alloc);
1326 pdn->m64_map[j][i] = IODA_INVALID_M64;
1327 }
1328
1329 kfree(pdn->m64_map);
1330 return 0;
1331 }
1332
pnv_pci_vf_assign_m64(struct pci_dev * pdev,u16 num_vfs)1333 static int pnv_pci_vf_assign_m64(struct pci_dev *pdev, u16 num_vfs)
1334 {
1335 struct pci_bus *bus;
1336 struct pci_controller *hose;
1337 struct pnv_phb *phb;
1338 struct pci_dn *pdn;
1339 unsigned int win;
1340 struct resource *res;
1341 int i, j;
1342 int64_t rc;
1343 int total_vfs;
1344 resource_size_t size, start;
1345 int pe_num;
1346 int m64_bars;
1347
1348 bus = pdev->bus;
1349 hose = pci_bus_to_host(bus);
1350 phb = hose->private_data;
1351 pdn = pci_get_pdn(pdev);
1352 total_vfs = pci_sriov_get_totalvfs(pdev);
1353
1354 if (pdn->m64_single_mode)
1355 m64_bars = num_vfs;
1356 else
1357 m64_bars = 1;
1358
1359 pdn->m64_map = kmalloc_array(m64_bars,
1360 sizeof(*pdn->m64_map),
1361 GFP_KERNEL);
1362 if (!pdn->m64_map)
1363 return -ENOMEM;
1364 /* Initialize the m64_map to IODA_INVALID_M64 */
1365 for (i = 0; i < m64_bars ; i++)
1366 for (j = 0; j < PCI_SRIOV_NUM_BARS; j++)
1367 pdn->m64_map[i][j] = IODA_INVALID_M64;
1368
1369
1370 for (i = 0; i < PCI_SRIOV_NUM_BARS; i++) {
1371 res = &pdev->resource[i + PCI_IOV_RESOURCES];
1372 if (!res->flags || !res->parent)
1373 continue;
1374
1375 for (j = 0; j < m64_bars; j++) {
1376 do {
1377 win = find_next_zero_bit(&phb->ioda.m64_bar_alloc,
1378 phb->ioda.m64_bar_idx + 1, 0);
1379
1380 if (win >= phb->ioda.m64_bar_idx + 1)
1381 goto m64_failed;
1382 } while (test_and_set_bit(win, &phb->ioda.m64_bar_alloc));
1383
1384 pdn->m64_map[j][i] = win;
1385
1386 if (pdn->m64_single_mode) {
1387 size = pci_iov_resource_size(pdev,
1388 PCI_IOV_RESOURCES + i);
1389 start = res->start + size * j;
1390 } else {
1391 size = resource_size(res);
1392 start = res->start;
1393 }
1394
1395 /* Map the M64 here */
1396 if (pdn->m64_single_mode) {
1397 pe_num = pdn->pe_num_map[j];
1398 rc = opal_pci_map_pe_mmio_window(phb->opal_id,
1399 pe_num, OPAL_M64_WINDOW_TYPE,
1400 pdn->m64_map[j][i], 0);
1401 }
1402
1403 rc = opal_pci_set_phb_mem_window(phb->opal_id,
1404 OPAL_M64_WINDOW_TYPE,
1405 pdn->m64_map[j][i],
1406 start,
1407 0, /* unused */
1408 size);
1409
1410
1411 if (rc != OPAL_SUCCESS) {
1412 dev_err(&pdev->dev, "Failed to map M64 window #%d: %lld\n",
1413 win, rc);
1414 goto m64_failed;
1415 }
1416
1417 if (pdn->m64_single_mode)
1418 rc = opal_pci_phb_mmio_enable(phb->opal_id,
1419 OPAL_M64_WINDOW_TYPE, pdn->m64_map[j][i], 2);
1420 else
1421 rc = opal_pci_phb_mmio_enable(phb->opal_id,
1422 OPAL_M64_WINDOW_TYPE, pdn->m64_map[j][i], 1);
1423
1424 if (rc != OPAL_SUCCESS) {
1425 dev_err(&pdev->dev, "Failed to enable M64 window #%d: %llx\n",
1426 win, rc);
1427 goto m64_failed;
1428 }
1429 }
1430 }
1431 return 0;
1432
1433 m64_failed:
1434 pnv_pci_vf_release_m64(pdev, num_vfs);
1435 return -EBUSY;
1436 }
1437
1438 static long pnv_pci_ioda2_unset_window(struct iommu_table_group *table_group,
1439 int num);
1440
pnv_pci_ioda2_release_dma_pe(struct pci_dev * dev,struct pnv_ioda_pe * pe)1441 static void pnv_pci_ioda2_release_dma_pe(struct pci_dev *dev, struct pnv_ioda_pe *pe)
1442 {
1443 struct iommu_table *tbl;
1444 int64_t rc;
1445
1446 tbl = pe->table_group.tables[0];
1447 rc = pnv_pci_ioda2_unset_window(&pe->table_group, 0);
1448 if (rc)
1449 pe_warn(pe, "OPAL error %ld release DMA window\n", rc);
1450
1451 pnv_pci_ioda2_set_bypass(pe, false);
1452 if (pe->table_group.group) {
1453 iommu_group_put(pe->table_group.group);
1454 BUG_ON(pe->table_group.group);
1455 }
1456 iommu_tce_table_put(tbl);
1457 }
1458
pnv_ioda_release_vf_PE(struct pci_dev * pdev)1459 static void pnv_ioda_release_vf_PE(struct pci_dev *pdev)
1460 {
1461 struct pci_bus *bus;
1462 struct pci_controller *hose;
1463 struct pnv_phb *phb;
1464 struct pnv_ioda_pe *pe, *pe_n;
1465 struct pci_dn *pdn;
1466
1467 bus = pdev->bus;
1468 hose = pci_bus_to_host(bus);
1469 phb = hose->private_data;
1470 pdn = pci_get_pdn(pdev);
1471
1472 if (!pdev->is_physfn)
1473 return;
1474
1475 list_for_each_entry_safe(pe, pe_n, &phb->ioda.pe_list, list) {
1476 if (pe->parent_dev != pdev)
1477 continue;
1478
1479 pnv_pci_ioda2_release_dma_pe(pdev, pe);
1480
1481 /* Remove from list */
1482 mutex_lock(&phb->ioda.pe_list_mutex);
1483 list_del(&pe->list);
1484 mutex_unlock(&phb->ioda.pe_list_mutex);
1485
1486 pnv_ioda_deconfigure_pe(phb, pe);
1487
1488 pnv_ioda_free_pe(pe);
1489 }
1490 }
1491
pnv_pci_sriov_disable(struct pci_dev * pdev)1492 void pnv_pci_sriov_disable(struct pci_dev *pdev)
1493 {
1494 struct pci_bus *bus;
1495 struct pci_controller *hose;
1496 struct pnv_phb *phb;
1497 struct pnv_ioda_pe *pe;
1498 struct pci_dn *pdn;
1499 u16 num_vfs, i;
1500
1501 bus = pdev->bus;
1502 hose = pci_bus_to_host(bus);
1503 phb = hose->private_data;
1504 pdn = pci_get_pdn(pdev);
1505 num_vfs = pdn->num_vfs;
1506
1507 /* Release VF PEs */
1508 pnv_ioda_release_vf_PE(pdev);
1509
1510 if (phb->type == PNV_PHB_IODA2) {
1511 if (!pdn->m64_single_mode)
1512 pnv_pci_vf_resource_shift(pdev, -*pdn->pe_num_map);
1513
1514 /* Release M64 windows */
1515 pnv_pci_vf_release_m64(pdev, num_vfs);
1516
1517 /* Release PE numbers */
1518 if (pdn->m64_single_mode) {
1519 for (i = 0; i < num_vfs; i++) {
1520 if (pdn->pe_num_map[i] == IODA_INVALID_PE)
1521 continue;
1522
1523 pe = &phb->ioda.pe_array[pdn->pe_num_map[i]];
1524 pnv_ioda_free_pe(pe);
1525 }
1526 } else
1527 bitmap_clear(phb->ioda.pe_alloc, *pdn->pe_num_map, num_vfs);
1528 /* Releasing pe_num_map */
1529 kfree(pdn->pe_num_map);
1530 }
1531 }
1532
1533 static void pnv_pci_ioda2_setup_dma_pe(struct pnv_phb *phb,
1534 struct pnv_ioda_pe *pe);
pnv_ioda_setup_vf_PE(struct pci_dev * pdev,u16 num_vfs)1535 static void pnv_ioda_setup_vf_PE(struct pci_dev *pdev, u16 num_vfs)
1536 {
1537 struct pci_bus *bus;
1538 struct pci_controller *hose;
1539 struct pnv_phb *phb;
1540 struct pnv_ioda_pe *pe;
1541 int pe_num;
1542 u16 vf_index;
1543 struct pci_dn *pdn;
1544
1545 bus = pdev->bus;
1546 hose = pci_bus_to_host(bus);
1547 phb = hose->private_data;
1548 pdn = pci_get_pdn(pdev);
1549
1550 if (!pdev->is_physfn)
1551 return;
1552
1553 /* Reserve PE for each VF */
1554 for (vf_index = 0; vf_index < num_vfs; vf_index++) {
1555 int vf_devfn = pci_iov_virtfn_devfn(pdev, vf_index);
1556 int vf_bus = pci_iov_virtfn_bus(pdev, vf_index);
1557 struct pci_dn *vf_pdn;
1558
1559 if (pdn->m64_single_mode)
1560 pe_num = pdn->pe_num_map[vf_index];
1561 else
1562 pe_num = *pdn->pe_num_map + vf_index;
1563
1564 pe = &phb->ioda.pe_array[pe_num];
1565 pe->pe_number = pe_num;
1566 pe->phb = phb;
1567 pe->flags = PNV_IODA_PE_VF;
1568 pe->pbus = NULL;
1569 pe->parent_dev = pdev;
1570 pe->mve_number = -1;
1571 pe->rid = (vf_bus << 8) | vf_devfn;
1572
1573 pe_info(pe, "VF %04d:%02d:%02d.%d associated with PE#%x\n",
1574 hose->global_number, pdev->bus->number,
1575 PCI_SLOT(vf_devfn), PCI_FUNC(vf_devfn), pe_num);
1576
1577 if (pnv_ioda_configure_pe(phb, pe)) {
1578 /* XXX What do we do here ? */
1579 pnv_ioda_free_pe(pe);
1580 pe->pdev = NULL;
1581 continue;
1582 }
1583
1584 /* Put PE to the list */
1585 mutex_lock(&phb->ioda.pe_list_mutex);
1586 list_add_tail(&pe->list, &phb->ioda.pe_list);
1587 mutex_unlock(&phb->ioda.pe_list_mutex);
1588
1589 /* associate this pe to it's pdn */
1590 list_for_each_entry(vf_pdn, &pdn->parent->child_list, list) {
1591 if (vf_pdn->busno == vf_bus &&
1592 vf_pdn->devfn == vf_devfn) {
1593 vf_pdn->pe_number = pe_num;
1594 break;
1595 }
1596 }
1597
1598 pnv_pci_ioda2_setup_dma_pe(phb, pe);
1599 }
1600 }
1601
pnv_pci_sriov_enable(struct pci_dev * pdev,u16 num_vfs)1602 int pnv_pci_sriov_enable(struct pci_dev *pdev, u16 num_vfs)
1603 {
1604 struct pci_bus *bus;
1605 struct pci_controller *hose;
1606 struct pnv_phb *phb;
1607 struct pnv_ioda_pe *pe;
1608 struct pci_dn *pdn;
1609 int ret;
1610 u16 i;
1611
1612 bus = pdev->bus;
1613 hose = pci_bus_to_host(bus);
1614 phb = hose->private_data;
1615 pdn = pci_get_pdn(pdev);
1616
1617 if (phb->type == PNV_PHB_IODA2) {
1618 if (!pdn->vfs_expanded) {
1619 dev_info(&pdev->dev, "don't support this SRIOV device"
1620 " with non 64bit-prefetchable IOV BAR\n");
1621 return -ENOSPC;
1622 }
1623
1624 /*
1625 * When M64 BARs functions in Single PE mode, the number of VFs
1626 * could be enabled must be less than the number of M64 BARs.
1627 */
1628 if (pdn->m64_single_mode && num_vfs > phb->ioda.m64_bar_idx) {
1629 dev_info(&pdev->dev, "Not enough M64 BAR for VFs\n");
1630 return -EBUSY;
1631 }
1632
1633 /* Allocating pe_num_map */
1634 if (pdn->m64_single_mode)
1635 pdn->pe_num_map = kmalloc_array(num_vfs,
1636 sizeof(*pdn->pe_num_map),
1637 GFP_KERNEL);
1638 else
1639 pdn->pe_num_map = kmalloc(sizeof(*pdn->pe_num_map), GFP_KERNEL);
1640
1641 if (!pdn->pe_num_map)
1642 return -ENOMEM;
1643
1644 if (pdn->m64_single_mode)
1645 for (i = 0; i < num_vfs; i++)
1646 pdn->pe_num_map[i] = IODA_INVALID_PE;
1647
1648 /* Calculate available PE for required VFs */
1649 if (pdn->m64_single_mode) {
1650 for (i = 0; i < num_vfs; i++) {
1651 pe = pnv_ioda_alloc_pe(phb);
1652 if (!pe) {
1653 ret = -EBUSY;
1654 goto m64_failed;
1655 }
1656
1657 pdn->pe_num_map[i] = pe->pe_number;
1658 }
1659 } else {
1660 mutex_lock(&phb->ioda.pe_alloc_mutex);
1661 *pdn->pe_num_map = bitmap_find_next_zero_area(
1662 phb->ioda.pe_alloc, phb->ioda.total_pe_num,
1663 0, num_vfs, 0);
1664 if (*pdn->pe_num_map >= phb->ioda.total_pe_num) {
1665 mutex_unlock(&phb->ioda.pe_alloc_mutex);
1666 dev_info(&pdev->dev, "Failed to enable VF%d\n", num_vfs);
1667 kfree(pdn->pe_num_map);
1668 return -EBUSY;
1669 }
1670 bitmap_set(phb->ioda.pe_alloc, *pdn->pe_num_map, num_vfs);
1671 mutex_unlock(&phb->ioda.pe_alloc_mutex);
1672 }
1673 pdn->num_vfs = num_vfs;
1674
1675 /* Assign M64 window accordingly */
1676 ret = pnv_pci_vf_assign_m64(pdev, num_vfs);
1677 if (ret) {
1678 dev_info(&pdev->dev, "Not enough M64 window resources\n");
1679 goto m64_failed;
1680 }
1681
1682 /*
1683 * When using one M64 BAR to map one IOV BAR, we need to shift
1684 * the IOV BAR according to the PE# allocated to the VFs.
1685 * Otherwise, the PE# for the VF will conflict with others.
1686 */
1687 if (!pdn->m64_single_mode) {
1688 ret = pnv_pci_vf_resource_shift(pdev, *pdn->pe_num_map);
1689 if (ret)
1690 goto m64_failed;
1691 }
1692 }
1693
1694 /* Setup VF PEs */
1695 pnv_ioda_setup_vf_PE(pdev, num_vfs);
1696
1697 return 0;
1698
1699 m64_failed:
1700 if (pdn->m64_single_mode) {
1701 for (i = 0; i < num_vfs; i++) {
1702 if (pdn->pe_num_map[i] == IODA_INVALID_PE)
1703 continue;
1704
1705 pe = &phb->ioda.pe_array[pdn->pe_num_map[i]];
1706 pnv_ioda_free_pe(pe);
1707 }
1708 } else
1709 bitmap_clear(phb->ioda.pe_alloc, *pdn->pe_num_map, num_vfs);
1710
1711 /* Releasing pe_num_map */
1712 kfree(pdn->pe_num_map);
1713
1714 return ret;
1715 }
1716
pnv_pcibios_sriov_disable(struct pci_dev * pdev)1717 int pnv_pcibios_sriov_disable(struct pci_dev *pdev)
1718 {
1719 pnv_pci_sriov_disable(pdev);
1720
1721 /* Release PCI data */
1722 remove_dev_pci_data(pdev);
1723 return 0;
1724 }
1725
pnv_pcibios_sriov_enable(struct pci_dev * pdev,u16 num_vfs)1726 int pnv_pcibios_sriov_enable(struct pci_dev *pdev, u16 num_vfs)
1727 {
1728 /* Allocate PCI data */
1729 add_dev_pci_data(pdev);
1730
1731 return pnv_pci_sriov_enable(pdev, num_vfs);
1732 }
1733 #endif /* CONFIG_PCI_IOV */
1734
pnv_pci_ioda_dma_dev_setup(struct pnv_phb * phb,struct pci_dev * pdev)1735 static void pnv_pci_ioda_dma_dev_setup(struct pnv_phb *phb, struct pci_dev *pdev)
1736 {
1737 struct pci_dn *pdn = pci_get_pdn(pdev);
1738 struct pnv_ioda_pe *pe;
1739
1740 /*
1741 * The function can be called while the PE#
1742 * hasn't been assigned. Do nothing for the
1743 * case.
1744 */
1745 if (!pdn || pdn->pe_number == IODA_INVALID_PE)
1746 return;
1747
1748 pe = &phb->ioda.pe_array[pdn->pe_number];
1749 WARN_ON(get_dma_ops(&pdev->dev) != &dma_iommu_ops);
1750 set_dma_offset(&pdev->dev, pe->tce_bypass_base);
1751 set_iommu_table_base(&pdev->dev, pe->table_group.tables[0]);
1752 /*
1753 * Note: iommu_add_device() will fail here as
1754 * for physical PE: the device is already added by now;
1755 * for virtual PE: sysfs entries are not ready yet and
1756 * tce_iommu_bus_notifier will add the device to a group later.
1757 */
1758 }
1759
pnv_pci_ioda_pe_single_vendor(struct pnv_ioda_pe * pe)1760 static bool pnv_pci_ioda_pe_single_vendor(struct pnv_ioda_pe *pe)
1761 {
1762 unsigned short vendor = 0;
1763 struct pci_dev *pdev;
1764
1765 if (pe->device_count == 1)
1766 return true;
1767
1768 /* pe->pdev should be set if it's a single device, pe->pbus if not */
1769 if (!pe->pbus)
1770 return true;
1771
1772 list_for_each_entry(pdev, &pe->pbus->devices, bus_list) {
1773 if (!vendor) {
1774 vendor = pdev->vendor;
1775 continue;
1776 }
1777
1778 if (pdev->vendor != vendor)
1779 return false;
1780 }
1781
1782 return true;
1783 }
1784
1785 /*
1786 * Reconfigure TVE#0 to be usable as 64-bit DMA space.
1787 *
1788 * The first 4GB of virtual memory for a PE is reserved for 32-bit accesses.
1789 * Devices can only access more than that if bit 59 of the PCI address is set
1790 * by hardware, which indicates TVE#1 should be used instead of TVE#0.
1791 * Many PCI devices are not capable of addressing that many bits, and as a
1792 * result are limited to the 4GB of virtual memory made available to 32-bit
1793 * devices in TVE#0.
1794 *
1795 * In order to work around this, reconfigure TVE#0 to be suitable for 64-bit
1796 * devices by configuring the virtual memory past the first 4GB inaccessible
1797 * by 64-bit DMAs. This should only be used by devices that want more than
1798 * 4GB, and only on PEs that have no 32-bit devices.
1799 *
1800 * Currently this will only work on PHB3 (POWER8).
1801 */
pnv_pci_ioda_dma_64bit_bypass(struct pnv_ioda_pe * pe)1802 static int pnv_pci_ioda_dma_64bit_bypass(struct pnv_ioda_pe *pe)
1803 {
1804 u64 window_size, table_size, tce_count, addr;
1805 struct page *table_pages;
1806 u64 tce_order = 28; /* 256MB TCEs */
1807 __be64 *tces;
1808 s64 rc;
1809
1810 /*
1811 * Window size needs to be a power of two, but needs to account for
1812 * shifting memory by the 4GB offset required to skip 32bit space.
1813 */
1814 window_size = roundup_pow_of_two(memory_hotplug_max() + (1ULL << 32));
1815 tce_count = window_size >> tce_order;
1816 table_size = tce_count << 3;
1817
1818 if (table_size < PAGE_SIZE)
1819 table_size = PAGE_SIZE;
1820
1821 table_pages = alloc_pages_node(pe->phb->hose->node, GFP_KERNEL,
1822 get_order(table_size));
1823 if (!table_pages)
1824 goto err;
1825
1826 tces = page_address(table_pages);
1827 if (!tces)
1828 goto err;
1829
1830 memset(tces, 0, table_size);
1831
1832 for (addr = 0; addr < memory_hotplug_max(); addr += (1 << tce_order)) {
1833 tces[(addr + (1ULL << 32)) >> tce_order] =
1834 cpu_to_be64(addr | TCE_PCI_READ | TCE_PCI_WRITE);
1835 }
1836
1837 rc = opal_pci_map_pe_dma_window(pe->phb->opal_id,
1838 pe->pe_number,
1839 /* reconfigure window 0 */
1840 (pe->pe_number << 1) + 0,
1841 1,
1842 __pa(tces),
1843 table_size,
1844 1 << tce_order);
1845 if (rc == OPAL_SUCCESS) {
1846 pe_info(pe, "Using 64-bit DMA iommu bypass (through TVE#0)\n");
1847 return 0;
1848 }
1849 err:
1850 pe_err(pe, "Error configuring 64-bit DMA bypass\n");
1851 return -EIO;
1852 }
1853
pnv_pci_ioda_dma_set_mask(struct pci_dev * pdev,u64 dma_mask)1854 static int pnv_pci_ioda_dma_set_mask(struct pci_dev *pdev, u64 dma_mask)
1855 {
1856 struct pci_controller *hose = pci_bus_to_host(pdev->bus);
1857 struct pnv_phb *phb = hose->private_data;
1858 struct pci_dn *pdn = pci_get_pdn(pdev);
1859 struct pnv_ioda_pe *pe;
1860 uint64_t top;
1861 bool bypass = false;
1862 s64 rc;
1863
1864 if (WARN_ON(!pdn || pdn->pe_number == IODA_INVALID_PE))
1865 return -ENODEV;
1866
1867 pe = &phb->ioda.pe_array[pdn->pe_number];
1868 if (pe->tce_bypass_enabled) {
1869 top = pe->tce_bypass_base + memblock_end_of_DRAM() - 1;
1870 bypass = (dma_mask >= top);
1871 }
1872
1873 if (bypass) {
1874 dev_info(&pdev->dev, "Using 64-bit DMA iommu bypass\n");
1875 set_dma_ops(&pdev->dev, &dma_nommu_ops);
1876 } else {
1877 /*
1878 * If the device can't set the TCE bypass bit but still wants
1879 * to access 4GB or more, on PHB3 we can reconfigure TVE#0 to
1880 * bypass the 32-bit region and be usable for 64-bit DMAs.
1881 * The device needs to be able to address all of this space.
1882 */
1883 if (dma_mask >> 32 &&
1884 dma_mask > (memory_hotplug_max() + (1ULL << 32)) &&
1885 pnv_pci_ioda_pe_single_vendor(pe) &&
1886 phb->model == PNV_PHB_MODEL_PHB3) {
1887 /* Configure the bypass mode */
1888 rc = pnv_pci_ioda_dma_64bit_bypass(pe);
1889 if (rc)
1890 return rc;
1891 /* 4GB offset bypasses 32-bit space */
1892 set_dma_offset(&pdev->dev, (1ULL << 32));
1893 set_dma_ops(&pdev->dev, &dma_nommu_ops);
1894 } else if (dma_mask >> 32 && dma_mask != DMA_BIT_MASK(64)) {
1895 /*
1896 * Fail the request if a DMA mask between 32 and 64 bits
1897 * was requested but couldn't be fulfilled. Ideally we
1898 * would do this for 64-bits but historically we have
1899 * always fallen back to 32-bits.
1900 */
1901 return -ENOMEM;
1902 } else {
1903 dev_info(&pdev->dev, "Using 32-bit DMA via iommu\n");
1904 set_dma_ops(&pdev->dev, &dma_iommu_ops);
1905 }
1906 }
1907 *pdev->dev.dma_mask = dma_mask;
1908
1909 /* Update peer npu devices */
1910 pnv_npu_try_dma_set_bypass(pdev, bypass);
1911
1912 return 0;
1913 }
1914
pnv_pci_ioda_dma_get_required_mask(struct pci_dev * pdev)1915 static u64 pnv_pci_ioda_dma_get_required_mask(struct pci_dev *pdev)
1916 {
1917 struct pci_controller *hose = pci_bus_to_host(pdev->bus);
1918 struct pnv_phb *phb = hose->private_data;
1919 struct pci_dn *pdn = pci_get_pdn(pdev);
1920 struct pnv_ioda_pe *pe;
1921 u64 end, mask;
1922
1923 if (WARN_ON(!pdn || pdn->pe_number == IODA_INVALID_PE))
1924 return 0;
1925
1926 pe = &phb->ioda.pe_array[pdn->pe_number];
1927 if (!pe->tce_bypass_enabled)
1928 return __dma_get_required_mask(&pdev->dev);
1929
1930
1931 end = pe->tce_bypass_base + memblock_end_of_DRAM();
1932 mask = 1ULL << (fls64(end) - 1);
1933 mask += mask - 1;
1934
1935 return mask;
1936 }
1937
pnv_ioda_setup_bus_dma(struct pnv_ioda_pe * pe,struct pci_bus * bus,bool add_to_group)1938 static void pnv_ioda_setup_bus_dma(struct pnv_ioda_pe *pe,
1939 struct pci_bus *bus,
1940 bool add_to_group)
1941 {
1942 struct pci_dev *dev;
1943
1944 list_for_each_entry(dev, &bus->devices, bus_list) {
1945 set_iommu_table_base(&dev->dev, pe->table_group.tables[0]);
1946 set_dma_offset(&dev->dev, pe->tce_bypass_base);
1947 if (add_to_group)
1948 iommu_add_device(&dev->dev);
1949
1950 if ((pe->flags & PNV_IODA_PE_BUS_ALL) && dev->subordinate)
1951 pnv_ioda_setup_bus_dma(pe, dev->subordinate,
1952 add_to_group);
1953 }
1954 }
1955
pnv_ioda_get_inval_reg(struct pnv_phb * phb,bool real_mode)1956 static inline __be64 __iomem *pnv_ioda_get_inval_reg(struct pnv_phb *phb,
1957 bool real_mode)
1958 {
1959 return real_mode ? (__be64 __iomem *)(phb->regs_phys + 0x210) :
1960 (phb->regs + 0x210);
1961 }
1962
pnv_pci_p7ioc_tce_invalidate(struct iommu_table * tbl,unsigned long index,unsigned long npages,bool rm)1963 static void pnv_pci_p7ioc_tce_invalidate(struct iommu_table *tbl,
1964 unsigned long index, unsigned long npages, bool rm)
1965 {
1966 struct iommu_table_group_link *tgl = list_first_entry_or_null(
1967 &tbl->it_group_list, struct iommu_table_group_link,
1968 next);
1969 struct pnv_ioda_pe *pe = container_of(tgl->table_group,
1970 struct pnv_ioda_pe, table_group);
1971 __be64 __iomem *invalidate = pnv_ioda_get_inval_reg(pe->phb, rm);
1972 unsigned long start, end, inc;
1973
1974 start = __pa(((__be64 *)tbl->it_base) + index - tbl->it_offset);
1975 end = __pa(((__be64 *)tbl->it_base) + index - tbl->it_offset +
1976 npages - 1);
1977
1978 /* p7ioc-style invalidation, 2 TCEs per write */
1979 start |= (1ull << 63);
1980 end |= (1ull << 63);
1981 inc = 16;
1982 end |= inc - 1; /* round up end to be different than start */
1983
1984 mb(); /* Ensure above stores are visible */
1985 while (start <= end) {
1986 if (rm)
1987 __raw_rm_writeq_be(start, invalidate);
1988 else
1989 __raw_writeq_be(start, invalidate);
1990
1991 start += inc;
1992 }
1993
1994 /*
1995 * The iommu layer will do another mb() for us on build()
1996 * and we don't care on free()
1997 */
1998 }
1999
pnv_ioda1_tce_build(struct iommu_table * tbl,long index,long npages,unsigned long uaddr,enum dma_data_direction direction,unsigned long attrs)2000 static int pnv_ioda1_tce_build(struct iommu_table *tbl, long index,
2001 long npages, unsigned long uaddr,
2002 enum dma_data_direction direction,
2003 unsigned long attrs)
2004 {
2005 int ret = pnv_tce_build(tbl, index, npages, uaddr, direction,
2006 attrs);
2007
2008 if (!ret)
2009 pnv_pci_p7ioc_tce_invalidate(tbl, index, npages, false);
2010
2011 return ret;
2012 }
2013
2014 #ifdef CONFIG_IOMMU_API
pnv_ioda1_tce_xchg(struct iommu_table * tbl,long index,unsigned long * hpa,enum dma_data_direction * direction)2015 static int pnv_ioda1_tce_xchg(struct iommu_table *tbl, long index,
2016 unsigned long *hpa, enum dma_data_direction *direction)
2017 {
2018 long ret = pnv_tce_xchg(tbl, index, hpa, direction, true);
2019
2020 if (!ret)
2021 pnv_pci_p7ioc_tce_invalidate(tbl, index, 1, false);
2022
2023 return ret;
2024 }
2025
pnv_ioda1_tce_xchg_rm(struct iommu_table * tbl,long index,unsigned long * hpa,enum dma_data_direction * direction)2026 static int pnv_ioda1_tce_xchg_rm(struct iommu_table *tbl, long index,
2027 unsigned long *hpa, enum dma_data_direction *direction)
2028 {
2029 long ret = pnv_tce_xchg(tbl, index, hpa, direction, false);
2030
2031 if (!ret)
2032 pnv_pci_p7ioc_tce_invalidate(tbl, index, 1, true);
2033
2034 return ret;
2035 }
2036 #endif
2037
pnv_ioda1_tce_free(struct iommu_table * tbl,long index,long npages)2038 static void pnv_ioda1_tce_free(struct iommu_table *tbl, long index,
2039 long npages)
2040 {
2041 pnv_tce_free(tbl, index, npages);
2042
2043 pnv_pci_p7ioc_tce_invalidate(tbl, index, npages, false);
2044 }
2045
2046 static struct iommu_table_ops pnv_ioda1_iommu_ops = {
2047 .set = pnv_ioda1_tce_build,
2048 #ifdef CONFIG_IOMMU_API
2049 .exchange = pnv_ioda1_tce_xchg,
2050 .exchange_rm = pnv_ioda1_tce_xchg_rm,
2051 .useraddrptr = pnv_tce_useraddrptr,
2052 #endif
2053 .clear = pnv_ioda1_tce_free,
2054 .get = pnv_tce_get,
2055 };
2056
2057 #define PHB3_TCE_KILL_INVAL_ALL PPC_BIT(0)
2058 #define PHB3_TCE_KILL_INVAL_PE PPC_BIT(1)
2059 #define PHB3_TCE_KILL_INVAL_ONE PPC_BIT(2)
2060
pnv_pci_phb3_tce_invalidate_entire(struct pnv_phb * phb,bool rm)2061 static void pnv_pci_phb3_tce_invalidate_entire(struct pnv_phb *phb, bool rm)
2062 {
2063 __be64 __iomem *invalidate = pnv_ioda_get_inval_reg(phb, rm);
2064 const unsigned long val = PHB3_TCE_KILL_INVAL_ALL;
2065
2066 mb(); /* Ensure previous TCE table stores are visible */
2067 if (rm)
2068 __raw_rm_writeq_be(val, invalidate);
2069 else
2070 __raw_writeq_be(val, invalidate);
2071 }
2072
pnv_pci_phb3_tce_invalidate_pe(struct pnv_ioda_pe * pe)2073 static inline void pnv_pci_phb3_tce_invalidate_pe(struct pnv_ioda_pe *pe)
2074 {
2075 /* 01xb - invalidate TCEs that match the specified PE# */
2076 __be64 __iomem *invalidate = pnv_ioda_get_inval_reg(pe->phb, false);
2077 unsigned long val = PHB3_TCE_KILL_INVAL_PE | (pe->pe_number & 0xFF);
2078
2079 mb(); /* Ensure above stores are visible */
2080 __raw_writeq_be(val, invalidate);
2081 }
2082
pnv_pci_phb3_tce_invalidate(struct pnv_ioda_pe * pe,bool rm,unsigned shift,unsigned long index,unsigned long npages)2083 static void pnv_pci_phb3_tce_invalidate(struct pnv_ioda_pe *pe, bool rm,
2084 unsigned shift, unsigned long index,
2085 unsigned long npages)
2086 {
2087 __be64 __iomem *invalidate = pnv_ioda_get_inval_reg(pe->phb, rm);
2088 unsigned long start, end, inc;
2089
2090 /* We'll invalidate DMA address in PE scope */
2091 start = PHB3_TCE_KILL_INVAL_ONE;
2092 start |= (pe->pe_number & 0xFF);
2093 end = start;
2094
2095 /* Figure out the start, end and step */
2096 start |= (index << shift);
2097 end |= ((index + npages - 1) << shift);
2098 inc = (0x1ull << shift);
2099 mb();
2100
2101 while (start <= end) {
2102 if (rm)
2103 __raw_rm_writeq_be(start, invalidate);
2104 else
2105 __raw_writeq_be(start, invalidate);
2106 start += inc;
2107 }
2108 }
2109
pnv_pci_ioda2_tce_invalidate_pe(struct pnv_ioda_pe * pe)2110 static inline void pnv_pci_ioda2_tce_invalidate_pe(struct pnv_ioda_pe *pe)
2111 {
2112 struct pnv_phb *phb = pe->phb;
2113
2114 if (phb->model == PNV_PHB_MODEL_PHB3 && phb->regs)
2115 pnv_pci_phb3_tce_invalidate_pe(pe);
2116 else
2117 opal_pci_tce_kill(phb->opal_id, OPAL_PCI_TCE_KILL_PE,
2118 pe->pe_number, 0, 0, 0);
2119 }
2120
pnv_pci_ioda2_tce_invalidate(struct iommu_table * tbl,unsigned long index,unsigned long npages,bool rm)2121 static void pnv_pci_ioda2_tce_invalidate(struct iommu_table *tbl,
2122 unsigned long index, unsigned long npages, bool rm)
2123 {
2124 struct iommu_table_group_link *tgl;
2125
2126 list_for_each_entry_lockless(tgl, &tbl->it_group_list, next) {
2127 struct pnv_ioda_pe *pe = container_of(tgl->table_group,
2128 struct pnv_ioda_pe, table_group);
2129 struct pnv_phb *phb = pe->phb;
2130 unsigned int shift = tbl->it_page_shift;
2131
2132 /*
2133 * NVLink1 can use the TCE kill register directly as
2134 * it's the same as PHB3. NVLink2 is different and
2135 * should go via the OPAL call.
2136 */
2137 if (phb->model == PNV_PHB_MODEL_NPU) {
2138 /*
2139 * The NVLink hardware does not support TCE kill
2140 * per TCE entry so we have to invalidate
2141 * the entire cache for it.
2142 */
2143 pnv_pci_phb3_tce_invalidate_entire(phb, rm);
2144 continue;
2145 }
2146 if (phb->model == PNV_PHB_MODEL_PHB3 && phb->regs)
2147 pnv_pci_phb3_tce_invalidate(pe, rm, shift,
2148 index, npages);
2149 else
2150 opal_pci_tce_kill(phb->opal_id,
2151 OPAL_PCI_TCE_KILL_PAGES,
2152 pe->pe_number, 1u << shift,
2153 index << shift, npages);
2154 }
2155 }
2156
pnv_pci_ioda2_tce_invalidate_entire(struct pnv_phb * phb,bool rm)2157 void pnv_pci_ioda2_tce_invalidate_entire(struct pnv_phb *phb, bool rm)
2158 {
2159 if (phb->model == PNV_PHB_MODEL_NPU || phb->model == PNV_PHB_MODEL_PHB3)
2160 pnv_pci_phb3_tce_invalidate_entire(phb, rm);
2161 else
2162 opal_pci_tce_kill(phb->opal_id, OPAL_PCI_TCE_KILL, 0, 0, 0, 0);
2163 }
2164
pnv_ioda2_tce_build(struct iommu_table * tbl,long index,long npages,unsigned long uaddr,enum dma_data_direction direction,unsigned long attrs)2165 static int pnv_ioda2_tce_build(struct iommu_table *tbl, long index,
2166 long npages, unsigned long uaddr,
2167 enum dma_data_direction direction,
2168 unsigned long attrs)
2169 {
2170 int ret = pnv_tce_build(tbl, index, npages, uaddr, direction,
2171 attrs);
2172
2173 if (!ret)
2174 pnv_pci_ioda2_tce_invalidate(tbl, index, npages, false);
2175
2176 return ret;
2177 }
2178
2179 #ifdef CONFIG_IOMMU_API
pnv_ioda2_tce_xchg(struct iommu_table * tbl,long index,unsigned long * hpa,enum dma_data_direction * direction)2180 static int pnv_ioda2_tce_xchg(struct iommu_table *tbl, long index,
2181 unsigned long *hpa, enum dma_data_direction *direction)
2182 {
2183 long ret = pnv_tce_xchg(tbl, index, hpa, direction, true);
2184
2185 if (!ret)
2186 pnv_pci_ioda2_tce_invalidate(tbl, index, 1, false);
2187
2188 return ret;
2189 }
2190
pnv_ioda2_tce_xchg_rm(struct iommu_table * tbl,long index,unsigned long * hpa,enum dma_data_direction * direction)2191 static int pnv_ioda2_tce_xchg_rm(struct iommu_table *tbl, long index,
2192 unsigned long *hpa, enum dma_data_direction *direction)
2193 {
2194 long ret = pnv_tce_xchg(tbl, index, hpa, direction, false);
2195
2196 if (!ret)
2197 pnv_pci_ioda2_tce_invalidate(tbl, index, 1, true);
2198
2199 return ret;
2200 }
2201 #endif
2202
pnv_ioda2_tce_free(struct iommu_table * tbl,long index,long npages)2203 static void pnv_ioda2_tce_free(struct iommu_table *tbl, long index,
2204 long npages)
2205 {
2206 pnv_tce_free(tbl, index, npages);
2207
2208 pnv_pci_ioda2_tce_invalidate(tbl, index, npages, false);
2209 }
2210
2211 static struct iommu_table_ops pnv_ioda2_iommu_ops = {
2212 .set = pnv_ioda2_tce_build,
2213 #ifdef CONFIG_IOMMU_API
2214 .exchange = pnv_ioda2_tce_xchg,
2215 .exchange_rm = pnv_ioda2_tce_xchg_rm,
2216 .useraddrptr = pnv_tce_useraddrptr,
2217 #endif
2218 .clear = pnv_ioda2_tce_free,
2219 .get = pnv_tce_get,
2220 .free = pnv_pci_ioda2_table_free_pages,
2221 };
2222
pnv_pci_ioda_dev_dma_weight(struct pci_dev * dev,void * data)2223 static int pnv_pci_ioda_dev_dma_weight(struct pci_dev *dev, void *data)
2224 {
2225 unsigned int *weight = (unsigned int *)data;
2226
2227 /* This is quite simplistic. The "base" weight of a device
2228 * is 10. 0 means no DMA is to be accounted for it.
2229 */
2230 if (dev->hdr_type != PCI_HEADER_TYPE_NORMAL)
2231 return 0;
2232
2233 if (dev->class == PCI_CLASS_SERIAL_USB_UHCI ||
2234 dev->class == PCI_CLASS_SERIAL_USB_OHCI ||
2235 dev->class == PCI_CLASS_SERIAL_USB_EHCI)
2236 *weight += 3;
2237 else if ((dev->class >> 8) == PCI_CLASS_STORAGE_RAID)
2238 *weight += 15;
2239 else
2240 *weight += 10;
2241
2242 return 0;
2243 }
2244
pnv_pci_ioda_pe_dma_weight(struct pnv_ioda_pe * pe)2245 static unsigned int pnv_pci_ioda_pe_dma_weight(struct pnv_ioda_pe *pe)
2246 {
2247 unsigned int weight = 0;
2248
2249 /* SRIOV VF has same DMA32 weight as its PF */
2250 #ifdef CONFIG_PCI_IOV
2251 if ((pe->flags & PNV_IODA_PE_VF) && pe->parent_dev) {
2252 pnv_pci_ioda_dev_dma_weight(pe->parent_dev, &weight);
2253 return weight;
2254 }
2255 #endif
2256
2257 if ((pe->flags & PNV_IODA_PE_DEV) && pe->pdev) {
2258 pnv_pci_ioda_dev_dma_weight(pe->pdev, &weight);
2259 } else if ((pe->flags & PNV_IODA_PE_BUS) && pe->pbus) {
2260 struct pci_dev *pdev;
2261
2262 list_for_each_entry(pdev, &pe->pbus->devices, bus_list)
2263 pnv_pci_ioda_dev_dma_weight(pdev, &weight);
2264 } else if ((pe->flags & PNV_IODA_PE_BUS_ALL) && pe->pbus) {
2265 pci_walk_bus(pe->pbus, pnv_pci_ioda_dev_dma_weight, &weight);
2266 }
2267
2268 return weight;
2269 }
2270
pnv_pci_ioda1_setup_dma_pe(struct pnv_phb * phb,struct pnv_ioda_pe * pe)2271 static void pnv_pci_ioda1_setup_dma_pe(struct pnv_phb *phb,
2272 struct pnv_ioda_pe *pe)
2273 {
2274
2275 struct page *tce_mem = NULL;
2276 struct iommu_table *tbl;
2277 unsigned int weight, total_weight = 0;
2278 unsigned int tce32_segsz, base, segs, avail, i;
2279 int64_t rc;
2280 void *addr;
2281
2282 /* XXX FIXME: Handle 64-bit only DMA devices */
2283 /* XXX FIXME: Provide 64-bit DMA facilities & non-4K TCE tables etc.. */
2284 /* XXX FIXME: Allocate multi-level tables on PHB3 */
2285 weight = pnv_pci_ioda_pe_dma_weight(pe);
2286 if (!weight)
2287 return;
2288
2289 pci_walk_bus(phb->hose->bus, pnv_pci_ioda_dev_dma_weight,
2290 &total_weight);
2291 segs = (weight * phb->ioda.dma32_count) / total_weight;
2292 if (!segs)
2293 segs = 1;
2294
2295 /*
2296 * Allocate contiguous DMA32 segments. We begin with the expected
2297 * number of segments. With one more attempt, the number of DMA32
2298 * segments to be allocated is decreased by one until one segment
2299 * is allocated successfully.
2300 */
2301 do {
2302 for (base = 0; base <= phb->ioda.dma32_count - segs; base++) {
2303 for (avail = 0, i = base; i < base + segs; i++) {
2304 if (phb->ioda.dma32_segmap[i] ==
2305 IODA_INVALID_PE)
2306 avail++;
2307 }
2308
2309 if (avail == segs)
2310 goto found;
2311 }
2312 } while (--segs);
2313
2314 if (!segs) {
2315 pe_warn(pe, "No available DMA32 segments\n");
2316 return;
2317 }
2318
2319 found:
2320 tbl = pnv_pci_table_alloc(phb->hose->node);
2321 if (WARN_ON(!tbl))
2322 return;
2323
2324 iommu_register_group(&pe->table_group, phb->hose->global_number,
2325 pe->pe_number);
2326 pnv_pci_link_table_and_group(phb->hose->node, 0, tbl, &pe->table_group);
2327
2328 /* Grab a 32-bit TCE table */
2329 pe_info(pe, "DMA weight %d (%d), assigned (%d) %d DMA32 segments\n",
2330 weight, total_weight, base, segs);
2331 pe_info(pe, " Setting up 32-bit TCE table at %08x..%08x\n",
2332 base * PNV_IODA1_DMA32_SEGSIZE,
2333 (base + segs) * PNV_IODA1_DMA32_SEGSIZE - 1);
2334
2335 /* XXX Currently, we allocate one big contiguous table for the
2336 * TCEs. We only really need one chunk per 256M of TCE space
2337 * (ie per segment) but that's an optimization for later, it
2338 * requires some added smarts with our get/put_tce implementation
2339 *
2340 * Each TCE page is 4KB in size and each TCE entry occupies 8
2341 * bytes
2342 */
2343 tce32_segsz = PNV_IODA1_DMA32_SEGSIZE >> (IOMMU_PAGE_SHIFT_4K - 3);
2344 tce_mem = alloc_pages_node(phb->hose->node, GFP_KERNEL,
2345 get_order(tce32_segsz * segs));
2346 if (!tce_mem) {
2347 pe_err(pe, " Failed to allocate a 32-bit TCE memory\n");
2348 goto fail;
2349 }
2350 addr = page_address(tce_mem);
2351 memset(addr, 0, tce32_segsz * segs);
2352
2353 /* Configure HW */
2354 for (i = 0; i < segs; i++) {
2355 rc = opal_pci_map_pe_dma_window(phb->opal_id,
2356 pe->pe_number,
2357 base + i, 1,
2358 __pa(addr) + tce32_segsz * i,
2359 tce32_segsz, IOMMU_PAGE_SIZE_4K);
2360 if (rc) {
2361 pe_err(pe, " Failed to configure 32-bit TCE table,"
2362 " err %ld\n", rc);
2363 goto fail;
2364 }
2365 }
2366
2367 /* Setup DMA32 segment mapping */
2368 for (i = base; i < base + segs; i++)
2369 phb->ioda.dma32_segmap[i] = pe->pe_number;
2370
2371 /* Setup linux iommu table */
2372 pnv_pci_setup_iommu_table(tbl, addr, tce32_segsz * segs,
2373 base * PNV_IODA1_DMA32_SEGSIZE,
2374 IOMMU_PAGE_SHIFT_4K);
2375
2376 tbl->it_ops = &pnv_ioda1_iommu_ops;
2377 pe->table_group.tce32_start = tbl->it_offset << tbl->it_page_shift;
2378 pe->table_group.tce32_size = tbl->it_size << tbl->it_page_shift;
2379 iommu_init_table(tbl, phb->hose->node);
2380
2381 if (pe->flags & PNV_IODA_PE_DEV) {
2382 /*
2383 * Setting table base here only for carrying iommu_group
2384 * further down to let iommu_add_device() do the job.
2385 * pnv_pci_ioda_dma_dev_setup will override it later anyway.
2386 */
2387 set_iommu_table_base(&pe->pdev->dev, tbl);
2388 iommu_add_device(&pe->pdev->dev);
2389 } else if (pe->flags & (PNV_IODA_PE_BUS | PNV_IODA_PE_BUS_ALL))
2390 pnv_ioda_setup_bus_dma(pe, pe->pbus, true);
2391
2392 return;
2393 fail:
2394 /* XXX Failure: Try to fallback to 64-bit only ? */
2395 if (tce_mem)
2396 __free_pages(tce_mem, get_order(tce32_segsz * segs));
2397 if (tbl) {
2398 pnv_pci_unlink_table_and_group(tbl, &pe->table_group);
2399 iommu_tce_table_put(tbl);
2400 }
2401 }
2402
pnv_pci_ioda2_set_window(struct iommu_table_group * table_group,int num,struct iommu_table * tbl)2403 static long pnv_pci_ioda2_set_window(struct iommu_table_group *table_group,
2404 int num, struct iommu_table *tbl)
2405 {
2406 struct pnv_ioda_pe *pe = container_of(table_group, struct pnv_ioda_pe,
2407 table_group);
2408 struct pnv_phb *phb = pe->phb;
2409 int64_t rc;
2410 const unsigned long size = tbl->it_indirect_levels ?
2411 tbl->it_level_size : tbl->it_size;
2412 const __u64 start_addr = tbl->it_offset << tbl->it_page_shift;
2413 const __u64 win_size = tbl->it_size << tbl->it_page_shift;
2414
2415 pe_info(pe, "Setting up window#%d %llx..%llx pg=%x\n", num,
2416 start_addr, start_addr + win_size - 1,
2417 IOMMU_PAGE_SIZE(tbl));
2418
2419 /*
2420 * Map TCE table through TVT. The TVE index is the PE number
2421 * shifted by 1 bit for 32-bits DMA space.
2422 */
2423 rc = opal_pci_map_pe_dma_window(phb->opal_id,
2424 pe->pe_number,
2425 (pe->pe_number << 1) + num,
2426 tbl->it_indirect_levels + 1,
2427 __pa(tbl->it_base),
2428 size << 3,
2429 IOMMU_PAGE_SIZE(tbl));
2430 if (rc) {
2431 pe_err(pe, "Failed to configure TCE table, err %ld\n", rc);
2432 return rc;
2433 }
2434
2435 pnv_pci_link_table_and_group(phb->hose->node, num,
2436 tbl, &pe->table_group);
2437 pnv_pci_ioda2_tce_invalidate_pe(pe);
2438
2439 return 0;
2440 }
2441
pnv_pci_ioda2_set_bypass(struct pnv_ioda_pe * pe,bool enable)2442 void pnv_pci_ioda2_set_bypass(struct pnv_ioda_pe *pe, bool enable)
2443 {
2444 uint16_t window_id = (pe->pe_number << 1 ) + 1;
2445 int64_t rc;
2446
2447 pe_info(pe, "%sabling 64-bit DMA bypass\n", enable ? "En" : "Dis");
2448 if (enable) {
2449 phys_addr_t top = memblock_end_of_DRAM();
2450
2451 top = roundup_pow_of_two(top);
2452 rc = opal_pci_map_pe_dma_window_real(pe->phb->opal_id,
2453 pe->pe_number,
2454 window_id,
2455 pe->tce_bypass_base,
2456 top);
2457 } else {
2458 rc = opal_pci_map_pe_dma_window_real(pe->phb->opal_id,
2459 pe->pe_number,
2460 window_id,
2461 pe->tce_bypass_base,
2462 0);
2463 }
2464 if (rc)
2465 pe_err(pe, "OPAL error %lld configuring bypass window\n", rc);
2466 else
2467 pe->tce_bypass_enabled = enable;
2468 }
2469
pnv_pci_ioda2_create_table(struct iommu_table_group * table_group,int num,__u32 page_shift,__u64 window_size,__u32 levels,bool alloc_userspace_copy,struct iommu_table ** ptbl)2470 static long pnv_pci_ioda2_create_table(struct iommu_table_group *table_group,
2471 int num, __u32 page_shift, __u64 window_size, __u32 levels,
2472 bool alloc_userspace_copy, struct iommu_table **ptbl)
2473 {
2474 struct pnv_ioda_pe *pe = container_of(table_group, struct pnv_ioda_pe,
2475 table_group);
2476 int nid = pe->phb->hose->node;
2477 __u64 bus_offset = num ? pe->tce_bypass_base : table_group->tce32_start;
2478 long ret;
2479 struct iommu_table *tbl;
2480
2481 tbl = pnv_pci_table_alloc(nid);
2482 if (!tbl)
2483 return -ENOMEM;
2484
2485 tbl->it_ops = &pnv_ioda2_iommu_ops;
2486
2487 ret = pnv_pci_ioda2_table_alloc_pages(nid,
2488 bus_offset, page_shift, window_size,
2489 levels, alloc_userspace_copy, tbl);
2490 if (ret) {
2491 iommu_tce_table_put(tbl);
2492 return ret;
2493 }
2494
2495 *ptbl = tbl;
2496
2497 return 0;
2498 }
2499
pnv_pci_ioda2_setup_default_config(struct pnv_ioda_pe * pe)2500 static long pnv_pci_ioda2_setup_default_config(struct pnv_ioda_pe *pe)
2501 {
2502 struct iommu_table *tbl = NULL;
2503 long rc;
2504
2505 /*
2506 * crashkernel= specifies the kdump kernel's maximum memory at
2507 * some offset and there is no guaranteed the result is a power
2508 * of 2, which will cause errors later.
2509 */
2510 const u64 max_memory = __rounddown_pow_of_two(memory_hotplug_max());
2511
2512 /*
2513 * In memory constrained environments, e.g. kdump kernel, the
2514 * DMA window can be larger than available memory, which will
2515 * cause errors later.
2516 */
2517 const u64 window_size = min((u64)pe->table_group.tce32_size, max_memory);
2518
2519 rc = pnv_pci_ioda2_create_table(&pe->table_group, 0,
2520 IOMMU_PAGE_SHIFT_4K,
2521 window_size,
2522 POWERNV_IOMMU_DEFAULT_LEVELS, false, &tbl);
2523 if (rc) {
2524 pe_err(pe, "Failed to create 32-bit TCE table, err %ld",
2525 rc);
2526 return rc;
2527 }
2528
2529 iommu_init_table(tbl, pe->phb->hose->node);
2530
2531 rc = pnv_pci_ioda2_set_window(&pe->table_group, 0, tbl);
2532 if (rc) {
2533 pe_err(pe, "Failed to configure 32-bit TCE table, err %ld\n",
2534 rc);
2535 iommu_tce_table_put(tbl);
2536 return rc;
2537 }
2538
2539 if (!pnv_iommu_bypass_disabled)
2540 pnv_pci_ioda2_set_bypass(pe, true);
2541
2542 /*
2543 * Setting table base here only for carrying iommu_group
2544 * further down to let iommu_add_device() do the job.
2545 * pnv_pci_ioda_dma_dev_setup will override it later anyway.
2546 */
2547 if (pe->flags & PNV_IODA_PE_DEV)
2548 set_iommu_table_base(&pe->pdev->dev, tbl);
2549
2550 return 0;
2551 }
2552
2553 #if defined(CONFIG_IOMMU_API) || defined(CONFIG_PCI_IOV)
pnv_pci_ioda2_unset_window(struct iommu_table_group * table_group,int num)2554 static long pnv_pci_ioda2_unset_window(struct iommu_table_group *table_group,
2555 int num)
2556 {
2557 struct pnv_ioda_pe *pe = container_of(table_group, struct pnv_ioda_pe,
2558 table_group);
2559 struct pnv_phb *phb = pe->phb;
2560 long ret;
2561
2562 pe_info(pe, "Removing DMA window #%d\n", num);
2563
2564 ret = opal_pci_map_pe_dma_window(phb->opal_id, pe->pe_number,
2565 (pe->pe_number << 1) + num,
2566 0/* levels */, 0/* table address */,
2567 0/* table size */, 0/* page size */);
2568 if (ret)
2569 pe_warn(pe, "Unmapping failed, ret = %ld\n", ret);
2570 else
2571 pnv_pci_ioda2_tce_invalidate_pe(pe);
2572
2573 pnv_pci_unlink_table_and_group(table_group->tables[num], table_group);
2574
2575 return ret;
2576 }
2577 #endif
2578
2579 #ifdef CONFIG_IOMMU_API
pnv_pci_ioda2_get_table_size(__u32 page_shift,__u64 window_size,__u32 levels)2580 static unsigned long pnv_pci_ioda2_get_table_size(__u32 page_shift,
2581 __u64 window_size, __u32 levels)
2582 {
2583 unsigned long bytes = 0;
2584 const unsigned window_shift = ilog2(window_size);
2585 unsigned entries_shift = window_shift - page_shift;
2586 unsigned table_shift = entries_shift + 3;
2587 unsigned long tce_table_size = max(0x1000UL, 1UL << table_shift);
2588 unsigned long direct_table_size;
2589
2590 if (!levels || (levels > POWERNV_IOMMU_MAX_LEVELS) ||
2591 !is_power_of_2(window_size))
2592 return 0;
2593
2594 /* Calculate a direct table size from window_size and levels */
2595 entries_shift = (entries_shift + levels - 1) / levels;
2596 table_shift = entries_shift + 3;
2597 table_shift = max_t(unsigned, table_shift, PAGE_SHIFT);
2598 direct_table_size = 1UL << table_shift;
2599
2600 for ( ; levels; --levels) {
2601 bytes += _ALIGN_UP(tce_table_size, direct_table_size);
2602
2603 tce_table_size /= direct_table_size;
2604 tce_table_size <<= 3;
2605 tce_table_size = max_t(unsigned long,
2606 tce_table_size, direct_table_size);
2607 }
2608
2609 return bytes + bytes; /* one for HW table, one for userspace copy */
2610 }
2611
pnv_pci_ioda2_create_table_userspace(struct iommu_table_group * table_group,int num,__u32 page_shift,__u64 window_size,__u32 levels,struct iommu_table ** ptbl)2612 static long pnv_pci_ioda2_create_table_userspace(
2613 struct iommu_table_group *table_group,
2614 int num, __u32 page_shift, __u64 window_size, __u32 levels,
2615 struct iommu_table **ptbl)
2616 {
2617 long ret = pnv_pci_ioda2_create_table(table_group,
2618 num, page_shift, window_size, levels, true, ptbl);
2619
2620 if (!ret)
2621 (*ptbl)->it_allocated_size = pnv_pci_ioda2_get_table_size(
2622 page_shift, window_size, levels);
2623 return ret;
2624 }
2625
pnv_ioda2_take_ownership(struct iommu_table_group * table_group)2626 static void pnv_ioda2_take_ownership(struct iommu_table_group *table_group)
2627 {
2628 struct pnv_ioda_pe *pe = container_of(table_group, struct pnv_ioda_pe,
2629 table_group);
2630 /* Store @tbl as pnv_pci_ioda2_unset_window() resets it */
2631 struct iommu_table *tbl = pe->table_group.tables[0];
2632
2633 pnv_pci_ioda2_set_bypass(pe, false);
2634 pnv_pci_ioda2_unset_window(&pe->table_group, 0);
2635 if (pe->pbus)
2636 pnv_ioda_setup_bus_dma(pe, pe->pbus, false);
2637 iommu_tce_table_put(tbl);
2638 }
2639
pnv_ioda2_release_ownership(struct iommu_table_group * table_group)2640 static void pnv_ioda2_release_ownership(struct iommu_table_group *table_group)
2641 {
2642 struct pnv_ioda_pe *pe = container_of(table_group, struct pnv_ioda_pe,
2643 table_group);
2644
2645 pnv_pci_ioda2_setup_default_config(pe);
2646 if (pe->pbus)
2647 pnv_ioda_setup_bus_dma(pe, pe->pbus, false);
2648 }
2649
2650 static struct iommu_table_group_ops pnv_pci_ioda2_ops = {
2651 .get_table_size = pnv_pci_ioda2_get_table_size,
2652 .create_table = pnv_pci_ioda2_create_table_userspace,
2653 .set_window = pnv_pci_ioda2_set_window,
2654 .unset_window = pnv_pci_ioda2_unset_window,
2655 .take_ownership = pnv_ioda2_take_ownership,
2656 .release_ownership = pnv_ioda2_release_ownership,
2657 };
2658
gpe_table_group_to_npe_cb(struct device * dev,void * opaque)2659 static int gpe_table_group_to_npe_cb(struct device *dev, void *opaque)
2660 {
2661 struct pci_controller *hose;
2662 struct pnv_phb *phb;
2663 struct pnv_ioda_pe **ptmppe = opaque;
2664 struct pci_dev *pdev = container_of(dev, struct pci_dev, dev);
2665 struct pci_dn *pdn = pci_get_pdn(pdev);
2666
2667 if (!pdn || pdn->pe_number == IODA_INVALID_PE)
2668 return 0;
2669
2670 hose = pci_bus_to_host(pdev->bus);
2671 phb = hose->private_data;
2672 if (phb->type != PNV_PHB_NPU_NVLINK)
2673 return 0;
2674
2675 *ptmppe = &phb->ioda.pe_array[pdn->pe_number];
2676
2677 return 1;
2678 }
2679
2680 /*
2681 * This returns PE of associated NPU.
2682 * This assumes that NPU is in the same IOMMU group with GPU and there is
2683 * no other PEs.
2684 */
gpe_table_group_to_npe(struct iommu_table_group * table_group)2685 static struct pnv_ioda_pe *gpe_table_group_to_npe(
2686 struct iommu_table_group *table_group)
2687 {
2688 struct pnv_ioda_pe *npe = NULL;
2689 int ret = iommu_group_for_each_dev(table_group->group, &npe,
2690 gpe_table_group_to_npe_cb);
2691
2692 BUG_ON(!ret || !npe);
2693
2694 return npe;
2695 }
2696
pnv_pci_ioda2_npu_set_window(struct iommu_table_group * table_group,int num,struct iommu_table * tbl)2697 static long pnv_pci_ioda2_npu_set_window(struct iommu_table_group *table_group,
2698 int num, struct iommu_table *tbl)
2699 {
2700 struct pnv_ioda_pe *npe = gpe_table_group_to_npe(table_group);
2701 int num2 = (num == 0) ? 1 : 0;
2702 long ret = pnv_pci_ioda2_set_window(table_group, num, tbl);
2703
2704 if (ret)
2705 return ret;
2706
2707 if (table_group->tables[num2])
2708 pnv_npu_unset_window(npe, num2);
2709
2710 ret = pnv_npu_set_window(npe, num, tbl);
2711 if (ret) {
2712 pnv_pci_ioda2_unset_window(table_group, num);
2713 if (table_group->tables[num2])
2714 pnv_npu_set_window(npe, num2,
2715 table_group->tables[num2]);
2716 }
2717
2718 return ret;
2719 }
2720
pnv_pci_ioda2_npu_unset_window(struct iommu_table_group * table_group,int num)2721 static long pnv_pci_ioda2_npu_unset_window(
2722 struct iommu_table_group *table_group,
2723 int num)
2724 {
2725 struct pnv_ioda_pe *npe = gpe_table_group_to_npe(table_group);
2726 int num2 = (num == 0) ? 1 : 0;
2727 long ret = pnv_pci_ioda2_unset_window(table_group, num);
2728
2729 if (ret)
2730 return ret;
2731
2732 if (!npe->table_group.tables[num])
2733 return 0;
2734
2735 ret = pnv_npu_unset_window(npe, num);
2736 if (ret)
2737 return ret;
2738
2739 if (table_group->tables[num2])
2740 ret = pnv_npu_set_window(npe, num2, table_group->tables[num2]);
2741
2742 return ret;
2743 }
2744
pnv_ioda2_npu_take_ownership(struct iommu_table_group * table_group)2745 static void pnv_ioda2_npu_take_ownership(struct iommu_table_group *table_group)
2746 {
2747 /*
2748 * Detach NPU first as pnv_ioda2_take_ownership() will destroy
2749 * the iommu_table if 32bit DMA is enabled.
2750 */
2751 pnv_npu_take_ownership(gpe_table_group_to_npe(table_group));
2752 pnv_ioda2_take_ownership(table_group);
2753 }
2754
2755 static struct iommu_table_group_ops pnv_pci_ioda2_npu_ops = {
2756 .get_table_size = pnv_pci_ioda2_get_table_size,
2757 .create_table = pnv_pci_ioda2_create_table_userspace,
2758 .set_window = pnv_pci_ioda2_npu_set_window,
2759 .unset_window = pnv_pci_ioda2_npu_unset_window,
2760 .take_ownership = pnv_ioda2_npu_take_ownership,
2761 .release_ownership = pnv_ioda2_release_ownership,
2762 };
2763
pnv_pci_ioda_setup_iommu_api(void)2764 static void pnv_pci_ioda_setup_iommu_api(void)
2765 {
2766 struct pci_controller *hose, *tmp;
2767 struct pnv_phb *phb;
2768 struct pnv_ioda_pe *pe, *gpe;
2769
2770 /*
2771 * Now we have all PHBs discovered, time to add NPU devices to
2772 * the corresponding IOMMU groups.
2773 */
2774 list_for_each_entry_safe(hose, tmp, &hose_list, list_node) {
2775 phb = hose->private_data;
2776
2777 if (phb->type != PNV_PHB_NPU_NVLINK)
2778 continue;
2779
2780 list_for_each_entry(pe, &phb->ioda.pe_list, list) {
2781 gpe = pnv_pci_npu_setup_iommu(pe);
2782 if (gpe)
2783 gpe->table_group.ops = &pnv_pci_ioda2_npu_ops;
2784 }
2785 }
2786 }
2787 #else /* !CONFIG_IOMMU_API */
pnv_pci_ioda_setup_iommu_api(void)2788 static void pnv_pci_ioda_setup_iommu_api(void) { };
2789 #endif
2790
pnv_ioda_parse_tce_sizes(struct pnv_phb * phb)2791 static unsigned long pnv_ioda_parse_tce_sizes(struct pnv_phb *phb)
2792 {
2793 struct pci_controller *hose = phb->hose;
2794 struct device_node *dn = hose->dn;
2795 unsigned long mask = 0;
2796 int i, rc, count;
2797 u32 val;
2798
2799 count = of_property_count_u32_elems(dn, "ibm,supported-tce-sizes");
2800 if (count <= 0) {
2801 mask = SZ_4K | SZ_64K;
2802 /* Add 16M for POWER8 by default */
2803 if (cpu_has_feature(CPU_FTR_ARCH_207S) &&
2804 !cpu_has_feature(CPU_FTR_ARCH_300))
2805 mask |= SZ_16M | SZ_256M;
2806 return mask;
2807 }
2808
2809 for (i = 0; i < count; i++) {
2810 rc = of_property_read_u32_index(dn, "ibm,supported-tce-sizes",
2811 i, &val);
2812 if (rc == 0)
2813 mask |= 1ULL << val;
2814 }
2815
2816 return mask;
2817 }
2818
pnv_pci_ioda2_setup_dma_pe(struct pnv_phb * phb,struct pnv_ioda_pe * pe)2819 static void pnv_pci_ioda2_setup_dma_pe(struct pnv_phb *phb,
2820 struct pnv_ioda_pe *pe)
2821 {
2822 int64_t rc;
2823
2824 if (!pnv_pci_ioda_pe_dma_weight(pe))
2825 return;
2826
2827 /* TVE #1 is selected by PCI address bit 59 */
2828 pe->tce_bypass_base = 1ull << 59;
2829
2830 iommu_register_group(&pe->table_group, phb->hose->global_number,
2831 pe->pe_number);
2832
2833 /* The PE will reserve all possible 32-bits space */
2834 pe_info(pe, "Setting up 32-bit TCE table at 0..%08x\n",
2835 phb->ioda.m32_pci_base);
2836
2837 /* Setup linux iommu table */
2838 pe->table_group.tce32_start = 0;
2839 pe->table_group.tce32_size = phb->ioda.m32_pci_base;
2840 pe->table_group.max_dynamic_windows_supported =
2841 IOMMU_TABLE_GROUP_MAX_TABLES;
2842 pe->table_group.max_levels = POWERNV_IOMMU_MAX_LEVELS;
2843 pe->table_group.pgsizes = pnv_ioda_parse_tce_sizes(phb);
2844 #ifdef CONFIG_IOMMU_API
2845 pe->table_group.ops = &pnv_pci_ioda2_ops;
2846 #endif
2847
2848 rc = pnv_pci_ioda2_setup_default_config(pe);
2849 if (rc)
2850 return;
2851
2852 if (pe->flags & (PNV_IODA_PE_BUS | PNV_IODA_PE_BUS_ALL))
2853 pnv_ioda_setup_bus_dma(pe, pe->pbus, true);
2854 }
2855
2856 #ifdef CONFIG_PCI_MSI
pnv_opal_pci_msi_eoi(struct irq_chip * chip,unsigned int hw_irq)2857 int64_t pnv_opal_pci_msi_eoi(struct irq_chip *chip, unsigned int hw_irq)
2858 {
2859 struct pnv_phb *phb = container_of(chip, struct pnv_phb,
2860 ioda.irq_chip);
2861
2862 return opal_pci_msi_eoi(phb->opal_id, hw_irq);
2863 }
2864
pnv_ioda2_msi_eoi(struct irq_data * d)2865 static void pnv_ioda2_msi_eoi(struct irq_data *d)
2866 {
2867 int64_t rc;
2868 unsigned int hw_irq = (unsigned int)irqd_to_hwirq(d);
2869 struct irq_chip *chip = irq_data_get_irq_chip(d);
2870
2871 rc = pnv_opal_pci_msi_eoi(chip, hw_irq);
2872 WARN_ON_ONCE(rc);
2873
2874 icp_native_eoi(d);
2875 }
2876
2877
pnv_set_msi_irq_chip(struct pnv_phb * phb,unsigned int virq)2878 void pnv_set_msi_irq_chip(struct pnv_phb *phb, unsigned int virq)
2879 {
2880 struct irq_data *idata;
2881 struct irq_chip *ichip;
2882
2883 /* The MSI EOI OPAL call is only needed on PHB3 */
2884 if (phb->model != PNV_PHB_MODEL_PHB3)
2885 return;
2886
2887 if (!phb->ioda.irq_chip_init) {
2888 /*
2889 * First time we setup an MSI IRQ, we need to setup the
2890 * corresponding IRQ chip to route correctly.
2891 */
2892 idata = irq_get_irq_data(virq);
2893 ichip = irq_data_get_irq_chip(idata);
2894 phb->ioda.irq_chip_init = 1;
2895 phb->ioda.irq_chip = *ichip;
2896 phb->ioda.irq_chip.irq_eoi = pnv_ioda2_msi_eoi;
2897 }
2898 irq_set_chip(virq, &phb->ioda.irq_chip);
2899 }
2900
2901 /*
2902 * Returns true iff chip is something that we could call
2903 * pnv_opal_pci_msi_eoi for.
2904 */
is_pnv_opal_msi(struct irq_chip * chip)2905 bool is_pnv_opal_msi(struct irq_chip *chip)
2906 {
2907 return chip->irq_eoi == pnv_ioda2_msi_eoi;
2908 }
2909 EXPORT_SYMBOL_GPL(is_pnv_opal_msi);
2910
pnv_pci_ioda_msi_setup(struct pnv_phb * phb,struct pci_dev * dev,unsigned int hwirq,unsigned int virq,unsigned int is_64,struct msi_msg * msg)2911 static int pnv_pci_ioda_msi_setup(struct pnv_phb *phb, struct pci_dev *dev,
2912 unsigned int hwirq, unsigned int virq,
2913 unsigned int is_64, struct msi_msg *msg)
2914 {
2915 struct pnv_ioda_pe *pe = pnv_ioda_get_pe(dev);
2916 unsigned int xive_num = hwirq - phb->msi_base;
2917 __be32 data;
2918 int rc;
2919
2920 /* No PE assigned ? bail out ... no MSI for you ! */
2921 if (pe == NULL)
2922 return -ENXIO;
2923
2924 /* Check if we have an MVE */
2925 if (pe->mve_number < 0)
2926 return -ENXIO;
2927
2928 /* Force 32-bit MSI on some broken devices */
2929 if (dev->no_64bit_msi)
2930 is_64 = 0;
2931
2932 /* Assign XIVE to PE */
2933 rc = opal_pci_set_xive_pe(phb->opal_id, pe->pe_number, xive_num);
2934 if (rc) {
2935 pr_warn("%s: OPAL error %d setting XIVE %d PE\n",
2936 pci_name(dev), rc, xive_num);
2937 return -EIO;
2938 }
2939
2940 if (is_64) {
2941 __be64 addr64;
2942
2943 rc = opal_get_msi_64(phb->opal_id, pe->mve_number, xive_num, 1,
2944 &addr64, &data);
2945 if (rc) {
2946 pr_warn("%s: OPAL error %d getting 64-bit MSI data\n",
2947 pci_name(dev), rc);
2948 return -EIO;
2949 }
2950 msg->address_hi = be64_to_cpu(addr64) >> 32;
2951 msg->address_lo = be64_to_cpu(addr64) & 0xfffffffful;
2952 } else {
2953 __be32 addr32;
2954
2955 rc = opal_get_msi_32(phb->opal_id, pe->mve_number, xive_num, 1,
2956 &addr32, &data);
2957 if (rc) {
2958 pr_warn("%s: OPAL error %d getting 32-bit MSI data\n",
2959 pci_name(dev), rc);
2960 return -EIO;
2961 }
2962 msg->address_hi = 0;
2963 msg->address_lo = be32_to_cpu(addr32);
2964 }
2965 msg->data = be32_to_cpu(data);
2966
2967 pnv_set_msi_irq_chip(phb, virq);
2968
2969 pr_devel("%s: %s-bit MSI on hwirq %x (xive #%d),"
2970 " address=%x_%08x data=%x PE# %x\n",
2971 pci_name(dev), is_64 ? "64" : "32", hwirq, xive_num,
2972 msg->address_hi, msg->address_lo, data, pe->pe_number);
2973
2974 return 0;
2975 }
2976
pnv_pci_init_ioda_msis(struct pnv_phb * phb)2977 static void pnv_pci_init_ioda_msis(struct pnv_phb *phb)
2978 {
2979 unsigned int count;
2980 const __be32 *prop = of_get_property(phb->hose->dn,
2981 "ibm,opal-msi-ranges", NULL);
2982 if (!prop) {
2983 /* BML Fallback */
2984 prop = of_get_property(phb->hose->dn, "msi-ranges", NULL);
2985 }
2986 if (!prop)
2987 return;
2988
2989 phb->msi_base = be32_to_cpup(prop);
2990 count = be32_to_cpup(prop + 1);
2991 if (msi_bitmap_alloc(&phb->msi_bmp, count, phb->hose->dn)) {
2992 pr_err("PCI %d: Failed to allocate MSI bitmap !\n",
2993 phb->hose->global_number);
2994 return;
2995 }
2996
2997 phb->msi_setup = pnv_pci_ioda_msi_setup;
2998 phb->msi32_support = 1;
2999 pr_info(" Allocated bitmap for %d MSIs (base IRQ 0x%x)\n",
3000 count, phb->msi_base);
3001 }
3002 #else
pnv_pci_init_ioda_msis(struct pnv_phb * phb)3003 static void pnv_pci_init_ioda_msis(struct pnv_phb *phb) { }
3004 #endif /* CONFIG_PCI_MSI */
3005
3006 #ifdef CONFIG_PCI_IOV
pnv_pci_ioda_fixup_iov_resources(struct pci_dev * pdev)3007 static void pnv_pci_ioda_fixup_iov_resources(struct pci_dev *pdev)
3008 {
3009 struct pci_controller *hose = pci_bus_to_host(pdev->bus);
3010 struct pnv_phb *phb = hose->private_data;
3011 const resource_size_t gate = phb->ioda.m64_segsize >> 2;
3012 struct resource *res;
3013 int i;
3014 resource_size_t size, total_vf_bar_sz;
3015 struct pci_dn *pdn;
3016 int mul, total_vfs;
3017
3018 pdn = pci_get_pdn(pdev);
3019 pdn->vfs_expanded = 0;
3020 pdn->m64_single_mode = false;
3021
3022 total_vfs = pci_sriov_get_totalvfs(pdev);
3023 mul = phb->ioda.total_pe_num;
3024 total_vf_bar_sz = 0;
3025
3026 for (i = 0; i < PCI_SRIOV_NUM_BARS; i++) {
3027 res = &pdev->resource[i + PCI_IOV_RESOURCES];
3028 if (!res->flags || res->parent)
3029 continue;
3030 if (!pnv_pci_is_m64_flags(res->flags)) {
3031 dev_warn(&pdev->dev, "Don't support SR-IOV with"
3032 " non M64 VF BAR%d: %pR. \n",
3033 i, res);
3034 goto truncate_iov;
3035 }
3036
3037 total_vf_bar_sz += pci_iov_resource_size(pdev,
3038 i + PCI_IOV_RESOURCES);
3039
3040 /*
3041 * If bigger than quarter of M64 segment size, just round up
3042 * power of two.
3043 *
3044 * Generally, one M64 BAR maps one IOV BAR. To avoid conflict
3045 * with other devices, IOV BAR size is expanded to be
3046 * (total_pe * VF_BAR_size). When VF_BAR_size is half of M64
3047 * segment size , the expanded size would equal to half of the
3048 * whole M64 space size, which will exhaust the M64 Space and
3049 * limit the system flexibility. This is a design decision to
3050 * set the boundary to quarter of the M64 segment size.
3051 */
3052 if (total_vf_bar_sz > gate) {
3053 mul = roundup_pow_of_two(total_vfs);
3054 dev_info(&pdev->dev,
3055 "VF BAR Total IOV size %llx > %llx, roundup to %d VFs\n",
3056 total_vf_bar_sz, gate, mul);
3057 pdn->m64_single_mode = true;
3058 break;
3059 }
3060 }
3061
3062 for (i = 0; i < PCI_SRIOV_NUM_BARS; i++) {
3063 res = &pdev->resource[i + PCI_IOV_RESOURCES];
3064 if (!res->flags || res->parent)
3065 continue;
3066
3067 size = pci_iov_resource_size(pdev, i + PCI_IOV_RESOURCES);
3068 /*
3069 * On PHB3, the minimum size alignment of M64 BAR in single
3070 * mode is 32MB.
3071 */
3072 if (pdn->m64_single_mode && (size < SZ_32M))
3073 goto truncate_iov;
3074 dev_dbg(&pdev->dev, " Fixing VF BAR%d: %pR to\n", i, res);
3075 res->end = res->start + size * mul - 1;
3076 dev_dbg(&pdev->dev, " %pR\n", res);
3077 dev_info(&pdev->dev, "VF BAR%d: %pR (expanded to %d VFs for PE alignment)",
3078 i, res, mul);
3079 }
3080 pdn->vfs_expanded = mul;
3081
3082 return;
3083
3084 truncate_iov:
3085 /* To save MMIO space, IOV BAR is truncated. */
3086 for (i = 0; i < PCI_SRIOV_NUM_BARS; i++) {
3087 res = &pdev->resource[i + PCI_IOV_RESOURCES];
3088 res->flags = 0;
3089 res->end = res->start - 1;
3090 }
3091 }
3092
pnv_pci_ioda_fixup_iov(struct pci_dev * pdev)3093 static void pnv_pci_ioda_fixup_iov(struct pci_dev *pdev)
3094 {
3095 if (WARN_ON(pci_dev_is_added(pdev)))
3096 return;
3097
3098 if (pdev->is_virtfn) {
3099 struct pnv_ioda_pe *pe = pnv_ioda_get_pe(pdev);
3100
3101 /*
3102 * VF PEs are single-device PEs so their pdev pointer needs to
3103 * be set. The pdev doesn't exist when the PE is allocated (in
3104 * (pcibios_sriov_enable()) so we fix it up here.
3105 */
3106 pe->pdev = pdev;
3107 WARN_ON(!(pe->flags & PNV_IODA_PE_VF));
3108 } else if (pdev->is_physfn) {
3109 /*
3110 * For PFs adjust their allocated IOV resources to match what
3111 * the PHB can support using it's M64 BAR table.
3112 */
3113 pnv_pci_ioda_fixup_iov_resources(pdev);
3114 }
3115 }
3116 #endif /* CONFIG_PCI_IOV */
3117
pnv_ioda_setup_pe_res(struct pnv_ioda_pe * pe,struct resource * res)3118 static void pnv_ioda_setup_pe_res(struct pnv_ioda_pe *pe,
3119 struct resource *res)
3120 {
3121 struct pnv_phb *phb = pe->phb;
3122 struct pci_bus_region region;
3123 int index;
3124 int64_t rc;
3125
3126 if (!res || !res->flags || res->start > res->end)
3127 return;
3128
3129 if (res->flags & IORESOURCE_IO) {
3130 region.start = res->start - phb->ioda.io_pci_base;
3131 region.end = res->end - phb->ioda.io_pci_base;
3132 index = region.start / phb->ioda.io_segsize;
3133
3134 while (index < phb->ioda.total_pe_num &&
3135 region.start <= region.end) {
3136 phb->ioda.io_segmap[index] = pe->pe_number;
3137 rc = opal_pci_map_pe_mmio_window(phb->opal_id,
3138 pe->pe_number, OPAL_IO_WINDOW_TYPE, 0, index);
3139 if (rc != OPAL_SUCCESS) {
3140 pr_err("%s: Error %lld mapping IO segment#%d to PE#%x\n",
3141 __func__, rc, index, pe->pe_number);
3142 break;
3143 }
3144
3145 region.start += phb->ioda.io_segsize;
3146 index++;
3147 }
3148 } else if ((res->flags & IORESOURCE_MEM) &&
3149 !pnv_pci_is_m64(phb, res)) {
3150 region.start = res->start -
3151 phb->hose->mem_offset[0] -
3152 phb->ioda.m32_pci_base;
3153 region.end = res->end -
3154 phb->hose->mem_offset[0] -
3155 phb->ioda.m32_pci_base;
3156 index = region.start / phb->ioda.m32_segsize;
3157
3158 while (index < phb->ioda.total_pe_num &&
3159 region.start <= region.end) {
3160 phb->ioda.m32_segmap[index] = pe->pe_number;
3161 rc = opal_pci_map_pe_mmio_window(phb->opal_id,
3162 pe->pe_number, OPAL_M32_WINDOW_TYPE, 0, index);
3163 if (rc != OPAL_SUCCESS) {
3164 pr_err("%s: Error %lld mapping M32 segment#%d to PE#%x",
3165 __func__, rc, index, pe->pe_number);
3166 break;
3167 }
3168
3169 region.start += phb->ioda.m32_segsize;
3170 index++;
3171 }
3172 }
3173 }
3174
3175 /*
3176 * This function is supposed to be called on basis of PE from top
3177 * to bottom style. So the the I/O or MMIO segment assigned to
3178 * parent PE could be overridden by its child PEs if necessary.
3179 */
pnv_ioda_setup_pe_seg(struct pnv_ioda_pe * pe)3180 static void pnv_ioda_setup_pe_seg(struct pnv_ioda_pe *pe)
3181 {
3182 struct pci_dev *pdev;
3183 int i;
3184
3185 /*
3186 * NOTE: We only care PCI bus based PE for now. For PCI
3187 * device based PE, for example SRIOV sensitive VF should
3188 * be figured out later.
3189 */
3190 BUG_ON(!(pe->flags & (PNV_IODA_PE_BUS | PNV_IODA_PE_BUS_ALL)));
3191
3192 list_for_each_entry(pdev, &pe->pbus->devices, bus_list) {
3193 for (i = 0; i <= PCI_ROM_RESOURCE; i++)
3194 pnv_ioda_setup_pe_res(pe, &pdev->resource[i]);
3195
3196 /*
3197 * If the PE contains all subordinate PCI buses, the
3198 * windows of the child bridges should be mapped to
3199 * the PE as well.
3200 */
3201 if (!(pe->flags & PNV_IODA_PE_BUS_ALL) || !pci_is_bridge(pdev))
3202 continue;
3203 for (i = 0; i < PCI_BRIDGE_RESOURCE_NUM; i++)
3204 pnv_ioda_setup_pe_res(pe,
3205 &pdev->resource[PCI_BRIDGE_RESOURCES + i]);
3206 }
3207 }
3208
3209 #ifdef CONFIG_DEBUG_FS
pnv_pci_diag_data_set(void * data,u64 val)3210 static int pnv_pci_diag_data_set(void *data, u64 val)
3211 {
3212 struct pci_controller *hose;
3213 struct pnv_phb *phb;
3214 s64 ret;
3215
3216 if (val != 1ULL)
3217 return -EINVAL;
3218
3219 hose = (struct pci_controller *)data;
3220 if (!hose || !hose->private_data)
3221 return -ENODEV;
3222
3223 phb = hose->private_data;
3224
3225 /* Retrieve the diag data from firmware */
3226 ret = opal_pci_get_phb_diag_data2(phb->opal_id, phb->diag_data,
3227 phb->diag_data_size);
3228 if (ret != OPAL_SUCCESS)
3229 return -EIO;
3230
3231 /* Print the diag data to the kernel log */
3232 pnv_pci_dump_phb_diag_data(phb->hose, phb->diag_data);
3233 return 0;
3234 }
3235
3236 DEFINE_SIMPLE_ATTRIBUTE(pnv_pci_diag_data_fops, NULL,
3237 pnv_pci_diag_data_set, "%llu\n");
3238
3239 #endif /* CONFIG_DEBUG_FS */
3240
pnv_pci_ioda_create_dbgfs(void)3241 static void pnv_pci_ioda_create_dbgfs(void)
3242 {
3243 #ifdef CONFIG_DEBUG_FS
3244 struct pci_controller *hose, *tmp;
3245 struct pnv_phb *phb;
3246 char name[16];
3247
3248 list_for_each_entry_safe(hose, tmp, &hose_list, list_node) {
3249 phb = hose->private_data;
3250
3251 /* Notify initialization of PHB done */
3252 phb->initialized = 1;
3253
3254 sprintf(name, "PCI%04x", hose->global_number);
3255 phb->dbgfs = debugfs_create_dir(name, powerpc_debugfs_root);
3256 if (!phb->dbgfs) {
3257 pr_warn("%s: Error on creating debugfs on PHB#%x\n",
3258 __func__, hose->global_number);
3259 continue;
3260 }
3261
3262 debugfs_create_file("dump_diag_regs", 0200, phb->dbgfs, hose,
3263 &pnv_pci_diag_data_fops);
3264 }
3265 #endif /* CONFIG_DEBUG_FS */
3266 }
3267
pnv_pci_enable_bridge(struct pci_bus * bus)3268 static void pnv_pci_enable_bridge(struct pci_bus *bus)
3269 {
3270 struct pci_dev *dev = bus->self;
3271 struct pci_bus *child;
3272
3273 /* Empty bus ? bail */
3274 if (list_empty(&bus->devices))
3275 return;
3276
3277 /*
3278 * If there's a bridge associated with that bus enable it. This works
3279 * around races in the generic code if the enabling is done during
3280 * parallel probing. This can be removed once those races have been
3281 * fixed.
3282 */
3283 if (dev) {
3284 int rc = pci_enable_device(dev);
3285 if (rc)
3286 pci_err(dev, "Error enabling bridge (%d)\n", rc);
3287 pci_set_master(dev);
3288 }
3289
3290 /* Perform the same to child busses */
3291 list_for_each_entry(child, &bus->children, node)
3292 pnv_pci_enable_bridge(child);
3293 }
3294
pnv_pci_enable_bridges(void)3295 static void pnv_pci_enable_bridges(void)
3296 {
3297 struct pci_controller *hose;
3298
3299 list_for_each_entry(hose, &hose_list, list_node)
3300 pnv_pci_enable_bridge(hose->bus);
3301 }
3302
pnv_pci_ioda_fixup(void)3303 static void pnv_pci_ioda_fixup(void)
3304 {
3305 pnv_pci_ioda_setup_PEs();
3306 pnv_pci_ioda_setup_iommu_api();
3307 pnv_pci_ioda_create_dbgfs();
3308
3309 pnv_pci_enable_bridges();
3310
3311 #ifdef CONFIG_EEH
3312 pnv_eeh_post_init();
3313 #endif
3314 }
3315
3316 /*
3317 * Returns the alignment for I/O or memory windows for P2P
3318 * bridges. That actually depends on how PEs are segmented.
3319 * For now, we return I/O or M32 segment size for PE sensitive
3320 * P2P bridges. Otherwise, the default values (4KiB for I/O,
3321 * 1MiB for memory) will be returned.
3322 *
3323 * The current PCI bus might be put into one PE, which was
3324 * create against the parent PCI bridge. For that case, we
3325 * needn't enlarge the alignment so that we can save some
3326 * resources.
3327 */
pnv_pci_window_alignment(struct pci_bus * bus,unsigned long type)3328 static resource_size_t pnv_pci_window_alignment(struct pci_bus *bus,
3329 unsigned long type)
3330 {
3331 struct pci_dev *bridge;
3332 struct pci_controller *hose = pci_bus_to_host(bus);
3333 struct pnv_phb *phb = hose->private_data;
3334 int num_pci_bridges = 0;
3335
3336 bridge = bus->self;
3337 while (bridge) {
3338 if (pci_pcie_type(bridge) == PCI_EXP_TYPE_PCI_BRIDGE) {
3339 num_pci_bridges++;
3340 if (num_pci_bridges >= 2)
3341 return 1;
3342 }
3343
3344 bridge = bridge->bus->self;
3345 }
3346
3347 /*
3348 * We fall back to M32 if M64 isn't supported. We enforce the M64
3349 * alignment for any 64-bit resource, PCIe doesn't care and
3350 * bridges only do 64-bit prefetchable anyway.
3351 */
3352 if (phb->ioda.m64_segsize && pnv_pci_is_m64_flags(type))
3353 return phb->ioda.m64_segsize;
3354 if (type & IORESOURCE_MEM)
3355 return phb->ioda.m32_segsize;
3356
3357 return phb->ioda.io_segsize;
3358 }
3359
3360 /*
3361 * We are updating root port or the upstream port of the
3362 * bridge behind the root port with PHB's windows in order
3363 * to accommodate the changes on required resources during
3364 * PCI (slot) hotplug, which is connected to either root
3365 * port or the downstream ports of PCIe switch behind the
3366 * root port.
3367 */
pnv_pci_fixup_bridge_resources(struct pci_bus * bus,unsigned long type)3368 static void pnv_pci_fixup_bridge_resources(struct pci_bus *bus,
3369 unsigned long type)
3370 {
3371 struct pci_controller *hose = pci_bus_to_host(bus);
3372 struct pnv_phb *phb = hose->private_data;
3373 struct pci_dev *bridge = bus->self;
3374 struct resource *r, *w;
3375 bool msi_region = false;
3376 int i;
3377
3378 /* Check if we need apply fixup to the bridge's windows */
3379 if (!pci_is_root_bus(bridge->bus) &&
3380 !pci_is_root_bus(bridge->bus->self->bus))
3381 return;
3382
3383 /* Fixup the resources */
3384 for (i = 0; i < PCI_BRIDGE_RESOURCE_NUM; i++) {
3385 r = &bridge->resource[PCI_BRIDGE_RESOURCES + i];
3386 if (!r->flags || !r->parent)
3387 continue;
3388
3389 w = NULL;
3390 if (r->flags & type & IORESOURCE_IO)
3391 w = &hose->io_resource;
3392 else if (pnv_pci_is_m64(phb, r) &&
3393 (type & IORESOURCE_PREFETCH) &&
3394 phb->ioda.m64_segsize)
3395 w = &hose->mem_resources[1];
3396 else if (r->flags & type & IORESOURCE_MEM) {
3397 w = &hose->mem_resources[0];
3398 msi_region = true;
3399 }
3400
3401 r->start = w->start;
3402 r->end = w->end;
3403
3404 /* The 64KB 32-bits MSI region shouldn't be included in
3405 * the 32-bits bridge window. Otherwise, we can see strange
3406 * issues. One of them is EEH error observed on Garrison.
3407 *
3408 * Exclude top 1MB region which is the minimal alignment of
3409 * 32-bits bridge window.
3410 */
3411 if (msi_region) {
3412 r->end += 0x10000;
3413 r->end -= 0x100000;
3414 }
3415 }
3416 }
3417
pnv_pci_setup_bridge(struct pci_bus * bus,unsigned long type)3418 static void pnv_pci_setup_bridge(struct pci_bus *bus, unsigned long type)
3419 {
3420 struct pci_controller *hose = pci_bus_to_host(bus);
3421 struct pnv_phb *phb = hose->private_data;
3422 struct pci_dev *bridge = bus->self;
3423 struct pnv_ioda_pe *pe;
3424 bool all = (pci_pcie_type(bridge) == PCI_EXP_TYPE_PCI_BRIDGE);
3425
3426 /* Extend bridge's windows if necessary */
3427 pnv_pci_fixup_bridge_resources(bus, type);
3428
3429 /* The PE for root bus should be realized before any one else */
3430 if (!phb->ioda.root_pe_populated) {
3431 pe = pnv_ioda_setup_bus_PE(phb->hose->bus, false);
3432 if (pe) {
3433 phb->ioda.root_pe_idx = pe->pe_number;
3434 phb->ioda.root_pe_populated = true;
3435 }
3436 }
3437
3438 /* Don't assign PE to PCI bus, which doesn't have subordinate devices */
3439 if (list_empty(&bus->devices))
3440 return;
3441
3442 /* Reserve PEs according to used M64 resources */
3443 if (phb->reserve_m64_pe)
3444 phb->reserve_m64_pe(bus, NULL, all);
3445
3446 /*
3447 * Assign PE. We might run here because of partial hotplug.
3448 * For the case, we just pick up the existing PE and should
3449 * not allocate resources again.
3450 */
3451 pe = pnv_ioda_setup_bus_PE(bus, all);
3452 if (!pe)
3453 return;
3454
3455 pnv_ioda_setup_pe_seg(pe);
3456 switch (phb->type) {
3457 case PNV_PHB_IODA1:
3458 pnv_pci_ioda1_setup_dma_pe(phb, pe);
3459 break;
3460 case PNV_PHB_IODA2:
3461 pnv_pci_ioda2_setup_dma_pe(phb, pe);
3462 break;
3463 default:
3464 pr_warn("%s: No DMA for PHB#%x (type %d)\n",
3465 __func__, phb->hose->global_number, phb->type);
3466 }
3467 }
3468
pnv_pci_default_alignment(void)3469 static resource_size_t pnv_pci_default_alignment(void)
3470 {
3471 return PAGE_SIZE;
3472 }
3473
3474 #ifdef CONFIG_PCI_IOV
pnv_pci_iov_resource_alignment(struct pci_dev * pdev,int resno)3475 static resource_size_t pnv_pci_iov_resource_alignment(struct pci_dev *pdev,
3476 int resno)
3477 {
3478 struct pci_controller *hose = pci_bus_to_host(pdev->bus);
3479 struct pnv_phb *phb = hose->private_data;
3480 struct pci_dn *pdn = pci_get_pdn(pdev);
3481 resource_size_t align;
3482
3483 /*
3484 * On PowerNV platform, IOV BAR is mapped by M64 BAR to enable the
3485 * SR-IOV. While from hardware perspective, the range mapped by M64
3486 * BAR should be size aligned.
3487 *
3488 * When IOV BAR is mapped with M64 BAR in Single PE mode, the extra
3489 * powernv-specific hardware restriction is gone. But if just use the
3490 * VF BAR size as the alignment, PF BAR / VF BAR may be allocated with
3491 * in one segment of M64 #15, which introduces the PE conflict between
3492 * PF and VF. Based on this, the minimum alignment of an IOV BAR is
3493 * m64_segsize.
3494 *
3495 * This function returns the total IOV BAR size if M64 BAR is in
3496 * Shared PE mode or just VF BAR size if not.
3497 * If the M64 BAR is in Single PE mode, return the VF BAR size or
3498 * M64 segment size if IOV BAR size is less.
3499 */
3500 align = pci_iov_resource_size(pdev, resno);
3501 if (!pdn->vfs_expanded)
3502 return align;
3503 if (pdn->m64_single_mode)
3504 return max(align, (resource_size_t)phb->ioda.m64_segsize);
3505
3506 return pdn->vfs_expanded * align;
3507 }
3508 #endif /* CONFIG_PCI_IOV */
3509
3510 /* Prevent enabling devices for which we couldn't properly
3511 * assign a PE
3512 */
pnv_pci_enable_device_hook(struct pci_dev * dev)3513 static bool pnv_pci_enable_device_hook(struct pci_dev *dev)
3514 {
3515 struct pci_controller *hose = pci_bus_to_host(dev->bus);
3516 struct pnv_phb *phb = hose->private_data;
3517 struct pci_dn *pdn;
3518
3519 /* The function is probably called while the PEs have
3520 * not be created yet. For example, resource reassignment
3521 * during PCI probe period. We just skip the check if
3522 * PEs isn't ready.
3523 */
3524 if (!phb->initialized)
3525 return true;
3526
3527 pdn = pci_get_pdn(dev);
3528 if (!pdn || pdn->pe_number == IODA_INVALID_PE)
3529 return false;
3530
3531 return true;
3532 }
3533
pnv_pci_ioda1_unset_window(struct iommu_table_group * table_group,int num)3534 static long pnv_pci_ioda1_unset_window(struct iommu_table_group *table_group,
3535 int num)
3536 {
3537 struct pnv_ioda_pe *pe = container_of(table_group,
3538 struct pnv_ioda_pe, table_group);
3539 struct pnv_phb *phb = pe->phb;
3540 unsigned int idx;
3541 long rc;
3542
3543 pe_info(pe, "Removing DMA window #%d\n", num);
3544 for (idx = 0; idx < phb->ioda.dma32_count; idx++) {
3545 if (phb->ioda.dma32_segmap[idx] != pe->pe_number)
3546 continue;
3547
3548 rc = opal_pci_map_pe_dma_window(phb->opal_id, pe->pe_number,
3549 idx, 0, 0ul, 0ul, 0ul);
3550 if (rc != OPAL_SUCCESS) {
3551 pe_warn(pe, "Failure %ld unmapping DMA32 segment#%d\n",
3552 rc, idx);
3553 return rc;
3554 }
3555
3556 phb->ioda.dma32_segmap[idx] = IODA_INVALID_PE;
3557 }
3558
3559 pnv_pci_unlink_table_and_group(table_group->tables[num], table_group);
3560 return OPAL_SUCCESS;
3561 }
3562
pnv_pci_ioda1_release_pe_dma(struct pnv_ioda_pe * pe)3563 static void pnv_pci_ioda1_release_pe_dma(struct pnv_ioda_pe *pe)
3564 {
3565 unsigned int weight = pnv_pci_ioda_pe_dma_weight(pe);
3566 struct iommu_table *tbl = pe->table_group.tables[0];
3567 int64_t rc;
3568
3569 if (!weight)
3570 return;
3571
3572 rc = pnv_pci_ioda1_unset_window(&pe->table_group, 0);
3573 if (rc != OPAL_SUCCESS)
3574 return;
3575
3576 pnv_pci_p7ioc_tce_invalidate(tbl, tbl->it_offset, tbl->it_size, false);
3577 if (pe->table_group.group) {
3578 iommu_group_put(pe->table_group.group);
3579 WARN_ON(pe->table_group.group);
3580 }
3581
3582 free_pages(tbl->it_base, get_order(tbl->it_size << 3));
3583 iommu_tce_table_put(tbl);
3584 }
3585
pnv_pci_ioda2_release_pe_dma(struct pnv_ioda_pe * pe)3586 static void pnv_pci_ioda2_release_pe_dma(struct pnv_ioda_pe *pe)
3587 {
3588 struct iommu_table *tbl = pe->table_group.tables[0];
3589 unsigned int weight = pnv_pci_ioda_pe_dma_weight(pe);
3590 #ifdef CONFIG_IOMMU_API
3591 int64_t rc;
3592 #endif
3593
3594 if (!weight)
3595 return;
3596
3597 #ifdef CONFIG_IOMMU_API
3598 rc = pnv_pci_ioda2_unset_window(&pe->table_group, 0);
3599 if (rc)
3600 pe_warn(pe, "OPAL error %ld release DMA window\n", rc);
3601 #endif
3602
3603 pnv_pci_ioda2_set_bypass(pe, false);
3604 if (pe->table_group.group) {
3605 iommu_group_put(pe->table_group.group);
3606 WARN_ON(pe->table_group.group);
3607 }
3608
3609 iommu_tce_table_put(tbl);
3610 }
3611
pnv_ioda_free_pe_seg(struct pnv_ioda_pe * pe,unsigned short win,unsigned int * map)3612 static void pnv_ioda_free_pe_seg(struct pnv_ioda_pe *pe,
3613 unsigned short win,
3614 unsigned int *map)
3615 {
3616 struct pnv_phb *phb = pe->phb;
3617 int idx;
3618 int64_t rc;
3619
3620 for (idx = 0; idx < phb->ioda.total_pe_num; idx++) {
3621 if (map[idx] != pe->pe_number)
3622 continue;
3623
3624 if (win == OPAL_M64_WINDOW_TYPE)
3625 rc = opal_pci_map_pe_mmio_window(phb->opal_id,
3626 phb->ioda.reserved_pe_idx, win,
3627 idx / PNV_IODA1_M64_SEGS,
3628 idx % PNV_IODA1_M64_SEGS);
3629 else
3630 rc = opal_pci_map_pe_mmio_window(phb->opal_id,
3631 phb->ioda.reserved_pe_idx, win, 0, idx);
3632
3633 if (rc != OPAL_SUCCESS)
3634 pe_warn(pe, "Error %ld unmapping (%d) segment#%d\n",
3635 rc, win, idx);
3636
3637 map[idx] = IODA_INVALID_PE;
3638 }
3639 }
3640
pnv_ioda_release_pe_seg(struct pnv_ioda_pe * pe)3641 static void pnv_ioda_release_pe_seg(struct pnv_ioda_pe *pe)
3642 {
3643 struct pnv_phb *phb = pe->phb;
3644
3645 if (phb->type == PNV_PHB_IODA1) {
3646 pnv_ioda_free_pe_seg(pe, OPAL_IO_WINDOW_TYPE,
3647 phb->ioda.io_segmap);
3648 pnv_ioda_free_pe_seg(pe, OPAL_M32_WINDOW_TYPE,
3649 phb->ioda.m32_segmap);
3650 pnv_ioda_free_pe_seg(pe, OPAL_M64_WINDOW_TYPE,
3651 phb->ioda.m64_segmap);
3652 } else if (phb->type == PNV_PHB_IODA2) {
3653 pnv_ioda_free_pe_seg(pe, OPAL_M32_WINDOW_TYPE,
3654 phb->ioda.m32_segmap);
3655 }
3656 }
3657
pnv_ioda_release_pe(struct pnv_ioda_pe * pe)3658 static void pnv_ioda_release_pe(struct pnv_ioda_pe *pe)
3659 {
3660 struct pnv_phb *phb = pe->phb;
3661 struct pnv_ioda_pe *slave, *tmp;
3662
3663 list_del(&pe->list);
3664 switch (phb->type) {
3665 case PNV_PHB_IODA1:
3666 pnv_pci_ioda1_release_pe_dma(pe);
3667 break;
3668 case PNV_PHB_IODA2:
3669 pnv_pci_ioda2_release_pe_dma(pe);
3670 break;
3671 default:
3672 WARN_ON(1);
3673 }
3674
3675 pnv_ioda_release_pe_seg(pe);
3676 pnv_ioda_deconfigure_pe(pe->phb, pe);
3677
3678 /* Release slave PEs in the compound PE */
3679 if (pe->flags & PNV_IODA_PE_MASTER) {
3680 list_for_each_entry_safe(slave, tmp, &pe->slaves, list) {
3681 list_del(&slave->list);
3682 pnv_ioda_free_pe(slave);
3683 }
3684 }
3685
3686 /*
3687 * The PE for root bus can be removed because of hotplug in EEH
3688 * recovery for fenced PHB error. We need to mark the PE dead so
3689 * that it can be populated again in PCI hot add path. The PE
3690 * shouldn't be destroyed as it's the global reserved resource.
3691 */
3692 if (phb->ioda.root_pe_populated &&
3693 phb->ioda.root_pe_idx == pe->pe_number)
3694 phb->ioda.root_pe_populated = false;
3695 else
3696 pnv_ioda_free_pe(pe);
3697 }
3698
pnv_pci_release_device(struct pci_dev * pdev)3699 static void pnv_pci_release_device(struct pci_dev *pdev)
3700 {
3701 struct pci_controller *hose = pci_bus_to_host(pdev->bus);
3702 struct pnv_phb *phb = hose->private_data;
3703 struct pci_dn *pdn = pci_get_pdn(pdev);
3704 struct pnv_ioda_pe *pe;
3705
3706 if (pdev->is_virtfn)
3707 return;
3708
3709 if (!pdn || pdn->pe_number == IODA_INVALID_PE)
3710 return;
3711
3712 /*
3713 * PCI hotplug can happen as part of EEH error recovery. The @pdn
3714 * isn't removed and added afterwards in this scenario. We should
3715 * set the PE number in @pdn to an invalid one. Otherwise, the PE's
3716 * device count is decreased on removing devices while failing to
3717 * be increased on adding devices. It leads to unbalanced PE's device
3718 * count and eventually make normal PCI hotplug path broken.
3719 */
3720 pe = &phb->ioda.pe_array[pdn->pe_number];
3721 pdn->pe_number = IODA_INVALID_PE;
3722
3723 WARN_ON(--pe->device_count < 0);
3724 if (pe->device_count == 0)
3725 pnv_ioda_release_pe(pe);
3726 }
3727
pnv_pci_ioda_shutdown(struct pci_controller * hose)3728 static void pnv_pci_ioda_shutdown(struct pci_controller *hose)
3729 {
3730 struct pnv_phb *phb = hose->private_data;
3731
3732 opal_pci_reset(phb->opal_id, OPAL_RESET_PCI_IODA_TABLE,
3733 OPAL_ASSERT_RESET);
3734 }
3735
3736 static const struct pci_controller_ops pnv_pci_ioda_controller_ops = {
3737 .dma_dev_setup = pnv_pci_dma_dev_setup,
3738 .dma_bus_setup = pnv_pci_dma_bus_setup,
3739 #ifdef CONFIG_PCI_MSI
3740 .setup_msi_irqs = pnv_setup_msi_irqs,
3741 .teardown_msi_irqs = pnv_teardown_msi_irqs,
3742 #endif
3743 .enable_device_hook = pnv_pci_enable_device_hook,
3744 .release_device = pnv_pci_release_device,
3745 .window_alignment = pnv_pci_window_alignment,
3746 .setup_bridge = pnv_pci_setup_bridge,
3747 .reset_secondary_bus = pnv_pci_reset_secondary_bus,
3748 .dma_set_mask = pnv_pci_ioda_dma_set_mask,
3749 .dma_get_required_mask = pnv_pci_ioda_dma_get_required_mask,
3750 .shutdown = pnv_pci_ioda_shutdown,
3751 };
3752
pnv_npu_dma_set_mask(struct pci_dev * npdev,u64 dma_mask)3753 static int pnv_npu_dma_set_mask(struct pci_dev *npdev, u64 dma_mask)
3754 {
3755 dev_err_once(&npdev->dev,
3756 "%s operation unsupported for NVLink devices\n",
3757 __func__);
3758 return -EPERM;
3759 }
3760
3761 static const struct pci_controller_ops pnv_npu_ioda_controller_ops = {
3762 .dma_dev_setup = pnv_pci_dma_dev_setup,
3763 #ifdef CONFIG_PCI_MSI
3764 .setup_msi_irqs = pnv_setup_msi_irqs,
3765 .teardown_msi_irqs = pnv_teardown_msi_irqs,
3766 #endif
3767 .enable_device_hook = pnv_pci_enable_device_hook,
3768 .window_alignment = pnv_pci_window_alignment,
3769 .reset_secondary_bus = pnv_pci_reset_secondary_bus,
3770 .dma_set_mask = pnv_npu_dma_set_mask,
3771 .shutdown = pnv_pci_ioda_shutdown,
3772 };
3773
3774 static const struct pci_controller_ops pnv_npu_ocapi_ioda_controller_ops = {
3775 .enable_device_hook = pnv_pci_enable_device_hook,
3776 .window_alignment = pnv_pci_window_alignment,
3777 .reset_secondary_bus = pnv_pci_reset_secondary_bus,
3778 .shutdown = pnv_pci_ioda_shutdown,
3779 };
3780
pnv_pci_init_ioda_phb(struct device_node * np,u64 hub_id,int ioda_type)3781 static void __init pnv_pci_init_ioda_phb(struct device_node *np,
3782 u64 hub_id, int ioda_type)
3783 {
3784 struct pci_controller *hose;
3785 struct pnv_phb *phb;
3786 unsigned long size, m64map_off, m32map_off, pemap_off;
3787 unsigned long iomap_off = 0, dma32map_off = 0;
3788 struct resource r;
3789 const __be64 *prop64;
3790 const __be32 *prop32;
3791 int len;
3792 unsigned int segno;
3793 u64 phb_id;
3794 void *aux;
3795 long rc;
3796
3797 if (!of_device_is_available(np))
3798 return;
3799
3800 pr_info("Initializing %s PHB (%pOF)\n", pnv_phb_names[ioda_type], np);
3801
3802 prop64 = of_get_property(np, "ibm,opal-phbid", NULL);
3803 if (!prop64) {
3804 pr_err(" Missing \"ibm,opal-phbid\" property !\n");
3805 return;
3806 }
3807 phb_id = be64_to_cpup(prop64);
3808 pr_debug(" PHB-ID : 0x%016llx\n", phb_id);
3809
3810 phb = memblock_virt_alloc(sizeof(*phb), 0);
3811
3812 /* Allocate PCI controller */
3813 phb->hose = hose = pcibios_alloc_controller(np);
3814 if (!phb->hose) {
3815 pr_err(" Can't allocate PCI controller for %pOF\n",
3816 np);
3817 memblock_free(__pa(phb), sizeof(struct pnv_phb));
3818 return;
3819 }
3820
3821 spin_lock_init(&phb->lock);
3822 prop32 = of_get_property(np, "bus-range", &len);
3823 if (prop32 && len == 8) {
3824 hose->first_busno = be32_to_cpu(prop32[0]);
3825 hose->last_busno = be32_to_cpu(prop32[1]);
3826 } else {
3827 pr_warn(" Broken <bus-range> on %pOF\n", np);
3828 hose->first_busno = 0;
3829 hose->last_busno = 0xff;
3830 }
3831 hose->private_data = phb;
3832 phb->hub_id = hub_id;
3833 phb->opal_id = phb_id;
3834 phb->type = ioda_type;
3835 mutex_init(&phb->ioda.pe_alloc_mutex);
3836
3837 /* Detect specific models for error handling */
3838 if (of_device_is_compatible(np, "ibm,p7ioc-pciex"))
3839 phb->model = PNV_PHB_MODEL_P7IOC;
3840 else if (of_device_is_compatible(np, "ibm,power8-pciex"))
3841 phb->model = PNV_PHB_MODEL_PHB3;
3842 else if (of_device_is_compatible(np, "ibm,power8-npu-pciex"))
3843 phb->model = PNV_PHB_MODEL_NPU;
3844 else if (of_device_is_compatible(np, "ibm,power9-npu-pciex"))
3845 phb->model = PNV_PHB_MODEL_NPU2;
3846 else
3847 phb->model = PNV_PHB_MODEL_UNKNOWN;
3848
3849 /* Initialize diagnostic data buffer */
3850 prop32 = of_get_property(np, "ibm,phb-diag-data-size", NULL);
3851 if (prop32)
3852 phb->diag_data_size = be32_to_cpup(prop32);
3853 else
3854 phb->diag_data_size = PNV_PCI_DIAG_BUF_SIZE;
3855
3856 phb->diag_data = memblock_virt_alloc(phb->diag_data_size, 0);
3857
3858 /* Parse 32-bit and IO ranges (if any) */
3859 pci_process_bridge_OF_ranges(hose, np, !hose->global_number);
3860
3861 /* Get registers */
3862 if (!of_address_to_resource(np, 0, &r)) {
3863 phb->regs_phys = r.start;
3864 phb->regs = ioremap(r.start, resource_size(&r));
3865 if (phb->regs == NULL)
3866 pr_err(" Failed to map registers !\n");
3867 }
3868
3869 /* Initialize more IODA stuff */
3870 phb->ioda.total_pe_num = 1;
3871 prop32 = of_get_property(np, "ibm,opal-num-pes", NULL);
3872 if (prop32)
3873 phb->ioda.total_pe_num = be32_to_cpup(prop32);
3874 prop32 = of_get_property(np, "ibm,opal-reserved-pe", NULL);
3875 if (prop32)
3876 phb->ioda.reserved_pe_idx = be32_to_cpup(prop32);
3877
3878 /* Invalidate RID to PE# mapping */
3879 for (segno = 0; segno < ARRAY_SIZE(phb->ioda.pe_rmap); segno++)
3880 phb->ioda.pe_rmap[segno] = IODA_INVALID_PE;
3881
3882 /* Parse 64-bit MMIO range */
3883 pnv_ioda_parse_m64_window(phb);
3884
3885 phb->ioda.m32_size = resource_size(&hose->mem_resources[0]);
3886 /* FW Has already off top 64k of M32 space (MSI space) */
3887 phb->ioda.m32_size += 0x10000;
3888
3889 phb->ioda.m32_segsize = phb->ioda.m32_size / phb->ioda.total_pe_num;
3890 phb->ioda.m32_pci_base = hose->mem_resources[0].start - hose->mem_offset[0];
3891 phb->ioda.io_size = hose->pci_io_size;
3892 phb->ioda.io_segsize = phb->ioda.io_size / phb->ioda.total_pe_num;
3893 phb->ioda.io_pci_base = 0; /* XXX calculate this ? */
3894
3895 /* Calculate how many 32-bit TCE segments we have */
3896 phb->ioda.dma32_count = phb->ioda.m32_pci_base /
3897 PNV_IODA1_DMA32_SEGSIZE;
3898
3899 /* Allocate aux data & arrays. We don't have IO ports on PHB3 */
3900 size = _ALIGN_UP(max_t(unsigned, phb->ioda.total_pe_num, 8) / 8,
3901 sizeof(unsigned long));
3902 m64map_off = size;
3903 size += phb->ioda.total_pe_num * sizeof(phb->ioda.m64_segmap[0]);
3904 m32map_off = size;
3905 size += phb->ioda.total_pe_num * sizeof(phb->ioda.m32_segmap[0]);
3906 if (phb->type == PNV_PHB_IODA1) {
3907 iomap_off = size;
3908 size += phb->ioda.total_pe_num * sizeof(phb->ioda.io_segmap[0]);
3909 dma32map_off = size;
3910 size += phb->ioda.dma32_count *
3911 sizeof(phb->ioda.dma32_segmap[0]);
3912 }
3913 pemap_off = size;
3914 size += phb->ioda.total_pe_num * sizeof(struct pnv_ioda_pe);
3915 aux = memblock_virt_alloc(size, 0);
3916 phb->ioda.pe_alloc = aux;
3917 phb->ioda.m64_segmap = aux + m64map_off;
3918 phb->ioda.m32_segmap = aux + m32map_off;
3919 for (segno = 0; segno < phb->ioda.total_pe_num; segno++) {
3920 phb->ioda.m64_segmap[segno] = IODA_INVALID_PE;
3921 phb->ioda.m32_segmap[segno] = IODA_INVALID_PE;
3922 }
3923 if (phb->type == PNV_PHB_IODA1) {
3924 phb->ioda.io_segmap = aux + iomap_off;
3925 for (segno = 0; segno < phb->ioda.total_pe_num; segno++)
3926 phb->ioda.io_segmap[segno] = IODA_INVALID_PE;
3927
3928 phb->ioda.dma32_segmap = aux + dma32map_off;
3929 for (segno = 0; segno < phb->ioda.dma32_count; segno++)
3930 phb->ioda.dma32_segmap[segno] = IODA_INVALID_PE;
3931 }
3932 phb->ioda.pe_array = aux + pemap_off;
3933
3934 /*
3935 * Choose PE number for root bus, which shouldn't have
3936 * M64 resources consumed by its child devices. To pick
3937 * the PE number adjacent to the reserved one if possible.
3938 */
3939 pnv_ioda_reserve_pe(phb, phb->ioda.reserved_pe_idx);
3940 if (phb->ioda.reserved_pe_idx == 0) {
3941 phb->ioda.root_pe_idx = 1;
3942 pnv_ioda_reserve_pe(phb, phb->ioda.root_pe_idx);
3943 } else if (phb->ioda.reserved_pe_idx == (phb->ioda.total_pe_num - 1)) {
3944 phb->ioda.root_pe_idx = phb->ioda.reserved_pe_idx - 1;
3945 pnv_ioda_reserve_pe(phb, phb->ioda.root_pe_idx);
3946 } else {
3947 phb->ioda.root_pe_idx = IODA_INVALID_PE;
3948 }
3949
3950 INIT_LIST_HEAD(&phb->ioda.pe_list);
3951 mutex_init(&phb->ioda.pe_list_mutex);
3952
3953 /* Calculate how many 32-bit TCE segments we have */
3954 phb->ioda.dma32_count = phb->ioda.m32_pci_base /
3955 PNV_IODA1_DMA32_SEGSIZE;
3956
3957 #if 0 /* We should really do that ... */
3958 rc = opal_pci_set_phb_mem_window(opal->phb_id,
3959 window_type,
3960 window_num,
3961 starting_real_address,
3962 starting_pci_address,
3963 segment_size);
3964 #endif
3965
3966 pr_info(" %03d (%03d) PE's M32: 0x%x [segment=0x%x]\n",
3967 phb->ioda.total_pe_num, phb->ioda.reserved_pe_idx,
3968 phb->ioda.m32_size, phb->ioda.m32_segsize);
3969 if (phb->ioda.m64_size)
3970 pr_info(" M64: 0x%lx [segment=0x%lx]\n",
3971 phb->ioda.m64_size, phb->ioda.m64_segsize);
3972 if (phb->ioda.io_size)
3973 pr_info(" IO: 0x%x [segment=0x%x]\n",
3974 phb->ioda.io_size, phb->ioda.io_segsize);
3975
3976
3977 phb->hose->ops = &pnv_pci_ops;
3978 phb->get_pe_state = pnv_ioda_get_pe_state;
3979 phb->freeze_pe = pnv_ioda_freeze_pe;
3980 phb->unfreeze_pe = pnv_ioda_unfreeze_pe;
3981
3982 /* Setup MSI support */
3983 pnv_pci_init_ioda_msis(phb);
3984
3985 /*
3986 * We pass the PCI probe flag PCI_REASSIGN_ALL_RSRC here
3987 * to let the PCI core do resource assignment. It's supposed
3988 * that the PCI core will do correct I/O and MMIO alignment
3989 * for the P2P bridge bars so that each PCI bus (excluding
3990 * the child P2P bridges) can form individual PE.
3991 */
3992 ppc_md.pcibios_fixup = pnv_pci_ioda_fixup;
3993
3994 switch (phb->type) {
3995 case PNV_PHB_NPU_NVLINK:
3996 hose->controller_ops = pnv_npu_ioda_controller_ops;
3997 break;
3998 case PNV_PHB_NPU_OCAPI:
3999 hose->controller_ops = pnv_npu_ocapi_ioda_controller_ops;
4000 break;
4001 default:
4002 phb->dma_dev_setup = pnv_pci_ioda_dma_dev_setup;
4003 hose->controller_ops = pnv_pci_ioda_controller_ops;
4004 }
4005
4006 ppc_md.pcibios_default_alignment = pnv_pci_default_alignment;
4007
4008 #ifdef CONFIG_PCI_IOV
4009 ppc_md.pcibios_fixup_sriov = pnv_pci_ioda_fixup_iov;
4010 ppc_md.pcibios_iov_resource_alignment = pnv_pci_iov_resource_alignment;
4011 ppc_md.pcibios_sriov_enable = pnv_pcibios_sriov_enable;
4012 ppc_md.pcibios_sriov_disable = pnv_pcibios_sriov_disable;
4013 #endif
4014
4015 pci_add_flags(PCI_REASSIGN_ALL_RSRC);
4016
4017 /* Reset IODA tables to a clean state */
4018 rc = opal_pci_reset(phb_id, OPAL_RESET_PCI_IODA_TABLE, OPAL_ASSERT_RESET);
4019 if (rc)
4020 pr_warn(" OPAL Error %ld performing IODA table reset !\n", rc);
4021
4022 /*
4023 * If we're running in kdump kernel, the previous kernel never
4024 * shutdown PCI devices correctly. We already got IODA table
4025 * cleaned out. So we have to issue PHB reset to stop all PCI
4026 * transactions from previous kernel. The ppc_pci_reset_phbs
4027 * kernel parameter will force this reset too.
4028 */
4029 if (is_kdump_kernel() || pci_reset_phbs) {
4030 pr_info(" Issue PHB reset ...\n");
4031 pnv_eeh_phb_reset(hose, EEH_RESET_FUNDAMENTAL);
4032 pnv_eeh_phb_reset(hose, EEH_RESET_DEACTIVATE);
4033 }
4034
4035 /* Remove M64 resource if we can't configure it successfully */
4036 if (!phb->init_m64 || phb->init_m64(phb))
4037 hose->mem_resources[1].flags = 0;
4038 }
4039
pnv_pci_init_ioda2_phb(struct device_node * np)4040 void __init pnv_pci_init_ioda2_phb(struct device_node *np)
4041 {
4042 pnv_pci_init_ioda_phb(np, 0, PNV_PHB_IODA2);
4043 }
4044
pnv_pci_init_npu_phb(struct device_node * np)4045 void __init pnv_pci_init_npu_phb(struct device_node *np)
4046 {
4047 pnv_pci_init_ioda_phb(np, 0, PNV_PHB_NPU_NVLINK);
4048 }
4049
pnv_pci_init_npu2_opencapi_phb(struct device_node * np)4050 void __init pnv_pci_init_npu2_opencapi_phb(struct device_node *np)
4051 {
4052 pnv_pci_init_ioda_phb(np, 0, PNV_PHB_NPU_OCAPI);
4053 }
4054
pnv_npu2_opencapi_cfg_size_fixup(struct pci_dev * dev)4055 static void pnv_npu2_opencapi_cfg_size_fixup(struct pci_dev *dev)
4056 {
4057 struct pci_controller *hose = pci_bus_to_host(dev->bus);
4058 struct pnv_phb *phb = hose->private_data;
4059
4060 if (!machine_is(powernv))
4061 return;
4062
4063 if (phb->type == PNV_PHB_NPU_OCAPI)
4064 dev->cfg_size = PCI_CFG_SPACE_EXP_SIZE;
4065 }
4066 DECLARE_PCI_FIXUP_EARLY(PCI_ANY_ID, PCI_ANY_ID, pnv_npu2_opencapi_cfg_size_fixup);
4067
pnv_pci_init_ioda_hub(struct device_node * np)4068 void __init pnv_pci_init_ioda_hub(struct device_node *np)
4069 {
4070 struct device_node *phbn;
4071 const __be64 *prop64;
4072 u64 hub_id;
4073
4074 pr_info("Probing IODA IO-Hub %pOF\n", np);
4075
4076 prop64 = of_get_property(np, "ibm,opal-hubid", NULL);
4077 if (!prop64) {
4078 pr_err(" Missing \"ibm,opal-hubid\" property !\n");
4079 return;
4080 }
4081 hub_id = be64_to_cpup(prop64);
4082 pr_devel(" HUB-ID : 0x%016llx\n", hub_id);
4083
4084 /* Count child PHBs */
4085 for_each_child_of_node(np, phbn) {
4086 /* Look for IODA1 PHBs */
4087 if (of_device_is_compatible(phbn, "ibm,ioda-phb"))
4088 pnv_pci_init_ioda_phb(phbn, hub_id, PNV_PHB_IODA1);
4089 }
4090 }
4091