• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  Page table allocation functions
4  *
5  *    Copyright IBM Corp. 2016
6  *    Author(s): Martin Schwidefsky <schwidefsky@de.ibm.com>
7  */
8 
9 #include <linux/sysctl.h>
10 #include <linux/slab.h>
11 #include <linux/mm.h>
12 #include <asm/mmu_context.h>
13 #include <asm/pgalloc.h>
14 #include <asm/gmap.h>
15 #include <asm/tlb.h>
16 #include <asm/tlbflush.h>
17 
18 #ifdef CONFIG_PGSTE
19 
20 static int page_table_allocate_pgste_min = 0;
21 static int page_table_allocate_pgste_max = 1;
22 int page_table_allocate_pgste = 0;
23 EXPORT_SYMBOL(page_table_allocate_pgste);
24 
25 static struct ctl_table page_table_sysctl[] = {
26 	{
27 		.procname	= "allocate_pgste",
28 		.data		= &page_table_allocate_pgste,
29 		.maxlen		= sizeof(int),
30 		.mode		= S_IRUGO | S_IWUSR,
31 		.proc_handler	= proc_dointvec_minmax,
32 		.extra1		= &page_table_allocate_pgste_min,
33 		.extra2		= &page_table_allocate_pgste_max,
34 	},
35 	{ }
36 };
37 
38 static struct ctl_table page_table_sysctl_dir[] = {
39 	{
40 		.procname	= "vm",
41 		.maxlen		= 0,
42 		.mode		= 0555,
43 		.child		= page_table_sysctl,
44 	},
45 	{ }
46 };
47 
page_table_register_sysctl(void)48 static int __init page_table_register_sysctl(void)
49 {
50 	return register_sysctl_table(page_table_sysctl_dir) ? 0 : -ENOMEM;
51 }
52 __initcall(page_table_register_sysctl);
53 
54 #endif /* CONFIG_PGSTE */
55 
crst_table_alloc(struct mm_struct * mm)56 unsigned long *crst_table_alloc(struct mm_struct *mm)
57 {
58 	struct page *page = alloc_pages(GFP_KERNEL, 2);
59 
60 	if (!page)
61 		return NULL;
62 	arch_set_page_dat(page, 2);
63 	return (unsigned long *) page_to_phys(page);
64 }
65 
crst_table_free(struct mm_struct * mm,unsigned long * table)66 void crst_table_free(struct mm_struct *mm, unsigned long *table)
67 {
68 	free_pages((unsigned long) table, 2);
69 }
70 
__crst_table_upgrade(void * arg)71 static void __crst_table_upgrade(void *arg)
72 {
73 	struct mm_struct *mm = arg;
74 
75 	/* we must change all active ASCEs to avoid the creation of new TLBs */
76 	if (current->active_mm == mm) {
77 		S390_lowcore.user_asce = mm->context.asce;
78 		if (current->thread.mm_segment == USER_DS) {
79 			__ctl_load(S390_lowcore.user_asce, 1, 1);
80 			/* Mark user-ASCE present in CR1 */
81 			clear_cpu_flag(CIF_ASCE_PRIMARY);
82 		}
83 		if (current->thread.mm_segment == USER_DS_SACF) {
84 			__ctl_load(S390_lowcore.user_asce, 7, 7);
85 			/* enable_sacf_uaccess does all or nothing */
86 			WARN_ON(!test_cpu_flag(CIF_ASCE_SECONDARY));
87 		}
88 	}
89 	__tlb_flush_local();
90 }
91 
crst_table_upgrade(struct mm_struct * mm,unsigned long end)92 int crst_table_upgrade(struct mm_struct *mm, unsigned long end)
93 {
94 	unsigned long *table, *pgd;
95 	int rc, notify;
96 
97 	/* upgrade should only happen from 3 to 4, 3 to 5, or 4 to 5 levels */
98 	VM_BUG_ON(mm->context.asce_limit < _REGION2_SIZE);
99 	rc = 0;
100 	notify = 0;
101 	while (mm->context.asce_limit < end) {
102 		table = crst_table_alloc(mm);
103 		if (!table) {
104 			rc = -ENOMEM;
105 			break;
106 		}
107 		spin_lock_bh(&mm->page_table_lock);
108 		pgd = (unsigned long *) mm->pgd;
109 		if (mm->context.asce_limit == _REGION2_SIZE) {
110 			crst_table_init(table, _REGION2_ENTRY_EMPTY);
111 			p4d_populate(mm, (p4d_t *) table, (pud_t *) pgd);
112 			mm->pgd = (pgd_t *) table;
113 			mm->context.asce_limit = _REGION1_SIZE;
114 			mm->context.asce = __pa(mm->pgd) | _ASCE_TABLE_LENGTH |
115 				_ASCE_USER_BITS | _ASCE_TYPE_REGION2;
116 			mm_inc_nr_puds(mm);
117 		} else {
118 			crst_table_init(table, _REGION1_ENTRY_EMPTY);
119 			pgd_populate(mm, (pgd_t *) table, (p4d_t *) pgd);
120 			mm->pgd = (pgd_t *) table;
121 			mm->context.asce_limit = -PAGE_SIZE;
122 			mm->context.asce = __pa(mm->pgd) | _ASCE_TABLE_LENGTH |
123 				_ASCE_USER_BITS | _ASCE_TYPE_REGION1;
124 		}
125 		notify = 1;
126 		spin_unlock_bh(&mm->page_table_lock);
127 	}
128 	if (notify)
129 		on_each_cpu(__crst_table_upgrade, mm, 0);
130 	return rc;
131 }
132 
crst_table_downgrade(struct mm_struct * mm)133 void crst_table_downgrade(struct mm_struct *mm)
134 {
135 	pgd_t *pgd;
136 
137 	/* downgrade should only happen from 3 to 2 levels (compat only) */
138 	VM_BUG_ON(mm->context.asce_limit != _REGION2_SIZE);
139 
140 	if (current->active_mm == mm) {
141 		clear_user_asce();
142 		__tlb_flush_mm(mm);
143 	}
144 
145 	pgd = mm->pgd;
146 	mm->pgd = (pgd_t *) (pgd_val(*pgd) & _REGION_ENTRY_ORIGIN);
147 	mm->context.asce_limit = _REGION3_SIZE;
148 	mm->context.asce = __pa(mm->pgd) | _ASCE_TABLE_LENGTH |
149 			   _ASCE_USER_BITS | _ASCE_TYPE_SEGMENT;
150 	crst_table_free(mm, (unsigned long *) pgd);
151 
152 	if (current->active_mm == mm)
153 		set_user_asce(mm);
154 }
155 
atomic_xor_bits(atomic_t * v,unsigned int bits)156 static inline unsigned int atomic_xor_bits(atomic_t *v, unsigned int bits)
157 {
158 	unsigned int old, new;
159 
160 	do {
161 		old = atomic_read(v);
162 		new = old ^ bits;
163 	} while (atomic_cmpxchg(v, old, new) != old);
164 	return new;
165 }
166 
167 #ifdef CONFIG_PGSTE
168 
page_table_alloc_pgste(struct mm_struct * mm)169 struct page *page_table_alloc_pgste(struct mm_struct *mm)
170 {
171 	struct page *page;
172 	u64 *table;
173 
174 	page = alloc_page(GFP_KERNEL);
175 	if (page) {
176 		table = (u64 *)page_to_phys(page);
177 		memset64(table, _PAGE_INVALID, PTRS_PER_PTE);
178 		memset64(table + PTRS_PER_PTE, 0, PTRS_PER_PTE);
179 	}
180 	return page;
181 }
182 
page_table_free_pgste(struct page * page)183 void page_table_free_pgste(struct page *page)
184 {
185 	__free_page(page);
186 }
187 
188 #endif /* CONFIG_PGSTE */
189 
190 /*
191  * page table entry allocation/free routines.
192  */
page_table_alloc(struct mm_struct * mm)193 unsigned long *page_table_alloc(struct mm_struct *mm)
194 {
195 	unsigned long *table;
196 	struct page *page;
197 	unsigned int mask, bit;
198 
199 	/* Try to get a fragment of a 4K page as a 2K page table */
200 	if (!mm_alloc_pgste(mm)) {
201 		table = NULL;
202 		spin_lock_bh(&mm->context.lock);
203 		if (!list_empty(&mm->context.pgtable_list)) {
204 			page = list_first_entry(&mm->context.pgtable_list,
205 						struct page, lru);
206 			mask = atomic_read(&page->_refcount) >> 24;
207 			mask = (mask | (mask >> 4)) & 3;
208 			if (mask != 3) {
209 				table = (unsigned long *) page_to_phys(page);
210 				bit = mask & 1;		/* =1 -> second 2K */
211 				if (bit)
212 					table += PTRS_PER_PTE;
213 				atomic_xor_bits(&page->_refcount,
214 							1U << (bit + 24));
215 				list_del(&page->lru);
216 			}
217 		}
218 		spin_unlock_bh(&mm->context.lock);
219 		if (table)
220 			return table;
221 	}
222 	/* Allocate a fresh page */
223 	page = alloc_page(GFP_KERNEL);
224 	if (!page)
225 		return NULL;
226 	if (!pgtable_page_ctor(page)) {
227 		__free_page(page);
228 		return NULL;
229 	}
230 	arch_set_page_dat(page, 0);
231 	/* Initialize page table */
232 	table = (unsigned long *) page_to_phys(page);
233 	if (mm_alloc_pgste(mm)) {
234 		/* Return 4K page table with PGSTEs */
235 		atomic_xor_bits(&page->_refcount, 3 << 24);
236 		memset64((u64 *)table, _PAGE_INVALID, PTRS_PER_PTE);
237 		memset64((u64 *)table + PTRS_PER_PTE, 0, PTRS_PER_PTE);
238 	} else {
239 		/* Return the first 2K fragment of the page */
240 		atomic_xor_bits(&page->_refcount, 1 << 24);
241 		memset64((u64 *)table, _PAGE_INVALID, 2 * PTRS_PER_PTE);
242 		spin_lock_bh(&mm->context.lock);
243 		list_add(&page->lru, &mm->context.pgtable_list);
244 		spin_unlock_bh(&mm->context.lock);
245 	}
246 	return table;
247 }
248 
page_table_free(struct mm_struct * mm,unsigned long * table)249 void page_table_free(struct mm_struct *mm, unsigned long *table)
250 {
251 	struct page *page;
252 	unsigned int bit, mask;
253 
254 	page = pfn_to_page(__pa(table) >> PAGE_SHIFT);
255 	if (!mm_alloc_pgste(mm)) {
256 		/* Free 2K page table fragment of a 4K page */
257 		bit = (__pa(table) & ~PAGE_MASK)/(PTRS_PER_PTE*sizeof(pte_t));
258 		spin_lock_bh(&mm->context.lock);
259 		mask = atomic_xor_bits(&page->_refcount, 1U << (bit + 24));
260 		mask >>= 24;
261 		if (mask & 3)
262 			list_add(&page->lru, &mm->context.pgtable_list);
263 		else
264 			list_del(&page->lru);
265 		spin_unlock_bh(&mm->context.lock);
266 		if (mask != 0)
267 			return;
268 	} else {
269 		atomic_xor_bits(&page->_refcount, 3U << 24);
270 	}
271 
272 	pgtable_page_dtor(page);
273 	__free_page(page);
274 }
275 
page_table_free_rcu(struct mmu_gather * tlb,unsigned long * table,unsigned long vmaddr)276 void page_table_free_rcu(struct mmu_gather *tlb, unsigned long *table,
277 			 unsigned long vmaddr)
278 {
279 	struct mm_struct *mm;
280 	struct page *page;
281 	unsigned int bit, mask;
282 
283 	mm = tlb->mm;
284 	page = pfn_to_page(__pa(table) >> PAGE_SHIFT);
285 	if (mm_alloc_pgste(mm)) {
286 		gmap_unlink(mm, table, vmaddr);
287 		table = (unsigned long *) (__pa(table) | 3);
288 		tlb_remove_table(tlb, table);
289 		return;
290 	}
291 	bit = (__pa(table) & ~PAGE_MASK) / (PTRS_PER_PTE*sizeof(pte_t));
292 	spin_lock_bh(&mm->context.lock);
293 	mask = atomic_xor_bits(&page->_refcount, 0x11U << (bit + 24));
294 	mask >>= 24;
295 	if (mask & 3)
296 		list_add_tail(&page->lru, &mm->context.pgtable_list);
297 	else
298 		list_del(&page->lru);
299 	spin_unlock_bh(&mm->context.lock);
300 	table = (unsigned long *) (__pa(table) | (1U << bit));
301 	tlb_remove_table(tlb, table);
302 }
303 
__tlb_remove_table(void * _table)304 static void __tlb_remove_table(void *_table)
305 {
306 	unsigned int mask = (unsigned long) _table & 3;
307 	void *table = (void *)((unsigned long) _table ^ mask);
308 	struct page *page = pfn_to_page(__pa(table) >> PAGE_SHIFT);
309 
310 	switch (mask) {
311 	case 0:		/* pmd, pud, or p4d */
312 		free_pages((unsigned long) table, 2);
313 		break;
314 	case 1:		/* lower 2K of a 4K page table */
315 	case 2:		/* higher 2K of a 4K page table */
316 		mask = atomic_xor_bits(&page->_refcount, mask << (4 + 24));
317 		mask >>= 24;
318 		if (mask != 0)
319 			break;
320 		/* fallthrough */
321 	case 3:		/* 4K page table with pgstes */
322 		if (mask & 3)
323 			atomic_xor_bits(&page->_refcount, 3 << 24);
324 		pgtable_page_dtor(page);
325 		__free_page(page);
326 		break;
327 	}
328 }
329 
tlb_remove_table_smp_sync(void * arg)330 static void tlb_remove_table_smp_sync(void *arg)
331 {
332 	/* Simply deliver the interrupt */
333 }
334 
tlb_remove_table_one(void * table)335 static void tlb_remove_table_one(void *table)
336 {
337 	/*
338 	 * This isn't an RCU grace period and hence the page-tables cannot be
339 	 * assumed to be actually RCU-freed.
340 	 *
341 	 * It is however sufficient for software page-table walkers that rely
342 	 * on IRQ disabling. See the comment near struct mmu_table_batch.
343 	 */
344 	smp_call_function(tlb_remove_table_smp_sync, NULL, 1);
345 	__tlb_remove_table(table);
346 }
347 
tlb_remove_table_rcu(struct rcu_head * head)348 static void tlb_remove_table_rcu(struct rcu_head *head)
349 {
350 	struct mmu_table_batch *batch;
351 	int i;
352 
353 	batch = container_of(head, struct mmu_table_batch, rcu);
354 
355 	for (i = 0; i < batch->nr; i++)
356 		__tlb_remove_table(batch->tables[i]);
357 
358 	free_page((unsigned long)batch);
359 }
360 
tlb_table_flush(struct mmu_gather * tlb)361 void tlb_table_flush(struct mmu_gather *tlb)
362 {
363 	struct mmu_table_batch **batch = &tlb->batch;
364 
365 	if (*batch) {
366 		call_rcu_sched(&(*batch)->rcu, tlb_remove_table_rcu);
367 		*batch = NULL;
368 	}
369 }
370 
tlb_remove_table(struct mmu_gather * tlb,void * table)371 void tlb_remove_table(struct mmu_gather *tlb, void *table)
372 {
373 	struct mmu_table_batch **batch = &tlb->batch;
374 
375 	tlb->mm->context.flush_mm = 1;
376 	if (*batch == NULL) {
377 		*batch = (struct mmu_table_batch *)
378 			__get_free_page(GFP_NOWAIT | __GFP_NOWARN);
379 		if (*batch == NULL) {
380 			__tlb_flush_mm_lazy(tlb->mm);
381 			tlb_remove_table_one(table);
382 			return;
383 		}
384 		(*batch)->nr = 0;
385 	}
386 	(*batch)->tables[(*batch)->nr++] = table;
387 	if ((*batch)->nr == MAX_TABLE_BATCH)
388 		tlb_flush_mmu(tlb);
389 }
390 
391 /*
392  * Base infrastructure required to generate basic asces, region, segment,
393  * and page tables that do not make use of enhanced features like EDAT1.
394  */
395 
396 static struct kmem_cache *base_pgt_cache;
397 
base_pgt_alloc(void)398 static unsigned long base_pgt_alloc(void)
399 {
400 	u64 *table;
401 
402 	table = kmem_cache_alloc(base_pgt_cache, GFP_KERNEL);
403 	if (table)
404 		memset64(table, _PAGE_INVALID, PTRS_PER_PTE);
405 	return (unsigned long) table;
406 }
407 
base_pgt_free(unsigned long table)408 static void base_pgt_free(unsigned long table)
409 {
410 	kmem_cache_free(base_pgt_cache, (void *) table);
411 }
412 
base_crst_alloc(unsigned long val)413 static unsigned long base_crst_alloc(unsigned long val)
414 {
415 	unsigned long table;
416 
417 	table =	 __get_free_pages(GFP_KERNEL, CRST_ALLOC_ORDER);
418 	if (table)
419 		crst_table_init((unsigned long *)table, val);
420 	return table;
421 }
422 
base_crst_free(unsigned long table)423 static void base_crst_free(unsigned long table)
424 {
425 	free_pages(table, CRST_ALLOC_ORDER);
426 }
427 
428 #define BASE_ADDR_END_FUNC(NAME, SIZE)					\
429 static inline unsigned long base_##NAME##_addr_end(unsigned long addr,	\
430 						   unsigned long end)	\
431 {									\
432 	unsigned long next = (addr + (SIZE)) & ~((SIZE) - 1);		\
433 									\
434 	return (next - 1) < (end - 1) ? next : end;			\
435 }
436 
BASE_ADDR_END_FUNC(page,_PAGE_SIZE)437 BASE_ADDR_END_FUNC(page,    _PAGE_SIZE)
438 BASE_ADDR_END_FUNC(segment, _SEGMENT_SIZE)
439 BASE_ADDR_END_FUNC(region3, _REGION3_SIZE)
440 BASE_ADDR_END_FUNC(region2, _REGION2_SIZE)
441 BASE_ADDR_END_FUNC(region1, _REGION1_SIZE)
442 
443 static inline unsigned long base_lra(unsigned long address)
444 {
445 	unsigned long real;
446 
447 	asm volatile(
448 		"	lra	%0,0(%1)\n"
449 		: "=d" (real) : "a" (address) : "cc");
450 	return real;
451 }
452 
base_page_walk(unsigned long origin,unsigned long addr,unsigned long end,int alloc)453 static int base_page_walk(unsigned long origin, unsigned long addr,
454 			  unsigned long end, int alloc)
455 {
456 	unsigned long *pte, next;
457 
458 	if (!alloc)
459 		return 0;
460 	pte = (unsigned long *) origin;
461 	pte += (addr & _PAGE_INDEX) >> _PAGE_SHIFT;
462 	do {
463 		next = base_page_addr_end(addr, end);
464 		*pte = base_lra(addr);
465 	} while (pte++, addr = next, addr < end);
466 	return 0;
467 }
468 
base_segment_walk(unsigned long origin,unsigned long addr,unsigned long end,int alloc)469 static int base_segment_walk(unsigned long origin, unsigned long addr,
470 			     unsigned long end, int alloc)
471 {
472 	unsigned long *ste, next, table;
473 	int rc;
474 
475 	ste = (unsigned long *) origin;
476 	ste += (addr & _SEGMENT_INDEX) >> _SEGMENT_SHIFT;
477 	do {
478 		next = base_segment_addr_end(addr, end);
479 		if (*ste & _SEGMENT_ENTRY_INVALID) {
480 			if (!alloc)
481 				continue;
482 			table = base_pgt_alloc();
483 			if (!table)
484 				return -ENOMEM;
485 			*ste = table | _SEGMENT_ENTRY;
486 		}
487 		table = *ste & _SEGMENT_ENTRY_ORIGIN;
488 		rc = base_page_walk(table, addr, next, alloc);
489 		if (rc)
490 			return rc;
491 		if (!alloc)
492 			base_pgt_free(table);
493 		cond_resched();
494 	} while (ste++, addr = next, addr < end);
495 	return 0;
496 }
497 
base_region3_walk(unsigned long origin,unsigned long addr,unsigned long end,int alloc)498 static int base_region3_walk(unsigned long origin, unsigned long addr,
499 			     unsigned long end, int alloc)
500 {
501 	unsigned long *rtte, next, table;
502 	int rc;
503 
504 	rtte = (unsigned long *) origin;
505 	rtte += (addr & _REGION3_INDEX) >> _REGION3_SHIFT;
506 	do {
507 		next = base_region3_addr_end(addr, end);
508 		if (*rtte & _REGION_ENTRY_INVALID) {
509 			if (!alloc)
510 				continue;
511 			table = base_crst_alloc(_SEGMENT_ENTRY_EMPTY);
512 			if (!table)
513 				return -ENOMEM;
514 			*rtte = table | _REGION3_ENTRY;
515 		}
516 		table = *rtte & _REGION_ENTRY_ORIGIN;
517 		rc = base_segment_walk(table, addr, next, alloc);
518 		if (rc)
519 			return rc;
520 		if (!alloc)
521 			base_crst_free(table);
522 	} while (rtte++, addr = next, addr < end);
523 	return 0;
524 }
525 
base_region2_walk(unsigned long origin,unsigned long addr,unsigned long end,int alloc)526 static int base_region2_walk(unsigned long origin, unsigned long addr,
527 			     unsigned long end, int alloc)
528 {
529 	unsigned long *rste, next, table;
530 	int rc;
531 
532 	rste = (unsigned long *) origin;
533 	rste += (addr & _REGION2_INDEX) >> _REGION2_SHIFT;
534 	do {
535 		next = base_region2_addr_end(addr, end);
536 		if (*rste & _REGION_ENTRY_INVALID) {
537 			if (!alloc)
538 				continue;
539 			table = base_crst_alloc(_REGION3_ENTRY_EMPTY);
540 			if (!table)
541 				return -ENOMEM;
542 			*rste = table | _REGION2_ENTRY;
543 		}
544 		table = *rste & _REGION_ENTRY_ORIGIN;
545 		rc = base_region3_walk(table, addr, next, alloc);
546 		if (rc)
547 			return rc;
548 		if (!alloc)
549 			base_crst_free(table);
550 	} while (rste++, addr = next, addr < end);
551 	return 0;
552 }
553 
base_region1_walk(unsigned long origin,unsigned long addr,unsigned long end,int alloc)554 static int base_region1_walk(unsigned long origin, unsigned long addr,
555 			     unsigned long end, int alloc)
556 {
557 	unsigned long *rfte, next, table;
558 	int rc;
559 
560 	rfte = (unsigned long *) origin;
561 	rfte += (addr & _REGION1_INDEX) >> _REGION1_SHIFT;
562 	do {
563 		next = base_region1_addr_end(addr, end);
564 		if (*rfte & _REGION_ENTRY_INVALID) {
565 			if (!alloc)
566 				continue;
567 			table = base_crst_alloc(_REGION2_ENTRY_EMPTY);
568 			if (!table)
569 				return -ENOMEM;
570 			*rfte = table | _REGION1_ENTRY;
571 		}
572 		table = *rfte & _REGION_ENTRY_ORIGIN;
573 		rc = base_region2_walk(table, addr, next, alloc);
574 		if (rc)
575 			return rc;
576 		if (!alloc)
577 			base_crst_free(table);
578 	} while (rfte++, addr = next, addr < end);
579 	return 0;
580 }
581 
582 /**
583  * base_asce_free - free asce and tables returned from base_asce_alloc()
584  * @asce: asce to be freed
585  *
586  * Frees all region, segment, and page tables that were allocated with a
587  * corresponding base_asce_alloc() call.
588  */
base_asce_free(unsigned long asce)589 void base_asce_free(unsigned long asce)
590 {
591 	unsigned long table = asce & _ASCE_ORIGIN;
592 
593 	if (!asce)
594 		return;
595 	switch (asce & _ASCE_TYPE_MASK) {
596 	case _ASCE_TYPE_SEGMENT:
597 		base_segment_walk(table, 0, _REGION3_SIZE, 0);
598 		break;
599 	case _ASCE_TYPE_REGION3:
600 		base_region3_walk(table, 0, _REGION2_SIZE, 0);
601 		break;
602 	case _ASCE_TYPE_REGION2:
603 		base_region2_walk(table, 0, _REGION1_SIZE, 0);
604 		break;
605 	case _ASCE_TYPE_REGION1:
606 		base_region1_walk(table, 0, -_PAGE_SIZE, 0);
607 		break;
608 	}
609 	base_crst_free(table);
610 }
611 
base_pgt_cache_init(void)612 static int base_pgt_cache_init(void)
613 {
614 	static DEFINE_MUTEX(base_pgt_cache_mutex);
615 	unsigned long sz = _PAGE_TABLE_SIZE;
616 
617 	if (base_pgt_cache)
618 		return 0;
619 	mutex_lock(&base_pgt_cache_mutex);
620 	if (!base_pgt_cache)
621 		base_pgt_cache = kmem_cache_create("base_pgt", sz, sz, 0, NULL);
622 	mutex_unlock(&base_pgt_cache_mutex);
623 	return base_pgt_cache ? 0 : -ENOMEM;
624 }
625 
626 /**
627  * base_asce_alloc - create kernel mapping without enhanced DAT features
628  * @addr: virtual start address of kernel mapping
629  * @num_pages: number of consecutive pages
630  *
631  * Generate an asce, including all required region, segment and page tables,
632  * that can be used to access the virtual kernel mapping. The difference is
633  * that the returned asce does not make use of any enhanced DAT features like
634  * e.g. large pages. This is required for some I/O functions that pass an
635  * asce, like e.g. some service call requests.
636  *
637  * Note: the returned asce may NEVER be attached to any cpu. It may only be
638  *	 used for I/O requests. tlb entries that might result because the
639  *	 asce was attached to a cpu won't be cleared.
640  */
base_asce_alloc(unsigned long addr,unsigned long num_pages)641 unsigned long base_asce_alloc(unsigned long addr, unsigned long num_pages)
642 {
643 	unsigned long asce, table, end;
644 	int rc;
645 
646 	if (base_pgt_cache_init())
647 		return 0;
648 	end = addr + num_pages * PAGE_SIZE;
649 	if (end <= _REGION3_SIZE) {
650 		table = base_crst_alloc(_SEGMENT_ENTRY_EMPTY);
651 		if (!table)
652 			return 0;
653 		rc = base_segment_walk(table, addr, end, 1);
654 		asce = table | _ASCE_TYPE_SEGMENT | _ASCE_TABLE_LENGTH;
655 	} else if (end <= _REGION2_SIZE) {
656 		table = base_crst_alloc(_REGION3_ENTRY_EMPTY);
657 		if (!table)
658 			return 0;
659 		rc = base_region3_walk(table, addr, end, 1);
660 		asce = table | _ASCE_TYPE_REGION3 | _ASCE_TABLE_LENGTH;
661 	} else if (end <= _REGION1_SIZE) {
662 		table = base_crst_alloc(_REGION2_ENTRY_EMPTY);
663 		if (!table)
664 			return 0;
665 		rc = base_region2_walk(table, addr, end, 1);
666 		asce = table | _ASCE_TYPE_REGION2 | _ASCE_TABLE_LENGTH;
667 	} else {
668 		table = base_crst_alloc(_REGION1_ENTRY_EMPTY);
669 		if (!table)
670 			return 0;
671 		rc = base_region1_walk(table, addr, end, 1);
672 		asce = table | _ASCE_TYPE_REGION1 | _ASCE_TABLE_LENGTH;
673 	}
674 	if (rc) {
675 		base_asce_free(asce);
676 		asce = 0;
677 	}
678 	return asce;
679 }
680