1 /*
2 * User interface for Resource Alloction in Resource Director Technology(RDT)
3 *
4 * Copyright (C) 2016 Intel Corporation
5 *
6 * Author: Fenghua Yu <fenghua.yu@intel.com>
7 *
8 * This program is free software; you can redistribute it and/or modify it
9 * under the terms and conditions of the GNU General Public License,
10 * version 2, as published by the Free Software Foundation.
11 *
12 * This program is distributed in the hope it will be useful, but WITHOUT
13 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
15 * more details.
16 *
17 * More information about RDT be found in the Intel (R) x86 Architecture
18 * Software Developer Manual.
19 */
20
21 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
22
23 #include <linux/cacheinfo.h>
24 #include <linux/cpu.h>
25 #include <linux/debugfs.h>
26 #include <linux/fs.h>
27 #include <linux/sysfs.h>
28 #include <linux/kernfs.h>
29 #include <linux/seq_buf.h>
30 #include <linux/seq_file.h>
31 #include <linux/sched/signal.h>
32 #include <linux/sched/task.h>
33 #include <linux/slab.h>
34 #include <linux/task_work.h>
35
36 #include <uapi/linux/magic.h>
37
38 #include <asm/intel_rdt_sched.h>
39 #include "intel_rdt.h"
40
41 DEFINE_STATIC_KEY_FALSE(rdt_enable_key);
42 DEFINE_STATIC_KEY_FALSE(rdt_mon_enable_key);
43 DEFINE_STATIC_KEY_FALSE(rdt_alloc_enable_key);
44 static struct kernfs_root *rdt_root;
45 struct rdtgroup rdtgroup_default;
46 LIST_HEAD(rdt_all_groups);
47
48 /* Kernel fs node for "info" directory under root */
49 static struct kernfs_node *kn_info;
50
51 /* Kernel fs node for "mon_groups" directory under root */
52 static struct kernfs_node *kn_mongrp;
53
54 /* Kernel fs node for "mon_data" directory under root */
55 static struct kernfs_node *kn_mondata;
56
57 static struct seq_buf last_cmd_status;
58 static char last_cmd_status_buf[512];
59
60 struct dentry *debugfs_resctrl;
61
rdt_last_cmd_clear(void)62 void rdt_last_cmd_clear(void)
63 {
64 lockdep_assert_held(&rdtgroup_mutex);
65 seq_buf_clear(&last_cmd_status);
66 }
67
rdt_last_cmd_puts(const char * s)68 void rdt_last_cmd_puts(const char *s)
69 {
70 lockdep_assert_held(&rdtgroup_mutex);
71 seq_buf_puts(&last_cmd_status, s);
72 }
73
rdt_last_cmd_printf(const char * fmt,...)74 void rdt_last_cmd_printf(const char *fmt, ...)
75 {
76 va_list ap;
77
78 va_start(ap, fmt);
79 lockdep_assert_held(&rdtgroup_mutex);
80 seq_buf_vprintf(&last_cmd_status, fmt, ap);
81 va_end(ap);
82 }
83
84 /*
85 * Trivial allocator for CLOSIDs. Since h/w only supports a small number,
86 * we can keep a bitmap of free CLOSIDs in a single integer.
87 *
88 * Using a global CLOSID across all resources has some advantages and
89 * some drawbacks:
90 * + We can simply set "current->closid" to assign a task to a resource
91 * group.
92 * + Context switch code can avoid extra memory references deciding which
93 * CLOSID to load into the PQR_ASSOC MSR
94 * - We give up some options in configuring resource groups across multi-socket
95 * systems.
96 * - Our choices on how to configure each resource become progressively more
97 * limited as the number of resources grows.
98 */
99 static int closid_free_map;
100 static int closid_free_map_len;
101
closids_supported(void)102 int closids_supported(void)
103 {
104 return closid_free_map_len;
105 }
106
closid_init(void)107 static void closid_init(void)
108 {
109 struct rdt_resource *r;
110 int rdt_min_closid = 32;
111
112 /* Compute rdt_min_closid across all resources */
113 for_each_alloc_enabled_rdt_resource(r)
114 rdt_min_closid = min(rdt_min_closid, r->num_closid);
115
116 closid_free_map = BIT_MASK(rdt_min_closid) - 1;
117
118 /* CLOSID 0 is always reserved for the default group */
119 closid_free_map &= ~1;
120 closid_free_map_len = rdt_min_closid;
121 }
122
closid_alloc(void)123 static int closid_alloc(void)
124 {
125 u32 closid = ffs(closid_free_map);
126
127 if (closid == 0)
128 return -ENOSPC;
129 closid--;
130 closid_free_map &= ~(1 << closid);
131
132 return closid;
133 }
134
closid_free(int closid)135 void closid_free(int closid)
136 {
137 closid_free_map |= 1 << closid;
138 }
139
140 /**
141 * closid_allocated - test if provided closid is in use
142 * @closid: closid to be tested
143 *
144 * Return: true if @closid is currently associated with a resource group,
145 * false if @closid is free
146 */
closid_allocated(unsigned int closid)147 static bool closid_allocated(unsigned int closid)
148 {
149 return (closid_free_map & (1 << closid)) == 0;
150 }
151
152 /**
153 * rdtgroup_mode_by_closid - Return mode of resource group with closid
154 * @closid: closid if the resource group
155 *
156 * Each resource group is associated with a @closid. Here the mode
157 * of a resource group can be queried by searching for it using its closid.
158 *
159 * Return: mode as &enum rdtgrp_mode of resource group with closid @closid
160 */
rdtgroup_mode_by_closid(int closid)161 enum rdtgrp_mode rdtgroup_mode_by_closid(int closid)
162 {
163 struct rdtgroup *rdtgrp;
164
165 list_for_each_entry(rdtgrp, &rdt_all_groups, rdtgroup_list) {
166 if (rdtgrp->closid == closid)
167 return rdtgrp->mode;
168 }
169
170 return RDT_NUM_MODES;
171 }
172
173 static const char * const rdt_mode_str[] = {
174 [RDT_MODE_SHAREABLE] = "shareable",
175 [RDT_MODE_EXCLUSIVE] = "exclusive",
176 [RDT_MODE_PSEUDO_LOCKSETUP] = "pseudo-locksetup",
177 [RDT_MODE_PSEUDO_LOCKED] = "pseudo-locked",
178 };
179
180 /**
181 * rdtgroup_mode_str - Return the string representation of mode
182 * @mode: the resource group mode as &enum rdtgroup_mode
183 *
184 * Return: string representation of valid mode, "unknown" otherwise
185 */
rdtgroup_mode_str(enum rdtgrp_mode mode)186 static const char *rdtgroup_mode_str(enum rdtgrp_mode mode)
187 {
188 if (mode < RDT_MODE_SHAREABLE || mode >= RDT_NUM_MODES)
189 return "unknown";
190
191 return rdt_mode_str[mode];
192 }
193
194 /* set uid and gid of rdtgroup dirs and files to that of the creator */
rdtgroup_kn_set_ugid(struct kernfs_node * kn)195 static int rdtgroup_kn_set_ugid(struct kernfs_node *kn)
196 {
197 struct iattr iattr = { .ia_valid = ATTR_UID | ATTR_GID,
198 .ia_uid = current_fsuid(),
199 .ia_gid = current_fsgid(), };
200
201 if (uid_eq(iattr.ia_uid, GLOBAL_ROOT_UID) &&
202 gid_eq(iattr.ia_gid, GLOBAL_ROOT_GID))
203 return 0;
204
205 return kernfs_setattr(kn, &iattr);
206 }
207
rdtgroup_add_file(struct kernfs_node * parent_kn,struct rftype * rft)208 static int rdtgroup_add_file(struct kernfs_node *parent_kn, struct rftype *rft)
209 {
210 struct kernfs_node *kn;
211 int ret;
212
213 kn = __kernfs_create_file(parent_kn, rft->name, rft->mode,
214 GLOBAL_ROOT_UID, GLOBAL_ROOT_GID,
215 0, rft->kf_ops, rft, NULL, NULL);
216 if (IS_ERR(kn))
217 return PTR_ERR(kn);
218
219 ret = rdtgroup_kn_set_ugid(kn);
220 if (ret) {
221 kernfs_remove(kn);
222 return ret;
223 }
224
225 return 0;
226 }
227
rdtgroup_seqfile_show(struct seq_file * m,void * arg)228 static int rdtgroup_seqfile_show(struct seq_file *m, void *arg)
229 {
230 struct kernfs_open_file *of = m->private;
231 struct rftype *rft = of->kn->priv;
232
233 if (rft->seq_show)
234 return rft->seq_show(of, m, arg);
235 return 0;
236 }
237
rdtgroup_file_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)238 static ssize_t rdtgroup_file_write(struct kernfs_open_file *of, char *buf,
239 size_t nbytes, loff_t off)
240 {
241 struct rftype *rft = of->kn->priv;
242
243 if (rft->write)
244 return rft->write(of, buf, nbytes, off);
245
246 return -EINVAL;
247 }
248
249 static struct kernfs_ops rdtgroup_kf_single_ops = {
250 .atomic_write_len = PAGE_SIZE,
251 .write = rdtgroup_file_write,
252 .seq_show = rdtgroup_seqfile_show,
253 };
254
255 static struct kernfs_ops kf_mondata_ops = {
256 .atomic_write_len = PAGE_SIZE,
257 .seq_show = rdtgroup_mondata_show,
258 };
259
is_cpu_list(struct kernfs_open_file * of)260 static bool is_cpu_list(struct kernfs_open_file *of)
261 {
262 struct rftype *rft = of->kn->priv;
263
264 return rft->flags & RFTYPE_FLAGS_CPUS_LIST;
265 }
266
rdtgroup_cpus_show(struct kernfs_open_file * of,struct seq_file * s,void * v)267 static int rdtgroup_cpus_show(struct kernfs_open_file *of,
268 struct seq_file *s, void *v)
269 {
270 struct rdtgroup *rdtgrp;
271 struct cpumask *mask;
272 int ret = 0;
273
274 rdtgrp = rdtgroup_kn_lock_live(of->kn);
275
276 if (rdtgrp) {
277 if (rdtgrp->mode == RDT_MODE_PSEUDO_LOCKED) {
278 if (!rdtgrp->plr->d) {
279 rdt_last_cmd_clear();
280 rdt_last_cmd_puts("Cache domain offline\n");
281 ret = -ENODEV;
282 } else {
283 mask = &rdtgrp->plr->d->cpu_mask;
284 seq_printf(s, is_cpu_list(of) ?
285 "%*pbl\n" : "%*pb\n",
286 cpumask_pr_args(mask));
287 }
288 } else {
289 seq_printf(s, is_cpu_list(of) ? "%*pbl\n" : "%*pb\n",
290 cpumask_pr_args(&rdtgrp->cpu_mask));
291 }
292 } else {
293 ret = -ENOENT;
294 }
295 rdtgroup_kn_unlock(of->kn);
296
297 return ret;
298 }
299
300 /*
301 * This is safe against intel_rdt_sched_in() called from __switch_to()
302 * because __switch_to() is executed with interrupts disabled. A local call
303 * from update_closid_rmid() is proteced against __switch_to() because
304 * preemption is disabled.
305 */
update_cpu_closid_rmid(void * info)306 static void update_cpu_closid_rmid(void *info)
307 {
308 struct rdtgroup *r = info;
309
310 if (r) {
311 this_cpu_write(pqr_state.default_closid, r->closid);
312 this_cpu_write(pqr_state.default_rmid, r->mon.rmid);
313 }
314
315 /*
316 * We cannot unconditionally write the MSR because the current
317 * executing task might have its own closid selected. Just reuse
318 * the context switch code.
319 */
320 intel_rdt_sched_in();
321 }
322
323 /*
324 * Update the PGR_ASSOC MSR on all cpus in @cpu_mask,
325 *
326 * Per task closids/rmids must have been set up before calling this function.
327 */
328 static void
update_closid_rmid(const struct cpumask * cpu_mask,struct rdtgroup * r)329 update_closid_rmid(const struct cpumask *cpu_mask, struct rdtgroup *r)
330 {
331 int cpu = get_cpu();
332
333 if (cpumask_test_cpu(cpu, cpu_mask))
334 update_cpu_closid_rmid(r);
335 smp_call_function_many(cpu_mask, update_cpu_closid_rmid, r, 1);
336 put_cpu();
337 }
338
cpus_mon_write(struct rdtgroup * rdtgrp,cpumask_var_t newmask,cpumask_var_t tmpmask)339 static int cpus_mon_write(struct rdtgroup *rdtgrp, cpumask_var_t newmask,
340 cpumask_var_t tmpmask)
341 {
342 struct rdtgroup *prgrp = rdtgrp->mon.parent, *crgrp;
343 struct list_head *head;
344
345 /* Check whether cpus belong to parent ctrl group */
346 cpumask_andnot(tmpmask, newmask, &prgrp->cpu_mask);
347 if (cpumask_weight(tmpmask)) {
348 rdt_last_cmd_puts("can only add CPUs to mongroup that belong to parent\n");
349 return -EINVAL;
350 }
351
352 /* Check whether cpus are dropped from this group */
353 cpumask_andnot(tmpmask, &rdtgrp->cpu_mask, newmask);
354 if (cpumask_weight(tmpmask)) {
355 /* Give any dropped cpus to parent rdtgroup */
356 cpumask_or(&prgrp->cpu_mask, &prgrp->cpu_mask, tmpmask);
357 update_closid_rmid(tmpmask, prgrp);
358 }
359
360 /*
361 * If we added cpus, remove them from previous group that owned them
362 * and update per-cpu rmid
363 */
364 cpumask_andnot(tmpmask, newmask, &rdtgrp->cpu_mask);
365 if (cpumask_weight(tmpmask)) {
366 head = &prgrp->mon.crdtgrp_list;
367 list_for_each_entry(crgrp, head, mon.crdtgrp_list) {
368 if (crgrp == rdtgrp)
369 continue;
370 cpumask_andnot(&crgrp->cpu_mask, &crgrp->cpu_mask,
371 tmpmask);
372 }
373 update_closid_rmid(tmpmask, rdtgrp);
374 }
375
376 /* Done pushing/pulling - update this group with new mask */
377 cpumask_copy(&rdtgrp->cpu_mask, newmask);
378
379 return 0;
380 }
381
cpumask_rdtgrp_clear(struct rdtgroup * r,struct cpumask * m)382 static void cpumask_rdtgrp_clear(struct rdtgroup *r, struct cpumask *m)
383 {
384 struct rdtgroup *crgrp;
385
386 cpumask_andnot(&r->cpu_mask, &r->cpu_mask, m);
387 /* update the child mon group masks as well*/
388 list_for_each_entry(crgrp, &r->mon.crdtgrp_list, mon.crdtgrp_list)
389 cpumask_and(&crgrp->cpu_mask, &r->cpu_mask, &crgrp->cpu_mask);
390 }
391
cpus_ctrl_write(struct rdtgroup * rdtgrp,cpumask_var_t newmask,cpumask_var_t tmpmask,cpumask_var_t tmpmask1)392 static int cpus_ctrl_write(struct rdtgroup *rdtgrp, cpumask_var_t newmask,
393 cpumask_var_t tmpmask, cpumask_var_t tmpmask1)
394 {
395 struct rdtgroup *r, *crgrp;
396 struct list_head *head;
397
398 /* Check whether cpus are dropped from this group */
399 cpumask_andnot(tmpmask, &rdtgrp->cpu_mask, newmask);
400 if (cpumask_weight(tmpmask)) {
401 /* Can't drop from default group */
402 if (rdtgrp == &rdtgroup_default) {
403 rdt_last_cmd_puts("Can't drop CPUs from default group\n");
404 return -EINVAL;
405 }
406
407 /* Give any dropped cpus to rdtgroup_default */
408 cpumask_or(&rdtgroup_default.cpu_mask,
409 &rdtgroup_default.cpu_mask, tmpmask);
410 update_closid_rmid(tmpmask, &rdtgroup_default);
411 }
412
413 /*
414 * If we added cpus, remove them from previous group and
415 * the prev group's child groups that owned them
416 * and update per-cpu closid/rmid.
417 */
418 cpumask_andnot(tmpmask, newmask, &rdtgrp->cpu_mask);
419 if (cpumask_weight(tmpmask)) {
420 list_for_each_entry(r, &rdt_all_groups, rdtgroup_list) {
421 if (r == rdtgrp)
422 continue;
423 cpumask_and(tmpmask1, &r->cpu_mask, tmpmask);
424 if (cpumask_weight(tmpmask1))
425 cpumask_rdtgrp_clear(r, tmpmask1);
426 }
427 update_closid_rmid(tmpmask, rdtgrp);
428 }
429
430 /* Done pushing/pulling - update this group with new mask */
431 cpumask_copy(&rdtgrp->cpu_mask, newmask);
432
433 /*
434 * Clear child mon group masks since there is a new parent mask
435 * now and update the rmid for the cpus the child lost.
436 */
437 head = &rdtgrp->mon.crdtgrp_list;
438 list_for_each_entry(crgrp, head, mon.crdtgrp_list) {
439 cpumask_and(tmpmask, &rdtgrp->cpu_mask, &crgrp->cpu_mask);
440 update_closid_rmid(tmpmask, rdtgrp);
441 cpumask_clear(&crgrp->cpu_mask);
442 }
443
444 return 0;
445 }
446
rdtgroup_cpus_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)447 static ssize_t rdtgroup_cpus_write(struct kernfs_open_file *of,
448 char *buf, size_t nbytes, loff_t off)
449 {
450 cpumask_var_t tmpmask, newmask, tmpmask1;
451 struct rdtgroup *rdtgrp;
452 int ret;
453
454 if (!buf)
455 return -EINVAL;
456
457 if (!zalloc_cpumask_var(&tmpmask, GFP_KERNEL))
458 return -ENOMEM;
459 if (!zalloc_cpumask_var(&newmask, GFP_KERNEL)) {
460 free_cpumask_var(tmpmask);
461 return -ENOMEM;
462 }
463 if (!zalloc_cpumask_var(&tmpmask1, GFP_KERNEL)) {
464 free_cpumask_var(tmpmask);
465 free_cpumask_var(newmask);
466 return -ENOMEM;
467 }
468
469 rdtgrp = rdtgroup_kn_lock_live(of->kn);
470 rdt_last_cmd_clear();
471 if (!rdtgrp) {
472 ret = -ENOENT;
473 rdt_last_cmd_puts("directory was removed\n");
474 goto unlock;
475 }
476
477 if (rdtgrp->mode == RDT_MODE_PSEUDO_LOCKED ||
478 rdtgrp->mode == RDT_MODE_PSEUDO_LOCKSETUP) {
479 ret = -EINVAL;
480 rdt_last_cmd_puts("pseudo-locking in progress\n");
481 goto unlock;
482 }
483
484 if (is_cpu_list(of))
485 ret = cpulist_parse(buf, newmask);
486 else
487 ret = cpumask_parse(buf, newmask);
488
489 if (ret) {
490 rdt_last_cmd_puts("bad cpu list/mask\n");
491 goto unlock;
492 }
493
494 /* check that user didn't specify any offline cpus */
495 cpumask_andnot(tmpmask, newmask, cpu_online_mask);
496 if (cpumask_weight(tmpmask)) {
497 ret = -EINVAL;
498 rdt_last_cmd_puts("can only assign online cpus\n");
499 goto unlock;
500 }
501
502 if (rdtgrp->type == RDTCTRL_GROUP)
503 ret = cpus_ctrl_write(rdtgrp, newmask, tmpmask, tmpmask1);
504 else if (rdtgrp->type == RDTMON_GROUP)
505 ret = cpus_mon_write(rdtgrp, newmask, tmpmask);
506 else
507 ret = -EINVAL;
508
509 unlock:
510 rdtgroup_kn_unlock(of->kn);
511 free_cpumask_var(tmpmask);
512 free_cpumask_var(newmask);
513 free_cpumask_var(tmpmask1);
514
515 return ret ?: nbytes;
516 }
517
518 struct task_move_callback {
519 struct callback_head work;
520 struct rdtgroup *rdtgrp;
521 };
522
move_myself(struct callback_head * head)523 static void move_myself(struct callback_head *head)
524 {
525 struct task_move_callback *callback;
526 struct rdtgroup *rdtgrp;
527
528 callback = container_of(head, struct task_move_callback, work);
529 rdtgrp = callback->rdtgrp;
530
531 /*
532 * If resource group was deleted before this task work callback
533 * was invoked, then assign the task to root group and free the
534 * resource group.
535 */
536 if (atomic_dec_and_test(&rdtgrp->waitcount) &&
537 (rdtgrp->flags & RDT_DELETED)) {
538 current->closid = 0;
539 current->rmid = 0;
540 kfree(rdtgrp);
541 }
542
543 preempt_disable();
544 /* update PQR_ASSOC MSR to make resource group go into effect */
545 intel_rdt_sched_in();
546 preempt_enable();
547
548 kfree(callback);
549 }
550
__rdtgroup_move_task(struct task_struct * tsk,struct rdtgroup * rdtgrp)551 static int __rdtgroup_move_task(struct task_struct *tsk,
552 struct rdtgroup *rdtgrp)
553 {
554 struct task_move_callback *callback;
555 int ret;
556
557 callback = kzalloc(sizeof(*callback), GFP_KERNEL);
558 if (!callback)
559 return -ENOMEM;
560 callback->work.func = move_myself;
561 callback->rdtgrp = rdtgrp;
562
563 /*
564 * Take a refcount, so rdtgrp cannot be freed before the
565 * callback has been invoked.
566 */
567 atomic_inc(&rdtgrp->waitcount);
568 ret = task_work_add(tsk, &callback->work, true);
569 if (ret) {
570 /*
571 * Task is exiting. Drop the refcount and free the callback.
572 * No need to check the refcount as the group cannot be
573 * deleted before the write function unlocks rdtgroup_mutex.
574 */
575 atomic_dec(&rdtgrp->waitcount);
576 kfree(callback);
577 rdt_last_cmd_puts("task exited\n");
578 } else {
579 /*
580 * For ctrl_mon groups move both closid and rmid.
581 * For monitor groups, can move the tasks only from
582 * their parent CTRL group.
583 */
584 if (rdtgrp->type == RDTCTRL_GROUP) {
585 tsk->closid = rdtgrp->closid;
586 tsk->rmid = rdtgrp->mon.rmid;
587 } else if (rdtgrp->type == RDTMON_GROUP) {
588 if (rdtgrp->mon.parent->closid == tsk->closid) {
589 tsk->rmid = rdtgrp->mon.rmid;
590 } else {
591 rdt_last_cmd_puts("Can't move task to different control group\n");
592 ret = -EINVAL;
593 }
594 }
595 }
596 return ret;
597 }
598
599 /**
600 * rdtgroup_tasks_assigned - Test if tasks have been assigned to resource group
601 * @r: Resource group
602 *
603 * Return: 1 if tasks have been assigned to @r, 0 otherwise
604 */
rdtgroup_tasks_assigned(struct rdtgroup * r)605 int rdtgroup_tasks_assigned(struct rdtgroup *r)
606 {
607 struct task_struct *p, *t;
608 int ret = 0;
609
610 lockdep_assert_held(&rdtgroup_mutex);
611
612 rcu_read_lock();
613 for_each_process_thread(p, t) {
614 if ((r->type == RDTCTRL_GROUP && t->closid == r->closid) ||
615 (r->type == RDTMON_GROUP && t->rmid == r->mon.rmid)) {
616 ret = 1;
617 break;
618 }
619 }
620 rcu_read_unlock();
621
622 return ret;
623 }
624
rdtgroup_task_write_permission(struct task_struct * task,struct kernfs_open_file * of)625 static int rdtgroup_task_write_permission(struct task_struct *task,
626 struct kernfs_open_file *of)
627 {
628 const struct cred *tcred = get_task_cred(task);
629 const struct cred *cred = current_cred();
630 int ret = 0;
631
632 /*
633 * Even if we're attaching all tasks in the thread group, we only
634 * need to check permissions on one of them.
635 */
636 if (!uid_eq(cred->euid, GLOBAL_ROOT_UID) &&
637 !uid_eq(cred->euid, tcred->uid) &&
638 !uid_eq(cred->euid, tcred->suid)) {
639 rdt_last_cmd_printf("No permission to move task %d\n", task->pid);
640 ret = -EPERM;
641 }
642
643 put_cred(tcred);
644 return ret;
645 }
646
rdtgroup_move_task(pid_t pid,struct rdtgroup * rdtgrp,struct kernfs_open_file * of)647 static int rdtgroup_move_task(pid_t pid, struct rdtgroup *rdtgrp,
648 struct kernfs_open_file *of)
649 {
650 struct task_struct *tsk;
651 int ret;
652
653 rcu_read_lock();
654 if (pid) {
655 tsk = find_task_by_vpid(pid);
656 if (!tsk) {
657 rcu_read_unlock();
658 rdt_last_cmd_printf("No task %d\n", pid);
659 return -ESRCH;
660 }
661 } else {
662 tsk = current;
663 }
664
665 get_task_struct(tsk);
666 rcu_read_unlock();
667
668 ret = rdtgroup_task_write_permission(tsk, of);
669 if (!ret)
670 ret = __rdtgroup_move_task(tsk, rdtgrp);
671
672 put_task_struct(tsk);
673 return ret;
674 }
675
rdtgroup_tasks_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)676 static ssize_t rdtgroup_tasks_write(struct kernfs_open_file *of,
677 char *buf, size_t nbytes, loff_t off)
678 {
679 struct rdtgroup *rdtgrp;
680 int ret = 0;
681 pid_t pid;
682
683 if (kstrtoint(strstrip(buf), 0, &pid) || pid < 0)
684 return -EINVAL;
685 rdtgrp = rdtgroup_kn_lock_live(of->kn);
686 if (!rdtgrp) {
687 rdtgroup_kn_unlock(of->kn);
688 return -ENOENT;
689 }
690 rdt_last_cmd_clear();
691
692 if (rdtgrp->mode == RDT_MODE_PSEUDO_LOCKED ||
693 rdtgrp->mode == RDT_MODE_PSEUDO_LOCKSETUP) {
694 ret = -EINVAL;
695 rdt_last_cmd_puts("pseudo-locking in progress\n");
696 goto unlock;
697 }
698
699 ret = rdtgroup_move_task(pid, rdtgrp, of);
700
701 unlock:
702 rdtgroup_kn_unlock(of->kn);
703
704 return ret ?: nbytes;
705 }
706
show_rdt_tasks(struct rdtgroup * r,struct seq_file * s)707 static void show_rdt_tasks(struct rdtgroup *r, struct seq_file *s)
708 {
709 struct task_struct *p, *t;
710
711 rcu_read_lock();
712 for_each_process_thread(p, t) {
713 if ((r->type == RDTCTRL_GROUP && t->closid == r->closid) ||
714 (r->type == RDTMON_GROUP && t->rmid == r->mon.rmid))
715 seq_printf(s, "%d\n", t->pid);
716 }
717 rcu_read_unlock();
718 }
719
rdtgroup_tasks_show(struct kernfs_open_file * of,struct seq_file * s,void * v)720 static int rdtgroup_tasks_show(struct kernfs_open_file *of,
721 struct seq_file *s, void *v)
722 {
723 struct rdtgroup *rdtgrp;
724 int ret = 0;
725
726 rdtgrp = rdtgroup_kn_lock_live(of->kn);
727 if (rdtgrp)
728 show_rdt_tasks(rdtgrp, s);
729 else
730 ret = -ENOENT;
731 rdtgroup_kn_unlock(of->kn);
732
733 return ret;
734 }
735
rdt_last_cmd_status_show(struct kernfs_open_file * of,struct seq_file * seq,void * v)736 static int rdt_last_cmd_status_show(struct kernfs_open_file *of,
737 struct seq_file *seq, void *v)
738 {
739 int len;
740
741 mutex_lock(&rdtgroup_mutex);
742 len = seq_buf_used(&last_cmd_status);
743 if (len)
744 seq_printf(seq, "%.*s", len, last_cmd_status_buf);
745 else
746 seq_puts(seq, "ok\n");
747 mutex_unlock(&rdtgroup_mutex);
748 return 0;
749 }
750
rdt_num_closids_show(struct kernfs_open_file * of,struct seq_file * seq,void * v)751 static int rdt_num_closids_show(struct kernfs_open_file *of,
752 struct seq_file *seq, void *v)
753 {
754 struct rdt_resource *r = of->kn->parent->priv;
755
756 seq_printf(seq, "%d\n", r->num_closid);
757 return 0;
758 }
759
rdt_default_ctrl_show(struct kernfs_open_file * of,struct seq_file * seq,void * v)760 static int rdt_default_ctrl_show(struct kernfs_open_file *of,
761 struct seq_file *seq, void *v)
762 {
763 struct rdt_resource *r = of->kn->parent->priv;
764
765 seq_printf(seq, "%x\n", r->default_ctrl);
766 return 0;
767 }
768
rdt_min_cbm_bits_show(struct kernfs_open_file * of,struct seq_file * seq,void * v)769 static int rdt_min_cbm_bits_show(struct kernfs_open_file *of,
770 struct seq_file *seq, void *v)
771 {
772 struct rdt_resource *r = of->kn->parent->priv;
773
774 seq_printf(seq, "%u\n", r->cache.min_cbm_bits);
775 return 0;
776 }
777
rdt_shareable_bits_show(struct kernfs_open_file * of,struct seq_file * seq,void * v)778 static int rdt_shareable_bits_show(struct kernfs_open_file *of,
779 struct seq_file *seq, void *v)
780 {
781 struct rdt_resource *r = of->kn->parent->priv;
782
783 seq_printf(seq, "%x\n", r->cache.shareable_bits);
784 return 0;
785 }
786
787 /**
788 * rdt_bit_usage_show - Display current usage of resources
789 *
790 * A domain is a shared resource that can now be allocated differently. Here
791 * we display the current regions of the domain as an annotated bitmask.
792 * For each domain of this resource its allocation bitmask
793 * is annotated as below to indicate the current usage of the corresponding bit:
794 * 0 - currently unused
795 * X - currently available for sharing and used by software and hardware
796 * H - currently used by hardware only but available for software use
797 * S - currently used and shareable by software only
798 * E - currently used exclusively by one resource group
799 * P - currently pseudo-locked by one resource group
800 */
rdt_bit_usage_show(struct kernfs_open_file * of,struct seq_file * seq,void * v)801 static int rdt_bit_usage_show(struct kernfs_open_file *of,
802 struct seq_file *seq, void *v)
803 {
804 struct rdt_resource *r = of->kn->parent->priv;
805 /*
806 * Use unsigned long even though only 32 bits are used to ensure
807 * test_bit() is used safely.
808 */
809 unsigned long sw_shareable = 0, hw_shareable = 0;
810 unsigned long exclusive = 0, pseudo_locked = 0;
811 struct rdt_domain *dom;
812 int i, hwb, swb, excl, psl;
813 enum rdtgrp_mode mode;
814 bool sep = false;
815 u32 *ctrl;
816
817 mutex_lock(&rdtgroup_mutex);
818 hw_shareable = r->cache.shareable_bits;
819 list_for_each_entry(dom, &r->domains, list) {
820 if (sep)
821 seq_putc(seq, ';');
822 ctrl = dom->ctrl_val;
823 sw_shareable = 0;
824 exclusive = 0;
825 seq_printf(seq, "%d=", dom->id);
826 for (i = 0; i < closids_supported(); i++, ctrl++) {
827 if (!closid_allocated(i))
828 continue;
829 mode = rdtgroup_mode_by_closid(i);
830 switch (mode) {
831 case RDT_MODE_SHAREABLE:
832 sw_shareable |= *ctrl;
833 break;
834 case RDT_MODE_EXCLUSIVE:
835 exclusive |= *ctrl;
836 break;
837 case RDT_MODE_PSEUDO_LOCKSETUP:
838 /*
839 * RDT_MODE_PSEUDO_LOCKSETUP is possible
840 * here but not included since the CBM
841 * associated with this CLOSID in this mode
842 * is not initialized and no task or cpu can be
843 * assigned this CLOSID.
844 */
845 break;
846 case RDT_MODE_PSEUDO_LOCKED:
847 case RDT_NUM_MODES:
848 WARN(1,
849 "invalid mode for closid %d\n", i);
850 break;
851 }
852 }
853 for (i = r->cache.cbm_len - 1; i >= 0; i--) {
854 pseudo_locked = dom->plr ? dom->plr->cbm : 0;
855 hwb = test_bit(i, &hw_shareable);
856 swb = test_bit(i, &sw_shareable);
857 excl = test_bit(i, &exclusive);
858 psl = test_bit(i, &pseudo_locked);
859 if (hwb && swb)
860 seq_putc(seq, 'X');
861 else if (hwb && !swb)
862 seq_putc(seq, 'H');
863 else if (!hwb && swb)
864 seq_putc(seq, 'S');
865 else if (excl)
866 seq_putc(seq, 'E');
867 else if (psl)
868 seq_putc(seq, 'P');
869 else /* Unused bits remain */
870 seq_putc(seq, '0');
871 }
872 sep = true;
873 }
874 seq_putc(seq, '\n');
875 mutex_unlock(&rdtgroup_mutex);
876 return 0;
877 }
878
rdt_min_bw_show(struct kernfs_open_file * of,struct seq_file * seq,void * v)879 static int rdt_min_bw_show(struct kernfs_open_file *of,
880 struct seq_file *seq, void *v)
881 {
882 struct rdt_resource *r = of->kn->parent->priv;
883
884 seq_printf(seq, "%u\n", r->membw.min_bw);
885 return 0;
886 }
887
rdt_num_rmids_show(struct kernfs_open_file * of,struct seq_file * seq,void * v)888 static int rdt_num_rmids_show(struct kernfs_open_file *of,
889 struct seq_file *seq, void *v)
890 {
891 struct rdt_resource *r = of->kn->parent->priv;
892
893 seq_printf(seq, "%d\n", r->num_rmid);
894
895 return 0;
896 }
897
rdt_mon_features_show(struct kernfs_open_file * of,struct seq_file * seq,void * v)898 static int rdt_mon_features_show(struct kernfs_open_file *of,
899 struct seq_file *seq, void *v)
900 {
901 struct rdt_resource *r = of->kn->parent->priv;
902 struct mon_evt *mevt;
903
904 list_for_each_entry(mevt, &r->evt_list, list)
905 seq_printf(seq, "%s\n", mevt->name);
906
907 return 0;
908 }
909
rdt_bw_gran_show(struct kernfs_open_file * of,struct seq_file * seq,void * v)910 static int rdt_bw_gran_show(struct kernfs_open_file *of,
911 struct seq_file *seq, void *v)
912 {
913 struct rdt_resource *r = of->kn->parent->priv;
914
915 seq_printf(seq, "%u\n", r->membw.bw_gran);
916 return 0;
917 }
918
rdt_delay_linear_show(struct kernfs_open_file * of,struct seq_file * seq,void * v)919 static int rdt_delay_linear_show(struct kernfs_open_file *of,
920 struct seq_file *seq, void *v)
921 {
922 struct rdt_resource *r = of->kn->parent->priv;
923
924 seq_printf(seq, "%u\n", r->membw.delay_linear);
925 return 0;
926 }
927
max_threshold_occ_show(struct kernfs_open_file * of,struct seq_file * seq,void * v)928 static int max_threshold_occ_show(struct kernfs_open_file *of,
929 struct seq_file *seq, void *v)
930 {
931 struct rdt_resource *r = of->kn->parent->priv;
932
933 seq_printf(seq, "%u\n", intel_cqm_threshold * r->mon_scale);
934
935 return 0;
936 }
937
max_threshold_occ_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)938 static ssize_t max_threshold_occ_write(struct kernfs_open_file *of,
939 char *buf, size_t nbytes, loff_t off)
940 {
941 struct rdt_resource *r = of->kn->parent->priv;
942 unsigned int bytes;
943 int ret;
944
945 ret = kstrtouint(buf, 0, &bytes);
946 if (ret)
947 return ret;
948
949 if (bytes > (boot_cpu_data.x86_cache_size * 1024))
950 return -EINVAL;
951
952 intel_cqm_threshold = bytes / r->mon_scale;
953
954 return nbytes;
955 }
956
957 /*
958 * rdtgroup_mode_show - Display mode of this resource group
959 */
rdtgroup_mode_show(struct kernfs_open_file * of,struct seq_file * s,void * v)960 static int rdtgroup_mode_show(struct kernfs_open_file *of,
961 struct seq_file *s, void *v)
962 {
963 struct rdtgroup *rdtgrp;
964
965 rdtgrp = rdtgroup_kn_lock_live(of->kn);
966 if (!rdtgrp) {
967 rdtgroup_kn_unlock(of->kn);
968 return -ENOENT;
969 }
970
971 seq_printf(s, "%s\n", rdtgroup_mode_str(rdtgrp->mode));
972
973 rdtgroup_kn_unlock(of->kn);
974 return 0;
975 }
976
977 /**
978 * rdt_cdp_peer_get - Retrieve CDP peer if it exists
979 * @r: RDT resource to which RDT domain @d belongs
980 * @d: Cache instance for which a CDP peer is requested
981 * @r_cdp: RDT resource that shares hardware with @r (RDT resource peer)
982 * Used to return the result.
983 * @d_cdp: RDT domain that shares hardware with @d (RDT domain peer)
984 * Used to return the result.
985 *
986 * RDT resources are managed independently and by extension the RDT domains
987 * (RDT resource instances) are managed independently also. The Code and
988 * Data Prioritization (CDP) RDT resources, while managed independently,
989 * could refer to the same underlying hardware. For example,
990 * RDT_RESOURCE_L2CODE and RDT_RESOURCE_L2DATA both refer to the L2 cache.
991 *
992 * When provided with an RDT resource @r and an instance of that RDT
993 * resource @d rdt_cdp_peer_get() will return if there is a peer RDT
994 * resource and the exact instance that shares the same hardware.
995 *
996 * Return: 0 if a CDP peer was found, <0 on error or if no CDP peer exists.
997 * If a CDP peer was found, @r_cdp will point to the peer RDT resource
998 * and @d_cdp will point to the peer RDT domain.
999 */
rdt_cdp_peer_get(struct rdt_resource * r,struct rdt_domain * d,struct rdt_resource ** r_cdp,struct rdt_domain ** d_cdp)1000 static int rdt_cdp_peer_get(struct rdt_resource *r, struct rdt_domain *d,
1001 struct rdt_resource **r_cdp,
1002 struct rdt_domain **d_cdp)
1003 {
1004 struct rdt_resource *_r_cdp = NULL;
1005 struct rdt_domain *_d_cdp = NULL;
1006 int ret = 0;
1007
1008 switch (r->rid) {
1009 case RDT_RESOURCE_L3DATA:
1010 _r_cdp = &rdt_resources_all[RDT_RESOURCE_L3CODE];
1011 break;
1012 case RDT_RESOURCE_L3CODE:
1013 _r_cdp = &rdt_resources_all[RDT_RESOURCE_L3DATA];
1014 break;
1015 case RDT_RESOURCE_L2DATA:
1016 _r_cdp = &rdt_resources_all[RDT_RESOURCE_L2CODE];
1017 break;
1018 case RDT_RESOURCE_L2CODE:
1019 _r_cdp = &rdt_resources_all[RDT_RESOURCE_L2DATA];
1020 break;
1021 default:
1022 ret = -ENOENT;
1023 goto out;
1024 }
1025
1026 /*
1027 * When a new CPU comes online and CDP is enabled then the new
1028 * RDT domains (if any) associated with both CDP RDT resources
1029 * are added in the same CPU online routine while the
1030 * rdtgroup_mutex is held. It should thus not happen for one
1031 * RDT domain to exist and be associated with its RDT CDP
1032 * resource but there is no RDT domain associated with the
1033 * peer RDT CDP resource. Hence the WARN.
1034 */
1035 _d_cdp = rdt_find_domain(_r_cdp, d->id, NULL);
1036 if (WARN_ON(IS_ERR_OR_NULL(_d_cdp))) {
1037 _r_cdp = NULL;
1038 _d_cdp = NULL;
1039 ret = -EINVAL;
1040 }
1041
1042 out:
1043 *r_cdp = _r_cdp;
1044 *d_cdp = _d_cdp;
1045
1046 return ret;
1047 }
1048
1049 /**
1050 * __rdtgroup_cbm_overlaps - Does CBM for intended closid overlap with other
1051 * @r: Resource to which domain instance @d belongs.
1052 * @d: The domain instance for which @closid is being tested.
1053 * @cbm: Capacity bitmask being tested.
1054 * @closid: Intended closid for @cbm.
1055 * @exclusive: Only check if overlaps with exclusive resource groups
1056 *
1057 * Checks if provided @cbm intended to be used for @closid on domain
1058 * @d overlaps with any other closids or other hardware usage associated
1059 * with this domain. If @exclusive is true then only overlaps with
1060 * resource groups in exclusive mode will be considered. If @exclusive
1061 * is false then overlaps with any resource group or hardware entities
1062 * will be considered.
1063 *
1064 * @cbm is unsigned long, even if only 32 bits are used, to make the
1065 * bitmap functions work correctly.
1066 *
1067 * Return: false if CBM does not overlap, true if it does.
1068 */
__rdtgroup_cbm_overlaps(struct rdt_resource * r,struct rdt_domain * d,unsigned long cbm,int closid,bool exclusive)1069 static bool __rdtgroup_cbm_overlaps(struct rdt_resource *r, struct rdt_domain *d,
1070 unsigned long cbm, int closid, bool exclusive)
1071 {
1072 enum rdtgrp_mode mode;
1073 unsigned long ctrl_b;
1074 u32 *ctrl;
1075 int i;
1076
1077 /* Check for any overlap with regions used by hardware directly */
1078 if (!exclusive) {
1079 ctrl_b = r->cache.shareable_bits;
1080 if (bitmap_intersects(&cbm, &ctrl_b, r->cache.cbm_len))
1081 return true;
1082 }
1083
1084 /* Check for overlap with other resource groups */
1085 ctrl = d->ctrl_val;
1086 for (i = 0; i < closids_supported(); i++, ctrl++) {
1087 ctrl_b = *ctrl;
1088 mode = rdtgroup_mode_by_closid(i);
1089 if (closid_allocated(i) && i != closid &&
1090 mode != RDT_MODE_PSEUDO_LOCKSETUP) {
1091 if (bitmap_intersects(&cbm, &ctrl_b, r->cache.cbm_len)) {
1092 if (exclusive) {
1093 if (mode == RDT_MODE_EXCLUSIVE)
1094 return true;
1095 continue;
1096 }
1097 return true;
1098 }
1099 }
1100 }
1101
1102 return false;
1103 }
1104
1105 /**
1106 * rdtgroup_cbm_overlaps - Does CBM overlap with other use of hardware
1107 * @r: Resource to which domain instance @d belongs.
1108 * @d: The domain instance for which @closid is being tested.
1109 * @cbm: Capacity bitmask being tested.
1110 * @closid: Intended closid for @cbm.
1111 * @exclusive: Only check if overlaps with exclusive resource groups
1112 *
1113 * Resources that can be allocated using a CBM can use the CBM to control
1114 * the overlap of these allocations. rdtgroup_cmb_overlaps() is the test
1115 * for overlap. Overlap test is not limited to the specific resource for
1116 * which the CBM is intended though - when dealing with CDP resources that
1117 * share the underlying hardware the overlap check should be performed on
1118 * the CDP resource sharing the hardware also.
1119 *
1120 * Refer to description of __rdtgroup_cbm_overlaps() for the details of the
1121 * overlap test.
1122 *
1123 * Return: true if CBM overlap detected, false if there is no overlap
1124 */
rdtgroup_cbm_overlaps(struct rdt_resource * r,struct rdt_domain * d,unsigned long cbm,int closid,bool exclusive)1125 bool rdtgroup_cbm_overlaps(struct rdt_resource *r, struct rdt_domain *d,
1126 unsigned long cbm, int closid, bool exclusive)
1127 {
1128 struct rdt_resource *r_cdp;
1129 struct rdt_domain *d_cdp;
1130
1131 if (__rdtgroup_cbm_overlaps(r, d, cbm, closid, exclusive))
1132 return true;
1133
1134 if (rdt_cdp_peer_get(r, d, &r_cdp, &d_cdp) < 0)
1135 return false;
1136
1137 return __rdtgroup_cbm_overlaps(r_cdp, d_cdp, cbm, closid, exclusive);
1138 }
1139
1140 /**
1141 * rdtgroup_mode_test_exclusive - Test if this resource group can be exclusive
1142 *
1143 * An exclusive resource group implies that there should be no sharing of
1144 * its allocated resources. At the time this group is considered to be
1145 * exclusive this test can determine if its current schemata supports this
1146 * setting by testing for overlap with all other resource groups.
1147 *
1148 * Return: true if resource group can be exclusive, false if there is overlap
1149 * with allocations of other resource groups and thus this resource group
1150 * cannot be exclusive.
1151 */
rdtgroup_mode_test_exclusive(struct rdtgroup * rdtgrp)1152 static bool rdtgroup_mode_test_exclusive(struct rdtgroup *rdtgrp)
1153 {
1154 int closid = rdtgrp->closid;
1155 struct rdt_resource *r;
1156 bool has_cache = false;
1157 struct rdt_domain *d;
1158
1159 for_each_alloc_enabled_rdt_resource(r) {
1160 if (r->rid == RDT_RESOURCE_MBA)
1161 continue;
1162 has_cache = true;
1163 list_for_each_entry(d, &r->domains, list) {
1164 if (rdtgroup_cbm_overlaps(r, d, d->ctrl_val[closid],
1165 rdtgrp->closid, false)) {
1166 rdt_last_cmd_puts("schemata overlaps\n");
1167 return false;
1168 }
1169 }
1170 }
1171
1172 if (!has_cache) {
1173 rdt_last_cmd_puts("cannot be exclusive without CAT/CDP\n");
1174 return false;
1175 }
1176
1177 return true;
1178 }
1179
1180 /**
1181 * rdtgroup_mode_write - Modify the resource group's mode
1182 *
1183 */
rdtgroup_mode_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)1184 static ssize_t rdtgroup_mode_write(struct kernfs_open_file *of,
1185 char *buf, size_t nbytes, loff_t off)
1186 {
1187 struct rdtgroup *rdtgrp;
1188 enum rdtgrp_mode mode;
1189 int ret = 0;
1190
1191 /* Valid input requires a trailing newline */
1192 if (nbytes == 0 || buf[nbytes - 1] != '\n')
1193 return -EINVAL;
1194 buf[nbytes - 1] = '\0';
1195
1196 rdtgrp = rdtgroup_kn_lock_live(of->kn);
1197 if (!rdtgrp) {
1198 rdtgroup_kn_unlock(of->kn);
1199 return -ENOENT;
1200 }
1201
1202 rdt_last_cmd_clear();
1203
1204 mode = rdtgrp->mode;
1205
1206 if ((!strcmp(buf, "shareable") && mode == RDT_MODE_SHAREABLE) ||
1207 (!strcmp(buf, "exclusive") && mode == RDT_MODE_EXCLUSIVE) ||
1208 (!strcmp(buf, "pseudo-locksetup") &&
1209 mode == RDT_MODE_PSEUDO_LOCKSETUP) ||
1210 (!strcmp(buf, "pseudo-locked") && mode == RDT_MODE_PSEUDO_LOCKED))
1211 goto out;
1212
1213 if (mode == RDT_MODE_PSEUDO_LOCKED) {
1214 rdt_last_cmd_printf("cannot change pseudo-locked group\n");
1215 ret = -EINVAL;
1216 goto out;
1217 }
1218
1219 if (!strcmp(buf, "shareable")) {
1220 if (rdtgrp->mode == RDT_MODE_PSEUDO_LOCKSETUP) {
1221 ret = rdtgroup_locksetup_exit(rdtgrp);
1222 if (ret)
1223 goto out;
1224 }
1225 rdtgrp->mode = RDT_MODE_SHAREABLE;
1226 } else if (!strcmp(buf, "exclusive")) {
1227 if (!rdtgroup_mode_test_exclusive(rdtgrp)) {
1228 ret = -EINVAL;
1229 goto out;
1230 }
1231 if (rdtgrp->mode == RDT_MODE_PSEUDO_LOCKSETUP) {
1232 ret = rdtgroup_locksetup_exit(rdtgrp);
1233 if (ret)
1234 goto out;
1235 }
1236 rdtgrp->mode = RDT_MODE_EXCLUSIVE;
1237 } else if (!strcmp(buf, "pseudo-locksetup")) {
1238 ret = rdtgroup_locksetup_enter(rdtgrp);
1239 if (ret)
1240 goto out;
1241 rdtgrp->mode = RDT_MODE_PSEUDO_LOCKSETUP;
1242 } else {
1243 rdt_last_cmd_printf("unknown/unsupported mode\n");
1244 ret = -EINVAL;
1245 }
1246
1247 out:
1248 rdtgroup_kn_unlock(of->kn);
1249 return ret ?: nbytes;
1250 }
1251
1252 /**
1253 * rdtgroup_cbm_to_size - Translate CBM to size in bytes
1254 * @r: RDT resource to which @d belongs.
1255 * @d: RDT domain instance.
1256 * @cbm: bitmask for which the size should be computed.
1257 *
1258 * The bitmask provided associated with the RDT domain instance @d will be
1259 * translated into how many bytes it represents. The size in bytes is
1260 * computed by first dividing the total cache size by the CBM length to
1261 * determine how many bytes each bit in the bitmask represents. The result
1262 * is multiplied with the number of bits set in the bitmask.
1263 *
1264 * @cbm is unsigned long, even if only 32 bits are used to make the
1265 * bitmap functions work correctly.
1266 */
rdtgroup_cbm_to_size(struct rdt_resource * r,struct rdt_domain * d,unsigned long cbm)1267 unsigned int rdtgroup_cbm_to_size(struct rdt_resource *r,
1268 struct rdt_domain *d, unsigned long cbm)
1269 {
1270 struct cpu_cacheinfo *ci;
1271 unsigned int size = 0;
1272 int num_b, i;
1273
1274 num_b = bitmap_weight(&cbm, r->cache.cbm_len);
1275 ci = get_cpu_cacheinfo(cpumask_any(&d->cpu_mask));
1276 for (i = 0; i < ci->num_leaves; i++) {
1277 if (ci->info_list[i].level == r->cache_level) {
1278 size = ci->info_list[i].size / r->cache.cbm_len * num_b;
1279 break;
1280 }
1281 }
1282
1283 return size;
1284 }
1285
1286 /**
1287 * rdtgroup_size_show - Display size in bytes of allocated regions
1288 *
1289 * The "size" file mirrors the layout of the "schemata" file, printing the
1290 * size in bytes of each region instead of the capacity bitmask.
1291 *
1292 */
rdtgroup_size_show(struct kernfs_open_file * of,struct seq_file * s,void * v)1293 static int rdtgroup_size_show(struct kernfs_open_file *of,
1294 struct seq_file *s, void *v)
1295 {
1296 struct rdtgroup *rdtgrp;
1297 struct rdt_resource *r;
1298 struct rdt_domain *d;
1299 unsigned int size;
1300 int ret = 0;
1301 bool sep;
1302 u32 ctrl;
1303
1304 rdtgrp = rdtgroup_kn_lock_live(of->kn);
1305 if (!rdtgrp) {
1306 rdtgroup_kn_unlock(of->kn);
1307 return -ENOENT;
1308 }
1309
1310 if (rdtgrp->mode == RDT_MODE_PSEUDO_LOCKED) {
1311 if (!rdtgrp->plr->d) {
1312 rdt_last_cmd_clear();
1313 rdt_last_cmd_puts("Cache domain offline\n");
1314 ret = -ENODEV;
1315 } else {
1316 seq_printf(s, "%*s:", max_name_width,
1317 rdtgrp->plr->r->name);
1318 size = rdtgroup_cbm_to_size(rdtgrp->plr->r,
1319 rdtgrp->plr->d,
1320 rdtgrp->plr->cbm);
1321 seq_printf(s, "%d=%u\n", rdtgrp->plr->d->id, size);
1322 }
1323 goto out;
1324 }
1325
1326 for_each_alloc_enabled_rdt_resource(r) {
1327 sep = false;
1328 seq_printf(s, "%*s:", max_name_width, r->name);
1329 list_for_each_entry(d, &r->domains, list) {
1330 if (sep)
1331 seq_putc(s, ';');
1332 if (rdtgrp->mode == RDT_MODE_PSEUDO_LOCKSETUP) {
1333 size = 0;
1334 } else {
1335 ctrl = (!is_mba_sc(r) ?
1336 d->ctrl_val[rdtgrp->closid] :
1337 d->mbps_val[rdtgrp->closid]);
1338 if (r->rid == RDT_RESOURCE_MBA)
1339 size = ctrl;
1340 else
1341 size = rdtgroup_cbm_to_size(r, d, ctrl);
1342 }
1343 seq_printf(s, "%d=%u", d->id, size);
1344 sep = true;
1345 }
1346 seq_putc(s, '\n');
1347 }
1348
1349 out:
1350 rdtgroup_kn_unlock(of->kn);
1351
1352 return ret;
1353 }
1354
1355 /* rdtgroup information files for one cache resource. */
1356 static struct rftype res_common_files[] = {
1357 {
1358 .name = "last_cmd_status",
1359 .mode = 0444,
1360 .kf_ops = &rdtgroup_kf_single_ops,
1361 .seq_show = rdt_last_cmd_status_show,
1362 .fflags = RF_TOP_INFO,
1363 },
1364 {
1365 .name = "num_closids",
1366 .mode = 0444,
1367 .kf_ops = &rdtgroup_kf_single_ops,
1368 .seq_show = rdt_num_closids_show,
1369 .fflags = RF_CTRL_INFO,
1370 },
1371 {
1372 .name = "mon_features",
1373 .mode = 0444,
1374 .kf_ops = &rdtgroup_kf_single_ops,
1375 .seq_show = rdt_mon_features_show,
1376 .fflags = RF_MON_INFO,
1377 },
1378 {
1379 .name = "num_rmids",
1380 .mode = 0444,
1381 .kf_ops = &rdtgroup_kf_single_ops,
1382 .seq_show = rdt_num_rmids_show,
1383 .fflags = RF_MON_INFO,
1384 },
1385 {
1386 .name = "cbm_mask",
1387 .mode = 0444,
1388 .kf_ops = &rdtgroup_kf_single_ops,
1389 .seq_show = rdt_default_ctrl_show,
1390 .fflags = RF_CTRL_INFO | RFTYPE_RES_CACHE,
1391 },
1392 {
1393 .name = "min_cbm_bits",
1394 .mode = 0444,
1395 .kf_ops = &rdtgroup_kf_single_ops,
1396 .seq_show = rdt_min_cbm_bits_show,
1397 .fflags = RF_CTRL_INFO | RFTYPE_RES_CACHE,
1398 },
1399 {
1400 .name = "shareable_bits",
1401 .mode = 0444,
1402 .kf_ops = &rdtgroup_kf_single_ops,
1403 .seq_show = rdt_shareable_bits_show,
1404 .fflags = RF_CTRL_INFO | RFTYPE_RES_CACHE,
1405 },
1406 {
1407 .name = "bit_usage",
1408 .mode = 0444,
1409 .kf_ops = &rdtgroup_kf_single_ops,
1410 .seq_show = rdt_bit_usage_show,
1411 .fflags = RF_CTRL_INFO | RFTYPE_RES_CACHE,
1412 },
1413 {
1414 .name = "min_bandwidth",
1415 .mode = 0444,
1416 .kf_ops = &rdtgroup_kf_single_ops,
1417 .seq_show = rdt_min_bw_show,
1418 .fflags = RF_CTRL_INFO | RFTYPE_RES_MB,
1419 },
1420 {
1421 .name = "bandwidth_gran",
1422 .mode = 0444,
1423 .kf_ops = &rdtgroup_kf_single_ops,
1424 .seq_show = rdt_bw_gran_show,
1425 .fflags = RF_CTRL_INFO | RFTYPE_RES_MB,
1426 },
1427 {
1428 .name = "delay_linear",
1429 .mode = 0444,
1430 .kf_ops = &rdtgroup_kf_single_ops,
1431 .seq_show = rdt_delay_linear_show,
1432 .fflags = RF_CTRL_INFO | RFTYPE_RES_MB,
1433 },
1434 {
1435 .name = "max_threshold_occupancy",
1436 .mode = 0644,
1437 .kf_ops = &rdtgroup_kf_single_ops,
1438 .write = max_threshold_occ_write,
1439 .seq_show = max_threshold_occ_show,
1440 .fflags = RF_MON_INFO | RFTYPE_RES_CACHE,
1441 },
1442 {
1443 .name = "cpus",
1444 .mode = 0644,
1445 .kf_ops = &rdtgroup_kf_single_ops,
1446 .write = rdtgroup_cpus_write,
1447 .seq_show = rdtgroup_cpus_show,
1448 .fflags = RFTYPE_BASE,
1449 },
1450 {
1451 .name = "cpus_list",
1452 .mode = 0644,
1453 .kf_ops = &rdtgroup_kf_single_ops,
1454 .write = rdtgroup_cpus_write,
1455 .seq_show = rdtgroup_cpus_show,
1456 .flags = RFTYPE_FLAGS_CPUS_LIST,
1457 .fflags = RFTYPE_BASE,
1458 },
1459 {
1460 .name = "tasks",
1461 .mode = 0644,
1462 .kf_ops = &rdtgroup_kf_single_ops,
1463 .write = rdtgroup_tasks_write,
1464 .seq_show = rdtgroup_tasks_show,
1465 .fflags = RFTYPE_BASE,
1466 },
1467 {
1468 .name = "schemata",
1469 .mode = 0644,
1470 .kf_ops = &rdtgroup_kf_single_ops,
1471 .write = rdtgroup_schemata_write,
1472 .seq_show = rdtgroup_schemata_show,
1473 .fflags = RF_CTRL_BASE,
1474 },
1475 {
1476 .name = "mode",
1477 .mode = 0644,
1478 .kf_ops = &rdtgroup_kf_single_ops,
1479 .write = rdtgroup_mode_write,
1480 .seq_show = rdtgroup_mode_show,
1481 .fflags = RF_CTRL_BASE,
1482 },
1483 {
1484 .name = "size",
1485 .mode = 0444,
1486 .kf_ops = &rdtgroup_kf_single_ops,
1487 .seq_show = rdtgroup_size_show,
1488 .fflags = RF_CTRL_BASE,
1489 },
1490
1491 };
1492
rdtgroup_add_files(struct kernfs_node * kn,unsigned long fflags)1493 static int rdtgroup_add_files(struct kernfs_node *kn, unsigned long fflags)
1494 {
1495 struct rftype *rfts, *rft;
1496 int ret, len;
1497
1498 rfts = res_common_files;
1499 len = ARRAY_SIZE(res_common_files);
1500
1501 lockdep_assert_held(&rdtgroup_mutex);
1502
1503 for (rft = rfts; rft < rfts + len; rft++) {
1504 if ((fflags & rft->fflags) == rft->fflags) {
1505 ret = rdtgroup_add_file(kn, rft);
1506 if (ret)
1507 goto error;
1508 }
1509 }
1510
1511 return 0;
1512 error:
1513 pr_warn("Failed to add %s, err=%d\n", rft->name, ret);
1514 while (--rft >= rfts) {
1515 if ((fflags & rft->fflags) == rft->fflags)
1516 kernfs_remove_by_name(kn, rft->name);
1517 }
1518 return ret;
1519 }
1520
1521 /**
1522 * rdtgroup_kn_mode_restrict - Restrict user access to named resctrl file
1523 * @r: The resource group with which the file is associated.
1524 * @name: Name of the file
1525 *
1526 * The permissions of named resctrl file, directory, or link are modified
1527 * to not allow read, write, or execute by any user.
1528 *
1529 * WARNING: This function is intended to communicate to the user that the
1530 * resctrl file has been locked down - that it is not relevant to the
1531 * particular state the system finds itself in. It should not be relied
1532 * on to protect from user access because after the file's permissions
1533 * are restricted the user can still change the permissions using chmod
1534 * from the command line.
1535 *
1536 * Return: 0 on success, <0 on failure.
1537 */
rdtgroup_kn_mode_restrict(struct rdtgroup * r,const char * name)1538 int rdtgroup_kn_mode_restrict(struct rdtgroup *r, const char *name)
1539 {
1540 struct iattr iattr = {.ia_valid = ATTR_MODE,};
1541 struct kernfs_node *kn;
1542 int ret = 0;
1543
1544 kn = kernfs_find_and_get_ns(r->kn, name, NULL);
1545 if (!kn)
1546 return -ENOENT;
1547
1548 switch (kernfs_type(kn)) {
1549 case KERNFS_DIR:
1550 iattr.ia_mode = S_IFDIR;
1551 break;
1552 case KERNFS_FILE:
1553 iattr.ia_mode = S_IFREG;
1554 break;
1555 case KERNFS_LINK:
1556 iattr.ia_mode = S_IFLNK;
1557 break;
1558 }
1559
1560 ret = kernfs_setattr(kn, &iattr);
1561 kernfs_put(kn);
1562 return ret;
1563 }
1564
1565 /**
1566 * rdtgroup_kn_mode_restore - Restore user access to named resctrl file
1567 * @r: The resource group with which the file is associated.
1568 * @name: Name of the file
1569 * @mask: Mask of permissions that should be restored
1570 *
1571 * Restore the permissions of the named file. If @name is a directory the
1572 * permissions of its parent will be used.
1573 *
1574 * Return: 0 on success, <0 on failure.
1575 */
rdtgroup_kn_mode_restore(struct rdtgroup * r,const char * name,umode_t mask)1576 int rdtgroup_kn_mode_restore(struct rdtgroup *r, const char *name,
1577 umode_t mask)
1578 {
1579 struct iattr iattr = {.ia_valid = ATTR_MODE,};
1580 struct kernfs_node *kn, *parent;
1581 struct rftype *rfts, *rft;
1582 int ret, len;
1583
1584 rfts = res_common_files;
1585 len = ARRAY_SIZE(res_common_files);
1586
1587 for (rft = rfts; rft < rfts + len; rft++) {
1588 if (!strcmp(rft->name, name))
1589 iattr.ia_mode = rft->mode & mask;
1590 }
1591
1592 kn = kernfs_find_and_get_ns(r->kn, name, NULL);
1593 if (!kn)
1594 return -ENOENT;
1595
1596 switch (kernfs_type(kn)) {
1597 case KERNFS_DIR:
1598 parent = kernfs_get_parent(kn);
1599 if (parent) {
1600 iattr.ia_mode |= parent->mode;
1601 kernfs_put(parent);
1602 }
1603 iattr.ia_mode |= S_IFDIR;
1604 break;
1605 case KERNFS_FILE:
1606 iattr.ia_mode |= S_IFREG;
1607 break;
1608 case KERNFS_LINK:
1609 iattr.ia_mode |= S_IFLNK;
1610 break;
1611 }
1612
1613 ret = kernfs_setattr(kn, &iattr);
1614 kernfs_put(kn);
1615 return ret;
1616 }
1617
rdtgroup_mkdir_info_resdir(struct rdt_resource * r,char * name,unsigned long fflags)1618 static int rdtgroup_mkdir_info_resdir(struct rdt_resource *r, char *name,
1619 unsigned long fflags)
1620 {
1621 struct kernfs_node *kn_subdir;
1622 int ret;
1623
1624 kn_subdir = kernfs_create_dir(kn_info, name,
1625 kn_info->mode, r);
1626 if (IS_ERR(kn_subdir))
1627 return PTR_ERR(kn_subdir);
1628
1629 kernfs_get(kn_subdir);
1630 ret = rdtgroup_kn_set_ugid(kn_subdir);
1631 if (ret)
1632 return ret;
1633
1634 ret = rdtgroup_add_files(kn_subdir, fflags);
1635 if (!ret)
1636 kernfs_activate(kn_subdir);
1637
1638 return ret;
1639 }
1640
rdtgroup_create_info_dir(struct kernfs_node * parent_kn)1641 static int rdtgroup_create_info_dir(struct kernfs_node *parent_kn)
1642 {
1643 struct rdt_resource *r;
1644 unsigned long fflags;
1645 char name[32];
1646 int ret;
1647
1648 /* create the directory */
1649 kn_info = kernfs_create_dir(parent_kn, "info", parent_kn->mode, NULL);
1650 if (IS_ERR(kn_info))
1651 return PTR_ERR(kn_info);
1652 kernfs_get(kn_info);
1653
1654 ret = rdtgroup_add_files(kn_info, RF_TOP_INFO);
1655 if (ret)
1656 goto out_destroy;
1657
1658 for_each_alloc_enabled_rdt_resource(r) {
1659 fflags = r->fflags | RF_CTRL_INFO;
1660 ret = rdtgroup_mkdir_info_resdir(r, r->name, fflags);
1661 if (ret)
1662 goto out_destroy;
1663 }
1664
1665 for_each_mon_enabled_rdt_resource(r) {
1666 fflags = r->fflags | RF_MON_INFO;
1667 sprintf(name, "%s_MON", r->name);
1668 ret = rdtgroup_mkdir_info_resdir(r, name, fflags);
1669 if (ret)
1670 goto out_destroy;
1671 }
1672
1673 /*
1674 * This extra ref will be put in kernfs_remove() and guarantees
1675 * that @rdtgrp->kn is always accessible.
1676 */
1677 kernfs_get(kn_info);
1678
1679 ret = rdtgroup_kn_set_ugid(kn_info);
1680 if (ret)
1681 goto out_destroy;
1682
1683 kernfs_activate(kn_info);
1684
1685 return 0;
1686
1687 out_destroy:
1688 kernfs_remove(kn_info);
1689 return ret;
1690 }
1691
1692 static int
mongroup_create_dir(struct kernfs_node * parent_kn,struct rdtgroup * prgrp,char * name,struct kernfs_node ** dest_kn)1693 mongroup_create_dir(struct kernfs_node *parent_kn, struct rdtgroup *prgrp,
1694 char *name, struct kernfs_node **dest_kn)
1695 {
1696 struct kernfs_node *kn;
1697 int ret;
1698
1699 /* create the directory */
1700 kn = kernfs_create_dir(parent_kn, name, parent_kn->mode, prgrp);
1701 if (IS_ERR(kn))
1702 return PTR_ERR(kn);
1703
1704 if (dest_kn)
1705 *dest_kn = kn;
1706
1707 /*
1708 * This extra ref will be put in kernfs_remove() and guarantees
1709 * that @rdtgrp->kn is always accessible.
1710 */
1711 kernfs_get(kn);
1712
1713 ret = rdtgroup_kn_set_ugid(kn);
1714 if (ret)
1715 goto out_destroy;
1716
1717 kernfs_activate(kn);
1718
1719 return 0;
1720
1721 out_destroy:
1722 kernfs_remove(kn);
1723 return ret;
1724 }
1725
l3_qos_cfg_update(void * arg)1726 static void l3_qos_cfg_update(void *arg)
1727 {
1728 bool *enable = arg;
1729
1730 wrmsrl(IA32_L3_QOS_CFG, *enable ? L3_QOS_CDP_ENABLE : 0ULL);
1731 }
1732
l2_qos_cfg_update(void * arg)1733 static void l2_qos_cfg_update(void *arg)
1734 {
1735 bool *enable = arg;
1736
1737 wrmsrl(IA32_L2_QOS_CFG, *enable ? L2_QOS_CDP_ENABLE : 0ULL);
1738 }
1739
is_mba_linear(void)1740 static inline bool is_mba_linear(void)
1741 {
1742 return rdt_resources_all[RDT_RESOURCE_MBA].membw.delay_linear;
1743 }
1744
set_cache_qos_cfg(int level,bool enable)1745 static int set_cache_qos_cfg(int level, bool enable)
1746 {
1747 void (*update)(void *arg);
1748 struct rdt_resource *r_l;
1749 cpumask_var_t cpu_mask;
1750 struct rdt_domain *d;
1751 int cpu;
1752
1753 if (level == RDT_RESOURCE_L3)
1754 update = l3_qos_cfg_update;
1755 else if (level == RDT_RESOURCE_L2)
1756 update = l2_qos_cfg_update;
1757 else
1758 return -EINVAL;
1759
1760 if (!zalloc_cpumask_var(&cpu_mask, GFP_KERNEL))
1761 return -ENOMEM;
1762
1763 r_l = &rdt_resources_all[level];
1764 list_for_each_entry(d, &r_l->domains, list) {
1765 /* Pick one CPU from each domain instance to update MSR */
1766 cpumask_set_cpu(cpumask_any(&d->cpu_mask), cpu_mask);
1767 }
1768 cpu = get_cpu();
1769 /* Update QOS_CFG MSR on this cpu if it's in cpu_mask. */
1770 if (cpumask_test_cpu(cpu, cpu_mask))
1771 update(&enable);
1772 /* Update QOS_CFG MSR on all other cpus in cpu_mask. */
1773 smp_call_function_many(cpu_mask, update, &enable, 1);
1774 put_cpu();
1775
1776 free_cpumask_var(cpu_mask);
1777
1778 return 0;
1779 }
1780
1781 /* Restore the qos cfg state when a domain comes online */
rdt_domain_reconfigure_cdp(struct rdt_resource * r)1782 void rdt_domain_reconfigure_cdp(struct rdt_resource *r)
1783 {
1784 if (!r->alloc_capable)
1785 return;
1786
1787 if (r == &rdt_resources_all[RDT_RESOURCE_L2DATA])
1788 l2_qos_cfg_update(&r->alloc_enabled);
1789
1790 if (r == &rdt_resources_all[RDT_RESOURCE_L3DATA])
1791 l3_qos_cfg_update(&r->alloc_enabled);
1792 }
1793
1794 /*
1795 * Enable or disable the MBA software controller
1796 * which helps user specify bandwidth in MBps.
1797 * MBA software controller is supported only if
1798 * MBM is supported and MBA is in linear scale.
1799 */
set_mba_sc(bool mba_sc)1800 static int set_mba_sc(bool mba_sc)
1801 {
1802 struct rdt_resource *r = &rdt_resources_all[RDT_RESOURCE_MBA];
1803 struct rdt_domain *d;
1804
1805 if (!is_mbm_enabled() || !is_mba_linear() ||
1806 mba_sc == is_mba_sc(r))
1807 return -EINVAL;
1808
1809 r->membw.mba_sc = mba_sc;
1810 list_for_each_entry(d, &r->domains, list)
1811 setup_default_ctrlval(r, d->ctrl_val, d->mbps_val);
1812
1813 return 0;
1814 }
1815
cdp_enable(int level,int data_type,int code_type)1816 static int cdp_enable(int level, int data_type, int code_type)
1817 {
1818 struct rdt_resource *r_ldata = &rdt_resources_all[data_type];
1819 struct rdt_resource *r_lcode = &rdt_resources_all[code_type];
1820 struct rdt_resource *r_l = &rdt_resources_all[level];
1821 int ret;
1822
1823 if (!r_l->alloc_capable || !r_ldata->alloc_capable ||
1824 !r_lcode->alloc_capable)
1825 return -EINVAL;
1826
1827 ret = set_cache_qos_cfg(level, true);
1828 if (!ret) {
1829 r_l->alloc_enabled = false;
1830 r_ldata->alloc_enabled = true;
1831 r_lcode->alloc_enabled = true;
1832 }
1833 return ret;
1834 }
1835
cdpl3_enable(void)1836 static int cdpl3_enable(void)
1837 {
1838 return cdp_enable(RDT_RESOURCE_L3, RDT_RESOURCE_L3DATA,
1839 RDT_RESOURCE_L3CODE);
1840 }
1841
cdpl2_enable(void)1842 static int cdpl2_enable(void)
1843 {
1844 return cdp_enable(RDT_RESOURCE_L2, RDT_RESOURCE_L2DATA,
1845 RDT_RESOURCE_L2CODE);
1846 }
1847
cdp_disable(int level,int data_type,int code_type)1848 static void cdp_disable(int level, int data_type, int code_type)
1849 {
1850 struct rdt_resource *r = &rdt_resources_all[level];
1851
1852 r->alloc_enabled = r->alloc_capable;
1853
1854 if (rdt_resources_all[data_type].alloc_enabled) {
1855 rdt_resources_all[data_type].alloc_enabled = false;
1856 rdt_resources_all[code_type].alloc_enabled = false;
1857 set_cache_qos_cfg(level, false);
1858 }
1859 }
1860
cdpl3_disable(void)1861 static void cdpl3_disable(void)
1862 {
1863 cdp_disable(RDT_RESOURCE_L3, RDT_RESOURCE_L3DATA, RDT_RESOURCE_L3CODE);
1864 }
1865
cdpl2_disable(void)1866 static void cdpl2_disable(void)
1867 {
1868 cdp_disable(RDT_RESOURCE_L2, RDT_RESOURCE_L2DATA, RDT_RESOURCE_L2CODE);
1869 }
1870
cdp_disable_all(void)1871 static void cdp_disable_all(void)
1872 {
1873 if (rdt_resources_all[RDT_RESOURCE_L3DATA].alloc_enabled)
1874 cdpl3_disable();
1875 if (rdt_resources_all[RDT_RESOURCE_L2DATA].alloc_enabled)
1876 cdpl2_disable();
1877 }
1878
parse_rdtgroupfs_options(char * data)1879 static int parse_rdtgroupfs_options(char *data)
1880 {
1881 char *token, *o = data;
1882 int ret = 0;
1883
1884 while ((token = strsep(&o, ",")) != NULL) {
1885 if (!*token) {
1886 ret = -EINVAL;
1887 goto out;
1888 }
1889
1890 if (!strcmp(token, "cdp")) {
1891 ret = cdpl3_enable();
1892 if (ret)
1893 goto out;
1894 } else if (!strcmp(token, "cdpl2")) {
1895 ret = cdpl2_enable();
1896 if (ret)
1897 goto out;
1898 } else if (!strcmp(token, "mba_MBps")) {
1899 ret = set_mba_sc(true);
1900 if (ret)
1901 goto out;
1902 } else {
1903 ret = -EINVAL;
1904 goto out;
1905 }
1906 }
1907
1908 return 0;
1909
1910 out:
1911 pr_err("Invalid mount option \"%s\"\n", token);
1912
1913 return ret;
1914 }
1915
1916 /*
1917 * We don't allow rdtgroup directories to be created anywhere
1918 * except the root directory. Thus when looking for the rdtgroup
1919 * structure for a kernfs node we are either looking at a directory,
1920 * in which case the rdtgroup structure is pointed at by the "priv"
1921 * field, otherwise we have a file, and need only look to the parent
1922 * to find the rdtgroup.
1923 */
kernfs_to_rdtgroup(struct kernfs_node * kn)1924 static struct rdtgroup *kernfs_to_rdtgroup(struct kernfs_node *kn)
1925 {
1926 if (kernfs_type(kn) == KERNFS_DIR) {
1927 /*
1928 * All the resource directories use "kn->priv"
1929 * to point to the "struct rdtgroup" for the
1930 * resource. "info" and its subdirectories don't
1931 * have rdtgroup structures, so return NULL here.
1932 */
1933 if (kn == kn_info || kn->parent == kn_info)
1934 return NULL;
1935 else
1936 return kn->priv;
1937 } else {
1938 return kn->parent->priv;
1939 }
1940 }
1941
rdtgroup_kn_lock_live(struct kernfs_node * kn)1942 struct rdtgroup *rdtgroup_kn_lock_live(struct kernfs_node *kn)
1943 {
1944 struct rdtgroup *rdtgrp = kernfs_to_rdtgroup(kn);
1945
1946 if (!rdtgrp)
1947 return NULL;
1948
1949 atomic_inc(&rdtgrp->waitcount);
1950 kernfs_break_active_protection(kn);
1951
1952 mutex_lock(&rdtgroup_mutex);
1953
1954 /* Was this group deleted while we waited? */
1955 if (rdtgrp->flags & RDT_DELETED)
1956 return NULL;
1957
1958 return rdtgrp;
1959 }
1960
rdtgroup_kn_unlock(struct kernfs_node * kn)1961 void rdtgroup_kn_unlock(struct kernfs_node *kn)
1962 {
1963 struct rdtgroup *rdtgrp = kernfs_to_rdtgroup(kn);
1964
1965 if (!rdtgrp)
1966 return;
1967
1968 mutex_unlock(&rdtgroup_mutex);
1969
1970 if (atomic_dec_and_test(&rdtgrp->waitcount) &&
1971 (rdtgrp->flags & RDT_DELETED)) {
1972 if (rdtgrp->mode == RDT_MODE_PSEUDO_LOCKSETUP ||
1973 rdtgrp->mode == RDT_MODE_PSEUDO_LOCKED)
1974 rdtgroup_pseudo_lock_remove(rdtgrp);
1975 kernfs_unbreak_active_protection(kn);
1976 kernfs_put(rdtgrp->kn);
1977 kfree(rdtgrp);
1978 } else {
1979 kernfs_unbreak_active_protection(kn);
1980 }
1981 }
1982
1983 static int mkdir_mondata_all(struct kernfs_node *parent_kn,
1984 struct rdtgroup *prgrp,
1985 struct kernfs_node **mon_data_kn);
1986
rdt_mount(struct file_system_type * fs_type,int flags,const char * unused_dev_name,void * data)1987 static struct dentry *rdt_mount(struct file_system_type *fs_type,
1988 int flags, const char *unused_dev_name,
1989 void *data)
1990 {
1991 struct rdt_domain *dom;
1992 struct rdt_resource *r;
1993 struct dentry *dentry;
1994 int ret;
1995
1996 cpus_read_lock();
1997 mutex_lock(&rdtgroup_mutex);
1998 /*
1999 * resctrl file system can only be mounted once.
2000 */
2001 if (static_branch_unlikely(&rdt_enable_key)) {
2002 dentry = ERR_PTR(-EBUSY);
2003 goto out;
2004 }
2005
2006 ret = parse_rdtgroupfs_options(data);
2007 if (ret) {
2008 dentry = ERR_PTR(ret);
2009 goto out_cdp;
2010 }
2011
2012 closid_init();
2013
2014 ret = rdtgroup_create_info_dir(rdtgroup_default.kn);
2015 if (ret) {
2016 dentry = ERR_PTR(ret);
2017 goto out_cdp;
2018 }
2019
2020 if (rdt_mon_capable) {
2021 ret = mongroup_create_dir(rdtgroup_default.kn,
2022 &rdtgroup_default, "mon_groups",
2023 &kn_mongrp);
2024 if (ret) {
2025 dentry = ERR_PTR(ret);
2026 goto out_info;
2027 }
2028 kernfs_get(kn_mongrp);
2029
2030 ret = mkdir_mondata_all(rdtgroup_default.kn,
2031 &rdtgroup_default, &kn_mondata);
2032 if (ret) {
2033 dentry = ERR_PTR(ret);
2034 goto out_mongrp;
2035 }
2036 kernfs_get(kn_mondata);
2037 rdtgroup_default.mon.mon_data_kn = kn_mondata;
2038 }
2039
2040 ret = rdt_pseudo_lock_init();
2041 if (ret) {
2042 dentry = ERR_PTR(ret);
2043 goto out_mondata;
2044 }
2045
2046 dentry = kernfs_mount(fs_type, flags, rdt_root,
2047 RDTGROUP_SUPER_MAGIC, NULL);
2048 if (IS_ERR(dentry))
2049 goto out_psl;
2050
2051 if (rdt_alloc_capable)
2052 static_branch_enable_cpuslocked(&rdt_alloc_enable_key);
2053 if (rdt_mon_capable)
2054 static_branch_enable_cpuslocked(&rdt_mon_enable_key);
2055
2056 if (rdt_alloc_capable || rdt_mon_capable)
2057 static_branch_enable_cpuslocked(&rdt_enable_key);
2058
2059 if (is_mbm_enabled()) {
2060 r = &rdt_resources_all[RDT_RESOURCE_L3];
2061 list_for_each_entry(dom, &r->domains, list)
2062 mbm_setup_overflow_handler(dom, MBM_OVERFLOW_INTERVAL);
2063 }
2064
2065 goto out;
2066
2067 out_psl:
2068 rdt_pseudo_lock_release();
2069 out_mondata:
2070 if (rdt_mon_capable)
2071 kernfs_remove(kn_mondata);
2072 out_mongrp:
2073 if (rdt_mon_capable)
2074 kernfs_remove(kn_mongrp);
2075 out_info:
2076 kernfs_remove(kn_info);
2077 out_cdp:
2078 cdp_disable_all();
2079 out:
2080 rdt_last_cmd_clear();
2081 mutex_unlock(&rdtgroup_mutex);
2082 cpus_read_unlock();
2083
2084 return dentry;
2085 }
2086
reset_all_ctrls(struct rdt_resource * r)2087 static int reset_all_ctrls(struct rdt_resource *r)
2088 {
2089 struct msr_param msr_param;
2090 cpumask_var_t cpu_mask;
2091 struct rdt_domain *d;
2092 int i, cpu;
2093
2094 if (!zalloc_cpumask_var(&cpu_mask, GFP_KERNEL))
2095 return -ENOMEM;
2096
2097 msr_param.res = r;
2098 msr_param.low = 0;
2099 msr_param.high = r->num_closid;
2100
2101 /*
2102 * Disable resource control for this resource by setting all
2103 * CBMs in all domains to the maximum mask value. Pick one CPU
2104 * from each domain to update the MSRs below.
2105 */
2106 list_for_each_entry(d, &r->domains, list) {
2107 cpumask_set_cpu(cpumask_any(&d->cpu_mask), cpu_mask);
2108
2109 for (i = 0; i < r->num_closid; i++)
2110 d->ctrl_val[i] = r->default_ctrl;
2111 }
2112 cpu = get_cpu();
2113 /* Update CBM on this cpu if it's in cpu_mask. */
2114 if (cpumask_test_cpu(cpu, cpu_mask))
2115 rdt_ctrl_update(&msr_param);
2116 /* Update CBM on all other cpus in cpu_mask. */
2117 smp_call_function_many(cpu_mask, rdt_ctrl_update, &msr_param, 1);
2118 put_cpu();
2119
2120 free_cpumask_var(cpu_mask);
2121
2122 return 0;
2123 }
2124
is_closid_match(struct task_struct * t,struct rdtgroup * r)2125 static bool is_closid_match(struct task_struct *t, struct rdtgroup *r)
2126 {
2127 return (rdt_alloc_capable &&
2128 (r->type == RDTCTRL_GROUP) && (t->closid == r->closid));
2129 }
2130
is_rmid_match(struct task_struct * t,struct rdtgroup * r)2131 static bool is_rmid_match(struct task_struct *t, struct rdtgroup *r)
2132 {
2133 return (rdt_mon_capable &&
2134 (r->type == RDTMON_GROUP) && (t->rmid == r->mon.rmid));
2135 }
2136
2137 /*
2138 * Move tasks from one to the other group. If @from is NULL, then all tasks
2139 * in the systems are moved unconditionally (used for teardown).
2140 *
2141 * If @mask is not NULL the cpus on which moved tasks are running are set
2142 * in that mask so the update smp function call is restricted to affected
2143 * cpus.
2144 */
rdt_move_group_tasks(struct rdtgroup * from,struct rdtgroup * to,struct cpumask * mask)2145 static void rdt_move_group_tasks(struct rdtgroup *from, struct rdtgroup *to,
2146 struct cpumask *mask)
2147 {
2148 struct task_struct *p, *t;
2149
2150 read_lock(&tasklist_lock);
2151 for_each_process_thread(p, t) {
2152 if (!from || is_closid_match(t, from) ||
2153 is_rmid_match(t, from)) {
2154 t->closid = to->closid;
2155 t->rmid = to->mon.rmid;
2156
2157 #ifdef CONFIG_SMP
2158 /*
2159 * This is safe on x86 w/o barriers as the ordering
2160 * of writing to task_cpu() and t->on_cpu is
2161 * reverse to the reading here. The detection is
2162 * inaccurate as tasks might move or schedule
2163 * before the smp function call takes place. In
2164 * such a case the function call is pointless, but
2165 * there is no other side effect.
2166 */
2167 if (mask && t->on_cpu)
2168 cpumask_set_cpu(task_cpu(t), mask);
2169 #endif
2170 }
2171 }
2172 read_unlock(&tasklist_lock);
2173 }
2174
free_all_child_rdtgrp(struct rdtgroup * rdtgrp)2175 static void free_all_child_rdtgrp(struct rdtgroup *rdtgrp)
2176 {
2177 struct rdtgroup *sentry, *stmp;
2178 struct list_head *head;
2179
2180 head = &rdtgrp->mon.crdtgrp_list;
2181 list_for_each_entry_safe(sentry, stmp, head, mon.crdtgrp_list) {
2182 free_rmid(sentry->mon.rmid);
2183 list_del(&sentry->mon.crdtgrp_list);
2184
2185 if (atomic_read(&sentry->waitcount) != 0)
2186 sentry->flags = RDT_DELETED;
2187 else
2188 kfree(sentry);
2189 }
2190 }
2191
2192 /*
2193 * Forcibly remove all of subdirectories under root.
2194 */
rmdir_all_sub(void)2195 static void rmdir_all_sub(void)
2196 {
2197 struct rdtgroup *rdtgrp, *tmp;
2198
2199 /* Move all tasks to the default resource group */
2200 rdt_move_group_tasks(NULL, &rdtgroup_default, NULL);
2201
2202 list_for_each_entry_safe(rdtgrp, tmp, &rdt_all_groups, rdtgroup_list) {
2203 /* Free any child rmids */
2204 free_all_child_rdtgrp(rdtgrp);
2205
2206 /* Remove each rdtgroup other than root */
2207 if (rdtgrp == &rdtgroup_default)
2208 continue;
2209
2210 if (rdtgrp->mode == RDT_MODE_PSEUDO_LOCKSETUP ||
2211 rdtgrp->mode == RDT_MODE_PSEUDO_LOCKED)
2212 rdtgroup_pseudo_lock_remove(rdtgrp);
2213
2214 /*
2215 * Give any CPUs back to the default group. We cannot copy
2216 * cpu_online_mask because a CPU might have executed the
2217 * offline callback already, but is still marked online.
2218 */
2219 cpumask_or(&rdtgroup_default.cpu_mask,
2220 &rdtgroup_default.cpu_mask, &rdtgrp->cpu_mask);
2221
2222 free_rmid(rdtgrp->mon.rmid);
2223
2224 kernfs_remove(rdtgrp->kn);
2225 list_del(&rdtgrp->rdtgroup_list);
2226
2227 if (atomic_read(&rdtgrp->waitcount) != 0)
2228 rdtgrp->flags = RDT_DELETED;
2229 else
2230 kfree(rdtgrp);
2231 }
2232 /* Notify online CPUs to update per cpu storage and PQR_ASSOC MSR */
2233 update_closid_rmid(cpu_online_mask, &rdtgroup_default);
2234
2235 kernfs_remove(kn_info);
2236 kernfs_remove(kn_mongrp);
2237 kernfs_remove(kn_mondata);
2238 }
2239
rdt_kill_sb(struct super_block * sb)2240 static void rdt_kill_sb(struct super_block *sb)
2241 {
2242 struct rdt_resource *r;
2243
2244 cpus_read_lock();
2245 mutex_lock(&rdtgroup_mutex);
2246
2247 set_mba_sc(false);
2248
2249 /*Put everything back to default values. */
2250 for_each_alloc_enabled_rdt_resource(r)
2251 reset_all_ctrls(r);
2252 cdp_disable_all();
2253 rmdir_all_sub();
2254 rdt_pseudo_lock_release();
2255 rdtgroup_default.mode = RDT_MODE_SHAREABLE;
2256 static_branch_disable_cpuslocked(&rdt_alloc_enable_key);
2257 static_branch_disable_cpuslocked(&rdt_mon_enable_key);
2258 static_branch_disable_cpuslocked(&rdt_enable_key);
2259 kernfs_kill_sb(sb);
2260 mutex_unlock(&rdtgroup_mutex);
2261 cpus_read_unlock();
2262 }
2263
2264 static struct file_system_type rdt_fs_type = {
2265 .name = "resctrl",
2266 .mount = rdt_mount,
2267 .kill_sb = rdt_kill_sb,
2268 };
2269
mon_addfile(struct kernfs_node * parent_kn,const char * name,void * priv)2270 static int mon_addfile(struct kernfs_node *parent_kn, const char *name,
2271 void *priv)
2272 {
2273 struct kernfs_node *kn;
2274 int ret = 0;
2275
2276 kn = __kernfs_create_file(parent_kn, name, 0444,
2277 GLOBAL_ROOT_UID, GLOBAL_ROOT_GID, 0,
2278 &kf_mondata_ops, priv, NULL, NULL);
2279 if (IS_ERR(kn))
2280 return PTR_ERR(kn);
2281
2282 ret = rdtgroup_kn_set_ugid(kn);
2283 if (ret) {
2284 kernfs_remove(kn);
2285 return ret;
2286 }
2287
2288 return ret;
2289 }
2290
2291 /*
2292 * Remove all subdirectories of mon_data of ctrl_mon groups
2293 * and monitor groups with given domain id.
2294 */
rmdir_mondata_subdir_allrdtgrp(struct rdt_resource * r,unsigned int dom_id)2295 void rmdir_mondata_subdir_allrdtgrp(struct rdt_resource *r, unsigned int dom_id)
2296 {
2297 struct rdtgroup *prgrp, *crgrp;
2298 char name[32];
2299
2300 if (!r->mon_enabled)
2301 return;
2302
2303 list_for_each_entry(prgrp, &rdt_all_groups, rdtgroup_list) {
2304 sprintf(name, "mon_%s_%02d", r->name, dom_id);
2305 kernfs_remove_by_name(prgrp->mon.mon_data_kn, name);
2306
2307 list_for_each_entry(crgrp, &prgrp->mon.crdtgrp_list, mon.crdtgrp_list)
2308 kernfs_remove_by_name(crgrp->mon.mon_data_kn, name);
2309 }
2310 }
2311
mkdir_mondata_subdir(struct kernfs_node * parent_kn,struct rdt_domain * d,struct rdt_resource * r,struct rdtgroup * prgrp)2312 static int mkdir_mondata_subdir(struct kernfs_node *parent_kn,
2313 struct rdt_domain *d,
2314 struct rdt_resource *r, struct rdtgroup *prgrp)
2315 {
2316 union mon_data_bits priv;
2317 struct kernfs_node *kn;
2318 struct mon_evt *mevt;
2319 struct rmid_read rr;
2320 char name[32];
2321 int ret;
2322
2323 sprintf(name, "mon_%s_%02d", r->name, d->id);
2324 /* create the directory */
2325 kn = kernfs_create_dir(parent_kn, name, parent_kn->mode, prgrp);
2326 if (IS_ERR(kn))
2327 return PTR_ERR(kn);
2328
2329 /*
2330 * This extra ref will be put in kernfs_remove() and guarantees
2331 * that kn is always accessible.
2332 */
2333 kernfs_get(kn);
2334 ret = rdtgroup_kn_set_ugid(kn);
2335 if (ret)
2336 goto out_destroy;
2337
2338 if (WARN_ON(list_empty(&r->evt_list))) {
2339 ret = -EPERM;
2340 goto out_destroy;
2341 }
2342
2343 priv.u.rid = r->rid;
2344 priv.u.domid = d->id;
2345 list_for_each_entry(mevt, &r->evt_list, list) {
2346 priv.u.evtid = mevt->evtid;
2347 ret = mon_addfile(kn, mevt->name, priv.priv);
2348 if (ret)
2349 goto out_destroy;
2350
2351 if (is_mbm_event(mevt->evtid))
2352 mon_event_read(&rr, d, prgrp, mevt->evtid, true);
2353 }
2354 kernfs_activate(kn);
2355 return 0;
2356
2357 out_destroy:
2358 kernfs_remove(kn);
2359 return ret;
2360 }
2361
2362 /*
2363 * Add all subdirectories of mon_data for "ctrl_mon" groups
2364 * and "monitor" groups with given domain id.
2365 */
mkdir_mondata_subdir_allrdtgrp(struct rdt_resource * r,struct rdt_domain * d)2366 void mkdir_mondata_subdir_allrdtgrp(struct rdt_resource *r,
2367 struct rdt_domain *d)
2368 {
2369 struct kernfs_node *parent_kn;
2370 struct rdtgroup *prgrp, *crgrp;
2371 struct list_head *head;
2372
2373 if (!r->mon_enabled)
2374 return;
2375
2376 list_for_each_entry(prgrp, &rdt_all_groups, rdtgroup_list) {
2377 parent_kn = prgrp->mon.mon_data_kn;
2378 mkdir_mondata_subdir(parent_kn, d, r, prgrp);
2379
2380 head = &prgrp->mon.crdtgrp_list;
2381 list_for_each_entry(crgrp, head, mon.crdtgrp_list) {
2382 parent_kn = crgrp->mon.mon_data_kn;
2383 mkdir_mondata_subdir(parent_kn, d, r, crgrp);
2384 }
2385 }
2386 }
2387
mkdir_mondata_subdir_alldom(struct kernfs_node * parent_kn,struct rdt_resource * r,struct rdtgroup * prgrp)2388 static int mkdir_mondata_subdir_alldom(struct kernfs_node *parent_kn,
2389 struct rdt_resource *r,
2390 struct rdtgroup *prgrp)
2391 {
2392 struct rdt_domain *dom;
2393 int ret;
2394
2395 list_for_each_entry(dom, &r->domains, list) {
2396 ret = mkdir_mondata_subdir(parent_kn, dom, r, prgrp);
2397 if (ret)
2398 return ret;
2399 }
2400
2401 return 0;
2402 }
2403
2404 /*
2405 * This creates a directory mon_data which contains the monitored data.
2406 *
2407 * mon_data has one directory for each domain whic are named
2408 * in the format mon_<domain_name>_<domain_id>. For ex: A mon_data
2409 * with L3 domain looks as below:
2410 * ./mon_data:
2411 * mon_L3_00
2412 * mon_L3_01
2413 * mon_L3_02
2414 * ...
2415 *
2416 * Each domain directory has one file per event:
2417 * ./mon_L3_00/:
2418 * llc_occupancy
2419 *
2420 */
mkdir_mondata_all(struct kernfs_node * parent_kn,struct rdtgroup * prgrp,struct kernfs_node ** dest_kn)2421 static int mkdir_mondata_all(struct kernfs_node *parent_kn,
2422 struct rdtgroup *prgrp,
2423 struct kernfs_node **dest_kn)
2424 {
2425 struct rdt_resource *r;
2426 struct kernfs_node *kn;
2427 int ret;
2428
2429 /*
2430 * Create the mon_data directory first.
2431 */
2432 ret = mongroup_create_dir(parent_kn, prgrp, "mon_data", &kn);
2433 if (ret)
2434 return ret;
2435
2436 if (dest_kn)
2437 *dest_kn = kn;
2438
2439 /*
2440 * Create the subdirectories for each domain. Note that all events
2441 * in a domain like L3 are grouped into a resource whose domain is L3
2442 */
2443 for_each_mon_enabled_rdt_resource(r) {
2444 ret = mkdir_mondata_subdir_alldom(kn, r, prgrp);
2445 if (ret)
2446 goto out_destroy;
2447 }
2448
2449 return 0;
2450
2451 out_destroy:
2452 kernfs_remove(kn);
2453 return ret;
2454 }
2455
2456 /**
2457 * cbm_ensure_valid - Enforce validity on provided CBM
2458 * @_val: Candidate CBM
2459 * @r: RDT resource to which the CBM belongs
2460 *
2461 * The provided CBM represents all cache portions available for use. This
2462 * may be represented by a bitmap that does not consist of contiguous ones
2463 * and thus be an invalid CBM.
2464 * Here the provided CBM is forced to be a valid CBM by only considering
2465 * the first set of contiguous bits as valid and clearing all bits.
2466 * The intention here is to provide a valid default CBM with which a new
2467 * resource group is initialized. The user can follow this with a
2468 * modification to the CBM if the default does not satisfy the
2469 * requirements.
2470 */
cbm_ensure_valid(u32 * _val,struct rdt_resource * r)2471 static void cbm_ensure_valid(u32 *_val, struct rdt_resource *r)
2472 {
2473 unsigned long val = *_val;
2474 unsigned int cbm_len = r->cache.cbm_len;
2475 unsigned long first_bit, zero_bit;
2476
2477 if (val == 0)
2478 return;
2479
2480 first_bit = find_first_bit(&val, cbm_len);
2481 zero_bit = find_next_zero_bit(&val, cbm_len, first_bit);
2482
2483 /* Clear any remaining bits to ensure contiguous region */
2484 bitmap_clear(&val, zero_bit, cbm_len - zero_bit);
2485 *_val = (u32)val;
2486 }
2487
2488 /**
2489 * rdtgroup_init_alloc - Initialize the new RDT group's allocations
2490 *
2491 * A new RDT group is being created on an allocation capable (CAT)
2492 * supporting system. Set this group up to start off with all usable
2493 * allocations. That is, all shareable and unused bits.
2494 *
2495 * All-zero CBM is invalid. If there are no more shareable bits available
2496 * on any domain then the entire allocation will fail.
2497 */
rdtgroup_init_alloc(struct rdtgroup * rdtgrp)2498 static int rdtgroup_init_alloc(struct rdtgroup *rdtgrp)
2499 {
2500 u32 used_b = 0, unused_b = 0;
2501 u32 closid = rdtgrp->closid;
2502 struct rdt_resource *r;
2503 unsigned long tmp_cbm;
2504 enum rdtgrp_mode mode;
2505 struct rdt_domain *d;
2506 int i, ret;
2507 u32 *ctrl;
2508
2509 for_each_alloc_enabled_rdt_resource(r) {
2510 /*
2511 * Only initialize default allocations for CBM cache
2512 * resources
2513 */
2514 if (r->rid == RDT_RESOURCE_MBA)
2515 continue;
2516 list_for_each_entry(d, &r->domains, list) {
2517 d->have_new_ctrl = false;
2518 d->new_ctrl = r->cache.shareable_bits;
2519 used_b = r->cache.shareable_bits;
2520 ctrl = d->ctrl_val;
2521 for (i = 0; i < closids_supported(); i++, ctrl++) {
2522 if (closid_allocated(i) && i != closid) {
2523 mode = rdtgroup_mode_by_closid(i);
2524 if (mode == RDT_MODE_PSEUDO_LOCKSETUP)
2525 continue;
2526 used_b |= *ctrl;
2527 if (mode == RDT_MODE_SHAREABLE)
2528 d->new_ctrl |= *ctrl;
2529 }
2530 }
2531 if (d->plr && d->plr->cbm > 0)
2532 used_b |= d->plr->cbm;
2533 unused_b = used_b ^ (BIT_MASK(r->cache.cbm_len) - 1);
2534 unused_b &= BIT_MASK(r->cache.cbm_len) - 1;
2535 d->new_ctrl |= unused_b;
2536 /*
2537 * Force the initial CBM to be valid, user can
2538 * modify the CBM based on system availability.
2539 */
2540 cbm_ensure_valid(&d->new_ctrl, r);
2541 /*
2542 * Assign the u32 CBM to an unsigned long to ensure
2543 * that bitmap_weight() does not access out-of-bound
2544 * memory.
2545 */
2546 tmp_cbm = d->new_ctrl;
2547 if (bitmap_weight(&tmp_cbm, r->cache.cbm_len) <
2548 r->cache.min_cbm_bits) {
2549 rdt_last_cmd_printf("no space on %s:%d\n",
2550 r->name, d->id);
2551 return -ENOSPC;
2552 }
2553 d->have_new_ctrl = true;
2554 }
2555 }
2556
2557 for_each_alloc_enabled_rdt_resource(r) {
2558 /*
2559 * Only initialize default allocations for CBM cache
2560 * resources
2561 */
2562 if (r->rid == RDT_RESOURCE_MBA)
2563 continue;
2564 ret = update_domains(r, rdtgrp->closid);
2565 if (ret < 0) {
2566 rdt_last_cmd_puts("failed to initialize allocations\n");
2567 return ret;
2568 }
2569 rdtgrp->mode = RDT_MODE_SHAREABLE;
2570 }
2571
2572 return 0;
2573 }
2574
mkdir_rdt_prepare(struct kernfs_node * parent_kn,struct kernfs_node * prgrp_kn,const char * name,umode_t mode,enum rdt_group_type rtype,struct rdtgroup ** r)2575 static int mkdir_rdt_prepare(struct kernfs_node *parent_kn,
2576 struct kernfs_node *prgrp_kn,
2577 const char *name, umode_t mode,
2578 enum rdt_group_type rtype, struct rdtgroup **r)
2579 {
2580 struct rdtgroup *prdtgrp, *rdtgrp;
2581 struct kernfs_node *kn;
2582 uint files = 0;
2583 int ret;
2584
2585 prdtgrp = rdtgroup_kn_lock_live(parent_kn);
2586 rdt_last_cmd_clear();
2587 if (!prdtgrp) {
2588 ret = -ENODEV;
2589 rdt_last_cmd_puts("directory was removed\n");
2590 goto out_unlock;
2591 }
2592
2593 if (rtype == RDTMON_GROUP &&
2594 (prdtgrp->mode == RDT_MODE_PSEUDO_LOCKSETUP ||
2595 prdtgrp->mode == RDT_MODE_PSEUDO_LOCKED)) {
2596 ret = -EINVAL;
2597 rdt_last_cmd_puts("pseudo-locking in progress\n");
2598 goto out_unlock;
2599 }
2600
2601 /* allocate the rdtgroup. */
2602 rdtgrp = kzalloc(sizeof(*rdtgrp), GFP_KERNEL);
2603 if (!rdtgrp) {
2604 ret = -ENOSPC;
2605 rdt_last_cmd_puts("kernel out of memory\n");
2606 goto out_unlock;
2607 }
2608 *r = rdtgrp;
2609 rdtgrp->mon.parent = prdtgrp;
2610 rdtgrp->type = rtype;
2611 INIT_LIST_HEAD(&rdtgrp->mon.crdtgrp_list);
2612
2613 /* kernfs creates the directory for rdtgrp */
2614 kn = kernfs_create_dir(parent_kn, name, mode, rdtgrp);
2615 if (IS_ERR(kn)) {
2616 ret = PTR_ERR(kn);
2617 rdt_last_cmd_puts("kernfs create error\n");
2618 goto out_free_rgrp;
2619 }
2620 rdtgrp->kn = kn;
2621
2622 /*
2623 * kernfs_remove() will drop the reference count on "kn" which
2624 * will free it. But we still need it to stick around for the
2625 * rdtgroup_kn_unlock(kn} call below. Take one extra reference
2626 * here, which will be dropped inside rdtgroup_kn_unlock().
2627 */
2628 kernfs_get(kn);
2629
2630 ret = rdtgroup_kn_set_ugid(kn);
2631 if (ret) {
2632 rdt_last_cmd_puts("kernfs perm error\n");
2633 goto out_destroy;
2634 }
2635
2636 files = RFTYPE_BASE | BIT(RF_CTRLSHIFT + rtype);
2637 ret = rdtgroup_add_files(kn, files);
2638 if (ret) {
2639 rdt_last_cmd_puts("kernfs fill error\n");
2640 goto out_destroy;
2641 }
2642
2643 if (rdt_mon_capable) {
2644 ret = alloc_rmid();
2645 if (ret < 0) {
2646 rdt_last_cmd_puts("out of RMIDs\n");
2647 goto out_destroy;
2648 }
2649 rdtgrp->mon.rmid = ret;
2650
2651 ret = mkdir_mondata_all(kn, rdtgrp, &rdtgrp->mon.mon_data_kn);
2652 if (ret) {
2653 rdt_last_cmd_puts("kernfs subdir error\n");
2654 goto out_idfree;
2655 }
2656 }
2657 kernfs_activate(kn);
2658
2659 /*
2660 * The caller unlocks the parent_kn upon success.
2661 */
2662 return 0;
2663
2664 out_idfree:
2665 free_rmid(rdtgrp->mon.rmid);
2666 out_destroy:
2667 kernfs_remove(rdtgrp->kn);
2668 out_free_rgrp:
2669 kfree(rdtgrp);
2670 out_unlock:
2671 rdtgroup_kn_unlock(parent_kn);
2672 return ret;
2673 }
2674
mkdir_rdt_prepare_clean(struct rdtgroup * rgrp)2675 static void mkdir_rdt_prepare_clean(struct rdtgroup *rgrp)
2676 {
2677 kernfs_remove(rgrp->kn);
2678 free_rmid(rgrp->mon.rmid);
2679 kfree(rgrp);
2680 }
2681
2682 /*
2683 * Create a monitor group under "mon_groups" directory of a control
2684 * and monitor group(ctrl_mon). This is a resource group
2685 * to monitor a subset of tasks and cpus in its parent ctrl_mon group.
2686 */
rdtgroup_mkdir_mon(struct kernfs_node * parent_kn,struct kernfs_node * prgrp_kn,const char * name,umode_t mode)2687 static int rdtgroup_mkdir_mon(struct kernfs_node *parent_kn,
2688 struct kernfs_node *prgrp_kn,
2689 const char *name,
2690 umode_t mode)
2691 {
2692 struct rdtgroup *rdtgrp, *prgrp;
2693 int ret;
2694
2695 ret = mkdir_rdt_prepare(parent_kn, prgrp_kn, name, mode, RDTMON_GROUP,
2696 &rdtgrp);
2697 if (ret)
2698 return ret;
2699
2700 prgrp = rdtgrp->mon.parent;
2701 rdtgrp->closid = prgrp->closid;
2702
2703 /*
2704 * Add the rdtgrp to the list of rdtgrps the parent
2705 * ctrl_mon group has to track.
2706 */
2707 list_add_tail(&rdtgrp->mon.crdtgrp_list, &prgrp->mon.crdtgrp_list);
2708
2709 rdtgroup_kn_unlock(parent_kn);
2710 return ret;
2711 }
2712
2713 /*
2714 * These are rdtgroups created under the root directory. Can be used
2715 * to allocate and monitor resources.
2716 */
rdtgroup_mkdir_ctrl_mon(struct kernfs_node * parent_kn,struct kernfs_node * prgrp_kn,const char * name,umode_t mode)2717 static int rdtgroup_mkdir_ctrl_mon(struct kernfs_node *parent_kn,
2718 struct kernfs_node *prgrp_kn,
2719 const char *name, umode_t mode)
2720 {
2721 struct rdtgroup *rdtgrp;
2722 struct kernfs_node *kn;
2723 u32 closid;
2724 int ret;
2725
2726 ret = mkdir_rdt_prepare(parent_kn, prgrp_kn, name, mode, RDTCTRL_GROUP,
2727 &rdtgrp);
2728 if (ret)
2729 return ret;
2730
2731 kn = rdtgrp->kn;
2732 ret = closid_alloc();
2733 if (ret < 0) {
2734 rdt_last_cmd_puts("out of CLOSIDs\n");
2735 goto out_common_fail;
2736 }
2737 closid = ret;
2738 ret = 0;
2739
2740 rdtgrp->closid = closid;
2741 ret = rdtgroup_init_alloc(rdtgrp);
2742 if (ret < 0)
2743 goto out_id_free;
2744
2745 list_add(&rdtgrp->rdtgroup_list, &rdt_all_groups);
2746
2747 if (rdt_mon_capable) {
2748 /*
2749 * Create an empty mon_groups directory to hold the subset
2750 * of tasks and cpus to monitor.
2751 */
2752 ret = mongroup_create_dir(kn, rdtgrp, "mon_groups", NULL);
2753 if (ret) {
2754 rdt_last_cmd_puts("kernfs subdir error\n");
2755 goto out_del_list;
2756 }
2757 }
2758
2759 goto out_unlock;
2760
2761 out_del_list:
2762 list_del(&rdtgrp->rdtgroup_list);
2763 out_id_free:
2764 closid_free(closid);
2765 out_common_fail:
2766 mkdir_rdt_prepare_clean(rdtgrp);
2767 out_unlock:
2768 rdtgroup_kn_unlock(parent_kn);
2769 return ret;
2770 }
2771
2772 /*
2773 * We allow creating mon groups only with in a directory called "mon_groups"
2774 * which is present in every ctrl_mon group. Check if this is a valid
2775 * "mon_groups" directory.
2776 *
2777 * 1. The directory should be named "mon_groups".
2778 * 2. The mon group itself should "not" be named "mon_groups".
2779 * This makes sure "mon_groups" directory always has a ctrl_mon group
2780 * as parent.
2781 */
is_mon_groups(struct kernfs_node * kn,const char * name)2782 static bool is_mon_groups(struct kernfs_node *kn, const char *name)
2783 {
2784 return (!strcmp(kn->name, "mon_groups") &&
2785 strcmp(name, "mon_groups"));
2786 }
2787
rdtgroup_mkdir(struct kernfs_node * parent_kn,const char * name,umode_t mode)2788 static int rdtgroup_mkdir(struct kernfs_node *parent_kn, const char *name,
2789 umode_t mode)
2790 {
2791 /* Do not accept '\n' to avoid unparsable situation. */
2792 if (strchr(name, '\n'))
2793 return -EINVAL;
2794
2795 /*
2796 * If the parent directory is the root directory and RDT
2797 * allocation is supported, add a control and monitoring
2798 * subdirectory
2799 */
2800 if (rdt_alloc_capable && parent_kn == rdtgroup_default.kn)
2801 return rdtgroup_mkdir_ctrl_mon(parent_kn, parent_kn, name, mode);
2802
2803 /*
2804 * If RDT monitoring is supported and the parent directory is a valid
2805 * "mon_groups" directory, add a monitoring subdirectory.
2806 */
2807 if (rdt_mon_capable && is_mon_groups(parent_kn, name))
2808 return rdtgroup_mkdir_mon(parent_kn, parent_kn->parent, name, mode);
2809
2810 return -EPERM;
2811 }
2812
rdtgroup_rmdir_mon(struct kernfs_node * kn,struct rdtgroup * rdtgrp,cpumask_var_t tmpmask)2813 static int rdtgroup_rmdir_mon(struct kernfs_node *kn, struct rdtgroup *rdtgrp,
2814 cpumask_var_t tmpmask)
2815 {
2816 struct rdtgroup *prdtgrp = rdtgrp->mon.parent;
2817 int cpu;
2818
2819 /* Give any tasks back to the parent group */
2820 rdt_move_group_tasks(rdtgrp, prdtgrp, tmpmask);
2821
2822 /* Update per cpu rmid of the moved CPUs first */
2823 for_each_cpu(cpu, &rdtgrp->cpu_mask)
2824 per_cpu(pqr_state.default_rmid, cpu) = prdtgrp->mon.rmid;
2825 /*
2826 * Update the MSR on moved CPUs and CPUs which have moved
2827 * task running on them.
2828 */
2829 cpumask_or(tmpmask, tmpmask, &rdtgrp->cpu_mask);
2830 update_closid_rmid(tmpmask, NULL);
2831
2832 rdtgrp->flags = RDT_DELETED;
2833 free_rmid(rdtgrp->mon.rmid);
2834
2835 /*
2836 * Remove the rdtgrp from the parent ctrl_mon group's list
2837 */
2838 WARN_ON(list_empty(&prdtgrp->mon.crdtgrp_list));
2839 list_del(&rdtgrp->mon.crdtgrp_list);
2840
2841 /*
2842 * one extra hold on this, will drop when we kfree(rdtgrp)
2843 * in rdtgroup_kn_unlock()
2844 */
2845 kernfs_get(kn);
2846 kernfs_remove(rdtgrp->kn);
2847
2848 return 0;
2849 }
2850
rdtgroup_ctrl_remove(struct kernfs_node * kn,struct rdtgroup * rdtgrp)2851 static int rdtgroup_ctrl_remove(struct kernfs_node *kn,
2852 struct rdtgroup *rdtgrp)
2853 {
2854 rdtgrp->flags = RDT_DELETED;
2855 list_del(&rdtgrp->rdtgroup_list);
2856
2857 /*
2858 * one extra hold on this, will drop when we kfree(rdtgrp)
2859 * in rdtgroup_kn_unlock()
2860 */
2861 kernfs_get(kn);
2862 kernfs_remove(rdtgrp->kn);
2863 return 0;
2864 }
2865
rdtgroup_rmdir_ctrl(struct kernfs_node * kn,struct rdtgroup * rdtgrp,cpumask_var_t tmpmask)2866 static int rdtgroup_rmdir_ctrl(struct kernfs_node *kn, struct rdtgroup *rdtgrp,
2867 cpumask_var_t tmpmask)
2868 {
2869 int cpu;
2870
2871 /* Give any tasks back to the default group */
2872 rdt_move_group_tasks(rdtgrp, &rdtgroup_default, tmpmask);
2873
2874 /* Give any CPUs back to the default group */
2875 cpumask_or(&rdtgroup_default.cpu_mask,
2876 &rdtgroup_default.cpu_mask, &rdtgrp->cpu_mask);
2877
2878 /* Update per cpu closid and rmid of the moved CPUs first */
2879 for_each_cpu(cpu, &rdtgrp->cpu_mask) {
2880 per_cpu(pqr_state.default_closid, cpu) = rdtgroup_default.closid;
2881 per_cpu(pqr_state.default_rmid, cpu) = rdtgroup_default.mon.rmid;
2882 }
2883
2884 /*
2885 * Update the MSR on moved CPUs and CPUs which have moved
2886 * task running on them.
2887 */
2888 cpumask_or(tmpmask, tmpmask, &rdtgrp->cpu_mask);
2889 update_closid_rmid(tmpmask, NULL);
2890
2891 closid_free(rdtgrp->closid);
2892 free_rmid(rdtgrp->mon.rmid);
2893
2894 rdtgroup_ctrl_remove(kn, rdtgrp);
2895
2896 /*
2897 * Free all the child monitor group rmids.
2898 */
2899 free_all_child_rdtgrp(rdtgrp);
2900
2901 return 0;
2902 }
2903
rdtgroup_rmdir(struct kernfs_node * kn)2904 static int rdtgroup_rmdir(struct kernfs_node *kn)
2905 {
2906 struct kernfs_node *parent_kn = kn->parent;
2907 struct rdtgroup *rdtgrp;
2908 cpumask_var_t tmpmask;
2909 int ret = 0;
2910
2911 if (!zalloc_cpumask_var(&tmpmask, GFP_KERNEL))
2912 return -ENOMEM;
2913
2914 rdtgrp = rdtgroup_kn_lock_live(kn);
2915 if (!rdtgrp) {
2916 ret = -EPERM;
2917 goto out;
2918 }
2919
2920 /*
2921 * If the rdtgroup is a ctrl_mon group and parent directory
2922 * is the root directory, remove the ctrl_mon group.
2923 *
2924 * If the rdtgroup is a mon group and parent directory
2925 * is a valid "mon_groups" directory, remove the mon group.
2926 */
2927 if (rdtgrp->type == RDTCTRL_GROUP && parent_kn == rdtgroup_default.kn &&
2928 rdtgrp != &rdtgroup_default) {
2929 if (rdtgrp->mode == RDT_MODE_PSEUDO_LOCKSETUP ||
2930 rdtgrp->mode == RDT_MODE_PSEUDO_LOCKED) {
2931 ret = rdtgroup_ctrl_remove(kn, rdtgrp);
2932 } else {
2933 ret = rdtgroup_rmdir_ctrl(kn, rdtgrp, tmpmask);
2934 }
2935 } else if (rdtgrp->type == RDTMON_GROUP &&
2936 is_mon_groups(parent_kn, kn->name)) {
2937 ret = rdtgroup_rmdir_mon(kn, rdtgrp, tmpmask);
2938 } else {
2939 ret = -EPERM;
2940 }
2941
2942 out:
2943 rdtgroup_kn_unlock(kn);
2944 free_cpumask_var(tmpmask);
2945 return ret;
2946 }
2947
rdtgroup_show_options(struct seq_file * seq,struct kernfs_root * kf)2948 static int rdtgroup_show_options(struct seq_file *seq, struct kernfs_root *kf)
2949 {
2950 if (rdt_resources_all[RDT_RESOURCE_L3DATA].alloc_enabled)
2951 seq_puts(seq, ",cdp");
2952
2953 if (rdt_resources_all[RDT_RESOURCE_L2DATA].alloc_enabled)
2954 seq_puts(seq, ",cdpl2");
2955
2956 if (is_mba_sc(&rdt_resources_all[RDT_RESOURCE_MBA]))
2957 seq_puts(seq, ",mba_MBps");
2958
2959 return 0;
2960 }
2961
2962 static struct kernfs_syscall_ops rdtgroup_kf_syscall_ops = {
2963 .mkdir = rdtgroup_mkdir,
2964 .rmdir = rdtgroup_rmdir,
2965 .show_options = rdtgroup_show_options,
2966 };
2967
rdtgroup_setup_root(void)2968 static int __init rdtgroup_setup_root(void)
2969 {
2970 int ret;
2971
2972 rdt_root = kernfs_create_root(&rdtgroup_kf_syscall_ops,
2973 KERNFS_ROOT_CREATE_DEACTIVATED |
2974 KERNFS_ROOT_EXTRA_OPEN_PERM_CHECK,
2975 &rdtgroup_default);
2976 if (IS_ERR(rdt_root))
2977 return PTR_ERR(rdt_root);
2978
2979 mutex_lock(&rdtgroup_mutex);
2980
2981 rdtgroup_default.closid = 0;
2982 rdtgroup_default.mon.rmid = 0;
2983 rdtgroup_default.type = RDTCTRL_GROUP;
2984 INIT_LIST_HEAD(&rdtgroup_default.mon.crdtgrp_list);
2985
2986 list_add(&rdtgroup_default.rdtgroup_list, &rdt_all_groups);
2987
2988 ret = rdtgroup_add_files(rdt_root->kn, RF_CTRL_BASE);
2989 if (ret) {
2990 kernfs_destroy_root(rdt_root);
2991 goto out;
2992 }
2993
2994 rdtgroup_default.kn = rdt_root->kn;
2995 kernfs_activate(rdtgroup_default.kn);
2996
2997 out:
2998 mutex_unlock(&rdtgroup_mutex);
2999
3000 return ret;
3001 }
3002
3003 /*
3004 * rdtgroup_init - rdtgroup initialization
3005 *
3006 * Setup resctrl file system including set up root, create mount point,
3007 * register rdtgroup filesystem, and initialize files under root directory.
3008 *
3009 * Return: 0 on success or -errno
3010 */
rdtgroup_init(void)3011 int __init rdtgroup_init(void)
3012 {
3013 int ret = 0;
3014
3015 seq_buf_init(&last_cmd_status, last_cmd_status_buf,
3016 sizeof(last_cmd_status_buf));
3017
3018 ret = rdtgroup_setup_root();
3019 if (ret)
3020 return ret;
3021
3022 ret = sysfs_create_mount_point(fs_kobj, "resctrl");
3023 if (ret)
3024 goto cleanup_root;
3025
3026 ret = register_filesystem(&rdt_fs_type);
3027 if (ret)
3028 goto cleanup_mountpoint;
3029
3030 /*
3031 * Adding the resctrl debugfs directory here may not be ideal since
3032 * it would let the resctrl debugfs directory appear on the debugfs
3033 * filesystem before the resctrl filesystem is mounted.
3034 * It may also be ok since that would enable debugging of RDT before
3035 * resctrl is mounted.
3036 * The reason why the debugfs directory is created here and not in
3037 * rdt_mount() is because rdt_mount() takes rdtgroup_mutex and
3038 * during the debugfs directory creation also &sb->s_type->i_mutex_key
3039 * (the lockdep class of inode->i_rwsem). Other filesystem
3040 * interactions (eg. SyS_getdents) have the lock ordering:
3041 * &sb->s_type->i_mutex_key --> &mm->mmap_sem
3042 * During mmap(), called with &mm->mmap_sem, the rdtgroup_mutex
3043 * is taken, thus creating dependency:
3044 * &mm->mmap_sem --> rdtgroup_mutex for the latter that can cause
3045 * issues considering the other two lock dependencies.
3046 * By creating the debugfs directory here we avoid a dependency
3047 * that may cause deadlock (even though file operations cannot
3048 * occur until the filesystem is mounted, but I do not know how to
3049 * tell lockdep that).
3050 */
3051 debugfs_resctrl = debugfs_create_dir("resctrl", NULL);
3052
3053 return 0;
3054
3055 cleanup_mountpoint:
3056 sysfs_remove_mount_point(fs_kobj, "resctrl");
3057 cleanup_root:
3058 kernfs_destroy_root(rdt_root);
3059
3060 return ret;
3061 }
3062
rdtgroup_exit(void)3063 void __exit rdtgroup_exit(void)
3064 {
3065 debugfs_remove_recursive(debugfs_resctrl);
3066 unregister_filesystem(&rdt_fs_type);
3067 sysfs_remove_mount_point(fs_kobj, "resctrl");
3068 kernfs_destroy_root(rdt_root);
3069 }
3070