• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  * cpuid support routines
4  *
5  * derived from arch/x86/kvm/x86.c
6  *
7  * Copyright 2011 Red Hat, Inc. and/or its affiliates.
8  * Copyright IBM Corporation, 2008
9  *
10  * This work is licensed under the terms of the GNU GPL, version 2.  See
11  * the COPYING file in the top-level directory.
12  *
13  */
14 
15 #include <linux/kvm_host.h>
16 #include <linux/export.h>
17 #include <linux/vmalloc.h>
18 #include <linux/uaccess.h>
19 #include <linux/sched/stat.h>
20 
21 #include <asm/processor.h>
22 #include <asm/user.h>
23 #include <asm/fpu/xstate.h>
24 #include "cpuid.h"
25 #include "lapic.h"
26 #include "mmu.h"
27 #include "trace.h"
28 #include "pmu.h"
29 
xstate_required_size(u64 xstate_bv,bool compacted)30 static u32 xstate_required_size(u64 xstate_bv, bool compacted)
31 {
32 	int feature_bit = 0;
33 	u32 ret = XSAVE_HDR_SIZE + XSAVE_HDR_OFFSET;
34 
35 	xstate_bv &= XFEATURE_MASK_EXTEND;
36 	while (xstate_bv) {
37 		if (xstate_bv & 0x1) {
38 		        u32 eax, ebx, ecx, edx, offset;
39 		        cpuid_count(0xD, feature_bit, &eax, &ebx, &ecx, &edx);
40 			offset = compacted ? ret : ebx;
41 			ret = max(ret, offset + eax);
42 		}
43 
44 		xstate_bv >>= 1;
45 		feature_bit++;
46 	}
47 
48 	return ret;
49 }
50 
kvm_mpx_supported(void)51 bool kvm_mpx_supported(void)
52 {
53 	return ((host_xcr0 & (XFEATURE_MASK_BNDREGS | XFEATURE_MASK_BNDCSR))
54 		 && kvm_x86_ops->mpx_supported());
55 }
56 EXPORT_SYMBOL_GPL(kvm_mpx_supported);
57 
kvm_supported_xcr0(void)58 u64 kvm_supported_xcr0(void)
59 {
60 	u64 xcr0 = KVM_SUPPORTED_XCR0 & host_xcr0;
61 
62 	if (!kvm_mpx_supported())
63 		xcr0 &= ~(XFEATURE_MASK_BNDREGS | XFEATURE_MASK_BNDCSR);
64 
65 	return xcr0;
66 }
67 
68 #define F(x) bit(X86_FEATURE_##x)
69 
70 /* For scattered features from cpufeatures.h; we currently expose none */
71 #define KF(x) bit(KVM_CPUID_BIT_##x)
72 
kvm_update_cpuid(struct kvm_vcpu * vcpu)73 int kvm_update_cpuid(struct kvm_vcpu *vcpu)
74 {
75 	struct kvm_cpuid_entry2 *best;
76 	struct kvm_lapic *apic = vcpu->arch.apic;
77 
78 	best = kvm_find_cpuid_entry(vcpu, 1, 0);
79 	if (!best)
80 		return 0;
81 
82 	/* Update OSXSAVE bit */
83 	if (boot_cpu_has(X86_FEATURE_XSAVE) && best->function == 0x1) {
84 		best->ecx &= ~F(OSXSAVE);
85 		if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE))
86 			best->ecx |= F(OSXSAVE);
87 	}
88 
89 	best->edx &= ~F(APIC);
90 	if (vcpu->arch.apic_base & MSR_IA32_APICBASE_ENABLE)
91 		best->edx |= F(APIC);
92 
93 	if (apic) {
94 		if (best->ecx & F(TSC_DEADLINE_TIMER))
95 			apic->lapic_timer.timer_mode_mask = 3 << 17;
96 		else
97 			apic->lapic_timer.timer_mode_mask = 1 << 17;
98 	}
99 
100 	best = kvm_find_cpuid_entry(vcpu, 7, 0);
101 	if (best) {
102 		/* Update OSPKE bit */
103 		if (boot_cpu_has(X86_FEATURE_PKU) && best->function == 0x7) {
104 			best->ecx &= ~F(OSPKE);
105 			if (kvm_read_cr4_bits(vcpu, X86_CR4_PKE))
106 				best->ecx |= F(OSPKE);
107 		}
108 	}
109 
110 	best = kvm_find_cpuid_entry(vcpu, 0xD, 0);
111 	if (!best) {
112 		vcpu->arch.guest_supported_xcr0 = 0;
113 		vcpu->arch.guest_xstate_size = XSAVE_HDR_SIZE + XSAVE_HDR_OFFSET;
114 	} else {
115 		vcpu->arch.guest_supported_xcr0 =
116 			(best->eax | ((u64)best->edx << 32)) &
117 			kvm_supported_xcr0();
118 		vcpu->arch.guest_xstate_size = best->ebx =
119 			xstate_required_size(vcpu->arch.xcr0, false);
120 	}
121 
122 	best = kvm_find_cpuid_entry(vcpu, 0xD, 1);
123 	if (best && (best->eax & (F(XSAVES) | F(XSAVEC))))
124 		best->ebx = xstate_required_size(vcpu->arch.xcr0, true);
125 
126 	/*
127 	 * The existing code assumes virtual address is 48-bit or 57-bit in the
128 	 * canonical address checks; exit if it is ever changed.
129 	 */
130 	best = kvm_find_cpuid_entry(vcpu, 0x80000008, 0);
131 	if (best) {
132 		int vaddr_bits = (best->eax & 0xff00) >> 8;
133 
134 		if (vaddr_bits != 48 && vaddr_bits != 57 && vaddr_bits != 0)
135 			return -EINVAL;
136 	}
137 
138 	best = kvm_find_cpuid_entry(vcpu, KVM_CPUID_FEATURES, 0);
139 	if (kvm_hlt_in_guest(vcpu->kvm) && best &&
140 		(best->eax & (1 << KVM_FEATURE_PV_UNHALT)))
141 		best->eax &= ~(1 << KVM_FEATURE_PV_UNHALT);
142 
143 	/* Update physical-address width */
144 	vcpu->arch.maxphyaddr = cpuid_query_maxphyaddr(vcpu);
145 	kvm_mmu_reset_context(vcpu);
146 
147 	kvm_pmu_refresh(vcpu);
148 	return 0;
149 }
150 
is_efer_nx(void)151 static int is_efer_nx(void)
152 {
153 	unsigned long long efer = 0;
154 
155 	rdmsrl_safe(MSR_EFER, &efer);
156 	return efer & EFER_NX;
157 }
158 
cpuid_fix_nx_cap(struct kvm_vcpu * vcpu)159 static void cpuid_fix_nx_cap(struct kvm_vcpu *vcpu)
160 {
161 	int i;
162 	struct kvm_cpuid_entry2 *e, *entry;
163 
164 	entry = NULL;
165 	for (i = 0; i < vcpu->arch.cpuid_nent; ++i) {
166 		e = &vcpu->arch.cpuid_entries[i];
167 		if (e->function == 0x80000001) {
168 			entry = e;
169 			break;
170 		}
171 	}
172 	if (entry && (entry->edx & F(NX)) && !is_efer_nx()) {
173 		entry->edx &= ~F(NX);
174 		printk(KERN_INFO "kvm: guest NX capability removed\n");
175 	}
176 }
177 
cpuid_query_maxphyaddr(struct kvm_vcpu * vcpu)178 int cpuid_query_maxphyaddr(struct kvm_vcpu *vcpu)
179 {
180 	struct kvm_cpuid_entry2 *best;
181 
182 	best = kvm_find_cpuid_entry(vcpu, 0x80000000, 0);
183 	if (!best || best->eax < 0x80000008)
184 		goto not_found;
185 	best = kvm_find_cpuid_entry(vcpu, 0x80000008, 0);
186 	if (best)
187 		return best->eax & 0xff;
188 not_found:
189 	return 36;
190 }
191 EXPORT_SYMBOL_GPL(cpuid_query_maxphyaddr);
192 
193 /* when an old userspace process fills a new kernel module */
kvm_vcpu_ioctl_set_cpuid(struct kvm_vcpu * vcpu,struct kvm_cpuid * cpuid,struct kvm_cpuid_entry __user * entries)194 int kvm_vcpu_ioctl_set_cpuid(struct kvm_vcpu *vcpu,
195 			     struct kvm_cpuid *cpuid,
196 			     struct kvm_cpuid_entry __user *entries)
197 {
198 	int r, i;
199 	struct kvm_cpuid_entry *cpuid_entries = NULL;
200 
201 	r = -E2BIG;
202 	if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
203 		goto out;
204 	r = -ENOMEM;
205 	if (cpuid->nent) {
206 		cpuid_entries =
207 			vmalloc(array_size(sizeof(struct kvm_cpuid_entry),
208 					   cpuid->nent));
209 		if (!cpuid_entries)
210 			goto out;
211 		r = -EFAULT;
212 		if (copy_from_user(cpuid_entries, entries,
213 				   cpuid->nent * sizeof(struct kvm_cpuid_entry)))
214 			goto out;
215 	}
216 	for (i = 0; i < cpuid->nent; i++) {
217 		vcpu->arch.cpuid_entries[i].function = cpuid_entries[i].function;
218 		vcpu->arch.cpuid_entries[i].eax = cpuid_entries[i].eax;
219 		vcpu->arch.cpuid_entries[i].ebx = cpuid_entries[i].ebx;
220 		vcpu->arch.cpuid_entries[i].ecx = cpuid_entries[i].ecx;
221 		vcpu->arch.cpuid_entries[i].edx = cpuid_entries[i].edx;
222 		vcpu->arch.cpuid_entries[i].index = 0;
223 		vcpu->arch.cpuid_entries[i].flags = 0;
224 		vcpu->arch.cpuid_entries[i].padding[0] = 0;
225 		vcpu->arch.cpuid_entries[i].padding[1] = 0;
226 		vcpu->arch.cpuid_entries[i].padding[2] = 0;
227 	}
228 	vcpu->arch.cpuid_nent = cpuid->nent;
229 	cpuid_fix_nx_cap(vcpu);
230 	kvm_apic_set_version(vcpu);
231 	kvm_x86_ops->cpuid_update(vcpu);
232 	r = kvm_update_cpuid(vcpu);
233 
234 out:
235 	vfree(cpuid_entries);
236 	return r;
237 }
238 
kvm_vcpu_ioctl_set_cpuid2(struct kvm_vcpu * vcpu,struct kvm_cpuid2 * cpuid,struct kvm_cpuid_entry2 __user * entries)239 int kvm_vcpu_ioctl_set_cpuid2(struct kvm_vcpu *vcpu,
240 			      struct kvm_cpuid2 *cpuid,
241 			      struct kvm_cpuid_entry2 __user *entries)
242 {
243 	int r;
244 
245 	r = -E2BIG;
246 	if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
247 		goto out;
248 	r = -EFAULT;
249 	if (copy_from_user(&vcpu->arch.cpuid_entries, entries,
250 			   cpuid->nent * sizeof(struct kvm_cpuid_entry2)))
251 		goto out;
252 	vcpu->arch.cpuid_nent = cpuid->nent;
253 	kvm_apic_set_version(vcpu);
254 	kvm_x86_ops->cpuid_update(vcpu);
255 	r = kvm_update_cpuid(vcpu);
256 out:
257 	return r;
258 }
259 
kvm_vcpu_ioctl_get_cpuid2(struct kvm_vcpu * vcpu,struct kvm_cpuid2 * cpuid,struct kvm_cpuid_entry2 __user * entries)260 int kvm_vcpu_ioctl_get_cpuid2(struct kvm_vcpu *vcpu,
261 			      struct kvm_cpuid2 *cpuid,
262 			      struct kvm_cpuid_entry2 __user *entries)
263 {
264 	int r;
265 
266 	r = -E2BIG;
267 	if (cpuid->nent < vcpu->arch.cpuid_nent)
268 		goto out;
269 	r = -EFAULT;
270 	if (copy_to_user(entries, &vcpu->arch.cpuid_entries,
271 			 vcpu->arch.cpuid_nent * sizeof(struct kvm_cpuid_entry2)))
272 		goto out;
273 	return 0;
274 
275 out:
276 	cpuid->nent = vcpu->arch.cpuid_nent;
277 	return r;
278 }
279 
cpuid_mask(u32 * word,int wordnum)280 static void cpuid_mask(u32 *word, int wordnum)
281 {
282 	*word &= boot_cpu_data.x86_capability[wordnum];
283 }
284 
do_cpuid_1_ent(struct kvm_cpuid_entry2 * entry,u32 function,u32 index)285 static void do_cpuid_1_ent(struct kvm_cpuid_entry2 *entry, u32 function,
286 			   u32 index)
287 {
288 	entry->function = function;
289 	entry->index = index;
290 	cpuid_count(entry->function, entry->index,
291 		    &entry->eax, &entry->ebx, &entry->ecx, &entry->edx);
292 	entry->flags = 0;
293 }
294 
__do_cpuid_ent_emulated(struct kvm_cpuid_entry2 * entry,u32 func,u32 index,int * nent,int maxnent)295 static int __do_cpuid_ent_emulated(struct kvm_cpuid_entry2 *entry,
296 				   u32 func, u32 index, int *nent, int maxnent)
297 {
298 	switch (func) {
299 	case 0:
300 		entry->eax = 7;
301 		++*nent;
302 		break;
303 	case 1:
304 		entry->ecx = F(MOVBE);
305 		++*nent;
306 		break;
307 	case 7:
308 		entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
309 		if (index == 0)
310 			entry->ecx = F(RDPID);
311 		++*nent;
312 	default:
313 		break;
314 	}
315 
316 	entry->function = func;
317 	entry->index = index;
318 
319 	return 0;
320 }
321 
__do_cpuid_ent(struct kvm_cpuid_entry2 * entry,u32 function,u32 index,int * nent,int maxnent)322 static inline int __do_cpuid_ent(struct kvm_cpuid_entry2 *entry, u32 function,
323 				 u32 index, int *nent, int maxnent)
324 {
325 	int r;
326 	unsigned f_nx = is_efer_nx() ? F(NX) : 0;
327 #ifdef CONFIG_X86_64
328 	unsigned f_gbpages = (kvm_x86_ops->get_lpage_level() == PT_PDPE_LEVEL)
329 				? F(GBPAGES) : 0;
330 	unsigned f_lm = F(LM);
331 #else
332 	unsigned f_gbpages = 0;
333 	unsigned f_lm = 0;
334 #endif
335 	unsigned f_rdtscp = kvm_x86_ops->rdtscp_supported() ? F(RDTSCP) : 0;
336 	unsigned f_invpcid = kvm_x86_ops->invpcid_supported() ? F(INVPCID) : 0;
337 	unsigned f_mpx = kvm_mpx_supported() ? F(MPX) : 0;
338 	unsigned f_xsaves = kvm_x86_ops->xsaves_supported() ? F(XSAVES) : 0;
339 	unsigned f_umip = kvm_x86_ops->umip_emulated() ? F(UMIP) : 0;
340 	unsigned f_la57 = 0;
341 
342 	/* cpuid 1.edx */
343 	const u32 kvm_cpuid_1_edx_x86_features =
344 		F(FPU) | F(VME) | F(DE) | F(PSE) |
345 		F(TSC) | F(MSR) | F(PAE) | F(MCE) |
346 		F(CX8) | F(APIC) | 0 /* Reserved */ | F(SEP) |
347 		F(MTRR) | F(PGE) | F(MCA) | F(CMOV) |
348 		F(PAT) | F(PSE36) | 0 /* PSN */ | F(CLFLUSH) |
349 		0 /* Reserved, DS, ACPI */ | F(MMX) |
350 		F(FXSR) | F(XMM) | F(XMM2) | F(SELFSNOOP) |
351 		0 /* HTT, TM, Reserved, PBE */;
352 	/* cpuid 0x80000001.edx */
353 	const u32 kvm_cpuid_8000_0001_edx_x86_features =
354 		F(FPU) | F(VME) | F(DE) | F(PSE) |
355 		F(TSC) | F(MSR) | F(PAE) | F(MCE) |
356 		F(CX8) | F(APIC) | 0 /* Reserved */ | F(SYSCALL) |
357 		F(MTRR) | F(PGE) | F(MCA) | F(CMOV) |
358 		F(PAT) | F(PSE36) | 0 /* Reserved */ |
359 		f_nx | 0 /* Reserved */ | F(MMXEXT) | F(MMX) |
360 		F(FXSR) | F(FXSR_OPT) | f_gbpages | f_rdtscp |
361 		0 /* Reserved */ | f_lm | F(3DNOWEXT) | F(3DNOW);
362 	/* cpuid 1.ecx */
363 	const u32 kvm_cpuid_1_ecx_x86_features =
364 		/* NOTE: MONITOR (and MWAIT) are emulated as NOP,
365 		 * but *not* advertised to guests via CPUID ! */
366 		F(XMM3) | F(PCLMULQDQ) | 0 /* DTES64, MONITOR */ |
367 		0 /* DS-CPL, VMX, SMX, EST */ |
368 		0 /* TM2 */ | F(SSSE3) | 0 /* CNXT-ID */ | 0 /* Reserved */ |
369 		F(FMA) | F(CX16) | 0 /* xTPR Update, PDCM */ |
370 		F(PCID) | 0 /* Reserved, DCA */ | F(XMM4_1) |
371 		F(XMM4_2) | F(X2APIC) | F(MOVBE) | F(POPCNT) |
372 		0 /* Reserved*/ | F(AES) | F(XSAVE) | 0 /* OSXSAVE */ | F(AVX) |
373 		F(F16C) | F(RDRAND);
374 	/* cpuid 0x80000001.ecx */
375 	const u32 kvm_cpuid_8000_0001_ecx_x86_features =
376 		F(LAHF_LM) | F(CMP_LEGACY) | 0 /*SVM*/ | 0 /* ExtApicSpace */ |
377 		F(CR8_LEGACY) | F(ABM) | F(SSE4A) | F(MISALIGNSSE) |
378 		F(3DNOWPREFETCH) | F(OSVW) | 0 /* IBS */ | F(XOP) |
379 		0 /* SKINIT, WDT, LWP */ | F(FMA4) | F(TBM) |
380 		F(TOPOEXT) | F(PERFCTR_CORE);
381 
382 	/* cpuid 0x80000008.ebx */
383 	const u32 kvm_cpuid_8000_0008_ebx_x86_features =
384 		F(AMD_IBPB) | F(AMD_IBRS) | F(AMD_SSBD) | F(VIRT_SSBD) |
385 		F(AMD_SSB_NO) | F(AMD_STIBP);
386 
387 	/* cpuid 0xC0000001.edx */
388 	const u32 kvm_cpuid_C000_0001_edx_x86_features =
389 		F(XSTORE) | F(XSTORE_EN) | F(XCRYPT) | F(XCRYPT_EN) |
390 		F(ACE2) | F(ACE2_EN) | F(PHE) | F(PHE_EN) |
391 		F(PMM) | F(PMM_EN);
392 
393 	/* cpuid 7.0.ebx */
394 	const u32 kvm_cpuid_7_0_ebx_x86_features =
395 		F(FSGSBASE) | F(BMI1) | F(HLE) | F(AVX2) | F(SMEP) |
396 		F(BMI2) | F(ERMS) | f_invpcid | F(RTM) | f_mpx | F(RDSEED) |
397 		F(ADX) | F(SMAP) | F(AVX512IFMA) | F(AVX512F) | F(AVX512PF) |
398 		F(AVX512ER) | F(AVX512CD) | F(CLFLUSHOPT) | F(CLWB) | F(AVX512DQ) |
399 		F(SHA_NI) | F(AVX512BW) | F(AVX512VL);
400 
401 	/* cpuid 0xD.1.eax */
402 	const u32 kvm_cpuid_D_1_eax_x86_features =
403 		F(XSAVEOPT) | F(XSAVEC) | F(XGETBV1) | f_xsaves;
404 
405 	/* cpuid 7.0.ecx*/
406 	const u32 kvm_cpuid_7_0_ecx_x86_features =
407 		F(AVX512VBMI) | F(LA57) | F(PKU) | 0 /*OSPKE*/ |
408 		F(AVX512_VPOPCNTDQ) | F(UMIP) | F(AVX512_VBMI2) | F(GFNI) |
409 		F(VAES) | F(VPCLMULQDQ) | F(AVX512_VNNI) | F(AVX512_BITALG) |
410 		F(CLDEMOTE);
411 
412 	/* cpuid 7.0.edx*/
413 	const u32 kvm_cpuid_7_0_edx_x86_features =
414 		F(AVX512_4VNNIW) | F(AVX512_4FMAPS) | F(SPEC_CTRL) |
415 		F(SPEC_CTRL_SSBD) | F(ARCH_CAPABILITIES) | F(INTEL_STIBP) |
416 		F(MD_CLEAR);
417 
418 	/* all calls to cpuid_count() should be made on the same cpu */
419 	get_cpu();
420 
421 	r = -E2BIG;
422 
423 	if (WARN_ON(*nent >= maxnent))
424 		goto out;
425 
426 	do_cpuid_1_ent(entry, function, index);
427 	++*nent;
428 
429 	switch (function) {
430 	case 0:
431 		entry->eax = min(entry->eax, (u32)0xd);
432 		break;
433 	case 1:
434 		entry->edx &= kvm_cpuid_1_edx_x86_features;
435 		cpuid_mask(&entry->edx, CPUID_1_EDX);
436 		entry->ecx &= kvm_cpuid_1_ecx_x86_features;
437 		cpuid_mask(&entry->ecx, CPUID_1_ECX);
438 		/* we support x2apic emulation even if host does not support
439 		 * it since we emulate x2apic in software */
440 		entry->ecx |= F(X2APIC);
441 		break;
442 	/* function 2 entries are STATEFUL. That is, repeated cpuid commands
443 	 * may return different values. This forces us to get_cpu() before
444 	 * issuing the first command, and also to emulate this annoying behavior
445 	 * in kvm_emulate_cpuid() using KVM_CPUID_FLAG_STATE_READ_NEXT */
446 	case 2: {
447 		int t, times = entry->eax & 0xff;
448 
449 		entry->flags |= KVM_CPUID_FLAG_STATEFUL_FUNC;
450 		entry->flags |= KVM_CPUID_FLAG_STATE_READ_NEXT;
451 		for (t = 1; t < times; ++t) {
452 			if (*nent >= maxnent)
453 				goto out;
454 
455 			do_cpuid_1_ent(&entry[t], function, 0);
456 			entry[t].flags |= KVM_CPUID_FLAG_STATEFUL_FUNC;
457 			++*nent;
458 		}
459 		break;
460 	}
461 	/* function 4 has additional index. */
462 	case 4: {
463 		int i, cache_type;
464 
465 		entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
466 		/* read more entries until cache_type is zero */
467 		for (i = 1; ; ++i) {
468 			if (*nent >= maxnent)
469 				goto out;
470 
471 			cache_type = entry[i - 1].eax & 0x1f;
472 			if (!cache_type)
473 				break;
474 			do_cpuid_1_ent(&entry[i], function, i);
475 			entry[i].flags |=
476 			       KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
477 			++*nent;
478 		}
479 		break;
480 	}
481 	case 6: /* Thermal management */
482 		entry->eax = 0x4; /* allow ARAT */
483 		entry->ebx = 0;
484 		entry->ecx = 0;
485 		entry->edx = 0;
486 		break;
487 	case 7: {
488 		entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
489 		/* Mask ebx against host capability word 9 */
490 		if (index == 0) {
491 			entry->ebx &= kvm_cpuid_7_0_ebx_x86_features;
492 			cpuid_mask(&entry->ebx, CPUID_7_0_EBX);
493 			// TSC_ADJUST is emulated
494 			entry->ebx |= F(TSC_ADJUST);
495 			entry->ecx &= kvm_cpuid_7_0_ecx_x86_features;
496 			f_la57 = entry->ecx & F(LA57);
497 			cpuid_mask(&entry->ecx, CPUID_7_ECX);
498 			/* Set LA57 based on hardware capability. */
499 			entry->ecx |= f_la57;
500 			entry->ecx |= f_umip;
501 			/* PKU is not yet implemented for shadow paging. */
502 			if (!tdp_enabled || !boot_cpu_has(X86_FEATURE_OSPKE))
503 				entry->ecx &= ~F(PKU);
504 
505 			entry->edx &= kvm_cpuid_7_0_edx_x86_features;
506 			cpuid_mask(&entry->edx, CPUID_7_EDX);
507 			if (boot_cpu_has(X86_FEATURE_IBPB) &&
508 			    boot_cpu_has(X86_FEATURE_IBRS))
509 				entry->edx |= F(SPEC_CTRL);
510 			if (boot_cpu_has(X86_FEATURE_STIBP))
511 				entry->edx |= F(INTEL_STIBP);
512 			if (boot_cpu_has(X86_FEATURE_SPEC_CTRL_SSBD) ||
513 			    boot_cpu_has(X86_FEATURE_AMD_SSBD))
514 				entry->edx |= F(SPEC_CTRL_SSBD);
515 			/*
516 			 * We emulate ARCH_CAPABILITIES in software even
517 			 * if the host doesn't support it.
518 			 */
519 			entry->edx |= F(ARCH_CAPABILITIES);
520 		} else {
521 			entry->ebx = 0;
522 			entry->ecx = 0;
523 			entry->edx = 0;
524 		}
525 		entry->eax = 0;
526 		break;
527 	}
528 	case 9:
529 		break;
530 	case 0xa: { /* Architectural Performance Monitoring */
531 		struct x86_pmu_capability cap;
532 		union cpuid10_eax eax;
533 		union cpuid10_edx edx;
534 
535 		perf_get_x86_pmu_capability(&cap);
536 
537 		/*
538 		 * Only support guest architectural pmu on a host
539 		 * with architectural pmu.
540 		 */
541 		if (!cap.version)
542 			memset(&cap, 0, sizeof(cap));
543 
544 		eax.split.version_id = min(cap.version, 2);
545 		eax.split.num_counters = cap.num_counters_gp;
546 		eax.split.bit_width = cap.bit_width_gp;
547 		eax.split.mask_length = cap.events_mask_len;
548 
549 		edx.split.num_counters_fixed = cap.num_counters_fixed;
550 		edx.split.bit_width_fixed = cap.bit_width_fixed;
551 		edx.split.reserved = 0;
552 
553 		entry->eax = eax.full;
554 		entry->ebx = cap.events_mask;
555 		entry->ecx = 0;
556 		entry->edx = edx.full;
557 		break;
558 	}
559 	/* function 0xb has additional index. */
560 	case 0xb: {
561 		int i, level_type;
562 
563 		entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
564 		/* read more entries until level_type is zero */
565 		for (i = 1; ; ++i) {
566 			if (*nent >= maxnent)
567 				goto out;
568 
569 			level_type = entry[i - 1].ecx & 0xff00;
570 			if (!level_type)
571 				break;
572 			do_cpuid_1_ent(&entry[i], function, i);
573 			entry[i].flags |=
574 			       KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
575 			++*nent;
576 		}
577 		break;
578 	}
579 	case 0xd: {
580 		int idx, i;
581 		u64 supported = kvm_supported_xcr0();
582 
583 		entry->eax &= supported;
584 		entry->ebx = xstate_required_size(supported, false);
585 		entry->ecx = entry->ebx;
586 		entry->edx &= supported >> 32;
587 		entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
588 		if (!supported)
589 			break;
590 
591 		for (idx = 1, i = 1; idx < 64; ++idx) {
592 			u64 mask = ((u64)1 << idx);
593 			if (*nent >= maxnent)
594 				goto out;
595 
596 			do_cpuid_1_ent(&entry[i], function, idx);
597 			if (idx == 1) {
598 				entry[i].eax &= kvm_cpuid_D_1_eax_x86_features;
599 				cpuid_mask(&entry[i].eax, CPUID_D_1_EAX);
600 				entry[i].ebx = 0;
601 				if (entry[i].eax & (F(XSAVES)|F(XSAVEC)))
602 					entry[i].ebx =
603 						xstate_required_size(supported,
604 								     true);
605 			} else {
606 				if (entry[i].eax == 0 || !(supported & mask))
607 					continue;
608 				if (WARN_ON_ONCE(entry[i].ecx & 1))
609 					continue;
610 			}
611 			entry[i].ecx = 0;
612 			entry[i].edx = 0;
613 			entry[i].flags |=
614 			       KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
615 			++*nent;
616 			++i;
617 		}
618 		break;
619 	}
620 	case KVM_CPUID_SIGNATURE: {
621 		static const char signature[12] = "KVMKVMKVM\0\0";
622 		const u32 *sigptr = (const u32 *)signature;
623 		entry->eax = KVM_CPUID_FEATURES;
624 		entry->ebx = sigptr[0];
625 		entry->ecx = sigptr[1];
626 		entry->edx = sigptr[2];
627 		break;
628 	}
629 	case KVM_CPUID_FEATURES:
630 		entry->eax = (1 << KVM_FEATURE_CLOCKSOURCE) |
631 			     (1 << KVM_FEATURE_NOP_IO_DELAY) |
632 			     (1 << KVM_FEATURE_CLOCKSOURCE2) |
633 			     (1 << KVM_FEATURE_ASYNC_PF) |
634 			     (1 << KVM_FEATURE_PV_EOI) |
635 			     (1 << KVM_FEATURE_CLOCKSOURCE_STABLE_BIT) |
636 			     (1 << KVM_FEATURE_PV_UNHALT) |
637 			     (1 << KVM_FEATURE_PV_TLB_FLUSH) |
638 			     (1 << KVM_FEATURE_ASYNC_PF_VMEXIT) |
639 			     (1 << KVM_FEATURE_PV_SEND_IPI);
640 
641 		if (sched_info_on())
642 			entry->eax |= (1 << KVM_FEATURE_STEAL_TIME);
643 
644 		entry->ebx = 0;
645 		entry->ecx = 0;
646 		entry->edx = 0;
647 		break;
648 	case 0x80000000:
649 		entry->eax = min(entry->eax, 0x8000001f);
650 		break;
651 	case 0x80000001:
652 		entry->edx &= kvm_cpuid_8000_0001_edx_x86_features;
653 		cpuid_mask(&entry->edx, CPUID_8000_0001_EDX);
654 		entry->ecx &= kvm_cpuid_8000_0001_ecx_x86_features;
655 		cpuid_mask(&entry->ecx, CPUID_8000_0001_ECX);
656 		break;
657 	case 0x80000007: /* Advanced power management */
658 		/* invariant TSC is CPUID.80000007H:EDX[8] */
659 		entry->edx &= (1 << 8);
660 		/* mask against host */
661 		entry->edx &= boot_cpu_data.x86_power;
662 		entry->eax = entry->ebx = entry->ecx = 0;
663 		break;
664 	case 0x80000008: {
665 		unsigned g_phys_as = (entry->eax >> 16) & 0xff;
666 		unsigned virt_as = max((entry->eax >> 8) & 0xff, 48U);
667 		unsigned phys_as = entry->eax & 0xff;
668 
669 		if (!g_phys_as)
670 			g_phys_as = phys_as;
671 		entry->eax = g_phys_as | (virt_as << 8);
672 		entry->edx = 0;
673 		/*
674 		 * IBRS, IBPB and VIRT_SSBD aren't necessarily present in
675 		 * hardware cpuid
676 		 */
677 		if (boot_cpu_has(X86_FEATURE_AMD_IBPB))
678 			entry->ebx |= F(AMD_IBPB);
679 		if (boot_cpu_has(X86_FEATURE_AMD_IBRS))
680 			entry->ebx |= F(AMD_IBRS);
681 		if (boot_cpu_has(X86_FEATURE_VIRT_SSBD))
682 			entry->ebx |= F(VIRT_SSBD);
683 		entry->ebx &= kvm_cpuid_8000_0008_ebx_x86_features;
684 		cpuid_mask(&entry->ebx, CPUID_8000_0008_EBX);
685 		/*
686 		 * The preference is to use SPEC CTRL MSR instead of the
687 		 * VIRT_SPEC MSR.
688 		 */
689 		if (boot_cpu_has(X86_FEATURE_LS_CFG_SSBD) &&
690 		    !boot_cpu_has(X86_FEATURE_AMD_SSBD))
691 			entry->ebx |= F(VIRT_SSBD);
692 		break;
693 	}
694 	case 0x80000019:
695 		entry->ecx = entry->edx = 0;
696 		break;
697 	case 0x8000001a:
698 		break;
699 	case 0x8000001d:
700 		break;
701 	/*Add support for Centaur's CPUID instruction*/
702 	case 0xC0000000:
703 		/*Just support up to 0xC0000004 now*/
704 		entry->eax = min(entry->eax, 0xC0000004);
705 		break;
706 	case 0xC0000001:
707 		entry->edx &= kvm_cpuid_C000_0001_edx_x86_features;
708 		cpuid_mask(&entry->edx, CPUID_C000_0001_EDX);
709 		break;
710 	case 3: /* Processor serial number */
711 	case 5: /* MONITOR/MWAIT */
712 	case 0xC0000002:
713 	case 0xC0000003:
714 	case 0xC0000004:
715 	default:
716 		entry->eax = entry->ebx = entry->ecx = entry->edx = 0;
717 		break;
718 	}
719 
720 	kvm_x86_ops->set_supported_cpuid(function, entry);
721 
722 	r = 0;
723 
724 out:
725 	put_cpu();
726 
727 	return r;
728 }
729 
do_cpuid_ent(struct kvm_cpuid_entry2 * entry,u32 func,u32 idx,int * nent,int maxnent,unsigned int type)730 static int do_cpuid_ent(struct kvm_cpuid_entry2 *entry, u32 func,
731 			u32 idx, int *nent, int maxnent, unsigned int type)
732 {
733 	if (*nent >= maxnent)
734 		return -E2BIG;
735 
736 	if (type == KVM_GET_EMULATED_CPUID)
737 		return __do_cpuid_ent_emulated(entry, func, idx, nent, maxnent);
738 
739 	return __do_cpuid_ent(entry, func, idx, nent, maxnent);
740 }
741 
742 #undef F
743 
744 struct kvm_cpuid_param {
745 	u32 func;
746 	u32 idx;
747 	bool has_leaf_count;
748 	bool (*qualifier)(const struct kvm_cpuid_param *param);
749 };
750 
is_centaur_cpu(const struct kvm_cpuid_param * param)751 static bool is_centaur_cpu(const struct kvm_cpuid_param *param)
752 {
753 	return boot_cpu_data.x86_vendor == X86_VENDOR_CENTAUR;
754 }
755 
sanity_check_entries(struct kvm_cpuid_entry2 __user * entries,__u32 num_entries,unsigned int ioctl_type)756 static bool sanity_check_entries(struct kvm_cpuid_entry2 __user *entries,
757 				 __u32 num_entries, unsigned int ioctl_type)
758 {
759 	int i;
760 	__u32 pad[3];
761 
762 	if (ioctl_type != KVM_GET_EMULATED_CPUID)
763 		return false;
764 
765 	/*
766 	 * We want to make sure that ->padding is being passed clean from
767 	 * userspace in case we want to use it for something in the future.
768 	 *
769 	 * Sadly, this wasn't enforced for KVM_GET_SUPPORTED_CPUID and so we
770 	 * have to give ourselves satisfied only with the emulated side. /me
771 	 * sheds a tear.
772 	 */
773 	for (i = 0; i < num_entries; i++) {
774 		if (copy_from_user(pad, entries[i].padding, sizeof(pad)))
775 			return true;
776 
777 		if (pad[0] || pad[1] || pad[2])
778 			return true;
779 	}
780 	return false;
781 }
782 
kvm_dev_ioctl_get_cpuid(struct kvm_cpuid2 * cpuid,struct kvm_cpuid_entry2 __user * entries,unsigned int type)783 int kvm_dev_ioctl_get_cpuid(struct kvm_cpuid2 *cpuid,
784 			    struct kvm_cpuid_entry2 __user *entries,
785 			    unsigned int type)
786 {
787 	struct kvm_cpuid_entry2 *cpuid_entries;
788 	int limit, nent = 0, r = -E2BIG, i;
789 	u32 func;
790 	static const struct kvm_cpuid_param param[] = {
791 		{ .func = 0, .has_leaf_count = true },
792 		{ .func = 0x80000000, .has_leaf_count = true },
793 		{ .func = 0xC0000000, .qualifier = is_centaur_cpu, .has_leaf_count = true },
794 		{ .func = KVM_CPUID_SIGNATURE },
795 		{ .func = KVM_CPUID_FEATURES },
796 	};
797 
798 	if (cpuid->nent < 1)
799 		goto out;
800 	if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
801 		cpuid->nent = KVM_MAX_CPUID_ENTRIES;
802 
803 	if (sanity_check_entries(entries, cpuid->nent, type))
804 		return -EINVAL;
805 
806 	r = -ENOMEM;
807 	cpuid_entries = vzalloc(array_size(sizeof(struct kvm_cpuid_entry2),
808 					   cpuid->nent));
809 	if (!cpuid_entries)
810 		goto out;
811 
812 	r = 0;
813 	for (i = 0; i < ARRAY_SIZE(param); i++) {
814 		const struct kvm_cpuid_param *ent = &param[i];
815 
816 		if (ent->qualifier && !ent->qualifier(ent))
817 			continue;
818 
819 		r = do_cpuid_ent(&cpuid_entries[nent], ent->func, ent->idx,
820 				&nent, cpuid->nent, type);
821 
822 		if (r)
823 			goto out_free;
824 
825 		if (!ent->has_leaf_count)
826 			continue;
827 
828 		limit = cpuid_entries[nent - 1].eax;
829 		for (func = ent->func + 1; func <= limit && nent < cpuid->nent && r == 0; ++func)
830 			r = do_cpuid_ent(&cpuid_entries[nent], func, ent->idx,
831 				     &nent, cpuid->nent, type);
832 
833 		if (r)
834 			goto out_free;
835 	}
836 
837 	r = -EFAULT;
838 	if (copy_to_user(entries, cpuid_entries,
839 			 nent * sizeof(struct kvm_cpuid_entry2)))
840 		goto out_free;
841 	cpuid->nent = nent;
842 	r = 0;
843 
844 out_free:
845 	vfree(cpuid_entries);
846 out:
847 	return r;
848 }
849 
move_to_next_stateful_cpuid_entry(struct kvm_vcpu * vcpu,int i)850 static int move_to_next_stateful_cpuid_entry(struct kvm_vcpu *vcpu, int i)
851 {
852 	struct kvm_cpuid_entry2 *e = &vcpu->arch.cpuid_entries[i];
853 	struct kvm_cpuid_entry2 *ej;
854 	int j = i;
855 	int nent = vcpu->arch.cpuid_nent;
856 
857 	e->flags &= ~KVM_CPUID_FLAG_STATE_READ_NEXT;
858 	/* when no next entry is found, the current entry[i] is reselected */
859 	do {
860 		j = (j + 1) % nent;
861 		ej = &vcpu->arch.cpuid_entries[j];
862 	} while (ej->function != e->function);
863 
864 	ej->flags |= KVM_CPUID_FLAG_STATE_READ_NEXT;
865 
866 	return j;
867 }
868 
869 /* find an entry with matching function, matching index (if needed), and that
870  * should be read next (if it's stateful) */
is_matching_cpuid_entry(struct kvm_cpuid_entry2 * e,u32 function,u32 index)871 static int is_matching_cpuid_entry(struct kvm_cpuid_entry2 *e,
872 	u32 function, u32 index)
873 {
874 	if (e->function != function)
875 		return 0;
876 	if ((e->flags & KVM_CPUID_FLAG_SIGNIFCANT_INDEX) && e->index != index)
877 		return 0;
878 	if ((e->flags & KVM_CPUID_FLAG_STATEFUL_FUNC) &&
879 	    !(e->flags & KVM_CPUID_FLAG_STATE_READ_NEXT))
880 		return 0;
881 	return 1;
882 }
883 
kvm_find_cpuid_entry(struct kvm_vcpu * vcpu,u32 function,u32 index)884 struct kvm_cpuid_entry2 *kvm_find_cpuid_entry(struct kvm_vcpu *vcpu,
885 					      u32 function, u32 index)
886 {
887 	int i;
888 	struct kvm_cpuid_entry2 *best = NULL;
889 
890 	for (i = 0; i < vcpu->arch.cpuid_nent; ++i) {
891 		struct kvm_cpuid_entry2 *e;
892 
893 		e = &vcpu->arch.cpuid_entries[i];
894 		if (is_matching_cpuid_entry(e, function, index)) {
895 			if (e->flags & KVM_CPUID_FLAG_STATEFUL_FUNC)
896 				move_to_next_stateful_cpuid_entry(vcpu, i);
897 			best = e;
898 			break;
899 		}
900 	}
901 	return best;
902 }
903 EXPORT_SYMBOL_GPL(kvm_find_cpuid_entry);
904 
905 /*
906  * If no match is found, check whether we exceed the vCPU's limit
907  * and return the content of the highest valid _standard_ leaf instead.
908  * This is to satisfy the CPUID specification.
909  */
check_cpuid_limit(struct kvm_vcpu * vcpu,u32 function,u32 index)910 static struct kvm_cpuid_entry2* check_cpuid_limit(struct kvm_vcpu *vcpu,
911                                                   u32 function, u32 index)
912 {
913 	struct kvm_cpuid_entry2 *maxlevel;
914 
915 	maxlevel = kvm_find_cpuid_entry(vcpu, function & 0x80000000, 0);
916 	if (!maxlevel || maxlevel->eax >= function)
917 		return NULL;
918 	if (function & 0x80000000) {
919 		maxlevel = kvm_find_cpuid_entry(vcpu, 0, 0);
920 		if (!maxlevel)
921 			return NULL;
922 	}
923 	return kvm_find_cpuid_entry(vcpu, maxlevel->eax, index);
924 }
925 
kvm_cpuid(struct kvm_vcpu * vcpu,u32 * eax,u32 * ebx,u32 * ecx,u32 * edx,bool check_limit)926 bool kvm_cpuid(struct kvm_vcpu *vcpu, u32 *eax, u32 *ebx,
927 	       u32 *ecx, u32 *edx, bool check_limit)
928 {
929 	u32 function = *eax, index = *ecx;
930 	struct kvm_cpuid_entry2 *best;
931 	bool entry_found = true;
932 
933 	best = kvm_find_cpuid_entry(vcpu, function, index);
934 
935 	if (!best) {
936 		entry_found = false;
937 		if (!check_limit)
938 			goto out;
939 
940 		best = check_cpuid_limit(vcpu, function, index);
941 	}
942 
943 out:
944 	if (best) {
945 		*eax = best->eax;
946 		*ebx = best->ebx;
947 		*ecx = best->ecx;
948 		*edx = best->edx;
949 	} else
950 		*eax = *ebx = *ecx = *edx = 0;
951 	trace_kvm_cpuid(function, *eax, *ebx, *ecx, *edx, entry_found);
952 	return entry_found;
953 }
954 EXPORT_SYMBOL_GPL(kvm_cpuid);
955 
kvm_emulate_cpuid(struct kvm_vcpu * vcpu)956 int kvm_emulate_cpuid(struct kvm_vcpu *vcpu)
957 {
958 	u32 eax, ebx, ecx, edx;
959 
960 	if (cpuid_fault_enabled(vcpu) && !kvm_require_cpl(vcpu, 0))
961 		return 1;
962 
963 	eax = kvm_register_read(vcpu, VCPU_REGS_RAX);
964 	ecx = kvm_register_read(vcpu, VCPU_REGS_RCX);
965 	kvm_cpuid(vcpu, &eax, &ebx, &ecx, &edx, true);
966 	kvm_register_write(vcpu, VCPU_REGS_RAX, eax);
967 	kvm_register_write(vcpu, VCPU_REGS_RBX, ebx);
968 	kvm_register_write(vcpu, VCPU_REGS_RCX, ecx);
969 	kvm_register_write(vcpu, VCPU_REGS_RDX, edx);
970 	return kvm_skip_emulated_instruction(vcpu);
971 }
972 EXPORT_SYMBOL_GPL(kvm_emulate_cpuid);
973