• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * This module enables machines with Intel VT-x extensions to run virtual
5  * machines without emulation or binary translation.
6  *
7  * MMU support
8  *
9  * Copyright (C) 2006 Qumranet, Inc.
10  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
11  *
12  * Authors:
13  *   Yaniv Kamay  <yaniv@qumranet.com>
14  *   Avi Kivity   <avi@qumranet.com>
15  *
16  * This work is licensed under the terms of the GNU GPL, version 2.  See
17  * the COPYING file in the top-level directory.
18  *
19  */
20 
21 /*
22  * We need the mmu code to access both 32-bit and 64-bit guest ptes,
23  * so the code in this file is compiled twice, once per pte size.
24  */
25 
26 #if PTTYPE == 64
27 	#define pt_element_t u64
28 	#define guest_walker guest_walker64
29 	#define FNAME(name) paging##64_##name
30 	#define PT_BASE_ADDR_MASK PT64_BASE_ADDR_MASK
31 	#define PT_LVL_ADDR_MASK(lvl) PT64_LVL_ADDR_MASK(lvl)
32 	#define PT_LVL_OFFSET_MASK(lvl) PT64_LVL_OFFSET_MASK(lvl)
33 	#define PT_INDEX(addr, level) PT64_INDEX(addr, level)
34 	#define PT_LEVEL_BITS PT64_LEVEL_BITS
35 	#define PT_GUEST_DIRTY_SHIFT PT_DIRTY_SHIFT
36 	#define PT_GUEST_ACCESSED_SHIFT PT_ACCESSED_SHIFT
37 	#define PT_HAVE_ACCESSED_DIRTY(mmu) true
38 	#ifdef CONFIG_X86_64
39 	#define PT_MAX_FULL_LEVELS PT64_ROOT_MAX_LEVEL
40 	#define CMPXCHG cmpxchg
41 	#else
42 	#define CMPXCHG cmpxchg64
43 	#define PT_MAX_FULL_LEVELS 2
44 	#endif
45 #elif PTTYPE == 32
46 	#define pt_element_t u32
47 	#define guest_walker guest_walker32
48 	#define FNAME(name) paging##32_##name
49 	#define PT_BASE_ADDR_MASK PT32_BASE_ADDR_MASK
50 	#define PT_LVL_ADDR_MASK(lvl) PT32_LVL_ADDR_MASK(lvl)
51 	#define PT_LVL_OFFSET_MASK(lvl) PT32_LVL_OFFSET_MASK(lvl)
52 	#define PT_INDEX(addr, level) PT32_INDEX(addr, level)
53 	#define PT_LEVEL_BITS PT32_LEVEL_BITS
54 	#define PT_MAX_FULL_LEVELS 2
55 	#define PT_GUEST_DIRTY_SHIFT PT_DIRTY_SHIFT
56 	#define PT_GUEST_ACCESSED_SHIFT PT_ACCESSED_SHIFT
57 	#define PT_HAVE_ACCESSED_DIRTY(mmu) true
58 	#define CMPXCHG cmpxchg
59 #elif PTTYPE == PTTYPE_EPT
60 	#define pt_element_t u64
61 	#define guest_walker guest_walkerEPT
62 	#define FNAME(name) ept_##name
63 	#define PT_BASE_ADDR_MASK PT64_BASE_ADDR_MASK
64 	#define PT_LVL_ADDR_MASK(lvl) PT64_LVL_ADDR_MASK(lvl)
65 	#define PT_LVL_OFFSET_MASK(lvl) PT64_LVL_OFFSET_MASK(lvl)
66 	#define PT_INDEX(addr, level) PT64_INDEX(addr, level)
67 	#define PT_LEVEL_BITS PT64_LEVEL_BITS
68 	#define PT_GUEST_DIRTY_SHIFT 9
69 	#define PT_GUEST_ACCESSED_SHIFT 8
70 	#define PT_HAVE_ACCESSED_DIRTY(mmu) ((mmu)->ept_ad)
71 	#define CMPXCHG cmpxchg64
72 	#define PT_MAX_FULL_LEVELS 4
73 #else
74 	#error Invalid PTTYPE value
75 #endif
76 
77 #define PT_GUEST_DIRTY_MASK    (1 << PT_GUEST_DIRTY_SHIFT)
78 #define PT_GUEST_ACCESSED_MASK (1 << PT_GUEST_ACCESSED_SHIFT)
79 
80 #define gpte_to_gfn_lvl FNAME(gpte_to_gfn_lvl)
81 #define gpte_to_gfn(pte) gpte_to_gfn_lvl((pte), PT_PAGE_TABLE_LEVEL)
82 
83 /*
84  * The guest_walker structure emulates the behavior of the hardware page
85  * table walker.
86  */
87 struct guest_walker {
88 	int level;
89 	unsigned max_level;
90 	gfn_t table_gfn[PT_MAX_FULL_LEVELS];
91 	pt_element_t ptes[PT_MAX_FULL_LEVELS];
92 	pt_element_t prefetch_ptes[PTE_PREFETCH_NUM];
93 	gpa_t pte_gpa[PT_MAX_FULL_LEVELS];
94 	pt_element_t __user *ptep_user[PT_MAX_FULL_LEVELS];
95 	bool pte_writable[PT_MAX_FULL_LEVELS];
96 	unsigned int pt_access[PT_MAX_FULL_LEVELS];
97 	unsigned int pte_access;
98 	gfn_t gfn;
99 	struct x86_exception fault;
100 };
101 
gpte_to_gfn_lvl(pt_element_t gpte,int lvl)102 static gfn_t gpte_to_gfn_lvl(pt_element_t gpte, int lvl)
103 {
104 	return (gpte & PT_LVL_ADDR_MASK(lvl)) >> PAGE_SHIFT;
105 }
106 
FNAME(protect_clean_gpte)107 static inline void FNAME(protect_clean_gpte)(struct kvm_mmu *mmu, unsigned *access,
108 					     unsigned gpte)
109 {
110 	unsigned mask;
111 
112 	/* dirty bit is not supported, so no need to track it */
113 	if (!PT_HAVE_ACCESSED_DIRTY(mmu))
114 		return;
115 
116 	BUILD_BUG_ON(PT_WRITABLE_MASK != ACC_WRITE_MASK);
117 
118 	mask = (unsigned)~ACC_WRITE_MASK;
119 	/* Allow write access to dirty gptes */
120 	mask |= (gpte >> (PT_GUEST_DIRTY_SHIFT - PT_WRITABLE_SHIFT)) &
121 		PT_WRITABLE_MASK;
122 	*access &= mask;
123 }
124 
FNAME(is_present_gpte)125 static inline int FNAME(is_present_gpte)(unsigned long pte)
126 {
127 #if PTTYPE != PTTYPE_EPT
128 	return pte & PT_PRESENT_MASK;
129 #else
130 	return pte & 7;
131 #endif
132 }
133 
FNAME(cmpxchg_gpte)134 static int FNAME(cmpxchg_gpte)(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
135 			       pt_element_t __user *ptep_user, unsigned index,
136 			       pt_element_t orig_pte, pt_element_t new_pte)
137 {
138 	int npages;
139 	pt_element_t ret;
140 	pt_element_t *table;
141 	struct page *page;
142 
143 	npages = get_user_pages_fast((unsigned long)ptep_user, 1, 1, &page);
144 	/* Check if the user is doing something meaningless. */
145 	if (unlikely(npages != 1))
146 		return -EFAULT;
147 
148 	table = kmap_atomic(page);
149 	ret = CMPXCHG(&table[index], orig_pte, new_pte);
150 	kunmap_atomic(table);
151 
152 	kvm_release_page_dirty(page);
153 
154 	return (ret != orig_pte);
155 }
156 
FNAME(prefetch_invalid_gpte)157 static bool FNAME(prefetch_invalid_gpte)(struct kvm_vcpu *vcpu,
158 				  struct kvm_mmu_page *sp, u64 *spte,
159 				  u64 gpte)
160 {
161 	if (is_rsvd_bits_set(&vcpu->arch.mmu, gpte, PT_PAGE_TABLE_LEVEL))
162 		goto no_present;
163 
164 	if (!FNAME(is_present_gpte)(gpte))
165 		goto no_present;
166 
167 	/* if accessed bit is not supported prefetch non accessed gpte */
168 	if (PT_HAVE_ACCESSED_DIRTY(&vcpu->arch.mmu) && !(gpte & PT_GUEST_ACCESSED_MASK))
169 		goto no_present;
170 
171 	return false;
172 
173 no_present:
174 	drop_spte(vcpu->kvm, spte);
175 	return true;
176 }
177 
178 /*
179  * For PTTYPE_EPT, a page table can be executable but not readable
180  * on supported processors. Therefore, set_spte does not automatically
181  * set bit 0 if execute only is supported. Here, we repurpose ACC_USER_MASK
182  * to signify readability since it isn't used in the EPT case
183  */
FNAME(gpte_access)184 static inline unsigned FNAME(gpte_access)(u64 gpte)
185 {
186 	unsigned access;
187 #if PTTYPE == PTTYPE_EPT
188 	access = ((gpte & VMX_EPT_WRITABLE_MASK) ? ACC_WRITE_MASK : 0) |
189 		((gpte & VMX_EPT_EXECUTABLE_MASK) ? ACC_EXEC_MASK : 0) |
190 		((gpte & VMX_EPT_READABLE_MASK) ? ACC_USER_MASK : 0);
191 #else
192 	BUILD_BUG_ON(ACC_EXEC_MASK != PT_PRESENT_MASK);
193 	BUILD_BUG_ON(ACC_EXEC_MASK != 1);
194 	access = gpte & (PT_WRITABLE_MASK | PT_USER_MASK | PT_PRESENT_MASK);
195 	/* Combine NX with P (which is set here) to get ACC_EXEC_MASK.  */
196 	access ^= (gpte >> PT64_NX_SHIFT);
197 #endif
198 
199 	return access;
200 }
201 
FNAME(update_accessed_dirty_bits)202 static int FNAME(update_accessed_dirty_bits)(struct kvm_vcpu *vcpu,
203 					     struct kvm_mmu *mmu,
204 					     struct guest_walker *walker,
205 					     gpa_t addr, int write_fault)
206 {
207 	unsigned level, index;
208 	pt_element_t pte, orig_pte;
209 	pt_element_t __user *ptep_user;
210 	gfn_t table_gfn;
211 	int ret;
212 
213 	/* dirty/accessed bits are not supported, so no need to update them */
214 	if (!PT_HAVE_ACCESSED_DIRTY(mmu))
215 		return 0;
216 
217 	for (level = walker->max_level; level >= walker->level; --level) {
218 		pte = orig_pte = walker->ptes[level - 1];
219 		table_gfn = walker->table_gfn[level - 1];
220 		ptep_user = walker->ptep_user[level - 1];
221 		index = offset_in_page(ptep_user) / sizeof(pt_element_t);
222 		if (!(pte & PT_GUEST_ACCESSED_MASK)) {
223 			trace_kvm_mmu_set_accessed_bit(table_gfn, index, sizeof(pte));
224 			pte |= PT_GUEST_ACCESSED_MASK;
225 		}
226 		if (level == walker->level && write_fault &&
227 				!(pte & PT_GUEST_DIRTY_MASK)) {
228 			trace_kvm_mmu_set_dirty_bit(table_gfn, index, sizeof(pte));
229 #if PTTYPE == PTTYPE_EPT
230 			if (kvm_arch_write_log_dirty(vcpu, addr))
231 				return -EINVAL;
232 #endif
233 			pte |= PT_GUEST_DIRTY_MASK;
234 		}
235 		if (pte == orig_pte)
236 			continue;
237 
238 		/*
239 		 * If the slot is read-only, simply do not process the accessed
240 		 * and dirty bits.  This is the correct thing to do if the slot
241 		 * is ROM, and page tables in read-as-ROM/write-as-MMIO slots
242 		 * are only supported if the accessed and dirty bits are already
243 		 * set in the ROM (so that MMIO writes are never needed).
244 		 *
245 		 * Note that NPT does not allow this at all and faults, since
246 		 * it always wants nested page table entries for the guest
247 		 * page tables to be writable.  And EPT works but will simply
248 		 * overwrite the read-only memory to set the accessed and dirty
249 		 * bits.
250 		 */
251 		if (unlikely(!walker->pte_writable[level - 1]))
252 			continue;
253 
254 		ret = FNAME(cmpxchg_gpte)(vcpu, mmu, ptep_user, index, orig_pte, pte);
255 		if (ret)
256 			return ret;
257 
258 		kvm_vcpu_mark_page_dirty(vcpu, table_gfn);
259 		walker->ptes[level - 1] = pte;
260 	}
261 	return 0;
262 }
263 
FNAME(gpte_pkeys)264 static inline unsigned FNAME(gpte_pkeys)(struct kvm_vcpu *vcpu, u64 gpte)
265 {
266 	unsigned pkeys = 0;
267 #if PTTYPE == 64
268 	pte_t pte = {.pte = gpte};
269 
270 	pkeys = pte_flags_pkey(pte_flags(pte));
271 #endif
272 	return pkeys;
273 }
274 
275 /*
276  * Fetch a guest pte for a guest virtual address, or for an L2's GPA.
277  */
FNAME(walk_addr_generic)278 static int FNAME(walk_addr_generic)(struct guest_walker *walker,
279 				    struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
280 				    gpa_t addr, u32 access)
281 {
282 	int ret;
283 	pt_element_t pte;
284 	pt_element_t __user *uninitialized_var(ptep_user);
285 	gfn_t table_gfn;
286 	u64 pt_access, pte_access;
287 	unsigned index, accessed_dirty, pte_pkey;
288 	unsigned nested_access;
289 	gpa_t pte_gpa;
290 	bool have_ad;
291 	int offset;
292 	u64 walk_nx_mask = 0;
293 	const int write_fault = access & PFERR_WRITE_MASK;
294 	const int user_fault  = access & PFERR_USER_MASK;
295 	const int fetch_fault = access & PFERR_FETCH_MASK;
296 	u16 errcode = 0;
297 	gpa_t real_gpa;
298 	gfn_t gfn;
299 
300 	trace_kvm_mmu_pagetable_walk(addr, access);
301 retry_walk:
302 	walker->level = mmu->root_level;
303 	pte           = mmu->get_cr3(vcpu);
304 	have_ad       = PT_HAVE_ACCESSED_DIRTY(mmu);
305 
306 #if PTTYPE == 64
307 	walk_nx_mask = 1ULL << PT64_NX_SHIFT;
308 	if (walker->level == PT32E_ROOT_LEVEL) {
309 		pte = mmu->get_pdptr(vcpu, (addr >> 30) & 3);
310 		trace_kvm_mmu_paging_element(pte, walker->level);
311 		if (!FNAME(is_present_gpte)(pte))
312 			goto error;
313 		--walker->level;
314 	}
315 #endif
316 	walker->max_level = walker->level;
317 	ASSERT(!(is_long_mode(vcpu) && !is_pae(vcpu)));
318 
319 	/*
320 	 * FIXME: on Intel processors, loads of the PDPTE registers for PAE paging
321 	 * by the MOV to CR instruction are treated as reads and do not cause the
322 	 * processor to set the dirty flag in any EPT paging-structure entry.
323 	 */
324 	nested_access = (have_ad ? PFERR_WRITE_MASK : 0) | PFERR_USER_MASK;
325 
326 	pte_access = ~0;
327 	++walker->level;
328 
329 	do {
330 		gfn_t real_gfn;
331 		unsigned long host_addr;
332 
333 		pt_access = pte_access;
334 		--walker->level;
335 
336 		index = PT_INDEX(addr, walker->level);
337 		table_gfn = gpte_to_gfn(pte);
338 		offset    = index * sizeof(pt_element_t);
339 		pte_gpa   = gfn_to_gpa(table_gfn) + offset;
340 
341 		BUG_ON(walker->level < 1);
342 		walker->table_gfn[walker->level - 1] = table_gfn;
343 		walker->pte_gpa[walker->level - 1] = pte_gpa;
344 
345 		real_gfn = mmu->translate_gpa(vcpu, gfn_to_gpa(table_gfn),
346 					      nested_access,
347 					      &walker->fault);
348 
349 		/*
350 		 * FIXME: This can happen if emulation (for of an INS/OUTS
351 		 * instruction) triggers a nested page fault.  The exit
352 		 * qualification / exit info field will incorrectly have
353 		 * "guest page access" as the nested page fault's cause,
354 		 * instead of "guest page structure access".  To fix this,
355 		 * the x86_exception struct should be augmented with enough
356 		 * information to fix the exit_qualification or exit_info_1
357 		 * fields.
358 		 */
359 		if (unlikely(real_gfn == UNMAPPED_GVA))
360 			return 0;
361 
362 		real_gfn = gpa_to_gfn(real_gfn);
363 
364 		host_addr = kvm_vcpu_gfn_to_hva_prot(vcpu, real_gfn,
365 					    &walker->pte_writable[walker->level - 1]);
366 		if (unlikely(kvm_is_error_hva(host_addr)))
367 			goto error;
368 
369 		ptep_user = (pt_element_t __user *)((void *)host_addr + offset);
370 		if (unlikely(__copy_from_user(&pte, ptep_user, sizeof(pte))))
371 			goto error;
372 		walker->ptep_user[walker->level - 1] = ptep_user;
373 
374 		trace_kvm_mmu_paging_element(pte, walker->level);
375 
376 		/*
377 		 * Inverting the NX it lets us AND it like other
378 		 * permission bits.
379 		 */
380 		pte_access = pt_access & (pte ^ walk_nx_mask);
381 
382 		if (unlikely(!FNAME(is_present_gpte)(pte)))
383 			goto error;
384 
385 		if (unlikely(is_rsvd_bits_set(mmu, pte, walker->level))) {
386 			errcode = PFERR_RSVD_MASK | PFERR_PRESENT_MASK;
387 			goto error;
388 		}
389 
390 		walker->ptes[walker->level - 1] = pte;
391 
392 		/* Convert to ACC_*_MASK flags for struct guest_walker.  */
393 		walker->pt_access[walker->level - 1] = FNAME(gpte_access)(pt_access ^ walk_nx_mask);
394 	} while (!is_last_gpte(mmu, walker->level, pte));
395 
396 	pte_pkey = FNAME(gpte_pkeys)(vcpu, pte);
397 	accessed_dirty = have_ad ? pte_access & PT_GUEST_ACCESSED_MASK : 0;
398 
399 	/* Convert to ACC_*_MASK flags for struct guest_walker.  */
400 	walker->pte_access = FNAME(gpte_access)(pte_access ^ walk_nx_mask);
401 	errcode = permission_fault(vcpu, mmu, walker->pte_access, pte_pkey, access);
402 	if (unlikely(errcode))
403 		goto error;
404 
405 	gfn = gpte_to_gfn_lvl(pte, walker->level);
406 	gfn += (addr & PT_LVL_OFFSET_MASK(walker->level)) >> PAGE_SHIFT;
407 
408 	if (PTTYPE == 32 && walker->level == PT_DIRECTORY_LEVEL && is_cpuid_PSE36())
409 		gfn += pse36_gfn_delta(pte);
410 
411 	real_gpa = mmu->translate_gpa(vcpu, gfn_to_gpa(gfn), access, &walker->fault);
412 	if (real_gpa == UNMAPPED_GVA)
413 		return 0;
414 
415 	walker->gfn = real_gpa >> PAGE_SHIFT;
416 
417 	if (!write_fault)
418 		FNAME(protect_clean_gpte)(mmu, &walker->pte_access, pte);
419 	else
420 		/*
421 		 * On a write fault, fold the dirty bit into accessed_dirty.
422 		 * For modes without A/D bits support accessed_dirty will be
423 		 * always clear.
424 		 */
425 		accessed_dirty &= pte >>
426 			(PT_GUEST_DIRTY_SHIFT - PT_GUEST_ACCESSED_SHIFT);
427 
428 	if (unlikely(!accessed_dirty)) {
429 		ret = FNAME(update_accessed_dirty_bits)(vcpu, mmu, walker,
430 							addr, write_fault);
431 		if (unlikely(ret < 0))
432 			goto error;
433 		else if (ret)
434 			goto retry_walk;
435 	}
436 
437 	pgprintk("%s: pte %llx pte_access %x pt_access %x\n",
438 		 __func__, (u64)pte, walker->pte_access,
439 		 walker->pt_access[walker->level - 1]);
440 	return 1;
441 
442 error:
443 	errcode |= write_fault | user_fault;
444 	if (fetch_fault && (mmu->nx ||
445 			    kvm_read_cr4_bits(vcpu, X86_CR4_SMEP)))
446 		errcode |= PFERR_FETCH_MASK;
447 
448 	walker->fault.vector = PF_VECTOR;
449 	walker->fault.error_code_valid = true;
450 	walker->fault.error_code = errcode;
451 
452 #if PTTYPE == PTTYPE_EPT
453 	/*
454 	 * Use PFERR_RSVD_MASK in error_code to to tell if EPT
455 	 * misconfiguration requires to be injected. The detection is
456 	 * done by is_rsvd_bits_set() above.
457 	 *
458 	 * We set up the value of exit_qualification to inject:
459 	 * [2:0] - Derive from the access bits. The exit_qualification might be
460 	 *         out of date if it is serving an EPT misconfiguration.
461 	 * [5:3] - Calculated by the page walk of the guest EPT page tables
462 	 * [7:8] - Derived from [7:8] of real exit_qualification
463 	 *
464 	 * The other bits are set to 0.
465 	 */
466 	if (!(errcode & PFERR_RSVD_MASK)) {
467 		vcpu->arch.exit_qualification &= 0x180;
468 		if (write_fault)
469 			vcpu->arch.exit_qualification |= EPT_VIOLATION_ACC_WRITE;
470 		if (user_fault)
471 			vcpu->arch.exit_qualification |= EPT_VIOLATION_ACC_READ;
472 		if (fetch_fault)
473 			vcpu->arch.exit_qualification |= EPT_VIOLATION_ACC_INSTR;
474 		vcpu->arch.exit_qualification |= (pte_access & 0x7) << 3;
475 	}
476 #endif
477 	walker->fault.address = addr;
478 	walker->fault.nested_page_fault = mmu != vcpu->arch.walk_mmu;
479 
480 	trace_kvm_mmu_walker_error(walker->fault.error_code);
481 	return 0;
482 }
483 
FNAME(walk_addr)484 static int FNAME(walk_addr)(struct guest_walker *walker,
485 			    struct kvm_vcpu *vcpu, gpa_t addr, u32 access)
486 {
487 	return FNAME(walk_addr_generic)(walker, vcpu, &vcpu->arch.mmu, addr,
488 					access);
489 }
490 
491 #if PTTYPE != PTTYPE_EPT
FNAME(walk_addr_nested)492 static int FNAME(walk_addr_nested)(struct guest_walker *walker,
493 				   struct kvm_vcpu *vcpu, gva_t addr,
494 				   u32 access)
495 {
496 	return FNAME(walk_addr_generic)(walker, vcpu, &vcpu->arch.nested_mmu,
497 					addr, access);
498 }
499 #endif
500 
501 static bool
FNAME(prefetch_gpte)502 FNAME(prefetch_gpte)(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
503 		     u64 *spte, pt_element_t gpte, bool no_dirty_log)
504 {
505 	unsigned pte_access;
506 	gfn_t gfn;
507 	kvm_pfn_t pfn;
508 
509 	if (FNAME(prefetch_invalid_gpte)(vcpu, sp, spte, gpte))
510 		return false;
511 
512 	pgprintk("%s: gpte %llx spte %p\n", __func__, (u64)gpte, spte);
513 
514 	gfn = gpte_to_gfn(gpte);
515 	pte_access = sp->role.access & FNAME(gpte_access)(gpte);
516 	FNAME(protect_clean_gpte)(&vcpu->arch.mmu, &pte_access, gpte);
517 	pfn = pte_prefetch_gfn_to_pfn(vcpu, gfn,
518 			no_dirty_log && (pte_access & ACC_WRITE_MASK));
519 	if (is_error_pfn(pfn))
520 		return false;
521 
522 	/*
523 	 * we call mmu_set_spte() with host_writable = true because
524 	 * pte_prefetch_gfn_to_pfn always gets a writable pfn.
525 	 */
526 	mmu_set_spte(vcpu, spte, pte_access, 0, PT_PAGE_TABLE_LEVEL, gfn, pfn,
527 		     true, true);
528 
529 	kvm_release_pfn_clean(pfn);
530 	return true;
531 }
532 
FNAME(update_pte)533 static void FNAME(update_pte)(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
534 			      u64 *spte, const void *pte)
535 {
536 	pt_element_t gpte = *(const pt_element_t *)pte;
537 
538 	FNAME(prefetch_gpte)(vcpu, sp, spte, gpte, false);
539 }
540 
FNAME(gpte_changed)541 static bool FNAME(gpte_changed)(struct kvm_vcpu *vcpu,
542 				struct guest_walker *gw, int level)
543 {
544 	pt_element_t curr_pte;
545 	gpa_t base_gpa, pte_gpa = gw->pte_gpa[level - 1];
546 	u64 mask;
547 	int r, index;
548 
549 	if (level == PT_PAGE_TABLE_LEVEL) {
550 		mask = PTE_PREFETCH_NUM * sizeof(pt_element_t) - 1;
551 		base_gpa = pte_gpa & ~mask;
552 		index = (pte_gpa - base_gpa) / sizeof(pt_element_t);
553 
554 		r = kvm_vcpu_read_guest_atomic(vcpu, base_gpa,
555 				gw->prefetch_ptes, sizeof(gw->prefetch_ptes));
556 		curr_pte = gw->prefetch_ptes[index];
557 	} else
558 		r = kvm_vcpu_read_guest_atomic(vcpu, pte_gpa,
559 				  &curr_pte, sizeof(curr_pte));
560 
561 	return r || curr_pte != gw->ptes[level - 1];
562 }
563 
FNAME(pte_prefetch)564 static void FNAME(pte_prefetch)(struct kvm_vcpu *vcpu, struct guest_walker *gw,
565 				u64 *sptep)
566 {
567 	struct kvm_mmu_page *sp;
568 	pt_element_t *gptep = gw->prefetch_ptes;
569 	u64 *spte;
570 	int i;
571 
572 	sp = page_header(__pa(sptep));
573 
574 	if (sp->role.level > PT_PAGE_TABLE_LEVEL)
575 		return;
576 
577 	if (sp->role.direct)
578 		return __direct_pte_prefetch(vcpu, sp, sptep);
579 
580 	i = (sptep - sp->spt) & ~(PTE_PREFETCH_NUM - 1);
581 	spte = sp->spt + i;
582 
583 	for (i = 0; i < PTE_PREFETCH_NUM; i++, spte++) {
584 		if (spte == sptep)
585 			continue;
586 
587 		if (is_shadow_present_pte(*spte))
588 			continue;
589 
590 		if (!FNAME(prefetch_gpte)(vcpu, sp, spte, gptep[i], true))
591 			break;
592 	}
593 }
594 
595 /*
596  * Fetch a shadow pte for a specific level in the paging hierarchy.
597  * If the guest tries to write a write-protected page, we need to
598  * emulate this operation, return 1 to indicate this case.
599  */
FNAME(fetch)600 static int FNAME(fetch)(struct kvm_vcpu *vcpu, gpa_t addr,
601 			 struct guest_walker *gw,
602 			 int write_fault, int hlevel,
603 			 kvm_pfn_t pfn, bool map_writable, bool prefault,
604 			 bool lpage_disallowed)
605 {
606 	struct kvm_mmu_page *sp = NULL;
607 	struct kvm_shadow_walk_iterator it;
608 	unsigned int direct_access, access;
609 	int top_level, ret;
610 	gfn_t gfn, base_gfn;
611 
612 	direct_access = gw->pte_access;
613 
614 	top_level = vcpu->arch.mmu.root_level;
615 	if (top_level == PT32E_ROOT_LEVEL)
616 		top_level = PT32_ROOT_LEVEL;
617 	/*
618 	 * Verify that the top-level gpte is still there.  Since the page
619 	 * is a root page, it is either write protected (and cannot be
620 	 * changed from now on) or it is invalid (in which case, we don't
621 	 * really care if it changes underneath us after this point).
622 	 */
623 	if (FNAME(gpte_changed)(vcpu, gw, top_level))
624 		goto out_gpte_changed;
625 
626 	if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
627 		goto out_gpte_changed;
628 
629 	for (shadow_walk_init(&it, vcpu, addr);
630 	     shadow_walk_okay(&it) && it.level > gw->level;
631 	     shadow_walk_next(&it)) {
632 		gfn_t table_gfn;
633 
634 		clear_sp_write_flooding_count(it.sptep);
635 		drop_large_spte(vcpu, it.sptep);
636 
637 		sp = NULL;
638 		if (!is_shadow_present_pte(*it.sptep)) {
639 			table_gfn = gw->table_gfn[it.level - 2];
640 			access = gw->pt_access[it.level - 2];
641 			sp = kvm_mmu_get_page(vcpu, table_gfn, addr, it.level-1,
642 					      false, access);
643 		}
644 
645 		/*
646 		 * Verify that the gpte in the page we've just write
647 		 * protected is still there.
648 		 */
649 		if (FNAME(gpte_changed)(vcpu, gw, it.level - 1))
650 			goto out_gpte_changed;
651 
652 		if (sp)
653 			link_shadow_page(vcpu, it.sptep, sp);
654 	}
655 
656 	/*
657 	 * FNAME(page_fault) might have clobbered the bottom bits of
658 	 * gw->gfn, restore them from the virtual address.
659 	 */
660 	gfn = gw->gfn | ((addr & PT_LVL_OFFSET_MASK(gw->level)) >> PAGE_SHIFT);
661 	base_gfn = gfn;
662 
663 	trace_kvm_mmu_spte_requested(addr, gw->level, pfn);
664 
665 	for (; shadow_walk_okay(&it); shadow_walk_next(&it)) {
666 		clear_sp_write_flooding_count(it.sptep);
667 
668 		/*
669 		 * We cannot overwrite existing page tables with an NX
670 		 * large page, as the leaf could be executable.
671 		 */
672 		disallowed_hugepage_adjust(it, gfn, &pfn, &hlevel);
673 
674 		base_gfn = gfn & ~(KVM_PAGES_PER_HPAGE(it.level) - 1);
675 		if (it.level == hlevel)
676 			break;
677 
678 		validate_direct_spte(vcpu, it.sptep, direct_access);
679 
680 		drop_large_spte(vcpu, it.sptep);
681 
682 		if (!is_shadow_present_pte(*it.sptep)) {
683 			sp = kvm_mmu_get_page(vcpu, base_gfn, addr,
684 					      it.level - 1, true, direct_access);
685 			link_shadow_page(vcpu, it.sptep, sp);
686 			if (lpage_disallowed)
687 				account_huge_nx_page(vcpu->kvm, sp);
688 		}
689 	}
690 
691 	ret = mmu_set_spte(vcpu, it.sptep, gw->pte_access, write_fault,
692 			   it.level, base_gfn, pfn, prefault, map_writable);
693 	FNAME(pte_prefetch)(vcpu, gw, it.sptep);
694 	++vcpu->stat.pf_fixed;
695 	return ret;
696 
697 out_gpte_changed:
698 	return RET_PF_RETRY;
699 }
700 
701  /*
702  * To see whether the mapped gfn can write its page table in the current
703  * mapping.
704  *
705  * It is the helper function of FNAME(page_fault). When guest uses large page
706  * size to map the writable gfn which is used as current page table, we should
707  * force kvm to use small page size to map it because new shadow page will be
708  * created when kvm establishes shadow page table that stop kvm using large
709  * page size. Do it early can avoid unnecessary #PF and emulation.
710  *
711  * @write_fault_to_shadow_pgtable will return true if the fault gfn is
712  * currently used as its page table.
713  *
714  * Note: the PDPT page table is not checked for PAE-32 bit guest. It is ok
715  * since the PDPT is always shadowed, that means, we can not use large page
716  * size to map the gfn which is used as PDPT.
717  */
718 static bool
FNAME(is_self_change_mapping)719 FNAME(is_self_change_mapping)(struct kvm_vcpu *vcpu,
720 			      struct guest_walker *walker, int user_fault,
721 			      bool *write_fault_to_shadow_pgtable)
722 {
723 	int level;
724 	gfn_t mask = ~(KVM_PAGES_PER_HPAGE(walker->level) - 1);
725 	bool self_changed = false;
726 
727 	if (!(walker->pte_access & ACC_WRITE_MASK ||
728 	      (!is_write_protection(vcpu) && !user_fault)))
729 		return false;
730 
731 	for (level = walker->level; level <= walker->max_level; level++) {
732 		gfn_t gfn = walker->gfn ^ walker->table_gfn[level - 1];
733 
734 		self_changed |= !(gfn & mask);
735 		*write_fault_to_shadow_pgtable |= !gfn;
736 	}
737 
738 	return self_changed;
739 }
740 
741 /*
742  * Page fault handler.  There are several causes for a page fault:
743  *   - there is no shadow pte for the guest pte
744  *   - write access through a shadow pte marked read only so that we can set
745  *     the dirty bit
746  *   - write access to a shadow pte marked read only so we can update the page
747  *     dirty bitmap, when userspace requests it
748  *   - mmio access; in this case we will never install a present shadow pte
749  *   - normal guest page fault due to the guest pte marked not present, not
750  *     writable, or not executable
751  *
752  *  Returns: 1 if we need to emulate the instruction, 0 otherwise, or
753  *           a negative value on error.
754  */
FNAME(page_fault)755 static int FNAME(page_fault)(struct kvm_vcpu *vcpu, gpa_t addr, u32 error_code,
756 			     bool prefault)
757 {
758 	int write_fault = error_code & PFERR_WRITE_MASK;
759 	int user_fault = error_code & PFERR_USER_MASK;
760 	struct guest_walker walker;
761 	int r;
762 	kvm_pfn_t pfn;
763 	int level = PT_PAGE_TABLE_LEVEL;
764 	unsigned long mmu_seq;
765 	bool map_writable, is_self_change_mapping;
766 	bool lpage_disallowed = (error_code & PFERR_FETCH_MASK) &&
767 				is_nx_huge_page_enabled();
768 	bool force_pt_level = lpage_disallowed;
769 
770 	pgprintk("%s: addr %lx err %x\n", __func__, addr, error_code);
771 
772 	r = mmu_topup_memory_caches(vcpu);
773 	if (r)
774 		return r;
775 
776 	/*
777 	 * If PFEC.RSVD is set, this is a shadow page fault.
778 	 * The bit needs to be cleared before walking guest page tables.
779 	 */
780 	error_code &= ~PFERR_RSVD_MASK;
781 
782 	/*
783 	 * Look up the guest pte for the faulting address.
784 	 */
785 	r = FNAME(walk_addr)(&walker, vcpu, addr, error_code);
786 
787 	/*
788 	 * The page is not mapped by the guest.  Let the guest handle it.
789 	 */
790 	if (!r) {
791 		pgprintk("%s: guest page fault\n", __func__);
792 		if (!prefault)
793 			inject_page_fault(vcpu, &walker.fault);
794 
795 		return RET_PF_RETRY;
796 	}
797 
798 	if (page_fault_handle_page_track(vcpu, error_code, walker.gfn)) {
799 		shadow_page_table_clear_flood(vcpu, addr);
800 		return RET_PF_EMULATE;
801 	}
802 
803 	vcpu->arch.write_fault_to_shadow_pgtable = false;
804 
805 	is_self_change_mapping = FNAME(is_self_change_mapping)(vcpu,
806 	      &walker, user_fault, &vcpu->arch.write_fault_to_shadow_pgtable);
807 
808 	if (walker.level >= PT_DIRECTORY_LEVEL && !is_self_change_mapping) {
809 		level = mapping_level(vcpu, walker.gfn, &force_pt_level);
810 		if (likely(!force_pt_level)) {
811 			level = min(walker.level, level);
812 			walker.gfn = walker.gfn & ~(KVM_PAGES_PER_HPAGE(level) - 1);
813 		}
814 	} else
815 		force_pt_level = true;
816 
817 	mmu_seq = vcpu->kvm->mmu_notifier_seq;
818 	smp_rmb();
819 
820 	if (try_async_pf(vcpu, prefault, walker.gfn, addr, &pfn, write_fault,
821 			 &map_writable))
822 		return RET_PF_RETRY;
823 
824 	if (handle_abnormal_pfn(vcpu, addr, walker.gfn, pfn, walker.pte_access, &r))
825 		return r;
826 
827 	/*
828 	 * Do not change pte_access if the pfn is a mmio page, otherwise
829 	 * we will cache the incorrect access into mmio spte.
830 	 */
831 	if (write_fault && !(walker.pte_access & ACC_WRITE_MASK) &&
832 	     !is_write_protection(vcpu) && !user_fault &&
833 	      !is_noslot_pfn(pfn)) {
834 		walker.pte_access |= ACC_WRITE_MASK;
835 		walker.pte_access &= ~ACC_USER_MASK;
836 
837 		/*
838 		 * If we converted a user page to a kernel page,
839 		 * so that the kernel can write to it when cr0.wp=0,
840 		 * then we should prevent the kernel from executing it
841 		 * if SMEP is enabled.
842 		 */
843 		if (kvm_read_cr4_bits(vcpu, X86_CR4_SMEP))
844 			walker.pte_access &= ~ACC_EXEC_MASK;
845 	}
846 
847 	r = RET_PF_RETRY;
848 	spin_lock(&vcpu->kvm->mmu_lock);
849 	if (mmu_notifier_retry(vcpu->kvm, mmu_seq))
850 		goto out_unlock;
851 
852 	kvm_mmu_audit(vcpu, AUDIT_PRE_PAGE_FAULT);
853 	if (make_mmu_pages_available(vcpu) < 0)
854 		goto out_unlock;
855 	if (!force_pt_level)
856 		transparent_hugepage_adjust(vcpu, walker.gfn, &pfn, &level);
857 	r = FNAME(fetch)(vcpu, addr, &walker, write_fault,
858 			 level, pfn, map_writable, prefault, lpage_disallowed);
859 	kvm_mmu_audit(vcpu, AUDIT_POST_PAGE_FAULT);
860 
861 out_unlock:
862 	spin_unlock(&vcpu->kvm->mmu_lock);
863 	kvm_release_pfn_clean(pfn);
864 	return r;
865 }
866 
FNAME(get_level1_sp_gpa)867 static gpa_t FNAME(get_level1_sp_gpa)(struct kvm_mmu_page *sp)
868 {
869 	int offset = 0;
870 
871 	WARN_ON(sp->role.level != PT_PAGE_TABLE_LEVEL);
872 
873 	if (PTTYPE == 32)
874 		offset = sp->role.quadrant << PT64_LEVEL_BITS;
875 
876 	return gfn_to_gpa(sp->gfn) + offset * sizeof(pt_element_t);
877 }
878 
FNAME(invlpg)879 static void FNAME(invlpg)(struct kvm_vcpu *vcpu, gva_t gva, hpa_t root_hpa)
880 {
881 	struct kvm_shadow_walk_iterator iterator;
882 	struct kvm_mmu_page *sp;
883 	int level;
884 	u64 *sptep;
885 
886 	vcpu_clear_mmio_info(vcpu, gva);
887 
888 	/*
889 	 * No need to check return value here, rmap_can_add() can
890 	 * help us to skip pte prefetch later.
891 	 */
892 	mmu_topup_memory_caches(vcpu);
893 
894 	if (!VALID_PAGE(root_hpa)) {
895 		WARN_ON(1);
896 		return;
897 	}
898 
899 	spin_lock(&vcpu->kvm->mmu_lock);
900 	for_each_shadow_entry_using_root(vcpu, root_hpa, gva, iterator) {
901 		level = iterator.level;
902 		sptep = iterator.sptep;
903 
904 		sp = page_header(__pa(sptep));
905 		if (is_last_spte(*sptep, level)) {
906 			pt_element_t gpte;
907 			gpa_t pte_gpa;
908 
909 			if (!sp->unsync)
910 				break;
911 
912 			pte_gpa = FNAME(get_level1_sp_gpa)(sp);
913 			pte_gpa += (sptep - sp->spt) * sizeof(pt_element_t);
914 
915 			if (mmu_page_zap_pte(vcpu->kvm, sp, sptep))
916 				kvm_flush_remote_tlbs(vcpu->kvm);
917 
918 			if (!rmap_can_add(vcpu))
919 				break;
920 
921 			if (kvm_vcpu_read_guest_atomic(vcpu, pte_gpa, &gpte,
922 						       sizeof(pt_element_t)))
923 				break;
924 
925 			FNAME(update_pte)(vcpu, sp, sptep, &gpte);
926 		}
927 
928 		if (!is_shadow_present_pte(*sptep) || !sp->unsync_children)
929 			break;
930 	}
931 	spin_unlock(&vcpu->kvm->mmu_lock);
932 }
933 
934 /* Note, @addr is a GPA when gva_to_gpa() translates an L2 GPA to an L1 GPA. */
FNAME(gva_to_gpa)935 static gpa_t FNAME(gva_to_gpa)(struct kvm_vcpu *vcpu, gpa_t addr, u32 access,
936 			       struct x86_exception *exception)
937 {
938 	struct guest_walker walker;
939 	gpa_t gpa = UNMAPPED_GVA;
940 	int r;
941 
942 	r = FNAME(walk_addr)(&walker, vcpu, addr, access);
943 
944 	if (r) {
945 		gpa = gfn_to_gpa(walker.gfn);
946 		gpa |= addr & ~PAGE_MASK;
947 	} else if (exception)
948 		*exception = walker.fault;
949 
950 	return gpa;
951 }
952 
953 #if PTTYPE != PTTYPE_EPT
954 /* Note, gva_to_gpa_nested() is only used to translate L2 GVAs. */
FNAME(gva_to_gpa_nested)955 static gpa_t FNAME(gva_to_gpa_nested)(struct kvm_vcpu *vcpu, gpa_t vaddr,
956 				      u32 access,
957 				      struct x86_exception *exception)
958 {
959 	struct guest_walker walker;
960 	gpa_t gpa = UNMAPPED_GVA;
961 	int r;
962 
963 #ifndef CONFIG_X86_64
964 	/* A 64-bit GVA should be impossible on 32-bit KVM. */
965 	WARN_ON_ONCE(vaddr >> 32);
966 #endif
967 
968 	r = FNAME(walk_addr_nested)(&walker, vcpu, vaddr, access);
969 
970 	if (r) {
971 		gpa = gfn_to_gpa(walker.gfn);
972 		gpa |= vaddr & ~PAGE_MASK;
973 	} else if (exception)
974 		*exception = walker.fault;
975 
976 	return gpa;
977 }
978 #endif
979 
980 /*
981  * Using the cached information from sp->gfns is safe because:
982  * - The spte has a reference to the struct page, so the pfn for a given gfn
983  *   can't change unless all sptes pointing to it are nuked first.
984  *
985  * Note:
986  *   We should flush all tlbs if spte is dropped even though guest is
987  *   responsible for it. Since if we don't, kvm_mmu_notifier_invalidate_page
988  *   and kvm_mmu_notifier_invalidate_range_start detect the mapping page isn't
989  *   used by guest then tlbs are not flushed, so guest is allowed to access the
990  *   freed pages.
991  *   And we increase kvm->tlbs_dirty to delay tlbs flush in this case.
992  */
FNAME(sync_page)993 static int FNAME(sync_page)(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
994 {
995 	int i, nr_present = 0;
996 	bool host_writable;
997 	gpa_t first_pte_gpa;
998 	int set_spte_ret = 0;
999 
1000 	/* direct kvm_mmu_page can not be unsync. */
1001 	BUG_ON(sp->role.direct);
1002 
1003 	first_pte_gpa = FNAME(get_level1_sp_gpa)(sp);
1004 
1005 	for (i = 0; i < PT64_ENT_PER_PAGE; i++) {
1006 		unsigned pte_access;
1007 		pt_element_t gpte;
1008 		gpa_t pte_gpa;
1009 		gfn_t gfn;
1010 
1011 		if (!sp->spt[i])
1012 			continue;
1013 
1014 		pte_gpa = first_pte_gpa + i * sizeof(pt_element_t);
1015 
1016 		if (kvm_vcpu_read_guest_atomic(vcpu, pte_gpa, &gpte,
1017 					       sizeof(pt_element_t)))
1018 			return 0;
1019 
1020 		if (FNAME(prefetch_invalid_gpte)(vcpu, sp, &sp->spt[i], gpte)) {
1021 			/*
1022 			 * Update spte before increasing tlbs_dirty to make
1023 			 * sure no tlb flush is lost after spte is zapped; see
1024 			 * the comments in kvm_flush_remote_tlbs().
1025 			 */
1026 			smp_wmb();
1027 			vcpu->kvm->tlbs_dirty++;
1028 			continue;
1029 		}
1030 
1031 		gfn = gpte_to_gfn(gpte);
1032 		pte_access = sp->role.access;
1033 		pte_access &= FNAME(gpte_access)(gpte);
1034 		FNAME(protect_clean_gpte)(&vcpu->arch.mmu, &pte_access, gpte);
1035 
1036 		if (sync_mmio_spte(vcpu, &sp->spt[i], gfn, pte_access,
1037 		      &nr_present))
1038 			continue;
1039 
1040 		if (gfn != sp->gfns[i]) {
1041 			drop_spte(vcpu->kvm, &sp->spt[i]);
1042 			/*
1043 			 * The same as above where we are doing
1044 			 * prefetch_invalid_gpte().
1045 			 */
1046 			smp_wmb();
1047 			vcpu->kvm->tlbs_dirty++;
1048 			continue;
1049 		}
1050 
1051 		nr_present++;
1052 
1053 		host_writable = sp->spt[i] & SPTE_HOST_WRITEABLE;
1054 
1055 		set_spte_ret |= set_spte(vcpu, &sp->spt[i],
1056 					 pte_access, PT_PAGE_TABLE_LEVEL,
1057 					 gfn, spte_to_pfn(sp->spt[i]),
1058 					 true, false, host_writable);
1059 	}
1060 
1061 	if (set_spte_ret & SET_SPTE_NEED_REMOTE_TLB_FLUSH)
1062 		kvm_flush_remote_tlbs(vcpu->kvm);
1063 
1064 	return nr_present;
1065 }
1066 
1067 #undef pt_element_t
1068 #undef guest_walker
1069 #undef FNAME
1070 #undef PT_BASE_ADDR_MASK
1071 #undef PT_INDEX
1072 #undef PT_LVL_ADDR_MASK
1073 #undef PT_LVL_OFFSET_MASK
1074 #undef PT_LEVEL_BITS
1075 #undef PT_MAX_FULL_LEVELS
1076 #undef gpte_to_gfn
1077 #undef gpte_to_gfn_lvl
1078 #undef CMPXCHG
1079 #undef PT_GUEST_ACCESSED_MASK
1080 #undef PT_GUEST_DIRTY_MASK
1081 #undef PT_GUEST_DIRTY_SHIFT
1082 #undef PT_GUEST_ACCESSED_SHIFT
1083 #undef PT_HAVE_ACCESSED_DIRTY
1084