1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (C) 1995 Linus Torvalds
4 * Copyright (C) 2001, 2002 Andi Kleen, SuSE Labs.
5 * Copyright (C) 2008-2009, Red Hat Inc., Ingo Molnar
6 */
7 #include <linux/sched.h> /* test_thread_flag(), ... */
8 #include <linux/sched/task_stack.h> /* task_stack_*(), ... */
9 #include <linux/kdebug.h> /* oops_begin/end, ... */
10 #include <linux/extable.h> /* search_exception_tables */
11 #include <linux/bootmem.h> /* max_low_pfn */
12 #include <linux/kprobes.h> /* NOKPROBE_SYMBOL, ... */
13 #include <linux/mmiotrace.h> /* kmmio_handler, ... */
14 #include <linux/perf_event.h> /* perf_sw_event */
15 #include <linux/hugetlb.h> /* hstate_index_to_shift */
16 #include <linux/prefetch.h> /* prefetchw */
17 #include <linux/context_tracking.h> /* exception_enter(), ... */
18 #include <linux/uaccess.h> /* faulthandler_disabled() */
19 #include <linux/mm_types.h>
20
21 #include <asm/cpufeature.h> /* boot_cpu_has, ... */
22 #include <asm/traps.h> /* dotraplinkage, ... */
23 #include <asm/pgalloc.h> /* pgd_*(), ... */
24 #include <asm/fixmap.h> /* VSYSCALL_ADDR */
25 #include <asm/vsyscall.h> /* emulate_vsyscall */
26 #include <asm/vm86.h> /* struct vm86 */
27 #include <asm/mmu_context.h> /* vma_pkey() */
28
29 #define CREATE_TRACE_POINTS
30 #include <asm/trace/exceptions.h>
31
32 /*
33 * Returns 0 if mmiotrace is disabled, or if the fault is not
34 * handled by mmiotrace:
35 */
36 static nokprobe_inline int
kmmio_fault(struct pt_regs * regs,unsigned long addr)37 kmmio_fault(struct pt_regs *regs, unsigned long addr)
38 {
39 if (unlikely(is_kmmio_active()))
40 if (kmmio_handler(regs, addr) == 1)
41 return -1;
42 return 0;
43 }
44
kprobes_fault(struct pt_regs * regs)45 static nokprobe_inline int kprobes_fault(struct pt_regs *regs)
46 {
47 int ret = 0;
48
49 /* kprobe_running() needs smp_processor_id() */
50 if (kprobes_built_in() && !user_mode(regs)) {
51 preempt_disable();
52 if (kprobe_running() && kprobe_fault_handler(regs, 14))
53 ret = 1;
54 preempt_enable();
55 }
56
57 return ret;
58 }
59
60 /*
61 * Prefetch quirks:
62 *
63 * 32-bit mode:
64 *
65 * Sometimes AMD Athlon/Opteron CPUs report invalid exceptions on prefetch.
66 * Check that here and ignore it.
67 *
68 * 64-bit mode:
69 *
70 * Sometimes the CPU reports invalid exceptions on prefetch.
71 * Check that here and ignore it.
72 *
73 * Opcode checker based on code by Richard Brunner.
74 */
75 static inline int
check_prefetch_opcode(struct pt_regs * regs,unsigned char * instr,unsigned char opcode,int * prefetch)76 check_prefetch_opcode(struct pt_regs *regs, unsigned char *instr,
77 unsigned char opcode, int *prefetch)
78 {
79 unsigned char instr_hi = opcode & 0xf0;
80 unsigned char instr_lo = opcode & 0x0f;
81
82 switch (instr_hi) {
83 case 0x20:
84 case 0x30:
85 /*
86 * Values 0x26,0x2E,0x36,0x3E are valid x86 prefixes.
87 * In X86_64 long mode, the CPU will signal invalid
88 * opcode if some of these prefixes are present so
89 * X86_64 will never get here anyway
90 */
91 return ((instr_lo & 7) == 0x6);
92 #ifdef CONFIG_X86_64
93 case 0x40:
94 /*
95 * In AMD64 long mode 0x40..0x4F are valid REX prefixes
96 * Need to figure out under what instruction mode the
97 * instruction was issued. Could check the LDT for lm,
98 * but for now it's good enough to assume that long
99 * mode only uses well known segments or kernel.
100 */
101 return (!user_mode(regs) || user_64bit_mode(regs));
102 #endif
103 case 0x60:
104 /* 0x64 thru 0x67 are valid prefixes in all modes. */
105 return (instr_lo & 0xC) == 0x4;
106 case 0xF0:
107 /* 0xF0, 0xF2, 0xF3 are valid prefixes in all modes. */
108 return !instr_lo || (instr_lo>>1) == 1;
109 case 0x00:
110 /* Prefetch instruction is 0x0F0D or 0x0F18 */
111 if (probe_kernel_address(instr, opcode))
112 return 0;
113
114 *prefetch = (instr_lo == 0xF) &&
115 (opcode == 0x0D || opcode == 0x18);
116 return 0;
117 default:
118 return 0;
119 }
120 }
121
122 static int
is_prefetch(struct pt_regs * regs,unsigned long error_code,unsigned long addr)123 is_prefetch(struct pt_regs *regs, unsigned long error_code, unsigned long addr)
124 {
125 unsigned char *max_instr;
126 unsigned char *instr;
127 int prefetch = 0;
128
129 /*
130 * If it was a exec (instruction fetch) fault on NX page, then
131 * do not ignore the fault:
132 */
133 if (error_code & X86_PF_INSTR)
134 return 0;
135
136 instr = (void *)convert_ip_to_linear(current, regs);
137 max_instr = instr + 15;
138
139 if (user_mode(regs) && instr >= (unsigned char *)TASK_SIZE_MAX)
140 return 0;
141
142 while (instr < max_instr) {
143 unsigned char opcode;
144
145 if (probe_kernel_address(instr, opcode))
146 break;
147
148 instr++;
149
150 if (!check_prefetch_opcode(regs, instr, opcode, &prefetch))
151 break;
152 }
153 return prefetch;
154 }
155
156 /*
157 * A protection key fault means that the PKRU value did not allow
158 * access to some PTE. Userspace can figure out what PKRU was
159 * from the XSAVE state, and this function fills out a field in
160 * siginfo so userspace can discover which protection key was set
161 * on the PTE.
162 *
163 * If we get here, we know that the hardware signaled a X86_PF_PK
164 * fault and that there was a VMA once we got in the fault
165 * handler. It does *not* guarantee that the VMA we find here
166 * was the one that we faulted on.
167 *
168 * 1. T1 : mprotect_key(foo, PAGE_SIZE, pkey=4);
169 * 2. T1 : set PKRU to deny access to pkey=4, touches page
170 * 3. T1 : faults...
171 * 4. T2: mprotect_key(foo, PAGE_SIZE, pkey=5);
172 * 5. T1 : enters fault handler, takes mmap_sem, etc...
173 * 6. T1 : reaches here, sees vma_pkey(vma)=5, when we really
174 * faulted on a pte with its pkey=4.
175 */
fill_sig_info_pkey(int si_signo,int si_code,siginfo_t * info,u32 * pkey)176 static void fill_sig_info_pkey(int si_signo, int si_code, siginfo_t *info,
177 u32 *pkey)
178 {
179 /* This is effectively an #ifdef */
180 if (!boot_cpu_has(X86_FEATURE_OSPKE))
181 return;
182
183 /* Fault not from Protection Keys: nothing to do */
184 if ((si_code != SEGV_PKUERR) || (si_signo != SIGSEGV))
185 return;
186 /*
187 * force_sig_info_fault() is called from a number of
188 * contexts, some of which have a VMA and some of which
189 * do not. The X86_PF_PK handing happens after we have a
190 * valid VMA, so we should never reach this without a
191 * valid VMA.
192 */
193 if (!pkey) {
194 WARN_ONCE(1, "PKU fault with no VMA passed in");
195 info->si_pkey = 0;
196 return;
197 }
198 /*
199 * si_pkey should be thought of as a strong hint, but not
200 * absolutely guranteed to be 100% accurate because of
201 * the race explained above.
202 */
203 info->si_pkey = *pkey;
204 }
205
206 static void
force_sig_info_fault(int si_signo,int si_code,unsigned long address,struct task_struct * tsk,u32 * pkey,int fault)207 force_sig_info_fault(int si_signo, int si_code, unsigned long address,
208 struct task_struct *tsk, u32 *pkey, int fault)
209 {
210 unsigned lsb = 0;
211 siginfo_t info;
212
213 clear_siginfo(&info);
214 info.si_signo = si_signo;
215 info.si_errno = 0;
216 info.si_code = si_code;
217 info.si_addr = (void __user *)address;
218 if (fault & VM_FAULT_HWPOISON_LARGE)
219 lsb = hstate_index_to_shift(VM_FAULT_GET_HINDEX(fault));
220 if (fault & VM_FAULT_HWPOISON)
221 lsb = PAGE_SHIFT;
222 info.si_addr_lsb = lsb;
223
224 fill_sig_info_pkey(si_signo, si_code, &info, pkey);
225
226 force_sig_info(si_signo, &info, tsk);
227 }
228
229 DEFINE_SPINLOCK(pgd_lock);
230 LIST_HEAD(pgd_list);
231
232 #ifdef CONFIG_X86_32
vmalloc_sync_one(pgd_t * pgd,unsigned long address)233 static inline pmd_t *vmalloc_sync_one(pgd_t *pgd, unsigned long address)
234 {
235 unsigned index = pgd_index(address);
236 pgd_t *pgd_k;
237 p4d_t *p4d, *p4d_k;
238 pud_t *pud, *pud_k;
239 pmd_t *pmd, *pmd_k;
240
241 pgd += index;
242 pgd_k = init_mm.pgd + index;
243
244 if (!pgd_present(*pgd_k))
245 return NULL;
246
247 /*
248 * set_pgd(pgd, *pgd_k); here would be useless on PAE
249 * and redundant with the set_pmd() on non-PAE. As would
250 * set_p4d/set_pud.
251 */
252 p4d = p4d_offset(pgd, address);
253 p4d_k = p4d_offset(pgd_k, address);
254 if (!p4d_present(*p4d_k))
255 return NULL;
256
257 pud = pud_offset(p4d, address);
258 pud_k = pud_offset(p4d_k, address);
259 if (!pud_present(*pud_k))
260 return NULL;
261
262 pmd = pmd_offset(pud, address);
263 pmd_k = pmd_offset(pud_k, address);
264
265 if (pmd_present(*pmd) != pmd_present(*pmd_k))
266 set_pmd(pmd, *pmd_k);
267
268 if (!pmd_present(*pmd_k))
269 return NULL;
270 else
271 BUG_ON(pmd_pfn(*pmd) != pmd_pfn(*pmd_k));
272
273 return pmd_k;
274 }
275
vmalloc_sync(void)276 static void vmalloc_sync(void)
277 {
278 unsigned long address;
279
280 if (SHARED_KERNEL_PMD)
281 return;
282
283 for (address = VMALLOC_START & PMD_MASK;
284 address >= TASK_SIZE_MAX && address < VMALLOC_END;
285 address += PMD_SIZE) {
286 struct page *page;
287
288 spin_lock(&pgd_lock);
289 list_for_each_entry(page, &pgd_list, lru) {
290 spinlock_t *pgt_lock;
291
292 /* the pgt_lock only for Xen */
293 pgt_lock = &pgd_page_get_mm(page)->page_table_lock;
294
295 spin_lock(pgt_lock);
296 vmalloc_sync_one(page_address(page), address);
297 spin_unlock(pgt_lock);
298 }
299 spin_unlock(&pgd_lock);
300 }
301 }
302
vmalloc_sync_mappings(void)303 void vmalloc_sync_mappings(void)
304 {
305 vmalloc_sync();
306 }
307
vmalloc_sync_unmappings(void)308 void vmalloc_sync_unmappings(void)
309 {
310 vmalloc_sync();
311 }
312
313 /*
314 * 32-bit:
315 *
316 * Handle a fault on the vmalloc or module mapping area
317 */
vmalloc_fault(unsigned long address)318 static noinline int vmalloc_fault(unsigned long address)
319 {
320 unsigned long pgd_paddr;
321 pmd_t *pmd_k;
322 pte_t *pte_k;
323
324 /* Make sure we are in vmalloc area: */
325 if (!(address >= VMALLOC_START && address < VMALLOC_END))
326 return -1;
327
328 /*
329 * Synchronize this task's top level page-table
330 * with the 'reference' page table.
331 *
332 * Do _not_ use "current" here. We might be inside
333 * an interrupt in the middle of a task switch..
334 */
335 pgd_paddr = read_cr3_pa();
336 pmd_k = vmalloc_sync_one(__va(pgd_paddr), address);
337 if (!pmd_k)
338 return -1;
339
340 if (pmd_large(*pmd_k))
341 return 0;
342
343 pte_k = pte_offset_kernel(pmd_k, address);
344 if (!pte_present(*pte_k))
345 return -1;
346
347 return 0;
348 }
349 NOKPROBE_SYMBOL(vmalloc_fault);
350
351 /*
352 * Did it hit the DOS screen memory VA from vm86 mode?
353 */
354 static inline void
check_v8086_mode(struct pt_regs * regs,unsigned long address,struct task_struct * tsk)355 check_v8086_mode(struct pt_regs *regs, unsigned long address,
356 struct task_struct *tsk)
357 {
358 #ifdef CONFIG_VM86
359 unsigned long bit;
360
361 if (!v8086_mode(regs) || !tsk->thread.vm86)
362 return;
363
364 bit = (address - 0xA0000) >> PAGE_SHIFT;
365 if (bit < 32)
366 tsk->thread.vm86->screen_bitmap |= 1 << bit;
367 #endif
368 }
369
low_pfn(unsigned long pfn)370 static bool low_pfn(unsigned long pfn)
371 {
372 return pfn < max_low_pfn;
373 }
374
dump_pagetable(unsigned long address)375 static void dump_pagetable(unsigned long address)
376 {
377 pgd_t *base = __va(read_cr3_pa());
378 pgd_t *pgd = &base[pgd_index(address)];
379 p4d_t *p4d;
380 pud_t *pud;
381 pmd_t *pmd;
382 pte_t *pte;
383
384 #ifdef CONFIG_X86_PAE
385 pr_info("*pdpt = %016Lx ", pgd_val(*pgd));
386 if (!low_pfn(pgd_val(*pgd) >> PAGE_SHIFT) || !pgd_present(*pgd))
387 goto out;
388 #define pr_pde pr_cont
389 #else
390 #define pr_pde pr_info
391 #endif
392 p4d = p4d_offset(pgd, address);
393 pud = pud_offset(p4d, address);
394 pmd = pmd_offset(pud, address);
395 pr_pde("*pde = %0*Lx ", sizeof(*pmd) * 2, (u64)pmd_val(*pmd));
396 #undef pr_pde
397
398 /*
399 * We must not directly access the pte in the highpte
400 * case if the page table is located in highmem.
401 * And let's rather not kmap-atomic the pte, just in case
402 * it's allocated already:
403 */
404 if (!low_pfn(pmd_pfn(*pmd)) || !pmd_present(*pmd) || pmd_large(*pmd))
405 goto out;
406
407 pte = pte_offset_kernel(pmd, address);
408 pr_cont("*pte = %0*Lx ", sizeof(*pte) * 2, (u64)pte_val(*pte));
409 out:
410 pr_cont("\n");
411 }
412
413 #else /* CONFIG_X86_64: */
414
vmalloc_sync_mappings(void)415 void vmalloc_sync_mappings(void)
416 {
417 /*
418 * 64-bit mappings might allocate new p4d/pud pages
419 * that need to be propagated to all tasks' PGDs.
420 */
421 sync_global_pgds(VMALLOC_START & PGDIR_MASK, VMALLOC_END);
422 }
423
vmalloc_sync_unmappings(void)424 void vmalloc_sync_unmappings(void)
425 {
426 /*
427 * Unmappings never allocate or free p4d/pud pages.
428 * No work is required here.
429 */
430 }
431
432 /*
433 * 64-bit:
434 *
435 * Handle a fault on the vmalloc area
436 */
vmalloc_fault(unsigned long address)437 static noinline int vmalloc_fault(unsigned long address)
438 {
439 pgd_t *pgd, *pgd_k;
440 p4d_t *p4d, *p4d_k;
441 pud_t *pud;
442 pmd_t *pmd;
443 pte_t *pte;
444
445 /* Make sure we are in vmalloc area: */
446 if (!(address >= VMALLOC_START && address < VMALLOC_END))
447 return -1;
448
449 /*
450 * Copy kernel mappings over when needed. This can also
451 * happen within a race in page table update. In the later
452 * case just flush:
453 */
454 pgd = (pgd_t *)__va(read_cr3_pa()) + pgd_index(address);
455 pgd_k = pgd_offset_k(address);
456 if (pgd_none(*pgd_k))
457 return -1;
458
459 if (pgtable_l5_enabled()) {
460 if (pgd_none(*pgd)) {
461 set_pgd(pgd, *pgd_k);
462 arch_flush_lazy_mmu_mode();
463 } else {
464 BUG_ON(pgd_page_vaddr(*pgd) != pgd_page_vaddr(*pgd_k));
465 }
466 }
467
468 /* With 4-level paging, copying happens on the p4d level. */
469 p4d = p4d_offset(pgd, address);
470 p4d_k = p4d_offset(pgd_k, address);
471 if (p4d_none(*p4d_k))
472 return -1;
473
474 if (p4d_none(*p4d) && !pgtable_l5_enabled()) {
475 set_p4d(p4d, *p4d_k);
476 arch_flush_lazy_mmu_mode();
477 } else {
478 BUG_ON(p4d_pfn(*p4d) != p4d_pfn(*p4d_k));
479 }
480
481 BUILD_BUG_ON(CONFIG_PGTABLE_LEVELS < 4);
482
483 pud = pud_offset(p4d, address);
484 if (pud_none(*pud))
485 return -1;
486
487 if (pud_large(*pud))
488 return 0;
489
490 pmd = pmd_offset(pud, address);
491 if (pmd_none(*pmd))
492 return -1;
493
494 if (pmd_large(*pmd))
495 return 0;
496
497 pte = pte_offset_kernel(pmd, address);
498 if (!pte_present(*pte))
499 return -1;
500
501 return 0;
502 }
503 NOKPROBE_SYMBOL(vmalloc_fault);
504
505 #ifdef CONFIG_CPU_SUP_AMD
506 static const char errata93_warning[] =
507 KERN_ERR
508 "******* Your BIOS seems to not contain a fix for K8 errata #93\n"
509 "******* Working around it, but it may cause SEGVs or burn power.\n"
510 "******* Please consider a BIOS update.\n"
511 "******* Disabling USB legacy in the BIOS may also help.\n";
512 #endif
513
514 /*
515 * No vm86 mode in 64-bit mode:
516 */
517 static inline void
check_v8086_mode(struct pt_regs * regs,unsigned long address,struct task_struct * tsk)518 check_v8086_mode(struct pt_regs *regs, unsigned long address,
519 struct task_struct *tsk)
520 {
521 }
522
bad_address(void * p)523 static int bad_address(void *p)
524 {
525 unsigned long dummy;
526
527 return probe_kernel_address((unsigned long *)p, dummy);
528 }
529
dump_pagetable(unsigned long address)530 static void dump_pagetable(unsigned long address)
531 {
532 pgd_t *base = __va(read_cr3_pa());
533 pgd_t *pgd = base + pgd_index(address);
534 p4d_t *p4d;
535 pud_t *pud;
536 pmd_t *pmd;
537 pte_t *pte;
538
539 if (bad_address(pgd))
540 goto bad;
541
542 pr_info("PGD %lx ", pgd_val(*pgd));
543
544 if (!pgd_present(*pgd))
545 goto out;
546
547 p4d = p4d_offset(pgd, address);
548 if (bad_address(p4d))
549 goto bad;
550
551 pr_cont("P4D %lx ", p4d_val(*p4d));
552 if (!p4d_present(*p4d) || p4d_large(*p4d))
553 goto out;
554
555 pud = pud_offset(p4d, address);
556 if (bad_address(pud))
557 goto bad;
558
559 pr_cont("PUD %lx ", pud_val(*pud));
560 if (!pud_present(*pud) || pud_large(*pud))
561 goto out;
562
563 pmd = pmd_offset(pud, address);
564 if (bad_address(pmd))
565 goto bad;
566
567 pr_cont("PMD %lx ", pmd_val(*pmd));
568 if (!pmd_present(*pmd) || pmd_large(*pmd))
569 goto out;
570
571 pte = pte_offset_kernel(pmd, address);
572 if (bad_address(pte))
573 goto bad;
574
575 pr_cont("PTE %lx", pte_val(*pte));
576 out:
577 pr_cont("\n");
578 return;
579 bad:
580 pr_info("BAD\n");
581 }
582
583 #endif /* CONFIG_X86_64 */
584
585 /*
586 * Workaround for K8 erratum #93 & buggy BIOS.
587 *
588 * BIOS SMM functions are required to use a specific workaround
589 * to avoid corruption of the 64bit RIP register on C stepping K8.
590 *
591 * A lot of BIOS that didn't get tested properly miss this.
592 *
593 * The OS sees this as a page fault with the upper 32bits of RIP cleared.
594 * Try to work around it here.
595 *
596 * Note we only handle faults in kernel here.
597 * Does nothing on 32-bit.
598 */
is_errata93(struct pt_regs * regs,unsigned long address)599 static int is_errata93(struct pt_regs *regs, unsigned long address)
600 {
601 #if defined(CONFIG_X86_64) && defined(CONFIG_CPU_SUP_AMD)
602 if (boot_cpu_data.x86_vendor != X86_VENDOR_AMD
603 || boot_cpu_data.x86 != 0xf)
604 return 0;
605
606 if (address != regs->ip)
607 return 0;
608
609 if ((address >> 32) != 0)
610 return 0;
611
612 address |= 0xffffffffUL << 32;
613 if ((address >= (u64)_stext && address <= (u64)_etext) ||
614 (address >= MODULES_VADDR && address <= MODULES_END)) {
615 printk_once(errata93_warning);
616 regs->ip = address;
617 return 1;
618 }
619 #endif
620 return 0;
621 }
622
623 /*
624 * Work around K8 erratum #100 K8 in compat mode occasionally jumps
625 * to illegal addresses >4GB.
626 *
627 * We catch this in the page fault handler because these addresses
628 * are not reachable. Just detect this case and return. Any code
629 * segment in LDT is compatibility mode.
630 */
is_errata100(struct pt_regs * regs,unsigned long address)631 static int is_errata100(struct pt_regs *regs, unsigned long address)
632 {
633 #ifdef CONFIG_X86_64
634 if ((regs->cs == __USER32_CS || (regs->cs & (1<<2))) && (address >> 32))
635 return 1;
636 #endif
637 return 0;
638 }
639
is_f00f_bug(struct pt_regs * regs,unsigned long address)640 static int is_f00f_bug(struct pt_regs *regs, unsigned long address)
641 {
642 #ifdef CONFIG_X86_F00F_BUG
643 unsigned long nr;
644
645 /*
646 * Pentium F0 0F C7 C8 bug workaround:
647 */
648 if (boot_cpu_has_bug(X86_BUG_F00F)) {
649 nr = (address - idt_descr.address) >> 3;
650
651 if (nr == 6) {
652 do_invalid_op(regs, 0);
653 return 1;
654 }
655 }
656 #endif
657 return 0;
658 }
659
660 static void
show_fault_oops(struct pt_regs * regs,unsigned long error_code,unsigned long address)661 show_fault_oops(struct pt_regs *regs, unsigned long error_code,
662 unsigned long address)
663 {
664 if (!oops_may_print())
665 return;
666
667 if (error_code & X86_PF_INSTR) {
668 unsigned int level;
669 pgd_t *pgd;
670 pte_t *pte;
671
672 pgd = __va(read_cr3_pa());
673 pgd += pgd_index(address);
674
675 pte = lookup_address_in_pgd(pgd, address, &level);
676
677 if (pte && pte_present(*pte) && !pte_exec(*pte))
678 pr_crit("kernel tried to execute NX-protected page - exploit attempt? (uid: %d)\n",
679 from_kuid(&init_user_ns, current_uid()));
680 if (pte && pte_present(*pte) && pte_exec(*pte) &&
681 (pgd_flags(*pgd) & _PAGE_USER) &&
682 (__read_cr4() & X86_CR4_SMEP))
683 pr_crit("unable to execute userspace code (SMEP?) (uid: %d)\n",
684 from_kuid(&init_user_ns, current_uid()));
685 }
686
687 pr_alert("BUG: unable to handle kernel %s at %px\n",
688 address < PAGE_SIZE ? "NULL pointer dereference" : "paging request",
689 (void *)address);
690
691 dump_pagetable(address);
692 }
693
694 static noinline void
pgtable_bad(struct pt_regs * regs,unsigned long error_code,unsigned long address)695 pgtable_bad(struct pt_regs *regs, unsigned long error_code,
696 unsigned long address)
697 {
698 struct task_struct *tsk;
699 unsigned long flags;
700 int sig;
701
702 flags = oops_begin();
703 tsk = current;
704 sig = SIGKILL;
705
706 printk(KERN_ALERT "%s: Corrupted page table at address %lx\n",
707 tsk->comm, address);
708 dump_pagetable(address);
709
710 tsk->thread.cr2 = address;
711 tsk->thread.trap_nr = X86_TRAP_PF;
712 tsk->thread.error_code = error_code;
713
714 if (__die("Bad pagetable", regs, error_code))
715 sig = 0;
716
717 oops_end(flags, regs, sig);
718 }
719
720 static noinline void
no_context(struct pt_regs * regs,unsigned long error_code,unsigned long address,int signal,int si_code)721 no_context(struct pt_regs *regs, unsigned long error_code,
722 unsigned long address, int signal, int si_code)
723 {
724 struct task_struct *tsk = current;
725 unsigned long flags;
726 int sig;
727
728 /* Are we prepared to handle this kernel fault? */
729 if (fixup_exception(regs, X86_TRAP_PF)) {
730 /*
731 * Any interrupt that takes a fault gets the fixup. This makes
732 * the below recursive fault logic only apply to a faults from
733 * task context.
734 */
735 if (in_interrupt())
736 return;
737
738 /*
739 * Per the above we're !in_interrupt(), aka. task context.
740 *
741 * In this case we need to make sure we're not recursively
742 * faulting through the emulate_vsyscall() logic.
743 */
744 if (current->thread.sig_on_uaccess_err && signal) {
745 tsk->thread.trap_nr = X86_TRAP_PF;
746 tsk->thread.error_code = error_code | X86_PF_USER;
747 tsk->thread.cr2 = address;
748
749 /* XXX: hwpoison faults will set the wrong code. */
750 force_sig_info_fault(signal, si_code, address,
751 tsk, NULL, 0);
752 }
753
754 /*
755 * Barring that, we can do the fixup and be happy.
756 */
757 return;
758 }
759
760 #ifdef CONFIG_VMAP_STACK
761 /*
762 * Stack overflow? During boot, we can fault near the initial
763 * stack in the direct map, but that's not an overflow -- check
764 * that we're in vmalloc space to avoid this.
765 */
766 if (is_vmalloc_addr((void *)address) &&
767 (((unsigned long)tsk->stack - 1 - address < PAGE_SIZE) ||
768 address - ((unsigned long)tsk->stack + THREAD_SIZE) < PAGE_SIZE)) {
769 unsigned long stack = this_cpu_read(orig_ist.ist[DOUBLEFAULT_STACK]) - sizeof(void *);
770 /*
771 * We're likely to be running with very little stack space
772 * left. It's plausible that we'd hit this condition but
773 * double-fault even before we get this far, in which case
774 * we're fine: the double-fault handler will deal with it.
775 *
776 * We don't want to make it all the way into the oops code
777 * and then double-fault, though, because we're likely to
778 * break the console driver and lose most of the stack dump.
779 */
780 asm volatile ("movq %[stack], %%rsp\n\t"
781 "call handle_stack_overflow\n\t"
782 "1: jmp 1b"
783 : ASM_CALL_CONSTRAINT
784 : "D" ("kernel stack overflow (page fault)"),
785 "S" (regs), "d" (address),
786 [stack] "rm" (stack));
787 unreachable();
788 }
789 #endif
790
791 /*
792 * 32-bit:
793 *
794 * Valid to do another page fault here, because if this fault
795 * had been triggered by is_prefetch fixup_exception would have
796 * handled it.
797 *
798 * 64-bit:
799 *
800 * Hall of shame of CPU/BIOS bugs.
801 */
802 if (is_prefetch(regs, error_code, address))
803 return;
804
805 if (is_errata93(regs, address))
806 return;
807
808 /*
809 * Oops. The kernel tried to access some bad page. We'll have to
810 * terminate things with extreme prejudice:
811 */
812 flags = oops_begin();
813
814 show_fault_oops(regs, error_code, address);
815
816 if (task_stack_end_corrupted(tsk))
817 printk(KERN_EMERG "Thread overran stack, or stack corrupted\n");
818
819 tsk->thread.cr2 = address;
820 tsk->thread.trap_nr = X86_TRAP_PF;
821 tsk->thread.error_code = error_code;
822
823 sig = SIGKILL;
824 if (__die("Oops", regs, error_code))
825 sig = 0;
826
827 /* Executive summary in case the body of the oops scrolled away */
828 printk(KERN_DEFAULT "CR2: %016lx\n", address);
829
830 oops_end(flags, regs, sig);
831 }
832
833 /*
834 * Print out info about fatal segfaults, if the show_unhandled_signals
835 * sysctl is set:
836 */
837 static inline void
show_signal_msg(struct pt_regs * regs,unsigned long error_code,unsigned long address,struct task_struct * tsk)838 show_signal_msg(struct pt_regs *regs, unsigned long error_code,
839 unsigned long address, struct task_struct *tsk)
840 {
841 const char *loglvl = task_pid_nr(tsk) > 1 ? KERN_INFO : KERN_EMERG;
842
843 if (!unhandled_signal(tsk, SIGSEGV))
844 return;
845
846 if (!printk_ratelimit())
847 return;
848
849 printk("%s%s[%d]: segfault at %lx ip %px sp %px error %lx",
850 loglvl, tsk->comm, task_pid_nr(tsk), address,
851 (void *)regs->ip, (void *)regs->sp, error_code);
852
853 print_vma_addr(KERN_CONT " in ", regs->ip);
854
855 printk(KERN_CONT "\n");
856
857 show_opcodes(regs, loglvl);
858 }
859
860 static void
__bad_area_nosemaphore(struct pt_regs * regs,unsigned long error_code,unsigned long address,u32 * pkey,int si_code)861 __bad_area_nosemaphore(struct pt_regs *regs, unsigned long error_code,
862 unsigned long address, u32 *pkey, int si_code)
863 {
864 struct task_struct *tsk = current;
865
866 /* User mode accesses just cause a SIGSEGV */
867 if (error_code & X86_PF_USER) {
868 /*
869 * It's possible to have interrupts off here:
870 */
871 local_irq_enable();
872
873 /*
874 * Valid to do another page fault here because this one came
875 * from user space:
876 */
877 if (is_prefetch(regs, error_code, address))
878 return;
879
880 if (is_errata100(regs, address))
881 return;
882
883 #ifdef CONFIG_X86_64
884 /*
885 * Instruction fetch faults in the vsyscall page might need
886 * emulation.
887 */
888 if (unlikely((error_code & X86_PF_INSTR) &&
889 ((address & ~0xfff) == VSYSCALL_ADDR))) {
890 if (emulate_vsyscall(regs, address))
891 return;
892 }
893 #endif
894
895 /*
896 * To avoid leaking information about the kernel page table
897 * layout, pretend that user-mode accesses to kernel addresses
898 * are always protection faults.
899 */
900 if (address >= TASK_SIZE_MAX)
901 error_code |= X86_PF_PROT;
902
903 if (likely(show_unhandled_signals))
904 show_signal_msg(regs, error_code, address, tsk);
905
906 tsk->thread.cr2 = address;
907 tsk->thread.error_code = error_code;
908 tsk->thread.trap_nr = X86_TRAP_PF;
909
910 force_sig_info_fault(SIGSEGV, si_code, address, tsk, pkey, 0);
911
912 return;
913 }
914
915 if (is_f00f_bug(regs, address))
916 return;
917
918 no_context(regs, error_code, address, SIGSEGV, si_code);
919 }
920
921 static noinline void
bad_area_nosemaphore(struct pt_regs * regs,unsigned long error_code,unsigned long address,u32 * pkey)922 bad_area_nosemaphore(struct pt_regs *regs, unsigned long error_code,
923 unsigned long address, u32 *pkey)
924 {
925 __bad_area_nosemaphore(regs, error_code, address, pkey, SEGV_MAPERR);
926 }
927
928 static void
__bad_area(struct pt_regs * regs,unsigned long error_code,unsigned long address,struct vm_area_struct * vma,int si_code)929 __bad_area(struct pt_regs *regs, unsigned long error_code,
930 unsigned long address, struct vm_area_struct *vma, int si_code)
931 {
932 struct mm_struct *mm = current->mm;
933 u32 pkey;
934
935 if (vma)
936 pkey = vma_pkey(vma);
937
938 /*
939 * Something tried to access memory that isn't in our memory map..
940 * Fix it, but check if it's kernel or user first..
941 */
942 up_read(&mm->mmap_sem);
943
944 __bad_area_nosemaphore(regs, error_code, address,
945 (vma) ? &pkey : NULL, si_code);
946 }
947
948 static noinline void
bad_area(struct pt_regs * regs,unsigned long error_code,unsigned long address)949 bad_area(struct pt_regs *regs, unsigned long error_code, unsigned long address)
950 {
951 __bad_area(regs, error_code, address, NULL, SEGV_MAPERR);
952 }
953
bad_area_access_from_pkeys(unsigned long error_code,struct vm_area_struct * vma)954 static inline bool bad_area_access_from_pkeys(unsigned long error_code,
955 struct vm_area_struct *vma)
956 {
957 /* This code is always called on the current mm */
958 bool foreign = false;
959
960 if (!boot_cpu_has(X86_FEATURE_OSPKE))
961 return false;
962 if (error_code & X86_PF_PK)
963 return true;
964 /* this checks permission keys on the VMA: */
965 if (!arch_vma_access_permitted(vma, (error_code & X86_PF_WRITE),
966 (error_code & X86_PF_INSTR), foreign))
967 return true;
968 return false;
969 }
970
971 static noinline void
bad_area_access_error(struct pt_regs * regs,unsigned long error_code,unsigned long address,struct vm_area_struct * vma)972 bad_area_access_error(struct pt_regs *regs, unsigned long error_code,
973 unsigned long address, struct vm_area_struct *vma)
974 {
975 /*
976 * This OSPKE check is not strictly necessary at runtime.
977 * But, doing it this way allows compiler optimizations
978 * if pkeys are compiled out.
979 */
980 if (bad_area_access_from_pkeys(error_code, vma))
981 __bad_area(regs, error_code, address, vma, SEGV_PKUERR);
982 else
983 __bad_area(regs, error_code, address, vma, SEGV_ACCERR);
984 }
985
986 static void
do_sigbus(struct pt_regs * regs,unsigned long error_code,unsigned long address,u32 * pkey,unsigned int fault)987 do_sigbus(struct pt_regs *regs, unsigned long error_code, unsigned long address,
988 u32 *pkey, unsigned int fault)
989 {
990 struct task_struct *tsk = current;
991 int code = BUS_ADRERR;
992
993 /* Kernel mode? Handle exceptions or die: */
994 if (!(error_code & X86_PF_USER)) {
995 no_context(regs, error_code, address, SIGBUS, BUS_ADRERR);
996 return;
997 }
998
999 /* User-space => ok to do another page fault: */
1000 if (is_prefetch(regs, error_code, address))
1001 return;
1002
1003 tsk->thread.cr2 = address;
1004 tsk->thread.error_code = error_code;
1005 tsk->thread.trap_nr = X86_TRAP_PF;
1006
1007 #ifdef CONFIG_MEMORY_FAILURE
1008 if (fault & (VM_FAULT_HWPOISON|VM_FAULT_HWPOISON_LARGE)) {
1009 printk(KERN_ERR
1010 "MCE: Killing %s:%d due to hardware memory corruption fault at %lx\n",
1011 tsk->comm, tsk->pid, address);
1012 code = BUS_MCEERR_AR;
1013 }
1014 #endif
1015 force_sig_info_fault(SIGBUS, code, address, tsk, pkey, fault);
1016 }
1017
1018 static noinline void
mm_fault_error(struct pt_regs * regs,unsigned long error_code,unsigned long address,u32 * pkey,vm_fault_t fault)1019 mm_fault_error(struct pt_regs *regs, unsigned long error_code,
1020 unsigned long address, u32 *pkey, vm_fault_t fault)
1021 {
1022 if (fatal_signal_pending(current) && !(error_code & X86_PF_USER)) {
1023 no_context(regs, error_code, address, 0, 0);
1024 return;
1025 }
1026
1027 if (fault & VM_FAULT_OOM) {
1028 /* Kernel mode? Handle exceptions or die: */
1029 if (!(error_code & X86_PF_USER)) {
1030 no_context(regs, error_code, address,
1031 SIGSEGV, SEGV_MAPERR);
1032 return;
1033 }
1034
1035 /*
1036 * We ran out of memory, call the OOM killer, and return the
1037 * userspace (which will retry the fault, or kill us if we got
1038 * oom-killed):
1039 */
1040 pagefault_out_of_memory();
1041 } else {
1042 if (fault & (VM_FAULT_SIGBUS|VM_FAULT_HWPOISON|
1043 VM_FAULT_HWPOISON_LARGE))
1044 do_sigbus(regs, error_code, address, pkey, fault);
1045 else if (fault & VM_FAULT_SIGSEGV)
1046 bad_area_nosemaphore(regs, error_code, address, pkey);
1047 else
1048 BUG();
1049 }
1050 }
1051
spurious_fault_check(unsigned long error_code,pte_t * pte)1052 static int spurious_fault_check(unsigned long error_code, pte_t *pte)
1053 {
1054 if ((error_code & X86_PF_WRITE) && !pte_write(*pte))
1055 return 0;
1056
1057 if ((error_code & X86_PF_INSTR) && !pte_exec(*pte))
1058 return 0;
1059 /*
1060 * Note: We do not do lazy flushing on protection key
1061 * changes, so no spurious fault will ever set X86_PF_PK.
1062 */
1063 if ((error_code & X86_PF_PK))
1064 return 1;
1065
1066 return 1;
1067 }
1068
1069 /*
1070 * Handle a spurious fault caused by a stale TLB entry.
1071 *
1072 * This allows us to lazily refresh the TLB when increasing the
1073 * permissions of a kernel page (RO -> RW or NX -> X). Doing it
1074 * eagerly is very expensive since that implies doing a full
1075 * cross-processor TLB flush, even if no stale TLB entries exist
1076 * on other processors.
1077 *
1078 * Spurious faults may only occur if the TLB contains an entry with
1079 * fewer permission than the page table entry. Non-present (P = 0)
1080 * and reserved bit (R = 1) faults are never spurious.
1081 *
1082 * There are no security implications to leaving a stale TLB when
1083 * increasing the permissions on a page.
1084 *
1085 * Returns non-zero if a spurious fault was handled, zero otherwise.
1086 *
1087 * See Intel Developer's Manual Vol 3 Section 4.10.4.3, bullet 3
1088 * (Optional Invalidation).
1089 */
1090 static noinline int
spurious_fault(unsigned long error_code,unsigned long address)1091 spurious_fault(unsigned long error_code, unsigned long address)
1092 {
1093 pgd_t *pgd;
1094 p4d_t *p4d;
1095 pud_t *pud;
1096 pmd_t *pmd;
1097 pte_t *pte;
1098 int ret;
1099
1100 /*
1101 * Only writes to RO or instruction fetches from NX may cause
1102 * spurious faults.
1103 *
1104 * These could be from user or supervisor accesses but the TLB
1105 * is only lazily flushed after a kernel mapping protection
1106 * change, so user accesses are not expected to cause spurious
1107 * faults.
1108 */
1109 if (error_code != (X86_PF_WRITE | X86_PF_PROT) &&
1110 error_code != (X86_PF_INSTR | X86_PF_PROT))
1111 return 0;
1112
1113 pgd = init_mm.pgd + pgd_index(address);
1114 if (!pgd_present(*pgd))
1115 return 0;
1116
1117 p4d = p4d_offset(pgd, address);
1118 if (!p4d_present(*p4d))
1119 return 0;
1120
1121 if (p4d_large(*p4d))
1122 return spurious_fault_check(error_code, (pte_t *) p4d);
1123
1124 pud = pud_offset(p4d, address);
1125 if (!pud_present(*pud))
1126 return 0;
1127
1128 if (pud_large(*pud))
1129 return spurious_fault_check(error_code, (pte_t *) pud);
1130
1131 pmd = pmd_offset(pud, address);
1132 if (!pmd_present(*pmd))
1133 return 0;
1134
1135 if (pmd_large(*pmd))
1136 return spurious_fault_check(error_code, (pte_t *) pmd);
1137
1138 pte = pte_offset_kernel(pmd, address);
1139 if (!pte_present(*pte))
1140 return 0;
1141
1142 ret = spurious_fault_check(error_code, pte);
1143 if (!ret)
1144 return 0;
1145
1146 /*
1147 * Make sure we have permissions in PMD.
1148 * If not, then there's a bug in the page tables:
1149 */
1150 ret = spurious_fault_check(error_code, (pte_t *) pmd);
1151 WARN_ONCE(!ret, "PMD has incorrect permission bits\n");
1152
1153 return ret;
1154 }
1155 NOKPROBE_SYMBOL(spurious_fault);
1156
1157 int show_unhandled_signals = 1;
1158
1159 static inline int
access_error(unsigned long error_code,struct vm_area_struct * vma)1160 access_error(unsigned long error_code, struct vm_area_struct *vma)
1161 {
1162 /* This is only called for the current mm, so: */
1163 bool foreign = false;
1164
1165 /*
1166 * Read or write was blocked by protection keys. This is
1167 * always an unconditional error and can never result in
1168 * a follow-up action to resolve the fault, like a COW.
1169 */
1170 if (error_code & X86_PF_PK)
1171 return 1;
1172
1173 /*
1174 * Make sure to check the VMA so that we do not perform
1175 * faults just to hit a X86_PF_PK as soon as we fill in a
1176 * page.
1177 */
1178 if (!arch_vma_access_permitted(vma, (error_code & X86_PF_WRITE),
1179 (error_code & X86_PF_INSTR), foreign))
1180 return 1;
1181
1182 if (error_code & X86_PF_WRITE) {
1183 /* write, present and write, not present: */
1184 if (unlikely(!(vma->vm_flags & VM_WRITE)))
1185 return 1;
1186 return 0;
1187 }
1188
1189 /* read, present: */
1190 if (unlikely(error_code & X86_PF_PROT))
1191 return 1;
1192
1193 /* read, not present: */
1194 if (unlikely(!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE))))
1195 return 1;
1196
1197 return 0;
1198 }
1199
fault_in_kernel_space(unsigned long address)1200 static int fault_in_kernel_space(unsigned long address)
1201 {
1202 return address >= TASK_SIZE_MAX;
1203 }
1204
smap_violation(int error_code,struct pt_regs * regs)1205 static inline bool smap_violation(int error_code, struct pt_regs *regs)
1206 {
1207 if (!IS_ENABLED(CONFIG_X86_SMAP))
1208 return false;
1209
1210 if (!static_cpu_has(X86_FEATURE_SMAP))
1211 return false;
1212
1213 if (error_code & X86_PF_USER)
1214 return false;
1215
1216 if (!user_mode(regs) && (regs->flags & X86_EFLAGS_AC))
1217 return false;
1218
1219 return true;
1220 }
1221
1222 /*
1223 * This routine handles page faults. It determines the address,
1224 * and the problem, and then passes it off to one of the appropriate
1225 * routines.
1226 */
1227 static noinline void
__do_page_fault(struct pt_regs * regs,unsigned long error_code,unsigned long address)1228 __do_page_fault(struct pt_regs *regs, unsigned long error_code,
1229 unsigned long address)
1230 {
1231 struct vm_area_struct *vma;
1232 struct task_struct *tsk;
1233 struct mm_struct *mm;
1234 vm_fault_t fault, major = 0;
1235 unsigned int flags = FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;
1236 u32 pkey;
1237
1238 tsk = current;
1239 mm = tsk->mm;
1240
1241 prefetchw(&mm->mmap_sem);
1242
1243 if (unlikely(kmmio_fault(regs, address)))
1244 return;
1245
1246 /*
1247 * We fault-in kernel-space virtual memory on-demand. The
1248 * 'reference' page table is init_mm.pgd.
1249 *
1250 * NOTE! We MUST NOT take any locks for this case. We may
1251 * be in an interrupt or a critical region, and should
1252 * only copy the information from the master page table,
1253 * nothing more.
1254 *
1255 * This verifies that the fault happens in kernel space
1256 * (error_code & 4) == 0, and that the fault was not a
1257 * protection error (error_code & 9) == 0.
1258 */
1259 if (unlikely(fault_in_kernel_space(address))) {
1260 if (!(error_code & (X86_PF_RSVD | X86_PF_USER | X86_PF_PROT))) {
1261 if (vmalloc_fault(address) >= 0)
1262 return;
1263 }
1264
1265 /* Can handle a stale RO->RW TLB: */
1266 if (spurious_fault(error_code, address))
1267 return;
1268
1269 /* kprobes don't want to hook the spurious faults: */
1270 if (kprobes_fault(regs))
1271 return;
1272 /*
1273 * Don't take the mm semaphore here. If we fixup a prefetch
1274 * fault we could otherwise deadlock:
1275 */
1276 bad_area_nosemaphore(regs, error_code, address, NULL);
1277
1278 return;
1279 }
1280
1281 /* kprobes don't want to hook the spurious faults: */
1282 if (unlikely(kprobes_fault(regs)))
1283 return;
1284
1285 if (unlikely(error_code & X86_PF_RSVD))
1286 pgtable_bad(regs, error_code, address);
1287
1288 if (unlikely(smap_violation(error_code, regs))) {
1289 bad_area_nosemaphore(regs, error_code, address, NULL);
1290 return;
1291 }
1292
1293 /*
1294 * If we're in an interrupt, have no user context or are running
1295 * in a region with pagefaults disabled then we must not take the fault
1296 */
1297 if (unlikely(faulthandler_disabled() || !mm)) {
1298 bad_area_nosemaphore(regs, error_code, address, NULL);
1299 return;
1300 }
1301
1302 /*
1303 * It's safe to allow irq's after cr2 has been saved and the
1304 * vmalloc fault has been handled.
1305 *
1306 * User-mode registers count as a user access even for any
1307 * potential system fault or CPU buglet:
1308 */
1309 if (user_mode(regs)) {
1310 local_irq_enable();
1311 error_code |= X86_PF_USER;
1312 flags |= FAULT_FLAG_USER;
1313 } else {
1314 if (regs->flags & X86_EFLAGS_IF)
1315 local_irq_enable();
1316 }
1317
1318 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS, 1, regs, address);
1319
1320 if (error_code & X86_PF_WRITE)
1321 flags |= FAULT_FLAG_WRITE;
1322 if (error_code & X86_PF_INSTR)
1323 flags |= FAULT_FLAG_INSTRUCTION;
1324
1325 /*
1326 * When running in the kernel we expect faults to occur only to
1327 * addresses in user space. All other faults represent errors in
1328 * the kernel and should generate an OOPS. Unfortunately, in the
1329 * case of an erroneous fault occurring in a code path which already
1330 * holds mmap_sem we will deadlock attempting to validate the fault
1331 * against the address space. Luckily the kernel only validly
1332 * references user space from well defined areas of code, which are
1333 * listed in the exceptions table.
1334 *
1335 * As the vast majority of faults will be valid we will only perform
1336 * the source reference check when there is a possibility of a
1337 * deadlock. Attempt to lock the address space, if we cannot we then
1338 * validate the source. If this is invalid we can skip the address
1339 * space check, thus avoiding the deadlock:
1340 */
1341 if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
1342 if (!(error_code & X86_PF_USER) &&
1343 !search_exception_tables(regs->ip)) {
1344 bad_area_nosemaphore(regs, error_code, address, NULL);
1345 return;
1346 }
1347 retry:
1348 down_read(&mm->mmap_sem);
1349 } else {
1350 /*
1351 * The above down_read_trylock() might have succeeded in
1352 * which case we'll have missed the might_sleep() from
1353 * down_read():
1354 */
1355 might_sleep();
1356 }
1357
1358 vma = find_vma(mm, address);
1359 if (unlikely(!vma)) {
1360 bad_area(regs, error_code, address);
1361 return;
1362 }
1363 if (likely(vma->vm_start <= address))
1364 goto good_area;
1365 if (unlikely(!(vma->vm_flags & VM_GROWSDOWN))) {
1366 bad_area(regs, error_code, address);
1367 return;
1368 }
1369 if (error_code & X86_PF_USER) {
1370 /*
1371 * Accessing the stack below %sp is always a bug.
1372 * The large cushion allows instructions like enter
1373 * and pusha to work. ("enter $65535, $31" pushes
1374 * 32 pointers and then decrements %sp by 65535.)
1375 */
1376 if (unlikely(address + 65536 + 32 * sizeof(unsigned long) < regs->sp)) {
1377 bad_area(regs, error_code, address);
1378 return;
1379 }
1380 }
1381 if (unlikely(expand_stack(vma, address))) {
1382 bad_area(regs, error_code, address);
1383 return;
1384 }
1385
1386 /*
1387 * Ok, we have a good vm_area for this memory access, so
1388 * we can handle it..
1389 */
1390 good_area:
1391 if (unlikely(access_error(error_code, vma))) {
1392 bad_area_access_error(regs, error_code, address, vma);
1393 return;
1394 }
1395
1396 /*
1397 * If for any reason at all we couldn't handle the fault,
1398 * make sure we exit gracefully rather than endlessly redo
1399 * the fault. Since we never set FAULT_FLAG_RETRY_NOWAIT, if
1400 * we get VM_FAULT_RETRY back, the mmap_sem has been unlocked.
1401 *
1402 * Note that handle_userfault() may also release and reacquire mmap_sem
1403 * (and not return with VM_FAULT_RETRY), when returning to userland to
1404 * repeat the page fault later with a VM_FAULT_NOPAGE retval
1405 * (potentially after handling any pending signal during the return to
1406 * userland). The return to userland is identified whenever
1407 * FAULT_FLAG_USER|FAULT_FLAG_KILLABLE are both set in flags.
1408 * Thus we have to be careful about not touching vma after handling the
1409 * fault, so we read the pkey beforehand.
1410 */
1411 pkey = vma_pkey(vma);
1412 fault = handle_mm_fault(vma, address, flags);
1413 major |= fault & VM_FAULT_MAJOR;
1414
1415 /*
1416 * If we need to retry the mmap_sem has already been released,
1417 * and if there is a fatal signal pending there is no guarantee
1418 * that we made any progress. Handle this case first.
1419 */
1420 if (unlikely(fault & VM_FAULT_RETRY)) {
1421 /* Retry at most once */
1422 if (flags & FAULT_FLAG_ALLOW_RETRY) {
1423 flags &= ~FAULT_FLAG_ALLOW_RETRY;
1424 flags |= FAULT_FLAG_TRIED;
1425 if (!fatal_signal_pending(tsk))
1426 goto retry;
1427 }
1428
1429 /* User mode? Just return to handle the fatal exception */
1430 if (flags & FAULT_FLAG_USER)
1431 return;
1432
1433 /* Not returning to user mode? Handle exceptions or die: */
1434 no_context(regs, error_code, address, SIGBUS, BUS_ADRERR);
1435 return;
1436 }
1437
1438 up_read(&mm->mmap_sem);
1439 if (unlikely(fault & VM_FAULT_ERROR)) {
1440 mm_fault_error(regs, error_code, address, &pkey, fault);
1441 return;
1442 }
1443
1444 /*
1445 * Major/minor page fault accounting. If any of the events
1446 * returned VM_FAULT_MAJOR, we account it as a major fault.
1447 */
1448 if (major) {
1449 tsk->maj_flt++;
1450 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1, regs, address);
1451 } else {
1452 tsk->min_flt++;
1453 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1, regs, address);
1454 }
1455
1456 check_v8086_mode(regs, address, tsk);
1457 }
1458 NOKPROBE_SYMBOL(__do_page_fault);
1459
1460 static nokprobe_inline void
trace_page_fault_entries(unsigned long address,struct pt_regs * regs,unsigned long error_code)1461 trace_page_fault_entries(unsigned long address, struct pt_regs *regs,
1462 unsigned long error_code)
1463 {
1464 if (user_mode(regs))
1465 trace_page_fault_user(address, regs, error_code);
1466 else
1467 trace_page_fault_kernel(address, regs, error_code);
1468 }
1469
1470 /*
1471 * We must have this function blacklisted from kprobes, tagged with notrace
1472 * and call read_cr2() before calling anything else. To avoid calling any
1473 * kind of tracing machinery before we've observed the CR2 value.
1474 *
1475 * exception_{enter,exit}() contains all sorts of tracepoints.
1476 */
1477 dotraplinkage void notrace
do_page_fault(struct pt_regs * regs,unsigned long error_code)1478 do_page_fault(struct pt_regs *regs, unsigned long error_code)
1479 {
1480 unsigned long address = read_cr2(); /* Get the faulting address */
1481 enum ctx_state prev_state;
1482
1483 prev_state = exception_enter();
1484 if (trace_pagefault_enabled())
1485 trace_page_fault_entries(address, regs, error_code);
1486
1487 __do_page_fault(regs, error_code, address);
1488 exception_exit(prev_state);
1489 }
1490 NOKPROBE_SYMBOL(do_page_fault);
1491