1 #include <linux/gfp.h>
2 #include <linux/initrd.h>
3 #include <linux/ioport.h>
4 #include <linux/swap.h>
5 #include <linux/memblock.h>
6 #include <linux/bootmem.h> /* for max_low_pfn */
7 #include <linux/swapfile.h>
8 #include <linux/swapops.h>
9 #include <linux/kmemleak.h>
10
11 #include <asm/set_memory.h>
12 #include <asm/e820/api.h>
13 #include <asm/init.h>
14 #include <asm/page.h>
15 #include <asm/page_types.h>
16 #include <asm/sections.h>
17 #include <asm/setup.h>
18 #include <asm/tlbflush.h>
19 #include <asm/tlb.h>
20 #include <asm/proto.h>
21 #include <asm/dma.h> /* for MAX_DMA_PFN */
22 #include <asm/microcode.h>
23 #include <asm/kaslr.h>
24 #include <asm/hypervisor.h>
25 #include <asm/cpufeature.h>
26 #include <asm/pti.h>
27
28 /*
29 * We need to define the tracepoints somewhere, and tlb.c
30 * is only compied when SMP=y.
31 */
32 #define CREATE_TRACE_POINTS
33 #include <trace/events/tlb.h>
34
35 #include "mm_internal.h"
36
37 /*
38 * Tables translating between page_cache_type_t and pte encoding.
39 *
40 * The default values are defined statically as minimal supported mode;
41 * WC and WT fall back to UC-. pat_init() updates these values to support
42 * more cache modes, WC and WT, when it is safe to do so. See pat_init()
43 * for the details. Note, __early_ioremap() used during early boot-time
44 * takes pgprot_t (pte encoding) and does not use these tables.
45 *
46 * Index into __cachemode2pte_tbl[] is the cachemode.
47 *
48 * Index into __pte2cachemode_tbl[] are the caching attribute bits of the pte
49 * (_PAGE_PWT, _PAGE_PCD, _PAGE_PAT) at index bit positions 0, 1, 2.
50 */
51 uint16_t __cachemode2pte_tbl[_PAGE_CACHE_MODE_NUM] = {
52 [_PAGE_CACHE_MODE_WB ] = 0 | 0 ,
53 [_PAGE_CACHE_MODE_WC ] = 0 | _PAGE_PCD,
54 [_PAGE_CACHE_MODE_UC_MINUS] = 0 | _PAGE_PCD,
55 [_PAGE_CACHE_MODE_UC ] = _PAGE_PWT | _PAGE_PCD,
56 [_PAGE_CACHE_MODE_WT ] = 0 | _PAGE_PCD,
57 [_PAGE_CACHE_MODE_WP ] = 0 | _PAGE_PCD,
58 };
59 EXPORT_SYMBOL(__cachemode2pte_tbl);
60
61 uint8_t __pte2cachemode_tbl[8] = {
62 [__pte2cm_idx( 0 | 0 | 0 )] = _PAGE_CACHE_MODE_WB,
63 [__pte2cm_idx(_PAGE_PWT | 0 | 0 )] = _PAGE_CACHE_MODE_UC_MINUS,
64 [__pte2cm_idx( 0 | _PAGE_PCD | 0 )] = _PAGE_CACHE_MODE_UC_MINUS,
65 [__pte2cm_idx(_PAGE_PWT | _PAGE_PCD | 0 )] = _PAGE_CACHE_MODE_UC,
66 [__pte2cm_idx( 0 | 0 | _PAGE_PAT)] = _PAGE_CACHE_MODE_WB,
67 [__pte2cm_idx(_PAGE_PWT | 0 | _PAGE_PAT)] = _PAGE_CACHE_MODE_UC_MINUS,
68 [__pte2cm_idx(0 | _PAGE_PCD | _PAGE_PAT)] = _PAGE_CACHE_MODE_UC_MINUS,
69 [__pte2cm_idx(_PAGE_PWT | _PAGE_PCD | _PAGE_PAT)] = _PAGE_CACHE_MODE_UC,
70 };
71 EXPORT_SYMBOL(__pte2cachemode_tbl);
72
73 static unsigned long __initdata pgt_buf_start;
74 static unsigned long __initdata pgt_buf_end;
75 static unsigned long __initdata pgt_buf_top;
76
77 static unsigned long min_pfn_mapped;
78
79 static bool __initdata can_use_brk_pgt = true;
80
81 /*
82 * Pages returned are already directly mapped.
83 *
84 * Changing that is likely to break Xen, see commit:
85 *
86 * 279b706 x86,xen: introduce x86_init.mapping.pagetable_reserve
87 *
88 * for detailed information.
89 */
alloc_low_pages(unsigned int num)90 __ref void *alloc_low_pages(unsigned int num)
91 {
92 unsigned long pfn;
93 int i;
94
95 if (after_bootmem) {
96 unsigned int order;
97
98 order = get_order((unsigned long)num << PAGE_SHIFT);
99 return (void *)__get_free_pages(GFP_ATOMIC | __GFP_ZERO, order);
100 }
101
102 if ((pgt_buf_end + num) > pgt_buf_top || !can_use_brk_pgt) {
103 unsigned long ret = 0;
104
105 if (min_pfn_mapped < max_pfn_mapped) {
106 ret = memblock_find_in_range(
107 min_pfn_mapped << PAGE_SHIFT,
108 max_pfn_mapped << PAGE_SHIFT,
109 PAGE_SIZE * num , PAGE_SIZE);
110 }
111 if (ret)
112 memblock_reserve(ret, PAGE_SIZE * num);
113 else if (can_use_brk_pgt)
114 ret = __pa(extend_brk(PAGE_SIZE * num, PAGE_SIZE));
115
116 if (!ret)
117 panic("alloc_low_pages: can not alloc memory");
118
119 pfn = ret >> PAGE_SHIFT;
120 } else {
121 pfn = pgt_buf_end;
122 pgt_buf_end += num;
123 }
124
125 for (i = 0; i < num; i++) {
126 void *adr;
127
128 adr = __va((pfn + i) << PAGE_SHIFT);
129 clear_page(adr);
130 }
131
132 return __va(pfn << PAGE_SHIFT);
133 }
134
135 /*
136 * By default need 3 4k for initial PMD_SIZE, 3 4k for 0-ISA_END_ADDRESS.
137 * With KASLR memory randomization, depending on the machine e820 memory
138 * and the PUD alignment. We may need twice more pages when KASLR memory
139 * randomization is enabled.
140 */
141 #ifndef CONFIG_RANDOMIZE_MEMORY
142 #define INIT_PGD_PAGE_COUNT 6
143 #else
144 #define INIT_PGD_PAGE_COUNT 12
145 #endif
146 #define INIT_PGT_BUF_SIZE (INIT_PGD_PAGE_COUNT * PAGE_SIZE)
147 RESERVE_BRK(early_pgt_alloc, INIT_PGT_BUF_SIZE);
early_alloc_pgt_buf(void)148 void __init early_alloc_pgt_buf(void)
149 {
150 unsigned long tables = INIT_PGT_BUF_SIZE;
151 phys_addr_t base;
152
153 base = __pa(extend_brk(tables, PAGE_SIZE));
154
155 pgt_buf_start = base >> PAGE_SHIFT;
156 pgt_buf_end = pgt_buf_start;
157 pgt_buf_top = pgt_buf_start + (tables >> PAGE_SHIFT);
158 }
159
160 int after_bootmem;
161
162 early_param_on_off("gbpages", "nogbpages", direct_gbpages, CONFIG_X86_DIRECT_GBPAGES);
163
164 struct map_range {
165 unsigned long start;
166 unsigned long end;
167 unsigned page_size_mask;
168 };
169
170 static int page_size_mask;
171
probe_page_size_mask(void)172 static void __init probe_page_size_mask(void)
173 {
174 /*
175 * For pagealloc debugging, identity mapping will use small pages.
176 * This will simplify cpa(), which otherwise needs to support splitting
177 * large pages into small in interrupt context, etc.
178 */
179 if (boot_cpu_has(X86_FEATURE_PSE) && !debug_pagealloc_enabled())
180 page_size_mask |= 1 << PG_LEVEL_2M;
181 else
182 direct_gbpages = 0;
183
184 /* Enable PSE if available */
185 if (boot_cpu_has(X86_FEATURE_PSE))
186 cr4_set_bits_and_update_boot(X86_CR4_PSE);
187
188 /* Enable PGE if available */
189 __supported_pte_mask &= ~_PAGE_GLOBAL;
190 if (boot_cpu_has(X86_FEATURE_PGE)) {
191 cr4_set_bits_and_update_boot(X86_CR4_PGE);
192 __supported_pte_mask |= _PAGE_GLOBAL;
193 }
194
195 /* By the default is everything supported: */
196 __default_kernel_pte_mask = __supported_pte_mask;
197 /* Except when with PTI where the kernel is mostly non-Global: */
198 if (cpu_feature_enabled(X86_FEATURE_PTI))
199 __default_kernel_pte_mask &= ~_PAGE_GLOBAL;
200
201 /* Enable 1 GB linear kernel mappings if available: */
202 if (direct_gbpages && boot_cpu_has(X86_FEATURE_GBPAGES)) {
203 printk(KERN_INFO "Using GB pages for direct mapping\n");
204 page_size_mask |= 1 << PG_LEVEL_1G;
205 } else {
206 direct_gbpages = 0;
207 }
208 }
209
setup_pcid(void)210 static void setup_pcid(void)
211 {
212 if (!IS_ENABLED(CONFIG_X86_64))
213 return;
214
215 if (!boot_cpu_has(X86_FEATURE_PCID))
216 return;
217
218 if (boot_cpu_has(X86_FEATURE_PGE)) {
219 /*
220 * This can't be cr4_set_bits_and_update_boot() -- the
221 * trampoline code can't handle CR4.PCIDE and it wouldn't
222 * do any good anyway. Despite the name,
223 * cr4_set_bits_and_update_boot() doesn't actually cause
224 * the bits in question to remain set all the way through
225 * the secondary boot asm.
226 *
227 * Instead, we brute-force it and set CR4.PCIDE manually in
228 * start_secondary().
229 */
230 cr4_set_bits(X86_CR4_PCIDE);
231
232 /*
233 * INVPCID's single-context modes (2/3) only work if we set
234 * X86_CR4_PCIDE, *and* we INVPCID support. It's unusable
235 * on systems that have X86_CR4_PCIDE clear, or that have
236 * no INVPCID support at all.
237 */
238 if (boot_cpu_has(X86_FEATURE_INVPCID))
239 setup_force_cpu_cap(X86_FEATURE_INVPCID_SINGLE);
240 } else {
241 /*
242 * flush_tlb_all(), as currently implemented, won't work if
243 * PCID is on but PGE is not. Since that combination
244 * doesn't exist on real hardware, there's no reason to try
245 * to fully support it, but it's polite to avoid corrupting
246 * data if we're on an improperly configured VM.
247 */
248 setup_clear_cpu_cap(X86_FEATURE_PCID);
249 }
250 }
251
252 #ifdef CONFIG_X86_32
253 #define NR_RANGE_MR 3
254 #else /* CONFIG_X86_64 */
255 #define NR_RANGE_MR 5
256 #endif
257
save_mr(struct map_range * mr,int nr_range,unsigned long start_pfn,unsigned long end_pfn,unsigned long page_size_mask)258 static int __meminit save_mr(struct map_range *mr, int nr_range,
259 unsigned long start_pfn, unsigned long end_pfn,
260 unsigned long page_size_mask)
261 {
262 if (start_pfn < end_pfn) {
263 if (nr_range >= NR_RANGE_MR)
264 panic("run out of range for init_memory_mapping\n");
265 mr[nr_range].start = start_pfn<<PAGE_SHIFT;
266 mr[nr_range].end = end_pfn<<PAGE_SHIFT;
267 mr[nr_range].page_size_mask = page_size_mask;
268 nr_range++;
269 }
270
271 return nr_range;
272 }
273
274 /*
275 * adjust the page_size_mask for small range to go with
276 * big page size instead small one if nearby are ram too.
277 */
adjust_range_page_size_mask(struct map_range * mr,int nr_range)278 static void __ref adjust_range_page_size_mask(struct map_range *mr,
279 int nr_range)
280 {
281 int i;
282
283 for (i = 0; i < nr_range; i++) {
284 if ((page_size_mask & (1<<PG_LEVEL_2M)) &&
285 !(mr[i].page_size_mask & (1<<PG_LEVEL_2M))) {
286 unsigned long start = round_down(mr[i].start, PMD_SIZE);
287 unsigned long end = round_up(mr[i].end, PMD_SIZE);
288
289 #ifdef CONFIG_X86_32
290 if ((end >> PAGE_SHIFT) > max_low_pfn)
291 continue;
292 #endif
293
294 if (memblock_is_region_memory(start, end - start))
295 mr[i].page_size_mask |= 1<<PG_LEVEL_2M;
296 }
297 if ((page_size_mask & (1<<PG_LEVEL_1G)) &&
298 !(mr[i].page_size_mask & (1<<PG_LEVEL_1G))) {
299 unsigned long start = round_down(mr[i].start, PUD_SIZE);
300 unsigned long end = round_up(mr[i].end, PUD_SIZE);
301
302 if (memblock_is_region_memory(start, end - start))
303 mr[i].page_size_mask |= 1<<PG_LEVEL_1G;
304 }
305 }
306 }
307
page_size_string(struct map_range * mr)308 static const char *page_size_string(struct map_range *mr)
309 {
310 static const char str_1g[] = "1G";
311 static const char str_2m[] = "2M";
312 static const char str_4m[] = "4M";
313 static const char str_4k[] = "4k";
314
315 if (mr->page_size_mask & (1<<PG_LEVEL_1G))
316 return str_1g;
317 /*
318 * 32-bit without PAE has a 4M large page size.
319 * PG_LEVEL_2M is misnamed, but we can at least
320 * print out the right size in the string.
321 */
322 if (IS_ENABLED(CONFIG_X86_32) &&
323 !IS_ENABLED(CONFIG_X86_PAE) &&
324 mr->page_size_mask & (1<<PG_LEVEL_2M))
325 return str_4m;
326
327 if (mr->page_size_mask & (1<<PG_LEVEL_2M))
328 return str_2m;
329
330 return str_4k;
331 }
332
split_mem_range(struct map_range * mr,int nr_range,unsigned long start,unsigned long end)333 static int __meminit split_mem_range(struct map_range *mr, int nr_range,
334 unsigned long start,
335 unsigned long end)
336 {
337 unsigned long start_pfn, end_pfn, limit_pfn;
338 unsigned long pfn;
339 int i;
340
341 limit_pfn = PFN_DOWN(end);
342
343 /* head if not big page alignment ? */
344 pfn = start_pfn = PFN_DOWN(start);
345 #ifdef CONFIG_X86_32
346 /*
347 * Don't use a large page for the first 2/4MB of memory
348 * because there are often fixed size MTRRs in there
349 * and overlapping MTRRs into large pages can cause
350 * slowdowns.
351 */
352 if (pfn == 0)
353 end_pfn = PFN_DOWN(PMD_SIZE);
354 else
355 end_pfn = round_up(pfn, PFN_DOWN(PMD_SIZE));
356 #else /* CONFIG_X86_64 */
357 end_pfn = round_up(pfn, PFN_DOWN(PMD_SIZE));
358 #endif
359 if (end_pfn > limit_pfn)
360 end_pfn = limit_pfn;
361 if (start_pfn < end_pfn) {
362 nr_range = save_mr(mr, nr_range, start_pfn, end_pfn, 0);
363 pfn = end_pfn;
364 }
365
366 /* big page (2M) range */
367 start_pfn = round_up(pfn, PFN_DOWN(PMD_SIZE));
368 #ifdef CONFIG_X86_32
369 end_pfn = round_down(limit_pfn, PFN_DOWN(PMD_SIZE));
370 #else /* CONFIG_X86_64 */
371 end_pfn = round_up(pfn, PFN_DOWN(PUD_SIZE));
372 if (end_pfn > round_down(limit_pfn, PFN_DOWN(PMD_SIZE)))
373 end_pfn = round_down(limit_pfn, PFN_DOWN(PMD_SIZE));
374 #endif
375
376 if (start_pfn < end_pfn) {
377 nr_range = save_mr(mr, nr_range, start_pfn, end_pfn,
378 page_size_mask & (1<<PG_LEVEL_2M));
379 pfn = end_pfn;
380 }
381
382 #ifdef CONFIG_X86_64
383 /* big page (1G) range */
384 start_pfn = round_up(pfn, PFN_DOWN(PUD_SIZE));
385 end_pfn = round_down(limit_pfn, PFN_DOWN(PUD_SIZE));
386 if (start_pfn < end_pfn) {
387 nr_range = save_mr(mr, nr_range, start_pfn, end_pfn,
388 page_size_mask &
389 ((1<<PG_LEVEL_2M)|(1<<PG_LEVEL_1G)));
390 pfn = end_pfn;
391 }
392
393 /* tail is not big page (1G) alignment */
394 start_pfn = round_up(pfn, PFN_DOWN(PMD_SIZE));
395 end_pfn = round_down(limit_pfn, PFN_DOWN(PMD_SIZE));
396 if (start_pfn < end_pfn) {
397 nr_range = save_mr(mr, nr_range, start_pfn, end_pfn,
398 page_size_mask & (1<<PG_LEVEL_2M));
399 pfn = end_pfn;
400 }
401 #endif
402
403 /* tail is not big page (2M) alignment */
404 start_pfn = pfn;
405 end_pfn = limit_pfn;
406 nr_range = save_mr(mr, nr_range, start_pfn, end_pfn, 0);
407
408 if (!after_bootmem)
409 adjust_range_page_size_mask(mr, nr_range);
410
411 /* try to merge same page size and continuous */
412 for (i = 0; nr_range > 1 && i < nr_range - 1; i++) {
413 unsigned long old_start;
414 if (mr[i].end != mr[i+1].start ||
415 mr[i].page_size_mask != mr[i+1].page_size_mask)
416 continue;
417 /* move it */
418 old_start = mr[i].start;
419 memmove(&mr[i], &mr[i+1],
420 (nr_range - 1 - i) * sizeof(struct map_range));
421 mr[i--].start = old_start;
422 nr_range--;
423 }
424
425 for (i = 0; i < nr_range; i++)
426 pr_debug(" [mem %#010lx-%#010lx] page %s\n",
427 mr[i].start, mr[i].end - 1,
428 page_size_string(&mr[i]));
429
430 return nr_range;
431 }
432
433 struct range pfn_mapped[E820_MAX_ENTRIES];
434 int nr_pfn_mapped;
435
add_pfn_range_mapped(unsigned long start_pfn,unsigned long end_pfn)436 static void add_pfn_range_mapped(unsigned long start_pfn, unsigned long end_pfn)
437 {
438 nr_pfn_mapped = add_range_with_merge(pfn_mapped, E820_MAX_ENTRIES,
439 nr_pfn_mapped, start_pfn, end_pfn);
440 nr_pfn_mapped = clean_sort_range(pfn_mapped, E820_MAX_ENTRIES);
441
442 max_pfn_mapped = max(max_pfn_mapped, end_pfn);
443
444 if (start_pfn < (1UL<<(32-PAGE_SHIFT)))
445 max_low_pfn_mapped = max(max_low_pfn_mapped,
446 min(end_pfn, 1UL<<(32-PAGE_SHIFT)));
447 }
448
pfn_range_is_mapped(unsigned long start_pfn,unsigned long end_pfn)449 bool pfn_range_is_mapped(unsigned long start_pfn, unsigned long end_pfn)
450 {
451 int i;
452
453 for (i = 0; i < nr_pfn_mapped; i++)
454 if ((start_pfn >= pfn_mapped[i].start) &&
455 (end_pfn <= pfn_mapped[i].end))
456 return true;
457
458 return false;
459 }
460
461 /*
462 * Setup the direct mapping of the physical memory at PAGE_OFFSET.
463 * This runs before bootmem is initialized and gets pages directly from
464 * the physical memory. To access them they are temporarily mapped.
465 */
init_memory_mapping(unsigned long start,unsigned long end)466 unsigned long __ref init_memory_mapping(unsigned long start,
467 unsigned long end)
468 {
469 struct map_range mr[NR_RANGE_MR];
470 unsigned long ret = 0;
471 int nr_range, i;
472
473 pr_debug("init_memory_mapping: [mem %#010lx-%#010lx]\n",
474 start, end - 1);
475
476 memset(mr, 0, sizeof(mr));
477 nr_range = split_mem_range(mr, 0, start, end);
478
479 for (i = 0; i < nr_range; i++)
480 ret = kernel_physical_mapping_init(mr[i].start, mr[i].end,
481 mr[i].page_size_mask);
482
483 add_pfn_range_mapped(start >> PAGE_SHIFT, ret >> PAGE_SHIFT);
484
485 return ret >> PAGE_SHIFT;
486 }
487
488 /*
489 * We need to iterate through the E820 memory map and create direct mappings
490 * for only E820_TYPE_RAM and E820_KERN_RESERVED regions. We cannot simply
491 * create direct mappings for all pfns from [0 to max_low_pfn) and
492 * [4GB to max_pfn) because of possible memory holes in high addresses
493 * that cannot be marked as UC by fixed/variable range MTRRs.
494 * Depending on the alignment of E820 ranges, this may possibly result
495 * in using smaller size (i.e. 4K instead of 2M or 1G) page tables.
496 *
497 * init_mem_mapping() calls init_range_memory_mapping() with big range.
498 * That range would have hole in the middle or ends, and only ram parts
499 * will be mapped in init_range_memory_mapping().
500 */
init_range_memory_mapping(unsigned long r_start,unsigned long r_end)501 static unsigned long __init init_range_memory_mapping(
502 unsigned long r_start,
503 unsigned long r_end)
504 {
505 unsigned long start_pfn, end_pfn;
506 unsigned long mapped_ram_size = 0;
507 int i;
508
509 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, NULL) {
510 u64 start = clamp_val(PFN_PHYS(start_pfn), r_start, r_end);
511 u64 end = clamp_val(PFN_PHYS(end_pfn), r_start, r_end);
512 if (start >= end)
513 continue;
514
515 /*
516 * if it is overlapping with brk pgt, we need to
517 * alloc pgt buf from memblock instead.
518 */
519 can_use_brk_pgt = max(start, (u64)pgt_buf_end<<PAGE_SHIFT) >=
520 min(end, (u64)pgt_buf_top<<PAGE_SHIFT);
521 init_memory_mapping(start, end);
522 mapped_ram_size += end - start;
523 can_use_brk_pgt = true;
524 }
525
526 return mapped_ram_size;
527 }
528
get_new_step_size(unsigned long step_size)529 static unsigned long __init get_new_step_size(unsigned long step_size)
530 {
531 /*
532 * Initial mapped size is PMD_SIZE (2M).
533 * We can not set step_size to be PUD_SIZE (1G) yet.
534 * In worse case, when we cross the 1G boundary, and
535 * PG_LEVEL_2M is not set, we will need 1+1+512 pages (2M + 8k)
536 * to map 1G range with PTE. Hence we use one less than the
537 * difference of page table level shifts.
538 *
539 * Don't need to worry about overflow in the top-down case, on 32bit,
540 * when step_size is 0, round_down() returns 0 for start, and that
541 * turns it into 0x100000000ULL.
542 * In the bottom-up case, round_up(x, 0) returns 0 though too, which
543 * needs to be taken into consideration by the code below.
544 */
545 return step_size << (PMD_SHIFT - PAGE_SHIFT - 1);
546 }
547
548 /**
549 * memory_map_top_down - Map [map_start, map_end) top down
550 * @map_start: start address of the target memory range
551 * @map_end: end address of the target memory range
552 *
553 * This function will setup direct mapping for memory range
554 * [map_start, map_end) in top-down. That said, the page tables
555 * will be allocated at the end of the memory, and we map the
556 * memory in top-down.
557 */
memory_map_top_down(unsigned long map_start,unsigned long map_end)558 static void __init memory_map_top_down(unsigned long map_start,
559 unsigned long map_end)
560 {
561 unsigned long real_end, start, last_start;
562 unsigned long step_size;
563 unsigned long addr;
564 unsigned long mapped_ram_size = 0;
565
566 /* xen has big range in reserved near end of ram, skip it at first.*/
567 addr = memblock_find_in_range(map_start, map_end, PMD_SIZE, PMD_SIZE);
568 real_end = addr + PMD_SIZE;
569
570 /* step_size need to be small so pgt_buf from BRK could cover it */
571 step_size = PMD_SIZE;
572 max_pfn_mapped = 0; /* will get exact value next */
573 min_pfn_mapped = real_end >> PAGE_SHIFT;
574 last_start = start = real_end;
575
576 /*
577 * We start from the top (end of memory) and go to the bottom.
578 * The memblock_find_in_range() gets us a block of RAM from the
579 * end of RAM in [min_pfn_mapped, max_pfn_mapped) used as new pages
580 * for page table.
581 */
582 while (last_start > map_start) {
583 if (last_start > step_size) {
584 start = round_down(last_start - 1, step_size);
585 if (start < map_start)
586 start = map_start;
587 } else
588 start = map_start;
589 mapped_ram_size += init_range_memory_mapping(start,
590 last_start);
591 last_start = start;
592 min_pfn_mapped = last_start >> PAGE_SHIFT;
593 if (mapped_ram_size >= step_size)
594 step_size = get_new_step_size(step_size);
595 }
596
597 if (real_end < map_end)
598 init_range_memory_mapping(real_end, map_end);
599 }
600
601 /**
602 * memory_map_bottom_up - Map [map_start, map_end) bottom up
603 * @map_start: start address of the target memory range
604 * @map_end: end address of the target memory range
605 *
606 * This function will setup direct mapping for memory range
607 * [map_start, map_end) in bottom-up. Since we have limited the
608 * bottom-up allocation above the kernel, the page tables will
609 * be allocated just above the kernel and we map the memory
610 * in [map_start, map_end) in bottom-up.
611 */
memory_map_bottom_up(unsigned long map_start,unsigned long map_end)612 static void __init memory_map_bottom_up(unsigned long map_start,
613 unsigned long map_end)
614 {
615 unsigned long next, start;
616 unsigned long mapped_ram_size = 0;
617 /* step_size need to be small so pgt_buf from BRK could cover it */
618 unsigned long step_size = PMD_SIZE;
619
620 start = map_start;
621 min_pfn_mapped = start >> PAGE_SHIFT;
622
623 /*
624 * We start from the bottom (@map_start) and go to the top (@map_end).
625 * The memblock_find_in_range() gets us a block of RAM from the
626 * end of RAM in [min_pfn_mapped, max_pfn_mapped) used as new pages
627 * for page table.
628 */
629 while (start < map_end) {
630 if (step_size && map_end - start > step_size) {
631 next = round_up(start + 1, step_size);
632 if (next > map_end)
633 next = map_end;
634 } else {
635 next = map_end;
636 }
637
638 mapped_ram_size += init_range_memory_mapping(start, next);
639 start = next;
640
641 if (mapped_ram_size >= step_size)
642 step_size = get_new_step_size(step_size);
643 }
644 }
645
init_mem_mapping(void)646 void __init init_mem_mapping(void)
647 {
648 unsigned long end;
649
650 pti_check_boottime_disable();
651 probe_page_size_mask();
652 setup_pcid();
653
654 #ifdef CONFIG_X86_64
655 end = max_pfn << PAGE_SHIFT;
656 #else
657 end = max_low_pfn << PAGE_SHIFT;
658 #endif
659
660 /* the ISA range is always mapped regardless of memory holes */
661 init_memory_mapping(0, ISA_END_ADDRESS);
662
663 /* Init the trampoline, possibly with KASLR memory offset */
664 init_trampoline();
665
666 /*
667 * If the allocation is in bottom-up direction, we setup direct mapping
668 * in bottom-up, otherwise we setup direct mapping in top-down.
669 */
670 if (memblock_bottom_up()) {
671 unsigned long kernel_end = __pa_symbol(_end);
672
673 /*
674 * we need two separate calls here. This is because we want to
675 * allocate page tables above the kernel. So we first map
676 * [kernel_end, end) to make memory above the kernel be mapped
677 * as soon as possible. And then use page tables allocated above
678 * the kernel to map [ISA_END_ADDRESS, kernel_end).
679 */
680 memory_map_bottom_up(kernel_end, end);
681 memory_map_bottom_up(ISA_END_ADDRESS, kernel_end);
682 } else {
683 memory_map_top_down(ISA_END_ADDRESS, end);
684 }
685
686 #ifdef CONFIG_X86_64
687 if (max_pfn > max_low_pfn) {
688 /* can we preseve max_low_pfn ?*/
689 max_low_pfn = max_pfn;
690 }
691 #else
692 early_ioremap_page_table_range_init();
693 #endif
694
695 load_cr3(swapper_pg_dir);
696 __flush_tlb_all();
697
698 x86_init.hyper.init_mem_mapping();
699
700 early_memtest(0, max_pfn_mapped << PAGE_SHIFT);
701 }
702
703 /*
704 * devmem_is_allowed() checks to see if /dev/mem access to a certain address
705 * is valid. The argument is a physical page number.
706 *
707 * On x86, access has to be given to the first megabyte of RAM because that
708 * area traditionally contains BIOS code and data regions used by X, dosemu,
709 * and similar apps. Since they map the entire memory range, the whole range
710 * must be allowed (for mapping), but any areas that would otherwise be
711 * disallowed are flagged as being "zero filled" instead of rejected.
712 * Access has to be given to non-kernel-ram areas as well, these contain the
713 * PCI mmio resources as well as potential bios/acpi data regions.
714 */
devmem_is_allowed(unsigned long pagenr)715 int devmem_is_allowed(unsigned long pagenr)
716 {
717 if (region_intersects(PFN_PHYS(pagenr), PAGE_SIZE,
718 IORESOURCE_SYSTEM_RAM, IORES_DESC_NONE)
719 != REGION_DISJOINT) {
720 /*
721 * For disallowed memory regions in the low 1MB range,
722 * request that the page be shown as all zeros.
723 */
724 if (pagenr < 256)
725 return 2;
726
727 return 0;
728 }
729
730 /*
731 * This must follow RAM test, since System RAM is considered a
732 * restricted resource under CONFIG_STRICT_IOMEM.
733 */
734 if (iomem_is_exclusive(pagenr << PAGE_SHIFT)) {
735 /* Low 1MB bypasses iomem restrictions. */
736 if (pagenr < 256)
737 return 1;
738
739 return 0;
740 }
741
742 return 1;
743 }
744
free_init_pages(char * what,unsigned long begin,unsigned long end)745 void free_init_pages(char *what, unsigned long begin, unsigned long end)
746 {
747 unsigned long begin_aligned, end_aligned;
748
749 /* Make sure boundaries are page aligned */
750 begin_aligned = PAGE_ALIGN(begin);
751 end_aligned = end & PAGE_MASK;
752
753 if (WARN_ON(begin_aligned != begin || end_aligned != end)) {
754 begin = begin_aligned;
755 end = end_aligned;
756 }
757
758 if (begin >= end)
759 return;
760
761 /*
762 * If debugging page accesses then do not free this memory but
763 * mark them not present - any buggy init-section access will
764 * create a kernel page fault:
765 */
766 if (debug_pagealloc_enabled()) {
767 pr_info("debug: unmapping init [mem %#010lx-%#010lx]\n",
768 begin, end - 1);
769 /*
770 * Inform kmemleak about the hole in the memory since the
771 * corresponding pages will be unmapped.
772 */
773 kmemleak_free_part((void *)begin, end - begin);
774 set_memory_np(begin, (end - begin) >> PAGE_SHIFT);
775 } else {
776 /*
777 * We just marked the kernel text read only above, now that
778 * we are going to free part of that, we need to make that
779 * writeable and non-executable first.
780 */
781 set_memory_nx(begin, (end - begin) >> PAGE_SHIFT);
782 set_memory_rw(begin, (end - begin) >> PAGE_SHIFT);
783
784 free_reserved_area((void *)begin, (void *)end,
785 POISON_FREE_INITMEM, what);
786 }
787 }
788
789 /*
790 * begin/end can be in the direct map or the "high kernel mapping"
791 * used for the kernel image only. free_init_pages() will do the
792 * right thing for either kind of address.
793 */
free_kernel_image_pages(void * begin,void * end)794 void free_kernel_image_pages(void *begin, void *end)
795 {
796 unsigned long begin_ul = (unsigned long)begin;
797 unsigned long end_ul = (unsigned long)end;
798 unsigned long len_pages = (end_ul - begin_ul) >> PAGE_SHIFT;
799
800
801 free_init_pages("unused kernel image", begin_ul, end_ul);
802
803 /*
804 * PTI maps some of the kernel into userspace. For performance,
805 * this includes some kernel areas that do not contain secrets.
806 * Those areas might be adjacent to the parts of the kernel image
807 * being freed, which may contain secrets. Remove the "high kernel
808 * image mapping" for these freed areas, ensuring they are not even
809 * potentially vulnerable to Meltdown regardless of the specific
810 * optimizations PTI is currently using.
811 *
812 * The "noalias" prevents unmapping the direct map alias which is
813 * needed to access the freed pages.
814 *
815 * This is only valid for 64bit kernels. 32bit has only one mapping
816 * which can't be treated in this way for obvious reasons.
817 */
818 if (IS_ENABLED(CONFIG_X86_64) && cpu_feature_enabled(X86_FEATURE_PTI))
819 set_memory_np_noalias(begin_ul, len_pages);
820 }
821
mem_encrypt_free_decrypted_mem(void)822 void __weak mem_encrypt_free_decrypted_mem(void) { }
823
free_initmem(void)824 void __ref free_initmem(void)
825 {
826 e820__reallocate_tables();
827
828 mem_encrypt_free_decrypted_mem();
829
830 free_kernel_image_pages(&__init_begin, &__init_end);
831 }
832
833 #ifdef CONFIG_BLK_DEV_INITRD
free_initrd_mem(unsigned long start,unsigned long end)834 void __init free_initrd_mem(unsigned long start, unsigned long end)
835 {
836 /*
837 * end could be not aligned, and We can not align that,
838 * decompresser could be confused by aligned initrd_end
839 * We already reserve the end partial page before in
840 * - i386_start_kernel()
841 * - x86_64_start_kernel()
842 * - relocate_initrd()
843 * So here We can do PAGE_ALIGN() safely to get partial page to be freed
844 */
845 free_init_pages("initrd", start, PAGE_ALIGN(end));
846 }
847 #endif
848
849 /*
850 * Calculate the precise size of the DMA zone (first 16 MB of RAM),
851 * and pass it to the MM layer - to help it set zone watermarks more
852 * accurately.
853 *
854 * Done on 64-bit systems only for the time being, although 32-bit systems
855 * might benefit from this as well.
856 */
memblock_find_dma_reserve(void)857 void __init memblock_find_dma_reserve(void)
858 {
859 #ifdef CONFIG_X86_64
860 u64 nr_pages = 0, nr_free_pages = 0;
861 unsigned long start_pfn, end_pfn;
862 phys_addr_t start_addr, end_addr;
863 int i;
864 u64 u;
865
866 /*
867 * Iterate over all memory ranges (free and reserved ones alike),
868 * to calculate the total number of pages in the first 16 MB of RAM:
869 */
870 nr_pages = 0;
871 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, NULL) {
872 start_pfn = min(start_pfn, MAX_DMA_PFN);
873 end_pfn = min(end_pfn, MAX_DMA_PFN);
874
875 nr_pages += end_pfn - start_pfn;
876 }
877
878 /*
879 * Iterate over free memory ranges to calculate the number of free
880 * pages in the DMA zone, while not counting potential partial
881 * pages at the beginning or the end of the range:
882 */
883 nr_free_pages = 0;
884 for_each_free_mem_range(u, NUMA_NO_NODE, MEMBLOCK_NONE, &start_addr, &end_addr, NULL) {
885 start_pfn = min_t(unsigned long, PFN_UP(start_addr), MAX_DMA_PFN);
886 end_pfn = min_t(unsigned long, PFN_DOWN(end_addr), MAX_DMA_PFN);
887
888 if (start_pfn < end_pfn)
889 nr_free_pages += end_pfn - start_pfn;
890 }
891
892 set_dma_reserve(nr_pages - nr_free_pages);
893 #endif
894 }
895
zone_sizes_init(void)896 void __init zone_sizes_init(void)
897 {
898 unsigned long max_zone_pfns[MAX_NR_ZONES];
899
900 memset(max_zone_pfns, 0, sizeof(max_zone_pfns));
901
902 #ifdef CONFIG_ZONE_DMA
903 max_zone_pfns[ZONE_DMA] = min(MAX_DMA_PFN, max_low_pfn);
904 #endif
905 #ifdef CONFIG_ZONE_DMA32
906 max_zone_pfns[ZONE_DMA32] = min(MAX_DMA32_PFN, max_low_pfn);
907 #endif
908 max_zone_pfns[ZONE_NORMAL] = max_low_pfn;
909 #ifdef CONFIG_HIGHMEM
910 max_zone_pfns[ZONE_HIGHMEM] = max_pfn;
911 #endif
912
913 free_area_init_nodes(max_zone_pfns);
914 }
915
916 __visible DEFINE_PER_CPU_SHARED_ALIGNED(struct tlb_state, cpu_tlbstate) = {
917 .loaded_mm = &init_mm,
918 .next_asid = 1,
919 .cr4 = ~0UL, /* fail hard if we screw up cr4 shadow initialization */
920 };
921 EXPORT_PER_CPU_SYMBOL(cpu_tlbstate);
922
update_cache_mode_entry(unsigned entry,enum page_cache_mode cache)923 void update_cache_mode_entry(unsigned entry, enum page_cache_mode cache)
924 {
925 /* entry 0 MUST be WB (hardwired to speed up translations) */
926 BUG_ON(!entry && cache != _PAGE_CACHE_MODE_WB);
927
928 __cachemode2pte_tbl[cache] = __cm_idx2pte(entry);
929 __pte2cachemode_tbl[entry] = cache;
930 }
931
932 #ifdef CONFIG_SWAP
max_swapfile_size(void)933 unsigned long max_swapfile_size(void)
934 {
935 unsigned long pages;
936
937 pages = generic_max_swapfile_size();
938
939 if (boot_cpu_has_bug(X86_BUG_L1TF) && l1tf_mitigation != L1TF_MITIGATION_OFF) {
940 /* Limit the swap file size to MAX_PA/2 for L1TF workaround */
941 unsigned long long l1tf_limit = l1tf_pfn_limit();
942 /*
943 * We encode swap offsets also with 3 bits below those for pfn
944 * which makes the usable limit higher.
945 */
946 #if CONFIG_PGTABLE_LEVELS > 2
947 l1tf_limit <<= PAGE_SHIFT - SWP_OFFSET_FIRST_BIT;
948 #endif
949 pages = min_t(unsigned long long, l1tf_limit, pages);
950 }
951 return pages;
952 }
953 #endif
954