1 /*
2 * algif_aead: User-space interface for AEAD algorithms
3 *
4 * Copyright (C) 2014, Stephan Mueller <smueller@chronox.de>
5 *
6 * This file provides the user-space API for AEAD ciphers.
7 *
8 * This program is free software; you can redistribute it and/or modify it
9 * under the terms of the GNU General Public License as published by the Free
10 * Software Foundation; either version 2 of the License, or (at your option)
11 * any later version.
12 *
13 * The following concept of the memory management is used:
14 *
15 * The kernel maintains two SGLs, the TX SGL and the RX SGL. The TX SGL is
16 * filled by user space with the data submitted via sendpage/sendmsg. Filling
17 * up the TX SGL does not cause a crypto operation -- the data will only be
18 * tracked by the kernel. Upon receipt of one recvmsg call, the caller must
19 * provide a buffer which is tracked with the RX SGL.
20 *
21 * During the processing of the recvmsg operation, the cipher request is
22 * allocated and prepared. As part of the recvmsg operation, the processed
23 * TX buffers are extracted from the TX SGL into a separate SGL.
24 *
25 * After the completion of the crypto operation, the RX SGL and the cipher
26 * request is released. The extracted TX SGL parts are released together with
27 * the RX SGL release.
28 */
29
30 #include <crypto/internal/aead.h>
31 #include <crypto/scatterwalk.h>
32 #include <crypto/if_alg.h>
33 #include <crypto/skcipher.h>
34 #include <crypto/null.h>
35 #include <linux/init.h>
36 #include <linux/list.h>
37 #include <linux/kernel.h>
38 #include <linux/mm.h>
39 #include <linux/module.h>
40 #include <linux/net.h>
41 #include <net/sock.h>
42
43 struct aead_tfm {
44 struct crypto_aead *aead;
45 struct crypto_skcipher *null_tfm;
46 };
47
aead_sufficient_data(struct sock * sk)48 static inline bool aead_sufficient_data(struct sock *sk)
49 {
50 struct alg_sock *ask = alg_sk(sk);
51 struct sock *psk = ask->parent;
52 struct alg_sock *pask = alg_sk(psk);
53 struct af_alg_ctx *ctx = ask->private;
54 struct aead_tfm *aeadc = pask->private;
55 struct crypto_aead *tfm = aeadc->aead;
56 unsigned int as = crypto_aead_authsize(tfm);
57
58 /*
59 * The minimum amount of memory needed for an AEAD cipher is
60 * the AAD and in case of decryption the tag.
61 */
62 return ctx->used >= ctx->aead_assoclen + (ctx->enc ? 0 : as);
63 }
64
aead_sendmsg(struct socket * sock,struct msghdr * msg,size_t size)65 static int aead_sendmsg(struct socket *sock, struct msghdr *msg, size_t size)
66 {
67 struct sock *sk = sock->sk;
68 struct alg_sock *ask = alg_sk(sk);
69 struct sock *psk = ask->parent;
70 struct alg_sock *pask = alg_sk(psk);
71 struct aead_tfm *aeadc = pask->private;
72 struct crypto_aead *tfm = aeadc->aead;
73 unsigned int ivsize = crypto_aead_ivsize(tfm);
74
75 return af_alg_sendmsg(sock, msg, size, ivsize);
76 }
77
crypto_aead_copy_sgl(struct crypto_skcipher * null_tfm,struct scatterlist * src,struct scatterlist * dst,unsigned int len)78 static int crypto_aead_copy_sgl(struct crypto_skcipher *null_tfm,
79 struct scatterlist *src,
80 struct scatterlist *dst, unsigned int len)
81 {
82 SKCIPHER_REQUEST_ON_STACK(skreq, null_tfm);
83
84 skcipher_request_set_tfm(skreq, null_tfm);
85 skcipher_request_set_callback(skreq, CRYPTO_TFM_REQ_MAY_SLEEP,
86 NULL, NULL);
87 skcipher_request_set_crypt(skreq, src, dst, len, NULL);
88
89 return crypto_skcipher_encrypt(skreq);
90 }
91
_aead_recvmsg(struct socket * sock,struct msghdr * msg,size_t ignored,int flags)92 static int _aead_recvmsg(struct socket *sock, struct msghdr *msg,
93 size_t ignored, int flags)
94 {
95 struct sock *sk = sock->sk;
96 struct alg_sock *ask = alg_sk(sk);
97 struct sock *psk = ask->parent;
98 struct alg_sock *pask = alg_sk(psk);
99 struct af_alg_ctx *ctx = ask->private;
100 struct aead_tfm *aeadc = pask->private;
101 struct crypto_aead *tfm = aeadc->aead;
102 struct crypto_skcipher *null_tfm = aeadc->null_tfm;
103 unsigned int i, as = crypto_aead_authsize(tfm);
104 struct af_alg_async_req *areq;
105 struct af_alg_tsgl *tsgl, *tmp;
106 struct scatterlist *rsgl_src, *tsgl_src = NULL;
107 int err = 0;
108 size_t used = 0; /* [in] TX bufs to be en/decrypted */
109 size_t outlen = 0; /* [out] RX bufs produced by kernel */
110 size_t usedpages = 0; /* [in] RX bufs to be used from user */
111 size_t processed = 0; /* [in] TX bufs to be consumed */
112
113 if (!ctx->used) {
114 err = af_alg_wait_for_data(sk, flags);
115 if (err)
116 return err;
117 }
118
119 /*
120 * Data length provided by caller via sendmsg/sendpage that has not
121 * yet been processed.
122 */
123 used = ctx->used;
124
125 /*
126 * Make sure sufficient data is present -- note, the same check is
127 * is also present in sendmsg/sendpage. The checks in sendpage/sendmsg
128 * shall provide an information to the data sender that something is
129 * wrong, but they are irrelevant to maintain the kernel integrity.
130 * We need this check here too in case user space decides to not honor
131 * the error message in sendmsg/sendpage and still call recvmsg. This
132 * check here protects the kernel integrity.
133 */
134 if (!aead_sufficient_data(sk))
135 return -EINVAL;
136
137 /*
138 * Calculate the minimum output buffer size holding the result of the
139 * cipher operation. When encrypting data, the receiving buffer is
140 * larger by the tag length compared to the input buffer as the
141 * encryption operation generates the tag. For decryption, the input
142 * buffer provides the tag which is consumed resulting in only the
143 * plaintext without a buffer for the tag returned to the caller.
144 */
145 if (ctx->enc)
146 outlen = used + as;
147 else
148 outlen = used - as;
149
150 /*
151 * The cipher operation input data is reduced by the associated data
152 * length as this data is processed separately later on.
153 */
154 used -= ctx->aead_assoclen;
155
156 /* Allocate cipher request for current operation. */
157 areq = af_alg_alloc_areq(sk, sizeof(struct af_alg_async_req) +
158 crypto_aead_reqsize(tfm));
159 if (IS_ERR(areq))
160 return PTR_ERR(areq);
161
162 /* convert iovecs of output buffers into RX SGL */
163 err = af_alg_get_rsgl(sk, msg, flags, areq, outlen, &usedpages);
164 if (err)
165 goto free;
166
167 /*
168 * Ensure output buffer is sufficiently large. If the caller provides
169 * less buffer space, only use the relative required input size. This
170 * allows AIO operation where the caller sent all data to be processed
171 * and the AIO operation performs the operation on the different chunks
172 * of the input data.
173 */
174 if (usedpages < outlen) {
175 size_t less = outlen - usedpages;
176
177 if (used < less) {
178 err = -EINVAL;
179 goto free;
180 }
181 used -= less;
182 outlen -= less;
183 }
184
185 processed = used + ctx->aead_assoclen;
186 list_for_each_entry_safe(tsgl, tmp, &ctx->tsgl_list, list) {
187 for (i = 0; i < tsgl->cur; i++) {
188 struct scatterlist *process_sg = tsgl->sg + i;
189
190 if (!(process_sg->length) || !sg_page(process_sg))
191 continue;
192 tsgl_src = process_sg;
193 break;
194 }
195 if (tsgl_src)
196 break;
197 }
198 if (processed && !tsgl_src) {
199 err = -EFAULT;
200 goto free;
201 }
202
203 /*
204 * Copy of AAD from source to destination
205 *
206 * The AAD is copied to the destination buffer without change. Even
207 * when user space uses an in-place cipher operation, the kernel
208 * will copy the data as it does not see whether such in-place operation
209 * is initiated.
210 *
211 * To ensure efficiency, the following implementation ensure that the
212 * ciphers are invoked to perform a crypto operation in-place. This
213 * is achieved by memory management specified as follows.
214 */
215
216 /* Use the RX SGL as source (and destination) for crypto op. */
217 rsgl_src = areq->first_rsgl.sgl.sg;
218
219 if (ctx->enc) {
220 /*
221 * Encryption operation - The in-place cipher operation is
222 * achieved by the following operation:
223 *
224 * TX SGL: AAD || PT
225 * | |
226 * | copy |
227 * v v
228 * RX SGL: AAD || PT || Tag
229 */
230 err = crypto_aead_copy_sgl(null_tfm, tsgl_src,
231 areq->first_rsgl.sgl.sg, processed);
232 if (err)
233 goto free;
234 af_alg_pull_tsgl(sk, processed, NULL, 0);
235 } else {
236 /*
237 * Decryption operation - To achieve an in-place cipher
238 * operation, the following SGL structure is used:
239 *
240 * TX SGL: AAD || CT || Tag
241 * | | ^
242 * | copy | | Create SGL link.
243 * v v |
244 * RX SGL: AAD || CT ----+
245 */
246
247 /* Copy AAD || CT to RX SGL buffer for in-place operation. */
248 err = crypto_aead_copy_sgl(null_tfm, tsgl_src,
249 areq->first_rsgl.sgl.sg, outlen);
250 if (err)
251 goto free;
252
253 /* Create TX SGL for tag and chain it to RX SGL. */
254 areq->tsgl_entries = af_alg_count_tsgl(sk, processed,
255 processed - as);
256 if (!areq->tsgl_entries)
257 areq->tsgl_entries = 1;
258 areq->tsgl = sock_kmalloc(sk, array_size(sizeof(*areq->tsgl),
259 areq->tsgl_entries),
260 GFP_KERNEL);
261 if (!areq->tsgl) {
262 err = -ENOMEM;
263 goto free;
264 }
265 sg_init_table(areq->tsgl, areq->tsgl_entries);
266
267 /* Release TX SGL, except for tag data and reassign tag data. */
268 af_alg_pull_tsgl(sk, processed, areq->tsgl, processed - as);
269
270 /* chain the areq TX SGL holding the tag with RX SGL */
271 if (usedpages) {
272 /* RX SGL present */
273 struct af_alg_sgl *sgl_prev = &areq->last_rsgl->sgl;
274
275 sg_unmark_end(sgl_prev->sg + sgl_prev->npages - 1);
276 sg_chain(sgl_prev->sg, sgl_prev->npages + 1,
277 areq->tsgl);
278 } else
279 /* no RX SGL present (e.g. authentication only) */
280 rsgl_src = areq->tsgl;
281 }
282
283 /* Initialize the crypto operation */
284 aead_request_set_crypt(&areq->cra_u.aead_req, rsgl_src,
285 areq->first_rsgl.sgl.sg, used, ctx->iv);
286 aead_request_set_ad(&areq->cra_u.aead_req, ctx->aead_assoclen);
287 aead_request_set_tfm(&areq->cra_u.aead_req, tfm);
288
289 if (msg->msg_iocb && !is_sync_kiocb(msg->msg_iocb)) {
290 /* AIO operation */
291 sock_hold(sk);
292 areq->iocb = msg->msg_iocb;
293
294 /* Remember output size that will be generated. */
295 areq->outlen = outlen;
296
297 aead_request_set_callback(&areq->cra_u.aead_req,
298 CRYPTO_TFM_REQ_MAY_SLEEP,
299 af_alg_async_cb, areq);
300 err = ctx->enc ? crypto_aead_encrypt(&areq->cra_u.aead_req) :
301 crypto_aead_decrypt(&areq->cra_u.aead_req);
302
303 /* AIO operation in progress */
304 if (err == -EINPROGRESS)
305 return -EIOCBQUEUED;
306
307 sock_put(sk);
308 } else {
309 /* Synchronous operation */
310 aead_request_set_callback(&areq->cra_u.aead_req,
311 CRYPTO_TFM_REQ_MAY_SLEEP |
312 CRYPTO_TFM_REQ_MAY_BACKLOG,
313 crypto_req_done, &ctx->wait);
314 err = crypto_wait_req(ctx->enc ?
315 crypto_aead_encrypt(&areq->cra_u.aead_req) :
316 crypto_aead_decrypt(&areq->cra_u.aead_req),
317 &ctx->wait);
318 }
319
320
321 free:
322 af_alg_free_resources(areq);
323
324 return err ? err : outlen;
325 }
326
aead_recvmsg(struct socket * sock,struct msghdr * msg,size_t ignored,int flags)327 static int aead_recvmsg(struct socket *sock, struct msghdr *msg,
328 size_t ignored, int flags)
329 {
330 struct sock *sk = sock->sk;
331 int ret = 0;
332
333 lock_sock(sk);
334 while (msg_data_left(msg)) {
335 int err = _aead_recvmsg(sock, msg, ignored, flags);
336
337 /*
338 * This error covers -EIOCBQUEUED which implies that we can
339 * only handle one AIO request. If the caller wants to have
340 * multiple AIO requests in parallel, he must make multiple
341 * separate AIO calls.
342 *
343 * Also return the error if no data has been processed so far.
344 */
345 if (err <= 0) {
346 if (err == -EIOCBQUEUED || err == -EBADMSG || !ret)
347 ret = err;
348 goto out;
349 }
350
351 ret += err;
352 }
353
354 out:
355 af_alg_wmem_wakeup(sk);
356 release_sock(sk);
357 return ret;
358 }
359
360 static struct proto_ops algif_aead_ops = {
361 .family = PF_ALG,
362
363 .connect = sock_no_connect,
364 .socketpair = sock_no_socketpair,
365 .getname = sock_no_getname,
366 .ioctl = sock_no_ioctl,
367 .listen = sock_no_listen,
368 .shutdown = sock_no_shutdown,
369 .getsockopt = sock_no_getsockopt,
370 .mmap = sock_no_mmap,
371 .bind = sock_no_bind,
372 .accept = sock_no_accept,
373 .setsockopt = sock_no_setsockopt,
374
375 .release = af_alg_release,
376 .sendmsg = aead_sendmsg,
377 .sendpage = af_alg_sendpage,
378 .recvmsg = aead_recvmsg,
379 .poll = af_alg_poll,
380 };
381
aead_check_key(struct socket * sock)382 static int aead_check_key(struct socket *sock)
383 {
384 int err = 0;
385 struct sock *psk;
386 struct alg_sock *pask;
387 struct aead_tfm *tfm;
388 struct sock *sk = sock->sk;
389 struct alg_sock *ask = alg_sk(sk);
390
391 lock_sock(sk);
392 if (!atomic_read(&ask->nokey_refcnt))
393 goto unlock_child;
394
395 psk = ask->parent;
396 pask = alg_sk(ask->parent);
397 tfm = pask->private;
398
399 err = -ENOKEY;
400 lock_sock_nested(psk, SINGLE_DEPTH_NESTING);
401 if (crypto_aead_get_flags(tfm->aead) & CRYPTO_TFM_NEED_KEY)
402 goto unlock;
403
404 atomic_dec(&pask->nokey_refcnt);
405 atomic_set(&ask->nokey_refcnt, 0);
406
407 err = 0;
408
409 unlock:
410 release_sock(psk);
411 unlock_child:
412 release_sock(sk);
413
414 return err;
415 }
416
aead_sendmsg_nokey(struct socket * sock,struct msghdr * msg,size_t size)417 static int aead_sendmsg_nokey(struct socket *sock, struct msghdr *msg,
418 size_t size)
419 {
420 int err;
421
422 err = aead_check_key(sock);
423 if (err)
424 return err;
425
426 return aead_sendmsg(sock, msg, size);
427 }
428
aead_sendpage_nokey(struct socket * sock,struct page * page,int offset,size_t size,int flags)429 static ssize_t aead_sendpage_nokey(struct socket *sock, struct page *page,
430 int offset, size_t size, int flags)
431 {
432 int err;
433
434 err = aead_check_key(sock);
435 if (err)
436 return err;
437
438 return af_alg_sendpage(sock, page, offset, size, flags);
439 }
440
aead_recvmsg_nokey(struct socket * sock,struct msghdr * msg,size_t ignored,int flags)441 static int aead_recvmsg_nokey(struct socket *sock, struct msghdr *msg,
442 size_t ignored, int flags)
443 {
444 int err;
445
446 err = aead_check_key(sock);
447 if (err)
448 return err;
449
450 return aead_recvmsg(sock, msg, ignored, flags);
451 }
452
453 static struct proto_ops algif_aead_ops_nokey = {
454 .family = PF_ALG,
455
456 .connect = sock_no_connect,
457 .socketpair = sock_no_socketpair,
458 .getname = sock_no_getname,
459 .ioctl = sock_no_ioctl,
460 .listen = sock_no_listen,
461 .shutdown = sock_no_shutdown,
462 .getsockopt = sock_no_getsockopt,
463 .mmap = sock_no_mmap,
464 .bind = sock_no_bind,
465 .accept = sock_no_accept,
466 .setsockopt = sock_no_setsockopt,
467
468 .release = af_alg_release,
469 .sendmsg = aead_sendmsg_nokey,
470 .sendpage = aead_sendpage_nokey,
471 .recvmsg = aead_recvmsg_nokey,
472 .poll = af_alg_poll,
473 };
474
aead_bind(const char * name,u32 type,u32 mask)475 static void *aead_bind(const char *name, u32 type, u32 mask)
476 {
477 struct aead_tfm *tfm;
478 struct crypto_aead *aead;
479 struct crypto_skcipher *null_tfm;
480
481 tfm = kzalloc(sizeof(*tfm), GFP_KERNEL);
482 if (!tfm)
483 return ERR_PTR(-ENOMEM);
484
485 aead = crypto_alloc_aead(name, type, mask);
486 if (IS_ERR(aead)) {
487 kfree(tfm);
488 return ERR_CAST(aead);
489 }
490
491 null_tfm = crypto_get_default_null_skcipher();
492 if (IS_ERR(null_tfm)) {
493 crypto_free_aead(aead);
494 kfree(tfm);
495 return ERR_CAST(null_tfm);
496 }
497
498 tfm->aead = aead;
499 tfm->null_tfm = null_tfm;
500
501 return tfm;
502 }
503
aead_release(void * private)504 static void aead_release(void *private)
505 {
506 struct aead_tfm *tfm = private;
507
508 crypto_free_aead(tfm->aead);
509 crypto_put_default_null_skcipher();
510 kfree(tfm);
511 }
512
aead_setauthsize(void * private,unsigned int authsize)513 static int aead_setauthsize(void *private, unsigned int authsize)
514 {
515 struct aead_tfm *tfm = private;
516
517 return crypto_aead_setauthsize(tfm->aead, authsize);
518 }
519
aead_setkey(void * private,const u8 * key,unsigned int keylen)520 static int aead_setkey(void *private, const u8 *key, unsigned int keylen)
521 {
522 struct aead_tfm *tfm = private;
523
524 return crypto_aead_setkey(tfm->aead, key, keylen);
525 }
526
aead_sock_destruct(struct sock * sk)527 static void aead_sock_destruct(struct sock *sk)
528 {
529 struct alg_sock *ask = alg_sk(sk);
530 struct af_alg_ctx *ctx = ask->private;
531 struct sock *psk = ask->parent;
532 struct alg_sock *pask = alg_sk(psk);
533 struct aead_tfm *aeadc = pask->private;
534 struct crypto_aead *tfm = aeadc->aead;
535 unsigned int ivlen = crypto_aead_ivsize(tfm);
536
537 af_alg_pull_tsgl(sk, ctx->used, NULL, 0);
538 sock_kzfree_s(sk, ctx->iv, ivlen);
539 sock_kfree_s(sk, ctx, ctx->len);
540 af_alg_release_parent(sk);
541 }
542
aead_accept_parent_nokey(void * private,struct sock * sk)543 static int aead_accept_parent_nokey(void *private, struct sock *sk)
544 {
545 struct af_alg_ctx *ctx;
546 struct alg_sock *ask = alg_sk(sk);
547 struct aead_tfm *tfm = private;
548 struct crypto_aead *aead = tfm->aead;
549 unsigned int len = sizeof(*ctx);
550 unsigned int ivlen = crypto_aead_ivsize(aead);
551
552 ctx = sock_kmalloc(sk, len, GFP_KERNEL);
553 if (!ctx)
554 return -ENOMEM;
555 memset(ctx, 0, len);
556
557 ctx->iv = sock_kmalloc(sk, ivlen, GFP_KERNEL);
558 if (!ctx->iv) {
559 sock_kfree_s(sk, ctx, len);
560 return -ENOMEM;
561 }
562 memset(ctx->iv, 0, ivlen);
563
564 INIT_LIST_HEAD(&ctx->tsgl_list);
565 ctx->len = len;
566 ctx->used = 0;
567 atomic_set(&ctx->rcvused, 0);
568 ctx->more = 0;
569 ctx->merge = 0;
570 ctx->enc = 0;
571 ctx->aead_assoclen = 0;
572 crypto_init_wait(&ctx->wait);
573
574 ask->private = ctx;
575
576 sk->sk_destruct = aead_sock_destruct;
577
578 return 0;
579 }
580
aead_accept_parent(void * private,struct sock * sk)581 static int aead_accept_parent(void *private, struct sock *sk)
582 {
583 struct aead_tfm *tfm = private;
584
585 if (crypto_aead_get_flags(tfm->aead) & CRYPTO_TFM_NEED_KEY)
586 return -ENOKEY;
587
588 return aead_accept_parent_nokey(private, sk);
589 }
590
591 static const struct af_alg_type algif_type_aead = {
592 .bind = aead_bind,
593 .release = aead_release,
594 .setkey = aead_setkey,
595 .setauthsize = aead_setauthsize,
596 .accept = aead_accept_parent,
597 .accept_nokey = aead_accept_parent_nokey,
598 .ops = &algif_aead_ops,
599 .ops_nokey = &algif_aead_ops_nokey,
600 .name = "aead",
601 .owner = THIS_MODULE
602 };
603
algif_aead_init(void)604 static int __init algif_aead_init(void)
605 {
606 return af_alg_register_type(&algif_type_aead);
607 }
608
algif_aead_exit(void)609 static void __exit algif_aead_exit(void)
610 {
611 int err = af_alg_unregister_type(&algif_type_aead);
612 BUG_ON(err);
613 }
614
615 module_init(algif_aead_init);
616 module_exit(algif_aead_exit);
617 MODULE_LICENSE("GPL");
618 MODULE_AUTHOR("Stephan Mueller <smueller@chronox.de>");
619 MODULE_DESCRIPTION("AEAD kernel crypto API user space interface");
620