• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /* LRW: as defined by Cyril Guyot in
2  *	http://grouper.ieee.org/groups/1619/email/pdf00017.pdf
3  *
4  * Copyright (c) 2006 Rik Snel <rsnel@cube.dyndns.org>
5  *
6  * Based on ecb.c
7  * Copyright (c) 2006 Herbert Xu <herbert@gondor.apana.org.au>
8  *
9  * This program is free software; you can redistribute it and/or modify it
10  * under the terms of the GNU General Public License as published by the Free
11  * Software Foundation; either version 2 of the License, or (at your option)
12  * any later version.
13  */
14 /* This implementation is checked against the test vectors in the above
15  * document and by a test vector provided by Ken Buchanan at
16  * http://www.mail-archive.com/stds-p1619@listserv.ieee.org/msg00173.html
17  *
18  * The test vectors are included in the testing module tcrypt.[ch] */
19 
20 #include <crypto/internal/skcipher.h>
21 #include <crypto/scatterwalk.h>
22 #include <linux/err.h>
23 #include <linux/init.h>
24 #include <linux/kernel.h>
25 #include <linux/module.h>
26 #include <linux/scatterlist.h>
27 #include <linux/slab.h>
28 
29 #include <crypto/b128ops.h>
30 #include <crypto/gf128mul.h>
31 
32 #define LRW_BUFFER_SIZE 128u
33 
34 #define LRW_BLOCK_SIZE 16
35 
36 struct priv {
37 	struct crypto_skcipher *child;
38 
39 	/*
40 	 * optimizes multiplying a random (non incrementing, as at the
41 	 * start of a new sector) value with key2, we could also have
42 	 * used 4k optimization tables or no optimization at all. In the
43 	 * latter case we would have to store key2 here
44 	 */
45 	struct gf128mul_64k *table;
46 
47 	/*
48 	 * stores:
49 	 *  key2*{ 0,0,...0,0,0,0,1 }, key2*{ 0,0,...0,0,0,1,1 },
50 	 *  key2*{ 0,0,...0,0,1,1,1 }, key2*{ 0,0,...0,1,1,1,1 }
51 	 *  key2*{ 0,0,...1,1,1,1,1 }, etc
52 	 * needed for optimized multiplication of incrementing values
53 	 * with key2
54 	 */
55 	be128 mulinc[128];
56 };
57 
58 struct rctx {
59 	be128 buf[LRW_BUFFER_SIZE / sizeof(be128)];
60 
61 	be128 t;
62 
63 	be128 *ext;
64 
65 	struct scatterlist srcbuf[2];
66 	struct scatterlist dstbuf[2];
67 	struct scatterlist *src;
68 	struct scatterlist *dst;
69 
70 	unsigned int left;
71 
72 	struct skcipher_request subreq;
73 };
74 
setbit128_bbe(void * b,int bit)75 static inline void setbit128_bbe(void *b, int bit)
76 {
77 	__set_bit(bit ^ (0x80 -
78 #ifdef __BIG_ENDIAN
79 			 BITS_PER_LONG
80 #else
81 			 BITS_PER_BYTE
82 #endif
83 			), b);
84 }
85 
setkey(struct crypto_skcipher * parent,const u8 * key,unsigned int keylen)86 static int setkey(struct crypto_skcipher *parent, const u8 *key,
87 		  unsigned int keylen)
88 {
89 	struct priv *ctx = crypto_skcipher_ctx(parent);
90 	struct crypto_skcipher *child = ctx->child;
91 	int err, bsize = LRW_BLOCK_SIZE;
92 	const u8 *tweak = key + keylen - bsize;
93 	be128 tmp = { 0 };
94 	int i;
95 
96 	crypto_skcipher_clear_flags(child, CRYPTO_TFM_REQ_MASK);
97 	crypto_skcipher_set_flags(child, crypto_skcipher_get_flags(parent) &
98 					 CRYPTO_TFM_REQ_MASK);
99 	err = crypto_skcipher_setkey(child, key, keylen - bsize);
100 	crypto_skcipher_set_flags(parent, crypto_skcipher_get_flags(child) &
101 					  CRYPTO_TFM_RES_MASK);
102 	if (err)
103 		return err;
104 
105 	if (ctx->table)
106 		gf128mul_free_64k(ctx->table);
107 
108 	/* initialize multiplication table for Key2 */
109 	ctx->table = gf128mul_init_64k_bbe((be128 *)tweak);
110 	if (!ctx->table)
111 		return -ENOMEM;
112 
113 	/* initialize optimization table */
114 	for (i = 0; i < 128; i++) {
115 		setbit128_bbe(&tmp, i);
116 		ctx->mulinc[i] = tmp;
117 		gf128mul_64k_bbe(&ctx->mulinc[i], ctx->table);
118 	}
119 
120 	return 0;
121 }
122 
inc(be128 * iv)123 static inline void inc(be128 *iv)
124 {
125 	be64_add_cpu(&iv->b, 1);
126 	if (!iv->b)
127 		be64_add_cpu(&iv->a, 1);
128 }
129 
130 /* this returns the number of consequative 1 bits starting
131  * from the right, get_index128(00 00 00 00 00 00 ... 00 00 10 FB) = 2 */
get_index128(be128 * block)132 static inline int get_index128(be128 *block)
133 {
134 	int x;
135 	__be32 *p = (__be32 *) block;
136 
137 	for (p += 3, x = 0; x < 128; p--, x += 32) {
138 		u32 val = be32_to_cpup(p);
139 
140 		if (!~val)
141 			continue;
142 
143 		return x + ffz(val);
144 	}
145 
146 	/*
147 	 * If we get here, then x == 128 and we are incrementing the counter
148 	 * from all ones to all zeros. This means we must return index 127, i.e.
149 	 * the one corresponding to key2*{ 1,...,1 }.
150 	 */
151 	return 127;
152 }
153 
post_crypt(struct skcipher_request * req)154 static int post_crypt(struct skcipher_request *req)
155 {
156 	struct rctx *rctx = skcipher_request_ctx(req);
157 	be128 *buf = rctx->ext ?: rctx->buf;
158 	struct skcipher_request *subreq;
159 	const int bs = LRW_BLOCK_SIZE;
160 	struct skcipher_walk w;
161 	struct scatterlist *sg;
162 	unsigned offset;
163 	int err;
164 
165 	subreq = &rctx->subreq;
166 	err = skcipher_walk_virt(&w, subreq, false);
167 
168 	while (w.nbytes) {
169 		unsigned int avail = w.nbytes;
170 		be128 *wdst;
171 
172 		wdst = w.dst.virt.addr;
173 
174 		do {
175 			be128_xor(wdst, buf++, wdst);
176 			wdst++;
177 		} while ((avail -= bs) >= bs);
178 
179 		err = skcipher_walk_done(&w, avail);
180 	}
181 
182 	rctx->left -= subreq->cryptlen;
183 
184 	if (err || !rctx->left)
185 		goto out;
186 
187 	rctx->dst = rctx->dstbuf;
188 
189 	scatterwalk_done(&w.out, 0, 1);
190 	sg = w.out.sg;
191 	offset = w.out.offset;
192 
193 	if (rctx->dst != sg) {
194 		rctx->dst[0] = *sg;
195 		sg_unmark_end(rctx->dst);
196 		scatterwalk_crypto_chain(rctx->dst, sg_next(sg), 2);
197 	}
198 	rctx->dst[0].length -= offset - sg->offset;
199 	rctx->dst[0].offset = offset;
200 
201 out:
202 	return err;
203 }
204 
pre_crypt(struct skcipher_request * req)205 static int pre_crypt(struct skcipher_request *req)
206 {
207 	struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
208 	struct rctx *rctx = skcipher_request_ctx(req);
209 	struct priv *ctx = crypto_skcipher_ctx(tfm);
210 	be128 *buf = rctx->ext ?: rctx->buf;
211 	struct skcipher_request *subreq;
212 	const int bs = LRW_BLOCK_SIZE;
213 	struct skcipher_walk w;
214 	struct scatterlist *sg;
215 	unsigned cryptlen;
216 	unsigned offset;
217 	be128 *iv;
218 	bool more;
219 	int err;
220 
221 	subreq = &rctx->subreq;
222 	skcipher_request_set_tfm(subreq, tfm);
223 
224 	cryptlen = subreq->cryptlen;
225 	more = rctx->left > cryptlen;
226 	if (!more)
227 		cryptlen = rctx->left;
228 
229 	skcipher_request_set_crypt(subreq, rctx->src, rctx->dst,
230 				   cryptlen, req->iv);
231 
232 	err = skcipher_walk_virt(&w, subreq, false);
233 	iv = w.iv;
234 
235 	while (w.nbytes) {
236 		unsigned int avail = w.nbytes;
237 		be128 *wsrc;
238 		be128 *wdst;
239 
240 		wsrc = w.src.virt.addr;
241 		wdst = w.dst.virt.addr;
242 
243 		do {
244 			*buf++ = rctx->t;
245 			be128_xor(wdst++, &rctx->t, wsrc++);
246 
247 			/* T <- I*Key2, using the optimization
248 			 * discussed in the specification */
249 			be128_xor(&rctx->t, &rctx->t,
250 				  &ctx->mulinc[get_index128(iv)]);
251 			inc(iv);
252 		} while ((avail -= bs) >= bs);
253 
254 		err = skcipher_walk_done(&w, avail);
255 	}
256 
257 	skcipher_request_set_tfm(subreq, ctx->child);
258 	skcipher_request_set_crypt(subreq, rctx->dst, rctx->dst,
259 				   cryptlen, NULL);
260 
261 	if (err || !more)
262 		goto out;
263 
264 	rctx->src = rctx->srcbuf;
265 
266 	scatterwalk_done(&w.in, 0, 1);
267 	sg = w.in.sg;
268 	offset = w.in.offset;
269 
270 	if (rctx->src != sg) {
271 		rctx->src[0] = *sg;
272 		sg_unmark_end(rctx->src);
273 		scatterwalk_crypto_chain(rctx->src, sg_next(sg), 2);
274 	}
275 	rctx->src[0].length -= offset - sg->offset;
276 	rctx->src[0].offset = offset;
277 
278 out:
279 	return err;
280 }
281 
init_crypt(struct skcipher_request * req,crypto_completion_t done)282 static int init_crypt(struct skcipher_request *req, crypto_completion_t done)
283 {
284 	struct priv *ctx = crypto_skcipher_ctx(crypto_skcipher_reqtfm(req));
285 	struct rctx *rctx = skcipher_request_ctx(req);
286 	struct skcipher_request *subreq;
287 	gfp_t gfp;
288 
289 	subreq = &rctx->subreq;
290 	skcipher_request_set_callback(subreq, req->base.flags, done, req);
291 
292 	gfp = req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP ? GFP_KERNEL :
293 							   GFP_ATOMIC;
294 	rctx->ext = NULL;
295 
296 	subreq->cryptlen = LRW_BUFFER_SIZE;
297 	if (req->cryptlen > LRW_BUFFER_SIZE) {
298 		unsigned int n = min(req->cryptlen, (unsigned int)PAGE_SIZE);
299 
300 		rctx->ext = kmalloc(n, gfp);
301 		if (rctx->ext)
302 			subreq->cryptlen = n;
303 	}
304 
305 	rctx->src = req->src;
306 	rctx->dst = req->dst;
307 	rctx->left = req->cryptlen;
308 
309 	/* calculate first value of T */
310 	memcpy(&rctx->t, req->iv, sizeof(rctx->t));
311 
312 	/* T <- I*Key2 */
313 	gf128mul_64k_bbe(&rctx->t, ctx->table);
314 
315 	return 0;
316 }
317 
exit_crypt(struct skcipher_request * req)318 static void exit_crypt(struct skcipher_request *req)
319 {
320 	struct rctx *rctx = skcipher_request_ctx(req);
321 
322 	rctx->left = 0;
323 
324 	if (rctx->ext)
325 		kzfree(rctx->ext);
326 }
327 
do_encrypt(struct skcipher_request * req,int err)328 static int do_encrypt(struct skcipher_request *req, int err)
329 {
330 	struct rctx *rctx = skcipher_request_ctx(req);
331 	struct skcipher_request *subreq;
332 
333 	subreq = &rctx->subreq;
334 
335 	while (!err && rctx->left) {
336 		err = pre_crypt(req) ?:
337 		      crypto_skcipher_encrypt(subreq) ?:
338 		      post_crypt(req);
339 
340 		if (err == -EINPROGRESS || err == -EBUSY)
341 			return err;
342 	}
343 
344 	exit_crypt(req);
345 	return err;
346 }
347 
encrypt_done(struct crypto_async_request * areq,int err)348 static void encrypt_done(struct crypto_async_request *areq, int err)
349 {
350 	struct skcipher_request *req = areq->data;
351 	struct skcipher_request *subreq;
352 	struct rctx *rctx;
353 
354 	rctx = skcipher_request_ctx(req);
355 
356 	if (err == -EINPROGRESS) {
357 		if (rctx->left != req->cryptlen)
358 			return;
359 		goto out;
360 	}
361 
362 	subreq = &rctx->subreq;
363 	subreq->base.flags &= CRYPTO_TFM_REQ_MAY_BACKLOG;
364 
365 	err = do_encrypt(req, err ?: post_crypt(req));
366 	if (rctx->left)
367 		return;
368 
369 out:
370 	skcipher_request_complete(req, err);
371 }
372 
encrypt(struct skcipher_request * req)373 static int encrypt(struct skcipher_request *req)
374 {
375 	return do_encrypt(req, init_crypt(req, encrypt_done));
376 }
377 
do_decrypt(struct skcipher_request * req,int err)378 static int do_decrypt(struct skcipher_request *req, int err)
379 {
380 	struct rctx *rctx = skcipher_request_ctx(req);
381 	struct skcipher_request *subreq;
382 
383 	subreq = &rctx->subreq;
384 
385 	while (!err && rctx->left) {
386 		err = pre_crypt(req) ?:
387 		      crypto_skcipher_decrypt(subreq) ?:
388 		      post_crypt(req);
389 
390 		if (err == -EINPROGRESS || err == -EBUSY)
391 			return err;
392 	}
393 
394 	exit_crypt(req);
395 	return err;
396 }
397 
decrypt_done(struct crypto_async_request * areq,int err)398 static void decrypt_done(struct crypto_async_request *areq, int err)
399 {
400 	struct skcipher_request *req = areq->data;
401 	struct skcipher_request *subreq;
402 	struct rctx *rctx;
403 
404 	rctx = skcipher_request_ctx(req);
405 
406 	if (err == -EINPROGRESS) {
407 		if (rctx->left != req->cryptlen)
408 			return;
409 		goto out;
410 	}
411 
412 	subreq = &rctx->subreq;
413 	subreq->base.flags &= CRYPTO_TFM_REQ_MAY_BACKLOG;
414 
415 	err = do_decrypt(req, err ?: post_crypt(req));
416 	if (rctx->left)
417 		return;
418 
419 out:
420 	skcipher_request_complete(req, err);
421 }
422 
decrypt(struct skcipher_request * req)423 static int decrypt(struct skcipher_request *req)
424 {
425 	return do_decrypt(req, init_crypt(req, decrypt_done));
426 }
427 
init_tfm(struct crypto_skcipher * tfm)428 static int init_tfm(struct crypto_skcipher *tfm)
429 {
430 	struct skcipher_instance *inst = skcipher_alg_instance(tfm);
431 	struct crypto_skcipher_spawn *spawn = skcipher_instance_ctx(inst);
432 	struct priv *ctx = crypto_skcipher_ctx(tfm);
433 	struct crypto_skcipher *cipher;
434 
435 	cipher = crypto_spawn_skcipher(spawn);
436 	if (IS_ERR(cipher))
437 		return PTR_ERR(cipher);
438 
439 	ctx->child = cipher;
440 
441 	crypto_skcipher_set_reqsize(tfm, crypto_skcipher_reqsize(cipher) +
442 					 sizeof(struct rctx));
443 
444 	return 0;
445 }
446 
exit_tfm(struct crypto_skcipher * tfm)447 static void exit_tfm(struct crypto_skcipher *tfm)
448 {
449 	struct priv *ctx = crypto_skcipher_ctx(tfm);
450 
451 	if (ctx->table)
452 		gf128mul_free_64k(ctx->table);
453 	crypto_free_skcipher(ctx->child);
454 }
455 
free_inst(struct skcipher_instance * inst)456 static void free_inst(struct skcipher_instance *inst)
457 {
458 	crypto_drop_skcipher(skcipher_instance_ctx(inst));
459 	kfree(inst);
460 }
461 
create(struct crypto_template * tmpl,struct rtattr ** tb)462 static int create(struct crypto_template *tmpl, struct rtattr **tb)
463 {
464 	struct crypto_skcipher_spawn *spawn;
465 	struct skcipher_instance *inst;
466 	struct crypto_attr_type *algt;
467 	struct skcipher_alg *alg;
468 	const char *cipher_name;
469 	char ecb_name[CRYPTO_MAX_ALG_NAME];
470 	int err;
471 
472 	algt = crypto_get_attr_type(tb);
473 	if (IS_ERR(algt))
474 		return PTR_ERR(algt);
475 
476 	if ((algt->type ^ CRYPTO_ALG_TYPE_SKCIPHER) & algt->mask)
477 		return -EINVAL;
478 
479 	cipher_name = crypto_attr_alg_name(tb[1]);
480 	if (IS_ERR(cipher_name))
481 		return PTR_ERR(cipher_name);
482 
483 	inst = kzalloc(sizeof(*inst) + sizeof(*spawn), GFP_KERNEL);
484 	if (!inst)
485 		return -ENOMEM;
486 
487 	spawn = skcipher_instance_ctx(inst);
488 
489 	crypto_set_skcipher_spawn(spawn, skcipher_crypto_instance(inst));
490 	err = crypto_grab_skcipher(spawn, cipher_name, 0,
491 				   crypto_requires_sync(algt->type,
492 							algt->mask));
493 	if (err == -ENOENT) {
494 		err = -ENAMETOOLONG;
495 		if (snprintf(ecb_name, CRYPTO_MAX_ALG_NAME, "ecb(%s)",
496 			     cipher_name) >= CRYPTO_MAX_ALG_NAME)
497 			goto err_free_inst;
498 
499 		err = crypto_grab_skcipher(spawn, ecb_name, 0,
500 					   crypto_requires_sync(algt->type,
501 								algt->mask));
502 	}
503 
504 	if (err)
505 		goto err_free_inst;
506 
507 	alg = crypto_skcipher_spawn_alg(spawn);
508 
509 	err = -EINVAL;
510 	if (alg->base.cra_blocksize != LRW_BLOCK_SIZE)
511 		goto err_drop_spawn;
512 
513 	if (crypto_skcipher_alg_ivsize(alg))
514 		goto err_drop_spawn;
515 
516 	err = crypto_inst_setname(skcipher_crypto_instance(inst), "lrw",
517 				  &alg->base);
518 	if (err)
519 		goto err_drop_spawn;
520 
521 	err = -EINVAL;
522 	cipher_name = alg->base.cra_name;
523 
524 	/* Alas we screwed up the naming so we have to mangle the
525 	 * cipher name.
526 	 */
527 	if (!strncmp(cipher_name, "ecb(", 4)) {
528 		unsigned len;
529 
530 		len = strlcpy(ecb_name, cipher_name + 4, sizeof(ecb_name));
531 		if (len < 2 || len >= sizeof(ecb_name))
532 			goto err_drop_spawn;
533 
534 		if (ecb_name[len - 1] != ')')
535 			goto err_drop_spawn;
536 
537 		ecb_name[len - 1] = 0;
538 
539 		if (snprintf(inst->alg.base.cra_name, CRYPTO_MAX_ALG_NAME,
540 			     "lrw(%s)", ecb_name) >= CRYPTO_MAX_ALG_NAME) {
541 			err = -ENAMETOOLONG;
542 			goto err_drop_spawn;
543 		}
544 	} else
545 		goto err_drop_spawn;
546 
547 	inst->alg.base.cra_flags = alg->base.cra_flags & CRYPTO_ALG_ASYNC;
548 	inst->alg.base.cra_priority = alg->base.cra_priority;
549 	inst->alg.base.cra_blocksize = LRW_BLOCK_SIZE;
550 	inst->alg.base.cra_alignmask = alg->base.cra_alignmask |
551 				       (__alignof__(u64) - 1);
552 
553 	inst->alg.ivsize = LRW_BLOCK_SIZE;
554 	inst->alg.min_keysize = crypto_skcipher_alg_min_keysize(alg) +
555 				LRW_BLOCK_SIZE;
556 	inst->alg.max_keysize = crypto_skcipher_alg_max_keysize(alg) +
557 				LRW_BLOCK_SIZE;
558 
559 	inst->alg.base.cra_ctxsize = sizeof(struct priv);
560 
561 	inst->alg.init = init_tfm;
562 	inst->alg.exit = exit_tfm;
563 
564 	inst->alg.setkey = setkey;
565 	inst->alg.encrypt = encrypt;
566 	inst->alg.decrypt = decrypt;
567 
568 	inst->free = free_inst;
569 
570 	err = skcipher_register_instance(tmpl, inst);
571 	if (err)
572 		goto err_drop_spawn;
573 
574 out:
575 	return err;
576 
577 err_drop_spawn:
578 	crypto_drop_skcipher(spawn);
579 err_free_inst:
580 	kfree(inst);
581 	goto out;
582 }
583 
584 static struct crypto_template crypto_tmpl = {
585 	.name = "lrw",
586 	.create = create,
587 	.module = THIS_MODULE,
588 };
589 
crypto_module_init(void)590 static int __init crypto_module_init(void)
591 {
592 	return crypto_register_template(&crypto_tmpl);
593 }
594 
crypto_module_exit(void)595 static void __exit crypto_module_exit(void)
596 {
597 	crypto_unregister_template(&crypto_tmpl);
598 }
599 
600 module_init(crypto_module_init);
601 module_exit(crypto_module_exit);
602 
603 MODULE_LICENSE("GPL");
604 MODULE_DESCRIPTION("LRW block cipher mode");
605 MODULE_ALIAS_CRYPTO("lrw");
606