• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * CPPC (Collaborative Processor Performance Control) methods used by CPUfreq drivers.
3  *
4  * (C) Copyright 2014, 2015 Linaro Ltd.
5  * Author: Ashwin Chaugule <ashwin.chaugule@linaro.org>
6  *
7  * This program is free software; you can redistribute it and/or
8  * modify it under the terms of the GNU General Public License
9  * as published by the Free Software Foundation; version 2
10  * of the License.
11  *
12  * CPPC describes a few methods for controlling CPU performance using
13  * information from a per CPU table called CPC. This table is described in
14  * the ACPI v5.0+ specification. The table consists of a list of
15  * registers which may be memory mapped or hardware registers and also may
16  * include some static integer values.
17  *
18  * CPU performance is on an abstract continuous scale as against a discretized
19  * P-state scale which is tied to CPU frequency only. In brief, the basic
20  * operation involves:
21  *
22  * - OS makes a CPU performance request. (Can provide min and max bounds)
23  *
24  * - Platform (such as BMC) is free to optimize request within requested bounds
25  *   depending on power/thermal budgets etc.
26  *
27  * - Platform conveys its decision back to OS
28  *
29  * The communication between OS and platform occurs through another medium
30  * called (PCC) Platform Communication Channel. This is a generic mailbox like
31  * mechanism which includes doorbell semantics to indicate register updates.
32  * See drivers/mailbox/pcc.c for details on PCC.
33  *
34  * Finer details about the PCC and CPPC spec are available in the ACPI v5.1 and
35  * above specifications.
36  */
37 
38 #define pr_fmt(fmt)	"ACPI CPPC: " fmt
39 
40 #include <linux/cpufreq.h>
41 #include <linux/delay.h>
42 #include <linux/iopoll.h>
43 #include <linux/ktime.h>
44 #include <linux/rwsem.h>
45 #include <linux/wait.h>
46 
47 #include <acpi/cppc_acpi.h>
48 
49 struct cppc_pcc_data {
50 	struct mbox_chan *pcc_channel;
51 	void __iomem *pcc_comm_addr;
52 	bool pcc_channel_acquired;
53 	unsigned int deadline_us;
54 	unsigned int pcc_mpar, pcc_mrtt, pcc_nominal;
55 
56 	bool pending_pcc_write_cmd;	/* Any pending/batched PCC write cmds? */
57 	bool platform_owns_pcc;		/* Ownership of PCC subspace */
58 	unsigned int pcc_write_cnt;	/* Running count of PCC write commands */
59 
60 	/*
61 	 * Lock to provide controlled access to the PCC channel.
62 	 *
63 	 * For performance critical usecases(currently cppc_set_perf)
64 	 *	We need to take read_lock and check if channel belongs to OSPM
65 	 * before reading or writing to PCC subspace
66 	 *	We need to take write_lock before transferring the channel
67 	 * ownership to the platform via a Doorbell
68 	 *	This allows us to batch a number of CPPC requests if they happen
69 	 * to originate in about the same time
70 	 *
71 	 * For non-performance critical usecases(init)
72 	 *	Take write_lock for all purposes which gives exclusive access
73 	 */
74 	struct rw_semaphore pcc_lock;
75 
76 	/* Wait queue for CPUs whose requests were batched */
77 	wait_queue_head_t pcc_write_wait_q;
78 	ktime_t last_cmd_cmpl_time;
79 	ktime_t last_mpar_reset;
80 	int mpar_count;
81 	int refcount;
82 };
83 
84 /* Array  to represent the PCC channel per subspace id */
85 static struct cppc_pcc_data *pcc_data[MAX_PCC_SUBSPACES];
86 /* The cpu_pcc_subspace_idx containsper CPU subspace id */
87 static DEFINE_PER_CPU(int, cpu_pcc_subspace_idx);
88 
89 /*
90  * The cpc_desc structure contains the ACPI register details
91  * as described in the per CPU _CPC tables. The details
92  * include the type of register (e.g. PCC, System IO, FFH etc.)
93  * and destination addresses which lets us READ/WRITE CPU performance
94  * information using the appropriate I/O methods.
95  */
96 static DEFINE_PER_CPU(struct cpc_desc *, cpc_desc_ptr);
97 
98 /* pcc mapped address + header size + offset within PCC subspace */
99 #define GET_PCC_VADDR(offs, pcc_ss_id) (pcc_data[pcc_ss_id]->pcc_comm_addr + \
100 						0x8 + (offs))
101 
102 /* Check if a CPC register is in PCC */
103 #define CPC_IN_PCC(cpc) ((cpc)->type == ACPI_TYPE_BUFFER &&		\
104 				(cpc)->cpc_entry.reg.space_id ==	\
105 				ACPI_ADR_SPACE_PLATFORM_COMM)
106 
107 /* Evalutes to True if reg is a NULL register descriptor */
108 #define IS_NULL_REG(reg) ((reg)->space_id ==  ACPI_ADR_SPACE_SYSTEM_MEMORY && \
109 				(reg)->address == 0 &&			\
110 				(reg)->bit_width == 0 &&		\
111 				(reg)->bit_offset == 0 &&		\
112 				(reg)->access_width == 0)
113 
114 /* Evalutes to True if an optional cpc field is supported */
115 #define CPC_SUPPORTED(cpc) ((cpc)->type == ACPI_TYPE_INTEGER ?		\
116 				!!(cpc)->cpc_entry.int_value :		\
117 				!IS_NULL_REG(&(cpc)->cpc_entry.reg))
118 /*
119  * Arbitrary Retries in case the remote processor is slow to respond
120  * to PCC commands. Keeping it high enough to cover emulators where
121  * the processors run painfully slow.
122  */
123 #define NUM_RETRIES 500ULL
124 
125 struct cppc_attr {
126 	struct attribute attr;
127 	ssize_t (*show)(struct kobject *kobj,
128 			struct attribute *attr, char *buf);
129 	ssize_t (*store)(struct kobject *kobj,
130 			struct attribute *attr, const char *c, ssize_t count);
131 };
132 
133 #define define_one_cppc_ro(_name)		\
134 static struct cppc_attr _name =			\
135 __ATTR(_name, 0444, show_##_name, NULL)
136 
137 #define to_cpc_desc(a) container_of(a, struct cpc_desc, kobj)
138 
139 #define show_cppc_data(access_fn, struct_name, member_name)		\
140 	static ssize_t show_##member_name(struct kobject *kobj,		\
141 					struct attribute *attr,	char *buf) \
142 	{								\
143 		struct cpc_desc *cpc_ptr = to_cpc_desc(kobj);		\
144 		struct struct_name st_name = {0};			\
145 		int ret;						\
146 									\
147 		ret = access_fn(cpc_ptr->cpu_id, &st_name);		\
148 		if (ret)						\
149 			return ret;					\
150 									\
151 		return scnprintf(buf, PAGE_SIZE, "%llu\n",		\
152 				(u64)st_name.member_name);		\
153 	}								\
154 	define_one_cppc_ro(member_name)
155 
156 show_cppc_data(cppc_get_perf_caps, cppc_perf_caps, highest_perf);
157 show_cppc_data(cppc_get_perf_caps, cppc_perf_caps, lowest_perf);
158 show_cppc_data(cppc_get_perf_caps, cppc_perf_caps, nominal_perf);
159 show_cppc_data(cppc_get_perf_caps, cppc_perf_caps, lowest_nonlinear_perf);
160 show_cppc_data(cppc_get_perf_caps, cppc_perf_caps, lowest_freq);
161 show_cppc_data(cppc_get_perf_caps, cppc_perf_caps, nominal_freq);
162 
163 show_cppc_data(cppc_get_perf_ctrs, cppc_perf_fb_ctrs, reference_perf);
164 show_cppc_data(cppc_get_perf_ctrs, cppc_perf_fb_ctrs, wraparound_time);
165 
show_feedback_ctrs(struct kobject * kobj,struct attribute * attr,char * buf)166 static ssize_t show_feedback_ctrs(struct kobject *kobj,
167 		struct attribute *attr, char *buf)
168 {
169 	struct cpc_desc *cpc_ptr = to_cpc_desc(kobj);
170 	struct cppc_perf_fb_ctrs fb_ctrs = {0};
171 	int ret;
172 
173 	ret = cppc_get_perf_ctrs(cpc_ptr->cpu_id, &fb_ctrs);
174 	if (ret)
175 		return ret;
176 
177 	return scnprintf(buf, PAGE_SIZE, "ref:%llu del:%llu\n",
178 			fb_ctrs.reference, fb_ctrs.delivered);
179 }
180 define_one_cppc_ro(feedback_ctrs);
181 
182 static struct attribute *cppc_attrs[] = {
183 	&feedback_ctrs.attr,
184 	&reference_perf.attr,
185 	&wraparound_time.attr,
186 	&highest_perf.attr,
187 	&lowest_perf.attr,
188 	&lowest_nonlinear_perf.attr,
189 	&nominal_perf.attr,
190 	&nominal_freq.attr,
191 	&lowest_freq.attr,
192 	NULL
193 };
194 
195 static struct kobj_type cppc_ktype = {
196 	.sysfs_ops = &kobj_sysfs_ops,
197 	.default_attrs = cppc_attrs,
198 };
199 
check_pcc_chan(int pcc_ss_id,bool chk_err_bit)200 static int check_pcc_chan(int pcc_ss_id, bool chk_err_bit)
201 {
202 	int ret, status;
203 	struct cppc_pcc_data *pcc_ss_data = pcc_data[pcc_ss_id];
204 	struct acpi_pcct_shared_memory __iomem *generic_comm_base =
205 		pcc_ss_data->pcc_comm_addr;
206 
207 	if (!pcc_ss_data->platform_owns_pcc)
208 		return 0;
209 
210 	/*
211 	 * Poll PCC status register every 3us(delay_us) for maximum of
212 	 * deadline_us(timeout_us) until PCC command complete bit is set(cond)
213 	 */
214 	ret = readw_relaxed_poll_timeout(&generic_comm_base->status, status,
215 					status & PCC_CMD_COMPLETE_MASK, 3,
216 					pcc_ss_data->deadline_us);
217 
218 	if (likely(!ret)) {
219 		pcc_ss_data->platform_owns_pcc = false;
220 		if (chk_err_bit && (status & PCC_ERROR_MASK))
221 			ret = -EIO;
222 	}
223 
224 	if (unlikely(ret))
225 		pr_err("PCC check channel failed for ss: %d. ret=%d\n",
226 		       pcc_ss_id, ret);
227 
228 	return ret;
229 }
230 
231 /*
232  * This function transfers the ownership of the PCC to the platform
233  * So it must be called while holding write_lock(pcc_lock)
234  */
send_pcc_cmd(int pcc_ss_id,u16 cmd)235 static int send_pcc_cmd(int pcc_ss_id, u16 cmd)
236 {
237 	int ret = -EIO, i;
238 	struct cppc_pcc_data *pcc_ss_data = pcc_data[pcc_ss_id];
239 	struct acpi_pcct_shared_memory *generic_comm_base =
240 		(struct acpi_pcct_shared_memory *)pcc_ss_data->pcc_comm_addr;
241 	unsigned int time_delta;
242 
243 	/*
244 	 * For CMD_WRITE we know for a fact the caller should have checked
245 	 * the channel before writing to PCC space
246 	 */
247 	if (cmd == CMD_READ) {
248 		/*
249 		 * If there are pending cpc_writes, then we stole the channel
250 		 * before write completion, so first send a WRITE command to
251 		 * platform
252 		 */
253 		if (pcc_ss_data->pending_pcc_write_cmd)
254 			send_pcc_cmd(pcc_ss_id, CMD_WRITE);
255 
256 		ret = check_pcc_chan(pcc_ss_id, false);
257 		if (ret)
258 			goto end;
259 	} else /* CMD_WRITE */
260 		pcc_ss_data->pending_pcc_write_cmd = FALSE;
261 
262 	/*
263 	 * Handle the Minimum Request Turnaround Time(MRTT)
264 	 * "The minimum amount of time that OSPM must wait after the completion
265 	 * of a command before issuing the next command, in microseconds"
266 	 */
267 	if (pcc_ss_data->pcc_mrtt) {
268 		time_delta = ktime_us_delta(ktime_get(),
269 					    pcc_ss_data->last_cmd_cmpl_time);
270 		if (pcc_ss_data->pcc_mrtt > time_delta)
271 			udelay(pcc_ss_data->pcc_mrtt - time_delta);
272 	}
273 
274 	/*
275 	 * Handle the non-zero Maximum Periodic Access Rate(MPAR)
276 	 * "The maximum number of periodic requests that the subspace channel can
277 	 * support, reported in commands per minute. 0 indicates no limitation."
278 	 *
279 	 * This parameter should be ideally zero or large enough so that it can
280 	 * handle maximum number of requests that all the cores in the system can
281 	 * collectively generate. If it is not, we will follow the spec and just
282 	 * not send the request to the platform after hitting the MPAR limit in
283 	 * any 60s window
284 	 */
285 	if (pcc_ss_data->pcc_mpar) {
286 		if (pcc_ss_data->mpar_count == 0) {
287 			time_delta = ktime_ms_delta(ktime_get(),
288 						    pcc_ss_data->last_mpar_reset);
289 			if ((time_delta < 60 * MSEC_PER_SEC) && pcc_ss_data->last_mpar_reset) {
290 				pr_debug("PCC cmd for subspace %d not sent due to MPAR limit",
291 					 pcc_ss_id);
292 				ret = -EIO;
293 				goto end;
294 			}
295 			pcc_ss_data->last_mpar_reset = ktime_get();
296 			pcc_ss_data->mpar_count = pcc_ss_data->pcc_mpar;
297 		}
298 		pcc_ss_data->mpar_count--;
299 	}
300 
301 	/* Write to the shared comm region. */
302 	writew_relaxed(cmd, &generic_comm_base->command);
303 
304 	/* Flip CMD COMPLETE bit */
305 	writew_relaxed(0, &generic_comm_base->status);
306 
307 	pcc_ss_data->platform_owns_pcc = true;
308 
309 	/* Ring doorbell */
310 	ret = mbox_send_message(pcc_ss_data->pcc_channel, &cmd);
311 	if (ret < 0) {
312 		pr_err("Err sending PCC mbox message. ss: %d cmd:%d, ret:%d\n",
313 		       pcc_ss_id, cmd, ret);
314 		goto end;
315 	}
316 
317 	/* wait for completion and check for PCC errro bit */
318 	ret = check_pcc_chan(pcc_ss_id, true);
319 
320 	if (pcc_ss_data->pcc_mrtt)
321 		pcc_ss_data->last_cmd_cmpl_time = ktime_get();
322 
323 	if (pcc_ss_data->pcc_channel->mbox->txdone_irq)
324 		mbox_chan_txdone(pcc_ss_data->pcc_channel, ret);
325 	else
326 		mbox_client_txdone(pcc_ss_data->pcc_channel, ret);
327 
328 end:
329 	if (cmd == CMD_WRITE) {
330 		if (unlikely(ret)) {
331 			for_each_possible_cpu(i) {
332 				struct cpc_desc *desc = per_cpu(cpc_desc_ptr, i);
333 				if (!desc)
334 					continue;
335 
336 				if (desc->write_cmd_id == pcc_ss_data->pcc_write_cnt)
337 					desc->write_cmd_status = ret;
338 			}
339 		}
340 		pcc_ss_data->pcc_write_cnt++;
341 		wake_up_all(&pcc_ss_data->pcc_write_wait_q);
342 	}
343 
344 	return ret;
345 }
346 
cppc_chan_tx_done(struct mbox_client * cl,void * msg,int ret)347 static void cppc_chan_tx_done(struct mbox_client *cl, void *msg, int ret)
348 {
349 	if (ret < 0)
350 		pr_debug("TX did not complete: CMD sent:%x, ret:%d\n",
351 				*(u16 *)msg, ret);
352 	else
353 		pr_debug("TX completed. CMD sent:%x, ret:%d\n",
354 				*(u16 *)msg, ret);
355 }
356 
357 struct mbox_client cppc_mbox_cl = {
358 	.tx_done = cppc_chan_tx_done,
359 	.knows_txdone = true,
360 };
361 
acpi_get_psd(struct cpc_desc * cpc_ptr,acpi_handle handle)362 static int acpi_get_psd(struct cpc_desc *cpc_ptr, acpi_handle handle)
363 {
364 	int result = -EFAULT;
365 	acpi_status status = AE_OK;
366 	struct acpi_buffer buffer = {ACPI_ALLOCATE_BUFFER, NULL};
367 	struct acpi_buffer format = {sizeof("NNNNN"), "NNNNN"};
368 	struct acpi_buffer state = {0, NULL};
369 	union acpi_object  *psd = NULL;
370 	struct acpi_psd_package *pdomain;
371 
372 	status = acpi_evaluate_object_typed(handle, "_PSD", NULL,
373 					    &buffer, ACPI_TYPE_PACKAGE);
374 	if (status == AE_NOT_FOUND)	/* _PSD is optional */
375 		return 0;
376 	if (ACPI_FAILURE(status))
377 		return -ENODEV;
378 
379 	psd = buffer.pointer;
380 	if (!psd || psd->package.count != 1) {
381 		pr_debug("Invalid _PSD data\n");
382 		goto end;
383 	}
384 
385 	pdomain = &(cpc_ptr->domain_info);
386 
387 	state.length = sizeof(struct acpi_psd_package);
388 	state.pointer = pdomain;
389 
390 	status = acpi_extract_package(&(psd->package.elements[0]),
391 		&format, &state);
392 	if (ACPI_FAILURE(status)) {
393 		pr_debug("Invalid _PSD data for CPU:%d\n", cpc_ptr->cpu_id);
394 		goto end;
395 	}
396 
397 	if (pdomain->num_entries != ACPI_PSD_REV0_ENTRIES) {
398 		pr_debug("Unknown _PSD:num_entries for CPU:%d\n", cpc_ptr->cpu_id);
399 		goto end;
400 	}
401 
402 	if (pdomain->revision != ACPI_PSD_REV0_REVISION) {
403 		pr_debug("Unknown _PSD:revision for CPU: %d\n", cpc_ptr->cpu_id);
404 		goto end;
405 	}
406 
407 	if (pdomain->coord_type != DOMAIN_COORD_TYPE_SW_ALL &&
408 	    pdomain->coord_type != DOMAIN_COORD_TYPE_SW_ANY &&
409 	    pdomain->coord_type != DOMAIN_COORD_TYPE_HW_ALL) {
410 		pr_debug("Invalid _PSD:coord_type for CPU:%d\n", cpc_ptr->cpu_id);
411 		goto end;
412 	}
413 
414 	result = 0;
415 end:
416 	kfree(buffer.pointer);
417 	return result;
418 }
419 
420 /**
421  * acpi_get_psd_map - Map the CPUs in a common freq domain.
422  * @all_cpu_data: Ptrs to CPU specific CPPC data including PSD info.
423  *
424  *	Return: 0 for success or negative value for err.
425  */
acpi_get_psd_map(struct cppc_cpudata ** all_cpu_data)426 int acpi_get_psd_map(struct cppc_cpudata **all_cpu_data)
427 {
428 	int count_target;
429 	int retval = 0;
430 	unsigned int i, j;
431 	cpumask_var_t covered_cpus;
432 	struct cppc_cpudata *pr, *match_pr;
433 	struct acpi_psd_package *pdomain;
434 	struct acpi_psd_package *match_pdomain;
435 	struct cpc_desc *cpc_ptr, *match_cpc_ptr;
436 
437 	if (!zalloc_cpumask_var(&covered_cpus, GFP_KERNEL))
438 		return -ENOMEM;
439 
440 	/*
441 	 * Now that we have _PSD data from all CPUs, lets setup P-state
442 	 * domain info.
443 	 */
444 	for_each_possible_cpu(i) {
445 		pr = all_cpu_data[i];
446 		if (!pr)
447 			continue;
448 
449 		if (cpumask_test_cpu(i, covered_cpus))
450 			continue;
451 
452 		cpc_ptr = per_cpu(cpc_desc_ptr, i);
453 		if (!cpc_ptr) {
454 			retval = -EFAULT;
455 			goto err_ret;
456 		}
457 
458 		pdomain = &(cpc_ptr->domain_info);
459 		cpumask_set_cpu(i, pr->shared_cpu_map);
460 		cpumask_set_cpu(i, covered_cpus);
461 		if (pdomain->num_processors <= 1)
462 			continue;
463 
464 		/* Validate the Domain info */
465 		count_target = pdomain->num_processors;
466 		if (pdomain->coord_type == DOMAIN_COORD_TYPE_SW_ALL)
467 			pr->shared_type = CPUFREQ_SHARED_TYPE_ALL;
468 		else if (pdomain->coord_type == DOMAIN_COORD_TYPE_HW_ALL)
469 			pr->shared_type = CPUFREQ_SHARED_TYPE_HW;
470 		else if (pdomain->coord_type == DOMAIN_COORD_TYPE_SW_ANY)
471 			pr->shared_type = CPUFREQ_SHARED_TYPE_ANY;
472 
473 		for_each_possible_cpu(j) {
474 			if (i == j)
475 				continue;
476 
477 			match_cpc_ptr = per_cpu(cpc_desc_ptr, j);
478 			if (!match_cpc_ptr) {
479 				retval = -EFAULT;
480 				goto err_ret;
481 			}
482 
483 			match_pdomain = &(match_cpc_ptr->domain_info);
484 			if (match_pdomain->domain != pdomain->domain)
485 				continue;
486 
487 			/* Here i and j are in the same domain */
488 			if (match_pdomain->num_processors != count_target) {
489 				retval = -EFAULT;
490 				goto err_ret;
491 			}
492 
493 			if (pdomain->coord_type != match_pdomain->coord_type) {
494 				retval = -EFAULT;
495 				goto err_ret;
496 			}
497 
498 			cpumask_set_cpu(j, covered_cpus);
499 			cpumask_set_cpu(j, pr->shared_cpu_map);
500 		}
501 
502 		for_each_possible_cpu(j) {
503 			if (i == j)
504 				continue;
505 
506 			match_pr = all_cpu_data[j];
507 			if (!match_pr)
508 				continue;
509 
510 			match_cpc_ptr = per_cpu(cpc_desc_ptr, j);
511 			if (!match_cpc_ptr) {
512 				retval = -EFAULT;
513 				goto err_ret;
514 			}
515 
516 			match_pdomain = &(match_cpc_ptr->domain_info);
517 			if (match_pdomain->domain != pdomain->domain)
518 				continue;
519 
520 			match_pr->shared_type = pr->shared_type;
521 			cpumask_copy(match_pr->shared_cpu_map,
522 				     pr->shared_cpu_map);
523 		}
524 	}
525 
526 err_ret:
527 	for_each_possible_cpu(i) {
528 		pr = all_cpu_data[i];
529 		if (!pr)
530 			continue;
531 
532 		/* Assume no coordination on any error parsing domain info */
533 		if (retval) {
534 			cpumask_clear(pr->shared_cpu_map);
535 			cpumask_set_cpu(i, pr->shared_cpu_map);
536 			pr->shared_type = CPUFREQ_SHARED_TYPE_ALL;
537 		}
538 	}
539 
540 	free_cpumask_var(covered_cpus);
541 	return retval;
542 }
543 EXPORT_SYMBOL_GPL(acpi_get_psd_map);
544 
register_pcc_channel(int pcc_ss_idx)545 static int register_pcc_channel(int pcc_ss_idx)
546 {
547 	struct acpi_pcct_hw_reduced *cppc_ss;
548 	u64 usecs_lat;
549 
550 	if (pcc_ss_idx >= 0) {
551 		pcc_data[pcc_ss_idx]->pcc_channel =
552 			pcc_mbox_request_channel(&cppc_mbox_cl,	pcc_ss_idx);
553 
554 		if (IS_ERR(pcc_data[pcc_ss_idx]->pcc_channel)) {
555 			pr_err("Failed to find PCC channel for subspace %d\n",
556 			       pcc_ss_idx);
557 			return -ENODEV;
558 		}
559 
560 		/*
561 		 * The PCC mailbox controller driver should
562 		 * have parsed the PCCT (global table of all
563 		 * PCC channels) and stored pointers to the
564 		 * subspace communication region in con_priv.
565 		 */
566 		cppc_ss = (pcc_data[pcc_ss_idx]->pcc_channel)->con_priv;
567 
568 		if (!cppc_ss) {
569 			pr_err("No PCC subspace found for %d CPPC\n",
570 			       pcc_ss_idx);
571 			return -ENODEV;
572 		}
573 
574 		/*
575 		 * cppc_ss->latency is just a Nominal value. In reality
576 		 * the remote processor could be much slower to reply.
577 		 * So add an arbitrary amount of wait on top of Nominal.
578 		 */
579 		usecs_lat = NUM_RETRIES * cppc_ss->latency;
580 		pcc_data[pcc_ss_idx]->deadline_us = usecs_lat;
581 		pcc_data[pcc_ss_idx]->pcc_mrtt = cppc_ss->min_turnaround_time;
582 		pcc_data[pcc_ss_idx]->pcc_mpar = cppc_ss->max_access_rate;
583 		pcc_data[pcc_ss_idx]->pcc_nominal = cppc_ss->latency;
584 
585 		pcc_data[pcc_ss_idx]->pcc_comm_addr =
586 			acpi_os_ioremap(cppc_ss->base_address, cppc_ss->length);
587 		if (!pcc_data[pcc_ss_idx]->pcc_comm_addr) {
588 			pr_err("Failed to ioremap PCC comm region mem for %d\n",
589 			       pcc_ss_idx);
590 			return -ENOMEM;
591 		}
592 
593 		/* Set flag so that we dont come here for each CPU. */
594 		pcc_data[pcc_ss_idx]->pcc_channel_acquired = true;
595 	}
596 
597 	return 0;
598 }
599 
600 /**
601  * cpc_ffh_supported() - check if FFH reading supported
602  *
603  * Check if the architecture has support for functional fixed hardware
604  * read/write capability.
605  *
606  * Return: true for supported, false for not supported
607  */
cpc_ffh_supported(void)608 bool __weak cpc_ffh_supported(void)
609 {
610 	return false;
611 }
612 
613 /**
614  * pcc_data_alloc() - Allocate the pcc_data memory for pcc subspace
615  *
616  * Check and allocate the cppc_pcc_data memory.
617  * In some processor configurations it is possible that same subspace
618  * is shared between multiple CPU's. This is seen especially in CPU's
619  * with hardware multi-threading support.
620  *
621  * Return: 0 for success, errno for failure
622  */
pcc_data_alloc(int pcc_ss_id)623 int pcc_data_alloc(int pcc_ss_id)
624 {
625 	if (pcc_ss_id < 0 || pcc_ss_id >= MAX_PCC_SUBSPACES)
626 		return -EINVAL;
627 
628 	if (pcc_data[pcc_ss_id]) {
629 		pcc_data[pcc_ss_id]->refcount++;
630 	} else {
631 		pcc_data[pcc_ss_id] = kzalloc(sizeof(struct cppc_pcc_data),
632 					      GFP_KERNEL);
633 		if (!pcc_data[pcc_ss_id])
634 			return -ENOMEM;
635 		pcc_data[pcc_ss_id]->refcount++;
636 	}
637 
638 	return 0;
639 }
640 
641 /* Check if CPPC revision + num_ent combination is supported */
is_cppc_supported(int revision,int num_ent)642 static bool is_cppc_supported(int revision, int num_ent)
643 {
644 	int expected_num_ent;
645 
646 	switch (revision) {
647 	case CPPC_V2_REV:
648 		expected_num_ent = CPPC_V2_NUM_ENT;
649 		break;
650 	case CPPC_V3_REV:
651 		expected_num_ent = CPPC_V3_NUM_ENT;
652 		break;
653 	default:
654 		pr_debug("Firmware exports unsupported CPPC revision: %d\n",
655 			revision);
656 		return false;
657 	}
658 
659 	if (expected_num_ent != num_ent) {
660 		pr_debug("Firmware exports %d entries. Expected: %d for CPPC rev:%d\n",
661 			num_ent, expected_num_ent, revision);
662 		return false;
663 	}
664 
665 	return true;
666 }
667 
668 /*
669  * An example CPC table looks like the following.
670  *
671  *	Name(_CPC, Package()
672  *			{
673  *			17,
674  *			NumEntries
675  *			1,
676  *			// Revision
677  *			ResourceTemplate(){Register(PCC, 32, 0, 0x120, 2)},
678  *			// Highest Performance
679  *			ResourceTemplate(){Register(PCC, 32, 0, 0x124, 2)},
680  *			// Nominal Performance
681  *			ResourceTemplate(){Register(PCC, 32, 0, 0x128, 2)},
682  *			// Lowest Nonlinear Performance
683  *			ResourceTemplate(){Register(PCC, 32, 0, 0x12C, 2)},
684  *			// Lowest Performance
685  *			ResourceTemplate(){Register(PCC, 32, 0, 0x130, 2)},
686  *			// Guaranteed Performance Register
687  *			ResourceTemplate(){Register(PCC, 32, 0, 0x110, 2)},
688  *			// Desired Performance Register
689  *			ResourceTemplate(){Register(SystemMemory, 0, 0, 0, 0)},
690  *			..
691  *			..
692  *			..
693  *
694  *		}
695  * Each Register() encodes how to access that specific register.
696  * e.g. a sample PCC entry has the following encoding:
697  *
698  *	Register (
699  *		PCC,
700  *		AddressSpaceKeyword
701  *		8,
702  *		//RegisterBitWidth
703  *		8,
704  *		//RegisterBitOffset
705  *		0x30,
706  *		//RegisterAddress
707  *		9
708  *		//AccessSize (subspace ID)
709  *		0
710  *		)
711  *	}
712  */
713 
714 /**
715  * acpi_cppc_processor_probe - Search for per CPU _CPC objects.
716  * @pr: Ptr to acpi_processor containing this CPUs logical Id.
717  *
718  *	Return: 0 for success or negative value for err.
719  */
acpi_cppc_processor_probe(struct acpi_processor * pr)720 int acpi_cppc_processor_probe(struct acpi_processor *pr)
721 {
722 	struct acpi_buffer output = {ACPI_ALLOCATE_BUFFER, NULL};
723 	union acpi_object *out_obj, *cpc_obj;
724 	struct cpc_desc *cpc_ptr;
725 	struct cpc_reg *gas_t;
726 	struct device *cpu_dev;
727 	acpi_handle handle = pr->handle;
728 	unsigned int num_ent, i, cpc_rev;
729 	int pcc_subspace_id = -1;
730 	acpi_status status;
731 	int ret = -EFAULT;
732 
733 	/* Parse the ACPI _CPC table for this cpu. */
734 	status = acpi_evaluate_object_typed(handle, "_CPC", NULL, &output,
735 			ACPI_TYPE_PACKAGE);
736 	if (ACPI_FAILURE(status)) {
737 		ret = -ENODEV;
738 		goto out_buf_free;
739 	}
740 
741 	out_obj = (union acpi_object *) output.pointer;
742 
743 	cpc_ptr = kzalloc(sizeof(struct cpc_desc), GFP_KERNEL);
744 	if (!cpc_ptr) {
745 		ret = -ENOMEM;
746 		goto out_buf_free;
747 	}
748 
749 	/* First entry is NumEntries. */
750 	cpc_obj = &out_obj->package.elements[0];
751 	if (cpc_obj->type == ACPI_TYPE_INTEGER)	{
752 		num_ent = cpc_obj->integer.value;
753 	} else {
754 		pr_debug("Unexpected entry type(%d) for NumEntries\n",
755 				cpc_obj->type);
756 		goto out_free;
757 	}
758 	cpc_ptr->num_entries = num_ent;
759 
760 	/* Second entry should be revision. */
761 	cpc_obj = &out_obj->package.elements[1];
762 	if (cpc_obj->type == ACPI_TYPE_INTEGER)	{
763 		cpc_rev = cpc_obj->integer.value;
764 	} else {
765 		pr_debug("Unexpected entry type(%d) for Revision\n",
766 				cpc_obj->type);
767 		goto out_free;
768 	}
769 	cpc_ptr->version = cpc_rev;
770 
771 	if (!is_cppc_supported(cpc_rev, num_ent))
772 		goto out_free;
773 
774 	/* Iterate through remaining entries in _CPC */
775 	for (i = 2; i < num_ent; i++) {
776 		cpc_obj = &out_obj->package.elements[i];
777 
778 		if (cpc_obj->type == ACPI_TYPE_INTEGER)	{
779 			cpc_ptr->cpc_regs[i-2].type = ACPI_TYPE_INTEGER;
780 			cpc_ptr->cpc_regs[i-2].cpc_entry.int_value = cpc_obj->integer.value;
781 		} else if (cpc_obj->type == ACPI_TYPE_BUFFER) {
782 			gas_t = (struct cpc_reg *)
783 				cpc_obj->buffer.pointer;
784 
785 			/*
786 			 * The PCC Subspace index is encoded inside
787 			 * the CPC table entries. The same PCC index
788 			 * will be used for all the PCC entries,
789 			 * so extract it only once.
790 			 */
791 			if (gas_t->space_id == ACPI_ADR_SPACE_PLATFORM_COMM) {
792 				if (pcc_subspace_id < 0) {
793 					pcc_subspace_id = gas_t->access_width;
794 					if (pcc_data_alloc(pcc_subspace_id))
795 						goto out_free;
796 				} else if (pcc_subspace_id != gas_t->access_width) {
797 					pr_debug("Mismatched PCC ids.\n");
798 					goto out_free;
799 				}
800 			} else if (gas_t->space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY) {
801 				if (gas_t->address) {
802 					void __iomem *addr;
803 
804 					addr = ioremap(gas_t->address, gas_t->bit_width/8);
805 					if (!addr)
806 						goto out_free;
807 					cpc_ptr->cpc_regs[i-2].sys_mem_vaddr = addr;
808 				}
809 			} else {
810 				if (gas_t->space_id != ACPI_ADR_SPACE_FIXED_HARDWARE || !cpc_ffh_supported()) {
811 					/* Support only PCC ,SYS MEM and FFH type regs */
812 					pr_debug("Unsupported register type: %d\n", gas_t->space_id);
813 					goto out_free;
814 				}
815 			}
816 
817 			cpc_ptr->cpc_regs[i-2].type = ACPI_TYPE_BUFFER;
818 			memcpy(&cpc_ptr->cpc_regs[i-2].cpc_entry.reg, gas_t, sizeof(*gas_t));
819 		} else {
820 			pr_debug("Err in entry:%d in CPC table of CPU:%d \n", i, pr->id);
821 			goto out_free;
822 		}
823 	}
824 	per_cpu(cpu_pcc_subspace_idx, pr->id) = pcc_subspace_id;
825 
826 	/*
827 	 * Initialize the remaining cpc_regs as unsupported.
828 	 * Example: In case FW exposes CPPC v2, the below loop will initialize
829 	 * LOWEST_FREQ and NOMINAL_FREQ regs as unsupported
830 	 */
831 	for (i = num_ent - 2; i < MAX_CPC_REG_ENT; i++) {
832 		cpc_ptr->cpc_regs[i].type = ACPI_TYPE_INTEGER;
833 		cpc_ptr->cpc_regs[i].cpc_entry.int_value = 0;
834 	}
835 
836 
837 	/* Store CPU Logical ID */
838 	cpc_ptr->cpu_id = pr->id;
839 
840 	/* Parse PSD data for this CPU */
841 	ret = acpi_get_psd(cpc_ptr, handle);
842 	if (ret)
843 		goto out_free;
844 
845 	/* Register PCC channel once for all PCC subspace id. */
846 	if (pcc_subspace_id >= 0 && !pcc_data[pcc_subspace_id]->pcc_channel_acquired) {
847 		ret = register_pcc_channel(pcc_subspace_id);
848 		if (ret)
849 			goto out_free;
850 
851 		init_rwsem(&pcc_data[pcc_subspace_id]->pcc_lock);
852 		init_waitqueue_head(&pcc_data[pcc_subspace_id]->pcc_write_wait_q);
853 	}
854 
855 	/* Everything looks okay */
856 	pr_debug("Parsed CPC struct for CPU: %d\n", pr->id);
857 
858 	/* Add per logical CPU nodes for reading its feedback counters. */
859 	cpu_dev = get_cpu_device(pr->id);
860 	if (!cpu_dev) {
861 		ret = -EINVAL;
862 		goto out_free;
863 	}
864 
865 	/* Plug PSD data into this CPUs CPC descriptor. */
866 	per_cpu(cpc_desc_ptr, pr->id) = cpc_ptr;
867 
868 	ret = kobject_init_and_add(&cpc_ptr->kobj, &cppc_ktype, &cpu_dev->kobj,
869 			"acpi_cppc");
870 	if (ret) {
871 		per_cpu(cpc_desc_ptr, pr->id) = NULL;
872 		kobject_put(&cpc_ptr->kobj);
873 		goto out_free;
874 	}
875 
876 	kfree(output.pointer);
877 	return 0;
878 
879 out_free:
880 	/* Free all the mapped sys mem areas for this CPU */
881 	for (i = 2; i < cpc_ptr->num_entries; i++) {
882 		void __iomem *addr = cpc_ptr->cpc_regs[i-2].sys_mem_vaddr;
883 
884 		if (addr)
885 			iounmap(addr);
886 	}
887 	kfree(cpc_ptr);
888 
889 out_buf_free:
890 	kfree(output.pointer);
891 	return ret;
892 }
893 EXPORT_SYMBOL_GPL(acpi_cppc_processor_probe);
894 
895 /**
896  * acpi_cppc_processor_exit - Cleanup CPC structs.
897  * @pr: Ptr to acpi_processor containing this CPUs logical Id.
898  *
899  * Return: Void
900  */
acpi_cppc_processor_exit(struct acpi_processor * pr)901 void acpi_cppc_processor_exit(struct acpi_processor *pr)
902 {
903 	struct cpc_desc *cpc_ptr;
904 	unsigned int i;
905 	void __iomem *addr;
906 	int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, pr->id);
907 
908 	if (pcc_ss_id >=0 && pcc_data[pcc_ss_id]) {
909 		if (pcc_data[pcc_ss_id]->pcc_channel_acquired) {
910 			pcc_data[pcc_ss_id]->refcount--;
911 			if (!pcc_data[pcc_ss_id]->refcount) {
912 				pcc_mbox_free_channel(pcc_data[pcc_ss_id]->pcc_channel);
913 				kfree(pcc_data[pcc_ss_id]);
914 				pcc_data[pcc_ss_id] = NULL;
915 			}
916 		}
917 	}
918 
919 	cpc_ptr = per_cpu(cpc_desc_ptr, pr->id);
920 	if (!cpc_ptr)
921 		return;
922 
923 	/* Free all the mapped sys mem areas for this CPU */
924 	for (i = 2; i < cpc_ptr->num_entries; i++) {
925 		addr = cpc_ptr->cpc_regs[i-2].sys_mem_vaddr;
926 		if (addr)
927 			iounmap(addr);
928 	}
929 
930 	kobject_put(&cpc_ptr->kobj);
931 	kfree(cpc_ptr);
932 }
933 EXPORT_SYMBOL_GPL(acpi_cppc_processor_exit);
934 
935 /**
936  * cpc_read_ffh() - Read FFH register
937  * @cpunum:	cpu number to read
938  * @reg:	cppc register information
939  * @val:	place holder for return value
940  *
941  * Read bit_width bits from a specified address and bit_offset
942  *
943  * Return: 0 for success and error code
944  */
cpc_read_ffh(int cpunum,struct cpc_reg * reg,u64 * val)945 int __weak cpc_read_ffh(int cpunum, struct cpc_reg *reg, u64 *val)
946 {
947 	return -ENOTSUPP;
948 }
949 
950 /**
951  * cpc_write_ffh() - Write FFH register
952  * @cpunum:	cpu number to write
953  * @reg:	cppc register information
954  * @val:	value to write
955  *
956  * Write value of bit_width bits to a specified address and bit_offset
957  *
958  * Return: 0 for success and error code
959  */
cpc_write_ffh(int cpunum,struct cpc_reg * reg,u64 val)960 int __weak cpc_write_ffh(int cpunum, struct cpc_reg *reg, u64 val)
961 {
962 	return -ENOTSUPP;
963 }
964 
965 /*
966  * Since cpc_read and cpc_write are called while holding pcc_lock, it should be
967  * as fast as possible. We have already mapped the PCC subspace during init, so
968  * we can directly write to it.
969  */
970 
cpc_read(int cpu,struct cpc_register_resource * reg_res,u64 * val)971 static int cpc_read(int cpu, struct cpc_register_resource *reg_res, u64 *val)
972 {
973 	int ret_val = 0;
974 	void __iomem *vaddr = 0;
975 	int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, cpu);
976 	struct cpc_reg *reg = &reg_res->cpc_entry.reg;
977 
978 	if (reg_res->type == ACPI_TYPE_INTEGER) {
979 		*val = reg_res->cpc_entry.int_value;
980 		return ret_val;
981 	}
982 
983 	*val = 0;
984 	if (reg->space_id == ACPI_ADR_SPACE_PLATFORM_COMM && pcc_ss_id >= 0)
985 		vaddr = GET_PCC_VADDR(reg->address, pcc_ss_id);
986 	else if (reg->space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY)
987 		vaddr = reg_res->sys_mem_vaddr;
988 	else if (reg->space_id == ACPI_ADR_SPACE_FIXED_HARDWARE)
989 		return cpc_read_ffh(cpu, reg, val);
990 	else
991 		return acpi_os_read_memory((acpi_physical_address)reg->address,
992 				val, reg->bit_width);
993 
994 	switch (reg->bit_width) {
995 		case 8:
996 			*val = readb_relaxed(vaddr);
997 			break;
998 		case 16:
999 			*val = readw_relaxed(vaddr);
1000 			break;
1001 		case 32:
1002 			*val = readl_relaxed(vaddr);
1003 			break;
1004 		case 64:
1005 			*val = readq_relaxed(vaddr);
1006 			break;
1007 		default:
1008 			pr_debug("Error: Cannot read %u bit width from PCC for ss: %d\n",
1009 				 reg->bit_width, pcc_ss_id);
1010 			ret_val = -EFAULT;
1011 	}
1012 
1013 	return ret_val;
1014 }
1015 
cpc_write(int cpu,struct cpc_register_resource * reg_res,u64 val)1016 static int cpc_write(int cpu, struct cpc_register_resource *reg_res, u64 val)
1017 {
1018 	int ret_val = 0;
1019 	void __iomem *vaddr = 0;
1020 	int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, cpu);
1021 	struct cpc_reg *reg = &reg_res->cpc_entry.reg;
1022 
1023 	if (reg->space_id == ACPI_ADR_SPACE_PLATFORM_COMM && pcc_ss_id >= 0)
1024 		vaddr = GET_PCC_VADDR(reg->address, pcc_ss_id);
1025 	else if (reg->space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY)
1026 		vaddr = reg_res->sys_mem_vaddr;
1027 	else if (reg->space_id == ACPI_ADR_SPACE_FIXED_HARDWARE)
1028 		return cpc_write_ffh(cpu, reg, val);
1029 	else
1030 		return acpi_os_write_memory((acpi_physical_address)reg->address,
1031 				val, reg->bit_width);
1032 
1033 	switch (reg->bit_width) {
1034 		case 8:
1035 			writeb_relaxed(val, vaddr);
1036 			break;
1037 		case 16:
1038 			writew_relaxed(val, vaddr);
1039 			break;
1040 		case 32:
1041 			writel_relaxed(val, vaddr);
1042 			break;
1043 		case 64:
1044 			writeq_relaxed(val, vaddr);
1045 			break;
1046 		default:
1047 			pr_debug("Error: Cannot write %u bit width to PCC for ss: %d\n",
1048 				 reg->bit_width, pcc_ss_id);
1049 			ret_val = -EFAULT;
1050 			break;
1051 	}
1052 
1053 	return ret_val;
1054 }
1055 
1056 /**
1057  * cppc_get_perf_caps - Get a CPUs performance capabilities.
1058  * @cpunum: CPU from which to get capabilities info.
1059  * @perf_caps: ptr to cppc_perf_caps. See cppc_acpi.h
1060  *
1061  * Return: 0 for success with perf_caps populated else -ERRNO.
1062  */
cppc_get_perf_caps(int cpunum,struct cppc_perf_caps * perf_caps)1063 int cppc_get_perf_caps(int cpunum, struct cppc_perf_caps *perf_caps)
1064 {
1065 	struct cpc_desc *cpc_desc = per_cpu(cpc_desc_ptr, cpunum);
1066 	struct cpc_register_resource *highest_reg, *lowest_reg,
1067 		*lowest_non_linear_reg, *nominal_reg,
1068 		*low_freq_reg = NULL, *nom_freq_reg = NULL;
1069 	u64 high, low, nom, min_nonlinear, low_f = 0, nom_f = 0;
1070 	int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, cpunum);
1071 	struct cppc_pcc_data *pcc_ss_data = NULL;
1072 	int ret = 0, regs_in_pcc = 0;
1073 
1074 	if (!cpc_desc) {
1075 		pr_debug("No CPC descriptor for CPU:%d\n", cpunum);
1076 		return -ENODEV;
1077 	}
1078 
1079 	highest_reg = &cpc_desc->cpc_regs[HIGHEST_PERF];
1080 	lowest_reg = &cpc_desc->cpc_regs[LOWEST_PERF];
1081 	lowest_non_linear_reg = &cpc_desc->cpc_regs[LOW_NON_LINEAR_PERF];
1082 	nominal_reg = &cpc_desc->cpc_regs[NOMINAL_PERF];
1083 	low_freq_reg = &cpc_desc->cpc_regs[LOWEST_FREQ];
1084 	nom_freq_reg = &cpc_desc->cpc_regs[NOMINAL_FREQ];
1085 
1086 	/* Are any of the regs PCC ?*/
1087 	if (CPC_IN_PCC(highest_reg) || CPC_IN_PCC(lowest_reg) ||
1088 		CPC_IN_PCC(lowest_non_linear_reg) || CPC_IN_PCC(nominal_reg) ||
1089 		CPC_IN_PCC(low_freq_reg) || CPC_IN_PCC(nom_freq_reg)) {
1090 		if (pcc_ss_id < 0) {
1091 			pr_debug("Invalid pcc_ss_id\n");
1092 			return -ENODEV;
1093 		}
1094 		pcc_ss_data = pcc_data[pcc_ss_id];
1095 		regs_in_pcc = 1;
1096 		down_write(&pcc_ss_data->pcc_lock);
1097 		/* Ring doorbell once to update PCC subspace */
1098 		if (send_pcc_cmd(pcc_ss_id, CMD_READ) < 0) {
1099 			ret = -EIO;
1100 			goto out_err;
1101 		}
1102 	}
1103 
1104 	cpc_read(cpunum, highest_reg, &high);
1105 	perf_caps->highest_perf = high;
1106 
1107 	cpc_read(cpunum, lowest_reg, &low);
1108 	perf_caps->lowest_perf = low;
1109 
1110 	cpc_read(cpunum, nominal_reg, &nom);
1111 	perf_caps->nominal_perf = nom;
1112 
1113 	cpc_read(cpunum, lowest_non_linear_reg, &min_nonlinear);
1114 	perf_caps->lowest_nonlinear_perf = min_nonlinear;
1115 
1116 	if (!high || !low || !nom || !min_nonlinear)
1117 		ret = -EFAULT;
1118 
1119 	/* Read optional lowest and nominal frequencies if present */
1120 	if (CPC_SUPPORTED(low_freq_reg))
1121 		cpc_read(cpunum, low_freq_reg, &low_f);
1122 
1123 	if (CPC_SUPPORTED(nom_freq_reg))
1124 		cpc_read(cpunum, nom_freq_reg, &nom_f);
1125 
1126 	perf_caps->lowest_freq = low_f;
1127 	perf_caps->nominal_freq = nom_f;
1128 
1129 
1130 out_err:
1131 	if (regs_in_pcc)
1132 		up_write(&pcc_ss_data->pcc_lock);
1133 	return ret;
1134 }
1135 EXPORT_SYMBOL_GPL(cppc_get_perf_caps);
1136 
1137 /**
1138  * cppc_get_perf_ctrs - Read a CPUs performance feedback counters.
1139  * @cpunum: CPU from which to read counters.
1140  * @perf_fb_ctrs: ptr to cppc_perf_fb_ctrs. See cppc_acpi.h
1141  *
1142  * Return: 0 for success with perf_fb_ctrs populated else -ERRNO.
1143  */
cppc_get_perf_ctrs(int cpunum,struct cppc_perf_fb_ctrs * perf_fb_ctrs)1144 int cppc_get_perf_ctrs(int cpunum, struct cppc_perf_fb_ctrs *perf_fb_ctrs)
1145 {
1146 	struct cpc_desc *cpc_desc = per_cpu(cpc_desc_ptr, cpunum);
1147 	struct cpc_register_resource *delivered_reg, *reference_reg,
1148 		*ref_perf_reg, *ctr_wrap_reg;
1149 	int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, cpunum);
1150 	struct cppc_pcc_data *pcc_ss_data = NULL;
1151 	u64 delivered, reference, ref_perf, ctr_wrap_time;
1152 	int ret = 0, regs_in_pcc = 0;
1153 
1154 	if (!cpc_desc) {
1155 		pr_debug("No CPC descriptor for CPU:%d\n", cpunum);
1156 		return -ENODEV;
1157 	}
1158 
1159 	delivered_reg = &cpc_desc->cpc_regs[DELIVERED_CTR];
1160 	reference_reg = &cpc_desc->cpc_regs[REFERENCE_CTR];
1161 	ref_perf_reg = &cpc_desc->cpc_regs[REFERENCE_PERF];
1162 	ctr_wrap_reg = &cpc_desc->cpc_regs[CTR_WRAP_TIME];
1163 
1164 	/*
1165 	 * If refernce perf register is not supported then we should
1166 	 * use the nominal perf value
1167 	 */
1168 	if (!CPC_SUPPORTED(ref_perf_reg))
1169 		ref_perf_reg = &cpc_desc->cpc_regs[NOMINAL_PERF];
1170 
1171 	/* Are any of the regs PCC ?*/
1172 	if (CPC_IN_PCC(delivered_reg) || CPC_IN_PCC(reference_reg) ||
1173 		CPC_IN_PCC(ctr_wrap_reg) || CPC_IN_PCC(ref_perf_reg)) {
1174 		if (pcc_ss_id < 0) {
1175 			pr_debug("Invalid pcc_ss_id\n");
1176 			return -ENODEV;
1177 		}
1178 		pcc_ss_data = pcc_data[pcc_ss_id];
1179 		down_write(&pcc_ss_data->pcc_lock);
1180 		regs_in_pcc = 1;
1181 		/* Ring doorbell once to update PCC subspace */
1182 		if (send_pcc_cmd(pcc_ss_id, CMD_READ) < 0) {
1183 			ret = -EIO;
1184 			goto out_err;
1185 		}
1186 	}
1187 
1188 	cpc_read(cpunum, delivered_reg, &delivered);
1189 	cpc_read(cpunum, reference_reg, &reference);
1190 	cpc_read(cpunum, ref_perf_reg, &ref_perf);
1191 
1192 	/*
1193 	 * Per spec, if ctr_wrap_time optional register is unsupported, then the
1194 	 * performance counters are assumed to never wrap during the lifetime of
1195 	 * platform
1196 	 */
1197 	ctr_wrap_time = (u64)(~((u64)0));
1198 	if (CPC_SUPPORTED(ctr_wrap_reg))
1199 		cpc_read(cpunum, ctr_wrap_reg, &ctr_wrap_time);
1200 
1201 	if (!delivered || !reference ||	!ref_perf) {
1202 		ret = -EFAULT;
1203 		goto out_err;
1204 	}
1205 
1206 	perf_fb_ctrs->delivered = delivered;
1207 	perf_fb_ctrs->reference = reference;
1208 	perf_fb_ctrs->reference_perf = ref_perf;
1209 	perf_fb_ctrs->wraparound_time = ctr_wrap_time;
1210 out_err:
1211 	if (regs_in_pcc)
1212 		up_write(&pcc_ss_data->pcc_lock);
1213 	return ret;
1214 }
1215 EXPORT_SYMBOL_GPL(cppc_get_perf_ctrs);
1216 
1217 /**
1218  * cppc_set_perf - Set a CPUs performance controls.
1219  * @cpu: CPU for which to set performance controls.
1220  * @perf_ctrls: ptr to cppc_perf_ctrls. See cppc_acpi.h
1221  *
1222  * Return: 0 for success, -ERRNO otherwise.
1223  */
cppc_set_perf(int cpu,struct cppc_perf_ctrls * perf_ctrls)1224 int cppc_set_perf(int cpu, struct cppc_perf_ctrls *perf_ctrls)
1225 {
1226 	struct cpc_desc *cpc_desc = per_cpu(cpc_desc_ptr, cpu);
1227 	struct cpc_register_resource *desired_reg;
1228 	int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, cpu);
1229 	struct cppc_pcc_data *pcc_ss_data = NULL;
1230 	int ret = 0;
1231 
1232 	if (!cpc_desc) {
1233 		pr_debug("No CPC descriptor for CPU:%d\n", cpu);
1234 		return -ENODEV;
1235 	}
1236 
1237 	desired_reg = &cpc_desc->cpc_regs[DESIRED_PERF];
1238 
1239 	/*
1240 	 * This is Phase-I where we want to write to CPC registers
1241 	 * -> We want all CPUs to be able to execute this phase in parallel
1242 	 *
1243 	 * Since read_lock can be acquired by multiple CPUs simultaneously we
1244 	 * achieve that goal here
1245 	 */
1246 	if (CPC_IN_PCC(desired_reg)) {
1247 		if (pcc_ss_id < 0) {
1248 			pr_debug("Invalid pcc_ss_id\n");
1249 			return -ENODEV;
1250 		}
1251 		pcc_ss_data = pcc_data[pcc_ss_id];
1252 		down_read(&pcc_ss_data->pcc_lock); /* BEGIN Phase-I */
1253 		if (pcc_ss_data->platform_owns_pcc) {
1254 			ret = check_pcc_chan(pcc_ss_id, false);
1255 			if (ret) {
1256 				up_read(&pcc_ss_data->pcc_lock);
1257 				return ret;
1258 			}
1259 		}
1260 		/*
1261 		 * Update the pending_write to make sure a PCC CMD_READ will not
1262 		 * arrive and steal the channel during the switch to write lock
1263 		 */
1264 		pcc_ss_data->pending_pcc_write_cmd = true;
1265 		cpc_desc->write_cmd_id = pcc_ss_data->pcc_write_cnt;
1266 		cpc_desc->write_cmd_status = 0;
1267 	}
1268 
1269 	/*
1270 	 * Skip writing MIN/MAX until Linux knows how to come up with
1271 	 * useful values.
1272 	 */
1273 	cpc_write(cpu, desired_reg, perf_ctrls->desired_perf);
1274 
1275 	if (CPC_IN_PCC(desired_reg))
1276 		up_read(&pcc_ss_data->pcc_lock);	/* END Phase-I */
1277 	/*
1278 	 * This is Phase-II where we transfer the ownership of PCC to Platform
1279 	 *
1280 	 * Short Summary: Basically if we think of a group of cppc_set_perf
1281 	 * requests that happened in short overlapping interval. The last CPU to
1282 	 * come out of Phase-I will enter Phase-II and ring the doorbell.
1283 	 *
1284 	 * We have the following requirements for Phase-II:
1285 	 *     1. We want to execute Phase-II only when there are no CPUs
1286 	 * currently executing in Phase-I
1287 	 *     2. Once we start Phase-II we want to avoid all other CPUs from
1288 	 * entering Phase-I.
1289 	 *     3. We want only one CPU among all those who went through Phase-I
1290 	 * to run phase-II
1291 	 *
1292 	 * If write_trylock fails to get the lock and doesn't transfer the
1293 	 * PCC ownership to the platform, then one of the following will be TRUE
1294 	 *     1. There is at-least one CPU in Phase-I which will later execute
1295 	 * write_trylock, so the CPUs in Phase-I will be responsible for
1296 	 * executing the Phase-II.
1297 	 *     2. Some other CPU has beaten this CPU to successfully execute the
1298 	 * write_trylock and has already acquired the write_lock. We know for a
1299 	 * fact it(other CPU acquiring the write_lock) couldn't have happened
1300 	 * before this CPU's Phase-I as we held the read_lock.
1301 	 *     3. Some other CPU executing pcc CMD_READ has stolen the
1302 	 * down_write, in which case, send_pcc_cmd will check for pending
1303 	 * CMD_WRITE commands by checking the pending_pcc_write_cmd.
1304 	 * So this CPU can be certain that its request will be delivered
1305 	 *    So in all cases, this CPU knows that its request will be delivered
1306 	 * by another CPU and can return
1307 	 *
1308 	 * After getting the down_write we still need to check for
1309 	 * pending_pcc_write_cmd to take care of the following scenario
1310 	 *    The thread running this code could be scheduled out between
1311 	 * Phase-I and Phase-II. Before it is scheduled back on, another CPU
1312 	 * could have delivered the request to Platform by triggering the
1313 	 * doorbell and transferred the ownership of PCC to platform. So this
1314 	 * avoids triggering an unnecessary doorbell and more importantly before
1315 	 * triggering the doorbell it makes sure that the PCC channel ownership
1316 	 * is still with OSPM.
1317 	 *   pending_pcc_write_cmd can also be cleared by a different CPU, if
1318 	 * there was a pcc CMD_READ waiting on down_write and it steals the lock
1319 	 * before the pcc CMD_WRITE is completed. pcc_send_cmd checks for this
1320 	 * case during a CMD_READ and if there are pending writes it delivers
1321 	 * the write command before servicing the read command
1322 	 */
1323 	if (CPC_IN_PCC(desired_reg)) {
1324 		if (down_write_trylock(&pcc_ss_data->pcc_lock)) {/* BEGIN Phase-II */
1325 			/* Update only if there are pending write commands */
1326 			if (pcc_ss_data->pending_pcc_write_cmd)
1327 				send_pcc_cmd(pcc_ss_id, CMD_WRITE);
1328 			up_write(&pcc_ss_data->pcc_lock);	/* END Phase-II */
1329 		} else
1330 			/* Wait until pcc_write_cnt is updated by send_pcc_cmd */
1331 			wait_event(pcc_ss_data->pcc_write_wait_q,
1332 				   cpc_desc->write_cmd_id != pcc_ss_data->pcc_write_cnt);
1333 
1334 		/* send_pcc_cmd updates the status in case of failure */
1335 		ret = cpc_desc->write_cmd_status;
1336 	}
1337 	return ret;
1338 }
1339 EXPORT_SYMBOL_GPL(cppc_set_perf);
1340 
1341 /**
1342  * cppc_get_transition_latency - returns frequency transition latency in ns
1343  *
1344  * ACPI CPPC does not explicitly specifiy how a platform can specify the
1345  * transition latency for perfromance change requests. The closest we have
1346  * is the timing information from the PCCT tables which provides the info
1347  * on the number and frequency of PCC commands the platform can handle.
1348  */
cppc_get_transition_latency(int cpu_num)1349 unsigned int cppc_get_transition_latency(int cpu_num)
1350 {
1351 	/*
1352 	 * Expected transition latency is based on the PCCT timing values
1353 	 * Below are definition from ACPI spec:
1354 	 * pcc_nominal- Expected latency to process a command, in microseconds
1355 	 * pcc_mpar   - The maximum number of periodic requests that the subspace
1356 	 *              channel can support, reported in commands per minute. 0
1357 	 *              indicates no limitation.
1358 	 * pcc_mrtt   - The minimum amount of time that OSPM must wait after the
1359 	 *              completion of a command before issuing the next command,
1360 	 *              in microseconds.
1361 	 */
1362 	unsigned int latency_ns = 0;
1363 	struct cpc_desc *cpc_desc;
1364 	struct cpc_register_resource *desired_reg;
1365 	int pcc_ss_id = per_cpu(cpu_pcc_subspace_idx, cpu_num);
1366 	struct cppc_pcc_data *pcc_ss_data;
1367 
1368 	cpc_desc = per_cpu(cpc_desc_ptr, cpu_num);
1369 	if (!cpc_desc)
1370 		return CPUFREQ_ETERNAL;
1371 
1372 	desired_reg = &cpc_desc->cpc_regs[DESIRED_PERF];
1373 	if (!CPC_IN_PCC(desired_reg))
1374 		return CPUFREQ_ETERNAL;
1375 
1376 	if (pcc_ss_id < 0)
1377 		return CPUFREQ_ETERNAL;
1378 
1379 	pcc_ss_data = pcc_data[pcc_ss_id];
1380 	if (pcc_ss_data->pcc_mpar)
1381 		latency_ns = 60 * (1000 * 1000 * 1000 / pcc_ss_data->pcc_mpar);
1382 
1383 	latency_ns = max(latency_ns, pcc_ss_data->pcc_nominal * 1000);
1384 	latency_ns = max(latency_ns, pcc_ss_data->pcc_mrtt * 1000);
1385 
1386 	return latency_ns;
1387 }
1388 EXPORT_SYMBOL_GPL(cppc_get_transition_latency);
1389