• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright(c) 2013-2015 Intel Corporation. All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of version 2 of the GNU General Public License as
6  * published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful, but
9  * WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  */
13 #include <linux/list_sort.h>
14 #include <linux/libnvdimm.h>
15 #include <linux/module.h>
16 #include <linux/mutex.h>
17 #include <linux/ndctl.h>
18 #include <linux/sysfs.h>
19 #include <linux/delay.h>
20 #include <linux/list.h>
21 #include <linux/acpi.h>
22 #include <linux/sort.h>
23 #include <linux/io.h>
24 #include <linux/nd.h>
25 #include <asm/cacheflush.h>
26 #include <acpi/nfit.h>
27 #include "nfit.h"
28 
29 /*
30  * For readq() and writeq() on 32-bit builds, the hi-lo, lo-hi order is
31  * irrelevant.
32  */
33 #include <linux/io-64-nonatomic-hi-lo.h>
34 
35 static bool force_enable_dimms;
36 module_param(force_enable_dimms, bool, S_IRUGO|S_IWUSR);
37 MODULE_PARM_DESC(force_enable_dimms, "Ignore _STA (ACPI DIMM device) status");
38 
39 static bool disable_vendor_specific;
40 module_param(disable_vendor_specific, bool, S_IRUGO);
41 MODULE_PARM_DESC(disable_vendor_specific,
42 		"Limit commands to the publicly specified set");
43 
44 static unsigned long override_dsm_mask;
45 module_param(override_dsm_mask, ulong, S_IRUGO);
46 MODULE_PARM_DESC(override_dsm_mask, "Bitmask of allowed NVDIMM DSM functions");
47 
48 static int default_dsm_family = -1;
49 module_param(default_dsm_family, int, S_IRUGO);
50 MODULE_PARM_DESC(default_dsm_family,
51 		"Try this DSM type first when identifying NVDIMM family");
52 
53 static bool no_init_ars;
54 module_param(no_init_ars, bool, 0644);
55 MODULE_PARM_DESC(no_init_ars, "Skip ARS run at nfit init time");
56 
57 LIST_HEAD(acpi_descs);
58 DEFINE_MUTEX(acpi_desc_lock);
59 
60 static struct workqueue_struct *nfit_wq;
61 
62 struct nfit_table_prev {
63 	struct list_head spas;
64 	struct list_head memdevs;
65 	struct list_head dcrs;
66 	struct list_head bdws;
67 	struct list_head idts;
68 	struct list_head flushes;
69 };
70 
71 static guid_t nfit_uuid[NFIT_UUID_MAX];
72 
to_nfit_uuid(enum nfit_uuids id)73 const guid_t *to_nfit_uuid(enum nfit_uuids id)
74 {
75 	return &nfit_uuid[id];
76 }
77 EXPORT_SYMBOL(to_nfit_uuid);
78 
to_acpi_nfit_desc(struct nvdimm_bus_descriptor * nd_desc)79 static struct acpi_nfit_desc *to_acpi_nfit_desc(
80 		struct nvdimm_bus_descriptor *nd_desc)
81 {
82 	return container_of(nd_desc, struct acpi_nfit_desc, nd_desc);
83 }
84 
to_acpi_dev(struct acpi_nfit_desc * acpi_desc)85 static struct acpi_device *to_acpi_dev(struct acpi_nfit_desc *acpi_desc)
86 {
87 	struct nvdimm_bus_descriptor *nd_desc = &acpi_desc->nd_desc;
88 
89 	/*
90 	 * If provider == 'ACPI.NFIT' we can assume 'dev' is a struct
91 	 * acpi_device.
92 	 */
93 	if (!nd_desc->provider_name
94 			|| strcmp(nd_desc->provider_name, "ACPI.NFIT") != 0)
95 		return NULL;
96 
97 	return to_acpi_device(acpi_desc->dev);
98 }
99 
xlat_bus_status(void * buf,unsigned int cmd,u32 status)100 static int xlat_bus_status(void *buf, unsigned int cmd, u32 status)
101 {
102 	struct nd_cmd_clear_error *clear_err;
103 	struct nd_cmd_ars_status *ars_status;
104 	u16 flags;
105 
106 	switch (cmd) {
107 	case ND_CMD_ARS_CAP:
108 		if ((status & 0xffff) == NFIT_ARS_CAP_NONE)
109 			return -ENOTTY;
110 
111 		/* Command failed */
112 		if (status & 0xffff)
113 			return -EIO;
114 
115 		/* No supported scan types for this range */
116 		flags = ND_ARS_PERSISTENT | ND_ARS_VOLATILE;
117 		if ((status >> 16 & flags) == 0)
118 			return -ENOTTY;
119 		return 0;
120 	case ND_CMD_ARS_START:
121 		/* ARS is in progress */
122 		if ((status & 0xffff) == NFIT_ARS_START_BUSY)
123 			return -EBUSY;
124 
125 		/* Command failed */
126 		if (status & 0xffff)
127 			return -EIO;
128 		return 0;
129 	case ND_CMD_ARS_STATUS:
130 		ars_status = buf;
131 		/* Command failed */
132 		if (status & 0xffff)
133 			return -EIO;
134 		/* Check extended status (Upper two bytes) */
135 		if (status == NFIT_ARS_STATUS_DONE)
136 			return 0;
137 
138 		/* ARS is in progress */
139 		if (status == NFIT_ARS_STATUS_BUSY)
140 			return -EBUSY;
141 
142 		/* No ARS performed for the current boot */
143 		if (status == NFIT_ARS_STATUS_NONE)
144 			return -EAGAIN;
145 
146 		/*
147 		 * ARS interrupted, either we overflowed or some other
148 		 * agent wants the scan to stop.  If we didn't overflow
149 		 * then just continue with the returned results.
150 		 */
151 		if (status == NFIT_ARS_STATUS_INTR) {
152 			if (ars_status->out_length >= 40 && (ars_status->flags
153 						& NFIT_ARS_F_OVERFLOW))
154 				return -ENOSPC;
155 			return 0;
156 		}
157 
158 		/* Unknown status */
159 		if (status >> 16)
160 			return -EIO;
161 		return 0;
162 	case ND_CMD_CLEAR_ERROR:
163 		clear_err = buf;
164 		if (status & 0xffff)
165 			return -EIO;
166 		if (!clear_err->cleared)
167 			return -EIO;
168 		if (clear_err->length > clear_err->cleared)
169 			return clear_err->cleared;
170 		return 0;
171 	default:
172 		break;
173 	}
174 
175 	/* all other non-zero status results in an error */
176 	if (status)
177 		return -EIO;
178 	return 0;
179 }
180 
181 #define ACPI_LABELS_LOCKED 3
182 
xlat_nvdimm_status(struct nvdimm * nvdimm,void * buf,unsigned int cmd,u32 status)183 static int xlat_nvdimm_status(struct nvdimm *nvdimm, void *buf, unsigned int cmd,
184 		u32 status)
185 {
186 	struct nfit_mem *nfit_mem = nvdimm_provider_data(nvdimm);
187 
188 	switch (cmd) {
189 	case ND_CMD_GET_CONFIG_SIZE:
190 		/*
191 		 * In the _LSI, _LSR, _LSW case the locked status is
192 		 * communicated via the read/write commands
193 		 */
194 		if (nfit_mem->has_lsr)
195 			break;
196 
197 		if (status >> 16 & ND_CONFIG_LOCKED)
198 			return -EACCES;
199 		break;
200 	case ND_CMD_GET_CONFIG_DATA:
201 		if (nfit_mem->has_lsr && status == ACPI_LABELS_LOCKED)
202 			return -EACCES;
203 		break;
204 	case ND_CMD_SET_CONFIG_DATA:
205 		if (nfit_mem->has_lsw && status == ACPI_LABELS_LOCKED)
206 			return -EACCES;
207 		break;
208 	default:
209 		break;
210 	}
211 
212 	/* all other non-zero status results in an error */
213 	if (status)
214 		return -EIO;
215 	return 0;
216 }
217 
xlat_status(struct nvdimm * nvdimm,void * buf,unsigned int cmd,u32 status)218 static int xlat_status(struct nvdimm *nvdimm, void *buf, unsigned int cmd,
219 		u32 status)
220 {
221 	if (!nvdimm)
222 		return xlat_bus_status(buf, cmd, status);
223 	return xlat_nvdimm_status(nvdimm, buf, cmd, status);
224 }
225 
226 /* convert _LS{I,R} packages to the buffer object acpi_nfit_ctl expects */
pkg_to_buf(union acpi_object * pkg)227 static union acpi_object *pkg_to_buf(union acpi_object *pkg)
228 {
229 	int i;
230 	void *dst;
231 	size_t size = 0;
232 	union acpi_object *buf = NULL;
233 
234 	if (pkg->type != ACPI_TYPE_PACKAGE) {
235 		WARN_ONCE(1, "BIOS bug, unexpected element type: %d\n",
236 				pkg->type);
237 		goto err;
238 	}
239 
240 	for (i = 0; i < pkg->package.count; i++) {
241 		union acpi_object *obj = &pkg->package.elements[i];
242 
243 		if (obj->type == ACPI_TYPE_INTEGER)
244 			size += 4;
245 		else if (obj->type == ACPI_TYPE_BUFFER)
246 			size += obj->buffer.length;
247 		else {
248 			WARN_ONCE(1, "BIOS bug, unexpected element type: %d\n",
249 					obj->type);
250 			goto err;
251 		}
252 	}
253 
254 	buf = ACPI_ALLOCATE(sizeof(*buf) + size);
255 	if (!buf)
256 		goto err;
257 
258 	dst = buf + 1;
259 	buf->type = ACPI_TYPE_BUFFER;
260 	buf->buffer.length = size;
261 	buf->buffer.pointer = dst;
262 	for (i = 0; i < pkg->package.count; i++) {
263 		union acpi_object *obj = &pkg->package.elements[i];
264 
265 		if (obj->type == ACPI_TYPE_INTEGER) {
266 			memcpy(dst, &obj->integer.value, 4);
267 			dst += 4;
268 		} else if (obj->type == ACPI_TYPE_BUFFER) {
269 			memcpy(dst, obj->buffer.pointer, obj->buffer.length);
270 			dst += obj->buffer.length;
271 		}
272 	}
273 err:
274 	ACPI_FREE(pkg);
275 	return buf;
276 }
277 
int_to_buf(union acpi_object * integer)278 static union acpi_object *int_to_buf(union acpi_object *integer)
279 {
280 	union acpi_object *buf = ACPI_ALLOCATE(sizeof(*buf) + 4);
281 	void *dst = NULL;
282 
283 	if (!buf)
284 		goto err;
285 
286 	if (integer->type != ACPI_TYPE_INTEGER) {
287 		WARN_ONCE(1, "BIOS bug, unexpected element type: %d\n",
288 				integer->type);
289 		goto err;
290 	}
291 
292 	dst = buf + 1;
293 	buf->type = ACPI_TYPE_BUFFER;
294 	buf->buffer.length = 4;
295 	buf->buffer.pointer = dst;
296 	memcpy(dst, &integer->integer.value, 4);
297 err:
298 	ACPI_FREE(integer);
299 	return buf;
300 }
301 
acpi_label_write(acpi_handle handle,u32 offset,u32 len,void * data)302 static union acpi_object *acpi_label_write(acpi_handle handle, u32 offset,
303 		u32 len, void *data)
304 {
305 	acpi_status rc;
306 	struct acpi_buffer buf = { ACPI_ALLOCATE_BUFFER, NULL };
307 	struct acpi_object_list input = {
308 		.count = 3,
309 		.pointer = (union acpi_object []) {
310 			[0] = {
311 				.integer.type = ACPI_TYPE_INTEGER,
312 				.integer.value = offset,
313 			},
314 			[1] = {
315 				.integer.type = ACPI_TYPE_INTEGER,
316 				.integer.value = len,
317 			},
318 			[2] = {
319 				.buffer.type = ACPI_TYPE_BUFFER,
320 				.buffer.pointer = data,
321 				.buffer.length = len,
322 			},
323 		},
324 	};
325 
326 	rc = acpi_evaluate_object(handle, "_LSW", &input, &buf);
327 	if (ACPI_FAILURE(rc))
328 		return NULL;
329 	return int_to_buf(buf.pointer);
330 }
331 
acpi_label_read(acpi_handle handle,u32 offset,u32 len)332 static union acpi_object *acpi_label_read(acpi_handle handle, u32 offset,
333 		u32 len)
334 {
335 	acpi_status rc;
336 	struct acpi_buffer buf = { ACPI_ALLOCATE_BUFFER, NULL };
337 	struct acpi_object_list input = {
338 		.count = 2,
339 		.pointer = (union acpi_object []) {
340 			[0] = {
341 				.integer.type = ACPI_TYPE_INTEGER,
342 				.integer.value = offset,
343 			},
344 			[1] = {
345 				.integer.type = ACPI_TYPE_INTEGER,
346 				.integer.value = len,
347 			},
348 		},
349 	};
350 
351 	rc = acpi_evaluate_object(handle, "_LSR", &input, &buf);
352 	if (ACPI_FAILURE(rc))
353 		return NULL;
354 	return pkg_to_buf(buf.pointer);
355 }
356 
acpi_label_info(acpi_handle handle)357 static union acpi_object *acpi_label_info(acpi_handle handle)
358 {
359 	acpi_status rc;
360 	struct acpi_buffer buf = { ACPI_ALLOCATE_BUFFER, NULL };
361 
362 	rc = acpi_evaluate_object(handle, "_LSI", NULL, &buf);
363 	if (ACPI_FAILURE(rc))
364 		return NULL;
365 	return pkg_to_buf(buf.pointer);
366 }
367 
nfit_dsm_revid(unsigned family,unsigned func)368 static u8 nfit_dsm_revid(unsigned family, unsigned func)
369 {
370 	static const u8 revid_table[NVDIMM_FAMILY_MAX+1][32] = {
371 		[NVDIMM_FAMILY_INTEL] = {
372 			[NVDIMM_INTEL_GET_MODES] = 2,
373 			[NVDIMM_INTEL_GET_FWINFO] = 2,
374 			[NVDIMM_INTEL_START_FWUPDATE] = 2,
375 			[NVDIMM_INTEL_SEND_FWUPDATE] = 2,
376 			[NVDIMM_INTEL_FINISH_FWUPDATE] = 2,
377 			[NVDIMM_INTEL_QUERY_FWUPDATE] = 2,
378 			[NVDIMM_INTEL_SET_THRESHOLD] = 2,
379 			[NVDIMM_INTEL_INJECT_ERROR] = 2,
380 		},
381 	};
382 	u8 id;
383 
384 	if (family > NVDIMM_FAMILY_MAX)
385 		return 0;
386 	if (func > 31)
387 		return 0;
388 	id = revid_table[family][func];
389 	if (id == 0)
390 		return 1; /* default */
391 	return id;
392 }
393 
cmd_to_func(struct nfit_mem * nfit_mem,unsigned int cmd,struct nd_cmd_pkg * call_pkg)394 static int cmd_to_func(struct nfit_mem *nfit_mem, unsigned int cmd,
395 		struct nd_cmd_pkg *call_pkg)
396 {
397 	if (call_pkg) {
398 		int i;
399 
400 		if (nfit_mem && nfit_mem->family != call_pkg->nd_family)
401 			return -ENOTTY;
402 
403 		for (i = 0; i < ARRAY_SIZE(call_pkg->nd_reserved2); i++)
404 			if (call_pkg->nd_reserved2[i])
405 				return -EINVAL;
406 		return call_pkg->nd_command;
407 	}
408 
409 	/* In the !call_pkg case, bus commands == bus functions */
410 	if (!nfit_mem)
411 		return cmd;
412 
413 	/* Linux ND commands == NVDIMM_FAMILY_INTEL function numbers */
414 	if (nfit_mem->family == NVDIMM_FAMILY_INTEL)
415 		return cmd;
416 
417 	/*
418 	 * Force function number validation to fail since 0 is never
419 	 * published as a valid function in dsm_mask.
420 	 */
421 	return 0;
422 }
423 
acpi_nfit_ctl(struct nvdimm_bus_descriptor * nd_desc,struct nvdimm * nvdimm,unsigned int cmd,void * buf,unsigned int buf_len,int * cmd_rc)424 int acpi_nfit_ctl(struct nvdimm_bus_descriptor *nd_desc, struct nvdimm *nvdimm,
425 		unsigned int cmd, void *buf, unsigned int buf_len, int *cmd_rc)
426 {
427 	struct acpi_nfit_desc *acpi_desc = to_acpi_nfit_desc(nd_desc);
428 	struct nfit_mem *nfit_mem = nvdimm_provider_data(nvdimm);
429 	union acpi_object in_obj, in_buf, *out_obj;
430 	const struct nd_cmd_desc *desc = NULL;
431 	struct device *dev = acpi_desc->dev;
432 	struct nd_cmd_pkg *call_pkg = NULL;
433 	const char *cmd_name, *dimm_name;
434 	unsigned long cmd_mask, dsm_mask;
435 	u32 offset, fw_status = 0;
436 	acpi_handle handle;
437 	const guid_t *guid;
438 	int func, rc, i;
439 
440 	if (cmd_rc)
441 		*cmd_rc = -EINVAL;
442 
443 	if (cmd == ND_CMD_CALL)
444 		call_pkg = buf;
445 	func = cmd_to_func(nfit_mem, cmd, call_pkg);
446 	if (func < 0)
447 		return func;
448 
449 	if (nvdimm) {
450 		struct acpi_device *adev = nfit_mem->adev;
451 
452 		if (!adev)
453 			return -ENOTTY;
454 
455 		dimm_name = nvdimm_name(nvdimm);
456 		cmd_name = nvdimm_cmd_name(cmd);
457 		cmd_mask = nvdimm_cmd_mask(nvdimm);
458 		dsm_mask = nfit_mem->dsm_mask;
459 		desc = nd_cmd_dimm_desc(cmd);
460 		guid = to_nfit_uuid(nfit_mem->family);
461 		handle = adev->handle;
462 	} else {
463 		struct acpi_device *adev = to_acpi_dev(acpi_desc);
464 
465 		cmd_name = nvdimm_bus_cmd_name(cmd);
466 		cmd_mask = nd_desc->cmd_mask;
467 		dsm_mask = nd_desc->bus_dsm_mask;
468 		desc = nd_cmd_bus_desc(cmd);
469 		guid = to_nfit_uuid(NFIT_DEV_BUS);
470 		handle = adev->handle;
471 		dimm_name = "bus";
472 	}
473 
474 	if (!desc || (cmd && (desc->out_num + desc->in_num == 0)))
475 		return -ENOTTY;
476 
477 	/*
478 	 * Check for a valid command.  For ND_CMD_CALL, we also have to
479 	 * make sure that the DSM function is supported.
480 	 */
481 	if (cmd == ND_CMD_CALL && !test_bit(func, &dsm_mask))
482 		return -ENOTTY;
483 	else if (!test_bit(cmd, &cmd_mask))
484 		return -ENOTTY;
485 
486 	in_obj.type = ACPI_TYPE_PACKAGE;
487 	in_obj.package.count = 1;
488 	in_obj.package.elements = &in_buf;
489 	in_buf.type = ACPI_TYPE_BUFFER;
490 	in_buf.buffer.pointer = buf;
491 	in_buf.buffer.length = 0;
492 
493 	/* libnvdimm has already validated the input envelope */
494 	for (i = 0; i < desc->in_num; i++)
495 		in_buf.buffer.length += nd_cmd_in_size(nvdimm, cmd, desc,
496 				i, buf);
497 
498 	if (call_pkg) {
499 		/* skip over package wrapper */
500 		in_buf.buffer.pointer = (void *) &call_pkg->nd_payload;
501 		in_buf.buffer.length = call_pkg->nd_size_in;
502 	}
503 
504 	dev_dbg(dev, "%s cmd: %d: func: %d input length: %d\n",
505 		dimm_name, cmd, func, in_buf.buffer.length);
506 	print_hex_dump_debug("nvdimm in  ", DUMP_PREFIX_OFFSET, 4, 4,
507 			in_buf.buffer.pointer,
508 			min_t(u32, 256, in_buf.buffer.length), true);
509 
510 	/* call the BIOS, prefer the named methods over _DSM if available */
511 	if (nvdimm && cmd == ND_CMD_GET_CONFIG_SIZE && nfit_mem->has_lsr)
512 		out_obj = acpi_label_info(handle);
513 	else if (nvdimm && cmd == ND_CMD_GET_CONFIG_DATA && nfit_mem->has_lsr) {
514 		struct nd_cmd_get_config_data_hdr *p = buf;
515 
516 		out_obj = acpi_label_read(handle, p->in_offset, p->in_length);
517 	} else if (nvdimm && cmd == ND_CMD_SET_CONFIG_DATA
518 			&& nfit_mem->has_lsw) {
519 		struct nd_cmd_set_config_hdr *p = buf;
520 
521 		out_obj = acpi_label_write(handle, p->in_offset, p->in_length,
522 				p->in_buf);
523 	} else {
524 		u8 revid;
525 
526 		if (nvdimm)
527 			revid = nfit_dsm_revid(nfit_mem->family, func);
528 		else
529 			revid = 1;
530 		out_obj = acpi_evaluate_dsm(handle, guid, revid, func, &in_obj);
531 	}
532 
533 	if (!out_obj) {
534 		dev_dbg(dev, "%s _DSM failed cmd: %s\n", dimm_name, cmd_name);
535 		return -EINVAL;
536 	}
537 
538 	if (out_obj->type != ACPI_TYPE_BUFFER) {
539 		dev_dbg(dev, "%s unexpected output object type cmd: %s type: %d\n",
540 				dimm_name, cmd_name, out_obj->type);
541 		rc = -EINVAL;
542 		goto out;
543 	}
544 
545 	dev_dbg(dev, "%s cmd: %s output length: %d\n", dimm_name,
546 			cmd_name, out_obj->buffer.length);
547 	print_hex_dump_debug(cmd_name, DUMP_PREFIX_OFFSET, 4, 4,
548 			out_obj->buffer.pointer,
549 			min_t(u32, 128, out_obj->buffer.length), true);
550 
551 	if (call_pkg) {
552 		call_pkg->nd_fw_size = out_obj->buffer.length;
553 		memcpy(call_pkg->nd_payload + call_pkg->nd_size_in,
554 			out_obj->buffer.pointer,
555 			min(call_pkg->nd_fw_size, call_pkg->nd_size_out));
556 
557 		ACPI_FREE(out_obj);
558 		/*
559 		 * Need to support FW function w/o known size in advance.
560 		 * Caller can determine required size based upon nd_fw_size.
561 		 * If we return an error (like elsewhere) then caller wouldn't
562 		 * be able to rely upon data returned to make calculation.
563 		 */
564 		if (cmd_rc)
565 			*cmd_rc = 0;
566 		return 0;
567 	}
568 
569 	for (i = 0, offset = 0; i < desc->out_num; i++) {
570 		u32 out_size = nd_cmd_out_size(nvdimm, cmd, desc, i, buf,
571 				(u32 *) out_obj->buffer.pointer,
572 				out_obj->buffer.length - offset);
573 
574 		if (offset + out_size > out_obj->buffer.length) {
575 			dev_dbg(dev, "%s output object underflow cmd: %s field: %d\n",
576 					dimm_name, cmd_name, i);
577 			break;
578 		}
579 
580 		if (in_buf.buffer.length + offset + out_size > buf_len) {
581 			dev_dbg(dev, "%s output overrun cmd: %s field: %d\n",
582 					dimm_name, cmd_name, i);
583 			rc = -ENXIO;
584 			goto out;
585 		}
586 		memcpy(buf + in_buf.buffer.length + offset,
587 				out_obj->buffer.pointer + offset, out_size);
588 		offset += out_size;
589 	}
590 
591 	/*
592 	 * Set fw_status for all the commands with a known format to be
593 	 * later interpreted by xlat_status().
594 	 */
595 	if (i >= 1 && ((!nvdimm && cmd >= ND_CMD_ARS_CAP
596 					&& cmd <= ND_CMD_CLEAR_ERROR)
597 				|| (nvdimm && cmd >= ND_CMD_SMART
598 					&& cmd <= ND_CMD_VENDOR)))
599 		fw_status = *(u32 *) out_obj->buffer.pointer;
600 
601 	if (offset + in_buf.buffer.length < buf_len) {
602 		if (i >= 1) {
603 			/*
604 			 * status valid, return the number of bytes left
605 			 * unfilled in the output buffer
606 			 */
607 			rc = buf_len - offset - in_buf.buffer.length;
608 			if (cmd_rc)
609 				*cmd_rc = xlat_status(nvdimm, buf, cmd,
610 						fw_status);
611 		} else {
612 			dev_err(dev, "%s:%s underrun cmd: %s buf_len: %d out_len: %d\n",
613 					__func__, dimm_name, cmd_name, buf_len,
614 					offset);
615 			rc = -ENXIO;
616 		}
617 	} else {
618 		rc = 0;
619 		if (cmd_rc)
620 			*cmd_rc = xlat_status(nvdimm, buf, cmd, fw_status);
621 	}
622 
623  out:
624 	ACPI_FREE(out_obj);
625 
626 	return rc;
627 }
628 EXPORT_SYMBOL_GPL(acpi_nfit_ctl);
629 
spa_type_name(u16 type)630 static const char *spa_type_name(u16 type)
631 {
632 	static const char *to_name[] = {
633 		[NFIT_SPA_VOLATILE] = "volatile",
634 		[NFIT_SPA_PM] = "pmem",
635 		[NFIT_SPA_DCR] = "dimm-control-region",
636 		[NFIT_SPA_BDW] = "block-data-window",
637 		[NFIT_SPA_VDISK] = "volatile-disk",
638 		[NFIT_SPA_VCD] = "volatile-cd",
639 		[NFIT_SPA_PDISK] = "persistent-disk",
640 		[NFIT_SPA_PCD] = "persistent-cd",
641 
642 	};
643 
644 	if (type > NFIT_SPA_PCD)
645 		return "unknown";
646 
647 	return to_name[type];
648 }
649 
nfit_spa_type(struct acpi_nfit_system_address * spa)650 int nfit_spa_type(struct acpi_nfit_system_address *spa)
651 {
652 	int i;
653 
654 	for (i = 0; i < NFIT_UUID_MAX; i++)
655 		if (guid_equal(to_nfit_uuid(i), (guid_t *)&spa->range_guid))
656 			return i;
657 	return -1;
658 }
659 
add_spa(struct acpi_nfit_desc * acpi_desc,struct nfit_table_prev * prev,struct acpi_nfit_system_address * spa)660 static bool add_spa(struct acpi_nfit_desc *acpi_desc,
661 		struct nfit_table_prev *prev,
662 		struct acpi_nfit_system_address *spa)
663 {
664 	struct device *dev = acpi_desc->dev;
665 	struct nfit_spa *nfit_spa;
666 
667 	if (spa->header.length != sizeof(*spa))
668 		return false;
669 
670 	list_for_each_entry(nfit_spa, &prev->spas, list) {
671 		if (memcmp(nfit_spa->spa, spa, sizeof(*spa)) == 0) {
672 			list_move_tail(&nfit_spa->list, &acpi_desc->spas);
673 			return true;
674 		}
675 	}
676 
677 	nfit_spa = devm_kzalloc(dev, sizeof(*nfit_spa) + sizeof(*spa),
678 			GFP_KERNEL);
679 	if (!nfit_spa)
680 		return false;
681 	INIT_LIST_HEAD(&nfit_spa->list);
682 	memcpy(nfit_spa->spa, spa, sizeof(*spa));
683 	list_add_tail(&nfit_spa->list, &acpi_desc->spas);
684 	dev_dbg(dev, "spa index: %d type: %s\n",
685 			spa->range_index,
686 			spa_type_name(nfit_spa_type(spa)));
687 	return true;
688 }
689 
add_memdev(struct acpi_nfit_desc * acpi_desc,struct nfit_table_prev * prev,struct acpi_nfit_memory_map * memdev)690 static bool add_memdev(struct acpi_nfit_desc *acpi_desc,
691 		struct nfit_table_prev *prev,
692 		struct acpi_nfit_memory_map *memdev)
693 {
694 	struct device *dev = acpi_desc->dev;
695 	struct nfit_memdev *nfit_memdev;
696 
697 	if (memdev->header.length != sizeof(*memdev))
698 		return false;
699 
700 	list_for_each_entry(nfit_memdev, &prev->memdevs, list)
701 		if (memcmp(nfit_memdev->memdev, memdev, sizeof(*memdev)) == 0) {
702 			list_move_tail(&nfit_memdev->list, &acpi_desc->memdevs);
703 			return true;
704 		}
705 
706 	nfit_memdev = devm_kzalloc(dev, sizeof(*nfit_memdev) + sizeof(*memdev),
707 			GFP_KERNEL);
708 	if (!nfit_memdev)
709 		return false;
710 	INIT_LIST_HEAD(&nfit_memdev->list);
711 	memcpy(nfit_memdev->memdev, memdev, sizeof(*memdev));
712 	list_add_tail(&nfit_memdev->list, &acpi_desc->memdevs);
713 	dev_dbg(dev, "memdev handle: %#x spa: %d dcr: %d flags: %#x\n",
714 			memdev->device_handle, memdev->range_index,
715 			memdev->region_index, memdev->flags);
716 	return true;
717 }
718 
nfit_get_smbios_id(u32 device_handle,u16 * flags)719 int nfit_get_smbios_id(u32 device_handle, u16 *flags)
720 {
721 	struct acpi_nfit_memory_map *memdev;
722 	struct acpi_nfit_desc *acpi_desc;
723 	struct nfit_mem *nfit_mem;
724 	u16 physical_id;
725 
726 	mutex_lock(&acpi_desc_lock);
727 	list_for_each_entry(acpi_desc, &acpi_descs, list) {
728 		mutex_lock(&acpi_desc->init_mutex);
729 		list_for_each_entry(nfit_mem, &acpi_desc->dimms, list) {
730 			memdev = __to_nfit_memdev(nfit_mem);
731 			if (memdev->device_handle == device_handle) {
732 				*flags = memdev->flags;
733 				physical_id = memdev->physical_id;
734 				mutex_unlock(&acpi_desc->init_mutex);
735 				mutex_unlock(&acpi_desc_lock);
736 				return physical_id;
737 			}
738 		}
739 		mutex_unlock(&acpi_desc->init_mutex);
740 	}
741 	mutex_unlock(&acpi_desc_lock);
742 
743 	return -ENODEV;
744 }
745 EXPORT_SYMBOL_GPL(nfit_get_smbios_id);
746 
747 /*
748  * An implementation may provide a truncated control region if no block windows
749  * are defined.
750  */
sizeof_dcr(struct acpi_nfit_control_region * dcr)751 static size_t sizeof_dcr(struct acpi_nfit_control_region *dcr)
752 {
753 	if (dcr->header.length < offsetof(struct acpi_nfit_control_region,
754 				window_size))
755 		return 0;
756 	if (dcr->windows)
757 		return sizeof(*dcr);
758 	return offsetof(struct acpi_nfit_control_region, window_size);
759 }
760 
add_dcr(struct acpi_nfit_desc * acpi_desc,struct nfit_table_prev * prev,struct acpi_nfit_control_region * dcr)761 static bool add_dcr(struct acpi_nfit_desc *acpi_desc,
762 		struct nfit_table_prev *prev,
763 		struct acpi_nfit_control_region *dcr)
764 {
765 	struct device *dev = acpi_desc->dev;
766 	struct nfit_dcr *nfit_dcr;
767 
768 	if (!sizeof_dcr(dcr))
769 		return false;
770 
771 	list_for_each_entry(nfit_dcr, &prev->dcrs, list)
772 		if (memcmp(nfit_dcr->dcr, dcr, sizeof_dcr(dcr)) == 0) {
773 			list_move_tail(&nfit_dcr->list, &acpi_desc->dcrs);
774 			return true;
775 		}
776 
777 	nfit_dcr = devm_kzalloc(dev, sizeof(*nfit_dcr) + sizeof(*dcr),
778 			GFP_KERNEL);
779 	if (!nfit_dcr)
780 		return false;
781 	INIT_LIST_HEAD(&nfit_dcr->list);
782 	memcpy(nfit_dcr->dcr, dcr, sizeof_dcr(dcr));
783 	list_add_tail(&nfit_dcr->list, &acpi_desc->dcrs);
784 	dev_dbg(dev, "dcr index: %d windows: %d\n",
785 			dcr->region_index, dcr->windows);
786 	return true;
787 }
788 
add_bdw(struct acpi_nfit_desc * acpi_desc,struct nfit_table_prev * prev,struct acpi_nfit_data_region * bdw)789 static bool add_bdw(struct acpi_nfit_desc *acpi_desc,
790 		struct nfit_table_prev *prev,
791 		struct acpi_nfit_data_region *bdw)
792 {
793 	struct device *dev = acpi_desc->dev;
794 	struct nfit_bdw *nfit_bdw;
795 
796 	if (bdw->header.length != sizeof(*bdw))
797 		return false;
798 	list_for_each_entry(nfit_bdw, &prev->bdws, list)
799 		if (memcmp(nfit_bdw->bdw, bdw, sizeof(*bdw)) == 0) {
800 			list_move_tail(&nfit_bdw->list, &acpi_desc->bdws);
801 			return true;
802 		}
803 
804 	nfit_bdw = devm_kzalloc(dev, sizeof(*nfit_bdw) + sizeof(*bdw),
805 			GFP_KERNEL);
806 	if (!nfit_bdw)
807 		return false;
808 	INIT_LIST_HEAD(&nfit_bdw->list);
809 	memcpy(nfit_bdw->bdw, bdw, sizeof(*bdw));
810 	list_add_tail(&nfit_bdw->list, &acpi_desc->bdws);
811 	dev_dbg(dev, "bdw dcr: %d windows: %d\n",
812 			bdw->region_index, bdw->windows);
813 	return true;
814 }
815 
sizeof_idt(struct acpi_nfit_interleave * idt)816 static size_t sizeof_idt(struct acpi_nfit_interleave *idt)
817 {
818 	if (idt->header.length < sizeof(*idt))
819 		return 0;
820 	return sizeof(*idt) + sizeof(u32) * (idt->line_count - 1);
821 }
822 
add_idt(struct acpi_nfit_desc * acpi_desc,struct nfit_table_prev * prev,struct acpi_nfit_interleave * idt)823 static bool add_idt(struct acpi_nfit_desc *acpi_desc,
824 		struct nfit_table_prev *prev,
825 		struct acpi_nfit_interleave *idt)
826 {
827 	struct device *dev = acpi_desc->dev;
828 	struct nfit_idt *nfit_idt;
829 
830 	if (!sizeof_idt(idt))
831 		return false;
832 
833 	list_for_each_entry(nfit_idt, &prev->idts, list) {
834 		if (sizeof_idt(nfit_idt->idt) != sizeof_idt(idt))
835 			continue;
836 
837 		if (memcmp(nfit_idt->idt, idt, sizeof_idt(idt)) == 0) {
838 			list_move_tail(&nfit_idt->list, &acpi_desc->idts);
839 			return true;
840 		}
841 	}
842 
843 	nfit_idt = devm_kzalloc(dev, sizeof(*nfit_idt) + sizeof_idt(idt),
844 			GFP_KERNEL);
845 	if (!nfit_idt)
846 		return false;
847 	INIT_LIST_HEAD(&nfit_idt->list);
848 	memcpy(nfit_idt->idt, idt, sizeof_idt(idt));
849 	list_add_tail(&nfit_idt->list, &acpi_desc->idts);
850 	dev_dbg(dev, "idt index: %d num_lines: %d\n",
851 			idt->interleave_index, idt->line_count);
852 	return true;
853 }
854 
sizeof_flush(struct acpi_nfit_flush_address * flush)855 static size_t sizeof_flush(struct acpi_nfit_flush_address *flush)
856 {
857 	if (flush->header.length < sizeof(*flush))
858 		return 0;
859 	return sizeof(*flush) + sizeof(u64) * (flush->hint_count - 1);
860 }
861 
add_flush(struct acpi_nfit_desc * acpi_desc,struct nfit_table_prev * prev,struct acpi_nfit_flush_address * flush)862 static bool add_flush(struct acpi_nfit_desc *acpi_desc,
863 		struct nfit_table_prev *prev,
864 		struct acpi_nfit_flush_address *flush)
865 {
866 	struct device *dev = acpi_desc->dev;
867 	struct nfit_flush *nfit_flush;
868 
869 	if (!sizeof_flush(flush))
870 		return false;
871 
872 	list_for_each_entry(nfit_flush, &prev->flushes, list) {
873 		if (sizeof_flush(nfit_flush->flush) != sizeof_flush(flush))
874 			continue;
875 
876 		if (memcmp(nfit_flush->flush, flush,
877 					sizeof_flush(flush)) == 0) {
878 			list_move_tail(&nfit_flush->list, &acpi_desc->flushes);
879 			return true;
880 		}
881 	}
882 
883 	nfit_flush = devm_kzalloc(dev, sizeof(*nfit_flush)
884 			+ sizeof_flush(flush), GFP_KERNEL);
885 	if (!nfit_flush)
886 		return false;
887 	INIT_LIST_HEAD(&nfit_flush->list);
888 	memcpy(nfit_flush->flush, flush, sizeof_flush(flush));
889 	list_add_tail(&nfit_flush->list, &acpi_desc->flushes);
890 	dev_dbg(dev, "nfit_flush handle: %d hint_count: %d\n",
891 			flush->device_handle, flush->hint_count);
892 	return true;
893 }
894 
add_platform_cap(struct acpi_nfit_desc * acpi_desc,struct acpi_nfit_capabilities * pcap)895 static bool add_platform_cap(struct acpi_nfit_desc *acpi_desc,
896 		struct acpi_nfit_capabilities *pcap)
897 {
898 	struct device *dev = acpi_desc->dev;
899 	u32 mask;
900 
901 	mask = (1 << (pcap->highest_capability + 1)) - 1;
902 	acpi_desc->platform_cap = pcap->capabilities & mask;
903 	dev_dbg(dev, "cap: %#x\n", acpi_desc->platform_cap);
904 	return true;
905 }
906 
add_table(struct acpi_nfit_desc * acpi_desc,struct nfit_table_prev * prev,void * table,const void * end)907 static void *add_table(struct acpi_nfit_desc *acpi_desc,
908 		struct nfit_table_prev *prev, void *table, const void *end)
909 {
910 	struct device *dev = acpi_desc->dev;
911 	struct acpi_nfit_header *hdr;
912 	void *err = ERR_PTR(-ENOMEM);
913 
914 	if (table >= end)
915 		return NULL;
916 
917 	hdr = table;
918 	if (!hdr->length) {
919 		dev_warn(dev, "found a zero length table '%d' parsing nfit\n",
920 			hdr->type);
921 		return NULL;
922 	}
923 
924 	switch (hdr->type) {
925 	case ACPI_NFIT_TYPE_SYSTEM_ADDRESS:
926 		if (!add_spa(acpi_desc, prev, table))
927 			return err;
928 		break;
929 	case ACPI_NFIT_TYPE_MEMORY_MAP:
930 		if (!add_memdev(acpi_desc, prev, table))
931 			return err;
932 		break;
933 	case ACPI_NFIT_TYPE_CONTROL_REGION:
934 		if (!add_dcr(acpi_desc, prev, table))
935 			return err;
936 		break;
937 	case ACPI_NFIT_TYPE_DATA_REGION:
938 		if (!add_bdw(acpi_desc, prev, table))
939 			return err;
940 		break;
941 	case ACPI_NFIT_TYPE_INTERLEAVE:
942 		if (!add_idt(acpi_desc, prev, table))
943 			return err;
944 		break;
945 	case ACPI_NFIT_TYPE_FLUSH_ADDRESS:
946 		if (!add_flush(acpi_desc, prev, table))
947 			return err;
948 		break;
949 	case ACPI_NFIT_TYPE_SMBIOS:
950 		dev_dbg(dev, "smbios\n");
951 		break;
952 	case ACPI_NFIT_TYPE_CAPABILITIES:
953 		if (!add_platform_cap(acpi_desc, table))
954 			return err;
955 		break;
956 	default:
957 		dev_err(dev, "unknown table '%d' parsing nfit\n", hdr->type);
958 		break;
959 	}
960 
961 	return table + hdr->length;
962 }
963 
nfit_mem_find_spa_bdw(struct acpi_nfit_desc * acpi_desc,struct nfit_mem * nfit_mem)964 static void nfit_mem_find_spa_bdw(struct acpi_nfit_desc *acpi_desc,
965 		struct nfit_mem *nfit_mem)
966 {
967 	u32 device_handle = __to_nfit_memdev(nfit_mem)->device_handle;
968 	u16 dcr = nfit_mem->dcr->region_index;
969 	struct nfit_spa *nfit_spa;
970 
971 	list_for_each_entry(nfit_spa, &acpi_desc->spas, list) {
972 		u16 range_index = nfit_spa->spa->range_index;
973 		int type = nfit_spa_type(nfit_spa->spa);
974 		struct nfit_memdev *nfit_memdev;
975 
976 		if (type != NFIT_SPA_BDW)
977 			continue;
978 
979 		list_for_each_entry(nfit_memdev, &acpi_desc->memdevs, list) {
980 			if (nfit_memdev->memdev->range_index != range_index)
981 				continue;
982 			if (nfit_memdev->memdev->device_handle != device_handle)
983 				continue;
984 			if (nfit_memdev->memdev->region_index != dcr)
985 				continue;
986 
987 			nfit_mem->spa_bdw = nfit_spa->spa;
988 			return;
989 		}
990 	}
991 
992 	dev_dbg(acpi_desc->dev, "SPA-BDW not found for SPA-DCR %d\n",
993 			nfit_mem->spa_dcr->range_index);
994 	nfit_mem->bdw = NULL;
995 }
996 
nfit_mem_init_bdw(struct acpi_nfit_desc * acpi_desc,struct nfit_mem * nfit_mem,struct acpi_nfit_system_address * spa)997 static void nfit_mem_init_bdw(struct acpi_nfit_desc *acpi_desc,
998 		struct nfit_mem *nfit_mem, struct acpi_nfit_system_address *spa)
999 {
1000 	u16 dcr = __to_nfit_memdev(nfit_mem)->region_index;
1001 	struct nfit_memdev *nfit_memdev;
1002 	struct nfit_bdw *nfit_bdw;
1003 	struct nfit_idt *nfit_idt;
1004 	u16 idt_idx, range_index;
1005 
1006 	list_for_each_entry(nfit_bdw, &acpi_desc->bdws, list) {
1007 		if (nfit_bdw->bdw->region_index != dcr)
1008 			continue;
1009 		nfit_mem->bdw = nfit_bdw->bdw;
1010 		break;
1011 	}
1012 
1013 	if (!nfit_mem->bdw)
1014 		return;
1015 
1016 	nfit_mem_find_spa_bdw(acpi_desc, nfit_mem);
1017 
1018 	if (!nfit_mem->spa_bdw)
1019 		return;
1020 
1021 	range_index = nfit_mem->spa_bdw->range_index;
1022 	list_for_each_entry(nfit_memdev, &acpi_desc->memdevs, list) {
1023 		if (nfit_memdev->memdev->range_index != range_index ||
1024 				nfit_memdev->memdev->region_index != dcr)
1025 			continue;
1026 		nfit_mem->memdev_bdw = nfit_memdev->memdev;
1027 		idt_idx = nfit_memdev->memdev->interleave_index;
1028 		list_for_each_entry(nfit_idt, &acpi_desc->idts, list) {
1029 			if (nfit_idt->idt->interleave_index != idt_idx)
1030 				continue;
1031 			nfit_mem->idt_bdw = nfit_idt->idt;
1032 			break;
1033 		}
1034 		break;
1035 	}
1036 }
1037 
__nfit_mem_init(struct acpi_nfit_desc * acpi_desc,struct acpi_nfit_system_address * spa)1038 static int __nfit_mem_init(struct acpi_nfit_desc *acpi_desc,
1039 		struct acpi_nfit_system_address *spa)
1040 {
1041 	struct nfit_mem *nfit_mem, *found;
1042 	struct nfit_memdev *nfit_memdev;
1043 	int type = spa ? nfit_spa_type(spa) : 0;
1044 
1045 	switch (type) {
1046 	case NFIT_SPA_DCR:
1047 	case NFIT_SPA_PM:
1048 		break;
1049 	default:
1050 		if (spa)
1051 			return 0;
1052 	}
1053 
1054 	/*
1055 	 * This loop runs in two modes, when a dimm is mapped the loop
1056 	 * adds memdev associations to an existing dimm, or creates a
1057 	 * dimm. In the unmapped dimm case this loop sweeps for memdev
1058 	 * instances with an invalid / zero range_index and adds those
1059 	 * dimms without spa associations.
1060 	 */
1061 	list_for_each_entry(nfit_memdev, &acpi_desc->memdevs, list) {
1062 		struct nfit_flush *nfit_flush;
1063 		struct nfit_dcr *nfit_dcr;
1064 		u32 device_handle;
1065 		u16 dcr;
1066 
1067 		if (spa && nfit_memdev->memdev->range_index != spa->range_index)
1068 			continue;
1069 		if (!spa && nfit_memdev->memdev->range_index)
1070 			continue;
1071 		found = NULL;
1072 		dcr = nfit_memdev->memdev->region_index;
1073 		device_handle = nfit_memdev->memdev->device_handle;
1074 		list_for_each_entry(nfit_mem, &acpi_desc->dimms, list)
1075 			if (__to_nfit_memdev(nfit_mem)->device_handle
1076 					== device_handle) {
1077 				found = nfit_mem;
1078 				break;
1079 			}
1080 
1081 		if (found)
1082 			nfit_mem = found;
1083 		else {
1084 			nfit_mem = devm_kzalloc(acpi_desc->dev,
1085 					sizeof(*nfit_mem), GFP_KERNEL);
1086 			if (!nfit_mem)
1087 				return -ENOMEM;
1088 			INIT_LIST_HEAD(&nfit_mem->list);
1089 			nfit_mem->acpi_desc = acpi_desc;
1090 			list_add(&nfit_mem->list, &acpi_desc->dimms);
1091 		}
1092 
1093 		list_for_each_entry(nfit_dcr, &acpi_desc->dcrs, list) {
1094 			if (nfit_dcr->dcr->region_index != dcr)
1095 				continue;
1096 			/*
1097 			 * Record the control region for the dimm.  For
1098 			 * the ACPI 6.1 case, where there are separate
1099 			 * control regions for the pmem vs blk
1100 			 * interfaces, be sure to record the extended
1101 			 * blk details.
1102 			 */
1103 			if (!nfit_mem->dcr)
1104 				nfit_mem->dcr = nfit_dcr->dcr;
1105 			else if (nfit_mem->dcr->windows == 0
1106 					&& nfit_dcr->dcr->windows)
1107 				nfit_mem->dcr = nfit_dcr->dcr;
1108 			break;
1109 		}
1110 
1111 		list_for_each_entry(nfit_flush, &acpi_desc->flushes, list) {
1112 			struct acpi_nfit_flush_address *flush;
1113 			u16 i;
1114 
1115 			if (nfit_flush->flush->device_handle != device_handle)
1116 				continue;
1117 			nfit_mem->nfit_flush = nfit_flush;
1118 			flush = nfit_flush->flush;
1119 			nfit_mem->flush_wpq = devm_kcalloc(acpi_desc->dev,
1120 					flush->hint_count,
1121 					sizeof(struct resource),
1122 					GFP_KERNEL);
1123 			if (!nfit_mem->flush_wpq)
1124 				return -ENOMEM;
1125 			for (i = 0; i < flush->hint_count; i++) {
1126 				struct resource *res = &nfit_mem->flush_wpq[i];
1127 
1128 				res->start = flush->hint_address[i];
1129 				res->end = res->start + 8 - 1;
1130 			}
1131 			break;
1132 		}
1133 
1134 		if (dcr && !nfit_mem->dcr) {
1135 			dev_err(acpi_desc->dev, "SPA %d missing DCR %d\n",
1136 					spa->range_index, dcr);
1137 			return -ENODEV;
1138 		}
1139 
1140 		if (type == NFIT_SPA_DCR) {
1141 			struct nfit_idt *nfit_idt;
1142 			u16 idt_idx;
1143 
1144 			/* multiple dimms may share a SPA when interleaved */
1145 			nfit_mem->spa_dcr = spa;
1146 			nfit_mem->memdev_dcr = nfit_memdev->memdev;
1147 			idt_idx = nfit_memdev->memdev->interleave_index;
1148 			list_for_each_entry(nfit_idt, &acpi_desc->idts, list) {
1149 				if (nfit_idt->idt->interleave_index != idt_idx)
1150 					continue;
1151 				nfit_mem->idt_dcr = nfit_idt->idt;
1152 				break;
1153 			}
1154 			nfit_mem_init_bdw(acpi_desc, nfit_mem, spa);
1155 		} else if (type == NFIT_SPA_PM) {
1156 			/*
1157 			 * A single dimm may belong to multiple SPA-PM
1158 			 * ranges, record at least one in addition to
1159 			 * any SPA-DCR range.
1160 			 */
1161 			nfit_mem->memdev_pmem = nfit_memdev->memdev;
1162 		} else
1163 			nfit_mem->memdev_dcr = nfit_memdev->memdev;
1164 	}
1165 
1166 	return 0;
1167 }
1168 
nfit_mem_cmp(void * priv,struct list_head * _a,struct list_head * _b)1169 static int nfit_mem_cmp(void *priv, struct list_head *_a, struct list_head *_b)
1170 {
1171 	struct nfit_mem *a = container_of(_a, typeof(*a), list);
1172 	struct nfit_mem *b = container_of(_b, typeof(*b), list);
1173 	u32 handleA, handleB;
1174 
1175 	handleA = __to_nfit_memdev(a)->device_handle;
1176 	handleB = __to_nfit_memdev(b)->device_handle;
1177 	if (handleA < handleB)
1178 		return -1;
1179 	else if (handleA > handleB)
1180 		return 1;
1181 	return 0;
1182 }
1183 
nfit_mem_init(struct acpi_nfit_desc * acpi_desc)1184 static int nfit_mem_init(struct acpi_nfit_desc *acpi_desc)
1185 {
1186 	struct nfit_spa *nfit_spa;
1187 	int rc;
1188 
1189 
1190 	/*
1191 	 * For each SPA-DCR or SPA-PMEM address range find its
1192 	 * corresponding MEMDEV(s).  From each MEMDEV find the
1193 	 * corresponding DCR.  Then, if we're operating on a SPA-DCR,
1194 	 * try to find a SPA-BDW and a corresponding BDW that references
1195 	 * the DCR.  Throw it all into an nfit_mem object.  Note, that
1196 	 * BDWs are optional.
1197 	 */
1198 	list_for_each_entry(nfit_spa, &acpi_desc->spas, list) {
1199 		rc = __nfit_mem_init(acpi_desc, nfit_spa->spa);
1200 		if (rc)
1201 			return rc;
1202 	}
1203 
1204 	/*
1205 	 * If a DIMM has failed to be mapped into SPA there will be no
1206 	 * SPA entries above. Find and register all the unmapped DIMMs
1207 	 * for reporting and recovery purposes.
1208 	 */
1209 	rc = __nfit_mem_init(acpi_desc, NULL);
1210 	if (rc)
1211 		return rc;
1212 
1213 	list_sort(NULL, &acpi_desc->dimms, nfit_mem_cmp);
1214 
1215 	return 0;
1216 }
1217 
bus_dsm_mask_show(struct device * dev,struct device_attribute * attr,char * buf)1218 static ssize_t bus_dsm_mask_show(struct device *dev,
1219 		struct device_attribute *attr, char *buf)
1220 {
1221 	struct nvdimm_bus *nvdimm_bus = to_nvdimm_bus(dev);
1222 	struct nvdimm_bus_descriptor *nd_desc = to_nd_desc(nvdimm_bus);
1223 
1224 	return sprintf(buf, "%#lx\n", nd_desc->bus_dsm_mask);
1225 }
1226 static struct device_attribute dev_attr_bus_dsm_mask =
1227 		__ATTR(dsm_mask, 0444, bus_dsm_mask_show, NULL);
1228 
revision_show(struct device * dev,struct device_attribute * attr,char * buf)1229 static ssize_t revision_show(struct device *dev,
1230 		struct device_attribute *attr, char *buf)
1231 {
1232 	struct nvdimm_bus *nvdimm_bus = to_nvdimm_bus(dev);
1233 	struct nvdimm_bus_descriptor *nd_desc = to_nd_desc(nvdimm_bus);
1234 	struct acpi_nfit_desc *acpi_desc = to_acpi_desc(nd_desc);
1235 
1236 	return sprintf(buf, "%d\n", acpi_desc->acpi_header.revision);
1237 }
1238 static DEVICE_ATTR_RO(revision);
1239 
hw_error_scrub_show(struct device * dev,struct device_attribute * attr,char * buf)1240 static ssize_t hw_error_scrub_show(struct device *dev,
1241 		struct device_attribute *attr, char *buf)
1242 {
1243 	struct nvdimm_bus *nvdimm_bus = to_nvdimm_bus(dev);
1244 	struct nvdimm_bus_descriptor *nd_desc = to_nd_desc(nvdimm_bus);
1245 	struct acpi_nfit_desc *acpi_desc = to_acpi_desc(nd_desc);
1246 
1247 	return sprintf(buf, "%d\n", acpi_desc->scrub_mode);
1248 }
1249 
1250 /*
1251  * The 'hw_error_scrub' attribute can have the following values written to it:
1252  * '0': Switch to the default mode where an exception will only insert
1253  *      the address of the memory error into the poison and badblocks lists.
1254  * '1': Enable a full scrub to happen if an exception for a memory error is
1255  *      received.
1256  */
hw_error_scrub_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t size)1257 static ssize_t hw_error_scrub_store(struct device *dev,
1258 		struct device_attribute *attr, const char *buf, size_t size)
1259 {
1260 	struct nvdimm_bus_descriptor *nd_desc;
1261 	ssize_t rc;
1262 	long val;
1263 
1264 	rc = kstrtol(buf, 0, &val);
1265 	if (rc)
1266 		return rc;
1267 
1268 	device_lock(dev);
1269 	nd_desc = dev_get_drvdata(dev);
1270 	if (nd_desc) {
1271 		struct acpi_nfit_desc *acpi_desc = to_acpi_desc(nd_desc);
1272 
1273 		switch (val) {
1274 		case HW_ERROR_SCRUB_ON:
1275 			acpi_desc->scrub_mode = HW_ERROR_SCRUB_ON;
1276 			break;
1277 		case HW_ERROR_SCRUB_OFF:
1278 			acpi_desc->scrub_mode = HW_ERROR_SCRUB_OFF;
1279 			break;
1280 		default:
1281 			rc = -EINVAL;
1282 			break;
1283 		}
1284 	}
1285 	device_unlock(dev);
1286 	if (rc)
1287 		return rc;
1288 	return size;
1289 }
1290 static DEVICE_ATTR_RW(hw_error_scrub);
1291 
1292 /*
1293  * This shows the number of full Address Range Scrubs that have been
1294  * completed since driver load time. Userspace can wait on this using
1295  * select/poll etc. A '+' at the end indicates an ARS is in progress
1296  */
scrub_show(struct device * dev,struct device_attribute * attr,char * buf)1297 static ssize_t scrub_show(struct device *dev,
1298 		struct device_attribute *attr, char *buf)
1299 {
1300 	struct nvdimm_bus_descriptor *nd_desc;
1301 	struct acpi_nfit_desc *acpi_desc;
1302 	ssize_t rc = -ENXIO;
1303 	bool busy;
1304 
1305 	device_lock(dev);
1306 	nd_desc = dev_get_drvdata(dev);
1307 	if (!nd_desc) {
1308 		device_unlock(dev);
1309 		return rc;
1310 	}
1311 	acpi_desc = to_acpi_desc(nd_desc);
1312 
1313 	mutex_lock(&acpi_desc->init_mutex);
1314 	busy = test_bit(ARS_BUSY, &acpi_desc->scrub_flags)
1315 		&& !test_bit(ARS_CANCEL, &acpi_desc->scrub_flags);
1316 	rc = sprintf(buf, "%d%s", acpi_desc->scrub_count, busy ? "+\n" : "\n");
1317 	/* Allow an admin to poll the busy state at a higher rate */
1318 	if (busy && capable(CAP_SYS_RAWIO) && !test_and_set_bit(ARS_POLL,
1319 				&acpi_desc->scrub_flags)) {
1320 		acpi_desc->scrub_tmo = 1;
1321 		mod_delayed_work(nfit_wq, &acpi_desc->dwork, HZ);
1322 	}
1323 
1324 	mutex_unlock(&acpi_desc->init_mutex);
1325 	device_unlock(dev);
1326 	return rc;
1327 }
1328 
scrub_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t size)1329 static ssize_t scrub_store(struct device *dev,
1330 		struct device_attribute *attr, const char *buf, size_t size)
1331 {
1332 	struct nvdimm_bus_descriptor *nd_desc;
1333 	ssize_t rc;
1334 	long val;
1335 
1336 	rc = kstrtol(buf, 0, &val);
1337 	if (rc)
1338 		return rc;
1339 	if (val != 1)
1340 		return -EINVAL;
1341 
1342 	device_lock(dev);
1343 	nd_desc = dev_get_drvdata(dev);
1344 	if (nd_desc) {
1345 		struct acpi_nfit_desc *acpi_desc = to_acpi_desc(nd_desc);
1346 
1347 		rc = acpi_nfit_ars_rescan(acpi_desc, ARS_REQ_LONG);
1348 	}
1349 	device_unlock(dev);
1350 	if (rc)
1351 		return rc;
1352 	return size;
1353 }
1354 static DEVICE_ATTR_RW(scrub);
1355 
ars_supported(struct nvdimm_bus * nvdimm_bus)1356 static bool ars_supported(struct nvdimm_bus *nvdimm_bus)
1357 {
1358 	struct nvdimm_bus_descriptor *nd_desc = to_nd_desc(nvdimm_bus);
1359 	const unsigned long mask = 1 << ND_CMD_ARS_CAP | 1 << ND_CMD_ARS_START
1360 		| 1 << ND_CMD_ARS_STATUS;
1361 
1362 	return (nd_desc->cmd_mask & mask) == mask;
1363 }
1364 
nfit_visible(struct kobject * kobj,struct attribute * a,int n)1365 static umode_t nfit_visible(struct kobject *kobj, struct attribute *a, int n)
1366 {
1367 	struct device *dev = container_of(kobj, struct device, kobj);
1368 	struct nvdimm_bus *nvdimm_bus = to_nvdimm_bus(dev);
1369 
1370 	if (a == &dev_attr_scrub.attr && !ars_supported(nvdimm_bus))
1371 		return 0;
1372 	return a->mode;
1373 }
1374 
1375 static struct attribute *acpi_nfit_attributes[] = {
1376 	&dev_attr_revision.attr,
1377 	&dev_attr_scrub.attr,
1378 	&dev_attr_hw_error_scrub.attr,
1379 	&dev_attr_bus_dsm_mask.attr,
1380 	NULL,
1381 };
1382 
1383 static const struct attribute_group acpi_nfit_attribute_group = {
1384 	.name = "nfit",
1385 	.attrs = acpi_nfit_attributes,
1386 	.is_visible = nfit_visible,
1387 };
1388 
1389 static const struct attribute_group *acpi_nfit_attribute_groups[] = {
1390 	&nvdimm_bus_attribute_group,
1391 	&acpi_nfit_attribute_group,
1392 	NULL,
1393 };
1394 
to_nfit_memdev(struct device * dev)1395 static struct acpi_nfit_memory_map *to_nfit_memdev(struct device *dev)
1396 {
1397 	struct nvdimm *nvdimm = to_nvdimm(dev);
1398 	struct nfit_mem *nfit_mem = nvdimm_provider_data(nvdimm);
1399 
1400 	return __to_nfit_memdev(nfit_mem);
1401 }
1402 
to_nfit_dcr(struct device * dev)1403 static struct acpi_nfit_control_region *to_nfit_dcr(struct device *dev)
1404 {
1405 	struct nvdimm *nvdimm = to_nvdimm(dev);
1406 	struct nfit_mem *nfit_mem = nvdimm_provider_data(nvdimm);
1407 
1408 	return nfit_mem->dcr;
1409 }
1410 
handle_show(struct device * dev,struct device_attribute * attr,char * buf)1411 static ssize_t handle_show(struct device *dev,
1412 		struct device_attribute *attr, char *buf)
1413 {
1414 	struct acpi_nfit_memory_map *memdev = to_nfit_memdev(dev);
1415 
1416 	return sprintf(buf, "%#x\n", memdev->device_handle);
1417 }
1418 static DEVICE_ATTR_RO(handle);
1419 
phys_id_show(struct device * dev,struct device_attribute * attr,char * buf)1420 static ssize_t phys_id_show(struct device *dev,
1421 		struct device_attribute *attr, char *buf)
1422 {
1423 	struct acpi_nfit_memory_map *memdev = to_nfit_memdev(dev);
1424 
1425 	return sprintf(buf, "%#x\n", memdev->physical_id);
1426 }
1427 static DEVICE_ATTR_RO(phys_id);
1428 
vendor_show(struct device * dev,struct device_attribute * attr,char * buf)1429 static ssize_t vendor_show(struct device *dev,
1430 		struct device_attribute *attr, char *buf)
1431 {
1432 	struct acpi_nfit_control_region *dcr = to_nfit_dcr(dev);
1433 
1434 	return sprintf(buf, "0x%04x\n", be16_to_cpu(dcr->vendor_id));
1435 }
1436 static DEVICE_ATTR_RO(vendor);
1437 
rev_id_show(struct device * dev,struct device_attribute * attr,char * buf)1438 static ssize_t rev_id_show(struct device *dev,
1439 		struct device_attribute *attr, char *buf)
1440 {
1441 	struct acpi_nfit_control_region *dcr = to_nfit_dcr(dev);
1442 
1443 	return sprintf(buf, "0x%04x\n", be16_to_cpu(dcr->revision_id));
1444 }
1445 static DEVICE_ATTR_RO(rev_id);
1446 
device_show(struct device * dev,struct device_attribute * attr,char * buf)1447 static ssize_t device_show(struct device *dev,
1448 		struct device_attribute *attr, char *buf)
1449 {
1450 	struct acpi_nfit_control_region *dcr = to_nfit_dcr(dev);
1451 
1452 	return sprintf(buf, "0x%04x\n", be16_to_cpu(dcr->device_id));
1453 }
1454 static DEVICE_ATTR_RO(device);
1455 
subsystem_vendor_show(struct device * dev,struct device_attribute * attr,char * buf)1456 static ssize_t subsystem_vendor_show(struct device *dev,
1457 		struct device_attribute *attr, char *buf)
1458 {
1459 	struct acpi_nfit_control_region *dcr = to_nfit_dcr(dev);
1460 
1461 	return sprintf(buf, "0x%04x\n", be16_to_cpu(dcr->subsystem_vendor_id));
1462 }
1463 static DEVICE_ATTR_RO(subsystem_vendor);
1464 
subsystem_rev_id_show(struct device * dev,struct device_attribute * attr,char * buf)1465 static ssize_t subsystem_rev_id_show(struct device *dev,
1466 		struct device_attribute *attr, char *buf)
1467 {
1468 	struct acpi_nfit_control_region *dcr = to_nfit_dcr(dev);
1469 
1470 	return sprintf(buf, "0x%04x\n",
1471 			be16_to_cpu(dcr->subsystem_revision_id));
1472 }
1473 static DEVICE_ATTR_RO(subsystem_rev_id);
1474 
subsystem_device_show(struct device * dev,struct device_attribute * attr,char * buf)1475 static ssize_t subsystem_device_show(struct device *dev,
1476 		struct device_attribute *attr, char *buf)
1477 {
1478 	struct acpi_nfit_control_region *dcr = to_nfit_dcr(dev);
1479 
1480 	return sprintf(buf, "0x%04x\n", be16_to_cpu(dcr->subsystem_device_id));
1481 }
1482 static DEVICE_ATTR_RO(subsystem_device);
1483 
num_nvdimm_formats(struct nvdimm * nvdimm)1484 static int num_nvdimm_formats(struct nvdimm *nvdimm)
1485 {
1486 	struct nfit_mem *nfit_mem = nvdimm_provider_data(nvdimm);
1487 	int formats = 0;
1488 
1489 	if (nfit_mem->memdev_pmem)
1490 		formats++;
1491 	if (nfit_mem->memdev_bdw)
1492 		formats++;
1493 	return formats;
1494 }
1495 
format_show(struct device * dev,struct device_attribute * attr,char * buf)1496 static ssize_t format_show(struct device *dev,
1497 		struct device_attribute *attr, char *buf)
1498 {
1499 	struct acpi_nfit_control_region *dcr = to_nfit_dcr(dev);
1500 
1501 	return sprintf(buf, "0x%04x\n", le16_to_cpu(dcr->code));
1502 }
1503 static DEVICE_ATTR_RO(format);
1504 
format1_show(struct device * dev,struct device_attribute * attr,char * buf)1505 static ssize_t format1_show(struct device *dev,
1506 		struct device_attribute *attr, char *buf)
1507 {
1508 	u32 handle;
1509 	ssize_t rc = -ENXIO;
1510 	struct nfit_mem *nfit_mem;
1511 	struct nfit_memdev *nfit_memdev;
1512 	struct acpi_nfit_desc *acpi_desc;
1513 	struct nvdimm *nvdimm = to_nvdimm(dev);
1514 	struct acpi_nfit_control_region *dcr = to_nfit_dcr(dev);
1515 
1516 	nfit_mem = nvdimm_provider_data(nvdimm);
1517 	acpi_desc = nfit_mem->acpi_desc;
1518 	handle = to_nfit_memdev(dev)->device_handle;
1519 
1520 	/* assumes DIMMs have at most 2 published interface codes */
1521 	mutex_lock(&acpi_desc->init_mutex);
1522 	list_for_each_entry(nfit_memdev, &acpi_desc->memdevs, list) {
1523 		struct acpi_nfit_memory_map *memdev = nfit_memdev->memdev;
1524 		struct nfit_dcr *nfit_dcr;
1525 
1526 		if (memdev->device_handle != handle)
1527 			continue;
1528 
1529 		list_for_each_entry(nfit_dcr, &acpi_desc->dcrs, list) {
1530 			if (nfit_dcr->dcr->region_index != memdev->region_index)
1531 				continue;
1532 			if (nfit_dcr->dcr->code == dcr->code)
1533 				continue;
1534 			rc = sprintf(buf, "0x%04x\n",
1535 					le16_to_cpu(nfit_dcr->dcr->code));
1536 			break;
1537 		}
1538 		if (rc != ENXIO)
1539 			break;
1540 	}
1541 	mutex_unlock(&acpi_desc->init_mutex);
1542 	return rc;
1543 }
1544 static DEVICE_ATTR_RO(format1);
1545 
formats_show(struct device * dev,struct device_attribute * attr,char * buf)1546 static ssize_t formats_show(struct device *dev,
1547 		struct device_attribute *attr, char *buf)
1548 {
1549 	struct nvdimm *nvdimm = to_nvdimm(dev);
1550 
1551 	return sprintf(buf, "%d\n", num_nvdimm_formats(nvdimm));
1552 }
1553 static DEVICE_ATTR_RO(formats);
1554 
serial_show(struct device * dev,struct device_attribute * attr,char * buf)1555 static ssize_t serial_show(struct device *dev,
1556 		struct device_attribute *attr, char *buf)
1557 {
1558 	struct acpi_nfit_control_region *dcr = to_nfit_dcr(dev);
1559 
1560 	return sprintf(buf, "0x%08x\n", be32_to_cpu(dcr->serial_number));
1561 }
1562 static DEVICE_ATTR_RO(serial);
1563 
family_show(struct device * dev,struct device_attribute * attr,char * buf)1564 static ssize_t family_show(struct device *dev,
1565 		struct device_attribute *attr, char *buf)
1566 {
1567 	struct nvdimm *nvdimm = to_nvdimm(dev);
1568 	struct nfit_mem *nfit_mem = nvdimm_provider_data(nvdimm);
1569 
1570 	if (nfit_mem->family < 0)
1571 		return -ENXIO;
1572 	return sprintf(buf, "%d\n", nfit_mem->family);
1573 }
1574 static DEVICE_ATTR_RO(family);
1575 
dsm_mask_show(struct device * dev,struct device_attribute * attr,char * buf)1576 static ssize_t dsm_mask_show(struct device *dev,
1577 		struct device_attribute *attr, char *buf)
1578 {
1579 	struct nvdimm *nvdimm = to_nvdimm(dev);
1580 	struct nfit_mem *nfit_mem = nvdimm_provider_data(nvdimm);
1581 
1582 	if (nfit_mem->family < 0)
1583 		return -ENXIO;
1584 	return sprintf(buf, "%#lx\n", nfit_mem->dsm_mask);
1585 }
1586 static DEVICE_ATTR_RO(dsm_mask);
1587 
flags_show(struct device * dev,struct device_attribute * attr,char * buf)1588 static ssize_t flags_show(struct device *dev,
1589 		struct device_attribute *attr, char *buf)
1590 {
1591 	u16 flags = to_nfit_memdev(dev)->flags;
1592 
1593 	return sprintf(buf, "%s%s%s%s%s%s%s\n",
1594 		flags & ACPI_NFIT_MEM_SAVE_FAILED ? "save_fail " : "",
1595 		flags & ACPI_NFIT_MEM_RESTORE_FAILED ? "restore_fail " : "",
1596 		flags & ACPI_NFIT_MEM_FLUSH_FAILED ? "flush_fail " : "",
1597 		flags & ACPI_NFIT_MEM_NOT_ARMED ? "not_armed " : "",
1598 		flags & ACPI_NFIT_MEM_HEALTH_OBSERVED ? "smart_event " : "",
1599 		flags & ACPI_NFIT_MEM_MAP_FAILED ? "map_fail " : "",
1600 		flags & ACPI_NFIT_MEM_HEALTH_ENABLED ? "smart_notify " : "");
1601 }
1602 static DEVICE_ATTR_RO(flags);
1603 
id_show(struct device * dev,struct device_attribute * attr,char * buf)1604 static ssize_t id_show(struct device *dev,
1605 		struct device_attribute *attr, char *buf)
1606 {
1607 	struct acpi_nfit_control_region *dcr = to_nfit_dcr(dev);
1608 
1609 	if (dcr->valid_fields & ACPI_NFIT_CONTROL_MFG_INFO_VALID)
1610 		return sprintf(buf, "%04x-%02x-%04x-%08x\n",
1611 				be16_to_cpu(dcr->vendor_id),
1612 				dcr->manufacturing_location,
1613 				be16_to_cpu(dcr->manufacturing_date),
1614 				be32_to_cpu(dcr->serial_number));
1615 	else
1616 		return sprintf(buf, "%04x-%08x\n",
1617 				be16_to_cpu(dcr->vendor_id),
1618 				be32_to_cpu(dcr->serial_number));
1619 }
1620 static DEVICE_ATTR_RO(id);
1621 
1622 static struct attribute *acpi_nfit_dimm_attributes[] = {
1623 	&dev_attr_handle.attr,
1624 	&dev_attr_phys_id.attr,
1625 	&dev_attr_vendor.attr,
1626 	&dev_attr_device.attr,
1627 	&dev_attr_rev_id.attr,
1628 	&dev_attr_subsystem_vendor.attr,
1629 	&dev_attr_subsystem_device.attr,
1630 	&dev_attr_subsystem_rev_id.attr,
1631 	&dev_attr_format.attr,
1632 	&dev_attr_formats.attr,
1633 	&dev_attr_format1.attr,
1634 	&dev_attr_serial.attr,
1635 	&dev_attr_flags.attr,
1636 	&dev_attr_id.attr,
1637 	&dev_attr_family.attr,
1638 	&dev_attr_dsm_mask.attr,
1639 	NULL,
1640 };
1641 
acpi_nfit_dimm_attr_visible(struct kobject * kobj,struct attribute * a,int n)1642 static umode_t acpi_nfit_dimm_attr_visible(struct kobject *kobj,
1643 		struct attribute *a, int n)
1644 {
1645 	struct device *dev = container_of(kobj, struct device, kobj);
1646 	struct nvdimm *nvdimm = to_nvdimm(dev);
1647 
1648 	if (!to_nfit_dcr(dev)) {
1649 		/* Without a dcr only the memdev attributes can be surfaced */
1650 		if (a == &dev_attr_handle.attr || a == &dev_attr_phys_id.attr
1651 				|| a == &dev_attr_flags.attr
1652 				|| a == &dev_attr_family.attr
1653 				|| a == &dev_attr_dsm_mask.attr)
1654 			return a->mode;
1655 		return 0;
1656 	}
1657 
1658 	if (a == &dev_attr_format1.attr && num_nvdimm_formats(nvdimm) <= 1)
1659 		return 0;
1660 	return a->mode;
1661 }
1662 
1663 static const struct attribute_group acpi_nfit_dimm_attribute_group = {
1664 	.name = "nfit",
1665 	.attrs = acpi_nfit_dimm_attributes,
1666 	.is_visible = acpi_nfit_dimm_attr_visible,
1667 };
1668 
1669 static const struct attribute_group *acpi_nfit_dimm_attribute_groups[] = {
1670 	&nvdimm_attribute_group,
1671 	&nd_device_attribute_group,
1672 	&acpi_nfit_dimm_attribute_group,
1673 	NULL,
1674 };
1675 
acpi_nfit_dimm_by_handle(struct acpi_nfit_desc * acpi_desc,u32 device_handle)1676 static struct nvdimm *acpi_nfit_dimm_by_handle(struct acpi_nfit_desc *acpi_desc,
1677 		u32 device_handle)
1678 {
1679 	struct nfit_mem *nfit_mem;
1680 
1681 	list_for_each_entry(nfit_mem, &acpi_desc->dimms, list)
1682 		if (__to_nfit_memdev(nfit_mem)->device_handle == device_handle)
1683 			return nfit_mem->nvdimm;
1684 
1685 	return NULL;
1686 }
1687 
__acpi_nvdimm_notify(struct device * dev,u32 event)1688 void __acpi_nvdimm_notify(struct device *dev, u32 event)
1689 {
1690 	struct nfit_mem *nfit_mem;
1691 	struct acpi_nfit_desc *acpi_desc;
1692 
1693 	dev_dbg(dev->parent, "%s: event: %d\n", dev_name(dev),
1694 			event);
1695 
1696 	if (event != NFIT_NOTIFY_DIMM_HEALTH) {
1697 		dev_dbg(dev->parent, "%s: unknown event: %d\n", dev_name(dev),
1698 				event);
1699 		return;
1700 	}
1701 
1702 	acpi_desc = dev_get_drvdata(dev->parent);
1703 	if (!acpi_desc)
1704 		return;
1705 
1706 	/*
1707 	 * If we successfully retrieved acpi_desc, then we know nfit_mem data
1708 	 * is still valid.
1709 	 */
1710 	nfit_mem = dev_get_drvdata(dev);
1711 	if (nfit_mem && nfit_mem->flags_attr)
1712 		sysfs_notify_dirent(nfit_mem->flags_attr);
1713 }
1714 EXPORT_SYMBOL_GPL(__acpi_nvdimm_notify);
1715 
acpi_nvdimm_notify(acpi_handle handle,u32 event,void * data)1716 static void acpi_nvdimm_notify(acpi_handle handle, u32 event, void *data)
1717 {
1718 	struct acpi_device *adev = data;
1719 	struct device *dev = &adev->dev;
1720 
1721 	device_lock(dev->parent);
1722 	__acpi_nvdimm_notify(dev, event);
1723 	device_unlock(dev->parent);
1724 }
1725 
acpi_nvdimm_has_method(struct acpi_device * adev,char * method)1726 static bool acpi_nvdimm_has_method(struct acpi_device *adev, char *method)
1727 {
1728 	acpi_handle handle;
1729 	acpi_status status;
1730 
1731 	status = acpi_get_handle(adev->handle, method, &handle);
1732 
1733 	if (ACPI_SUCCESS(status))
1734 		return true;
1735 	return false;
1736 }
1737 
acpi_nfit_add_dimm(struct acpi_nfit_desc * acpi_desc,struct nfit_mem * nfit_mem,u32 device_handle)1738 static int acpi_nfit_add_dimm(struct acpi_nfit_desc *acpi_desc,
1739 		struct nfit_mem *nfit_mem, u32 device_handle)
1740 {
1741 	struct acpi_device *adev, *adev_dimm;
1742 	struct device *dev = acpi_desc->dev;
1743 	unsigned long dsm_mask, label_mask;
1744 	const guid_t *guid;
1745 	int i;
1746 	int family = -1;
1747 
1748 	/* nfit test assumes 1:1 relationship between commands and dsms */
1749 	nfit_mem->dsm_mask = acpi_desc->dimm_cmd_force_en;
1750 	nfit_mem->family = NVDIMM_FAMILY_INTEL;
1751 	adev = to_acpi_dev(acpi_desc);
1752 	if (!adev)
1753 		return 0;
1754 
1755 	adev_dimm = acpi_find_child_device(adev, device_handle, false);
1756 	nfit_mem->adev = adev_dimm;
1757 	if (!adev_dimm) {
1758 		dev_err(dev, "no ACPI.NFIT device with _ADR %#x, disabling...\n",
1759 				device_handle);
1760 		return force_enable_dimms ? 0 : -ENODEV;
1761 	}
1762 
1763 	if (ACPI_FAILURE(acpi_install_notify_handler(adev_dimm->handle,
1764 		ACPI_DEVICE_NOTIFY, acpi_nvdimm_notify, adev_dimm))) {
1765 		dev_err(dev, "%s: notification registration failed\n",
1766 				dev_name(&adev_dimm->dev));
1767 		return -ENXIO;
1768 	}
1769 	/*
1770 	 * Record nfit_mem for the notification path to track back to
1771 	 * the nfit sysfs attributes for this dimm device object.
1772 	 */
1773 	dev_set_drvdata(&adev_dimm->dev, nfit_mem);
1774 
1775 	/*
1776 	 * There are 4 "legacy" NVDIMM command sets
1777 	 * (NVDIMM_FAMILY_{INTEL,MSFT,HPE1,HPE2}) that were created before
1778 	 * an EFI working group was established to constrain this
1779 	 * proliferation. The nfit driver probes for the supported command
1780 	 * set by GUID. Note, if you're a platform developer looking to add
1781 	 * a new command set to this probe, consider using an existing set,
1782 	 * or otherwise seek approval to publish the command set at
1783 	 * http://www.uefi.org/RFIC_LIST.
1784 	 *
1785 	 * Note, that checking for function0 (bit0) tells us if any commands
1786 	 * are reachable through this GUID.
1787 	 */
1788 	for (i = 0; i <= NVDIMM_FAMILY_MAX; i++)
1789 		if (acpi_check_dsm(adev_dimm->handle, to_nfit_uuid(i), 1, 1))
1790 			if (family < 0 || i == default_dsm_family)
1791 				family = i;
1792 
1793 	/* limit the supported commands to those that are publicly documented */
1794 	nfit_mem->family = family;
1795 	if (override_dsm_mask && !disable_vendor_specific)
1796 		dsm_mask = override_dsm_mask;
1797 	else if (nfit_mem->family == NVDIMM_FAMILY_INTEL) {
1798 		dsm_mask = NVDIMM_INTEL_CMDMASK;
1799 		if (disable_vendor_specific)
1800 			dsm_mask &= ~(1 << ND_CMD_VENDOR);
1801 	} else if (nfit_mem->family == NVDIMM_FAMILY_HPE1) {
1802 		dsm_mask = 0x1c3c76;
1803 	} else if (nfit_mem->family == NVDIMM_FAMILY_HPE2) {
1804 		dsm_mask = 0x1fe;
1805 		if (disable_vendor_specific)
1806 			dsm_mask &= ~(1 << 8);
1807 	} else if (nfit_mem->family == NVDIMM_FAMILY_MSFT) {
1808 		dsm_mask = 0xffffffff;
1809 	} else if (nfit_mem->family == NVDIMM_FAMILY_HYPERV) {
1810 		dsm_mask = 0x1f;
1811 	} else {
1812 		dev_dbg(dev, "unknown dimm command family\n");
1813 		nfit_mem->family = -1;
1814 		/* DSMs are optional, continue loading the driver... */
1815 		return 0;
1816 	}
1817 
1818 	/*
1819 	 * Function 0 is the command interrogation function, don't
1820 	 * export it to potential userspace use, and enable it to be
1821 	 * used as an error value in acpi_nfit_ctl().
1822 	 */
1823 	dsm_mask &= ~1UL;
1824 
1825 	guid = to_nfit_uuid(nfit_mem->family);
1826 	for_each_set_bit(i, &dsm_mask, BITS_PER_LONG)
1827 		if (acpi_check_dsm(adev_dimm->handle, guid,
1828 					nfit_dsm_revid(nfit_mem->family, i),
1829 					1ULL << i))
1830 			set_bit(i, &nfit_mem->dsm_mask);
1831 
1832 	/*
1833 	 * Prefer the NVDIMM_FAMILY_INTEL label read commands if present
1834 	 * due to their better semantics handling locked capacity.
1835 	 */
1836 	label_mask = 1 << ND_CMD_GET_CONFIG_SIZE | 1 << ND_CMD_GET_CONFIG_DATA
1837 		| 1 << ND_CMD_SET_CONFIG_DATA;
1838 	if (family == NVDIMM_FAMILY_INTEL
1839 			&& (dsm_mask & label_mask) == label_mask)
1840 		return 0;
1841 
1842 	if (acpi_nvdimm_has_method(adev_dimm, "_LSI")
1843 			&& acpi_nvdimm_has_method(adev_dimm, "_LSR")) {
1844 		dev_dbg(dev, "%s: has _LSR\n", dev_name(&adev_dimm->dev));
1845 		nfit_mem->has_lsr = true;
1846 	}
1847 
1848 	if (nfit_mem->has_lsr && acpi_nvdimm_has_method(adev_dimm, "_LSW")) {
1849 		dev_dbg(dev, "%s: has _LSW\n", dev_name(&adev_dimm->dev));
1850 		nfit_mem->has_lsw = true;
1851 	}
1852 
1853 	return 0;
1854 }
1855 
shutdown_dimm_notify(void * data)1856 static void shutdown_dimm_notify(void *data)
1857 {
1858 	struct acpi_nfit_desc *acpi_desc = data;
1859 	struct nfit_mem *nfit_mem;
1860 
1861 	mutex_lock(&acpi_desc->init_mutex);
1862 	/*
1863 	 * Clear out the nfit_mem->flags_attr and shut down dimm event
1864 	 * notifications.
1865 	 */
1866 	list_for_each_entry(nfit_mem, &acpi_desc->dimms, list) {
1867 		struct acpi_device *adev_dimm = nfit_mem->adev;
1868 
1869 		if (nfit_mem->flags_attr) {
1870 			sysfs_put(nfit_mem->flags_attr);
1871 			nfit_mem->flags_attr = NULL;
1872 		}
1873 		if (adev_dimm) {
1874 			acpi_remove_notify_handler(adev_dimm->handle,
1875 					ACPI_DEVICE_NOTIFY, acpi_nvdimm_notify);
1876 			dev_set_drvdata(&adev_dimm->dev, NULL);
1877 		}
1878 	}
1879 	mutex_unlock(&acpi_desc->init_mutex);
1880 }
1881 
acpi_nfit_register_dimms(struct acpi_nfit_desc * acpi_desc)1882 static int acpi_nfit_register_dimms(struct acpi_nfit_desc *acpi_desc)
1883 {
1884 	struct nfit_mem *nfit_mem;
1885 	int dimm_count = 0, rc;
1886 	struct nvdimm *nvdimm;
1887 
1888 	list_for_each_entry(nfit_mem, &acpi_desc->dimms, list) {
1889 		struct acpi_nfit_flush_address *flush;
1890 		unsigned long flags = 0, cmd_mask;
1891 		struct nfit_memdev *nfit_memdev;
1892 		u32 device_handle;
1893 		u16 mem_flags;
1894 
1895 		device_handle = __to_nfit_memdev(nfit_mem)->device_handle;
1896 		nvdimm = acpi_nfit_dimm_by_handle(acpi_desc, device_handle);
1897 		if (nvdimm) {
1898 			dimm_count++;
1899 			continue;
1900 		}
1901 
1902 		if (nfit_mem->bdw && nfit_mem->memdev_pmem)
1903 			set_bit(NDD_ALIASING, &flags);
1904 
1905 		/* collate flags across all memdevs for this dimm */
1906 		list_for_each_entry(nfit_memdev, &acpi_desc->memdevs, list) {
1907 			struct acpi_nfit_memory_map *dimm_memdev;
1908 
1909 			dimm_memdev = __to_nfit_memdev(nfit_mem);
1910 			if (dimm_memdev->device_handle
1911 					!= nfit_memdev->memdev->device_handle)
1912 				continue;
1913 			dimm_memdev->flags |= nfit_memdev->memdev->flags;
1914 		}
1915 
1916 		mem_flags = __to_nfit_memdev(nfit_mem)->flags;
1917 		if (mem_flags & ACPI_NFIT_MEM_NOT_ARMED)
1918 			set_bit(NDD_UNARMED, &flags);
1919 
1920 		rc = acpi_nfit_add_dimm(acpi_desc, nfit_mem, device_handle);
1921 		if (rc)
1922 			continue;
1923 
1924 		/*
1925 		 * TODO: provide translation for non-NVDIMM_FAMILY_INTEL
1926 		 * devices (i.e. from nd_cmd to acpi_dsm) to standardize the
1927 		 * userspace interface.
1928 		 */
1929 		cmd_mask = 1UL << ND_CMD_CALL;
1930 		if (nfit_mem->family == NVDIMM_FAMILY_INTEL) {
1931 			/*
1932 			 * These commands have a 1:1 correspondence
1933 			 * between DSM payload and libnvdimm ioctl
1934 			 * payload format.
1935 			 */
1936 			cmd_mask |= nfit_mem->dsm_mask & NVDIMM_STANDARD_CMDMASK;
1937 		}
1938 
1939 		if (nfit_mem->has_lsr) {
1940 			set_bit(ND_CMD_GET_CONFIG_SIZE, &cmd_mask);
1941 			set_bit(ND_CMD_GET_CONFIG_DATA, &cmd_mask);
1942 		}
1943 		if (nfit_mem->has_lsw)
1944 			set_bit(ND_CMD_SET_CONFIG_DATA, &cmd_mask);
1945 
1946 		flush = nfit_mem->nfit_flush ? nfit_mem->nfit_flush->flush
1947 			: NULL;
1948 		nvdimm = nvdimm_create(acpi_desc->nvdimm_bus, nfit_mem,
1949 				acpi_nfit_dimm_attribute_groups,
1950 				flags, cmd_mask, flush ? flush->hint_count : 0,
1951 				nfit_mem->flush_wpq);
1952 		if (!nvdimm)
1953 			return -ENOMEM;
1954 
1955 		nfit_mem->nvdimm = nvdimm;
1956 		dimm_count++;
1957 
1958 		if ((mem_flags & ACPI_NFIT_MEM_FAILED_MASK) == 0)
1959 			continue;
1960 
1961 		dev_info(acpi_desc->dev, "%s flags:%s%s%s%s%s\n",
1962 				nvdimm_name(nvdimm),
1963 		  mem_flags & ACPI_NFIT_MEM_SAVE_FAILED ? " save_fail" : "",
1964 		  mem_flags & ACPI_NFIT_MEM_RESTORE_FAILED ? " restore_fail":"",
1965 		  mem_flags & ACPI_NFIT_MEM_FLUSH_FAILED ? " flush_fail" : "",
1966 		  mem_flags & ACPI_NFIT_MEM_NOT_ARMED ? " not_armed" : "",
1967 		  mem_flags & ACPI_NFIT_MEM_MAP_FAILED ? " map_fail" : "");
1968 
1969 	}
1970 
1971 	rc = nvdimm_bus_check_dimm_count(acpi_desc->nvdimm_bus, dimm_count);
1972 	if (rc)
1973 		return rc;
1974 
1975 	/*
1976 	 * Now that dimms are successfully registered, and async registration
1977 	 * is flushed, attempt to enable event notification.
1978 	 */
1979 	list_for_each_entry(nfit_mem, &acpi_desc->dimms, list) {
1980 		struct kernfs_node *nfit_kernfs;
1981 
1982 		nvdimm = nfit_mem->nvdimm;
1983 		if (!nvdimm)
1984 			continue;
1985 
1986 		nfit_kernfs = sysfs_get_dirent(nvdimm_kobj(nvdimm)->sd, "nfit");
1987 		if (nfit_kernfs)
1988 			nfit_mem->flags_attr = sysfs_get_dirent(nfit_kernfs,
1989 					"flags");
1990 		sysfs_put(nfit_kernfs);
1991 		if (!nfit_mem->flags_attr)
1992 			dev_warn(acpi_desc->dev, "%s: notifications disabled\n",
1993 					nvdimm_name(nvdimm));
1994 	}
1995 
1996 	return devm_add_action_or_reset(acpi_desc->dev, shutdown_dimm_notify,
1997 			acpi_desc);
1998 }
1999 
2000 /*
2001  * These constants are private because there are no kernel consumers of
2002  * these commands.
2003  */
2004 enum nfit_aux_cmds {
2005         NFIT_CMD_TRANSLATE_SPA = 5,
2006         NFIT_CMD_ARS_INJECT_SET = 7,
2007         NFIT_CMD_ARS_INJECT_CLEAR = 8,
2008         NFIT_CMD_ARS_INJECT_GET = 9,
2009 };
2010 
acpi_nfit_init_dsms(struct acpi_nfit_desc * acpi_desc)2011 static void acpi_nfit_init_dsms(struct acpi_nfit_desc *acpi_desc)
2012 {
2013 	struct nvdimm_bus_descriptor *nd_desc = &acpi_desc->nd_desc;
2014 	const guid_t *guid = to_nfit_uuid(NFIT_DEV_BUS);
2015 	struct acpi_device *adev;
2016 	unsigned long dsm_mask;
2017 	int i;
2018 
2019 	nd_desc->cmd_mask = acpi_desc->bus_cmd_force_en;
2020 	nd_desc->bus_dsm_mask = acpi_desc->bus_nfit_cmd_force_en;
2021 	adev = to_acpi_dev(acpi_desc);
2022 	if (!adev)
2023 		return;
2024 
2025 	for (i = ND_CMD_ARS_CAP; i <= ND_CMD_CLEAR_ERROR; i++)
2026 		if (acpi_check_dsm(adev->handle, guid, 1, 1ULL << i))
2027 			set_bit(i, &nd_desc->cmd_mask);
2028 	set_bit(ND_CMD_CALL, &nd_desc->cmd_mask);
2029 
2030 	dsm_mask =
2031 		(1 << ND_CMD_ARS_CAP) |
2032 		(1 << ND_CMD_ARS_START) |
2033 		(1 << ND_CMD_ARS_STATUS) |
2034 		(1 << ND_CMD_CLEAR_ERROR) |
2035 		(1 << NFIT_CMD_TRANSLATE_SPA) |
2036 		(1 << NFIT_CMD_ARS_INJECT_SET) |
2037 		(1 << NFIT_CMD_ARS_INJECT_CLEAR) |
2038 		(1 << NFIT_CMD_ARS_INJECT_GET);
2039 	for_each_set_bit(i, &dsm_mask, BITS_PER_LONG)
2040 		if (acpi_check_dsm(adev->handle, guid, 1, 1ULL << i))
2041 			set_bit(i, &nd_desc->bus_dsm_mask);
2042 }
2043 
range_index_show(struct device * dev,struct device_attribute * attr,char * buf)2044 static ssize_t range_index_show(struct device *dev,
2045 		struct device_attribute *attr, char *buf)
2046 {
2047 	struct nd_region *nd_region = to_nd_region(dev);
2048 	struct nfit_spa *nfit_spa = nd_region_provider_data(nd_region);
2049 
2050 	return sprintf(buf, "%d\n", nfit_spa->spa->range_index);
2051 }
2052 static DEVICE_ATTR_RO(range_index);
2053 
2054 static struct attribute *acpi_nfit_region_attributes[] = {
2055 	&dev_attr_range_index.attr,
2056 	NULL,
2057 };
2058 
2059 static const struct attribute_group acpi_nfit_region_attribute_group = {
2060 	.name = "nfit",
2061 	.attrs = acpi_nfit_region_attributes,
2062 };
2063 
2064 static const struct attribute_group *acpi_nfit_region_attribute_groups[] = {
2065 	&nd_region_attribute_group,
2066 	&nd_mapping_attribute_group,
2067 	&nd_device_attribute_group,
2068 	&nd_numa_attribute_group,
2069 	&acpi_nfit_region_attribute_group,
2070 	NULL,
2071 };
2072 
2073 /* enough info to uniquely specify an interleave set */
2074 struct nfit_set_info {
2075 	struct nfit_set_info_map {
2076 		u64 region_offset;
2077 		u32 serial_number;
2078 		u32 pad;
2079 	} mapping[0];
2080 };
2081 
2082 struct nfit_set_info2 {
2083 	struct nfit_set_info_map2 {
2084 		u64 region_offset;
2085 		u32 serial_number;
2086 		u16 vendor_id;
2087 		u16 manufacturing_date;
2088 		u8  manufacturing_location;
2089 		u8  reserved[31];
2090 	} mapping[0];
2091 };
2092 
sizeof_nfit_set_info(int num_mappings)2093 static size_t sizeof_nfit_set_info(int num_mappings)
2094 {
2095 	return sizeof(struct nfit_set_info)
2096 		+ num_mappings * sizeof(struct nfit_set_info_map);
2097 }
2098 
sizeof_nfit_set_info2(int num_mappings)2099 static size_t sizeof_nfit_set_info2(int num_mappings)
2100 {
2101 	return sizeof(struct nfit_set_info2)
2102 		+ num_mappings * sizeof(struct nfit_set_info_map2);
2103 }
2104 
cmp_map_compat(const void * m0,const void * m1)2105 static int cmp_map_compat(const void *m0, const void *m1)
2106 {
2107 	const struct nfit_set_info_map *map0 = m0;
2108 	const struct nfit_set_info_map *map1 = m1;
2109 
2110 	return memcmp(&map0->region_offset, &map1->region_offset,
2111 			sizeof(u64));
2112 }
2113 
cmp_map(const void * m0,const void * m1)2114 static int cmp_map(const void *m0, const void *m1)
2115 {
2116 	const struct nfit_set_info_map *map0 = m0;
2117 	const struct nfit_set_info_map *map1 = m1;
2118 
2119 	if (map0->region_offset < map1->region_offset)
2120 		return -1;
2121 	else if (map0->region_offset > map1->region_offset)
2122 		return 1;
2123 	return 0;
2124 }
2125 
cmp_map2(const void * m0,const void * m1)2126 static int cmp_map2(const void *m0, const void *m1)
2127 {
2128 	const struct nfit_set_info_map2 *map0 = m0;
2129 	const struct nfit_set_info_map2 *map1 = m1;
2130 
2131 	if (map0->region_offset < map1->region_offset)
2132 		return -1;
2133 	else if (map0->region_offset > map1->region_offset)
2134 		return 1;
2135 	return 0;
2136 }
2137 
2138 /* Retrieve the nth entry referencing this spa */
memdev_from_spa(struct acpi_nfit_desc * acpi_desc,u16 range_index,int n)2139 static struct acpi_nfit_memory_map *memdev_from_spa(
2140 		struct acpi_nfit_desc *acpi_desc, u16 range_index, int n)
2141 {
2142 	struct nfit_memdev *nfit_memdev;
2143 
2144 	list_for_each_entry(nfit_memdev, &acpi_desc->memdevs, list)
2145 		if (nfit_memdev->memdev->range_index == range_index)
2146 			if (n-- == 0)
2147 				return nfit_memdev->memdev;
2148 	return NULL;
2149 }
2150 
acpi_nfit_init_interleave_set(struct acpi_nfit_desc * acpi_desc,struct nd_region_desc * ndr_desc,struct acpi_nfit_system_address * spa)2151 static int acpi_nfit_init_interleave_set(struct acpi_nfit_desc *acpi_desc,
2152 		struct nd_region_desc *ndr_desc,
2153 		struct acpi_nfit_system_address *spa)
2154 {
2155 	struct device *dev = acpi_desc->dev;
2156 	struct nd_interleave_set *nd_set;
2157 	u16 nr = ndr_desc->num_mappings;
2158 	struct nfit_set_info2 *info2;
2159 	struct nfit_set_info *info;
2160 	int i;
2161 
2162 	nd_set = devm_kzalloc(dev, sizeof(*nd_set), GFP_KERNEL);
2163 	if (!nd_set)
2164 		return -ENOMEM;
2165 	ndr_desc->nd_set = nd_set;
2166 	guid_copy(&nd_set->type_guid, (guid_t *) spa->range_guid);
2167 
2168 	info = devm_kzalloc(dev, sizeof_nfit_set_info(nr), GFP_KERNEL);
2169 	if (!info)
2170 		return -ENOMEM;
2171 
2172 	info2 = devm_kzalloc(dev, sizeof_nfit_set_info2(nr), GFP_KERNEL);
2173 	if (!info2)
2174 		return -ENOMEM;
2175 
2176 	for (i = 0; i < nr; i++) {
2177 		struct nd_mapping_desc *mapping = &ndr_desc->mapping[i];
2178 		struct nfit_set_info_map *map = &info->mapping[i];
2179 		struct nfit_set_info_map2 *map2 = &info2->mapping[i];
2180 		struct nvdimm *nvdimm = mapping->nvdimm;
2181 		struct nfit_mem *nfit_mem = nvdimm_provider_data(nvdimm);
2182 		struct acpi_nfit_memory_map *memdev = memdev_from_spa(acpi_desc,
2183 				spa->range_index, i);
2184 		struct acpi_nfit_control_region *dcr = nfit_mem->dcr;
2185 
2186 		if (!memdev || !nfit_mem->dcr) {
2187 			dev_err(dev, "%s: failed to find DCR\n", __func__);
2188 			return -ENODEV;
2189 		}
2190 
2191 		map->region_offset = memdev->region_offset;
2192 		map->serial_number = dcr->serial_number;
2193 
2194 		map2->region_offset = memdev->region_offset;
2195 		map2->serial_number = dcr->serial_number;
2196 		map2->vendor_id = dcr->vendor_id;
2197 		map2->manufacturing_date = dcr->manufacturing_date;
2198 		map2->manufacturing_location = dcr->manufacturing_location;
2199 	}
2200 
2201 	/* v1.1 namespaces */
2202 	sort(&info->mapping[0], nr, sizeof(struct nfit_set_info_map),
2203 			cmp_map, NULL);
2204 	nd_set->cookie1 = nd_fletcher64(info, sizeof_nfit_set_info(nr), 0);
2205 
2206 	/* v1.2 namespaces */
2207 	sort(&info2->mapping[0], nr, sizeof(struct nfit_set_info_map2),
2208 			cmp_map2, NULL);
2209 	nd_set->cookie2 = nd_fletcher64(info2, sizeof_nfit_set_info2(nr), 0);
2210 
2211 	/* support v1.1 namespaces created with the wrong sort order */
2212 	sort(&info->mapping[0], nr, sizeof(struct nfit_set_info_map),
2213 			cmp_map_compat, NULL);
2214 	nd_set->altcookie = nd_fletcher64(info, sizeof_nfit_set_info(nr), 0);
2215 
2216 	/* record the result of the sort for the mapping position */
2217 	for (i = 0; i < nr; i++) {
2218 		struct nfit_set_info_map2 *map2 = &info2->mapping[i];
2219 		int j;
2220 
2221 		for (j = 0; j < nr; j++) {
2222 			struct nd_mapping_desc *mapping = &ndr_desc->mapping[j];
2223 			struct nvdimm *nvdimm = mapping->nvdimm;
2224 			struct nfit_mem *nfit_mem = nvdimm_provider_data(nvdimm);
2225 			struct acpi_nfit_control_region *dcr = nfit_mem->dcr;
2226 
2227 			if (map2->serial_number == dcr->serial_number &&
2228 			    map2->vendor_id == dcr->vendor_id &&
2229 			    map2->manufacturing_date == dcr->manufacturing_date &&
2230 			    map2->manufacturing_location
2231 				    == dcr->manufacturing_location) {
2232 				mapping->position = i;
2233 				break;
2234 			}
2235 		}
2236 	}
2237 
2238 	ndr_desc->nd_set = nd_set;
2239 	devm_kfree(dev, info);
2240 	devm_kfree(dev, info2);
2241 
2242 	return 0;
2243 }
2244 
to_interleave_offset(u64 offset,struct nfit_blk_mmio * mmio)2245 static u64 to_interleave_offset(u64 offset, struct nfit_blk_mmio *mmio)
2246 {
2247 	struct acpi_nfit_interleave *idt = mmio->idt;
2248 	u32 sub_line_offset, line_index, line_offset;
2249 	u64 line_no, table_skip_count, table_offset;
2250 
2251 	line_no = div_u64_rem(offset, mmio->line_size, &sub_line_offset);
2252 	table_skip_count = div_u64_rem(line_no, mmio->num_lines, &line_index);
2253 	line_offset = idt->line_offset[line_index]
2254 		* mmio->line_size;
2255 	table_offset = table_skip_count * mmio->table_size;
2256 
2257 	return mmio->base_offset + line_offset + table_offset + sub_line_offset;
2258 }
2259 
read_blk_stat(struct nfit_blk * nfit_blk,unsigned int bw)2260 static u32 read_blk_stat(struct nfit_blk *nfit_blk, unsigned int bw)
2261 {
2262 	struct nfit_blk_mmio *mmio = &nfit_blk->mmio[DCR];
2263 	u64 offset = nfit_blk->stat_offset + mmio->size * bw;
2264 	const u32 STATUS_MASK = 0x80000037;
2265 
2266 	if (mmio->num_lines)
2267 		offset = to_interleave_offset(offset, mmio);
2268 
2269 	return readl(mmio->addr.base + offset) & STATUS_MASK;
2270 }
2271 
write_blk_ctl(struct nfit_blk * nfit_blk,unsigned int bw,resource_size_t dpa,unsigned int len,unsigned int write)2272 static void write_blk_ctl(struct nfit_blk *nfit_blk, unsigned int bw,
2273 		resource_size_t dpa, unsigned int len, unsigned int write)
2274 {
2275 	u64 cmd, offset;
2276 	struct nfit_blk_mmio *mmio = &nfit_blk->mmio[DCR];
2277 
2278 	enum {
2279 		BCW_OFFSET_MASK = (1ULL << 48)-1,
2280 		BCW_LEN_SHIFT = 48,
2281 		BCW_LEN_MASK = (1ULL << 8) - 1,
2282 		BCW_CMD_SHIFT = 56,
2283 	};
2284 
2285 	cmd = (dpa >> L1_CACHE_SHIFT) & BCW_OFFSET_MASK;
2286 	len = len >> L1_CACHE_SHIFT;
2287 	cmd |= ((u64) len & BCW_LEN_MASK) << BCW_LEN_SHIFT;
2288 	cmd |= ((u64) write) << BCW_CMD_SHIFT;
2289 
2290 	offset = nfit_blk->cmd_offset + mmio->size * bw;
2291 	if (mmio->num_lines)
2292 		offset = to_interleave_offset(offset, mmio);
2293 
2294 	writeq(cmd, mmio->addr.base + offset);
2295 	nvdimm_flush(nfit_blk->nd_region);
2296 
2297 	if (nfit_blk->dimm_flags & NFIT_BLK_DCR_LATCH)
2298 		readq(mmio->addr.base + offset);
2299 }
2300 
acpi_nfit_blk_single_io(struct nfit_blk * nfit_blk,resource_size_t dpa,void * iobuf,size_t len,int rw,unsigned int lane)2301 static int acpi_nfit_blk_single_io(struct nfit_blk *nfit_blk,
2302 		resource_size_t dpa, void *iobuf, size_t len, int rw,
2303 		unsigned int lane)
2304 {
2305 	struct nfit_blk_mmio *mmio = &nfit_blk->mmio[BDW];
2306 	unsigned int copied = 0;
2307 	u64 base_offset;
2308 	int rc;
2309 
2310 	base_offset = nfit_blk->bdw_offset + dpa % L1_CACHE_BYTES
2311 		+ lane * mmio->size;
2312 	write_blk_ctl(nfit_blk, lane, dpa, len, rw);
2313 	while (len) {
2314 		unsigned int c;
2315 		u64 offset;
2316 
2317 		if (mmio->num_lines) {
2318 			u32 line_offset;
2319 
2320 			offset = to_interleave_offset(base_offset + copied,
2321 					mmio);
2322 			div_u64_rem(offset, mmio->line_size, &line_offset);
2323 			c = min_t(size_t, len, mmio->line_size - line_offset);
2324 		} else {
2325 			offset = base_offset + nfit_blk->bdw_offset;
2326 			c = len;
2327 		}
2328 
2329 		if (rw)
2330 			memcpy_flushcache(mmio->addr.aperture + offset, iobuf + copied, c);
2331 		else {
2332 			if (nfit_blk->dimm_flags & NFIT_BLK_READ_FLUSH)
2333 				arch_invalidate_pmem((void __force *)
2334 					mmio->addr.aperture + offset, c);
2335 
2336 			memcpy(iobuf + copied, mmio->addr.aperture + offset, c);
2337 		}
2338 
2339 		copied += c;
2340 		len -= c;
2341 	}
2342 
2343 	if (rw)
2344 		nvdimm_flush(nfit_blk->nd_region);
2345 
2346 	rc = read_blk_stat(nfit_blk, lane) ? -EIO : 0;
2347 	return rc;
2348 }
2349 
acpi_nfit_blk_region_do_io(struct nd_blk_region * ndbr,resource_size_t dpa,void * iobuf,u64 len,int rw)2350 static int acpi_nfit_blk_region_do_io(struct nd_blk_region *ndbr,
2351 		resource_size_t dpa, void *iobuf, u64 len, int rw)
2352 {
2353 	struct nfit_blk *nfit_blk = nd_blk_region_provider_data(ndbr);
2354 	struct nfit_blk_mmio *mmio = &nfit_blk->mmio[BDW];
2355 	struct nd_region *nd_region = nfit_blk->nd_region;
2356 	unsigned int lane, copied = 0;
2357 	int rc = 0;
2358 
2359 	lane = nd_region_acquire_lane(nd_region);
2360 	while (len) {
2361 		u64 c = min(len, mmio->size);
2362 
2363 		rc = acpi_nfit_blk_single_io(nfit_blk, dpa + copied,
2364 				iobuf + copied, c, rw, lane);
2365 		if (rc)
2366 			break;
2367 
2368 		copied += c;
2369 		len -= c;
2370 	}
2371 	nd_region_release_lane(nd_region, lane);
2372 
2373 	return rc;
2374 }
2375 
nfit_blk_init_interleave(struct nfit_blk_mmio * mmio,struct acpi_nfit_interleave * idt,u16 interleave_ways)2376 static int nfit_blk_init_interleave(struct nfit_blk_mmio *mmio,
2377 		struct acpi_nfit_interleave *idt, u16 interleave_ways)
2378 {
2379 	if (idt) {
2380 		mmio->num_lines = idt->line_count;
2381 		mmio->line_size = idt->line_size;
2382 		if (interleave_ways == 0)
2383 			return -ENXIO;
2384 		mmio->table_size = mmio->num_lines * interleave_ways
2385 			* mmio->line_size;
2386 	}
2387 
2388 	return 0;
2389 }
2390 
acpi_nfit_blk_get_flags(struct nvdimm_bus_descriptor * nd_desc,struct nvdimm * nvdimm,struct nfit_blk * nfit_blk)2391 static int acpi_nfit_blk_get_flags(struct nvdimm_bus_descriptor *nd_desc,
2392 		struct nvdimm *nvdimm, struct nfit_blk *nfit_blk)
2393 {
2394 	struct nd_cmd_dimm_flags flags;
2395 	int rc;
2396 
2397 	memset(&flags, 0, sizeof(flags));
2398 	rc = nd_desc->ndctl(nd_desc, nvdimm, ND_CMD_DIMM_FLAGS, &flags,
2399 			sizeof(flags), NULL);
2400 
2401 	if (rc >= 0 && flags.status == 0)
2402 		nfit_blk->dimm_flags = flags.flags;
2403 	else if (rc == -ENOTTY) {
2404 		/* fall back to a conservative default */
2405 		nfit_blk->dimm_flags = NFIT_BLK_DCR_LATCH | NFIT_BLK_READ_FLUSH;
2406 		rc = 0;
2407 	} else
2408 		rc = -ENXIO;
2409 
2410 	return rc;
2411 }
2412 
acpi_nfit_blk_region_enable(struct nvdimm_bus * nvdimm_bus,struct device * dev)2413 static int acpi_nfit_blk_region_enable(struct nvdimm_bus *nvdimm_bus,
2414 		struct device *dev)
2415 {
2416 	struct nvdimm_bus_descriptor *nd_desc = to_nd_desc(nvdimm_bus);
2417 	struct nd_blk_region *ndbr = to_nd_blk_region(dev);
2418 	struct nfit_blk_mmio *mmio;
2419 	struct nfit_blk *nfit_blk;
2420 	struct nfit_mem *nfit_mem;
2421 	struct nvdimm *nvdimm;
2422 	int rc;
2423 
2424 	nvdimm = nd_blk_region_to_dimm(ndbr);
2425 	nfit_mem = nvdimm_provider_data(nvdimm);
2426 	if (!nfit_mem || !nfit_mem->dcr || !nfit_mem->bdw) {
2427 		dev_dbg(dev, "missing%s%s%s\n",
2428 				nfit_mem ? "" : " nfit_mem",
2429 				(nfit_mem && nfit_mem->dcr) ? "" : " dcr",
2430 				(nfit_mem && nfit_mem->bdw) ? "" : " bdw");
2431 		return -ENXIO;
2432 	}
2433 
2434 	nfit_blk = devm_kzalloc(dev, sizeof(*nfit_blk), GFP_KERNEL);
2435 	if (!nfit_blk)
2436 		return -ENOMEM;
2437 	nd_blk_region_set_provider_data(ndbr, nfit_blk);
2438 	nfit_blk->nd_region = to_nd_region(dev);
2439 
2440 	/* map block aperture memory */
2441 	nfit_blk->bdw_offset = nfit_mem->bdw->offset;
2442 	mmio = &nfit_blk->mmio[BDW];
2443 	mmio->addr.base = devm_nvdimm_memremap(dev, nfit_mem->spa_bdw->address,
2444                         nfit_mem->spa_bdw->length, nd_blk_memremap_flags(ndbr));
2445 	if (!mmio->addr.base) {
2446 		dev_dbg(dev, "%s failed to map bdw\n",
2447 				nvdimm_name(nvdimm));
2448 		return -ENOMEM;
2449 	}
2450 	mmio->size = nfit_mem->bdw->size;
2451 	mmio->base_offset = nfit_mem->memdev_bdw->region_offset;
2452 	mmio->idt = nfit_mem->idt_bdw;
2453 	mmio->spa = nfit_mem->spa_bdw;
2454 	rc = nfit_blk_init_interleave(mmio, nfit_mem->idt_bdw,
2455 			nfit_mem->memdev_bdw->interleave_ways);
2456 	if (rc) {
2457 		dev_dbg(dev, "%s failed to init bdw interleave\n",
2458 				nvdimm_name(nvdimm));
2459 		return rc;
2460 	}
2461 
2462 	/* map block control memory */
2463 	nfit_blk->cmd_offset = nfit_mem->dcr->command_offset;
2464 	nfit_blk->stat_offset = nfit_mem->dcr->status_offset;
2465 	mmio = &nfit_blk->mmio[DCR];
2466 	mmio->addr.base = devm_nvdimm_ioremap(dev, nfit_mem->spa_dcr->address,
2467 			nfit_mem->spa_dcr->length);
2468 	if (!mmio->addr.base) {
2469 		dev_dbg(dev, "%s failed to map dcr\n",
2470 				nvdimm_name(nvdimm));
2471 		return -ENOMEM;
2472 	}
2473 	mmio->size = nfit_mem->dcr->window_size;
2474 	mmio->base_offset = nfit_mem->memdev_dcr->region_offset;
2475 	mmio->idt = nfit_mem->idt_dcr;
2476 	mmio->spa = nfit_mem->spa_dcr;
2477 	rc = nfit_blk_init_interleave(mmio, nfit_mem->idt_dcr,
2478 			nfit_mem->memdev_dcr->interleave_ways);
2479 	if (rc) {
2480 		dev_dbg(dev, "%s failed to init dcr interleave\n",
2481 				nvdimm_name(nvdimm));
2482 		return rc;
2483 	}
2484 
2485 	rc = acpi_nfit_blk_get_flags(nd_desc, nvdimm, nfit_blk);
2486 	if (rc < 0) {
2487 		dev_dbg(dev, "%s failed get DIMM flags\n",
2488 				nvdimm_name(nvdimm));
2489 		return rc;
2490 	}
2491 
2492 	if (nvdimm_has_flush(nfit_blk->nd_region) < 0)
2493 		dev_warn(dev, "unable to guarantee persistence of writes\n");
2494 
2495 	if (mmio->line_size == 0)
2496 		return 0;
2497 
2498 	if ((u32) nfit_blk->cmd_offset % mmio->line_size
2499 			+ 8 > mmio->line_size) {
2500 		dev_dbg(dev, "cmd_offset crosses interleave boundary\n");
2501 		return -ENXIO;
2502 	} else if ((u32) nfit_blk->stat_offset % mmio->line_size
2503 			+ 8 > mmio->line_size) {
2504 		dev_dbg(dev, "stat_offset crosses interleave boundary\n");
2505 		return -ENXIO;
2506 	}
2507 
2508 	return 0;
2509 }
2510 
ars_get_cap(struct acpi_nfit_desc * acpi_desc,struct nd_cmd_ars_cap * cmd,struct nfit_spa * nfit_spa)2511 static int ars_get_cap(struct acpi_nfit_desc *acpi_desc,
2512 		struct nd_cmd_ars_cap *cmd, struct nfit_spa *nfit_spa)
2513 {
2514 	struct nvdimm_bus_descriptor *nd_desc = &acpi_desc->nd_desc;
2515 	struct acpi_nfit_system_address *spa = nfit_spa->spa;
2516 	int cmd_rc, rc;
2517 
2518 	cmd->address = spa->address;
2519 	cmd->length = spa->length;
2520 	rc = nd_desc->ndctl(nd_desc, NULL, ND_CMD_ARS_CAP, cmd,
2521 			sizeof(*cmd), &cmd_rc);
2522 	if (rc < 0)
2523 		return rc;
2524 	return cmd_rc;
2525 }
2526 
ars_start(struct acpi_nfit_desc * acpi_desc,struct nfit_spa * nfit_spa,enum nfit_ars_state req_type)2527 static int ars_start(struct acpi_nfit_desc *acpi_desc,
2528 		struct nfit_spa *nfit_spa, enum nfit_ars_state req_type)
2529 {
2530 	int rc;
2531 	int cmd_rc;
2532 	struct nd_cmd_ars_start ars_start;
2533 	struct acpi_nfit_system_address *spa = nfit_spa->spa;
2534 	struct nvdimm_bus_descriptor *nd_desc = &acpi_desc->nd_desc;
2535 
2536 	memset(&ars_start, 0, sizeof(ars_start));
2537 	ars_start.address = spa->address;
2538 	ars_start.length = spa->length;
2539 	if (req_type == ARS_REQ_SHORT)
2540 		ars_start.flags = ND_ARS_RETURN_PREV_DATA;
2541 	if (nfit_spa_type(spa) == NFIT_SPA_PM)
2542 		ars_start.type = ND_ARS_PERSISTENT;
2543 	else if (nfit_spa_type(spa) == NFIT_SPA_VOLATILE)
2544 		ars_start.type = ND_ARS_VOLATILE;
2545 	else
2546 		return -ENOTTY;
2547 
2548 	rc = nd_desc->ndctl(nd_desc, NULL, ND_CMD_ARS_START, &ars_start,
2549 			sizeof(ars_start), &cmd_rc);
2550 
2551 	if (rc < 0)
2552 		return rc;
2553 	if (cmd_rc < 0)
2554 		return cmd_rc;
2555 	set_bit(ARS_VALID, &acpi_desc->scrub_flags);
2556 	return 0;
2557 }
2558 
ars_continue(struct acpi_nfit_desc * acpi_desc)2559 static int ars_continue(struct acpi_nfit_desc *acpi_desc)
2560 {
2561 	int rc, cmd_rc;
2562 	struct nd_cmd_ars_start ars_start;
2563 	struct nvdimm_bus_descriptor *nd_desc = &acpi_desc->nd_desc;
2564 	struct nd_cmd_ars_status *ars_status = acpi_desc->ars_status;
2565 
2566 	ars_start = (struct nd_cmd_ars_start) {
2567 		.address = ars_status->restart_address,
2568 		.length = ars_status->restart_length,
2569 		.type = ars_status->type,
2570 	};
2571 	rc = nd_desc->ndctl(nd_desc, NULL, ND_CMD_ARS_START, &ars_start,
2572 			sizeof(ars_start), &cmd_rc);
2573 	if (rc < 0)
2574 		return rc;
2575 	return cmd_rc;
2576 }
2577 
ars_get_status(struct acpi_nfit_desc * acpi_desc)2578 static int ars_get_status(struct acpi_nfit_desc *acpi_desc)
2579 {
2580 	struct nvdimm_bus_descriptor *nd_desc = &acpi_desc->nd_desc;
2581 	struct nd_cmd_ars_status *ars_status = acpi_desc->ars_status;
2582 	int rc, cmd_rc;
2583 
2584 	rc = nd_desc->ndctl(nd_desc, NULL, ND_CMD_ARS_STATUS, ars_status,
2585 			acpi_desc->max_ars, &cmd_rc);
2586 	if (rc < 0)
2587 		return rc;
2588 	return cmd_rc;
2589 }
2590 
ars_complete(struct acpi_nfit_desc * acpi_desc,struct nfit_spa * nfit_spa)2591 static void ars_complete(struct acpi_nfit_desc *acpi_desc,
2592 		struct nfit_spa *nfit_spa)
2593 {
2594 	struct nd_cmd_ars_status *ars_status = acpi_desc->ars_status;
2595 	struct acpi_nfit_system_address *spa = nfit_spa->spa;
2596 	struct nd_region *nd_region = nfit_spa->nd_region;
2597 	struct device *dev;
2598 
2599 	lockdep_assert_held(&acpi_desc->init_mutex);
2600 	/*
2601 	 * Only advance the ARS state for ARS runs initiated by the
2602 	 * kernel, ignore ARS results from BIOS initiated runs for scrub
2603 	 * completion tracking.
2604 	 */
2605 	if (acpi_desc->scrub_spa != nfit_spa)
2606 		return;
2607 
2608 	if ((ars_status->address >= spa->address && ars_status->address
2609 				< spa->address + spa->length)
2610 			|| (ars_status->address < spa->address)) {
2611 		/*
2612 		 * Assume that if a scrub starts at an offset from the
2613 		 * start of nfit_spa that we are in the continuation
2614 		 * case.
2615 		 *
2616 		 * Otherwise, if the scrub covers the spa range, mark
2617 		 * any pending request complete.
2618 		 */
2619 		if (ars_status->address + ars_status->length
2620 				>= spa->address + spa->length)
2621 				/* complete */;
2622 		else
2623 			return;
2624 	} else
2625 		return;
2626 
2627 	acpi_desc->scrub_spa = NULL;
2628 	if (nd_region) {
2629 		dev = nd_region_dev(nd_region);
2630 		nvdimm_region_notify(nd_region, NVDIMM_REVALIDATE_POISON);
2631 	} else
2632 		dev = acpi_desc->dev;
2633 	dev_dbg(dev, "ARS: range %d complete\n", spa->range_index);
2634 }
2635 
ars_status_process_records(struct acpi_nfit_desc * acpi_desc)2636 static int ars_status_process_records(struct acpi_nfit_desc *acpi_desc)
2637 {
2638 	struct nvdimm_bus *nvdimm_bus = acpi_desc->nvdimm_bus;
2639 	struct nd_cmd_ars_status *ars_status = acpi_desc->ars_status;
2640 	int rc;
2641 	u32 i;
2642 
2643 	/*
2644 	 * First record starts at 44 byte offset from the start of the
2645 	 * payload.
2646 	 */
2647 	if (ars_status->out_length < 44)
2648 		return 0;
2649 
2650 	/*
2651 	 * Ignore potentially stale results that are only refreshed
2652 	 * after a start-ARS event.
2653 	 */
2654 	if (!test_and_clear_bit(ARS_VALID, &acpi_desc->scrub_flags)) {
2655 		dev_dbg(acpi_desc->dev, "skip %d stale records\n",
2656 				ars_status->num_records);
2657 		return 0;
2658 	}
2659 
2660 	for (i = 0; i < ars_status->num_records; i++) {
2661 		/* only process full records */
2662 		if (ars_status->out_length
2663 				< 44 + sizeof(struct nd_ars_record) * (i + 1))
2664 			break;
2665 		rc = nvdimm_bus_add_badrange(nvdimm_bus,
2666 				ars_status->records[i].err_address,
2667 				ars_status->records[i].length);
2668 		if (rc)
2669 			return rc;
2670 	}
2671 	if (i < ars_status->num_records)
2672 		dev_warn(acpi_desc->dev, "detected truncated ars results\n");
2673 
2674 	return 0;
2675 }
2676 
acpi_nfit_remove_resource(void * data)2677 static void acpi_nfit_remove_resource(void *data)
2678 {
2679 	struct resource *res = data;
2680 
2681 	remove_resource(res);
2682 }
2683 
acpi_nfit_insert_resource(struct acpi_nfit_desc * acpi_desc,struct nd_region_desc * ndr_desc)2684 static int acpi_nfit_insert_resource(struct acpi_nfit_desc *acpi_desc,
2685 		struct nd_region_desc *ndr_desc)
2686 {
2687 	struct resource *res, *nd_res = ndr_desc->res;
2688 	int is_pmem, ret;
2689 
2690 	/* No operation if the region is already registered as PMEM */
2691 	is_pmem = region_intersects(nd_res->start, resource_size(nd_res),
2692 				IORESOURCE_MEM, IORES_DESC_PERSISTENT_MEMORY);
2693 	if (is_pmem == REGION_INTERSECTS)
2694 		return 0;
2695 
2696 	res = devm_kzalloc(acpi_desc->dev, sizeof(*res), GFP_KERNEL);
2697 	if (!res)
2698 		return -ENOMEM;
2699 
2700 	res->name = "Persistent Memory";
2701 	res->start = nd_res->start;
2702 	res->end = nd_res->end;
2703 	res->flags = IORESOURCE_MEM;
2704 	res->desc = IORES_DESC_PERSISTENT_MEMORY;
2705 
2706 	ret = insert_resource(&iomem_resource, res);
2707 	if (ret)
2708 		return ret;
2709 
2710 	ret = devm_add_action_or_reset(acpi_desc->dev,
2711 					acpi_nfit_remove_resource,
2712 					res);
2713 	if (ret)
2714 		return ret;
2715 
2716 	return 0;
2717 }
2718 
acpi_nfit_init_mapping(struct acpi_nfit_desc * acpi_desc,struct nd_mapping_desc * mapping,struct nd_region_desc * ndr_desc,struct acpi_nfit_memory_map * memdev,struct nfit_spa * nfit_spa)2719 static int acpi_nfit_init_mapping(struct acpi_nfit_desc *acpi_desc,
2720 		struct nd_mapping_desc *mapping, struct nd_region_desc *ndr_desc,
2721 		struct acpi_nfit_memory_map *memdev,
2722 		struct nfit_spa *nfit_spa)
2723 {
2724 	struct nvdimm *nvdimm = acpi_nfit_dimm_by_handle(acpi_desc,
2725 			memdev->device_handle);
2726 	struct acpi_nfit_system_address *spa = nfit_spa->spa;
2727 	struct nd_blk_region_desc *ndbr_desc;
2728 	struct nfit_mem *nfit_mem;
2729 	int rc;
2730 
2731 	if (!nvdimm) {
2732 		dev_err(acpi_desc->dev, "spa%d dimm: %#x not found\n",
2733 				spa->range_index, memdev->device_handle);
2734 		return -ENODEV;
2735 	}
2736 
2737 	mapping->nvdimm = nvdimm;
2738 	switch (nfit_spa_type(spa)) {
2739 	case NFIT_SPA_PM:
2740 	case NFIT_SPA_VOLATILE:
2741 		mapping->start = memdev->address;
2742 		mapping->size = memdev->region_size;
2743 		break;
2744 	case NFIT_SPA_DCR:
2745 		nfit_mem = nvdimm_provider_data(nvdimm);
2746 		if (!nfit_mem || !nfit_mem->bdw) {
2747 			dev_dbg(acpi_desc->dev, "spa%d %s missing bdw\n",
2748 					spa->range_index, nvdimm_name(nvdimm));
2749 			break;
2750 		}
2751 
2752 		mapping->size = nfit_mem->bdw->capacity;
2753 		mapping->start = nfit_mem->bdw->start_address;
2754 		ndr_desc->num_lanes = nfit_mem->bdw->windows;
2755 		ndr_desc->mapping = mapping;
2756 		ndr_desc->num_mappings = 1;
2757 		ndbr_desc = to_blk_region_desc(ndr_desc);
2758 		ndbr_desc->enable = acpi_nfit_blk_region_enable;
2759 		ndbr_desc->do_io = acpi_desc->blk_do_io;
2760 		rc = acpi_nfit_init_interleave_set(acpi_desc, ndr_desc, spa);
2761 		if (rc)
2762 			return rc;
2763 		nfit_spa->nd_region = nvdimm_blk_region_create(acpi_desc->nvdimm_bus,
2764 				ndr_desc);
2765 		if (!nfit_spa->nd_region)
2766 			return -ENOMEM;
2767 		break;
2768 	}
2769 
2770 	return 0;
2771 }
2772 
nfit_spa_is_virtual(struct acpi_nfit_system_address * spa)2773 static bool nfit_spa_is_virtual(struct acpi_nfit_system_address *spa)
2774 {
2775 	return (nfit_spa_type(spa) == NFIT_SPA_VDISK ||
2776 		nfit_spa_type(spa) == NFIT_SPA_VCD   ||
2777 		nfit_spa_type(spa) == NFIT_SPA_PDISK ||
2778 		nfit_spa_type(spa) == NFIT_SPA_PCD);
2779 }
2780 
nfit_spa_is_volatile(struct acpi_nfit_system_address * spa)2781 static bool nfit_spa_is_volatile(struct acpi_nfit_system_address *spa)
2782 {
2783 	return (nfit_spa_type(spa) == NFIT_SPA_VDISK ||
2784 		nfit_spa_type(spa) == NFIT_SPA_VCD   ||
2785 		nfit_spa_type(spa) == NFIT_SPA_VOLATILE);
2786 }
2787 
acpi_nfit_register_region(struct acpi_nfit_desc * acpi_desc,struct nfit_spa * nfit_spa)2788 static int acpi_nfit_register_region(struct acpi_nfit_desc *acpi_desc,
2789 		struct nfit_spa *nfit_spa)
2790 {
2791 	static struct nd_mapping_desc mappings[ND_MAX_MAPPINGS];
2792 	struct acpi_nfit_system_address *spa = nfit_spa->spa;
2793 	struct nd_blk_region_desc ndbr_desc;
2794 	struct nd_region_desc *ndr_desc;
2795 	struct nfit_memdev *nfit_memdev;
2796 	struct nvdimm_bus *nvdimm_bus;
2797 	struct resource res;
2798 	int count = 0, rc;
2799 
2800 	if (nfit_spa->nd_region)
2801 		return 0;
2802 
2803 	if (spa->range_index == 0 && !nfit_spa_is_virtual(spa)) {
2804 		dev_dbg(acpi_desc->dev, "detected invalid spa index\n");
2805 		return 0;
2806 	}
2807 
2808 	memset(&res, 0, sizeof(res));
2809 	memset(&mappings, 0, sizeof(mappings));
2810 	memset(&ndbr_desc, 0, sizeof(ndbr_desc));
2811 	res.start = spa->address;
2812 	res.end = res.start + spa->length - 1;
2813 	ndr_desc = &ndbr_desc.ndr_desc;
2814 	ndr_desc->res = &res;
2815 	ndr_desc->provider_data = nfit_spa;
2816 	ndr_desc->attr_groups = acpi_nfit_region_attribute_groups;
2817 	if (spa->flags & ACPI_NFIT_PROXIMITY_VALID)
2818 		ndr_desc->numa_node = acpi_map_pxm_to_online_node(
2819 						spa->proximity_domain);
2820 	else
2821 		ndr_desc->numa_node = NUMA_NO_NODE;
2822 
2823 	/*
2824 	 * Persistence domain bits are hierarchical, if
2825 	 * ACPI_NFIT_CAPABILITY_CACHE_FLUSH is set then
2826 	 * ACPI_NFIT_CAPABILITY_MEM_FLUSH is implied.
2827 	 */
2828 	if (acpi_desc->platform_cap & ACPI_NFIT_CAPABILITY_CACHE_FLUSH)
2829 		set_bit(ND_REGION_PERSIST_CACHE, &ndr_desc->flags);
2830 	else if (acpi_desc->platform_cap & ACPI_NFIT_CAPABILITY_MEM_FLUSH)
2831 		set_bit(ND_REGION_PERSIST_MEMCTRL, &ndr_desc->flags);
2832 
2833 	list_for_each_entry(nfit_memdev, &acpi_desc->memdevs, list) {
2834 		struct acpi_nfit_memory_map *memdev = nfit_memdev->memdev;
2835 		struct nd_mapping_desc *mapping;
2836 
2837 		if (memdev->range_index != spa->range_index)
2838 			continue;
2839 		if (count >= ND_MAX_MAPPINGS) {
2840 			dev_err(acpi_desc->dev, "spa%d exceeds max mappings %d\n",
2841 					spa->range_index, ND_MAX_MAPPINGS);
2842 			return -ENXIO;
2843 		}
2844 		mapping = &mappings[count++];
2845 		rc = acpi_nfit_init_mapping(acpi_desc, mapping, ndr_desc,
2846 				memdev, nfit_spa);
2847 		if (rc)
2848 			goto out;
2849 	}
2850 
2851 	ndr_desc->mapping = mappings;
2852 	ndr_desc->num_mappings = count;
2853 	rc = acpi_nfit_init_interleave_set(acpi_desc, ndr_desc, spa);
2854 	if (rc)
2855 		goto out;
2856 
2857 	nvdimm_bus = acpi_desc->nvdimm_bus;
2858 	if (nfit_spa_type(spa) == NFIT_SPA_PM) {
2859 		rc = acpi_nfit_insert_resource(acpi_desc, ndr_desc);
2860 		if (rc) {
2861 			dev_warn(acpi_desc->dev,
2862 				"failed to insert pmem resource to iomem: %d\n",
2863 				rc);
2864 			goto out;
2865 		}
2866 
2867 		nfit_spa->nd_region = nvdimm_pmem_region_create(nvdimm_bus,
2868 				ndr_desc);
2869 		if (!nfit_spa->nd_region)
2870 			rc = -ENOMEM;
2871 	} else if (nfit_spa_is_volatile(spa)) {
2872 		nfit_spa->nd_region = nvdimm_volatile_region_create(nvdimm_bus,
2873 				ndr_desc);
2874 		if (!nfit_spa->nd_region)
2875 			rc = -ENOMEM;
2876 	} else if (nfit_spa_is_virtual(spa)) {
2877 		nfit_spa->nd_region = nvdimm_pmem_region_create(nvdimm_bus,
2878 				ndr_desc);
2879 		if (!nfit_spa->nd_region)
2880 			rc = -ENOMEM;
2881 	}
2882 
2883  out:
2884 	if (rc)
2885 		dev_err(acpi_desc->dev, "failed to register spa range %d\n",
2886 				nfit_spa->spa->range_index);
2887 	return rc;
2888 }
2889 
ars_status_alloc(struct acpi_nfit_desc * acpi_desc)2890 static int ars_status_alloc(struct acpi_nfit_desc *acpi_desc)
2891 {
2892 	struct device *dev = acpi_desc->dev;
2893 	struct nd_cmd_ars_status *ars_status;
2894 
2895 	if (acpi_desc->ars_status) {
2896 		memset(acpi_desc->ars_status, 0, acpi_desc->max_ars);
2897 		return 0;
2898 	}
2899 
2900 	ars_status = devm_kzalloc(dev, acpi_desc->max_ars, GFP_KERNEL);
2901 	if (!ars_status)
2902 		return -ENOMEM;
2903 	acpi_desc->ars_status = ars_status;
2904 	return 0;
2905 }
2906 
acpi_nfit_query_poison(struct acpi_nfit_desc * acpi_desc)2907 static int acpi_nfit_query_poison(struct acpi_nfit_desc *acpi_desc)
2908 {
2909 	int rc;
2910 
2911 	if (ars_status_alloc(acpi_desc))
2912 		return -ENOMEM;
2913 
2914 	rc = ars_get_status(acpi_desc);
2915 
2916 	if (rc < 0 && rc != -ENOSPC)
2917 		return rc;
2918 
2919 	if (ars_status_process_records(acpi_desc))
2920 		dev_err(acpi_desc->dev, "Failed to process ARS records\n");
2921 
2922 	return rc;
2923 }
2924 
ars_register(struct acpi_nfit_desc * acpi_desc,struct nfit_spa * nfit_spa)2925 static int ars_register(struct acpi_nfit_desc *acpi_desc,
2926 		struct nfit_spa *nfit_spa)
2927 {
2928 	int rc;
2929 
2930 	if (test_bit(ARS_FAILED, &nfit_spa->ars_state))
2931 		return acpi_nfit_register_region(acpi_desc, nfit_spa);
2932 
2933 	set_bit(ARS_REQ_SHORT, &nfit_spa->ars_state);
2934 	if (!no_init_ars)
2935 		set_bit(ARS_REQ_LONG, &nfit_spa->ars_state);
2936 
2937 	switch (acpi_nfit_query_poison(acpi_desc)) {
2938 	case 0:
2939 	case -ENOSPC:
2940 	case -EAGAIN:
2941 		rc = ars_start(acpi_desc, nfit_spa, ARS_REQ_SHORT);
2942 		/* shouldn't happen, try again later */
2943 		if (rc == -EBUSY)
2944 			break;
2945 		if (rc) {
2946 			set_bit(ARS_FAILED, &nfit_spa->ars_state);
2947 			break;
2948 		}
2949 		clear_bit(ARS_REQ_SHORT, &nfit_spa->ars_state);
2950 		rc = acpi_nfit_query_poison(acpi_desc);
2951 		if (rc)
2952 			break;
2953 		acpi_desc->scrub_spa = nfit_spa;
2954 		ars_complete(acpi_desc, nfit_spa);
2955 		/*
2956 		 * If ars_complete() says we didn't complete the
2957 		 * short scrub, we'll try again with a long
2958 		 * request.
2959 		 */
2960 		acpi_desc->scrub_spa = NULL;
2961 		break;
2962 	case -EBUSY:
2963 	case -ENOMEM:
2964 		/*
2965 		 * BIOS was using ARS, wait for it to complete (or
2966 		 * resources to become available) and then perform our
2967 		 * own scrubs.
2968 		 */
2969 		break;
2970 	default:
2971 		set_bit(ARS_FAILED, &nfit_spa->ars_state);
2972 		break;
2973 	}
2974 
2975 	return acpi_nfit_register_region(acpi_desc, nfit_spa);
2976 }
2977 
ars_complete_all(struct acpi_nfit_desc * acpi_desc)2978 static void ars_complete_all(struct acpi_nfit_desc *acpi_desc)
2979 {
2980 	struct nfit_spa *nfit_spa;
2981 
2982 	list_for_each_entry(nfit_spa, &acpi_desc->spas, list) {
2983 		if (test_bit(ARS_FAILED, &nfit_spa->ars_state))
2984 			continue;
2985 		ars_complete(acpi_desc, nfit_spa);
2986 	}
2987 }
2988 
__acpi_nfit_scrub(struct acpi_nfit_desc * acpi_desc,int query_rc)2989 static unsigned int __acpi_nfit_scrub(struct acpi_nfit_desc *acpi_desc,
2990 		int query_rc)
2991 {
2992 	unsigned int tmo = acpi_desc->scrub_tmo;
2993 	struct device *dev = acpi_desc->dev;
2994 	struct nfit_spa *nfit_spa;
2995 
2996 	lockdep_assert_held(&acpi_desc->init_mutex);
2997 
2998 	if (test_bit(ARS_CANCEL, &acpi_desc->scrub_flags))
2999 		return 0;
3000 
3001 	if (query_rc == -EBUSY) {
3002 		dev_dbg(dev, "ARS: ARS busy\n");
3003 		return min(30U * 60U, tmo * 2);
3004 	}
3005 	if (query_rc == -ENOSPC) {
3006 		dev_dbg(dev, "ARS: ARS continue\n");
3007 		ars_continue(acpi_desc);
3008 		return 1;
3009 	}
3010 	if (query_rc && query_rc != -EAGAIN) {
3011 		unsigned long long addr, end;
3012 
3013 		addr = acpi_desc->ars_status->address;
3014 		end = addr + acpi_desc->ars_status->length;
3015 		dev_dbg(dev, "ARS: %llx-%llx failed (%d)\n", addr, end,
3016 				query_rc);
3017 	}
3018 
3019 	ars_complete_all(acpi_desc);
3020 	list_for_each_entry(nfit_spa, &acpi_desc->spas, list) {
3021 		enum nfit_ars_state req_type;
3022 		int rc;
3023 
3024 		if (test_bit(ARS_FAILED, &nfit_spa->ars_state))
3025 			continue;
3026 
3027 		/* prefer short ARS requests first */
3028 		if (test_bit(ARS_REQ_SHORT, &nfit_spa->ars_state))
3029 			req_type = ARS_REQ_SHORT;
3030 		else if (test_bit(ARS_REQ_LONG, &nfit_spa->ars_state))
3031 			req_type = ARS_REQ_LONG;
3032 		else
3033 			continue;
3034 		rc = ars_start(acpi_desc, nfit_spa, req_type);
3035 
3036 		dev = nd_region_dev(nfit_spa->nd_region);
3037 		dev_dbg(dev, "ARS: range %d ARS start %s (%d)\n",
3038 				nfit_spa->spa->range_index,
3039 				req_type == ARS_REQ_SHORT ? "short" : "long",
3040 				rc);
3041 		/*
3042 		 * Hmm, we raced someone else starting ARS? Try again in
3043 		 * a bit.
3044 		 */
3045 		if (rc == -EBUSY)
3046 			return 1;
3047 		if (rc == 0) {
3048 			dev_WARN_ONCE(dev, acpi_desc->scrub_spa,
3049 					"scrub start while range %d active\n",
3050 					acpi_desc->scrub_spa->spa->range_index);
3051 			clear_bit(req_type, &nfit_spa->ars_state);
3052 			acpi_desc->scrub_spa = nfit_spa;
3053 			/*
3054 			 * Consider this spa last for future scrub
3055 			 * requests
3056 			 */
3057 			list_move_tail(&nfit_spa->list, &acpi_desc->spas);
3058 			return 1;
3059 		}
3060 
3061 		dev_err(dev, "ARS: range %d ARS failed (%d)\n",
3062 				nfit_spa->spa->range_index, rc);
3063 		set_bit(ARS_FAILED, &nfit_spa->ars_state);
3064 	}
3065 	return 0;
3066 }
3067 
__sched_ars(struct acpi_nfit_desc * acpi_desc,unsigned int tmo)3068 static void __sched_ars(struct acpi_nfit_desc *acpi_desc, unsigned int tmo)
3069 {
3070 	lockdep_assert_held(&acpi_desc->init_mutex);
3071 
3072 	set_bit(ARS_BUSY, &acpi_desc->scrub_flags);
3073 	/* note this should only be set from within the workqueue */
3074 	if (tmo)
3075 		acpi_desc->scrub_tmo = tmo;
3076 	queue_delayed_work(nfit_wq, &acpi_desc->dwork, tmo * HZ);
3077 }
3078 
sched_ars(struct acpi_nfit_desc * acpi_desc)3079 static void sched_ars(struct acpi_nfit_desc *acpi_desc)
3080 {
3081 	__sched_ars(acpi_desc, 0);
3082 }
3083 
notify_ars_done(struct acpi_nfit_desc * acpi_desc)3084 static void notify_ars_done(struct acpi_nfit_desc *acpi_desc)
3085 {
3086 	lockdep_assert_held(&acpi_desc->init_mutex);
3087 
3088 	clear_bit(ARS_BUSY, &acpi_desc->scrub_flags);
3089 	acpi_desc->scrub_count++;
3090 	if (acpi_desc->scrub_count_state)
3091 		sysfs_notify_dirent(acpi_desc->scrub_count_state);
3092 }
3093 
acpi_nfit_scrub(struct work_struct * work)3094 static void acpi_nfit_scrub(struct work_struct *work)
3095 {
3096 	struct acpi_nfit_desc *acpi_desc;
3097 	unsigned int tmo;
3098 	int query_rc;
3099 
3100 	acpi_desc = container_of(work, typeof(*acpi_desc), dwork.work);
3101 	mutex_lock(&acpi_desc->init_mutex);
3102 	query_rc = acpi_nfit_query_poison(acpi_desc);
3103 	tmo = __acpi_nfit_scrub(acpi_desc, query_rc);
3104 	if (tmo)
3105 		__sched_ars(acpi_desc, tmo);
3106 	else
3107 		notify_ars_done(acpi_desc);
3108 	memset(acpi_desc->ars_status, 0, acpi_desc->max_ars);
3109 	clear_bit(ARS_POLL, &acpi_desc->scrub_flags);
3110 	mutex_unlock(&acpi_desc->init_mutex);
3111 }
3112 
acpi_nfit_init_ars(struct acpi_nfit_desc * acpi_desc,struct nfit_spa * nfit_spa)3113 static void acpi_nfit_init_ars(struct acpi_nfit_desc *acpi_desc,
3114 		struct nfit_spa *nfit_spa)
3115 {
3116 	int type = nfit_spa_type(nfit_spa->spa);
3117 	struct nd_cmd_ars_cap ars_cap;
3118 	int rc;
3119 
3120 	set_bit(ARS_FAILED, &nfit_spa->ars_state);
3121 	memset(&ars_cap, 0, sizeof(ars_cap));
3122 	rc = ars_get_cap(acpi_desc, &ars_cap, nfit_spa);
3123 	if (rc < 0)
3124 		return;
3125 	/* check that the supported scrub types match the spa type */
3126 	if (type == NFIT_SPA_VOLATILE && ((ars_cap.status >> 16)
3127 				& ND_ARS_VOLATILE) == 0)
3128 		return;
3129 	if (type == NFIT_SPA_PM && ((ars_cap.status >> 16)
3130 				& ND_ARS_PERSISTENT) == 0)
3131 		return;
3132 
3133 	nfit_spa->max_ars = ars_cap.max_ars_out;
3134 	nfit_spa->clear_err_unit = ars_cap.clear_err_unit;
3135 	acpi_desc->max_ars = max(nfit_spa->max_ars, acpi_desc->max_ars);
3136 	clear_bit(ARS_FAILED, &nfit_spa->ars_state);
3137 }
3138 
acpi_nfit_register_regions(struct acpi_nfit_desc * acpi_desc)3139 static int acpi_nfit_register_regions(struct acpi_nfit_desc *acpi_desc)
3140 {
3141 	struct nfit_spa *nfit_spa;
3142 	int rc;
3143 
3144 	set_bit(ARS_VALID, &acpi_desc->scrub_flags);
3145 	list_for_each_entry(nfit_spa, &acpi_desc->spas, list) {
3146 		switch (nfit_spa_type(nfit_spa->spa)) {
3147 		case NFIT_SPA_VOLATILE:
3148 		case NFIT_SPA_PM:
3149 			acpi_nfit_init_ars(acpi_desc, nfit_spa);
3150 			break;
3151 		}
3152 	}
3153 
3154 	list_for_each_entry(nfit_spa, &acpi_desc->spas, list)
3155 		switch (nfit_spa_type(nfit_spa->spa)) {
3156 		case NFIT_SPA_VOLATILE:
3157 		case NFIT_SPA_PM:
3158 			/* register regions and kick off initial ARS run */
3159 			rc = ars_register(acpi_desc, nfit_spa);
3160 			if (rc)
3161 				return rc;
3162 			break;
3163 		case NFIT_SPA_BDW:
3164 			/* nothing to register */
3165 			break;
3166 		case NFIT_SPA_DCR:
3167 		case NFIT_SPA_VDISK:
3168 		case NFIT_SPA_VCD:
3169 		case NFIT_SPA_PDISK:
3170 		case NFIT_SPA_PCD:
3171 			/* register known regions that don't support ARS */
3172 			rc = acpi_nfit_register_region(acpi_desc, nfit_spa);
3173 			if (rc)
3174 				return rc;
3175 			break;
3176 		default:
3177 			/* don't register unknown regions */
3178 			break;
3179 		}
3180 
3181 	sched_ars(acpi_desc);
3182 	return 0;
3183 }
3184 
acpi_nfit_check_deletions(struct acpi_nfit_desc * acpi_desc,struct nfit_table_prev * prev)3185 static int acpi_nfit_check_deletions(struct acpi_nfit_desc *acpi_desc,
3186 		struct nfit_table_prev *prev)
3187 {
3188 	struct device *dev = acpi_desc->dev;
3189 
3190 	if (!list_empty(&prev->spas) ||
3191 			!list_empty(&prev->memdevs) ||
3192 			!list_empty(&prev->dcrs) ||
3193 			!list_empty(&prev->bdws) ||
3194 			!list_empty(&prev->idts) ||
3195 			!list_empty(&prev->flushes)) {
3196 		dev_err(dev, "new nfit deletes entries (unsupported)\n");
3197 		return -ENXIO;
3198 	}
3199 	return 0;
3200 }
3201 
acpi_nfit_desc_init_scrub_attr(struct acpi_nfit_desc * acpi_desc)3202 static int acpi_nfit_desc_init_scrub_attr(struct acpi_nfit_desc *acpi_desc)
3203 {
3204 	struct device *dev = acpi_desc->dev;
3205 	struct kernfs_node *nfit;
3206 	struct device *bus_dev;
3207 
3208 	if (!ars_supported(acpi_desc->nvdimm_bus))
3209 		return 0;
3210 
3211 	bus_dev = to_nvdimm_bus_dev(acpi_desc->nvdimm_bus);
3212 	nfit = sysfs_get_dirent(bus_dev->kobj.sd, "nfit");
3213 	if (!nfit) {
3214 		dev_err(dev, "sysfs_get_dirent 'nfit' failed\n");
3215 		return -ENODEV;
3216 	}
3217 	acpi_desc->scrub_count_state = sysfs_get_dirent(nfit, "scrub");
3218 	sysfs_put(nfit);
3219 	if (!acpi_desc->scrub_count_state) {
3220 		dev_err(dev, "sysfs_get_dirent 'scrub' failed\n");
3221 		return -ENODEV;
3222 	}
3223 
3224 	return 0;
3225 }
3226 
acpi_nfit_unregister(void * data)3227 static void acpi_nfit_unregister(void *data)
3228 {
3229 	struct acpi_nfit_desc *acpi_desc = data;
3230 
3231 	nvdimm_bus_unregister(acpi_desc->nvdimm_bus);
3232 }
3233 
acpi_nfit_init(struct acpi_nfit_desc * acpi_desc,void * data,acpi_size sz)3234 int acpi_nfit_init(struct acpi_nfit_desc *acpi_desc, void *data, acpi_size sz)
3235 {
3236 	struct device *dev = acpi_desc->dev;
3237 	struct nfit_table_prev prev;
3238 	const void *end;
3239 	int rc;
3240 
3241 	if (!acpi_desc->nvdimm_bus) {
3242 		acpi_nfit_init_dsms(acpi_desc);
3243 
3244 		acpi_desc->nvdimm_bus = nvdimm_bus_register(dev,
3245 				&acpi_desc->nd_desc);
3246 		if (!acpi_desc->nvdimm_bus)
3247 			return -ENOMEM;
3248 
3249 		rc = devm_add_action_or_reset(dev, acpi_nfit_unregister,
3250 				acpi_desc);
3251 		if (rc)
3252 			return rc;
3253 
3254 		rc = acpi_nfit_desc_init_scrub_attr(acpi_desc);
3255 		if (rc)
3256 			return rc;
3257 
3258 		/* register this acpi_desc for mce notifications */
3259 		mutex_lock(&acpi_desc_lock);
3260 		list_add_tail(&acpi_desc->list, &acpi_descs);
3261 		mutex_unlock(&acpi_desc_lock);
3262 	}
3263 
3264 	mutex_lock(&acpi_desc->init_mutex);
3265 
3266 	INIT_LIST_HEAD(&prev.spas);
3267 	INIT_LIST_HEAD(&prev.memdevs);
3268 	INIT_LIST_HEAD(&prev.dcrs);
3269 	INIT_LIST_HEAD(&prev.bdws);
3270 	INIT_LIST_HEAD(&prev.idts);
3271 	INIT_LIST_HEAD(&prev.flushes);
3272 
3273 	list_cut_position(&prev.spas, &acpi_desc->spas,
3274 				acpi_desc->spas.prev);
3275 	list_cut_position(&prev.memdevs, &acpi_desc->memdevs,
3276 				acpi_desc->memdevs.prev);
3277 	list_cut_position(&prev.dcrs, &acpi_desc->dcrs,
3278 				acpi_desc->dcrs.prev);
3279 	list_cut_position(&prev.bdws, &acpi_desc->bdws,
3280 				acpi_desc->bdws.prev);
3281 	list_cut_position(&prev.idts, &acpi_desc->idts,
3282 				acpi_desc->idts.prev);
3283 	list_cut_position(&prev.flushes, &acpi_desc->flushes,
3284 				acpi_desc->flushes.prev);
3285 
3286 	end = data + sz;
3287 	while (!IS_ERR_OR_NULL(data))
3288 		data = add_table(acpi_desc, &prev, data, end);
3289 
3290 	if (IS_ERR(data)) {
3291 		dev_dbg(dev, "nfit table parsing error: %ld\n",	PTR_ERR(data));
3292 		rc = PTR_ERR(data);
3293 		goto out_unlock;
3294 	}
3295 
3296 	rc = acpi_nfit_check_deletions(acpi_desc, &prev);
3297 	if (rc)
3298 		goto out_unlock;
3299 
3300 	rc = nfit_mem_init(acpi_desc);
3301 	if (rc)
3302 		goto out_unlock;
3303 
3304 	rc = acpi_nfit_register_dimms(acpi_desc);
3305 	if (rc)
3306 		goto out_unlock;
3307 
3308 	rc = acpi_nfit_register_regions(acpi_desc);
3309 
3310  out_unlock:
3311 	mutex_unlock(&acpi_desc->init_mutex);
3312 	return rc;
3313 }
3314 EXPORT_SYMBOL_GPL(acpi_nfit_init);
3315 
acpi_nfit_flush_probe(struct nvdimm_bus_descriptor * nd_desc)3316 static int acpi_nfit_flush_probe(struct nvdimm_bus_descriptor *nd_desc)
3317 {
3318 	struct acpi_nfit_desc *acpi_desc = to_acpi_nfit_desc(nd_desc);
3319 	struct device *dev = acpi_desc->dev;
3320 
3321 	/* Bounce the device lock to flush acpi_nfit_add / acpi_nfit_notify */
3322 	device_lock(dev);
3323 	device_unlock(dev);
3324 
3325 	/* Bounce the init_mutex to complete initial registration */
3326 	mutex_lock(&acpi_desc->init_mutex);
3327 	mutex_unlock(&acpi_desc->init_mutex);
3328 
3329 	return 0;
3330 }
3331 
acpi_nfit_clear_to_send(struct nvdimm_bus_descriptor * nd_desc,struct nvdimm * nvdimm,unsigned int cmd)3332 static int acpi_nfit_clear_to_send(struct nvdimm_bus_descriptor *nd_desc,
3333 		struct nvdimm *nvdimm, unsigned int cmd)
3334 {
3335 	struct acpi_nfit_desc *acpi_desc = to_acpi_nfit_desc(nd_desc);
3336 
3337 	if (nvdimm)
3338 		return 0;
3339 	if (cmd != ND_CMD_ARS_START)
3340 		return 0;
3341 
3342 	/*
3343 	 * The kernel and userspace may race to initiate a scrub, but
3344 	 * the scrub thread is prepared to lose that initial race.  It
3345 	 * just needs guarantees that any ars it initiates are not
3346 	 * interrupted by any intervening start reqeusts from userspace.
3347 	 */
3348 	if (work_busy(&acpi_desc->dwork.work))
3349 		return -EBUSY;
3350 
3351 	return 0;
3352 }
3353 
acpi_nfit_ars_rescan(struct acpi_nfit_desc * acpi_desc,enum nfit_ars_state req_type)3354 int acpi_nfit_ars_rescan(struct acpi_nfit_desc *acpi_desc,
3355 		enum nfit_ars_state req_type)
3356 {
3357 	struct device *dev = acpi_desc->dev;
3358 	int scheduled = 0, busy = 0;
3359 	struct nfit_spa *nfit_spa;
3360 
3361 	mutex_lock(&acpi_desc->init_mutex);
3362 	if (test_bit(ARS_CANCEL, &acpi_desc->scrub_flags)) {
3363 		mutex_unlock(&acpi_desc->init_mutex);
3364 		return 0;
3365 	}
3366 
3367 	list_for_each_entry(nfit_spa, &acpi_desc->spas, list) {
3368 		int type = nfit_spa_type(nfit_spa->spa);
3369 
3370 		if (type != NFIT_SPA_PM && type != NFIT_SPA_VOLATILE)
3371 			continue;
3372 		if (test_bit(ARS_FAILED, &nfit_spa->ars_state))
3373 			continue;
3374 
3375 		if (test_and_set_bit(req_type, &nfit_spa->ars_state))
3376 			busy++;
3377 		else
3378 			scheduled++;
3379 	}
3380 	if (scheduled) {
3381 		sched_ars(acpi_desc);
3382 		dev_dbg(dev, "ars_scan triggered\n");
3383 	}
3384 	mutex_unlock(&acpi_desc->init_mutex);
3385 
3386 	if (scheduled)
3387 		return 0;
3388 	if (busy)
3389 		return -EBUSY;
3390 	return -ENOTTY;
3391 }
3392 
acpi_nfit_desc_init(struct acpi_nfit_desc * acpi_desc,struct device * dev)3393 void acpi_nfit_desc_init(struct acpi_nfit_desc *acpi_desc, struct device *dev)
3394 {
3395 	struct nvdimm_bus_descriptor *nd_desc;
3396 
3397 	dev_set_drvdata(dev, acpi_desc);
3398 	acpi_desc->dev = dev;
3399 	acpi_desc->blk_do_io = acpi_nfit_blk_region_do_io;
3400 	nd_desc = &acpi_desc->nd_desc;
3401 	nd_desc->provider_name = "ACPI.NFIT";
3402 	nd_desc->module = THIS_MODULE;
3403 	nd_desc->ndctl = acpi_nfit_ctl;
3404 	nd_desc->flush_probe = acpi_nfit_flush_probe;
3405 	nd_desc->clear_to_send = acpi_nfit_clear_to_send;
3406 	nd_desc->attr_groups = acpi_nfit_attribute_groups;
3407 
3408 	INIT_LIST_HEAD(&acpi_desc->spas);
3409 	INIT_LIST_HEAD(&acpi_desc->dcrs);
3410 	INIT_LIST_HEAD(&acpi_desc->bdws);
3411 	INIT_LIST_HEAD(&acpi_desc->idts);
3412 	INIT_LIST_HEAD(&acpi_desc->flushes);
3413 	INIT_LIST_HEAD(&acpi_desc->memdevs);
3414 	INIT_LIST_HEAD(&acpi_desc->dimms);
3415 	INIT_LIST_HEAD(&acpi_desc->list);
3416 	mutex_init(&acpi_desc->init_mutex);
3417 	acpi_desc->scrub_tmo = 1;
3418 	INIT_DELAYED_WORK(&acpi_desc->dwork, acpi_nfit_scrub);
3419 }
3420 EXPORT_SYMBOL_GPL(acpi_nfit_desc_init);
3421 
acpi_nfit_put_table(void * table)3422 static void acpi_nfit_put_table(void *table)
3423 {
3424 	acpi_put_table(table);
3425 }
3426 
acpi_nfit_shutdown(void * data)3427 void acpi_nfit_shutdown(void *data)
3428 {
3429 	struct acpi_nfit_desc *acpi_desc = data;
3430 	struct device *bus_dev = to_nvdimm_bus_dev(acpi_desc->nvdimm_bus);
3431 
3432 	/*
3433 	 * Destruct under acpi_desc_lock so that nfit_handle_mce does not
3434 	 * race teardown
3435 	 */
3436 	mutex_lock(&acpi_desc_lock);
3437 	list_del(&acpi_desc->list);
3438 	mutex_unlock(&acpi_desc_lock);
3439 
3440 	mutex_lock(&acpi_desc->init_mutex);
3441 	set_bit(ARS_CANCEL, &acpi_desc->scrub_flags);
3442 	cancel_delayed_work_sync(&acpi_desc->dwork);
3443 	mutex_unlock(&acpi_desc->init_mutex);
3444 
3445 	/*
3446 	 * Bounce the nvdimm bus lock to make sure any in-flight
3447 	 * acpi_nfit_ars_rescan() submissions have had a chance to
3448 	 * either submit or see ->cancel set.
3449 	 */
3450 	device_lock(bus_dev);
3451 	device_unlock(bus_dev);
3452 
3453 	flush_workqueue(nfit_wq);
3454 }
3455 EXPORT_SYMBOL_GPL(acpi_nfit_shutdown);
3456 
acpi_nfit_add(struct acpi_device * adev)3457 static int acpi_nfit_add(struct acpi_device *adev)
3458 {
3459 	struct acpi_buffer buf = { ACPI_ALLOCATE_BUFFER, NULL };
3460 	struct acpi_nfit_desc *acpi_desc;
3461 	struct device *dev = &adev->dev;
3462 	struct acpi_table_header *tbl;
3463 	acpi_status status = AE_OK;
3464 	acpi_size sz;
3465 	int rc = 0;
3466 
3467 	status = acpi_get_table(ACPI_SIG_NFIT, 0, &tbl);
3468 	if (ACPI_FAILURE(status)) {
3469 		/* This is ok, we could have an nvdimm hotplugged later */
3470 		dev_dbg(dev, "failed to find NFIT at startup\n");
3471 		return 0;
3472 	}
3473 
3474 	rc = devm_add_action_or_reset(dev, acpi_nfit_put_table, tbl);
3475 	if (rc)
3476 		return rc;
3477 	sz = tbl->length;
3478 
3479 	acpi_desc = devm_kzalloc(dev, sizeof(*acpi_desc), GFP_KERNEL);
3480 	if (!acpi_desc)
3481 		return -ENOMEM;
3482 	acpi_nfit_desc_init(acpi_desc, &adev->dev);
3483 
3484 	/* Save the acpi header for exporting the revision via sysfs */
3485 	acpi_desc->acpi_header = *tbl;
3486 
3487 	/* Evaluate _FIT and override with that if present */
3488 	status = acpi_evaluate_object(adev->handle, "_FIT", NULL, &buf);
3489 	if (ACPI_SUCCESS(status) && buf.length > 0) {
3490 		union acpi_object *obj = buf.pointer;
3491 
3492 		if (obj->type == ACPI_TYPE_BUFFER)
3493 			rc = acpi_nfit_init(acpi_desc, obj->buffer.pointer,
3494 					obj->buffer.length);
3495 		else
3496 			dev_dbg(dev, "invalid type %d, ignoring _FIT\n",
3497 				(int) obj->type);
3498 		kfree(buf.pointer);
3499 	} else
3500 		/* skip over the lead-in header table */
3501 		rc = acpi_nfit_init(acpi_desc, (void *) tbl
3502 				+ sizeof(struct acpi_table_nfit),
3503 				sz - sizeof(struct acpi_table_nfit));
3504 
3505 	if (rc)
3506 		return rc;
3507 	return devm_add_action_or_reset(dev, acpi_nfit_shutdown, acpi_desc);
3508 }
3509 
acpi_nfit_remove(struct acpi_device * adev)3510 static int acpi_nfit_remove(struct acpi_device *adev)
3511 {
3512 	/* see acpi_nfit_unregister */
3513 	return 0;
3514 }
3515 
acpi_nfit_update_notify(struct device * dev,acpi_handle handle)3516 static void acpi_nfit_update_notify(struct device *dev, acpi_handle handle)
3517 {
3518 	struct acpi_nfit_desc *acpi_desc = dev_get_drvdata(dev);
3519 	struct acpi_buffer buf = { ACPI_ALLOCATE_BUFFER, NULL };
3520 	union acpi_object *obj;
3521 	acpi_status status;
3522 	int ret;
3523 
3524 	if (!dev->driver) {
3525 		/* dev->driver may be null if we're being removed */
3526 		dev_dbg(dev, "no driver found for dev\n");
3527 		return;
3528 	}
3529 
3530 	if (!acpi_desc) {
3531 		acpi_desc = devm_kzalloc(dev, sizeof(*acpi_desc), GFP_KERNEL);
3532 		if (!acpi_desc)
3533 			return;
3534 		acpi_nfit_desc_init(acpi_desc, dev);
3535 	} else {
3536 		/*
3537 		 * Finish previous registration before considering new
3538 		 * regions.
3539 		 */
3540 		flush_workqueue(nfit_wq);
3541 	}
3542 
3543 	/* Evaluate _FIT */
3544 	status = acpi_evaluate_object(handle, "_FIT", NULL, &buf);
3545 	if (ACPI_FAILURE(status)) {
3546 		dev_err(dev, "failed to evaluate _FIT\n");
3547 		return;
3548 	}
3549 
3550 	obj = buf.pointer;
3551 	if (obj->type == ACPI_TYPE_BUFFER) {
3552 		ret = acpi_nfit_init(acpi_desc, obj->buffer.pointer,
3553 				obj->buffer.length);
3554 		if (ret)
3555 			dev_err(dev, "failed to merge updated NFIT\n");
3556 	} else
3557 		dev_err(dev, "Invalid _FIT\n");
3558 	kfree(buf.pointer);
3559 }
3560 
acpi_nfit_uc_error_notify(struct device * dev,acpi_handle handle)3561 static void acpi_nfit_uc_error_notify(struct device *dev, acpi_handle handle)
3562 {
3563 	struct acpi_nfit_desc *acpi_desc = dev_get_drvdata(dev);
3564 
3565 	if (acpi_desc->scrub_mode == HW_ERROR_SCRUB_ON)
3566 		acpi_nfit_ars_rescan(acpi_desc, ARS_REQ_LONG);
3567 	else
3568 		acpi_nfit_ars_rescan(acpi_desc, ARS_REQ_SHORT);
3569 }
3570 
__acpi_nfit_notify(struct device * dev,acpi_handle handle,u32 event)3571 void __acpi_nfit_notify(struct device *dev, acpi_handle handle, u32 event)
3572 {
3573 	dev_dbg(dev, "event: 0x%x\n", event);
3574 
3575 	switch (event) {
3576 	case NFIT_NOTIFY_UPDATE:
3577 		return acpi_nfit_update_notify(dev, handle);
3578 	case NFIT_NOTIFY_UC_MEMORY_ERROR:
3579 		return acpi_nfit_uc_error_notify(dev, handle);
3580 	default:
3581 		return;
3582 	}
3583 }
3584 EXPORT_SYMBOL_GPL(__acpi_nfit_notify);
3585 
acpi_nfit_notify(struct acpi_device * adev,u32 event)3586 static void acpi_nfit_notify(struct acpi_device *adev, u32 event)
3587 {
3588 	device_lock(&adev->dev);
3589 	__acpi_nfit_notify(&adev->dev, adev->handle, event);
3590 	device_unlock(&adev->dev);
3591 }
3592 
3593 static const struct acpi_device_id acpi_nfit_ids[] = {
3594 	{ "ACPI0012", 0 },
3595 	{ "", 0 },
3596 };
3597 MODULE_DEVICE_TABLE(acpi, acpi_nfit_ids);
3598 
3599 static struct acpi_driver acpi_nfit_driver = {
3600 	.name = KBUILD_MODNAME,
3601 	.ids = acpi_nfit_ids,
3602 	.ops = {
3603 		.add = acpi_nfit_add,
3604 		.remove = acpi_nfit_remove,
3605 		.notify = acpi_nfit_notify,
3606 	},
3607 };
3608 
nfit_init(void)3609 static __init int nfit_init(void)
3610 {
3611 	int ret;
3612 
3613 	BUILD_BUG_ON(sizeof(struct acpi_table_nfit) != 40);
3614 	BUILD_BUG_ON(sizeof(struct acpi_nfit_system_address) != 56);
3615 	BUILD_BUG_ON(sizeof(struct acpi_nfit_memory_map) != 48);
3616 	BUILD_BUG_ON(sizeof(struct acpi_nfit_interleave) != 20);
3617 	BUILD_BUG_ON(sizeof(struct acpi_nfit_smbios) != 9);
3618 	BUILD_BUG_ON(sizeof(struct acpi_nfit_control_region) != 80);
3619 	BUILD_BUG_ON(sizeof(struct acpi_nfit_data_region) != 40);
3620 	BUILD_BUG_ON(sizeof(struct acpi_nfit_capabilities) != 16);
3621 
3622 	guid_parse(UUID_VOLATILE_MEMORY, &nfit_uuid[NFIT_SPA_VOLATILE]);
3623 	guid_parse(UUID_PERSISTENT_MEMORY, &nfit_uuid[NFIT_SPA_PM]);
3624 	guid_parse(UUID_CONTROL_REGION, &nfit_uuid[NFIT_SPA_DCR]);
3625 	guid_parse(UUID_DATA_REGION, &nfit_uuid[NFIT_SPA_BDW]);
3626 	guid_parse(UUID_VOLATILE_VIRTUAL_DISK, &nfit_uuid[NFIT_SPA_VDISK]);
3627 	guid_parse(UUID_VOLATILE_VIRTUAL_CD, &nfit_uuid[NFIT_SPA_VCD]);
3628 	guid_parse(UUID_PERSISTENT_VIRTUAL_DISK, &nfit_uuid[NFIT_SPA_PDISK]);
3629 	guid_parse(UUID_PERSISTENT_VIRTUAL_CD, &nfit_uuid[NFIT_SPA_PCD]);
3630 	guid_parse(UUID_NFIT_BUS, &nfit_uuid[NFIT_DEV_BUS]);
3631 	guid_parse(UUID_NFIT_DIMM, &nfit_uuid[NFIT_DEV_DIMM]);
3632 	guid_parse(UUID_NFIT_DIMM_N_HPE1, &nfit_uuid[NFIT_DEV_DIMM_N_HPE1]);
3633 	guid_parse(UUID_NFIT_DIMM_N_HPE2, &nfit_uuid[NFIT_DEV_DIMM_N_HPE2]);
3634 	guid_parse(UUID_NFIT_DIMM_N_MSFT, &nfit_uuid[NFIT_DEV_DIMM_N_MSFT]);
3635 	guid_parse(UUID_NFIT_DIMM_N_HYPERV, &nfit_uuid[NFIT_DEV_DIMM_N_HYPERV]);
3636 
3637 	nfit_wq = create_singlethread_workqueue("nfit");
3638 	if (!nfit_wq)
3639 		return -ENOMEM;
3640 
3641 	nfit_mce_register();
3642 	ret = acpi_bus_register_driver(&acpi_nfit_driver);
3643 	if (ret) {
3644 		nfit_mce_unregister();
3645 		destroy_workqueue(nfit_wq);
3646 	}
3647 
3648 	return ret;
3649 
3650 }
3651 
nfit_exit(void)3652 static __exit void nfit_exit(void)
3653 {
3654 	nfit_mce_unregister();
3655 	acpi_bus_unregister_driver(&acpi_nfit_driver);
3656 	destroy_workqueue(nfit_wq);
3657 	WARN_ON(!list_empty(&acpi_descs));
3658 }
3659 
3660 module_init(nfit_init);
3661 module_exit(nfit_exit);
3662 MODULE_LICENSE("GPL v2");
3663 MODULE_AUTHOR("Intel Corporation");
3664