• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  *  acpi_osl.c - OS-dependent functions ($Revision: 83 $)
3  *
4  *  Copyright (C) 2000       Andrew Henroid
5  *  Copyright (C) 2001, 2002 Andy Grover <andrew.grover@intel.com>
6  *  Copyright (C) 2001, 2002 Paul Diefenbaugh <paul.s.diefenbaugh@intel.com>
7  *  Copyright (c) 2008 Intel Corporation
8  *   Author: Matthew Wilcox <willy@linux.intel.com>
9  *
10  * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
11  *
12  *  This program is free software; you can redistribute it and/or modify
13  *  it under the terms of the GNU General Public License as published by
14  *  the Free Software Foundation; either version 2 of the License, or
15  *  (at your option) any later version.
16  *
17  *  This program is distributed in the hope that it will be useful,
18  *  but WITHOUT ANY WARRANTY; without even the implied warranty of
19  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
20  *  GNU General Public License for more details.
21  *
22  * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
23  *
24  */
25 
26 #include <linux/module.h>
27 #include <linux/kernel.h>
28 #include <linux/slab.h>
29 #include <linux/mm.h>
30 #include <linux/highmem.h>
31 #include <linux/pci.h>
32 #include <linux/interrupt.h>
33 #include <linux/kmod.h>
34 #include <linux/delay.h>
35 #include <linux/workqueue.h>
36 #include <linux/nmi.h>
37 #include <linux/acpi.h>
38 #include <linux/efi.h>
39 #include <linux/ioport.h>
40 #include <linux/list.h>
41 #include <linux/jiffies.h>
42 #include <linux/semaphore.h>
43 
44 #include <asm/io.h>
45 #include <linux/uaccess.h>
46 #include <linux/io-64-nonatomic-lo-hi.h>
47 
48 #include "acpica/accommon.h"
49 #include "acpica/acnamesp.h"
50 #include "internal.h"
51 
52 #define _COMPONENT		ACPI_OS_SERVICES
53 ACPI_MODULE_NAME("osl");
54 
55 struct acpi_os_dpc {
56 	acpi_osd_exec_callback function;
57 	void *context;
58 	struct work_struct work;
59 };
60 
61 #ifdef ENABLE_DEBUGGER
62 #include <linux/kdb.h>
63 
64 /* stuff for debugger support */
65 int acpi_in_debugger;
66 EXPORT_SYMBOL(acpi_in_debugger);
67 #endif				/*ENABLE_DEBUGGER */
68 
69 static int (*__acpi_os_prepare_sleep)(u8 sleep_state, u32 pm1a_ctrl,
70 				      u32 pm1b_ctrl);
71 static int (*__acpi_os_prepare_extended_sleep)(u8 sleep_state, u32 val_a,
72 				      u32 val_b);
73 
74 static acpi_osd_handler acpi_irq_handler;
75 static void *acpi_irq_context;
76 static struct workqueue_struct *kacpid_wq;
77 static struct workqueue_struct *kacpi_notify_wq;
78 static struct workqueue_struct *kacpi_hotplug_wq;
79 static bool acpi_os_initialized;
80 unsigned int acpi_sci_irq = INVALID_ACPI_IRQ;
81 bool acpi_permanent_mmap = false;
82 
83 /*
84  * This list of permanent mappings is for memory that may be accessed from
85  * interrupt context, where we can't do the ioremap().
86  */
87 struct acpi_ioremap {
88 	struct list_head list;
89 	void __iomem *virt;
90 	acpi_physical_address phys;
91 	acpi_size size;
92 	unsigned long refcount;
93 };
94 
95 static LIST_HEAD(acpi_ioremaps);
96 static DEFINE_MUTEX(acpi_ioremap_lock);
97 
acpi_request_region(struct acpi_generic_address * gas,unsigned int length,char * desc)98 static void __init acpi_request_region (struct acpi_generic_address *gas,
99 	unsigned int length, char *desc)
100 {
101 	u64 addr;
102 
103 	/* Handle possible alignment issues */
104 	memcpy(&addr, &gas->address, sizeof(addr));
105 	if (!addr || !length)
106 		return;
107 
108 	/* Resources are never freed */
109 	if (gas->space_id == ACPI_ADR_SPACE_SYSTEM_IO)
110 		request_region(addr, length, desc);
111 	else if (gas->space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY)
112 		request_mem_region(addr, length, desc);
113 }
114 
acpi_reserve_resources(void)115 static int __init acpi_reserve_resources(void)
116 {
117 	acpi_request_region(&acpi_gbl_FADT.xpm1a_event_block, acpi_gbl_FADT.pm1_event_length,
118 		"ACPI PM1a_EVT_BLK");
119 
120 	acpi_request_region(&acpi_gbl_FADT.xpm1b_event_block, acpi_gbl_FADT.pm1_event_length,
121 		"ACPI PM1b_EVT_BLK");
122 
123 	acpi_request_region(&acpi_gbl_FADT.xpm1a_control_block, acpi_gbl_FADT.pm1_control_length,
124 		"ACPI PM1a_CNT_BLK");
125 
126 	acpi_request_region(&acpi_gbl_FADT.xpm1b_control_block, acpi_gbl_FADT.pm1_control_length,
127 		"ACPI PM1b_CNT_BLK");
128 
129 	if (acpi_gbl_FADT.pm_timer_length == 4)
130 		acpi_request_region(&acpi_gbl_FADT.xpm_timer_block, 4, "ACPI PM_TMR");
131 
132 	acpi_request_region(&acpi_gbl_FADT.xpm2_control_block, acpi_gbl_FADT.pm2_control_length,
133 		"ACPI PM2_CNT_BLK");
134 
135 	/* Length of GPE blocks must be a non-negative multiple of 2 */
136 
137 	if (!(acpi_gbl_FADT.gpe0_block_length & 0x1))
138 		acpi_request_region(&acpi_gbl_FADT.xgpe0_block,
139 			       acpi_gbl_FADT.gpe0_block_length, "ACPI GPE0_BLK");
140 
141 	if (!(acpi_gbl_FADT.gpe1_block_length & 0x1))
142 		acpi_request_region(&acpi_gbl_FADT.xgpe1_block,
143 			       acpi_gbl_FADT.gpe1_block_length, "ACPI GPE1_BLK");
144 
145 	return 0;
146 }
147 fs_initcall_sync(acpi_reserve_resources);
148 
acpi_os_printf(const char * fmt,...)149 void acpi_os_printf(const char *fmt, ...)
150 {
151 	va_list args;
152 	va_start(args, fmt);
153 	acpi_os_vprintf(fmt, args);
154 	va_end(args);
155 }
156 EXPORT_SYMBOL(acpi_os_printf);
157 
acpi_os_vprintf(const char * fmt,va_list args)158 void acpi_os_vprintf(const char *fmt, va_list args)
159 {
160 	static char buffer[512];
161 
162 	vsprintf(buffer, fmt, args);
163 
164 #ifdef ENABLE_DEBUGGER
165 	if (acpi_in_debugger) {
166 		kdb_printf("%s", buffer);
167 	} else {
168 		if (printk_get_level(buffer))
169 			printk("%s", buffer);
170 		else
171 			printk(KERN_CONT "%s", buffer);
172 	}
173 #else
174 	if (acpi_debugger_write_log(buffer) < 0) {
175 		if (printk_get_level(buffer))
176 			printk("%s", buffer);
177 		else
178 			printk(KERN_CONT "%s", buffer);
179 	}
180 #endif
181 }
182 
183 #ifdef CONFIG_KEXEC
184 static unsigned long acpi_rsdp;
setup_acpi_rsdp(char * arg)185 static int __init setup_acpi_rsdp(char *arg)
186 {
187 	return kstrtoul(arg, 16, &acpi_rsdp);
188 }
189 early_param("acpi_rsdp", setup_acpi_rsdp);
190 #endif
191 
acpi_os_get_root_pointer(void)192 acpi_physical_address __init acpi_os_get_root_pointer(void)
193 {
194 	acpi_physical_address pa;
195 
196 #ifdef CONFIG_KEXEC
197 	if (acpi_rsdp)
198 		return acpi_rsdp;
199 #endif
200 	pa = acpi_arch_get_root_pointer();
201 	if (pa)
202 		return pa;
203 
204 	if (efi_enabled(EFI_CONFIG_TABLES)) {
205 		if (efi.acpi20 != EFI_INVALID_TABLE_ADDR)
206 			return efi.acpi20;
207 		if (efi.acpi != EFI_INVALID_TABLE_ADDR)
208 			return efi.acpi;
209 		pr_err(PREFIX "System description tables not found\n");
210 	} else if (IS_ENABLED(CONFIG_ACPI_LEGACY_TABLES_LOOKUP)) {
211 		acpi_find_root_pointer(&pa);
212 	}
213 
214 	return pa;
215 }
216 
217 /* Must be called with 'acpi_ioremap_lock' or RCU read lock held. */
218 static struct acpi_ioremap *
acpi_map_lookup(acpi_physical_address phys,acpi_size size)219 acpi_map_lookup(acpi_physical_address phys, acpi_size size)
220 {
221 	struct acpi_ioremap *map;
222 
223 	list_for_each_entry_rcu(map, &acpi_ioremaps, list)
224 		if (map->phys <= phys &&
225 		    phys + size <= map->phys + map->size)
226 			return map;
227 
228 	return NULL;
229 }
230 
231 /* Must be called with 'acpi_ioremap_lock' or RCU read lock held. */
232 static void __iomem *
acpi_map_vaddr_lookup(acpi_physical_address phys,unsigned int size)233 acpi_map_vaddr_lookup(acpi_physical_address phys, unsigned int size)
234 {
235 	struct acpi_ioremap *map;
236 
237 	map = acpi_map_lookup(phys, size);
238 	if (map)
239 		return map->virt + (phys - map->phys);
240 
241 	return NULL;
242 }
243 
acpi_os_get_iomem(acpi_physical_address phys,unsigned int size)244 void __iomem *acpi_os_get_iomem(acpi_physical_address phys, unsigned int size)
245 {
246 	struct acpi_ioremap *map;
247 	void __iomem *virt = NULL;
248 
249 	mutex_lock(&acpi_ioremap_lock);
250 	map = acpi_map_lookup(phys, size);
251 	if (map) {
252 		virt = map->virt + (phys - map->phys);
253 		map->refcount++;
254 	}
255 	mutex_unlock(&acpi_ioremap_lock);
256 	return virt;
257 }
258 EXPORT_SYMBOL_GPL(acpi_os_get_iomem);
259 
260 /* Must be called with 'acpi_ioremap_lock' or RCU read lock held. */
261 static struct acpi_ioremap *
acpi_map_lookup_virt(void __iomem * virt,acpi_size size)262 acpi_map_lookup_virt(void __iomem *virt, acpi_size size)
263 {
264 	struct acpi_ioremap *map;
265 
266 	list_for_each_entry_rcu(map, &acpi_ioremaps, list)
267 		if (map->virt <= virt &&
268 		    virt + size <= map->virt + map->size)
269 			return map;
270 
271 	return NULL;
272 }
273 
274 #if defined(CONFIG_IA64) || defined(CONFIG_ARM64)
275 /* ioremap will take care of cache attributes */
276 #define should_use_kmap(pfn)   0
277 #else
278 #define should_use_kmap(pfn)   page_is_ram(pfn)
279 #endif
280 
acpi_map(acpi_physical_address pg_off,unsigned long pg_sz)281 static void __iomem *acpi_map(acpi_physical_address pg_off, unsigned long pg_sz)
282 {
283 	unsigned long pfn;
284 
285 	pfn = pg_off >> PAGE_SHIFT;
286 	if (should_use_kmap(pfn)) {
287 		if (pg_sz > PAGE_SIZE)
288 			return NULL;
289 		return (void __iomem __force *)kmap(pfn_to_page(pfn));
290 	} else
291 		return acpi_os_ioremap(pg_off, pg_sz);
292 }
293 
acpi_unmap(acpi_physical_address pg_off,void __iomem * vaddr)294 static void acpi_unmap(acpi_physical_address pg_off, void __iomem *vaddr)
295 {
296 	unsigned long pfn;
297 
298 	pfn = pg_off >> PAGE_SHIFT;
299 	if (should_use_kmap(pfn))
300 		kunmap(pfn_to_page(pfn));
301 	else
302 		iounmap(vaddr);
303 }
304 
305 /**
306  * acpi_os_map_iomem - Get a virtual address for a given physical address range.
307  * @phys: Start of the physical address range to map.
308  * @size: Size of the physical address range to map.
309  *
310  * Look up the given physical address range in the list of existing ACPI memory
311  * mappings.  If found, get a reference to it and return a pointer to it (its
312  * virtual address).  If not found, map it, add it to that list and return a
313  * pointer to it.
314  *
315  * During early init (when acpi_permanent_mmap has not been set yet) this
316  * routine simply calls __acpi_map_table() to get the job done.
317  */
318 void __iomem *__ref
acpi_os_map_iomem(acpi_physical_address phys,acpi_size size)319 acpi_os_map_iomem(acpi_physical_address phys, acpi_size size)
320 {
321 	struct acpi_ioremap *map;
322 	void __iomem *virt;
323 	acpi_physical_address pg_off;
324 	acpi_size pg_sz;
325 
326 	if (phys > ULONG_MAX) {
327 		printk(KERN_ERR PREFIX "Cannot map memory that high\n");
328 		return NULL;
329 	}
330 
331 	if (!acpi_permanent_mmap)
332 		return __acpi_map_table((unsigned long)phys, size);
333 
334 	mutex_lock(&acpi_ioremap_lock);
335 	/* Check if there's a suitable mapping already. */
336 	map = acpi_map_lookup(phys, size);
337 	if (map) {
338 		map->refcount++;
339 		goto out;
340 	}
341 
342 	map = kzalloc(sizeof(*map), GFP_KERNEL);
343 	if (!map) {
344 		mutex_unlock(&acpi_ioremap_lock);
345 		return NULL;
346 	}
347 
348 	pg_off = round_down(phys, PAGE_SIZE);
349 	pg_sz = round_up(phys + size, PAGE_SIZE) - pg_off;
350 	virt = acpi_map(pg_off, pg_sz);
351 	if (!virt) {
352 		mutex_unlock(&acpi_ioremap_lock);
353 		kfree(map);
354 		return NULL;
355 	}
356 
357 	INIT_LIST_HEAD(&map->list);
358 	map->virt = virt;
359 	map->phys = pg_off;
360 	map->size = pg_sz;
361 	map->refcount = 1;
362 
363 	list_add_tail_rcu(&map->list, &acpi_ioremaps);
364 
365 out:
366 	mutex_unlock(&acpi_ioremap_lock);
367 	return map->virt + (phys - map->phys);
368 }
369 EXPORT_SYMBOL_GPL(acpi_os_map_iomem);
370 
acpi_os_map_memory(acpi_physical_address phys,acpi_size size)371 void *__ref acpi_os_map_memory(acpi_physical_address phys, acpi_size size)
372 {
373 	return (void *)acpi_os_map_iomem(phys, size);
374 }
375 EXPORT_SYMBOL_GPL(acpi_os_map_memory);
376 
377 /* Must be called with mutex_lock(&acpi_ioremap_lock) */
acpi_os_drop_map_ref(struct acpi_ioremap * map)378 static unsigned long acpi_os_drop_map_ref(struct acpi_ioremap *map)
379 {
380 	unsigned long refcount = --map->refcount;
381 
382 	if (!refcount)
383 		list_del_rcu(&map->list);
384 	return refcount;
385 }
386 
acpi_os_map_cleanup(struct acpi_ioremap * map)387 static void acpi_os_map_cleanup(struct acpi_ioremap *map)
388 {
389 	synchronize_rcu_expedited();
390 	acpi_unmap(map->phys, map->virt);
391 	kfree(map);
392 }
393 
394 /**
395  * acpi_os_unmap_iomem - Drop a memory mapping reference.
396  * @virt: Start of the address range to drop a reference to.
397  * @size: Size of the address range to drop a reference to.
398  *
399  * Look up the given virtual address range in the list of existing ACPI memory
400  * mappings, drop a reference to it and unmap it if there are no more active
401  * references to it.
402  *
403  * During early init (when acpi_permanent_mmap has not been set yet) this
404  * routine simply calls __acpi_unmap_table() to get the job done.  Since
405  * __acpi_unmap_table() is an __init function, the __ref annotation is needed
406  * here.
407  */
acpi_os_unmap_iomem(void __iomem * virt,acpi_size size)408 void __ref acpi_os_unmap_iomem(void __iomem *virt, acpi_size size)
409 {
410 	struct acpi_ioremap *map;
411 	unsigned long refcount;
412 
413 	if (!acpi_permanent_mmap) {
414 		__acpi_unmap_table(virt, size);
415 		return;
416 	}
417 
418 	mutex_lock(&acpi_ioremap_lock);
419 	map = acpi_map_lookup_virt(virt, size);
420 	if (!map) {
421 		mutex_unlock(&acpi_ioremap_lock);
422 		WARN(true, PREFIX "%s: bad address %p\n", __func__, virt);
423 		return;
424 	}
425 	refcount = acpi_os_drop_map_ref(map);
426 	mutex_unlock(&acpi_ioremap_lock);
427 
428 	if (!refcount)
429 		acpi_os_map_cleanup(map);
430 }
431 EXPORT_SYMBOL_GPL(acpi_os_unmap_iomem);
432 
acpi_os_unmap_memory(void * virt,acpi_size size)433 void __ref acpi_os_unmap_memory(void *virt, acpi_size size)
434 {
435 	return acpi_os_unmap_iomem((void __iomem *)virt, size);
436 }
437 EXPORT_SYMBOL_GPL(acpi_os_unmap_memory);
438 
acpi_os_map_generic_address(struct acpi_generic_address * gas)439 int acpi_os_map_generic_address(struct acpi_generic_address *gas)
440 {
441 	u64 addr;
442 	void __iomem *virt;
443 
444 	if (gas->space_id != ACPI_ADR_SPACE_SYSTEM_MEMORY)
445 		return 0;
446 
447 	/* Handle possible alignment issues */
448 	memcpy(&addr, &gas->address, sizeof(addr));
449 	if (!addr || !gas->bit_width)
450 		return -EINVAL;
451 
452 	virt = acpi_os_map_iomem(addr, gas->bit_width / 8);
453 	if (!virt)
454 		return -EIO;
455 
456 	return 0;
457 }
458 EXPORT_SYMBOL(acpi_os_map_generic_address);
459 
acpi_os_unmap_generic_address(struct acpi_generic_address * gas)460 void acpi_os_unmap_generic_address(struct acpi_generic_address *gas)
461 {
462 	u64 addr;
463 	struct acpi_ioremap *map;
464 	unsigned long refcount;
465 
466 	if (gas->space_id != ACPI_ADR_SPACE_SYSTEM_MEMORY)
467 		return;
468 
469 	/* Handle possible alignment issues */
470 	memcpy(&addr, &gas->address, sizeof(addr));
471 	if (!addr || !gas->bit_width)
472 		return;
473 
474 	mutex_lock(&acpi_ioremap_lock);
475 	map = acpi_map_lookup(addr, gas->bit_width / 8);
476 	if (!map) {
477 		mutex_unlock(&acpi_ioremap_lock);
478 		return;
479 	}
480 	refcount = acpi_os_drop_map_ref(map);
481 	mutex_unlock(&acpi_ioremap_lock);
482 
483 	if (!refcount)
484 		acpi_os_map_cleanup(map);
485 }
486 EXPORT_SYMBOL(acpi_os_unmap_generic_address);
487 
488 #ifdef ACPI_FUTURE_USAGE
489 acpi_status
acpi_os_get_physical_address(void * virt,acpi_physical_address * phys)490 acpi_os_get_physical_address(void *virt, acpi_physical_address * phys)
491 {
492 	if (!phys || !virt)
493 		return AE_BAD_PARAMETER;
494 
495 	*phys = virt_to_phys(virt);
496 
497 	return AE_OK;
498 }
499 #endif
500 
501 #ifdef CONFIG_ACPI_REV_OVERRIDE_POSSIBLE
502 static bool acpi_rev_override;
503 
acpi_rev_override_setup(char * str)504 int __init acpi_rev_override_setup(char *str)
505 {
506 	acpi_rev_override = true;
507 	return 1;
508 }
509 __setup("acpi_rev_override", acpi_rev_override_setup);
510 #else
511 #define acpi_rev_override	false
512 #endif
513 
514 #define ACPI_MAX_OVERRIDE_LEN 100
515 
516 static char acpi_os_name[ACPI_MAX_OVERRIDE_LEN];
517 
518 acpi_status
acpi_os_predefined_override(const struct acpi_predefined_names * init_val,acpi_string * new_val)519 acpi_os_predefined_override(const struct acpi_predefined_names *init_val,
520 			    acpi_string *new_val)
521 {
522 	if (!init_val || !new_val)
523 		return AE_BAD_PARAMETER;
524 
525 	*new_val = NULL;
526 	if (!memcmp(init_val->name, "_OS_", 4) && strlen(acpi_os_name)) {
527 		printk(KERN_INFO PREFIX "Overriding _OS definition to '%s'\n",
528 		       acpi_os_name);
529 		*new_val = acpi_os_name;
530 	}
531 
532 	if (!memcmp(init_val->name, "_REV", 4) && acpi_rev_override) {
533 		printk(KERN_INFO PREFIX "Overriding _REV return value to 5\n");
534 		*new_val = (char *)5;
535 	}
536 
537 	return AE_OK;
538 }
539 
acpi_irq(int irq,void * dev_id)540 static irqreturn_t acpi_irq(int irq, void *dev_id)
541 {
542 	u32 handled;
543 
544 	handled = (*acpi_irq_handler) (acpi_irq_context);
545 
546 	if (handled) {
547 		acpi_irq_handled++;
548 		return IRQ_HANDLED;
549 	} else {
550 		acpi_irq_not_handled++;
551 		return IRQ_NONE;
552 	}
553 }
554 
555 acpi_status
acpi_os_install_interrupt_handler(u32 gsi,acpi_osd_handler handler,void * context)556 acpi_os_install_interrupt_handler(u32 gsi, acpi_osd_handler handler,
557 				  void *context)
558 {
559 	unsigned int irq;
560 
561 	acpi_irq_stats_init();
562 
563 	/*
564 	 * ACPI interrupts different from the SCI in our copy of the FADT are
565 	 * not supported.
566 	 */
567 	if (gsi != acpi_gbl_FADT.sci_interrupt)
568 		return AE_BAD_PARAMETER;
569 
570 	if (acpi_irq_handler)
571 		return AE_ALREADY_ACQUIRED;
572 
573 	if (acpi_gsi_to_irq(gsi, &irq) < 0) {
574 		printk(KERN_ERR PREFIX "SCI (ACPI GSI %d) not registered\n",
575 		       gsi);
576 		return AE_OK;
577 	}
578 
579 	acpi_irq_handler = handler;
580 	acpi_irq_context = context;
581 	if (request_irq(irq, acpi_irq, IRQF_SHARED, "acpi", acpi_irq)) {
582 		printk(KERN_ERR PREFIX "SCI (IRQ%d) allocation failed\n", irq);
583 		acpi_irq_handler = NULL;
584 		return AE_NOT_ACQUIRED;
585 	}
586 	acpi_sci_irq = irq;
587 
588 	return AE_OK;
589 }
590 
acpi_os_remove_interrupt_handler(u32 gsi,acpi_osd_handler handler)591 acpi_status acpi_os_remove_interrupt_handler(u32 gsi, acpi_osd_handler handler)
592 {
593 	if (gsi != acpi_gbl_FADT.sci_interrupt || !acpi_sci_irq_valid())
594 		return AE_BAD_PARAMETER;
595 
596 	free_irq(acpi_sci_irq, acpi_irq);
597 	acpi_irq_handler = NULL;
598 	acpi_sci_irq = INVALID_ACPI_IRQ;
599 
600 	return AE_OK;
601 }
602 
603 /*
604  * Running in interpreter thread context, safe to sleep
605  */
606 
acpi_os_sleep(u64 ms)607 void acpi_os_sleep(u64 ms)
608 {
609 	msleep(ms);
610 }
611 
acpi_os_stall(u32 us)612 void acpi_os_stall(u32 us)
613 {
614 	while (us) {
615 		u32 delay = 1000;
616 
617 		if (delay > us)
618 			delay = us;
619 		udelay(delay);
620 		touch_nmi_watchdog();
621 		us -= delay;
622 	}
623 }
624 
625 /*
626  * Support ACPI 3.0 AML Timer operand. Returns a 64-bit free-running,
627  * monotonically increasing timer with 100ns granularity. Do not use
628  * ktime_get() to implement this function because this function may get
629  * called after timekeeping has been suspended. Note: calling this function
630  * after timekeeping has been suspended may lead to unexpected results
631  * because when timekeeping is suspended the jiffies counter is not
632  * incremented. See also timekeeping_suspend().
633  */
acpi_os_get_timer(void)634 u64 acpi_os_get_timer(void)
635 {
636 	return (get_jiffies_64() - INITIAL_JIFFIES) *
637 		(ACPI_100NSEC_PER_SEC / HZ);
638 }
639 
acpi_os_read_port(acpi_io_address port,u32 * value,u32 width)640 acpi_status acpi_os_read_port(acpi_io_address port, u32 * value, u32 width)
641 {
642 	u32 dummy;
643 
644 	if (!value)
645 		value = &dummy;
646 
647 	*value = 0;
648 	if (width <= 8) {
649 		*(u8 *) value = inb(port);
650 	} else if (width <= 16) {
651 		*(u16 *) value = inw(port);
652 	} else if (width <= 32) {
653 		*(u32 *) value = inl(port);
654 	} else {
655 		BUG();
656 	}
657 
658 	return AE_OK;
659 }
660 
661 EXPORT_SYMBOL(acpi_os_read_port);
662 
acpi_os_write_port(acpi_io_address port,u32 value,u32 width)663 acpi_status acpi_os_write_port(acpi_io_address port, u32 value, u32 width)
664 {
665 	if (width <= 8) {
666 		outb(value, port);
667 	} else if (width <= 16) {
668 		outw(value, port);
669 	} else if (width <= 32) {
670 		outl(value, port);
671 	} else {
672 		BUG();
673 	}
674 
675 	return AE_OK;
676 }
677 
678 EXPORT_SYMBOL(acpi_os_write_port);
679 
acpi_os_read_iomem(void __iomem * virt_addr,u64 * value,u32 width)680 int acpi_os_read_iomem(void __iomem *virt_addr, u64 *value, u32 width)
681 {
682 
683 	switch (width) {
684 	case 8:
685 		*(u8 *) value = readb(virt_addr);
686 		break;
687 	case 16:
688 		*(u16 *) value = readw(virt_addr);
689 		break;
690 	case 32:
691 		*(u32 *) value = readl(virt_addr);
692 		break;
693 	case 64:
694 		*(u64 *) value = readq(virt_addr);
695 		break;
696 	default:
697 		return -EINVAL;
698 	}
699 
700 	return 0;
701 }
702 
703 acpi_status
acpi_os_read_memory(acpi_physical_address phys_addr,u64 * value,u32 width)704 acpi_os_read_memory(acpi_physical_address phys_addr, u64 *value, u32 width)
705 {
706 	void __iomem *virt_addr;
707 	unsigned int size = width / 8;
708 	bool unmap = false;
709 	u64 dummy;
710 	int error;
711 
712 	rcu_read_lock();
713 	virt_addr = acpi_map_vaddr_lookup(phys_addr, size);
714 	if (!virt_addr) {
715 		rcu_read_unlock();
716 		virt_addr = acpi_os_ioremap(phys_addr, size);
717 		if (!virt_addr)
718 			return AE_BAD_ADDRESS;
719 		unmap = true;
720 	}
721 
722 	if (!value)
723 		value = &dummy;
724 
725 	error = acpi_os_read_iomem(virt_addr, value, width);
726 	BUG_ON(error);
727 
728 	if (unmap)
729 		iounmap(virt_addr);
730 	else
731 		rcu_read_unlock();
732 
733 	return AE_OK;
734 }
735 
736 acpi_status
acpi_os_write_memory(acpi_physical_address phys_addr,u64 value,u32 width)737 acpi_os_write_memory(acpi_physical_address phys_addr, u64 value, u32 width)
738 {
739 	void __iomem *virt_addr;
740 	unsigned int size = width / 8;
741 	bool unmap = false;
742 
743 	rcu_read_lock();
744 	virt_addr = acpi_map_vaddr_lookup(phys_addr, size);
745 	if (!virt_addr) {
746 		rcu_read_unlock();
747 		virt_addr = acpi_os_ioremap(phys_addr, size);
748 		if (!virt_addr)
749 			return AE_BAD_ADDRESS;
750 		unmap = true;
751 	}
752 
753 	switch (width) {
754 	case 8:
755 		writeb(value, virt_addr);
756 		break;
757 	case 16:
758 		writew(value, virt_addr);
759 		break;
760 	case 32:
761 		writel(value, virt_addr);
762 		break;
763 	case 64:
764 		writeq(value, virt_addr);
765 		break;
766 	default:
767 		BUG();
768 	}
769 
770 	if (unmap)
771 		iounmap(virt_addr);
772 	else
773 		rcu_read_unlock();
774 
775 	return AE_OK;
776 }
777 
778 acpi_status
acpi_os_read_pci_configuration(struct acpi_pci_id * pci_id,u32 reg,u64 * value,u32 width)779 acpi_os_read_pci_configuration(struct acpi_pci_id * pci_id, u32 reg,
780 			       u64 *value, u32 width)
781 {
782 	int result, size;
783 	u32 value32;
784 
785 	if (!value)
786 		return AE_BAD_PARAMETER;
787 
788 	switch (width) {
789 	case 8:
790 		size = 1;
791 		break;
792 	case 16:
793 		size = 2;
794 		break;
795 	case 32:
796 		size = 4;
797 		break;
798 	default:
799 		return AE_ERROR;
800 	}
801 
802 	result = raw_pci_read(pci_id->segment, pci_id->bus,
803 				PCI_DEVFN(pci_id->device, pci_id->function),
804 				reg, size, &value32);
805 	*value = value32;
806 
807 	return (result ? AE_ERROR : AE_OK);
808 }
809 
810 acpi_status
acpi_os_write_pci_configuration(struct acpi_pci_id * pci_id,u32 reg,u64 value,u32 width)811 acpi_os_write_pci_configuration(struct acpi_pci_id * pci_id, u32 reg,
812 				u64 value, u32 width)
813 {
814 	int result, size;
815 
816 	switch (width) {
817 	case 8:
818 		size = 1;
819 		break;
820 	case 16:
821 		size = 2;
822 		break;
823 	case 32:
824 		size = 4;
825 		break;
826 	default:
827 		return AE_ERROR;
828 	}
829 
830 	result = raw_pci_write(pci_id->segment, pci_id->bus,
831 				PCI_DEVFN(pci_id->device, pci_id->function),
832 				reg, size, value);
833 
834 	return (result ? AE_ERROR : AE_OK);
835 }
836 
acpi_os_execute_deferred(struct work_struct * work)837 static void acpi_os_execute_deferred(struct work_struct *work)
838 {
839 	struct acpi_os_dpc *dpc = container_of(work, struct acpi_os_dpc, work);
840 
841 	dpc->function(dpc->context);
842 	kfree(dpc);
843 }
844 
845 #ifdef CONFIG_ACPI_DEBUGGER
846 static struct acpi_debugger acpi_debugger;
847 static bool acpi_debugger_initialized;
848 
acpi_register_debugger(struct module * owner,const struct acpi_debugger_ops * ops)849 int acpi_register_debugger(struct module *owner,
850 			   const struct acpi_debugger_ops *ops)
851 {
852 	int ret = 0;
853 
854 	mutex_lock(&acpi_debugger.lock);
855 	if (acpi_debugger.ops) {
856 		ret = -EBUSY;
857 		goto err_lock;
858 	}
859 
860 	acpi_debugger.owner = owner;
861 	acpi_debugger.ops = ops;
862 
863 err_lock:
864 	mutex_unlock(&acpi_debugger.lock);
865 	return ret;
866 }
867 EXPORT_SYMBOL(acpi_register_debugger);
868 
acpi_unregister_debugger(const struct acpi_debugger_ops * ops)869 void acpi_unregister_debugger(const struct acpi_debugger_ops *ops)
870 {
871 	mutex_lock(&acpi_debugger.lock);
872 	if (ops == acpi_debugger.ops) {
873 		acpi_debugger.ops = NULL;
874 		acpi_debugger.owner = NULL;
875 	}
876 	mutex_unlock(&acpi_debugger.lock);
877 }
878 EXPORT_SYMBOL(acpi_unregister_debugger);
879 
acpi_debugger_create_thread(acpi_osd_exec_callback function,void * context)880 int acpi_debugger_create_thread(acpi_osd_exec_callback function, void *context)
881 {
882 	int ret;
883 	int (*func)(acpi_osd_exec_callback, void *);
884 	struct module *owner;
885 
886 	if (!acpi_debugger_initialized)
887 		return -ENODEV;
888 	mutex_lock(&acpi_debugger.lock);
889 	if (!acpi_debugger.ops) {
890 		ret = -ENODEV;
891 		goto err_lock;
892 	}
893 	if (!try_module_get(acpi_debugger.owner)) {
894 		ret = -ENODEV;
895 		goto err_lock;
896 	}
897 	func = acpi_debugger.ops->create_thread;
898 	owner = acpi_debugger.owner;
899 	mutex_unlock(&acpi_debugger.lock);
900 
901 	ret = func(function, context);
902 
903 	mutex_lock(&acpi_debugger.lock);
904 	module_put(owner);
905 err_lock:
906 	mutex_unlock(&acpi_debugger.lock);
907 	return ret;
908 }
909 
acpi_debugger_write_log(const char * msg)910 ssize_t acpi_debugger_write_log(const char *msg)
911 {
912 	ssize_t ret;
913 	ssize_t (*func)(const char *);
914 	struct module *owner;
915 
916 	if (!acpi_debugger_initialized)
917 		return -ENODEV;
918 	mutex_lock(&acpi_debugger.lock);
919 	if (!acpi_debugger.ops) {
920 		ret = -ENODEV;
921 		goto err_lock;
922 	}
923 	if (!try_module_get(acpi_debugger.owner)) {
924 		ret = -ENODEV;
925 		goto err_lock;
926 	}
927 	func = acpi_debugger.ops->write_log;
928 	owner = acpi_debugger.owner;
929 	mutex_unlock(&acpi_debugger.lock);
930 
931 	ret = func(msg);
932 
933 	mutex_lock(&acpi_debugger.lock);
934 	module_put(owner);
935 err_lock:
936 	mutex_unlock(&acpi_debugger.lock);
937 	return ret;
938 }
939 
acpi_debugger_read_cmd(char * buffer,size_t buffer_length)940 ssize_t acpi_debugger_read_cmd(char *buffer, size_t buffer_length)
941 {
942 	ssize_t ret;
943 	ssize_t (*func)(char *, size_t);
944 	struct module *owner;
945 
946 	if (!acpi_debugger_initialized)
947 		return -ENODEV;
948 	mutex_lock(&acpi_debugger.lock);
949 	if (!acpi_debugger.ops) {
950 		ret = -ENODEV;
951 		goto err_lock;
952 	}
953 	if (!try_module_get(acpi_debugger.owner)) {
954 		ret = -ENODEV;
955 		goto err_lock;
956 	}
957 	func = acpi_debugger.ops->read_cmd;
958 	owner = acpi_debugger.owner;
959 	mutex_unlock(&acpi_debugger.lock);
960 
961 	ret = func(buffer, buffer_length);
962 
963 	mutex_lock(&acpi_debugger.lock);
964 	module_put(owner);
965 err_lock:
966 	mutex_unlock(&acpi_debugger.lock);
967 	return ret;
968 }
969 
acpi_debugger_wait_command_ready(void)970 int acpi_debugger_wait_command_ready(void)
971 {
972 	int ret;
973 	int (*func)(bool, char *, size_t);
974 	struct module *owner;
975 
976 	if (!acpi_debugger_initialized)
977 		return -ENODEV;
978 	mutex_lock(&acpi_debugger.lock);
979 	if (!acpi_debugger.ops) {
980 		ret = -ENODEV;
981 		goto err_lock;
982 	}
983 	if (!try_module_get(acpi_debugger.owner)) {
984 		ret = -ENODEV;
985 		goto err_lock;
986 	}
987 	func = acpi_debugger.ops->wait_command_ready;
988 	owner = acpi_debugger.owner;
989 	mutex_unlock(&acpi_debugger.lock);
990 
991 	ret = func(acpi_gbl_method_executing,
992 		   acpi_gbl_db_line_buf, ACPI_DB_LINE_BUFFER_SIZE);
993 
994 	mutex_lock(&acpi_debugger.lock);
995 	module_put(owner);
996 err_lock:
997 	mutex_unlock(&acpi_debugger.lock);
998 	return ret;
999 }
1000 
acpi_debugger_notify_command_complete(void)1001 int acpi_debugger_notify_command_complete(void)
1002 {
1003 	int ret;
1004 	int (*func)(void);
1005 	struct module *owner;
1006 
1007 	if (!acpi_debugger_initialized)
1008 		return -ENODEV;
1009 	mutex_lock(&acpi_debugger.lock);
1010 	if (!acpi_debugger.ops) {
1011 		ret = -ENODEV;
1012 		goto err_lock;
1013 	}
1014 	if (!try_module_get(acpi_debugger.owner)) {
1015 		ret = -ENODEV;
1016 		goto err_lock;
1017 	}
1018 	func = acpi_debugger.ops->notify_command_complete;
1019 	owner = acpi_debugger.owner;
1020 	mutex_unlock(&acpi_debugger.lock);
1021 
1022 	ret = func();
1023 
1024 	mutex_lock(&acpi_debugger.lock);
1025 	module_put(owner);
1026 err_lock:
1027 	mutex_unlock(&acpi_debugger.lock);
1028 	return ret;
1029 }
1030 
acpi_debugger_init(void)1031 int __init acpi_debugger_init(void)
1032 {
1033 	mutex_init(&acpi_debugger.lock);
1034 	acpi_debugger_initialized = true;
1035 	return 0;
1036 }
1037 #endif
1038 
1039 /*******************************************************************************
1040  *
1041  * FUNCTION:    acpi_os_execute
1042  *
1043  * PARAMETERS:  Type               - Type of the callback
1044  *              Function           - Function to be executed
1045  *              Context            - Function parameters
1046  *
1047  * RETURN:      Status
1048  *
1049  * DESCRIPTION: Depending on type, either queues function for deferred execution or
1050  *              immediately executes function on a separate thread.
1051  *
1052  ******************************************************************************/
1053 
acpi_os_execute(acpi_execute_type type,acpi_osd_exec_callback function,void * context)1054 acpi_status acpi_os_execute(acpi_execute_type type,
1055 			    acpi_osd_exec_callback function, void *context)
1056 {
1057 	acpi_status status = AE_OK;
1058 	struct acpi_os_dpc *dpc;
1059 	struct workqueue_struct *queue;
1060 	int ret;
1061 	ACPI_DEBUG_PRINT((ACPI_DB_EXEC,
1062 			  "Scheduling function [%p(%p)] for deferred execution.\n",
1063 			  function, context));
1064 
1065 	if (type == OSL_DEBUGGER_MAIN_THREAD) {
1066 		ret = acpi_debugger_create_thread(function, context);
1067 		if (ret) {
1068 			pr_err("Call to kthread_create() failed.\n");
1069 			status = AE_ERROR;
1070 		}
1071 		goto out_thread;
1072 	}
1073 
1074 	/*
1075 	 * Allocate/initialize DPC structure.  Note that this memory will be
1076 	 * freed by the callee.  The kernel handles the work_struct list  in a
1077 	 * way that allows us to also free its memory inside the callee.
1078 	 * Because we may want to schedule several tasks with different
1079 	 * parameters we can't use the approach some kernel code uses of
1080 	 * having a static work_struct.
1081 	 */
1082 
1083 	dpc = kzalloc(sizeof(struct acpi_os_dpc), GFP_ATOMIC);
1084 	if (!dpc)
1085 		return AE_NO_MEMORY;
1086 
1087 	dpc->function = function;
1088 	dpc->context = context;
1089 
1090 	/*
1091 	 * To prevent lockdep from complaining unnecessarily, make sure that
1092 	 * there is a different static lockdep key for each workqueue by using
1093 	 * INIT_WORK() for each of them separately.
1094 	 */
1095 	if (type == OSL_NOTIFY_HANDLER) {
1096 		queue = kacpi_notify_wq;
1097 		INIT_WORK(&dpc->work, acpi_os_execute_deferred);
1098 	} else if (type == OSL_GPE_HANDLER) {
1099 		queue = kacpid_wq;
1100 		INIT_WORK(&dpc->work, acpi_os_execute_deferred);
1101 	} else {
1102 		pr_err("Unsupported os_execute type %d.\n", type);
1103 		status = AE_ERROR;
1104 	}
1105 
1106 	if (ACPI_FAILURE(status))
1107 		goto err_workqueue;
1108 
1109 	/*
1110 	 * On some machines, a software-initiated SMI causes corruption unless
1111 	 * the SMI runs on CPU 0.  An SMI can be initiated by any AML, but
1112 	 * typically it's done in GPE-related methods that are run via
1113 	 * workqueues, so we can avoid the known corruption cases by always
1114 	 * queueing on CPU 0.
1115 	 */
1116 	ret = queue_work_on(0, queue, &dpc->work);
1117 	if (!ret) {
1118 		printk(KERN_ERR PREFIX
1119 			  "Call to queue_work() failed.\n");
1120 		status = AE_ERROR;
1121 	}
1122 err_workqueue:
1123 	if (ACPI_FAILURE(status))
1124 		kfree(dpc);
1125 out_thread:
1126 	return status;
1127 }
1128 EXPORT_SYMBOL(acpi_os_execute);
1129 
acpi_os_wait_events_complete(void)1130 void acpi_os_wait_events_complete(void)
1131 {
1132 	/*
1133 	 * Make sure the GPE handler or the fixed event handler is not used
1134 	 * on another CPU after removal.
1135 	 */
1136 	if (acpi_sci_irq_valid())
1137 		synchronize_hardirq(acpi_sci_irq);
1138 	flush_workqueue(kacpid_wq);
1139 	flush_workqueue(kacpi_notify_wq);
1140 }
1141 EXPORT_SYMBOL(acpi_os_wait_events_complete);
1142 
1143 struct acpi_hp_work {
1144 	struct work_struct work;
1145 	struct acpi_device *adev;
1146 	u32 src;
1147 };
1148 
acpi_hotplug_work_fn(struct work_struct * work)1149 static void acpi_hotplug_work_fn(struct work_struct *work)
1150 {
1151 	struct acpi_hp_work *hpw = container_of(work, struct acpi_hp_work, work);
1152 
1153 	acpi_os_wait_events_complete();
1154 	acpi_device_hotplug(hpw->adev, hpw->src);
1155 	kfree(hpw);
1156 }
1157 
acpi_hotplug_schedule(struct acpi_device * adev,u32 src)1158 acpi_status acpi_hotplug_schedule(struct acpi_device *adev, u32 src)
1159 {
1160 	struct acpi_hp_work *hpw;
1161 
1162 	ACPI_DEBUG_PRINT((ACPI_DB_EXEC,
1163 		  "Scheduling hotplug event (%p, %u) for deferred execution.\n",
1164 		  adev, src));
1165 
1166 	hpw = kmalloc(sizeof(*hpw), GFP_KERNEL);
1167 	if (!hpw)
1168 		return AE_NO_MEMORY;
1169 
1170 	INIT_WORK(&hpw->work, acpi_hotplug_work_fn);
1171 	hpw->adev = adev;
1172 	hpw->src = src;
1173 	/*
1174 	 * We can't run hotplug code in kacpid_wq/kacpid_notify_wq etc., because
1175 	 * the hotplug code may call driver .remove() functions, which may
1176 	 * invoke flush_scheduled_work()/acpi_os_wait_events_complete() to flush
1177 	 * these workqueues.
1178 	 */
1179 	if (!queue_work(kacpi_hotplug_wq, &hpw->work)) {
1180 		kfree(hpw);
1181 		return AE_ERROR;
1182 	}
1183 	return AE_OK;
1184 }
1185 
acpi_queue_hotplug_work(struct work_struct * work)1186 bool acpi_queue_hotplug_work(struct work_struct *work)
1187 {
1188 	return queue_work(kacpi_hotplug_wq, work);
1189 }
1190 
1191 acpi_status
acpi_os_create_semaphore(u32 max_units,u32 initial_units,acpi_handle * handle)1192 acpi_os_create_semaphore(u32 max_units, u32 initial_units, acpi_handle * handle)
1193 {
1194 	struct semaphore *sem = NULL;
1195 
1196 	sem = acpi_os_allocate_zeroed(sizeof(struct semaphore));
1197 	if (!sem)
1198 		return AE_NO_MEMORY;
1199 
1200 	sema_init(sem, initial_units);
1201 
1202 	*handle = (acpi_handle *) sem;
1203 
1204 	ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, "Creating semaphore[%p|%d].\n",
1205 			  *handle, initial_units));
1206 
1207 	return AE_OK;
1208 }
1209 
1210 /*
1211  * TODO: A better way to delete semaphores?  Linux doesn't have a
1212  * 'delete_semaphore()' function -- may result in an invalid
1213  * pointer dereference for non-synchronized consumers.	Should
1214  * we at least check for blocked threads and signal/cancel them?
1215  */
1216 
acpi_os_delete_semaphore(acpi_handle handle)1217 acpi_status acpi_os_delete_semaphore(acpi_handle handle)
1218 {
1219 	struct semaphore *sem = (struct semaphore *)handle;
1220 
1221 	if (!sem)
1222 		return AE_BAD_PARAMETER;
1223 
1224 	ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, "Deleting semaphore[%p].\n", handle));
1225 
1226 	BUG_ON(!list_empty(&sem->wait_list));
1227 	kfree(sem);
1228 	sem = NULL;
1229 
1230 	return AE_OK;
1231 }
1232 
1233 /*
1234  * TODO: Support for units > 1?
1235  */
acpi_os_wait_semaphore(acpi_handle handle,u32 units,u16 timeout)1236 acpi_status acpi_os_wait_semaphore(acpi_handle handle, u32 units, u16 timeout)
1237 {
1238 	acpi_status status = AE_OK;
1239 	struct semaphore *sem = (struct semaphore *)handle;
1240 	long jiffies;
1241 	int ret = 0;
1242 
1243 	if (!acpi_os_initialized)
1244 		return AE_OK;
1245 
1246 	if (!sem || (units < 1))
1247 		return AE_BAD_PARAMETER;
1248 
1249 	if (units > 1)
1250 		return AE_SUPPORT;
1251 
1252 	ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, "Waiting for semaphore[%p|%d|%d]\n",
1253 			  handle, units, timeout));
1254 
1255 	if (timeout == ACPI_WAIT_FOREVER)
1256 		jiffies = MAX_SCHEDULE_TIMEOUT;
1257 	else
1258 		jiffies = msecs_to_jiffies(timeout);
1259 
1260 	ret = down_timeout(sem, jiffies);
1261 	if (ret)
1262 		status = AE_TIME;
1263 
1264 	if (ACPI_FAILURE(status)) {
1265 		ACPI_DEBUG_PRINT((ACPI_DB_MUTEX,
1266 				  "Failed to acquire semaphore[%p|%d|%d], %s",
1267 				  handle, units, timeout,
1268 				  acpi_format_exception(status)));
1269 	} else {
1270 		ACPI_DEBUG_PRINT((ACPI_DB_MUTEX,
1271 				  "Acquired semaphore[%p|%d|%d]", handle,
1272 				  units, timeout));
1273 	}
1274 
1275 	return status;
1276 }
1277 
1278 /*
1279  * TODO: Support for units > 1?
1280  */
acpi_os_signal_semaphore(acpi_handle handle,u32 units)1281 acpi_status acpi_os_signal_semaphore(acpi_handle handle, u32 units)
1282 {
1283 	struct semaphore *sem = (struct semaphore *)handle;
1284 
1285 	if (!acpi_os_initialized)
1286 		return AE_OK;
1287 
1288 	if (!sem || (units < 1))
1289 		return AE_BAD_PARAMETER;
1290 
1291 	if (units > 1)
1292 		return AE_SUPPORT;
1293 
1294 	ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, "Signaling semaphore[%p|%d]\n", handle,
1295 			  units));
1296 
1297 	up(sem);
1298 
1299 	return AE_OK;
1300 }
1301 
acpi_os_get_line(char * buffer,u32 buffer_length,u32 * bytes_read)1302 acpi_status acpi_os_get_line(char *buffer, u32 buffer_length, u32 *bytes_read)
1303 {
1304 #ifdef ENABLE_DEBUGGER
1305 	if (acpi_in_debugger) {
1306 		u32 chars;
1307 
1308 		kdb_read(buffer, buffer_length);
1309 
1310 		/* remove the CR kdb includes */
1311 		chars = strlen(buffer) - 1;
1312 		buffer[chars] = '\0';
1313 	}
1314 #else
1315 	int ret;
1316 
1317 	ret = acpi_debugger_read_cmd(buffer, buffer_length);
1318 	if (ret < 0)
1319 		return AE_ERROR;
1320 	if (bytes_read)
1321 		*bytes_read = ret;
1322 #endif
1323 
1324 	return AE_OK;
1325 }
1326 EXPORT_SYMBOL(acpi_os_get_line);
1327 
acpi_os_wait_command_ready(void)1328 acpi_status acpi_os_wait_command_ready(void)
1329 {
1330 	int ret;
1331 
1332 	ret = acpi_debugger_wait_command_ready();
1333 	if (ret < 0)
1334 		return AE_ERROR;
1335 	return AE_OK;
1336 }
1337 
acpi_os_notify_command_complete(void)1338 acpi_status acpi_os_notify_command_complete(void)
1339 {
1340 	int ret;
1341 
1342 	ret = acpi_debugger_notify_command_complete();
1343 	if (ret < 0)
1344 		return AE_ERROR;
1345 	return AE_OK;
1346 }
1347 
acpi_os_signal(u32 function,void * info)1348 acpi_status acpi_os_signal(u32 function, void *info)
1349 {
1350 	switch (function) {
1351 	case ACPI_SIGNAL_FATAL:
1352 		printk(KERN_ERR PREFIX "Fatal opcode executed\n");
1353 		break;
1354 	case ACPI_SIGNAL_BREAKPOINT:
1355 		/*
1356 		 * AML Breakpoint
1357 		 * ACPI spec. says to treat it as a NOP unless
1358 		 * you are debugging.  So if/when we integrate
1359 		 * AML debugger into the kernel debugger its
1360 		 * hook will go here.  But until then it is
1361 		 * not useful to print anything on breakpoints.
1362 		 */
1363 		break;
1364 	default:
1365 		break;
1366 	}
1367 
1368 	return AE_OK;
1369 }
1370 
acpi_os_name_setup(char * str)1371 static int __init acpi_os_name_setup(char *str)
1372 {
1373 	char *p = acpi_os_name;
1374 	int count = ACPI_MAX_OVERRIDE_LEN - 1;
1375 
1376 	if (!str || !*str)
1377 		return 0;
1378 
1379 	for (; count-- && *str; str++) {
1380 		if (isalnum(*str) || *str == ' ' || *str == ':')
1381 			*p++ = *str;
1382 		else if (*str == '\'' || *str == '"')
1383 			continue;
1384 		else
1385 			break;
1386 	}
1387 	*p = 0;
1388 
1389 	return 1;
1390 
1391 }
1392 
1393 __setup("acpi_os_name=", acpi_os_name_setup);
1394 
1395 /*
1396  * Disable the auto-serialization of named objects creation methods.
1397  *
1398  * This feature is enabled by default.  It marks the AML control methods
1399  * that contain the opcodes to create named objects as "Serialized".
1400  */
acpi_no_auto_serialize_setup(char * str)1401 static int __init acpi_no_auto_serialize_setup(char *str)
1402 {
1403 	acpi_gbl_auto_serialize_methods = FALSE;
1404 	pr_info("ACPI: auto-serialization disabled\n");
1405 
1406 	return 1;
1407 }
1408 
1409 __setup("acpi_no_auto_serialize", acpi_no_auto_serialize_setup);
1410 
1411 /* Check of resource interference between native drivers and ACPI
1412  * OperationRegions (SystemIO and System Memory only).
1413  * IO ports and memory declared in ACPI might be used by the ACPI subsystem
1414  * in arbitrary AML code and can interfere with legacy drivers.
1415  * acpi_enforce_resources= can be set to:
1416  *
1417  *   - strict (default) (2)
1418  *     -> further driver trying to access the resources will not load
1419  *   - lax              (1)
1420  *     -> further driver trying to access the resources will load, but you
1421  *     get a system message that something might go wrong...
1422  *
1423  *   - no               (0)
1424  *     -> ACPI Operation Region resources will not be registered
1425  *
1426  */
1427 #define ENFORCE_RESOURCES_STRICT 2
1428 #define ENFORCE_RESOURCES_LAX    1
1429 #define ENFORCE_RESOURCES_NO     0
1430 
1431 static unsigned int acpi_enforce_resources = ENFORCE_RESOURCES_STRICT;
1432 
acpi_enforce_resources_setup(char * str)1433 static int __init acpi_enforce_resources_setup(char *str)
1434 {
1435 	if (str == NULL || *str == '\0')
1436 		return 0;
1437 
1438 	if (!strcmp("strict", str))
1439 		acpi_enforce_resources = ENFORCE_RESOURCES_STRICT;
1440 	else if (!strcmp("lax", str))
1441 		acpi_enforce_resources = ENFORCE_RESOURCES_LAX;
1442 	else if (!strcmp("no", str))
1443 		acpi_enforce_resources = ENFORCE_RESOURCES_NO;
1444 
1445 	return 1;
1446 }
1447 
1448 __setup("acpi_enforce_resources=", acpi_enforce_resources_setup);
1449 
1450 /* Check for resource conflicts between ACPI OperationRegions and native
1451  * drivers */
acpi_check_resource_conflict(const struct resource * res)1452 int acpi_check_resource_conflict(const struct resource *res)
1453 {
1454 	acpi_adr_space_type space_id;
1455 	acpi_size length;
1456 	u8 warn = 0;
1457 	int clash = 0;
1458 
1459 	if (acpi_enforce_resources == ENFORCE_RESOURCES_NO)
1460 		return 0;
1461 	if (!(res->flags & IORESOURCE_IO) && !(res->flags & IORESOURCE_MEM))
1462 		return 0;
1463 
1464 	if (res->flags & IORESOURCE_IO)
1465 		space_id = ACPI_ADR_SPACE_SYSTEM_IO;
1466 	else
1467 		space_id = ACPI_ADR_SPACE_SYSTEM_MEMORY;
1468 
1469 	length = resource_size(res);
1470 	if (acpi_enforce_resources != ENFORCE_RESOURCES_NO)
1471 		warn = 1;
1472 	clash = acpi_check_address_range(space_id, res->start, length, warn);
1473 
1474 	if (clash) {
1475 		if (acpi_enforce_resources != ENFORCE_RESOURCES_NO) {
1476 			if (acpi_enforce_resources == ENFORCE_RESOURCES_LAX)
1477 				printk(KERN_NOTICE "ACPI: This conflict may"
1478 				       " cause random problems and system"
1479 				       " instability\n");
1480 			printk(KERN_INFO "ACPI: If an ACPI driver is available"
1481 			       " for this device, you should use it instead of"
1482 			       " the native driver\n");
1483 		}
1484 		if (acpi_enforce_resources == ENFORCE_RESOURCES_STRICT)
1485 			return -EBUSY;
1486 	}
1487 	return 0;
1488 }
1489 EXPORT_SYMBOL(acpi_check_resource_conflict);
1490 
acpi_check_region(resource_size_t start,resource_size_t n,const char * name)1491 int acpi_check_region(resource_size_t start, resource_size_t n,
1492 		      const char *name)
1493 {
1494 	struct resource res = {
1495 		.start = start,
1496 		.end   = start + n - 1,
1497 		.name  = name,
1498 		.flags = IORESOURCE_IO,
1499 	};
1500 
1501 	return acpi_check_resource_conflict(&res);
1502 }
1503 EXPORT_SYMBOL(acpi_check_region);
1504 
acpi_deactivate_mem_region(acpi_handle handle,u32 level,void * _res,void ** return_value)1505 static acpi_status acpi_deactivate_mem_region(acpi_handle handle, u32 level,
1506 					      void *_res, void **return_value)
1507 {
1508 	struct acpi_mem_space_context **mem_ctx;
1509 	union acpi_operand_object *handler_obj;
1510 	union acpi_operand_object *region_obj2;
1511 	union acpi_operand_object *region_obj;
1512 	struct resource *res = _res;
1513 	acpi_status status;
1514 
1515 	region_obj = acpi_ns_get_attached_object(handle);
1516 	if (!region_obj)
1517 		return AE_OK;
1518 
1519 	handler_obj = region_obj->region.handler;
1520 	if (!handler_obj)
1521 		return AE_OK;
1522 
1523 	if (region_obj->region.space_id != ACPI_ADR_SPACE_SYSTEM_MEMORY)
1524 		return AE_OK;
1525 
1526 	if (!(region_obj->region.flags & AOPOBJ_SETUP_COMPLETE))
1527 		return AE_OK;
1528 
1529 	region_obj2 = acpi_ns_get_secondary_object(region_obj);
1530 	if (!region_obj2)
1531 		return AE_OK;
1532 
1533 	mem_ctx = (void *)&region_obj2->extra.region_context;
1534 
1535 	if (!(mem_ctx[0]->address >= res->start &&
1536 	      mem_ctx[0]->address < res->end))
1537 		return AE_OK;
1538 
1539 	status = handler_obj->address_space.setup(region_obj,
1540 						  ACPI_REGION_DEACTIVATE,
1541 						  NULL, (void **)mem_ctx);
1542 	if (ACPI_SUCCESS(status))
1543 		region_obj->region.flags &= ~(AOPOBJ_SETUP_COMPLETE);
1544 
1545 	return status;
1546 }
1547 
1548 /**
1549  * acpi_release_memory - Release any mappings done to a memory region
1550  * @handle: Handle to namespace node
1551  * @res: Memory resource
1552  * @level: A level that terminates the search
1553  *
1554  * Walks through @handle and unmaps all SystemMemory Operation Regions that
1555  * overlap with @res and that have already been activated (mapped).
1556  *
1557  * This is a helper that allows drivers to place special requirements on memory
1558  * region that may overlap with operation regions, primarily allowing them to
1559  * safely map the region as non-cached memory.
1560  *
1561  * The unmapped Operation Regions will be automatically remapped next time they
1562  * are called, so the drivers do not need to do anything else.
1563  */
acpi_release_memory(acpi_handle handle,struct resource * res,u32 level)1564 acpi_status acpi_release_memory(acpi_handle handle, struct resource *res,
1565 				u32 level)
1566 {
1567 	if (!(res->flags & IORESOURCE_MEM))
1568 		return AE_TYPE;
1569 
1570 	return acpi_walk_namespace(ACPI_TYPE_REGION, handle, level,
1571 				   acpi_deactivate_mem_region, NULL, res, NULL);
1572 }
1573 EXPORT_SYMBOL_GPL(acpi_release_memory);
1574 
1575 /*
1576  * Let drivers know whether the resource checks are effective
1577  */
acpi_resources_are_enforced(void)1578 int acpi_resources_are_enforced(void)
1579 {
1580 	return acpi_enforce_resources == ENFORCE_RESOURCES_STRICT;
1581 }
1582 EXPORT_SYMBOL(acpi_resources_are_enforced);
1583 
1584 /*
1585  * Deallocate the memory for a spinlock.
1586  */
acpi_os_delete_lock(acpi_spinlock handle)1587 void acpi_os_delete_lock(acpi_spinlock handle)
1588 {
1589 	ACPI_FREE(handle);
1590 }
1591 
1592 /*
1593  * Acquire a spinlock.
1594  *
1595  * handle is a pointer to the spinlock_t.
1596  */
1597 
acpi_os_acquire_lock(acpi_spinlock lockp)1598 acpi_cpu_flags acpi_os_acquire_lock(acpi_spinlock lockp)
1599 {
1600 	acpi_cpu_flags flags;
1601 	spin_lock_irqsave(lockp, flags);
1602 	return flags;
1603 }
1604 
1605 /*
1606  * Release a spinlock. See above.
1607  */
1608 
acpi_os_release_lock(acpi_spinlock lockp,acpi_cpu_flags flags)1609 void acpi_os_release_lock(acpi_spinlock lockp, acpi_cpu_flags flags)
1610 {
1611 	spin_unlock_irqrestore(lockp, flags);
1612 }
1613 
1614 #ifndef ACPI_USE_LOCAL_CACHE
1615 
1616 /*******************************************************************************
1617  *
1618  * FUNCTION:    acpi_os_create_cache
1619  *
1620  * PARAMETERS:  name      - Ascii name for the cache
1621  *              size      - Size of each cached object
1622  *              depth     - Maximum depth of the cache (in objects) <ignored>
1623  *              cache     - Where the new cache object is returned
1624  *
1625  * RETURN:      status
1626  *
1627  * DESCRIPTION: Create a cache object
1628  *
1629  ******************************************************************************/
1630 
1631 acpi_status
acpi_os_create_cache(char * name,u16 size,u16 depth,acpi_cache_t ** cache)1632 acpi_os_create_cache(char *name, u16 size, u16 depth, acpi_cache_t ** cache)
1633 {
1634 	*cache = kmem_cache_create(name, size, 0, 0, NULL);
1635 	if (*cache == NULL)
1636 		return AE_ERROR;
1637 	else
1638 		return AE_OK;
1639 }
1640 
1641 /*******************************************************************************
1642  *
1643  * FUNCTION:    acpi_os_purge_cache
1644  *
1645  * PARAMETERS:  Cache           - Handle to cache object
1646  *
1647  * RETURN:      Status
1648  *
1649  * DESCRIPTION: Free all objects within the requested cache.
1650  *
1651  ******************************************************************************/
1652 
acpi_os_purge_cache(acpi_cache_t * cache)1653 acpi_status acpi_os_purge_cache(acpi_cache_t * cache)
1654 {
1655 	kmem_cache_shrink(cache);
1656 	return (AE_OK);
1657 }
1658 
1659 /*******************************************************************************
1660  *
1661  * FUNCTION:    acpi_os_delete_cache
1662  *
1663  * PARAMETERS:  Cache           - Handle to cache object
1664  *
1665  * RETURN:      Status
1666  *
1667  * DESCRIPTION: Free all objects within the requested cache and delete the
1668  *              cache object.
1669  *
1670  ******************************************************************************/
1671 
acpi_os_delete_cache(acpi_cache_t * cache)1672 acpi_status acpi_os_delete_cache(acpi_cache_t * cache)
1673 {
1674 	kmem_cache_destroy(cache);
1675 	return (AE_OK);
1676 }
1677 
1678 /*******************************************************************************
1679  *
1680  * FUNCTION:    acpi_os_release_object
1681  *
1682  * PARAMETERS:  Cache       - Handle to cache object
1683  *              Object      - The object to be released
1684  *
1685  * RETURN:      None
1686  *
1687  * DESCRIPTION: Release an object to the specified cache.  If cache is full,
1688  *              the object is deleted.
1689  *
1690  ******************************************************************************/
1691 
acpi_os_release_object(acpi_cache_t * cache,void * object)1692 acpi_status acpi_os_release_object(acpi_cache_t * cache, void *object)
1693 {
1694 	kmem_cache_free(cache, object);
1695 	return (AE_OK);
1696 }
1697 #endif
1698 
acpi_no_static_ssdt_setup(char * s)1699 static int __init acpi_no_static_ssdt_setup(char *s)
1700 {
1701 	acpi_gbl_disable_ssdt_table_install = TRUE;
1702 	pr_info("ACPI: static SSDT installation disabled\n");
1703 
1704 	return 0;
1705 }
1706 
1707 early_param("acpi_no_static_ssdt", acpi_no_static_ssdt_setup);
1708 
acpi_disable_return_repair(char * s)1709 static int __init acpi_disable_return_repair(char *s)
1710 {
1711 	printk(KERN_NOTICE PREFIX
1712 	       "ACPI: Predefined validation mechanism disabled\n");
1713 	acpi_gbl_disable_auto_repair = TRUE;
1714 
1715 	return 1;
1716 }
1717 
1718 __setup("acpica_no_return_repair", acpi_disable_return_repair);
1719 
acpi_os_initialize(void)1720 acpi_status __init acpi_os_initialize(void)
1721 {
1722 	acpi_os_map_generic_address(&acpi_gbl_FADT.xpm1a_event_block);
1723 	acpi_os_map_generic_address(&acpi_gbl_FADT.xpm1b_event_block);
1724 	acpi_os_map_generic_address(&acpi_gbl_FADT.xgpe0_block);
1725 	acpi_os_map_generic_address(&acpi_gbl_FADT.xgpe1_block);
1726 	if (acpi_gbl_FADT.flags & ACPI_FADT_RESET_REGISTER) {
1727 		/*
1728 		 * Use acpi_os_map_generic_address to pre-map the reset
1729 		 * register if it's in system memory.
1730 		 */
1731 		int rv;
1732 
1733 		rv = acpi_os_map_generic_address(&acpi_gbl_FADT.reset_register);
1734 		pr_debug(PREFIX "%s: map reset_reg status %d\n", __func__, rv);
1735 	}
1736 	acpi_os_initialized = true;
1737 
1738 	return AE_OK;
1739 }
1740 
acpi_os_initialize1(void)1741 acpi_status __init acpi_os_initialize1(void)
1742 {
1743 	kacpid_wq = alloc_workqueue("kacpid", 0, 1);
1744 	kacpi_notify_wq = alloc_workqueue("kacpi_notify", 0, 1);
1745 	kacpi_hotplug_wq = alloc_ordered_workqueue("kacpi_hotplug", 0);
1746 	BUG_ON(!kacpid_wq);
1747 	BUG_ON(!kacpi_notify_wq);
1748 	BUG_ON(!kacpi_hotplug_wq);
1749 	acpi_osi_init();
1750 	return AE_OK;
1751 }
1752 
acpi_os_terminate(void)1753 acpi_status acpi_os_terminate(void)
1754 {
1755 	if (acpi_irq_handler) {
1756 		acpi_os_remove_interrupt_handler(acpi_gbl_FADT.sci_interrupt,
1757 						 acpi_irq_handler);
1758 	}
1759 
1760 	acpi_os_unmap_generic_address(&acpi_gbl_FADT.xgpe1_block);
1761 	acpi_os_unmap_generic_address(&acpi_gbl_FADT.xgpe0_block);
1762 	acpi_os_unmap_generic_address(&acpi_gbl_FADT.xpm1b_event_block);
1763 	acpi_os_unmap_generic_address(&acpi_gbl_FADT.xpm1a_event_block);
1764 	if (acpi_gbl_FADT.flags & ACPI_FADT_RESET_REGISTER)
1765 		acpi_os_unmap_generic_address(&acpi_gbl_FADT.reset_register);
1766 
1767 	destroy_workqueue(kacpid_wq);
1768 	destroy_workqueue(kacpi_notify_wq);
1769 	destroy_workqueue(kacpi_hotplug_wq);
1770 
1771 	return AE_OK;
1772 }
1773 
acpi_os_prepare_sleep(u8 sleep_state,u32 pm1a_control,u32 pm1b_control)1774 acpi_status acpi_os_prepare_sleep(u8 sleep_state, u32 pm1a_control,
1775 				  u32 pm1b_control)
1776 {
1777 	int rc = 0;
1778 	if (__acpi_os_prepare_sleep)
1779 		rc = __acpi_os_prepare_sleep(sleep_state,
1780 					     pm1a_control, pm1b_control);
1781 	if (rc < 0)
1782 		return AE_ERROR;
1783 	else if (rc > 0)
1784 		return AE_CTRL_TERMINATE;
1785 
1786 	return AE_OK;
1787 }
1788 
acpi_os_set_prepare_sleep(int (* func)(u8 sleep_state,u32 pm1a_ctrl,u32 pm1b_ctrl))1789 void acpi_os_set_prepare_sleep(int (*func)(u8 sleep_state,
1790 			       u32 pm1a_ctrl, u32 pm1b_ctrl))
1791 {
1792 	__acpi_os_prepare_sleep = func;
1793 }
1794 
1795 #if (ACPI_REDUCED_HARDWARE)
acpi_os_prepare_extended_sleep(u8 sleep_state,u32 val_a,u32 val_b)1796 acpi_status acpi_os_prepare_extended_sleep(u8 sleep_state, u32 val_a,
1797 				  u32 val_b)
1798 {
1799 	int rc = 0;
1800 	if (__acpi_os_prepare_extended_sleep)
1801 		rc = __acpi_os_prepare_extended_sleep(sleep_state,
1802 					     val_a, val_b);
1803 	if (rc < 0)
1804 		return AE_ERROR;
1805 	else if (rc > 0)
1806 		return AE_CTRL_TERMINATE;
1807 
1808 	return AE_OK;
1809 }
1810 #else
acpi_os_prepare_extended_sleep(u8 sleep_state,u32 val_a,u32 val_b)1811 acpi_status acpi_os_prepare_extended_sleep(u8 sleep_state, u32 val_a,
1812 				  u32 val_b)
1813 {
1814 	return AE_OK;
1815 }
1816 #endif
1817 
acpi_os_set_prepare_extended_sleep(int (* func)(u8 sleep_state,u32 val_a,u32 val_b))1818 void acpi_os_set_prepare_extended_sleep(int (*func)(u8 sleep_state,
1819 			       u32 val_a, u32 val_b))
1820 {
1821 	__acpi_os_prepare_extended_sleep = func;
1822 }
1823 
acpi_os_enter_sleep(u8 sleep_state,u32 reg_a_value,u32 reg_b_value)1824 acpi_status acpi_os_enter_sleep(u8 sleep_state,
1825 				u32 reg_a_value, u32 reg_b_value)
1826 {
1827 	acpi_status status;
1828 
1829 	if (acpi_gbl_reduced_hardware)
1830 		status = acpi_os_prepare_extended_sleep(sleep_state,
1831 							reg_a_value,
1832 							reg_b_value);
1833 	else
1834 		status = acpi_os_prepare_sleep(sleep_state,
1835 					       reg_a_value, reg_b_value);
1836 	return status;
1837 }
1838