1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * pptt.c - parsing of Processor Properties Topology Table (PPTT)
4 *
5 * Copyright (C) 2018, ARM
6 *
7 * This file implements parsing of the Processor Properties Topology Table
8 * which is optionally used to describe the processor and cache topology.
9 * Due to the relative pointers used throughout the table, this doesn't
10 * leverage the existing subtable parsing in the kernel.
11 *
12 * The PPTT structure is an inverted tree, with each node potentially
13 * holding one or two inverted tree data structures describing
14 * the caches available at that level. Each cache structure optionally
15 * contains properties describing the cache at a given level which can be
16 * used to override hardware probed values.
17 */
18 #define pr_fmt(fmt) "ACPI PPTT: " fmt
19
20 #include <linux/acpi.h>
21 #include <linux/cacheinfo.h>
22 #include <acpi/processor.h>
23
fetch_pptt_subtable(struct acpi_table_header * table_hdr,u32 pptt_ref)24 static struct acpi_subtable_header *fetch_pptt_subtable(struct acpi_table_header *table_hdr,
25 u32 pptt_ref)
26 {
27 struct acpi_subtable_header *entry;
28
29 /* there isn't a subtable at reference 0 */
30 if (pptt_ref < sizeof(struct acpi_subtable_header))
31 return NULL;
32
33 if (pptt_ref + sizeof(struct acpi_subtable_header) > table_hdr->length)
34 return NULL;
35
36 entry = ACPI_ADD_PTR(struct acpi_subtable_header, table_hdr, pptt_ref);
37
38 if (entry->length == 0)
39 return NULL;
40
41 if (pptt_ref + entry->length > table_hdr->length)
42 return NULL;
43
44 return entry;
45 }
46
fetch_pptt_node(struct acpi_table_header * table_hdr,u32 pptt_ref)47 static struct acpi_pptt_processor *fetch_pptt_node(struct acpi_table_header *table_hdr,
48 u32 pptt_ref)
49 {
50 return (struct acpi_pptt_processor *)fetch_pptt_subtable(table_hdr, pptt_ref);
51 }
52
fetch_pptt_cache(struct acpi_table_header * table_hdr,u32 pptt_ref)53 static struct acpi_pptt_cache *fetch_pptt_cache(struct acpi_table_header *table_hdr,
54 u32 pptt_ref)
55 {
56 return (struct acpi_pptt_cache *)fetch_pptt_subtable(table_hdr, pptt_ref);
57 }
58
acpi_get_pptt_resource(struct acpi_table_header * table_hdr,struct acpi_pptt_processor * node,int resource)59 static struct acpi_subtable_header *acpi_get_pptt_resource(struct acpi_table_header *table_hdr,
60 struct acpi_pptt_processor *node,
61 int resource)
62 {
63 u32 *ref;
64
65 if (resource >= node->number_of_priv_resources)
66 return NULL;
67
68 ref = ACPI_ADD_PTR(u32, node, sizeof(struct acpi_pptt_processor));
69 ref += resource;
70
71 return fetch_pptt_subtable(table_hdr, *ref);
72 }
73
acpi_pptt_match_type(int table_type,int type)74 static inline bool acpi_pptt_match_type(int table_type, int type)
75 {
76 return ((table_type & ACPI_PPTT_MASK_CACHE_TYPE) == type ||
77 table_type & ACPI_PPTT_CACHE_TYPE_UNIFIED & type);
78 }
79
80 /**
81 * acpi_pptt_walk_cache() - Attempt to find the requested acpi_pptt_cache
82 * @table_hdr: Pointer to the head of the PPTT table
83 * @local_level: passed res reflects this cache level
84 * @res: cache resource in the PPTT we want to walk
85 * @found: returns a pointer to the requested level if found
86 * @level: the requested cache level
87 * @type: the requested cache type
88 *
89 * Attempt to find a given cache level, while counting the max number
90 * of cache levels for the cache node.
91 *
92 * Given a pptt resource, verify that it is a cache node, then walk
93 * down each level of caches, counting how many levels are found
94 * as well as checking the cache type (icache, dcache, unified). If a
95 * level & type match, then we set found, and continue the search.
96 * Once the entire cache branch has been walked return its max
97 * depth.
98 *
99 * Return: The cache structure and the level we terminated with.
100 */
acpi_pptt_walk_cache(struct acpi_table_header * table_hdr,int local_level,struct acpi_subtable_header * res,struct acpi_pptt_cache ** found,int level,int type)101 static int acpi_pptt_walk_cache(struct acpi_table_header *table_hdr,
102 int local_level,
103 struct acpi_subtable_header *res,
104 struct acpi_pptt_cache **found,
105 int level, int type)
106 {
107 struct acpi_pptt_cache *cache;
108
109 if (res->type != ACPI_PPTT_TYPE_CACHE)
110 return 0;
111
112 cache = (struct acpi_pptt_cache *) res;
113 while (cache) {
114 local_level++;
115
116 if (local_level == level &&
117 cache->flags & ACPI_PPTT_CACHE_TYPE_VALID &&
118 acpi_pptt_match_type(cache->attributes, type)) {
119 if (*found != NULL && cache != *found)
120 pr_warn("Found duplicate cache level/type unable to determine uniqueness\n");
121
122 pr_debug("Found cache @ level %d\n", level);
123 *found = cache;
124 /*
125 * continue looking at this node's resource list
126 * to verify that we don't find a duplicate
127 * cache node.
128 */
129 }
130 cache = fetch_pptt_cache(table_hdr, cache->next_level_of_cache);
131 }
132 return local_level;
133 }
134
acpi_find_cache_level(struct acpi_table_header * table_hdr,struct acpi_pptt_processor * cpu_node,int * starting_level,int level,int type)135 static struct acpi_pptt_cache *acpi_find_cache_level(struct acpi_table_header *table_hdr,
136 struct acpi_pptt_processor *cpu_node,
137 int *starting_level, int level,
138 int type)
139 {
140 struct acpi_subtable_header *res;
141 int number_of_levels = *starting_level;
142 int resource = 0;
143 struct acpi_pptt_cache *ret = NULL;
144 int local_level;
145
146 /* walk down from processor node */
147 while ((res = acpi_get_pptt_resource(table_hdr, cpu_node, resource))) {
148 resource++;
149
150 local_level = acpi_pptt_walk_cache(table_hdr, *starting_level,
151 res, &ret, level, type);
152 /*
153 * we are looking for the max depth. Since its potentially
154 * possible for a given node to have resources with differing
155 * depths verify that the depth we have found is the largest.
156 */
157 if (number_of_levels < local_level)
158 number_of_levels = local_level;
159 }
160 if (number_of_levels > *starting_level)
161 *starting_level = number_of_levels;
162
163 return ret;
164 }
165
166 /**
167 * acpi_count_levels() - Given a PPTT table, and a cpu node, count the caches
168 * @table_hdr: Pointer to the head of the PPTT table
169 * @cpu_node: processor node we wish to count caches for
170 *
171 * Given a processor node containing a processing unit, walk into it and count
172 * how many levels exist solely for it, and then walk up each level until we hit
173 * the root node (ignore the package level because it may be possible to have
174 * caches that exist across packages). Count the number of cache levels that
175 * exist at each level on the way up.
176 *
177 * Return: Total number of levels found.
178 */
acpi_count_levels(struct acpi_table_header * table_hdr,struct acpi_pptt_processor * cpu_node)179 static int acpi_count_levels(struct acpi_table_header *table_hdr,
180 struct acpi_pptt_processor *cpu_node)
181 {
182 int total_levels = 0;
183
184 do {
185 acpi_find_cache_level(table_hdr, cpu_node, &total_levels, 0, 0);
186 cpu_node = fetch_pptt_node(table_hdr, cpu_node->parent);
187 } while (cpu_node);
188
189 return total_levels;
190 }
191
192 /**
193 * acpi_pptt_leaf_node() - Given a processor node, determine if its a leaf
194 * @table_hdr: Pointer to the head of the PPTT table
195 * @node: passed node is checked to see if its a leaf
196 *
197 * Determine if the *node parameter is a leaf node by iterating the
198 * PPTT table, looking for nodes which reference it.
199 *
200 * Return: 0 if we find a node referencing the passed node (or table error),
201 * or 1 if we don't.
202 */
acpi_pptt_leaf_node(struct acpi_table_header * table_hdr,struct acpi_pptt_processor * node)203 static int acpi_pptt_leaf_node(struct acpi_table_header *table_hdr,
204 struct acpi_pptt_processor *node)
205 {
206 struct acpi_subtable_header *entry;
207 unsigned long table_end;
208 u32 node_entry;
209 struct acpi_pptt_processor *cpu_node;
210 u32 proc_sz;
211
212 table_end = (unsigned long)table_hdr + table_hdr->length;
213 node_entry = ACPI_PTR_DIFF(node, table_hdr);
214 entry = ACPI_ADD_PTR(struct acpi_subtable_header, table_hdr,
215 sizeof(struct acpi_table_pptt));
216 proc_sz = sizeof(struct acpi_pptt_processor *);
217
218 while ((unsigned long)entry + proc_sz < table_end) {
219 cpu_node = (struct acpi_pptt_processor *)entry;
220 if (entry->type == ACPI_PPTT_TYPE_PROCESSOR &&
221 cpu_node->parent == node_entry)
222 return 0;
223 if (entry->length == 0)
224 return 0;
225 entry = ACPI_ADD_PTR(struct acpi_subtable_header, entry,
226 entry->length);
227
228 }
229 return 1;
230 }
231
232 /**
233 * acpi_find_processor_node() - Given a PPTT table find the requested processor
234 * @table_hdr: Pointer to the head of the PPTT table
235 * @acpi_cpu_id: cpu we are searching for
236 *
237 * Find the subtable entry describing the provided processor.
238 * This is done by iterating the PPTT table looking for processor nodes
239 * which have an acpi_processor_id that matches the acpi_cpu_id parameter
240 * passed into the function. If we find a node that matches this criteria
241 * we verify that its a leaf node in the topology rather than depending
242 * on the valid flag, which doesn't need to be set for leaf nodes.
243 *
244 * Return: NULL, or the processors acpi_pptt_processor*
245 */
acpi_find_processor_node(struct acpi_table_header * table_hdr,u32 acpi_cpu_id)246 static struct acpi_pptt_processor *acpi_find_processor_node(struct acpi_table_header *table_hdr,
247 u32 acpi_cpu_id)
248 {
249 struct acpi_subtable_header *entry;
250 unsigned long table_end;
251 struct acpi_pptt_processor *cpu_node;
252 u32 proc_sz;
253
254 table_end = (unsigned long)table_hdr + table_hdr->length;
255 entry = ACPI_ADD_PTR(struct acpi_subtable_header, table_hdr,
256 sizeof(struct acpi_table_pptt));
257 proc_sz = sizeof(struct acpi_pptt_processor *);
258
259 /* find the processor structure associated with this cpuid */
260 while ((unsigned long)entry + proc_sz < table_end) {
261 cpu_node = (struct acpi_pptt_processor *)entry;
262
263 if (entry->length == 0) {
264 pr_warn("Invalid zero length subtable\n");
265 break;
266 }
267 if (entry->type == ACPI_PPTT_TYPE_PROCESSOR &&
268 acpi_cpu_id == cpu_node->acpi_processor_id &&
269 acpi_pptt_leaf_node(table_hdr, cpu_node)) {
270 return (struct acpi_pptt_processor *)entry;
271 }
272
273 entry = ACPI_ADD_PTR(struct acpi_subtable_header, entry,
274 entry->length);
275 }
276
277 return NULL;
278 }
279
acpi_find_cache_levels(struct acpi_table_header * table_hdr,u32 acpi_cpu_id)280 static int acpi_find_cache_levels(struct acpi_table_header *table_hdr,
281 u32 acpi_cpu_id)
282 {
283 int number_of_levels = 0;
284 struct acpi_pptt_processor *cpu;
285
286 cpu = acpi_find_processor_node(table_hdr, acpi_cpu_id);
287 if (cpu)
288 number_of_levels = acpi_count_levels(table_hdr, cpu);
289
290 return number_of_levels;
291 }
292
acpi_cache_type(enum cache_type type)293 static u8 acpi_cache_type(enum cache_type type)
294 {
295 switch (type) {
296 case CACHE_TYPE_DATA:
297 pr_debug("Looking for data cache\n");
298 return ACPI_PPTT_CACHE_TYPE_DATA;
299 case CACHE_TYPE_INST:
300 pr_debug("Looking for instruction cache\n");
301 return ACPI_PPTT_CACHE_TYPE_INSTR;
302 default:
303 case CACHE_TYPE_UNIFIED:
304 pr_debug("Looking for unified cache\n");
305 /*
306 * It is important that ACPI_PPTT_CACHE_TYPE_UNIFIED
307 * contains the bit pattern that will match both
308 * ACPI unified bit patterns because we use it later
309 * to match both cases.
310 */
311 return ACPI_PPTT_CACHE_TYPE_UNIFIED;
312 }
313 }
314
acpi_find_cache_node(struct acpi_table_header * table_hdr,u32 acpi_cpu_id,enum cache_type type,unsigned int level,struct acpi_pptt_processor ** node)315 static struct acpi_pptt_cache *acpi_find_cache_node(struct acpi_table_header *table_hdr,
316 u32 acpi_cpu_id,
317 enum cache_type type,
318 unsigned int level,
319 struct acpi_pptt_processor **node)
320 {
321 int total_levels = 0;
322 struct acpi_pptt_cache *found = NULL;
323 struct acpi_pptt_processor *cpu_node;
324 u8 acpi_type = acpi_cache_type(type);
325
326 pr_debug("Looking for CPU %d's level %d cache type %d\n",
327 acpi_cpu_id, level, acpi_type);
328
329 cpu_node = acpi_find_processor_node(table_hdr, acpi_cpu_id);
330
331 while (cpu_node && !found) {
332 found = acpi_find_cache_level(table_hdr, cpu_node,
333 &total_levels, level, acpi_type);
334 *node = cpu_node;
335 cpu_node = fetch_pptt_node(table_hdr, cpu_node->parent);
336 }
337
338 return found;
339 }
340
341 /**
342 * update_cache_properties() - Update cacheinfo for the given processor
343 * @this_leaf: Kernel cache info structure being updated
344 * @found_cache: The PPTT node describing this cache instance
345 * @cpu_node: A unique reference to describe this cache instance
346 *
347 * The ACPI spec implies that the fields in the cache structures are used to
348 * extend and correct the information probed from the hardware. Lets only
349 * set fields that we determine are VALID.
350 *
351 * Return: nothing. Side effect of updating the global cacheinfo
352 */
update_cache_properties(struct cacheinfo * this_leaf,struct acpi_pptt_cache * found_cache,struct acpi_pptt_processor * cpu_node)353 static void update_cache_properties(struct cacheinfo *this_leaf,
354 struct acpi_pptt_cache *found_cache,
355 struct acpi_pptt_processor *cpu_node)
356 {
357 this_leaf->fw_token = cpu_node;
358 if (found_cache->flags & ACPI_PPTT_SIZE_PROPERTY_VALID)
359 this_leaf->size = found_cache->size;
360 if (found_cache->flags & ACPI_PPTT_LINE_SIZE_VALID)
361 this_leaf->coherency_line_size = found_cache->line_size;
362 if (found_cache->flags & ACPI_PPTT_NUMBER_OF_SETS_VALID)
363 this_leaf->number_of_sets = found_cache->number_of_sets;
364 if (found_cache->flags & ACPI_PPTT_ASSOCIATIVITY_VALID)
365 this_leaf->ways_of_associativity = found_cache->associativity;
366 if (found_cache->flags & ACPI_PPTT_WRITE_POLICY_VALID) {
367 switch (found_cache->attributes & ACPI_PPTT_MASK_WRITE_POLICY) {
368 case ACPI_PPTT_CACHE_POLICY_WT:
369 this_leaf->attributes = CACHE_WRITE_THROUGH;
370 break;
371 case ACPI_PPTT_CACHE_POLICY_WB:
372 this_leaf->attributes = CACHE_WRITE_BACK;
373 break;
374 }
375 }
376 if (found_cache->flags & ACPI_PPTT_ALLOCATION_TYPE_VALID) {
377 switch (found_cache->attributes & ACPI_PPTT_MASK_ALLOCATION_TYPE) {
378 case ACPI_PPTT_CACHE_READ_ALLOCATE:
379 this_leaf->attributes |= CACHE_READ_ALLOCATE;
380 break;
381 case ACPI_PPTT_CACHE_WRITE_ALLOCATE:
382 this_leaf->attributes |= CACHE_WRITE_ALLOCATE;
383 break;
384 case ACPI_PPTT_CACHE_RW_ALLOCATE:
385 case ACPI_PPTT_CACHE_RW_ALLOCATE_ALT:
386 this_leaf->attributes |=
387 CACHE_READ_ALLOCATE | CACHE_WRITE_ALLOCATE;
388 break;
389 }
390 }
391 /*
392 * If cache type is NOCACHE, then the cache hasn't been specified
393 * via other mechanisms. Update the type if a cache type has been
394 * provided.
395 *
396 * Note, we assume such caches are unified based on conventional system
397 * design and known examples. Significant work is required elsewhere to
398 * fully support data/instruction only type caches which are only
399 * specified in PPTT.
400 */
401 if (this_leaf->type == CACHE_TYPE_NOCACHE &&
402 found_cache->flags & ACPI_PPTT_CACHE_TYPE_VALID)
403 this_leaf->type = CACHE_TYPE_UNIFIED;
404 }
405
cache_setup_acpi_cpu(struct acpi_table_header * table,unsigned int cpu)406 static void cache_setup_acpi_cpu(struct acpi_table_header *table,
407 unsigned int cpu)
408 {
409 struct acpi_pptt_cache *found_cache;
410 struct cpu_cacheinfo *this_cpu_ci = get_cpu_cacheinfo(cpu);
411 u32 acpi_cpu_id = get_acpi_id_for_cpu(cpu);
412 struct cacheinfo *this_leaf;
413 unsigned int index = 0;
414 struct acpi_pptt_processor *cpu_node = NULL;
415
416 while (index < get_cpu_cacheinfo(cpu)->num_leaves) {
417 this_leaf = this_cpu_ci->info_list + index;
418 found_cache = acpi_find_cache_node(table, acpi_cpu_id,
419 this_leaf->type,
420 this_leaf->level,
421 &cpu_node);
422 pr_debug("found = %p %p\n", found_cache, cpu_node);
423 if (found_cache)
424 update_cache_properties(this_leaf,
425 found_cache,
426 cpu_node);
427
428 index++;
429 }
430 }
431
432 /* Passing level values greater than this will result in search termination */
433 #define PPTT_ABORT_PACKAGE 0xFF
434
acpi_find_processor_package_id(struct acpi_table_header * table_hdr,struct acpi_pptt_processor * cpu,int level,int flag)435 static struct acpi_pptt_processor *acpi_find_processor_package_id(struct acpi_table_header *table_hdr,
436 struct acpi_pptt_processor *cpu,
437 int level, int flag)
438 {
439 struct acpi_pptt_processor *prev_node;
440
441 while (cpu && level) {
442 if (cpu->flags & flag)
443 break;
444 pr_debug("level %d\n", level);
445 prev_node = fetch_pptt_node(table_hdr, cpu->parent);
446 if (prev_node == NULL)
447 break;
448 cpu = prev_node;
449 level--;
450 }
451 return cpu;
452 }
453
454 /**
455 * topology_get_acpi_cpu_tag() - Find a unique topology value for a feature
456 * @table: Pointer to the head of the PPTT table
457 * @cpu: Kernel logical cpu number
458 * @level: A level that terminates the search
459 * @flag: A flag which terminates the search
460 *
461 * Get a unique value given a cpu, and a topology level, that can be
462 * matched to determine which cpus share common topological features
463 * at that level.
464 *
465 * Return: Unique value, or -ENOENT if unable to locate cpu
466 */
topology_get_acpi_cpu_tag(struct acpi_table_header * table,unsigned int cpu,int level,int flag)467 static int topology_get_acpi_cpu_tag(struct acpi_table_header *table,
468 unsigned int cpu, int level, int flag)
469 {
470 struct acpi_pptt_processor *cpu_node;
471 u32 acpi_cpu_id = get_acpi_id_for_cpu(cpu);
472
473 cpu_node = acpi_find_processor_node(table, acpi_cpu_id);
474 if (cpu_node) {
475 cpu_node = acpi_find_processor_package_id(table, cpu_node,
476 level, flag);
477 /*
478 * As per specification if the processor structure represents
479 * an actual processor, then ACPI processor ID must be valid.
480 * For processor containers ACPI_PPTT_ACPI_PROCESSOR_ID_VALID
481 * should be set if the UID is valid
482 */
483 if (level == 0 ||
484 cpu_node->flags & ACPI_PPTT_ACPI_PROCESSOR_ID_VALID)
485 return cpu_node->acpi_processor_id;
486 return ACPI_PTR_DIFF(cpu_node, table);
487 }
488 pr_warn_once("PPTT table found, but unable to locate core %d (%d)\n",
489 cpu, acpi_cpu_id);
490 return -ENOENT;
491 }
492
find_acpi_cpu_topology_tag(unsigned int cpu,int level,int flag)493 static int find_acpi_cpu_topology_tag(unsigned int cpu, int level, int flag)
494 {
495 struct acpi_table_header *table;
496 acpi_status status;
497 int retval;
498
499 status = acpi_get_table(ACPI_SIG_PPTT, 0, &table);
500 if (ACPI_FAILURE(status)) {
501 pr_warn_once("No PPTT table found, cpu topology may be inaccurate\n");
502 return -ENOENT;
503 }
504 retval = topology_get_acpi_cpu_tag(table, cpu, level, flag);
505 pr_debug("Topology Setup ACPI cpu %d, level %d ret = %d\n",
506 cpu, level, retval);
507 acpi_put_table(table);
508
509 return retval;
510 }
511
512 /**
513 * check_acpi_cpu_flag() - Determine if CPU node has a flag set
514 * @cpu: Kernel logical CPU number
515 * @rev: The minimum PPTT revision defining the flag
516 * @flag: The flag itself
517 *
518 * Check the node representing a CPU for a given flag.
519 *
520 * Return: -ENOENT if the PPTT doesn't exist, the CPU cannot be found or
521 * the table revision isn't new enough.
522 * 1, any passed flag set
523 * 0, flag unset
524 */
check_acpi_cpu_flag(unsigned int cpu,int rev,u32 flag)525 static int check_acpi_cpu_flag(unsigned int cpu, int rev, u32 flag)
526 {
527 struct acpi_table_header *table;
528 acpi_status status;
529 u32 acpi_cpu_id = get_acpi_id_for_cpu(cpu);
530 struct acpi_pptt_processor *cpu_node = NULL;
531 int ret = -ENOENT;
532
533 status = acpi_get_table(ACPI_SIG_PPTT, 0, &table);
534 if (ACPI_FAILURE(status)) {
535 pr_warn_once("No PPTT table found, cpu topology may be inaccurate\n");
536 return ret;
537 }
538
539 if (table->revision >= rev)
540 cpu_node = acpi_find_processor_node(table, acpi_cpu_id);
541
542 if (cpu_node)
543 ret = (cpu_node->flags & flag) != 0;
544
545 acpi_put_table(table);
546
547 return ret;
548 }
549
550 /**
551 * acpi_find_last_cache_level() - Determines the number of cache levels for a PE
552 * @cpu: Kernel logical cpu number
553 *
554 * Given a logical cpu number, returns the number of levels of cache represented
555 * in the PPTT. Errors caused by lack of a PPTT table, or otherwise, return 0
556 * indicating we didn't find any cache levels.
557 *
558 * Return: Cache levels visible to this core.
559 */
acpi_find_last_cache_level(unsigned int cpu)560 int acpi_find_last_cache_level(unsigned int cpu)
561 {
562 u32 acpi_cpu_id;
563 struct acpi_table_header *table;
564 int number_of_levels = 0;
565 acpi_status status;
566
567 pr_debug("Cache Setup find last level cpu=%d\n", cpu);
568
569 acpi_cpu_id = get_acpi_id_for_cpu(cpu);
570 status = acpi_get_table(ACPI_SIG_PPTT, 0, &table);
571 if (ACPI_FAILURE(status)) {
572 pr_warn_once("No PPTT table found, cache topology may be inaccurate\n");
573 } else {
574 number_of_levels = acpi_find_cache_levels(table, acpi_cpu_id);
575 acpi_put_table(table);
576 }
577 pr_debug("Cache Setup find last level level=%d\n", number_of_levels);
578
579 return number_of_levels;
580 }
581
582 /**
583 * cache_setup_acpi() - Override CPU cache topology with data from the PPTT
584 * @cpu: Kernel logical cpu number
585 *
586 * Updates the global cache info provided by cpu_get_cacheinfo()
587 * when there are valid properties in the acpi_pptt_cache nodes. A
588 * successful parse may not result in any updates if none of the
589 * cache levels have any valid flags set. Futher, a unique value is
590 * associated with each known CPU cache entry. This unique value
591 * can be used to determine whether caches are shared between cpus.
592 *
593 * Return: -ENOENT on failure to find table, or 0 on success
594 */
cache_setup_acpi(unsigned int cpu)595 int cache_setup_acpi(unsigned int cpu)
596 {
597 struct acpi_table_header *table;
598 acpi_status status;
599
600 pr_debug("Cache Setup ACPI cpu %d\n", cpu);
601
602 status = acpi_get_table(ACPI_SIG_PPTT, 0, &table);
603 if (ACPI_FAILURE(status)) {
604 pr_warn_once("No PPTT table found, cache topology may be inaccurate\n");
605 return -ENOENT;
606 }
607
608 cache_setup_acpi_cpu(table, cpu);
609 acpi_put_table(table);
610
611 return status;
612 }
613
614 /**
615 * acpi_pptt_cpu_is_thread() - Determine if CPU is a thread
616 * @cpu: Kernel logical CPU number
617 *
618 * Return: 1, a thread
619 * 0, not a thread
620 * -ENOENT ,if the PPTT doesn't exist, the CPU cannot be found or
621 * the table revision isn't new enough.
622 */
acpi_pptt_cpu_is_thread(unsigned int cpu)623 int acpi_pptt_cpu_is_thread(unsigned int cpu)
624 {
625 return check_acpi_cpu_flag(cpu, 2, ACPI_PPTT_ACPI_PROCESSOR_IS_THREAD);
626 }
627
628 /**
629 * find_acpi_cpu_topology() - Determine a unique topology value for a given cpu
630 * @cpu: Kernel logical cpu number
631 * @level: The topological level for which we would like a unique ID
632 *
633 * Determine a topology unique ID for each thread/core/cluster/mc_grouping
634 * /socket/etc. This ID can then be used to group peers, which will have
635 * matching ids.
636 *
637 * The search terminates when either the requested level is found or
638 * we reach a root node. Levels beyond the termination point will return the
639 * same unique ID. The unique id for level 0 is the acpi processor id. All
640 * other levels beyond this use a generated value to uniquely identify
641 * a topological feature.
642 *
643 * Return: -ENOENT if the PPTT doesn't exist, or the cpu cannot be found.
644 * Otherwise returns a value which represents a unique topological feature.
645 */
find_acpi_cpu_topology(unsigned int cpu,int level)646 int find_acpi_cpu_topology(unsigned int cpu, int level)
647 {
648 return find_acpi_cpu_topology_tag(cpu, level, 0);
649 }
650
651 /**
652 * find_acpi_cpu_cache_topology() - Determine a unique cache topology value
653 * @cpu: Kernel logical cpu number
654 * @level: The cache level for which we would like a unique ID
655 *
656 * Determine a unique ID for each unified cache in the system
657 *
658 * Return: -ENOENT if the PPTT doesn't exist, or the cpu cannot be found.
659 * Otherwise returns a value which represents a unique topological feature.
660 */
find_acpi_cpu_cache_topology(unsigned int cpu,int level)661 int find_acpi_cpu_cache_topology(unsigned int cpu, int level)
662 {
663 struct acpi_table_header *table;
664 struct acpi_pptt_cache *found_cache;
665 acpi_status status;
666 u32 acpi_cpu_id = get_acpi_id_for_cpu(cpu);
667 struct acpi_pptt_processor *cpu_node = NULL;
668 int ret = -1;
669
670 status = acpi_get_table(ACPI_SIG_PPTT, 0, &table);
671 if (ACPI_FAILURE(status)) {
672 pr_warn_once("No PPTT table found, topology may be inaccurate\n");
673 return -ENOENT;
674 }
675
676 found_cache = acpi_find_cache_node(table, acpi_cpu_id,
677 CACHE_TYPE_UNIFIED,
678 level,
679 &cpu_node);
680 if (found_cache)
681 ret = ACPI_PTR_DIFF(cpu_node, table);
682
683 acpi_put_table(table);
684
685 return ret;
686 }
687
688
689 /**
690 * find_acpi_cpu_topology_package() - Determine a unique cpu package value
691 * @cpu: Kernel logical cpu number
692 *
693 * Determine a topology unique package ID for the given cpu.
694 * This ID can then be used to group peers, which will have matching ids.
695 *
696 * The search terminates when either a level is found with the PHYSICAL_PACKAGE
697 * flag set or we reach a root node.
698 *
699 * Return: -ENOENT if the PPTT doesn't exist, or the cpu cannot be found.
700 * Otherwise returns a value which represents the package for this cpu.
701 */
find_acpi_cpu_topology_package(unsigned int cpu)702 int find_acpi_cpu_topology_package(unsigned int cpu)
703 {
704 return find_acpi_cpu_topology_tag(cpu, PPTT_ABORT_PACKAGE,
705 ACPI_PPTT_PHYSICAL_PACKAGE);
706 }
707