• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 
2 /* drivers/atm/firestream.c - FireStream 155 (MB86697) and
3  *                            FireStream  50 (MB86695) device driver
4  */
5 
6 /* Written & (C) 2000 by R.E.Wolff@BitWizard.nl
7  * Copied snippets from zatm.c by Werner Almesberger, EPFL LRC/ICA
8  * and ambassador.c Copyright (C) 1995-1999  Madge Networks Ltd
9  */
10 
11 /*
12   This program is free software; you can redistribute it and/or modify
13   it under the terms of the GNU General Public License as published by
14   the Free Software Foundation; either version 2 of the License, or
15   (at your option) any later version.
16 
17   This program is distributed in the hope that it will be useful,
18   but WITHOUT ANY WARRANTY; without even the implied warranty of
19   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
20   GNU General Public License for more details.
21 
22   You should have received a copy of the GNU General Public License
23   along with this program; if not, write to the Free Software
24   Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
25 
26   The GNU GPL is contained in /usr/doc/copyright/GPL on a Debian
27   system and in the file COPYING in the Linux kernel source.
28 */
29 
30 
31 #include <linux/module.h>
32 #include <linux/sched.h>
33 #include <linux/kernel.h>
34 #include <linux/mm.h>
35 #include <linux/pci.h>
36 #include <linux/poison.h>
37 #include <linux/errno.h>
38 #include <linux/atm.h>
39 #include <linux/atmdev.h>
40 #include <linux/sonet.h>
41 #include <linux/skbuff.h>
42 #include <linux/netdevice.h>
43 #include <linux/delay.h>
44 #include <linux/ioport.h> /* for request_region */
45 #include <linux/uio.h>
46 #include <linux/init.h>
47 #include <linux/interrupt.h>
48 #include <linux/capability.h>
49 #include <linux/bitops.h>
50 #include <linux/slab.h>
51 #include <asm/byteorder.h>
52 #include <asm/string.h>
53 #include <asm/io.h>
54 #include <linux/atomic.h>
55 #include <linux/uaccess.h>
56 #include <linux/wait.h>
57 
58 #include "firestream.h"
59 
60 static int loopback = 0;
61 static int num=0x5a;
62 
63 /* According to measurements (but they look suspicious to me!) done in
64  * '97, 37% of the packets are one cell in size. So it pays to have
65  * buffers allocated at that size. A large jump in percentage of
66  * packets occurs at packets around 536 bytes in length. So it also
67  * pays to have those pre-allocated. Unfortunately, we can't fully
68  * take advantage of this as the majority of the packets is likely to
69  * be TCP/IP (As where obviously the measurement comes from) There the
70  * link would be opened with say a 1500 byte MTU, and we can't handle
71  * smaller buffers more efficiently than the larger ones. -- REW
72  */
73 
74 /* Due to the way Linux memory management works, specifying "576" as
75  * an allocation size here isn't going to help. They are allocated
76  * from 1024-byte regions anyway. With the size of the sk_buffs (quite
77  * large), it doesn't pay to allocate the smallest size (64) -- REW */
78 
79 /* This is all guesswork. Hard numbers to back this up or disprove this,
80  * are appreciated. -- REW */
81 
82 /* The last entry should be about 64k. However, the "buffer size" is
83  * passed to the chip in a 16 bit field. I don't know how "65536"
84  * would be interpreted. -- REW */
85 
86 #define NP FS_NR_FREE_POOLS
87 static int rx_buf_sizes[NP]  = {128,  256,  512, 1024, 2048, 4096, 16384, 65520};
88 /* log2:                 7     8     9    10    11    12    14     16 */
89 
90 #if 0
91 static int rx_pool_sizes[NP] = {1024, 1024, 512, 256,  128,  64,   32,    32};
92 #else
93 /* debug */
94 static int rx_pool_sizes[NP] = {128,  128,  128, 64,   64,   64,   32,    32};
95 #endif
96 /* log2:                 10    10    9    8     7     6     5      5  */
97 /* sumlog2:              17    18    18   18    18    18    19     21 */
98 /* mem allocated:        128k  256k  256k 256k  256k  256k  512k   2M */
99 /* tot mem: almost 4M */
100 
101 /* NP is shorter, so that it fits on a single line. */
102 #undef NP
103 
104 
105 /* Small hardware gotcha:
106 
107    The FS50 CAM (VP/VC match registers) always take the lowest channel
108    number that matches. This is not a problem.
109 
110    However, they also ignore whether the channel is enabled or
111    not. This means that if you allocate channel 0 to 1.2 and then
112    channel 1 to 0.0, then disabeling channel 0 and writing 0 to the
113    match channel for channel 0 will "steal" the traffic from channel
114    1, even if you correctly disable channel 0.
115 
116    Workaround:
117 
118    - When disabling channels, write an invalid VP/VC value to the
119    match register. (We use 0xffffffff, which in the worst case
120    matches VP/VC = <maxVP>/<maxVC>, but I expect it not to match
121    anything as some "when not in use, program to 0" bits are now
122    programmed to 1...)
123 
124    - Don't initialize the match registers to 0, as 0.0 is a valid
125    channel.
126 */
127 
128 
129 /* Optimization hints and tips.
130 
131    The FireStream chips are very capable of reducing the amount of
132    "interrupt-traffic" for the CPU. This driver requests an interrupt on EVERY
133    action. You could try to minimize this a bit.
134 
135    Besides that, the userspace->kernel copy and the PCI bus are the
136    performance limiting issues for this driver.
137 
138    You could queue up a bunch of outgoing packets without telling the
139    FireStream. I'm not sure that's going to win you much though. The
140    Linux layer won't tell us in advance when it's not going to give us
141    any more packets in a while. So this is tricky to implement right without
142    introducing extra delays.
143 
144    -- REW
145  */
146 
147 
148 
149 
150 /* The strings that define what the RX queue entry is all about. */
151 /* Fujitsu: Please tell me which ones can have a pointer to a
152    freepool descriptor! */
153 static char *res_strings[] = {
154 	"RX OK: streaming not EOP",
155 	"RX OK: streaming EOP",
156 	"RX OK: Single buffer packet",
157 	"RX OK: packet mode",
158 	"RX OK: F4 OAM (end to end)",
159 	"RX OK: F4 OAM (Segment)",
160 	"RX OK: F5 OAM (end to end)",
161 	"RX OK: F5 OAM (Segment)",
162 	"RX OK: RM cell",
163 	"RX OK: TRANSP cell",
164 	"RX OK: TRANSPC cell",
165 	"Unmatched cell",
166 	"reserved 12",
167 	"reserved 13",
168 	"reserved 14",
169 	"Unrecognized cell",
170 	"reserved 16",
171 	"reassembly abort: AAL5 abort",
172 	"packet purged",
173 	"packet ageing timeout",
174 	"channel ageing timeout",
175 	"calculated length error",
176 	"programmed length limit error",
177 	"aal5 crc32 error",
178 	"oam transp or transpc crc10 error",
179 	"reserved 25",
180 	"reserved 26",
181 	"reserved 27",
182 	"reserved 28",
183 	"reserved 29",
184 	"reserved 30", /* FIXME: The strings between 30-40 might be wrong. */
185 	"reassembly abort: no buffers",
186 	"receive buffer overflow",
187 	"change in GFC",
188 	"receive buffer full",
189 	"low priority discard - no receive descriptor",
190 	"low priority discard - missing end of packet",
191 	"reserved 37",
192 	"reserved 38",
193 	"reserved 39",
194 	"reserved 40",
195 	"reserved 41",
196 	"reserved 42",
197 	"reserved 43",
198 	"reserved 44",
199 	"reserved 45",
200 	"reserved 46",
201 	"reserved 47",
202 	"reserved 48",
203 	"reserved 49",
204 	"reserved 50",
205 	"reserved 51",
206 	"reserved 52",
207 	"reserved 53",
208 	"reserved 54",
209 	"reserved 55",
210 	"reserved 56",
211 	"reserved 57",
212 	"reserved 58",
213 	"reserved 59",
214 	"reserved 60",
215 	"reserved 61",
216 	"reserved 62",
217 	"reserved 63",
218 };
219 
220 static char *irq_bitname[] = {
221 	"LPCO",
222 	"DPCO",
223 	"RBRQ0_W",
224 	"RBRQ1_W",
225 	"RBRQ2_W",
226 	"RBRQ3_W",
227 	"RBRQ0_NF",
228 	"RBRQ1_NF",
229 	"RBRQ2_NF",
230 	"RBRQ3_NF",
231 	"BFP_SC",
232 	"INIT",
233 	"INIT_ERR",
234 	"USCEO",
235 	"UPEC0",
236 	"VPFCO",
237 	"CRCCO",
238 	"HECO",
239 	"TBRQ_W",
240 	"TBRQ_NF",
241 	"CTPQ_E",
242 	"GFC_C0",
243 	"PCI_FTL",
244 	"CSQ_W",
245 	"CSQ_NF",
246 	"EXT_INT",
247 	"RXDMA_S"
248 };
249 
250 
251 #define PHY_EOF -1
252 #define PHY_CLEARALL -2
253 
254 struct reginit_item {
255 	int reg, val;
256 };
257 
258 
259 static struct reginit_item PHY_NTC_INIT[] = {
260 	{ PHY_CLEARALL, 0x40 },
261 	{ 0x12,  0x0001 },
262 	{ 0x13,  0x7605 },
263 	{ 0x1A,  0x0001 },
264 	{ 0x1B,  0x0005 },
265 	{ 0x38,  0x0003 },
266 	{ 0x39,  0x0006 },   /* changed here to make loopback */
267 	{ 0x01,  0x5262 },
268 	{ 0x15,  0x0213 },
269 	{ 0x00,  0x0003 },
270 	{ PHY_EOF, 0},    /* -1 signals end of list */
271 };
272 
273 
274 /* Safetyfeature: If the card interrupts more than this number of times
275    in a jiffy (1/100th of a second) then we just disable the interrupt and
276    print a message. This prevents the system from hanging.
277 
278    150000 packets per second is close to the limit a PC is going to have
279    anyway. We therefore have to disable this for production. -- REW */
280 #undef IRQ_RATE_LIMIT // 100
281 
282 /* Interrupts work now. Unlike serial cards, ATM cards don't work all
283    that great without interrupts. -- REW */
284 #undef FS_POLL_FREQ // 100
285 
286 /*
287    This driver can spew a whole lot of debugging output at you. If you
288    need maximum performance, you should disable the DEBUG define. To
289    aid in debugging in the field, I'm leaving the compile-time debug
290    features enabled, and disable them "runtime". That allows me to
291    instruct people with problems to enable debugging without requiring
292    them to recompile... -- REW
293 */
294 #define DEBUG
295 
296 #ifdef DEBUG
297 #define fs_dprintk(f, str...) if (fs_debug & f) printk (str)
298 #else
299 #define fs_dprintk(f, str...) /* nothing */
300 #endif
301 
302 
303 static int fs_keystream = 0;
304 
305 #ifdef DEBUG
306 /* I didn't forget to set this to zero before shipping. Hit me with a stick
307    if you get this with the debug default not set to zero again. -- REW */
308 static int fs_debug = 0;
309 #else
310 #define fs_debug 0
311 #endif
312 
313 #ifdef MODULE
314 #ifdef DEBUG
315 module_param(fs_debug, int, 0644);
316 #endif
317 module_param(loopback, int, 0);
318 module_param(num, int, 0);
319 module_param(fs_keystream, int, 0);
320 /* XXX Add rx_buf_sizes, and rx_pool_sizes As per request Amar. -- REW */
321 #endif
322 
323 
324 #define FS_DEBUG_FLOW    0x00000001
325 #define FS_DEBUG_OPEN    0x00000002
326 #define FS_DEBUG_QUEUE   0x00000004
327 #define FS_DEBUG_IRQ     0x00000008
328 #define FS_DEBUG_INIT    0x00000010
329 #define FS_DEBUG_SEND    0x00000020
330 #define FS_DEBUG_PHY     0x00000040
331 #define FS_DEBUG_CLEANUP 0x00000080
332 #define FS_DEBUG_QOS     0x00000100
333 #define FS_DEBUG_TXQ     0x00000200
334 #define FS_DEBUG_ALLOC   0x00000400
335 #define FS_DEBUG_TXMEM   0x00000800
336 #define FS_DEBUG_QSIZE   0x00001000
337 
338 
339 #define func_enter() fs_dprintk(FS_DEBUG_FLOW, "fs: enter %s\n", __func__)
340 #define func_exit()  fs_dprintk(FS_DEBUG_FLOW, "fs: exit  %s\n", __func__)
341 
342 
343 static struct fs_dev *fs_boards = NULL;
344 
345 #ifdef DEBUG
346 
my_hd(void * addr,int len)347 static void my_hd (void *addr, int len)
348 {
349 	int j, ch;
350 	unsigned char *ptr = addr;
351 
352 	while (len > 0) {
353 		printk ("%p ", ptr);
354 		for (j=0;j < ((len < 16)?len:16);j++) {
355 			printk ("%02x %s", ptr[j], (j==7)?" ":"");
356 		}
357 		for (  ;j < 16;j++) {
358 			printk ("   %s", (j==7)?" ":"");
359 		}
360 		for (j=0;j < ((len < 16)?len:16);j++) {
361 			ch = ptr[j];
362 			printk ("%c", (ch < 0x20)?'.':((ch > 0x7f)?'.':ch));
363 		}
364 		printk ("\n");
365 		ptr += 16;
366 		len -= 16;
367 	}
368 }
369 #else /* DEBUG */
my_hd(void * addr,int len)370 static void my_hd (void *addr, int len){}
371 #endif /* DEBUG */
372 
373 /********** free an skb (as per ATM device driver documentation) **********/
374 
375 /* Hmm. If this is ATM specific, why isn't there an ATM routine for this?
376  * I copied it over from the ambassador driver. -- REW */
377 
fs_kfree_skb(struct sk_buff * skb)378 static inline void fs_kfree_skb (struct sk_buff * skb)
379 {
380 	if (ATM_SKB(skb)->vcc->pop)
381 		ATM_SKB(skb)->vcc->pop (ATM_SKB(skb)->vcc, skb);
382 	else
383 		dev_kfree_skb_any (skb);
384 }
385 
386 
387 
388 
389 /* It seems the ATM forum recommends this horribly complicated 16bit
390  * floating point format. Turns out the Ambassador uses the exact same
391  * encoding. I just copied it over. If Mitch agrees, I'll move it over
392  * to the atm_misc file or something like that. (and remove it from
393  * here and the ambassador driver) -- REW
394  */
395 
396 /* The good thing about this format is that it is monotonic. So,
397    a conversion routine need not be very complicated. To be able to
398    round "nearest" we need to take along a few extra bits. Lets
399    put these after 16 bits, so that we can just return the top 16
400    bits of the 32bit number as the result:
401 
402    int mr (unsigned int rate, int r)
403      {
404      int e = 16+9;
405      static int round[4]={0, 0, 0xffff, 0x8000};
406      if (!rate) return 0;
407      while (rate & 0xfc000000) {
408        rate >>= 1;
409        e++;
410      }
411      while (! (rate & 0xfe000000)) {
412        rate <<= 1;
413        e--;
414      }
415 
416 // Now the mantissa is in positions bit 16-25. Excepf for the "hidden 1" that's in bit 26.
417      rate &= ~0x02000000;
418 // Next add in the exponent
419      rate |= e << (16+9);
420 // And perform the rounding:
421      return (rate + round[r]) >> 16;
422    }
423 
424    14 lines-of-code. Compare that with the 120 that the Ambassador
425    guys needed. (would be 8 lines shorter if I'd try to really reduce
426    the number of lines:
427 
428    int mr (unsigned int rate, int r)
429    {
430      int e = 16+9;
431      static int round[4]={0, 0, 0xffff, 0x8000};
432      if (!rate) return 0;
433      for (;  rate & 0xfc000000 ;rate >>= 1, e++);
434      for (;!(rate & 0xfe000000);rate <<= 1, e--);
435      return ((rate & ~0x02000000) | (e << (16+9)) + round[r]) >> 16;
436    }
437 
438    Exercise for the reader: Remove one more line-of-code, without
439    cheating. (Just joining two lines is cheating). (I know it's
440    possible, don't think you've beat me if you found it... If you
441    manage to lose two lines or more, keep me updated! ;-)
442 
443    -- REW */
444 
445 
446 #define ROUND_UP      1
447 #define ROUND_DOWN    2
448 #define ROUND_NEAREST 3
449 /********** make rate (not quite as much fun as Horizon) **********/
450 
make_rate(unsigned int rate,int r,u16 * bits,unsigned int * actual)451 static int make_rate(unsigned int rate, int r,
452 		      u16 *bits, unsigned int *actual)
453 {
454 	unsigned char exp = -1; /* hush gcc */
455 	unsigned int man = -1;  /* hush gcc */
456 
457 	fs_dprintk (FS_DEBUG_QOS, "make_rate %u", rate);
458 
459 	/* rates in cells per second, ITU format (nasty 16-bit floating-point)
460 	   given 5-bit e and 9-bit m:
461 	   rate = EITHER (1+m/2^9)*2^e    OR 0
462 	   bits = EITHER 1<<14 | e<<9 | m OR 0
463 	   (bit 15 is "reserved", bit 14 "non-zero")
464 	   smallest rate is 0 (special representation)
465 	   largest rate is (1+511/512)*2^31 = 4290772992 (< 2^32-1)
466 	   smallest non-zero rate is (1+0/512)*2^0 = 1 (> 0)
467 	   simple algorithm:
468 	   find position of top bit, this gives e
469 	   remove top bit and shift (rounding if feeling clever) by 9-e
470 	*/
471 	/* Ambassador ucode bug: please don't set bit 14! so 0 rate not
472 	   representable. // This should move into the ambassador driver
473 	   when properly merged. -- REW */
474 
475 	if (rate > 0xffc00000U) {
476 		/* larger than largest representable rate */
477 
478 		if (r == ROUND_UP) {
479 			return -EINVAL;
480 		} else {
481 			exp = 31;
482 			man = 511;
483 		}
484 
485 	} else if (rate) {
486 		/* representable rate */
487 
488 		exp = 31;
489 		man = rate;
490 
491 		/* invariant: rate = man*2^(exp-31) */
492 		while (!(man & (1<<31))) {
493 			exp = exp - 1;
494 			man = man<<1;
495 		}
496 
497 		/* man has top bit set
498 		   rate = (2^31+(man-2^31))*2^(exp-31)
499 		   rate = (1+(man-2^31)/2^31)*2^exp
500 		*/
501 		man = man<<1;
502 		man &= 0xffffffffU; /* a nop on 32-bit systems */
503 		/* rate = (1+man/2^32)*2^exp
504 
505 		   exp is in the range 0 to 31, man is in the range 0 to 2^32-1
506 		   time to lose significance... we want m in the range 0 to 2^9-1
507 		   rounding presents a minor problem... we first decide which way
508 		   we are rounding (based on given rounding direction and possibly
509 		   the bits of the mantissa that are to be discarded).
510 		*/
511 
512 		switch (r) {
513 		case ROUND_DOWN: {
514 			/* just truncate */
515 			man = man>>(32-9);
516 			break;
517 		}
518 		case ROUND_UP: {
519 			/* check all bits that we are discarding */
520 			if (man & (~0U>>9)) {
521 				man = (man>>(32-9)) + 1;
522 				if (man == (1<<9)) {
523 					/* no need to check for round up outside of range */
524 					man = 0;
525 					exp += 1;
526 				}
527 			} else {
528 				man = (man>>(32-9));
529 			}
530 			break;
531 		}
532 		case ROUND_NEAREST: {
533 			/* check msb that we are discarding */
534 			if (man & (1<<(32-9-1))) {
535 				man = (man>>(32-9)) + 1;
536 				if (man == (1<<9)) {
537 					/* no need to check for round up outside of range */
538 					man = 0;
539 					exp += 1;
540 				}
541 			} else {
542 				man = (man>>(32-9));
543 			}
544 			break;
545 		}
546 		}
547 
548 	} else {
549 		/* zero rate - not representable */
550 
551 		if (r == ROUND_DOWN) {
552 			return -EINVAL;
553 		} else {
554 			exp = 0;
555 			man = 0;
556 		}
557 	}
558 
559 	fs_dprintk (FS_DEBUG_QOS, "rate: man=%u, exp=%hu", man, exp);
560 
561 	if (bits)
562 		*bits = /* (1<<14) | */ (exp<<9) | man;
563 
564 	if (actual)
565 		*actual = (exp >= 9)
566 			? (1 << exp) + (man << (exp-9))
567 			: (1 << exp) + ((man + (1<<(9-exp-1))) >> (9-exp));
568 
569 	return 0;
570 }
571 
572 
573 
574 
575 /* FireStream access routines */
576 /* For DEEP-DOWN debugging these can be rigged to intercept accesses to
577    certain registers or to just log all accesses. */
578 
write_fs(struct fs_dev * dev,int offset,u32 val)579 static inline void write_fs (struct fs_dev *dev, int offset, u32 val)
580 {
581 	writel (val, dev->base + offset);
582 }
583 
584 
read_fs(struct fs_dev * dev,int offset)585 static inline u32  read_fs (struct fs_dev *dev, int offset)
586 {
587 	return readl (dev->base + offset);
588 }
589 
590 
591 
get_qentry(struct fs_dev * dev,struct queue * q)592 static inline struct FS_QENTRY *get_qentry (struct fs_dev *dev, struct queue *q)
593 {
594 	return bus_to_virt (read_fs (dev, Q_WP(q->offset)) & Q_ADDR_MASK);
595 }
596 
597 
submit_qentry(struct fs_dev * dev,struct queue * q,struct FS_QENTRY * qe)598 static void submit_qentry (struct fs_dev *dev, struct queue *q, struct FS_QENTRY *qe)
599 {
600 	u32 wp;
601 	struct FS_QENTRY *cqe;
602 
603 	/* XXX Sanity check: the write pointer can be checked to be
604 	   still the same as the value passed as qe... -- REW */
605 	/*  udelay (5); */
606 	while ((wp = read_fs (dev, Q_WP (q->offset))) & Q_FULL) {
607 		fs_dprintk (FS_DEBUG_TXQ, "Found queue at %x full. Waiting.\n",
608 			    q->offset);
609 		schedule ();
610 	}
611 
612 	wp &= ~0xf;
613 	cqe = bus_to_virt (wp);
614 	if (qe != cqe) {
615 		fs_dprintk (FS_DEBUG_TXQ, "q mismatch! %p %p\n", qe, cqe);
616 	}
617 
618 	write_fs (dev, Q_WP(q->offset), Q_INCWRAP);
619 
620 	{
621 		static int c;
622 		if (!(c++ % 100))
623 			{
624 				int rp, wp;
625 				rp =  read_fs (dev, Q_RP(q->offset));
626 				wp =  read_fs (dev, Q_WP(q->offset));
627 				fs_dprintk (FS_DEBUG_TXQ, "q at %d: %x-%x: %x entries.\n",
628 					    q->offset, rp, wp, wp-rp);
629 			}
630 	}
631 }
632 
633 #ifdef DEBUG_EXTRA
634 static struct FS_QENTRY pq[60];
635 static int qp;
636 
637 static struct FS_BPENTRY dq[60];
638 static int qd;
639 static void *da[60];
640 #endif
641 
submit_queue(struct fs_dev * dev,struct queue * q,u32 cmd,u32 p1,u32 p2,u32 p3)642 static void submit_queue (struct fs_dev *dev, struct queue *q,
643 			  u32 cmd, u32 p1, u32 p2, u32 p3)
644 {
645 	struct FS_QENTRY *qe;
646 
647 	qe = get_qentry (dev, q);
648 	qe->cmd = cmd;
649 	qe->p0 = p1;
650 	qe->p1 = p2;
651 	qe->p2 = p3;
652 	submit_qentry (dev,  q, qe);
653 
654 #ifdef DEBUG_EXTRA
655 	pq[qp].cmd = cmd;
656 	pq[qp].p0 = p1;
657 	pq[qp].p1 = p2;
658 	pq[qp].p2 = p3;
659 	qp++;
660 	if (qp >= 60) qp = 0;
661 #endif
662 }
663 
664 /* Test the "other" way one day... -- REW */
665 #if 1
666 #define submit_command submit_queue
667 #else
668 
submit_command(struct fs_dev * dev,struct queue * q,u32 cmd,u32 p1,u32 p2,u32 p3)669 static void submit_command (struct fs_dev *dev, struct queue *q,
670 			    u32 cmd, u32 p1, u32 p2, u32 p3)
671 {
672 	write_fs (dev, CMDR0, cmd);
673 	write_fs (dev, CMDR1, p1);
674 	write_fs (dev, CMDR2, p2);
675 	write_fs (dev, CMDR3, p3);
676 }
677 #endif
678 
679 
680 
process_return_queue(struct fs_dev * dev,struct queue * q)681 static void process_return_queue (struct fs_dev *dev, struct queue *q)
682 {
683 	long rq;
684 	struct FS_QENTRY *qe;
685 	void *tc;
686 
687 	while (!((rq = read_fs (dev, Q_RP(q->offset))) & Q_EMPTY)) {
688 		fs_dprintk (FS_DEBUG_QUEUE, "reaping return queue entry at %lx\n", rq);
689 		qe = bus_to_virt (rq);
690 
691 		fs_dprintk (FS_DEBUG_QUEUE, "queue entry: %08x %08x %08x %08x. (%d)\n",
692 			    qe->cmd, qe->p0, qe->p1, qe->p2, STATUS_CODE (qe));
693 
694 		switch (STATUS_CODE (qe)) {
695 		case 5:
696 			tc = bus_to_virt (qe->p0);
697 			fs_dprintk (FS_DEBUG_ALLOC, "Free tc: %p\n", tc);
698 			kfree (tc);
699 			break;
700 		}
701 
702 		write_fs (dev, Q_RP(q->offset), Q_INCWRAP);
703 	}
704 }
705 
706 
process_txdone_queue(struct fs_dev * dev,struct queue * q)707 static void process_txdone_queue (struct fs_dev *dev, struct queue *q)
708 {
709 	long rq;
710 	long tmp;
711 	struct FS_QENTRY *qe;
712 	struct sk_buff *skb;
713 	struct FS_BPENTRY *td;
714 
715 	while (!((rq = read_fs (dev, Q_RP(q->offset))) & Q_EMPTY)) {
716 		fs_dprintk (FS_DEBUG_QUEUE, "reaping txdone entry at %lx\n", rq);
717 		qe = bus_to_virt (rq);
718 
719 		fs_dprintk (FS_DEBUG_QUEUE, "queue entry: %08x %08x %08x %08x: %d\n",
720 			    qe->cmd, qe->p0, qe->p1, qe->p2, STATUS_CODE (qe));
721 
722 		if (STATUS_CODE (qe) != 2)
723 			fs_dprintk (FS_DEBUG_TXMEM, "queue entry: %08x %08x %08x %08x: %d\n",
724 				    qe->cmd, qe->p0, qe->p1, qe->p2, STATUS_CODE (qe));
725 
726 
727 		switch (STATUS_CODE (qe)) {
728 		case 0x01: /* This is for AAL0 where we put the chip in streaming mode */
729 			/* Fall through */
730 		case 0x02:
731 			/* Process a real txdone entry. */
732 			tmp = qe->p0;
733 			if (tmp & 0x0f)
734 				printk (KERN_WARNING "td not aligned: %ld\n", tmp);
735 			tmp &= ~0x0f;
736 			td = bus_to_virt (tmp);
737 
738 			fs_dprintk (FS_DEBUG_QUEUE, "Pool entry: %08x %08x %08x %08x %p.\n",
739 				    td->flags, td->next, td->bsa, td->aal_bufsize, td->skb );
740 
741 			skb = td->skb;
742 			if (skb == FS_VCC (ATM_SKB(skb)->vcc)->last_skb) {
743 				FS_VCC (ATM_SKB(skb)->vcc)->last_skb = NULL;
744 				wake_up_interruptible (& FS_VCC (ATM_SKB(skb)->vcc)->close_wait);
745 			}
746 			td->dev->ntxpckts--;
747 
748 			{
749 				static int c=0;
750 
751 				if (!(c++ % 100)) {
752 					fs_dprintk (FS_DEBUG_QSIZE, "[%d]", td->dev->ntxpckts);
753 				}
754 			}
755 
756 			atomic_inc(&ATM_SKB(skb)->vcc->stats->tx);
757 
758 			fs_dprintk (FS_DEBUG_TXMEM, "i");
759 			fs_dprintk (FS_DEBUG_ALLOC, "Free t-skb: %p\n", skb);
760 			fs_kfree_skb (skb);
761 
762 			fs_dprintk (FS_DEBUG_ALLOC, "Free trans-d: %p\n", td);
763 			memset (td, ATM_POISON_FREE, sizeof(struct FS_BPENTRY));
764 			kfree (td);
765 			break;
766 		default:
767 			/* Here we get the tx purge inhibit command ... */
768 			/* Action, I believe, is "don't do anything". -- REW */
769 			;
770 		}
771 
772 		write_fs (dev, Q_RP(q->offset), Q_INCWRAP);
773 	}
774 }
775 
776 
process_incoming(struct fs_dev * dev,struct queue * q)777 static void process_incoming (struct fs_dev *dev, struct queue *q)
778 {
779 	long rq;
780 	struct FS_QENTRY *qe;
781 	struct FS_BPENTRY *pe;
782 	struct sk_buff *skb;
783 	unsigned int channo;
784 	struct atm_vcc *atm_vcc;
785 
786 	while (!((rq = read_fs (dev, Q_RP(q->offset))) & Q_EMPTY)) {
787 		fs_dprintk (FS_DEBUG_QUEUE, "reaping incoming queue entry at %lx\n", rq);
788 		qe = bus_to_virt (rq);
789 
790 		fs_dprintk (FS_DEBUG_QUEUE, "queue entry: %08x %08x %08x %08x.  ",
791 			    qe->cmd, qe->p0, qe->p1, qe->p2);
792 
793 		fs_dprintk (FS_DEBUG_QUEUE, "-> %x: %s\n",
794 			    STATUS_CODE (qe),
795 			    res_strings[STATUS_CODE(qe)]);
796 
797 		pe = bus_to_virt (qe->p0);
798 		fs_dprintk (FS_DEBUG_QUEUE, "Pool entry: %08x %08x %08x %08x %p %p.\n",
799 			    pe->flags, pe->next, pe->bsa, pe->aal_bufsize,
800 			    pe->skb, pe->fp);
801 
802 		channo = qe->cmd & 0xffff;
803 
804 		if (channo < dev->nchannels)
805 			atm_vcc = dev->atm_vccs[channo];
806 		else
807 			atm_vcc = NULL;
808 
809 		/* Single buffer packet */
810 		switch (STATUS_CODE (qe)) {
811 		case 0x1:
812 			/* Fall through for streaming mode */
813 		case 0x2:/* Packet received OK.... */
814 			if (atm_vcc) {
815 				skb = pe->skb;
816 				pe->fp->n--;
817 #if 0
818 				fs_dprintk (FS_DEBUG_QUEUE, "Got skb: %p\n", skb);
819 				if (FS_DEBUG_QUEUE & fs_debug) my_hd (bus_to_virt (pe->bsa), 0x20);
820 #endif
821 				skb_put (skb, qe->p1 & 0xffff);
822 				ATM_SKB(skb)->vcc = atm_vcc;
823 				atomic_inc(&atm_vcc->stats->rx);
824 				__net_timestamp(skb);
825 				fs_dprintk (FS_DEBUG_ALLOC, "Free rec-skb: %p (pushed)\n", skb);
826 				atm_vcc->push (atm_vcc, skb);
827 				fs_dprintk (FS_DEBUG_ALLOC, "Free rec-d: %p\n", pe);
828 				kfree (pe);
829 			} else {
830 				printk (KERN_ERR "Got a receive on a non-open channel %d.\n", channo);
831 			}
832 			break;
833 		case 0x17:/* AAL 5 CRC32 error. IFF the length field is nonzero, a buffer
834 			     has been consumed and needs to be processed. -- REW */
835 			if (qe->p1 & 0xffff) {
836 				pe = bus_to_virt (qe->p0);
837 				pe->fp->n--;
838 				fs_dprintk (FS_DEBUG_ALLOC, "Free rec-skb: %p\n", pe->skb);
839 				dev_kfree_skb_any (pe->skb);
840 				fs_dprintk (FS_DEBUG_ALLOC, "Free rec-d: %p\n", pe);
841 				kfree (pe);
842 			}
843 			if (atm_vcc)
844 				atomic_inc(&atm_vcc->stats->rx_drop);
845 			break;
846 		case 0x1f: /*  Reassembly abort: no buffers. */
847 			/* Silently increment error counter. */
848 			if (atm_vcc)
849 				atomic_inc(&atm_vcc->stats->rx_drop);
850 			break;
851 		default: /* Hmm. Haven't written the code to handle the others yet... -- REW */
852 			printk (KERN_WARNING "Don't know what to do with RX status %x: %s.\n",
853 				STATUS_CODE(qe), res_strings[STATUS_CODE (qe)]);
854 		}
855 		write_fs (dev, Q_RP(q->offset), Q_INCWRAP);
856 	}
857 }
858 
859 
860 
861 #define DO_DIRECTION(tp) ((tp)->traffic_class != ATM_NONE)
862 
fs_open(struct atm_vcc * atm_vcc)863 static int fs_open(struct atm_vcc *atm_vcc)
864 {
865 	struct fs_dev *dev;
866 	struct fs_vcc *vcc;
867 	struct fs_transmit_config *tc;
868 	struct atm_trafprm * txtp;
869 	struct atm_trafprm * rxtp;
870 	/*  struct fs_receive_config *rc;*/
871 	/*  struct FS_QENTRY *qe; */
872 	int error;
873 	int bfp;
874 	int to;
875 	unsigned short tmc0;
876 	short vpi = atm_vcc->vpi;
877 	int vci = atm_vcc->vci;
878 
879 	func_enter ();
880 
881 	dev = FS_DEV(atm_vcc->dev);
882 	fs_dprintk (FS_DEBUG_OPEN, "fs: open on dev: %p, vcc at %p\n",
883 		    dev, atm_vcc);
884 
885 	if (vci != ATM_VPI_UNSPEC && vpi != ATM_VCI_UNSPEC)
886 		set_bit(ATM_VF_ADDR, &atm_vcc->flags);
887 
888 	if ((atm_vcc->qos.aal != ATM_AAL5) &&
889 	    (atm_vcc->qos.aal != ATM_AAL2))
890 	  return -EINVAL; /* XXX AAL0 */
891 
892 	fs_dprintk (FS_DEBUG_OPEN, "fs: (itf %d): open %d.%d\n",
893 		    atm_vcc->dev->number, atm_vcc->vpi, atm_vcc->vci);
894 
895 	/* XXX handle qos parameters (rate limiting) ? */
896 
897 	vcc = kmalloc(sizeof(struct fs_vcc), GFP_KERNEL);
898 	fs_dprintk (FS_DEBUG_ALLOC, "Alloc VCC: %p(%zd)\n", vcc, sizeof(struct fs_vcc));
899 	if (!vcc) {
900 		clear_bit(ATM_VF_ADDR, &atm_vcc->flags);
901 		return -ENOMEM;
902 	}
903 
904 	atm_vcc->dev_data = vcc;
905 	vcc->last_skb = NULL;
906 
907 	init_waitqueue_head (&vcc->close_wait);
908 
909 	txtp = &atm_vcc->qos.txtp;
910 	rxtp = &atm_vcc->qos.rxtp;
911 
912 	if (!test_bit(ATM_VF_PARTIAL, &atm_vcc->flags)) {
913 		if (IS_FS50(dev)) {
914 			/* Increment the channel numer: take a free one next time.  */
915 			for (to=33;to;to--, dev->channo++) {
916 				/* We only have 32 channels */
917 				if (dev->channo >= 32)
918 					dev->channo = 0;
919 				/* If we need to do RX, AND the RX is inuse, try the next */
920 				if (DO_DIRECTION(rxtp) && dev->atm_vccs[dev->channo])
921 					continue;
922 				/* If we need to do TX, AND the TX is inuse, try the next */
923 				if (DO_DIRECTION(txtp) && test_bit (dev->channo, dev->tx_inuse))
924 					continue;
925 				/* Ok, both are free! (or not needed) */
926 				break;
927 			}
928 			if (!to) {
929 				printk ("No more free channels for FS50..\n");
930 				kfree(vcc);
931 				return -EBUSY;
932 			}
933 			vcc->channo = dev->channo;
934 			dev->channo &= dev->channel_mask;
935 
936 		} else {
937 			vcc->channo = (vpi << FS155_VCI_BITS) | (vci);
938 			if (((DO_DIRECTION(rxtp) && dev->atm_vccs[vcc->channo])) ||
939 			    ( DO_DIRECTION(txtp) && test_bit (vcc->channo, dev->tx_inuse))) {
940 				printk ("Channel is in use for FS155.\n");
941 				kfree(vcc);
942 				return -EBUSY;
943 			}
944 		}
945 		fs_dprintk (FS_DEBUG_OPEN, "OK. Allocated channel %x(%d).\n",
946 			    vcc->channo, vcc->channo);
947 	}
948 
949 	if (DO_DIRECTION (txtp)) {
950 		tc = kmalloc (sizeof (struct fs_transmit_config), GFP_KERNEL);
951 		fs_dprintk (FS_DEBUG_ALLOC, "Alloc tc: %p(%zd)\n",
952 			    tc, sizeof (struct fs_transmit_config));
953 		if (!tc) {
954 			fs_dprintk (FS_DEBUG_OPEN, "fs: can't alloc transmit_config.\n");
955 			kfree(vcc);
956 			return -ENOMEM;
957 		}
958 
959 		/* Allocate the "open" entry from the high priority txq. This makes
960 		   it most likely that the chip will notice it. It also prevents us
961 		   from having to wait for completion. On the other hand, we may
962 		   need to wait for completion anyway, to see if it completed
963 		   successfully. */
964 
965 		switch (atm_vcc->qos.aal) {
966 		case ATM_AAL2:
967 		case ATM_AAL0:
968 		  tc->flags = 0
969 		    | TC_FLAGS_TRANSPARENT_PAYLOAD
970 		    | TC_FLAGS_PACKET
971 		    | (1 << 28)
972 		    | TC_FLAGS_TYPE_UBR /* XXX Change to VBR -- PVDL */
973 		    | TC_FLAGS_CAL0;
974 		  break;
975 		case ATM_AAL5:
976 		  tc->flags = 0
977 			| TC_FLAGS_AAL5
978 			| TC_FLAGS_PACKET  /* ??? */
979 			| TC_FLAGS_TYPE_CBR
980 			| TC_FLAGS_CAL0;
981 		  break;
982 		default:
983 			printk ("Unknown aal: %d\n", atm_vcc->qos.aal);
984 			tc->flags = 0;
985 		}
986 		/* Docs are vague about this atm_hdr field. By the way, the FS
987 		 * chip makes odd errors if lower bits are set.... -- REW */
988 		tc->atm_hdr =  (vpi << 20) | (vci << 4);
989 		tmc0 = 0;
990 		{
991 			int pcr = atm_pcr_goal (txtp);
992 
993 			fs_dprintk (FS_DEBUG_OPEN, "pcr = %d.\n", pcr);
994 
995 			/* XXX Hmm. officially we're only allowed to do this if rounding
996 			   is round_down -- REW */
997 			if (IS_FS50(dev)) {
998 				if (pcr > 51840000/53/8)  pcr = 51840000/53/8;
999 			} else {
1000 				if (pcr > 155520000/53/8) pcr = 155520000/53/8;
1001 			}
1002 			if (!pcr) {
1003 				/* no rate cap */
1004 				tmc0 = IS_FS50(dev)?0x61BE:0x64c9; /* Just copied over the bits from Fujitsu -- REW */
1005 			} else {
1006 				int r;
1007 				if (pcr < 0) {
1008 					r = ROUND_DOWN;
1009 					pcr = -pcr;
1010 				} else {
1011 					r = ROUND_UP;
1012 				}
1013 				error = make_rate (pcr, r, &tmc0, NULL);
1014 				if (error) {
1015 					kfree(tc);
1016 					kfree(vcc);
1017 					return error;
1018 				}
1019 			}
1020 			fs_dprintk (FS_DEBUG_OPEN, "pcr = %d.\n", pcr);
1021 		}
1022 
1023 		tc->TMC[0] = tmc0 | 0x4000;
1024 		tc->TMC[1] = 0; /* Unused */
1025 		tc->TMC[2] = 0; /* Unused */
1026 		tc->TMC[3] = 0; /* Unused */
1027 
1028 		tc->spec = 0;    /* UTOPIA address, UDF, HEC: Unused -> 0 */
1029 		tc->rtag[0] = 0; /* What should I do with routing tags???
1030 				    -- Not used -- AS -- Thanks -- REW*/
1031 		tc->rtag[1] = 0;
1032 		tc->rtag[2] = 0;
1033 
1034 		if (fs_debug & FS_DEBUG_OPEN) {
1035 			fs_dprintk (FS_DEBUG_OPEN, "TX config record:\n");
1036 			my_hd (tc, sizeof (*tc));
1037 		}
1038 
1039 		/* We now use the "submit_command" function to submit commands to
1040 		   the firestream. There is a define up near the definition of
1041 		   that routine that switches this routine between immediate write
1042 		   to the immediate command registers and queuing the commands in
1043 		   the HPTXQ for execution. This last technique might be more
1044 		   efficient if we know we're going to submit a whole lot of
1045 		   commands in one go, but this driver is not setup to be able to
1046 		   use such a construct. So it probably doen't matter much right
1047 		   now. -- REW */
1048 
1049 		/* The command is IMMediate and INQueue. The parameters are out-of-line.. */
1050 		submit_command (dev, &dev->hp_txq,
1051 				QE_CMD_CONFIG_TX | QE_CMD_IMM_INQ | vcc->channo,
1052 				virt_to_bus (tc), 0, 0);
1053 
1054 		submit_command (dev, &dev->hp_txq,
1055 				QE_CMD_TX_EN | QE_CMD_IMM_INQ | vcc->channo,
1056 				0, 0, 0);
1057 		set_bit (vcc->channo, dev->tx_inuse);
1058 	}
1059 
1060 	if (DO_DIRECTION (rxtp)) {
1061 		dev->atm_vccs[vcc->channo] = atm_vcc;
1062 
1063 		for (bfp = 0;bfp < FS_NR_FREE_POOLS; bfp++)
1064 			if (atm_vcc->qos.rxtp.max_sdu <= dev->rx_fp[bfp].bufsize) break;
1065 		if (bfp >= FS_NR_FREE_POOLS) {
1066 			fs_dprintk (FS_DEBUG_OPEN, "No free pool fits sdu: %d.\n",
1067 				    atm_vcc->qos.rxtp.max_sdu);
1068 			/* XXX Cleanup? -- Would just calling fs_close work??? -- REW */
1069 
1070 			/* XXX clear tx inuse. Close TX part? */
1071 			dev->atm_vccs[vcc->channo] = NULL;
1072 			kfree (vcc);
1073 			return -EINVAL;
1074 		}
1075 
1076 		switch (atm_vcc->qos.aal) {
1077 		case ATM_AAL0:
1078 		case ATM_AAL2:
1079 			submit_command (dev, &dev->hp_txq,
1080 					QE_CMD_CONFIG_RX | QE_CMD_IMM_INQ | vcc->channo,
1081 					RC_FLAGS_TRANSP |
1082 					RC_FLAGS_BFPS_BFP * bfp |
1083 					RC_FLAGS_RXBM_PSB, 0, 0);
1084 			break;
1085 		case ATM_AAL5:
1086 			submit_command (dev, &dev->hp_txq,
1087 					QE_CMD_CONFIG_RX | QE_CMD_IMM_INQ | vcc->channo,
1088 					RC_FLAGS_AAL5 |
1089 					RC_FLAGS_BFPS_BFP * bfp |
1090 					RC_FLAGS_RXBM_PSB, 0, 0);
1091 			break;
1092 		};
1093 		if (IS_FS50 (dev)) {
1094 			submit_command (dev, &dev->hp_txq,
1095 					QE_CMD_REG_WR | QE_CMD_IMM_INQ,
1096 					0x80 + vcc->channo,
1097 					(vpi << 16) | vci, 0 ); /* XXX -- Use defines. */
1098 		}
1099 		submit_command (dev, &dev->hp_txq,
1100 				QE_CMD_RX_EN | QE_CMD_IMM_INQ | vcc->channo,
1101 				0, 0, 0);
1102 	}
1103 
1104 	/* Indicate we're done! */
1105 	set_bit(ATM_VF_READY, &atm_vcc->flags);
1106 
1107 	func_exit ();
1108 	return 0;
1109 }
1110 
1111 
fs_close(struct atm_vcc * atm_vcc)1112 static void fs_close(struct atm_vcc *atm_vcc)
1113 {
1114 	struct fs_dev *dev = FS_DEV (atm_vcc->dev);
1115 	struct fs_vcc *vcc = FS_VCC (atm_vcc);
1116 	struct atm_trafprm * txtp;
1117 	struct atm_trafprm * rxtp;
1118 
1119 	func_enter ();
1120 
1121 	clear_bit(ATM_VF_READY, &atm_vcc->flags);
1122 
1123 	fs_dprintk (FS_DEBUG_QSIZE, "--==**[%d]**==--", dev->ntxpckts);
1124 	if (vcc->last_skb) {
1125 		fs_dprintk (FS_DEBUG_QUEUE, "Waiting for skb %p to be sent.\n",
1126 			    vcc->last_skb);
1127 		/* We're going to wait for the last packet to get sent on this VC. It would
1128 		   be impolite not to send them don't you think?
1129 		   XXX
1130 		   We don't know which packets didn't get sent. So if we get interrupted in
1131 		   this sleep_on, we'll lose any reference to these packets. Memory leak!
1132 		   On the other hand, it's awfully convenient that we can abort a "close" that
1133 		   is taking too long. Maybe just use non-interruptible sleep on? -- REW */
1134 		wait_event_interruptible(vcc->close_wait, !vcc->last_skb);
1135 	}
1136 
1137 	txtp = &atm_vcc->qos.txtp;
1138 	rxtp = &atm_vcc->qos.rxtp;
1139 
1140 
1141 	/* See App note XXX (Unpublished as of now) for the reason for the
1142 	   removal of the "CMD_IMM_INQ" part of the TX_PURGE_INH... -- REW */
1143 
1144 	if (DO_DIRECTION (txtp)) {
1145 		submit_command (dev,  &dev->hp_txq,
1146 				QE_CMD_TX_PURGE_INH | /*QE_CMD_IMM_INQ|*/ vcc->channo, 0,0,0);
1147 		clear_bit (vcc->channo, dev->tx_inuse);
1148 	}
1149 
1150 	if (DO_DIRECTION (rxtp)) {
1151 		submit_command (dev,  &dev->hp_txq,
1152 				QE_CMD_RX_PURGE_INH | QE_CMD_IMM_INQ | vcc->channo, 0,0,0);
1153 		dev->atm_vccs [vcc->channo] = NULL;
1154 
1155 		/* This means that this is configured as a receive channel */
1156 		if (IS_FS50 (dev)) {
1157 			/* Disable the receive filter. Is 0/0 indeed an invalid receive
1158 			   channel? -- REW.  Yes it is. -- Hang. Ok. I'll use -1
1159 			   (0xfff...) -- REW */
1160 			submit_command (dev, &dev->hp_txq,
1161 					QE_CMD_REG_WR | QE_CMD_IMM_INQ,
1162 					0x80 + vcc->channo, -1, 0 );
1163 		}
1164 	}
1165 
1166 	fs_dprintk (FS_DEBUG_ALLOC, "Free vcc: %p\n", vcc);
1167 	kfree (vcc);
1168 
1169 	func_exit ();
1170 }
1171 
1172 
fs_send(struct atm_vcc * atm_vcc,struct sk_buff * skb)1173 static int fs_send (struct atm_vcc *atm_vcc, struct sk_buff *skb)
1174 {
1175 	struct fs_dev *dev = FS_DEV (atm_vcc->dev);
1176 	struct fs_vcc *vcc = FS_VCC (atm_vcc);
1177 	struct FS_BPENTRY *td;
1178 
1179 	func_enter ();
1180 
1181 	fs_dprintk (FS_DEBUG_TXMEM, "I");
1182 	fs_dprintk (FS_DEBUG_SEND, "Send: atm_vcc %p skb %p vcc %p dev %p\n",
1183 		    atm_vcc, skb, vcc, dev);
1184 
1185 	fs_dprintk (FS_DEBUG_ALLOC, "Alloc t-skb: %p (atm_send)\n", skb);
1186 
1187 	ATM_SKB(skb)->vcc = atm_vcc;
1188 
1189 	vcc->last_skb = skb;
1190 
1191 	td = kmalloc (sizeof (struct FS_BPENTRY), GFP_ATOMIC);
1192 	fs_dprintk (FS_DEBUG_ALLOC, "Alloc transd: %p(%zd)\n", td, sizeof (struct FS_BPENTRY));
1193 	if (!td) {
1194 		/* Oops out of mem */
1195 		return -ENOMEM;
1196 	}
1197 
1198 	fs_dprintk (FS_DEBUG_SEND, "first word in buffer: %x\n",
1199 		    *(int *) skb->data);
1200 
1201 	td->flags =  TD_EPI | TD_DATA | skb->len;
1202 	td->next = 0;
1203 	td->bsa  = virt_to_bus (skb->data);
1204 	td->skb = skb;
1205 	td->dev = dev;
1206 	dev->ntxpckts++;
1207 
1208 #ifdef DEBUG_EXTRA
1209 	da[qd] = td;
1210 	dq[qd].flags = td->flags;
1211 	dq[qd].next  = td->next;
1212 	dq[qd].bsa   = td->bsa;
1213 	dq[qd].skb   = td->skb;
1214 	dq[qd].dev   = td->dev;
1215 	qd++;
1216 	if (qd >= 60) qd = 0;
1217 #endif
1218 
1219 	submit_queue (dev, &dev->hp_txq,
1220 		      QE_TRANSMIT_DE | vcc->channo,
1221 		      virt_to_bus (td), 0,
1222 		      virt_to_bus (td));
1223 
1224 	fs_dprintk (FS_DEBUG_QUEUE, "in send: txq %d txrq %d\n",
1225 		    read_fs (dev, Q_EA (dev->hp_txq.offset)) -
1226 		    read_fs (dev, Q_SA (dev->hp_txq.offset)),
1227 		    read_fs (dev, Q_EA (dev->tx_relq.offset)) -
1228 		    read_fs (dev, Q_SA (dev->tx_relq.offset)));
1229 
1230 	func_exit ();
1231 	return 0;
1232 }
1233 
1234 
1235 /* Some function placeholders for functions we don't yet support. */
1236 
1237 #if 0
1238 static int fs_ioctl(struct atm_dev *dev,unsigned int cmd,void __user *arg)
1239 {
1240 	func_enter ();
1241 	func_exit ();
1242 	return -ENOIOCTLCMD;
1243 }
1244 
1245 
1246 static int fs_getsockopt(struct atm_vcc *vcc,int level,int optname,
1247 			 void __user *optval,int optlen)
1248 {
1249 	func_enter ();
1250 	func_exit ();
1251 	return 0;
1252 }
1253 
1254 
1255 static int fs_setsockopt(struct atm_vcc *vcc,int level,int optname,
1256 			 void __user *optval,unsigned int optlen)
1257 {
1258 	func_enter ();
1259 	func_exit ();
1260 	return 0;
1261 }
1262 
1263 
1264 static void fs_phy_put(struct atm_dev *dev,unsigned char value,
1265 		       unsigned long addr)
1266 {
1267 	func_enter ();
1268 	func_exit ();
1269 }
1270 
1271 
1272 static unsigned char fs_phy_get(struct atm_dev *dev,unsigned long addr)
1273 {
1274 	func_enter ();
1275 	func_exit ();
1276 	return 0;
1277 }
1278 
1279 
1280 static int fs_change_qos(struct atm_vcc *vcc,struct atm_qos *qos,int flags)
1281 {
1282 	func_enter ();
1283 	func_exit ();
1284 	return 0;
1285 };
1286 
1287 #endif
1288 
1289 
1290 static const struct atmdev_ops ops = {
1291 	.open =         fs_open,
1292 	.close =        fs_close,
1293 	.send =         fs_send,
1294 	.owner =        THIS_MODULE,
1295 	/* ioctl:          fs_ioctl, */
1296 	/* getsockopt:     fs_getsockopt, */
1297 	/* setsockopt:     fs_setsockopt, */
1298 	/* change_qos:     fs_change_qos, */
1299 
1300 	/* For now implement these internally here... */
1301 	/* phy_put:        fs_phy_put, */
1302 	/* phy_get:        fs_phy_get, */
1303 };
1304 
1305 
undocumented_pci_fix(struct pci_dev * pdev)1306 static void undocumented_pci_fix(struct pci_dev *pdev)
1307 {
1308 	u32 tint;
1309 
1310 	/* The Windows driver says: */
1311 	/* Switch off FireStream Retry Limit Threshold
1312 	 */
1313 
1314 	/* The register at 0x28 is documented as "reserved", no further
1315 	   comments. */
1316 
1317 	pci_read_config_dword (pdev, 0x28, &tint);
1318 	if (tint != 0x80) {
1319 		tint = 0x80;
1320 		pci_write_config_dword (pdev, 0x28, tint);
1321 	}
1322 }
1323 
1324 
1325 
1326 /**************************************************************************
1327  *                              PHY routines                              *
1328  **************************************************************************/
1329 
write_phy(struct fs_dev * dev,int regnum,int val)1330 static void write_phy(struct fs_dev *dev, int regnum, int val)
1331 {
1332 	submit_command (dev,  &dev->hp_txq, QE_CMD_PRP_WR | QE_CMD_IMM_INQ,
1333 			regnum, val, 0);
1334 }
1335 
init_phy(struct fs_dev * dev,struct reginit_item * reginit)1336 static int init_phy(struct fs_dev *dev, struct reginit_item *reginit)
1337 {
1338 	int i;
1339 
1340 	func_enter ();
1341 	while (reginit->reg != PHY_EOF) {
1342 		if (reginit->reg == PHY_CLEARALL) {
1343 			/* "PHY_CLEARALL means clear all registers. Numregisters is in "val". */
1344 			for (i=0;i<reginit->val;i++) {
1345 				write_phy (dev, i, 0);
1346 			}
1347 		} else {
1348 			write_phy (dev, reginit->reg, reginit->val);
1349 		}
1350 		reginit++;
1351 	}
1352 	func_exit ();
1353 	return 0;
1354 }
1355 
reset_chip(struct fs_dev * dev)1356 static void reset_chip (struct fs_dev *dev)
1357 {
1358 	int i;
1359 
1360 	write_fs (dev, SARMODE0, SARMODE0_SRTS0);
1361 
1362 	/* Undocumented delay */
1363 	udelay (128);
1364 
1365 	/* The "internal registers are documented to all reset to zero, but
1366 	   comments & code in the Windows driver indicates that the pools are
1367 	   NOT reset. */
1368 	for (i=0;i < FS_NR_FREE_POOLS;i++) {
1369 		write_fs (dev, FP_CNF (RXB_FP(i)), 0);
1370 		write_fs (dev, FP_SA  (RXB_FP(i)), 0);
1371 		write_fs (dev, FP_EA  (RXB_FP(i)), 0);
1372 		write_fs (dev, FP_CNT (RXB_FP(i)), 0);
1373 		write_fs (dev, FP_CTU (RXB_FP(i)), 0);
1374 	}
1375 
1376 	/* The same goes for the match channel registers, although those are
1377 	   NOT documented that way in the Windows driver. -- REW */
1378 	/* The Windows driver DOES write 0 to these registers somewhere in
1379 	   the init sequence. However, a small hardware-feature, will
1380 	   prevent reception of data on VPI/VCI = 0/0 (Unless the channel
1381 	   allocated happens to have no disabled channels that have a lower
1382 	   number. -- REW */
1383 
1384 	/* Clear the match channel registers. */
1385 	if (IS_FS50 (dev)) {
1386 		for (i=0;i<FS50_NR_CHANNELS;i++) {
1387 			write_fs (dev, 0x200 + i * 4, -1);
1388 		}
1389 	}
1390 }
1391 
aligned_kmalloc(int size,gfp_t flags,int alignment)1392 static void *aligned_kmalloc(int size, gfp_t flags, int alignment)
1393 {
1394 	void  *t;
1395 
1396 	if (alignment <= 0x10) {
1397 		t = kmalloc (size, flags);
1398 		if ((unsigned long)t & (alignment-1)) {
1399 			printk ("Kmalloc doesn't align things correctly! %p\n", t);
1400 			kfree (t);
1401 			return aligned_kmalloc (size, flags, alignment * 4);
1402 		}
1403 		return t;
1404 	}
1405 	printk (KERN_ERR "Request for > 0x10 alignment not yet implemented (hard!)\n");
1406 	return NULL;
1407 }
1408 
init_q(struct fs_dev * dev,struct queue * txq,int queue,int nentries,int is_rq)1409 static int init_q(struct fs_dev *dev, struct queue *txq, int queue,
1410 		  int nentries, int is_rq)
1411 {
1412 	int sz = nentries * sizeof (struct FS_QENTRY);
1413 	struct FS_QENTRY *p;
1414 
1415 	func_enter ();
1416 
1417 	fs_dprintk (FS_DEBUG_INIT, "Inititing queue at %x: %d entries:\n",
1418 		    queue, nentries);
1419 
1420 	p = aligned_kmalloc (sz, GFP_KERNEL, 0x10);
1421 	fs_dprintk (FS_DEBUG_ALLOC, "Alloc queue: %p(%d)\n", p, sz);
1422 
1423 	if (!p) return 0;
1424 
1425 	write_fs (dev, Q_SA(queue), virt_to_bus(p));
1426 	write_fs (dev, Q_EA(queue), virt_to_bus(p+nentries-1));
1427 	write_fs (dev, Q_WP(queue), virt_to_bus(p));
1428 	write_fs (dev, Q_RP(queue), virt_to_bus(p));
1429 	if (is_rq) {
1430 		/* Configuration for the receive queue: 0: interrupt immediately,
1431 		   no pre-warning to empty queues: We do our best to keep the
1432 		   queue filled anyway. */
1433 		write_fs (dev, Q_CNF(queue), 0 );
1434 	}
1435 
1436 	txq->sa = p;
1437 	txq->ea = p;
1438 	txq->offset = queue;
1439 
1440 	func_exit ();
1441 	return 1;
1442 }
1443 
1444 
init_fp(struct fs_dev * dev,struct freepool * fp,int queue,int bufsize,int nr_buffers)1445 static int init_fp(struct fs_dev *dev, struct freepool *fp, int queue,
1446 		   int bufsize, int nr_buffers)
1447 {
1448 	func_enter ();
1449 
1450 	fs_dprintk (FS_DEBUG_INIT, "Inititing free pool at %x:\n", queue);
1451 
1452 	write_fs (dev, FP_CNF(queue), (bufsize * RBFP_RBS) | RBFP_RBSVAL | RBFP_CME);
1453 	write_fs (dev, FP_SA(queue),  0);
1454 	write_fs (dev, FP_EA(queue),  0);
1455 	write_fs (dev, FP_CTU(queue), 0);
1456 	write_fs (dev, FP_CNT(queue), 0);
1457 
1458 	fp->offset = queue;
1459 	fp->bufsize = bufsize;
1460 	fp->nr_buffers = nr_buffers;
1461 
1462 	func_exit ();
1463 	return 1;
1464 }
1465 
1466 
nr_buffers_in_freepool(struct fs_dev * dev,struct freepool * fp)1467 static inline int nr_buffers_in_freepool (struct fs_dev *dev, struct freepool *fp)
1468 {
1469 #if 0
1470 	/* This seems to be unreliable.... */
1471 	return read_fs (dev, FP_CNT (fp->offset));
1472 #else
1473 	return fp->n;
1474 #endif
1475 }
1476 
1477 
1478 /* Check if this gets going again if a pool ever runs out.  -- Yes, it
1479    does. I've seen "receive abort: no buffers" and things started
1480    working again after that...  -- REW */
1481 
top_off_fp(struct fs_dev * dev,struct freepool * fp,gfp_t gfp_flags)1482 static void top_off_fp (struct fs_dev *dev, struct freepool *fp,
1483 			gfp_t gfp_flags)
1484 {
1485 	struct FS_BPENTRY *qe, *ne;
1486 	struct sk_buff *skb;
1487 	int n = 0;
1488 	u32 qe_tmp;
1489 
1490 	fs_dprintk (FS_DEBUG_QUEUE, "Topping off queue at %x (%d-%d/%d)\n",
1491 		    fp->offset, read_fs (dev, FP_CNT (fp->offset)), fp->n,
1492 		    fp->nr_buffers);
1493 	while (nr_buffers_in_freepool(dev, fp) < fp->nr_buffers) {
1494 
1495 		skb = alloc_skb (fp->bufsize, gfp_flags);
1496 		fs_dprintk (FS_DEBUG_ALLOC, "Alloc rec-skb: %p(%d)\n", skb, fp->bufsize);
1497 		if (!skb) break;
1498 		ne = kmalloc (sizeof (struct FS_BPENTRY), gfp_flags);
1499 		fs_dprintk (FS_DEBUG_ALLOC, "Alloc rec-d: %p(%zd)\n", ne, sizeof (struct FS_BPENTRY));
1500 		if (!ne) {
1501 			fs_dprintk (FS_DEBUG_ALLOC, "Free rec-skb: %p\n", skb);
1502 			dev_kfree_skb_any (skb);
1503 			break;
1504 		}
1505 
1506 		fs_dprintk (FS_DEBUG_QUEUE, "Adding skb %p desc %p -> %p(%p) ",
1507 			    skb, ne, skb->data, skb->head);
1508 		n++;
1509 		ne->flags = FP_FLAGS_EPI | fp->bufsize;
1510 		ne->next  = virt_to_bus (NULL);
1511 		ne->bsa   = virt_to_bus (skb->data);
1512 		ne->aal_bufsize = fp->bufsize;
1513 		ne->skb = skb;
1514 		ne->fp = fp;
1515 
1516 		/*
1517 		 * FIXME: following code encodes and decodes
1518 		 * machine pointers (could be 64-bit) into a
1519 		 * 32-bit register.
1520 		 */
1521 
1522 		qe_tmp = read_fs (dev, FP_EA(fp->offset));
1523 		fs_dprintk (FS_DEBUG_QUEUE, "link at %x\n", qe_tmp);
1524 		if (qe_tmp) {
1525 			qe = bus_to_virt ((long) qe_tmp);
1526 			qe->next = virt_to_bus(ne);
1527 			qe->flags &= ~FP_FLAGS_EPI;
1528 		} else
1529 			write_fs (dev, FP_SA(fp->offset), virt_to_bus(ne));
1530 
1531 		write_fs (dev, FP_EA(fp->offset), virt_to_bus (ne));
1532 		fp->n++;   /* XXX Atomic_inc? */
1533 		write_fs (dev, FP_CTU(fp->offset), 1);
1534 	}
1535 
1536 	fs_dprintk (FS_DEBUG_QUEUE, "Added %d entries. \n", n);
1537 }
1538 
free_queue(struct fs_dev * dev,struct queue * txq)1539 static void free_queue(struct fs_dev *dev, struct queue *txq)
1540 {
1541 	func_enter ();
1542 
1543 	write_fs (dev, Q_SA(txq->offset), 0);
1544 	write_fs (dev, Q_EA(txq->offset), 0);
1545 	write_fs (dev, Q_RP(txq->offset), 0);
1546 	write_fs (dev, Q_WP(txq->offset), 0);
1547 	/* Configuration ? */
1548 
1549 	fs_dprintk (FS_DEBUG_ALLOC, "Free queue: %p\n", txq->sa);
1550 	kfree (txq->sa);
1551 
1552 	func_exit ();
1553 }
1554 
free_freepool(struct fs_dev * dev,struct freepool * fp)1555 static void free_freepool(struct fs_dev *dev, struct freepool *fp)
1556 {
1557 	func_enter ();
1558 
1559 	write_fs (dev, FP_CNF(fp->offset), 0);
1560 	write_fs (dev, FP_SA (fp->offset), 0);
1561 	write_fs (dev, FP_EA (fp->offset), 0);
1562 	write_fs (dev, FP_CNT(fp->offset), 0);
1563 	write_fs (dev, FP_CTU(fp->offset), 0);
1564 
1565 	func_exit ();
1566 }
1567 
1568 
1569 
fs_irq(int irq,void * dev_id)1570 static irqreturn_t fs_irq (int irq, void *dev_id)
1571 {
1572 	int i;
1573 	u32 status;
1574 	struct fs_dev *dev = dev_id;
1575 
1576 	status = read_fs (dev, ISR);
1577 	if (!status)
1578 		return IRQ_NONE;
1579 
1580 	func_enter ();
1581 
1582 #ifdef IRQ_RATE_LIMIT
1583 	/* Aaargh! I'm ashamed. This costs more lines-of-code than the actual
1584 	   interrupt routine!. (Well, used to when I wrote that comment) -- REW */
1585 	{
1586 		static int lastjif;
1587 		static int nintr=0;
1588 
1589 		if (lastjif == jiffies) {
1590 			if (++nintr > IRQ_RATE_LIMIT) {
1591 				free_irq (dev->irq, dev_id);
1592 				printk (KERN_ERR "fs: Too many interrupts. Turning off interrupt %d.\n",
1593 					dev->irq);
1594 			}
1595 		} else {
1596 			lastjif = jiffies;
1597 			nintr = 0;
1598 		}
1599 	}
1600 #endif
1601 	fs_dprintk (FS_DEBUG_QUEUE, "in intr: txq %d txrq %d\n",
1602 		    read_fs (dev, Q_EA (dev->hp_txq.offset)) -
1603 		    read_fs (dev, Q_SA (dev->hp_txq.offset)),
1604 		    read_fs (dev, Q_EA (dev->tx_relq.offset)) -
1605 		    read_fs (dev, Q_SA (dev->tx_relq.offset)));
1606 
1607 	/* print the bits in the ISR register. */
1608 	if (fs_debug & FS_DEBUG_IRQ) {
1609 		/* The FS_DEBUG things are unnecessary here. But this way it is
1610 		   clear for grep that these are debug prints. */
1611 		fs_dprintk (FS_DEBUG_IRQ,  "IRQ status:");
1612 		for (i=0;i<27;i++)
1613 			if (status & (1 << i))
1614 				fs_dprintk (FS_DEBUG_IRQ, " %s", irq_bitname[i]);
1615 		fs_dprintk (FS_DEBUG_IRQ, "\n");
1616 	}
1617 
1618 	if (status & ISR_RBRQ0_W) {
1619 		fs_dprintk (FS_DEBUG_IRQ, "Iiiin-coming (0)!!!!\n");
1620 		process_incoming (dev, &dev->rx_rq[0]);
1621 		/* items mentioned on RBRQ0 are from FP 0 or 1. */
1622 		top_off_fp (dev, &dev->rx_fp[0], GFP_ATOMIC);
1623 		top_off_fp (dev, &dev->rx_fp[1], GFP_ATOMIC);
1624 	}
1625 
1626 	if (status & ISR_RBRQ1_W) {
1627 		fs_dprintk (FS_DEBUG_IRQ, "Iiiin-coming (1)!!!!\n");
1628 		process_incoming (dev, &dev->rx_rq[1]);
1629 		top_off_fp (dev, &dev->rx_fp[2], GFP_ATOMIC);
1630 		top_off_fp (dev, &dev->rx_fp[3], GFP_ATOMIC);
1631 	}
1632 
1633 	if (status & ISR_RBRQ2_W) {
1634 		fs_dprintk (FS_DEBUG_IRQ, "Iiiin-coming (2)!!!!\n");
1635 		process_incoming (dev, &dev->rx_rq[2]);
1636 		top_off_fp (dev, &dev->rx_fp[4], GFP_ATOMIC);
1637 		top_off_fp (dev, &dev->rx_fp[5], GFP_ATOMIC);
1638 	}
1639 
1640 	if (status & ISR_RBRQ3_W) {
1641 		fs_dprintk (FS_DEBUG_IRQ, "Iiiin-coming (3)!!!!\n");
1642 		process_incoming (dev, &dev->rx_rq[3]);
1643 		top_off_fp (dev, &dev->rx_fp[6], GFP_ATOMIC);
1644 		top_off_fp (dev, &dev->rx_fp[7], GFP_ATOMIC);
1645 	}
1646 
1647 	if (status & ISR_CSQ_W) {
1648 		fs_dprintk (FS_DEBUG_IRQ, "Command executed ok!\n");
1649 		process_return_queue (dev, &dev->st_q);
1650 	}
1651 
1652 	if (status & ISR_TBRQ_W) {
1653 		fs_dprintk (FS_DEBUG_IRQ, "Data tramsitted!\n");
1654 		process_txdone_queue (dev, &dev->tx_relq);
1655 	}
1656 
1657 	func_exit ();
1658 	return IRQ_HANDLED;
1659 }
1660 
1661 
1662 #ifdef FS_POLL_FREQ
fs_poll(struct timer_list * t)1663 static void fs_poll (struct timer_list *t)
1664 {
1665 	struct fs_dev *dev = from_timer(dev, t, timer);
1666 
1667 	fs_irq (0, dev);
1668 	dev->timer.expires = jiffies + FS_POLL_FREQ;
1669 	add_timer (&dev->timer);
1670 }
1671 #endif
1672 
fs_init(struct fs_dev * dev)1673 static int fs_init(struct fs_dev *dev)
1674 {
1675 	struct pci_dev  *pci_dev;
1676 	int isr, to;
1677 	int i;
1678 
1679 	func_enter ();
1680 	pci_dev = dev->pci_dev;
1681 
1682 	printk (KERN_INFO "found a FireStream %d card, base %16llx, irq%d.\n",
1683 		IS_FS50(dev)?50:155,
1684 		(unsigned long long)pci_resource_start(pci_dev, 0),
1685 		dev->pci_dev->irq);
1686 
1687 	if (fs_debug & FS_DEBUG_INIT)
1688 		my_hd ((unsigned char *) dev, sizeof (*dev));
1689 
1690 	undocumented_pci_fix (pci_dev);
1691 
1692 	dev->hw_base = pci_resource_start(pci_dev, 0);
1693 
1694 	dev->base = ioremap(dev->hw_base, 0x1000);
1695 
1696 	reset_chip (dev);
1697 
1698 	write_fs (dev, SARMODE0, 0
1699 		  | (0 * SARMODE0_SHADEN) /* We don't use shadow registers. */
1700 		  | (1 * SARMODE0_INTMODE_READCLEAR)
1701 		  | (1 * SARMODE0_CWRE)
1702 		  | (IS_FS50(dev) ? SARMODE0_PRPWT_FS50_5:
1703 			  SARMODE0_PRPWT_FS155_3)
1704 		  | (1 * SARMODE0_CALSUP_1)
1705 		  | (IS_FS50(dev) ? (0
1706 				   | SARMODE0_RXVCS_32
1707 				   | SARMODE0_ABRVCS_32
1708 				   | SARMODE0_TXVCS_32):
1709 		                  (0
1710 				   | SARMODE0_RXVCS_1k
1711 				   | SARMODE0_ABRVCS_1k
1712 				   | SARMODE0_TXVCS_1k)));
1713 
1714 	/* 10ms * 100 is 1 second. That should be enough, as AN3:9 says it takes
1715 	   1ms. */
1716 	to = 100;
1717 	while (--to) {
1718 		isr = read_fs (dev, ISR);
1719 
1720 		/* This bit is documented as "RESERVED" */
1721 		if (isr & ISR_INIT_ERR) {
1722 			printk (KERN_ERR "Error initializing the FS... \n");
1723 			goto unmap;
1724 		}
1725 		if (isr & ISR_INIT) {
1726 			fs_dprintk (FS_DEBUG_INIT, "Ha! Initialized OK!\n");
1727 			break;
1728 		}
1729 
1730 		/* Try again after 10ms. */
1731 		msleep(10);
1732 	}
1733 
1734 	if (!to) {
1735 		printk (KERN_ERR "timeout initializing the FS... \n");
1736 		goto unmap;
1737 	}
1738 
1739 	/* XXX fix for fs155 */
1740 	dev->channel_mask = 0x1f;
1741 	dev->channo = 0;
1742 
1743 	/* AN3: 10 */
1744 	write_fs (dev, SARMODE1, 0
1745 		  | (fs_keystream * SARMODE1_DEFHEC) /* XXX PHY */
1746 		  | ((loopback == 1) * SARMODE1_TSTLP) /* XXX Loopback mode enable... */
1747 		  | (1 * SARMODE1_DCRM)
1748 		  | (1 * SARMODE1_DCOAM)
1749 		  | (0 * SARMODE1_OAMCRC)
1750 		  | (0 * SARMODE1_DUMPE)
1751 		  | (0 * SARMODE1_GPLEN)
1752 		  | (0 * SARMODE1_GNAM)
1753 		  | (0 * SARMODE1_GVAS)
1754 		  | (0 * SARMODE1_GPAS)
1755 		  | (1 * SARMODE1_GPRI)
1756 		  | (0 * SARMODE1_PMS)
1757 		  | (0 * SARMODE1_GFCR)
1758 		  | (1 * SARMODE1_HECM2)
1759 		  | (1 * SARMODE1_HECM1)
1760 		  | (1 * SARMODE1_HECM0)
1761 		  | (1 << 12) /* That's what hang's driver does. Program to 0 */
1762 		  | (0 * 0xff) /* XXX FS155 */);
1763 
1764 
1765 	/* Cal prescale etc */
1766 
1767 	/* AN3: 11 */
1768 	write_fs (dev, TMCONF, 0x0000000f);
1769 	write_fs (dev, CALPRESCALE, 0x01010101 * num);
1770 	write_fs (dev, 0x80, 0x000F00E4);
1771 
1772 	/* AN3: 12 */
1773 	write_fs (dev, CELLOSCONF, 0
1774 		  | (   0 * CELLOSCONF_CEN)
1775 		  | (       CELLOSCONF_SC1)
1776 		  | (0x80 * CELLOSCONF_COBS)
1777 		  | (num  * CELLOSCONF_COPK)  /* Changed from 0xff to 0x5a */
1778 		  | (num  * CELLOSCONF_COST));/* after a hint from Hang.
1779 					       * performance jumped 50->70... */
1780 
1781 	/* Magic value by Hang */
1782 	write_fs (dev, CELLOSCONF_COST, 0x0B809191);
1783 
1784 	if (IS_FS50 (dev)) {
1785 		write_fs (dev, RAS0, RAS0_DCD_XHLT);
1786 		dev->atm_dev->ci_range.vpi_bits = 12;
1787 		dev->atm_dev->ci_range.vci_bits = 16;
1788 		dev->nchannels = FS50_NR_CHANNELS;
1789 	} else {
1790 		write_fs (dev, RAS0, RAS0_DCD_XHLT
1791 			  | (((1 << FS155_VPI_BITS) - 1) * RAS0_VPSEL)
1792 			  | (((1 << FS155_VCI_BITS) - 1) * RAS0_VCSEL));
1793 		/* We can chose the split arbitrarily. We might be able to
1794 		   support more. Whatever. This should do for now. */
1795 		dev->atm_dev->ci_range.vpi_bits = FS155_VPI_BITS;
1796 		dev->atm_dev->ci_range.vci_bits = FS155_VCI_BITS;
1797 
1798 		/* Address bits we can't use should be compared to 0. */
1799 		write_fs (dev, RAC, 0);
1800 
1801 		/* Manual (AN9, page 6) says ASF1=0 means compare Utopia address
1802 		 * too.  I can't find ASF1 anywhere. Anyway, we AND with just the
1803 		 * other bits, then compare with 0, which is exactly what we
1804 		 * want. */
1805 		write_fs (dev, RAM, (1 << (28 - FS155_VPI_BITS - FS155_VCI_BITS)) - 1);
1806 		dev->nchannels = FS155_NR_CHANNELS;
1807 	}
1808 	dev->atm_vccs = kcalloc (dev->nchannels, sizeof (struct atm_vcc *),
1809 				 GFP_KERNEL);
1810 	fs_dprintk (FS_DEBUG_ALLOC, "Alloc atmvccs: %p(%zd)\n",
1811 		    dev->atm_vccs, dev->nchannels * sizeof (struct atm_vcc *));
1812 
1813 	if (!dev->atm_vccs) {
1814 		printk (KERN_WARNING "Couldn't allocate memory for VCC buffers. Woops!\n");
1815 		/* XXX Clean up..... */
1816 		goto unmap;
1817 	}
1818 
1819 	dev->tx_inuse = kzalloc (dev->nchannels / 8 /* bits/byte */ , GFP_KERNEL);
1820 	fs_dprintk (FS_DEBUG_ALLOC, "Alloc tx_inuse: %p(%d)\n",
1821 		    dev->atm_vccs, dev->nchannels / 8);
1822 
1823 	if (!dev->tx_inuse) {
1824 		printk (KERN_WARNING "Couldn't allocate memory for tx_inuse bits!\n");
1825 		/* XXX Clean up..... */
1826 		goto unmap;
1827 	}
1828 	/* -- RAS1 : FS155 and 50 differ. Default (0) should be OK for both */
1829 	/* -- RAS2 : FS50 only: Default is OK. */
1830 
1831 	/* DMAMODE, default should be OK. -- REW */
1832 	write_fs (dev, DMAMR, DMAMR_TX_MODE_FULL);
1833 
1834 	init_q (dev, &dev->hp_txq, TX_PQ(TXQ_HP), TXQ_NENTRIES, 0);
1835 	init_q (dev, &dev->lp_txq, TX_PQ(TXQ_LP), TXQ_NENTRIES, 0);
1836 	init_q (dev, &dev->tx_relq, TXB_RQ, TXQ_NENTRIES, 1);
1837 	init_q (dev, &dev->st_q, ST_Q, TXQ_NENTRIES, 1);
1838 
1839 	for (i=0;i < FS_NR_FREE_POOLS;i++) {
1840 		init_fp (dev, &dev->rx_fp[i], RXB_FP(i),
1841 			 rx_buf_sizes[i], rx_pool_sizes[i]);
1842 		top_off_fp (dev, &dev->rx_fp[i], GFP_KERNEL);
1843 	}
1844 
1845 
1846 	for (i=0;i < FS_NR_RX_QUEUES;i++)
1847 		init_q (dev, &dev->rx_rq[i], RXB_RQ(i), RXRQ_NENTRIES, 1);
1848 
1849 	dev->irq = pci_dev->irq;
1850 	if (request_irq (dev->irq, fs_irq, IRQF_SHARED, "firestream", dev)) {
1851 		printk (KERN_WARNING "couldn't get irq %d for firestream.\n", pci_dev->irq);
1852 		/* XXX undo all previous stuff... */
1853 		goto unmap;
1854 	}
1855 	fs_dprintk (FS_DEBUG_INIT, "Grabbed irq %d for dev at %p.\n", dev->irq, dev);
1856 
1857 	/* We want to be notified of most things. Just the statistics count
1858 	   overflows are not interesting */
1859 	write_fs (dev, IMR, 0
1860 		  | ISR_RBRQ0_W
1861 		  | ISR_RBRQ1_W
1862 		  | ISR_RBRQ2_W
1863 		  | ISR_RBRQ3_W
1864 		  | ISR_TBRQ_W
1865 		  | ISR_CSQ_W);
1866 
1867 	write_fs (dev, SARMODE0, 0
1868 		  | (0 * SARMODE0_SHADEN) /* We don't use shadow registers. */
1869 		  | (1 * SARMODE0_GINT)
1870 		  | (1 * SARMODE0_INTMODE_READCLEAR)
1871 		  | (0 * SARMODE0_CWRE)
1872 		  | (IS_FS50(dev)?SARMODE0_PRPWT_FS50_5:
1873 		                  SARMODE0_PRPWT_FS155_3)
1874 		  | (1 * SARMODE0_CALSUP_1)
1875 		  | (IS_FS50 (dev)?(0
1876 				    | SARMODE0_RXVCS_32
1877 				    | SARMODE0_ABRVCS_32
1878 				    | SARMODE0_TXVCS_32):
1879 		                   (0
1880 				    | SARMODE0_RXVCS_1k
1881 				    | SARMODE0_ABRVCS_1k
1882 				    | SARMODE0_TXVCS_1k))
1883 		  | (1 * SARMODE0_RUN));
1884 
1885 	init_phy (dev, PHY_NTC_INIT);
1886 
1887 	if (loopback == 2) {
1888 		write_phy (dev, 0x39, 0x000e);
1889 	}
1890 
1891 #ifdef FS_POLL_FREQ
1892 	timer_setup(&dev->timer, fs_poll, 0);
1893 	dev->timer.expires = jiffies + FS_POLL_FREQ;
1894 	add_timer (&dev->timer);
1895 #endif
1896 
1897 	dev->atm_dev->dev_data = dev;
1898 
1899 	func_exit ();
1900 	return 0;
1901 unmap:
1902 	iounmap(dev->base);
1903 	return 1;
1904 }
1905 
firestream_init_one(struct pci_dev * pci_dev,const struct pci_device_id * ent)1906 static int firestream_init_one(struct pci_dev *pci_dev,
1907 			       const struct pci_device_id *ent)
1908 {
1909 	struct atm_dev *atm_dev;
1910 	struct fs_dev *fs_dev;
1911 
1912 	if (pci_enable_device(pci_dev))
1913 		goto err_out;
1914 
1915 	fs_dev = kzalloc (sizeof (struct fs_dev), GFP_KERNEL);
1916 	fs_dprintk (FS_DEBUG_ALLOC, "Alloc fs-dev: %p(%zd)\n",
1917 		    fs_dev, sizeof (struct fs_dev));
1918 	if (!fs_dev)
1919 		goto err_out;
1920 	atm_dev = atm_dev_register("fs", &pci_dev->dev, &ops, -1, NULL);
1921 	if (!atm_dev)
1922 		goto err_out_free_fs_dev;
1923 
1924 	fs_dev->pci_dev = pci_dev;
1925 	fs_dev->atm_dev = atm_dev;
1926 	fs_dev->flags = ent->driver_data;
1927 
1928 	if (fs_init(fs_dev))
1929 		goto err_out_free_atm_dev;
1930 
1931 	fs_dev->next = fs_boards;
1932 	fs_boards = fs_dev;
1933 	return 0;
1934 
1935  err_out_free_atm_dev:
1936 	atm_dev_deregister(atm_dev);
1937  err_out_free_fs_dev:
1938  	kfree(fs_dev);
1939  err_out:
1940 	return -ENODEV;
1941 }
1942 
firestream_remove_one(struct pci_dev * pdev)1943 static void firestream_remove_one(struct pci_dev *pdev)
1944 {
1945 	int i;
1946 	struct fs_dev *dev, *nxtdev;
1947 	struct fs_vcc *vcc;
1948 	struct FS_BPENTRY *fp, *nxt;
1949 
1950 	func_enter ();
1951 
1952 #if 0
1953 	printk ("hptxq:\n");
1954 	for (i=0;i<60;i++) {
1955 		printk ("%d: %08x %08x %08x %08x \n",
1956 			i, pq[qp].cmd, pq[qp].p0, pq[qp].p1, pq[qp].p2);
1957 		qp++;
1958 		if (qp >= 60) qp = 0;
1959 	}
1960 
1961 	printk ("descriptors:\n");
1962 	for (i=0;i<60;i++) {
1963 		printk ("%d: %p: %08x %08x %p %p\n",
1964 			i, da[qd], dq[qd].flags, dq[qd].bsa, dq[qd].skb, dq[qd].dev);
1965 		qd++;
1966 		if (qd >= 60) qd = 0;
1967 	}
1968 #endif
1969 
1970 	for (dev = fs_boards;dev != NULL;dev=nxtdev) {
1971 		fs_dprintk (FS_DEBUG_CLEANUP, "Releasing resources for dev at %p.\n", dev);
1972 
1973 		/* XXX Hit all the tx channels too! */
1974 
1975 		for (i=0;i < dev->nchannels;i++) {
1976 			if (dev->atm_vccs[i]) {
1977 				vcc = FS_VCC (dev->atm_vccs[i]);
1978 				submit_command (dev,  &dev->hp_txq,
1979 						QE_CMD_TX_PURGE_INH | QE_CMD_IMM_INQ | vcc->channo, 0,0,0);
1980 				submit_command (dev,  &dev->hp_txq,
1981 						QE_CMD_RX_PURGE_INH | QE_CMD_IMM_INQ | vcc->channo, 0,0,0);
1982 
1983 			}
1984 		}
1985 
1986 		/* XXX Wait a while for the chip to release all buffers. */
1987 
1988 		for (i=0;i < FS_NR_FREE_POOLS;i++) {
1989 			for (fp=bus_to_virt (read_fs (dev, FP_SA(dev->rx_fp[i].offset)));
1990 			     !(fp->flags & FP_FLAGS_EPI);fp = nxt) {
1991 				fs_dprintk (FS_DEBUG_ALLOC, "Free rec-skb: %p\n", fp->skb);
1992 				dev_kfree_skb_any (fp->skb);
1993 				nxt = bus_to_virt (fp->next);
1994 				fs_dprintk (FS_DEBUG_ALLOC, "Free rec-d: %p\n", fp);
1995 				kfree (fp);
1996 			}
1997 			fs_dprintk (FS_DEBUG_ALLOC, "Free rec-skb: %p\n", fp->skb);
1998 			dev_kfree_skb_any (fp->skb);
1999 			fs_dprintk (FS_DEBUG_ALLOC, "Free rec-d: %p\n", fp);
2000 			kfree (fp);
2001 		}
2002 
2003 		/* Hang the chip in "reset", prevent it clobbering memory that is
2004 		   no longer ours. */
2005 		reset_chip (dev);
2006 
2007 		fs_dprintk (FS_DEBUG_CLEANUP, "Freeing irq%d.\n", dev->irq);
2008 		free_irq (dev->irq, dev);
2009 		del_timer_sync (&dev->timer);
2010 
2011 		atm_dev_deregister(dev->atm_dev);
2012 		free_queue (dev, &dev->hp_txq);
2013 		free_queue (dev, &dev->lp_txq);
2014 		free_queue (dev, &dev->tx_relq);
2015 		free_queue (dev, &dev->st_q);
2016 
2017 		fs_dprintk (FS_DEBUG_ALLOC, "Free atmvccs: %p\n", dev->atm_vccs);
2018 		kfree (dev->atm_vccs);
2019 
2020 		for (i=0;i< FS_NR_FREE_POOLS;i++)
2021 			free_freepool (dev, &dev->rx_fp[i]);
2022 
2023 		for (i=0;i < FS_NR_RX_QUEUES;i++)
2024 			free_queue (dev, &dev->rx_rq[i]);
2025 
2026 		iounmap(dev->base);
2027 		fs_dprintk (FS_DEBUG_ALLOC, "Free fs-dev: %p\n", dev);
2028 		nxtdev = dev->next;
2029 		kfree (dev);
2030 	}
2031 
2032 	func_exit ();
2033 }
2034 
2035 static const struct pci_device_id firestream_pci_tbl[] = {
2036 	{ PCI_VDEVICE(FUJITSU_ME, PCI_DEVICE_ID_FUJITSU_FS50), FS_IS50},
2037 	{ PCI_VDEVICE(FUJITSU_ME, PCI_DEVICE_ID_FUJITSU_FS155), FS_IS155},
2038 	{ 0, }
2039 };
2040 
2041 MODULE_DEVICE_TABLE(pci, firestream_pci_tbl);
2042 
2043 static struct pci_driver firestream_driver = {
2044 	.name		= "firestream",
2045 	.id_table	= firestream_pci_tbl,
2046 	.probe		= firestream_init_one,
2047 	.remove		= firestream_remove_one,
2048 };
2049 
firestream_init_module(void)2050 static int __init firestream_init_module (void)
2051 {
2052 	int error;
2053 
2054 	func_enter ();
2055 	error = pci_register_driver(&firestream_driver);
2056 	func_exit ();
2057 	return error;
2058 }
2059 
firestream_cleanup_module(void)2060 static void __exit firestream_cleanup_module(void)
2061 {
2062 	pci_unregister_driver(&firestream_driver);
2063 }
2064 
2065 module_init(firestream_init_module);
2066 module_exit(firestream_cleanup_module);
2067 
2068 MODULE_LICENSE("GPL");
2069 
2070 
2071 
2072