• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2   A FORE Systems 200E-series driver for ATM on Linux.
3   Christophe Lizzi (lizzi@cnam.fr), October 1999-March 2003.
4 
5   Based on the PCA-200E driver from Uwe Dannowski (Uwe.Dannowski@inf.tu-dresden.de).
6 
7   This driver simultaneously supports PCA-200E and SBA-200E adapters
8   on i386, alpha (untested), powerpc, sparc and sparc64 architectures.
9 
10   This program is free software; you can redistribute it and/or modify
11   it under the terms of the GNU General Public License as published by
12   the Free Software Foundation; either version 2 of the License, or
13   (at your option) any later version.
14 
15   This program is distributed in the hope that it will be useful,
16   but WITHOUT ANY WARRANTY; without even the implied warranty of
17   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
18   GNU General Public License for more details.
19 
20   You should have received a copy of the GNU General Public License
21   along with this program; if not, write to the Free Software
22   Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
23 */
24 
25 
26 #include <linux/kernel.h>
27 #include <linux/slab.h>
28 #include <linux/init.h>
29 #include <linux/capability.h>
30 #include <linux/interrupt.h>
31 #include <linux/bitops.h>
32 #include <linux/pci.h>
33 #include <linux/module.h>
34 #include <linux/atmdev.h>
35 #include <linux/sonet.h>
36 #include <linux/atm_suni.h>
37 #include <linux/dma-mapping.h>
38 #include <linux/delay.h>
39 #include <linux/firmware.h>
40 #include <asm/io.h>
41 #include <asm/string.h>
42 #include <asm/page.h>
43 #include <asm/irq.h>
44 #include <asm/dma.h>
45 #include <asm/byteorder.h>
46 #include <linux/uaccess.h>
47 #include <linux/atomic.h>
48 
49 #ifdef CONFIG_SBUS
50 #include <linux/of.h>
51 #include <linux/of_device.h>
52 #include <asm/idprom.h>
53 #include <asm/openprom.h>
54 #include <asm/oplib.h>
55 #include <asm/pgtable.h>
56 #endif
57 
58 #if defined(CONFIG_ATM_FORE200E_USE_TASKLET) /* defer interrupt work to a tasklet */
59 #define FORE200E_USE_TASKLET
60 #endif
61 
62 #if 0 /* enable the debugging code of the buffer supply queues */
63 #define FORE200E_BSQ_DEBUG
64 #endif
65 
66 #if 1 /* ensure correct handling of 52-byte AAL0 SDUs expected by atmdump-like apps */
67 #define FORE200E_52BYTE_AAL0_SDU
68 #endif
69 
70 #include "fore200e.h"
71 #include "suni.h"
72 
73 #define FORE200E_VERSION "0.3e"
74 
75 #define FORE200E         "fore200e: "
76 
77 #if 0 /* override .config */
78 #define CONFIG_ATM_FORE200E_DEBUG 1
79 #endif
80 #if defined(CONFIG_ATM_FORE200E_DEBUG) && (CONFIG_ATM_FORE200E_DEBUG > 0)
81 #define DPRINTK(level, format, args...)  do { if (CONFIG_ATM_FORE200E_DEBUG >= (level)) \
82                                                   printk(FORE200E format, ##args); } while (0)
83 #else
84 #define DPRINTK(level, format, args...)  do {} while (0)
85 #endif
86 
87 
88 #define FORE200E_ALIGN(addr, alignment) \
89         ((((unsigned long)(addr) + (alignment - 1)) & ~(alignment - 1)) - (unsigned long)(addr))
90 
91 #define FORE200E_DMA_INDEX(dma_addr, type, index)  ((dma_addr) + (index) * sizeof(type))
92 
93 #define FORE200E_INDEX(virt_addr, type, index)     (&((type *)(virt_addr))[ index ])
94 
95 #define FORE200E_NEXT_ENTRY(index, modulo)         (index = ((index) + 1) % (modulo))
96 
97 #if 1
98 #define ASSERT(expr)     if (!(expr)) { \
99 			     printk(FORE200E "assertion failed! %s[%d]: %s\n", \
100 				    __func__, __LINE__, #expr); \
101 			     panic(FORE200E "%s", __func__); \
102 			 }
103 #else
104 #define ASSERT(expr)     do {} while (0)
105 #endif
106 
107 
108 static const struct atmdev_ops   fore200e_ops;
109 static const struct fore200e_bus fore200e_bus[];
110 
111 static LIST_HEAD(fore200e_boards);
112 
113 
114 MODULE_AUTHOR("Christophe Lizzi - credits to Uwe Dannowski and Heikki Vatiainen");
115 MODULE_DESCRIPTION("FORE Systems 200E-series ATM driver - version " FORE200E_VERSION);
116 MODULE_SUPPORTED_DEVICE("PCA-200E, SBA-200E");
117 
118 
119 static const int fore200e_rx_buf_nbr[ BUFFER_SCHEME_NBR ][ BUFFER_MAGN_NBR ] = {
120     { BUFFER_S1_NBR, BUFFER_L1_NBR },
121     { BUFFER_S2_NBR, BUFFER_L2_NBR }
122 };
123 
124 static const int fore200e_rx_buf_size[ BUFFER_SCHEME_NBR ][ BUFFER_MAGN_NBR ] = {
125     { BUFFER_S1_SIZE, BUFFER_L1_SIZE },
126     { BUFFER_S2_SIZE, BUFFER_L2_SIZE }
127 };
128 
129 
130 #if defined(CONFIG_ATM_FORE200E_DEBUG) && (CONFIG_ATM_FORE200E_DEBUG > 0)
131 static const char* fore200e_traffic_class[] = { "NONE", "UBR", "CBR", "VBR", "ABR", "ANY" };
132 #endif
133 
134 
135 #if 0 /* currently unused */
136 static int
137 fore200e_fore2atm_aal(enum fore200e_aal aal)
138 {
139     switch(aal) {
140     case FORE200E_AAL0:  return ATM_AAL0;
141     case FORE200E_AAL34: return ATM_AAL34;
142     case FORE200E_AAL5:  return ATM_AAL5;
143     }
144 
145     return -EINVAL;
146 }
147 #endif
148 
149 
150 static enum fore200e_aal
fore200e_atm2fore_aal(int aal)151 fore200e_atm2fore_aal(int aal)
152 {
153     switch(aal) {
154     case ATM_AAL0:  return FORE200E_AAL0;
155     case ATM_AAL34: return FORE200E_AAL34;
156     case ATM_AAL1:
157     case ATM_AAL2:
158     case ATM_AAL5:  return FORE200E_AAL5;
159     }
160 
161     return -EINVAL;
162 }
163 
164 
165 static char*
fore200e_irq_itoa(int irq)166 fore200e_irq_itoa(int irq)
167 {
168     static char str[8];
169     sprintf(str, "%d", irq);
170     return str;
171 }
172 
173 
174 /* allocate and align a chunk of memory intended to hold the data behing exchanged
175    between the driver and the adapter (using streaming DVMA) */
176 
177 static int
fore200e_chunk_alloc(struct fore200e * fore200e,struct chunk * chunk,int size,int alignment,int direction)178 fore200e_chunk_alloc(struct fore200e* fore200e, struct chunk* chunk, int size, int alignment, int direction)
179 {
180     unsigned long offset = 0;
181 
182     if (alignment <= sizeof(int))
183 	alignment = 0;
184 
185     chunk->alloc_size = size + alignment;
186     chunk->align_size = size;
187     chunk->direction  = direction;
188 
189     chunk->alloc_addr = kzalloc(chunk->alloc_size, GFP_KERNEL | GFP_DMA);
190     if (chunk->alloc_addr == NULL)
191 	return -ENOMEM;
192 
193     if (alignment > 0)
194 	offset = FORE200E_ALIGN(chunk->alloc_addr, alignment);
195 
196     chunk->align_addr = chunk->alloc_addr + offset;
197 
198     chunk->dma_addr = fore200e->bus->dma_map(fore200e, chunk->align_addr, chunk->align_size, direction);
199 
200     return 0;
201 }
202 
203 
204 /* free a chunk of memory */
205 
206 static void
fore200e_chunk_free(struct fore200e * fore200e,struct chunk * chunk)207 fore200e_chunk_free(struct fore200e* fore200e, struct chunk* chunk)
208 {
209     fore200e->bus->dma_unmap(fore200e, chunk->dma_addr, chunk->dma_size, chunk->direction);
210 
211     kfree(chunk->alloc_addr);
212 }
213 
214 
215 static void
fore200e_spin(int msecs)216 fore200e_spin(int msecs)
217 {
218     unsigned long timeout = jiffies + msecs_to_jiffies(msecs);
219     while (time_before(jiffies, timeout));
220 }
221 
222 
223 static int
fore200e_poll(struct fore200e * fore200e,volatile u32 * addr,u32 val,int msecs)224 fore200e_poll(struct fore200e* fore200e, volatile u32* addr, u32 val, int msecs)
225 {
226     unsigned long timeout = jiffies + msecs_to_jiffies(msecs);
227     int           ok;
228 
229     mb();
230     do {
231 	if ((ok = (*addr == val)) || (*addr & STATUS_ERROR))
232 	    break;
233 
234     } while (time_before(jiffies, timeout));
235 
236 #if 1
237     if (!ok) {
238 	printk(FORE200E "cmd polling failed, got status 0x%08x, expected 0x%08x\n",
239 	       *addr, val);
240     }
241 #endif
242 
243     return ok;
244 }
245 
246 
247 static int
fore200e_io_poll(struct fore200e * fore200e,volatile u32 __iomem * addr,u32 val,int msecs)248 fore200e_io_poll(struct fore200e* fore200e, volatile u32 __iomem *addr, u32 val, int msecs)
249 {
250     unsigned long timeout = jiffies + msecs_to_jiffies(msecs);
251     int           ok;
252 
253     do {
254 	if ((ok = (fore200e->bus->read(addr) == val)))
255 	    break;
256 
257     } while (time_before(jiffies, timeout));
258 
259 #if 1
260     if (!ok) {
261 	printk(FORE200E "I/O polling failed, got status 0x%08x, expected 0x%08x\n",
262 	       fore200e->bus->read(addr), val);
263     }
264 #endif
265 
266     return ok;
267 }
268 
269 
270 static void
fore200e_free_rx_buf(struct fore200e * fore200e)271 fore200e_free_rx_buf(struct fore200e* fore200e)
272 {
273     int scheme, magn, nbr;
274     struct buffer* buffer;
275 
276     for (scheme = 0; scheme < BUFFER_SCHEME_NBR; scheme++) {
277 	for (magn = 0; magn < BUFFER_MAGN_NBR; magn++) {
278 
279 	    if ((buffer = fore200e->host_bsq[ scheme ][ magn ].buffer) != NULL) {
280 
281 		for (nbr = 0; nbr < fore200e_rx_buf_nbr[ scheme ][ magn ]; nbr++) {
282 
283 		    struct chunk* data = &buffer[ nbr ].data;
284 
285 		    if (data->alloc_addr != NULL)
286 			fore200e_chunk_free(fore200e, data);
287 		}
288 	    }
289 	}
290     }
291 }
292 
293 
294 static void
fore200e_uninit_bs_queue(struct fore200e * fore200e)295 fore200e_uninit_bs_queue(struct fore200e* fore200e)
296 {
297     int scheme, magn;
298 
299     for (scheme = 0; scheme < BUFFER_SCHEME_NBR; scheme++) {
300 	for (magn = 0; magn < BUFFER_MAGN_NBR; magn++) {
301 
302 	    struct chunk* status    = &fore200e->host_bsq[ scheme ][ magn ].status;
303 	    struct chunk* rbd_block = &fore200e->host_bsq[ scheme ][ magn ].rbd_block;
304 
305 	    if (status->alloc_addr)
306 		fore200e->bus->dma_chunk_free(fore200e, status);
307 
308 	    if (rbd_block->alloc_addr)
309 		fore200e->bus->dma_chunk_free(fore200e, rbd_block);
310 	}
311     }
312 }
313 
314 
315 static int
fore200e_reset(struct fore200e * fore200e,int diag)316 fore200e_reset(struct fore200e* fore200e, int diag)
317 {
318     int ok;
319 
320     fore200e->cp_monitor = fore200e->virt_base + FORE200E_CP_MONITOR_OFFSET;
321 
322     fore200e->bus->write(BSTAT_COLD_START, &fore200e->cp_monitor->bstat);
323 
324     fore200e->bus->reset(fore200e);
325 
326     if (diag) {
327 	ok = fore200e_io_poll(fore200e, &fore200e->cp_monitor->bstat, BSTAT_SELFTEST_OK, 1000);
328 	if (ok == 0) {
329 
330 	    printk(FORE200E "device %s self-test failed\n", fore200e->name);
331 	    return -ENODEV;
332 	}
333 
334 	printk(FORE200E "device %s self-test passed\n", fore200e->name);
335 
336 	fore200e->state = FORE200E_STATE_RESET;
337     }
338 
339     return 0;
340 }
341 
342 
343 static void
fore200e_shutdown(struct fore200e * fore200e)344 fore200e_shutdown(struct fore200e* fore200e)
345 {
346     printk(FORE200E "removing device %s at 0x%lx, IRQ %s\n",
347 	   fore200e->name, fore200e->phys_base,
348 	   fore200e_irq_itoa(fore200e->irq));
349 
350     if (fore200e->state > FORE200E_STATE_RESET) {
351 	/* first, reset the board to prevent further interrupts or data transfers */
352 	fore200e_reset(fore200e, 0);
353     }
354 
355     /* then, release all allocated resources */
356     switch(fore200e->state) {
357 
358     case FORE200E_STATE_COMPLETE:
359 	kfree(fore200e->stats);
360 
361 	/* fall through */
362     case FORE200E_STATE_IRQ:
363 	free_irq(fore200e->irq, fore200e->atm_dev);
364 
365 	/* fall through */
366     case FORE200E_STATE_ALLOC_BUF:
367 	fore200e_free_rx_buf(fore200e);
368 
369 	/* fall through */
370     case FORE200E_STATE_INIT_BSQ:
371 	fore200e_uninit_bs_queue(fore200e);
372 
373 	/* fall through */
374     case FORE200E_STATE_INIT_RXQ:
375 	fore200e->bus->dma_chunk_free(fore200e, &fore200e->host_rxq.status);
376 	fore200e->bus->dma_chunk_free(fore200e, &fore200e->host_rxq.rpd);
377 
378 	/* fall through */
379     case FORE200E_STATE_INIT_TXQ:
380 	fore200e->bus->dma_chunk_free(fore200e, &fore200e->host_txq.status);
381 	fore200e->bus->dma_chunk_free(fore200e, &fore200e->host_txq.tpd);
382 
383 	/* fall through */
384     case FORE200E_STATE_INIT_CMDQ:
385 	fore200e->bus->dma_chunk_free(fore200e, &fore200e->host_cmdq.status);
386 
387 	/* fall through */
388     case FORE200E_STATE_INITIALIZE:
389 	/* nothing to do for that state */
390 
391     case FORE200E_STATE_START_FW:
392 	/* nothing to do for that state */
393 
394     case FORE200E_STATE_RESET:
395 	/* nothing to do for that state */
396 
397     case FORE200E_STATE_MAP:
398 	fore200e->bus->unmap(fore200e);
399 
400 	/* fall through */
401     case FORE200E_STATE_CONFIGURE:
402 	/* nothing to do for that state */
403 
404     case FORE200E_STATE_REGISTER:
405 	/* XXX shouldn't we *start* by deregistering the device? */
406 	atm_dev_deregister(fore200e->atm_dev);
407 
408     case FORE200E_STATE_BLANK:
409 	/* nothing to do for that state */
410 	break;
411     }
412 }
413 
414 
415 #ifdef CONFIG_PCI
416 
fore200e_pca_read(volatile u32 __iomem * addr)417 static u32 fore200e_pca_read(volatile u32 __iomem *addr)
418 {
419     /* on big-endian hosts, the board is configured to convert
420        the endianess of slave RAM accesses  */
421     return le32_to_cpu(readl(addr));
422 }
423 
424 
fore200e_pca_write(u32 val,volatile u32 __iomem * addr)425 static void fore200e_pca_write(u32 val, volatile u32 __iomem *addr)
426 {
427     /* on big-endian hosts, the board is configured to convert
428        the endianess of slave RAM accesses  */
429     writel(cpu_to_le32(val), addr);
430 }
431 
432 
433 static u32
fore200e_pca_dma_map(struct fore200e * fore200e,void * virt_addr,int size,int direction)434 fore200e_pca_dma_map(struct fore200e* fore200e, void* virt_addr, int size, int direction)
435 {
436     u32 dma_addr = dma_map_single(&((struct pci_dev *) fore200e->bus_dev)->dev, virt_addr, size, direction);
437 
438     DPRINTK(3, "PCI DVMA mapping: virt_addr = 0x%p, size = %d, direction = %d,  --> dma_addr = 0x%08x\n",
439 	    virt_addr, size, direction, dma_addr);
440 
441     return dma_addr;
442 }
443 
444 
445 static void
fore200e_pca_dma_unmap(struct fore200e * fore200e,u32 dma_addr,int size,int direction)446 fore200e_pca_dma_unmap(struct fore200e* fore200e, u32 dma_addr, int size, int direction)
447 {
448     DPRINTK(3, "PCI DVMA unmapping: dma_addr = 0x%08x, size = %d, direction = %d\n",
449 	    dma_addr, size, direction);
450 
451     dma_unmap_single(&((struct pci_dev *) fore200e->bus_dev)->dev, dma_addr, size, direction);
452 }
453 
454 
455 static void
fore200e_pca_dma_sync_for_cpu(struct fore200e * fore200e,u32 dma_addr,int size,int direction)456 fore200e_pca_dma_sync_for_cpu(struct fore200e* fore200e, u32 dma_addr, int size, int direction)
457 {
458     DPRINTK(3, "PCI DVMA sync: dma_addr = 0x%08x, size = %d, direction = %d\n", dma_addr, size, direction);
459 
460     dma_sync_single_for_cpu(&((struct pci_dev *) fore200e->bus_dev)->dev, dma_addr, size, direction);
461 }
462 
463 static void
fore200e_pca_dma_sync_for_device(struct fore200e * fore200e,u32 dma_addr,int size,int direction)464 fore200e_pca_dma_sync_for_device(struct fore200e* fore200e, u32 dma_addr, int size, int direction)
465 {
466     DPRINTK(3, "PCI DVMA sync: dma_addr = 0x%08x, size = %d, direction = %d\n", dma_addr, size, direction);
467 
468     dma_sync_single_for_device(&((struct pci_dev *) fore200e->bus_dev)->dev, dma_addr, size, direction);
469 }
470 
471 
472 /* allocate a DMA consistent chunk of memory intended to act as a communication mechanism
473    (to hold descriptors, status, queues, etc.) shared by the driver and the adapter */
474 
475 static int
fore200e_pca_dma_chunk_alloc(struct fore200e * fore200e,struct chunk * chunk,int size,int nbr,int alignment)476 fore200e_pca_dma_chunk_alloc(struct fore200e* fore200e, struct chunk* chunk,
477 			     int size, int nbr, int alignment)
478 {
479     /* returned chunks are page-aligned */
480     chunk->alloc_size = size * nbr;
481     chunk->alloc_addr = dma_alloc_coherent(&((struct pci_dev *) fore200e->bus_dev)->dev,
482 					   chunk->alloc_size,
483 					   &chunk->dma_addr,
484 					   GFP_KERNEL);
485 
486     if ((chunk->alloc_addr == NULL) || (chunk->dma_addr == 0))
487 	return -ENOMEM;
488 
489     chunk->align_addr = chunk->alloc_addr;
490 
491     return 0;
492 }
493 
494 
495 /* free a DMA consistent chunk of memory */
496 
497 static void
fore200e_pca_dma_chunk_free(struct fore200e * fore200e,struct chunk * chunk)498 fore200e_pca_dma_chunk_free(struct fore200e* fore200e, struct chunk* chunk)
499 {
500     dma_free_coherent(&((struct pci_dev *) fore200e->bus_dev)->dev,
501 			chunk->alloc_size,
502 			chunk->alloc_addr,
503 			chunk->dma_addr);
504 }
505 
506 
507 static int
fore200e_pca_irq_check(struct fore200e * fore200e)508 fore200e_pca_irq_check(struct fore200e* fore200e)
509 {
510     /* this is a 1 bit register */
511     int irq_posted = readl(fore200e->regs.pca.psr);
512 
513 #if defined(CONFIG_ATM_FORE200E_DEBUG) && (CONFIG_ATM_FORE200E_DEBUG == 2)
514     if (irq_posted && (readl(fore200e->regs.pca.hcr) & PCA200E_HCR_OUTFULL)) {
515 	DPRINTK(2,"FIFO OUT full, device %d\n", fore200e->atm_dev->number);
516     }
517 #endif
518 
519     return irq_posted;
520 }
521 
522 
523 static void
fore200e_pca_irq_ack(struct fore200e * fore200e)524 fore200e_pca_irq_ack(struct fore200e* fore200e)
525 {
526     writel(PCA200E_HCR_CLRINTR, fore200e->regs.pca.hcr);
527 }
528 
529 
530 static void
fore200e_pca_reset(struct fore200e * fore200e)531 fore200e_pca_reset(struct fore200e* fore200e)
532 {
533     writel(PCA200E_HCR_RESET, fore200e->regs.pca.hcr);
534     fore200e_spin(10);
535     writel(0, fore200e->regs.pca.hcr);
536 }
537 
538 
fore200e_pca_map(struct fore200e * fore200e)539 static int fore200e_pca_map(struct fore200e* fore200e)
540 {
541     DPRINTK(2, "device %s being mapped in memory\n", fore200e->name);
542 
543     fore200e->virt_base = ioremap(fore200e->phys_base, PCA200E_IOSPACE_LENGTH);
544 
545     if (fore200e->virt_base == NULL) {
546 	printk(FORE200E "can't map device %s\n", fore200e->name);
547 	return -EFAULT;
548     }
549 
550     DPRINTK(1, "device %s mapped to 0x%p\n", fore200e->name, fore200e->virt_base);
551 
552     /* gain access to the PCA specific registers  */
553     fore200e->regs.pca.hcr = fore200e->virt_base + PCA200E_HCR_OFFSET;
554     fore200e->regs.pca.imr = fore200e->virt_base + PCA200E_IMR_OFFSET;
555     fore200e->regs.pca.psr = fore200e->virt_base + PCA200E_PSR_OFFSET;
556 
557     fore200e->state = FORE200E_STATE_MAP;
558     return 0;
559 }
560 
561 
562 static void
fore200e_pca_unmap(struct fore200e * fore200e)563 fore200e_pca_unmap(struct fore200e* fore200e)
564 {
565     DPRINTK(2, "device %s being unmapped from memory\n", fore200e->name);
566 
567     if (fore200e->virt_base != NULL)
568 	iounmap(fore200e->virt_base);
569 }
570 
571 
fore200e_pca_configure(struct fore200e * fore200e)572 static int fore200e_pca_configure(struct fore200e *fore200e)
573 {
574     struct pci_dev* pci_dev = (struct pci_dev*)fore200e->bus_dev;
575     u8              master_ctrl, latency;
576 
577     DPRINTK(2, "device %s being configured\n", fore200e->name);
578 
579     if ((pci_dev->irq == 0) || (pci_dev->irq == 0xFF)) {
580 	printk(FORE200E "incorrect IRQ setting - misconfigured PCI-PCI bridge?\n");
581 	return -EIO;
582     }
583 
584     pci_read_config_byte(pci_dev, PCA200E_PCI_MASTER_CTRL, &master_ctrl);
585 
586     master_ctrl = master_ctrl
587 #if defined(__BIG_ENDIAN)
588 	/* request the PCA board to convert the endianess of slave RAM accesses */
589 	| PCA200E_CTRL_CONVERT_ENDIAN
590 #endif
591 #if 0
592         | PCA200E_CTRL_DIS_CACHE_RD
593         | PCA200E_CTRL_DIS_WRT_INVAL
594         | PCA200E_CTRL_ENA_CONT_REQ_MODE
595         | PCA200E_CTRL_2_CACHE_WRT_INVAL
596 #endif
597 	| PCA200E_CTRL_LARGE_PCI_BURSTS;
598 
599     pci_write_config_byte(pci_dev, PCA200E_PCI_MASTER_CTRL, master_ctrl);
600 
601     /* raise latency from 32 (default) to 192, as this seems to prevent NIC
602        lockups (under heavy rx loads) due to continuous 'FIFO OUT full' condition.
603        this may impact the performances of other PCI devices on the same bus, though */
604     latency = 192;
605     pci_write_config_byte(pci_dev, PCI_LATENCY_TIMER, latency);
606 
607     fore200e->state = FORE200E_STATE_CONFIGURE;
608     return 0;
609 }
610 
611 
612 static int __init
fore200e_pca_prom_read(struct fore200e * fore200e,struct prom_data * prom)613 fore200e_pca_prom_read(struct fore200e* fore200e, struct prom_data* prom)
614 {
615     struct host_cmdq*       cmdq  = &fore200e->host_cmdq;
616     struct host_cmdq_entry* entry = &cmdq->host_entry[ cmdq->head ];
617     struct prom_opcode      opcode;
618     int                     ok;
619     u32                     prom_dma;
620 
621     FORE200E_NEXT_ENTRY(cmdq->head, QUEUE_SIZE_CMD);
622 
623     opcode.opcode = OPCODE_GET_PROM;
624     opcode.pad    = 0;
625 
626     prom_dma = fore200e->bus->dma_map(fore200e, prom, sizeof(struct prom_data), DMA_FROM_DEVICE);
627 
628     fore200e->bus->write(prom_dma, &entry->cp_entry->cmd.prom_block.prom_haddr);
629 
630     *entry->status = STATUS_PENDING;
631 
632     fore200e->bus->write(*(u32*)&opcode, (u32 __iomem *)&entry->cp_entry->cmd.prom_block.opcode);
633 
634     ok = fore200e_poll(fore200e, entry->status, STATUS_COMPLETE, 400);
635 
636     *entry->status = STATUS_FREE;
637 
638     fore200e->bus->dma_unmap(fore200e, prom_dma, sizeof(struct prom_data), DMA_FROM_DEVICE);
639 
640     if (ok == 0) {
641 	printk(FORE200E "unable to get PROM data from device %s\n", fore200e->name);
642 	return -EIO;
643     }
644 
645 #if defined(__BIG_ENDIAN)
646 
647 #define swap_here(addr) (*((u32*)(addr)) = swab32( *((u32*)(addr)) ))
648 
649     /* MAC address is stored as little-endian */
650     swap_here(&prom->mac_addr[0]);
651     swap_here(&prom->mac_addr[4]);
652 #endif
653 
654     return 0;
655 }
656 
657 
658 static int
fore200e_pca_proc_read(struct fore200e * fore200e,char * page)659 fore200e_pca_proc_read(struct fore200e* fore200e, char *page)
660 {
661     struct pci_dev* pci_dev = (struct pci_dev*)fore200e->bus_dev;
662 
663     return sprintf(page, "   PCI bus/slot/function:\t%d/%d/%d\n",
664 		   pci_dev->bus->number, PCI_SLOT(pci_dev->devfn), PCI_FUNC(pci_dev->devfn));
665 }
666 
667 #endif /* CONFIG_PCI */
668 
669 
670 #ifdef CONFIG_SBUS
671 
fore200e_sba_read(volatile u32 __iomem * addr)672 static u32 fore200e_sba_read(volatile u32 __iomem *addr)
673 {
674     return sbus_readl(addr);
675 }
676 
fore200e_sba_write(u32 val,volatile u32 __iomem * addr)677 static void fore200e_sba_write(u32 val, volatile u32 __iomem *addr)
678 {
679     sbus_writel(val, addr);
680 }
681 
fore200e_sba_dma_map(struct fore200e * fore200e,void * virt_addr,int size,int direction)682 static u32 fore200e_sba_dma_map(struct fore200e *fore200e, void* virt_addr, int size, int direction)
683 {
684 	struct platform_device *op = fore200e->bus_dev;
685 	u32 dma_addr;
686 
687 	dma_addr = dma_map_single(&op->dev, virt_addr, size, direction);
688 
689 	DPRINTK(3, "SBUS DVMA mapping: virt_addr = 0x%p, size = %d, direction = %d --> dma_addr = 0x%08x\n",
690 		virt_addr, size, direction, dma_addr);
691 
692 	return dma_addr;
693 }
694 
fore200e_sba_dma_unmap(struct fore200e * fore200e,u32 dma_addr,int size,int direction)695 static void fore200e_sba_dma_unmap(struct fore200e *fore200e, u32 dma_addr, int size, int direction)
696 {
697 	struct platform_device *op = fore200e->bus_dev;
698 
699 	DPRINTK(3, "SBUS DVMA unmapping: dma_addr = 0x%08x, size = %d, direction = %d,\n",
700 		dma_addr, size, direction);
701 
702 	dma_unmap_single(&op->dev, dma_addr, size, direction);
703 }
704 
fore200e_sba_dma_sync_for_cpu(struct fore200e * fore200e,u32 dma_addr,int size,int direction)705 static void fore200e_sba_dma_sync_for_cpu(struct fore200e *fore200e, u32 dma_addr, int size, int direction)
706 {
707 	struct platform_device *op = fore200e->bus_dev;
708 
709 	DPRINTK(3, "SBUS DVMA sync: dma_addr = 0x%08x, size = %d, direction = %d\n", dma_addr, size, direction);
710 
711 	dma_sync_single_for_cpu(&op->dev, dma_addr, size, direction);
712 }
713 
fore200e_sba_dma_sync_for_device(struct fore200e * fore200e,u32 dma_addr,int size,int direction)714 static void fore200e_sba_dma_sync_for_device(struct fore200e *fore200e, u32 dma_addr, int size, int direction)
715 {
716 	struct platform_device *op = fore200e->bus_dev;
717 
718 	DPRINTK(3, "SBUS DVMA sync: dma_addr = 0x%08x, size = %d, direction = %d\n", dma_addr, size, direction);
719 
720 	dma_sync_single_for_device(&op->dev, dma_addr, size, direction);
721 }
722 
723 /* Allocate a DVMA consistent chunk of memory intended to act as a communication mechanism
724  * (to hold descriptors, status, queues, etc.) shared by the driver and the adapter.
725  */
fore200e_sba_dma_chunk_alloc(struct fore200e * fore200e,struct chunk * chunk,int size,int nbr,int alignment)726 static int fore200e_sba_dma_chunk_alloc(struct fore200e *fore200e, struct chunk *chunk,
727 					int size, int nbr, int alignment)
728 {
729 	struct platform_device *op = fore200e->bus_dev;
730 
731 	chunk->alloc_size = chunk->align_size = size * nbr;
732 
733 	/* returned chunks are page-aligned */
734 	chunk->alloc_addr = dma_alloc_coherent(&op->dev, chunk->alloc_size,
735 					       &chunk->dma_addr, GFP_ATOMIC);
736 
737 	if ((chunk->alloc_addr == NULL) || (chunk->dma_addr == 0))
738 		return -ENOMEM;
739 
740 	chunk->align_addr = chunk->alloc_addr;
741 
742 	return 0;
743 }
744 
745 /* free a DVMA consistent chunk of memory */
fore200e_sba_dma_chunk_free(struct fore200e * fore200e,struct chunk * chunk)746 static void fore200e_sba_dma_chunk_free(struct fore200e *fore200e, struct chunk *chunk)
747 {
748 	struct platform_device *op = fore200e->bus_dev;
749 
750 	dma_free_coherent(&op->dev, chunk->alloc_size,
751 			  chunk->alloc_addr, chunk->dma_addr);
752 }
753 
fore200e_sba_irq_enable(struct fore200e * fore200e)754 static void fore200e_sba_irq_enable(struct fore200e *fore200e)
755 {
756 	u32 hcr = fore200e->bus->read(fore200e->regs.sba.hcr) & SBA200E_HCR_STICKY;
757 	fore200e->bus->write(hcr | SBA200E_HCR_INTR_ENA, fore200e->regs.sba.hcr);
758 }
759 
fore200e_sba_irq_check(struct fore200e * fore200e)760 static int fore200e_sba_irq_check(struct fore200e *fore200e)
761 {
762 	return fore200e->bus->read(fore200e->regs.sba.hcr) & SBA200E_HCR_INTR_REQ;
763 }
764 
fore200e_sba_irq_ack(struct fore200e * fore200e)765 static void fore200e_sba_irq_ack(struct fore200e *fore200e)
766 {
767 	u32 hcr = fore200e->bus->read(fore200e->regs.sba.hcr) & SBA200E_HCR_STICKY;
768 	fore200e->bus->write(hcr | SBA200E_HCR_INTR_CLR, fore200e->regs.sba.hcr);
769 }
770 
fore200e_sba_reset(struct fore200e * fore200e)771 static void fore200e_sba_reset(struct fore200e *fore200e)
772 {
773 	fore200e->bus->write(SBA200E_HCR_RESET, fore200e->regs.sba.hcr);
774 	fore200e_spin(10);
775 	fore200e->bus->write(0, fore200e->regs.sba.hcr);
776 }
777 
fore200e_sba_map(struct fore200e * fore200e)778 static int __init fore200e_sba_map(struct fore200e *fore200e)
779 {
780 	struct platform_device *op = fore200e->bus_dev;
781 	unsigned int bursts;
782 
783 	/* gain access to the SBA specific registers  */
784 	fore200e->regs.sba.hcr = of_ioremap(&op->resource[0], 0, SBA200E_HCR_LENGTH, "SBA HCR");
785 	fore200e->regs.sba.bsr = of_ioremap(&op->resource[1], 0, SBA200E_BSR_LENGTH, "SBA BSR");
786 	fore200e->regs.sba.isr = of_ioremap(&op->resource[2], 0, SBA200E_ISR_LENGTH, "SBA ISR");
787 	fore200e->virt_base    = of_ioremap(&op->resource[3], 0, SBA200E_RAM_LENGTH, "SBA RAM");
788 
789 	if (!fore200e->virt_base) {
790 		printk(FORE200E "unable to map RAM of device %s\n", fore200e->name);
791 		return -EFAULT;
792 	}
793 
794 	DPRINTK(1, "device %s mapped to 0x%p\n", fore200e->name, fore200e->virt_base);
795 
796 	fore200e->bus->write(0x02, fore200e->regs.sba.isr); /* XXX hardwired interrupt level */
797 
798 	/* get the supported DVMA burst sizes */
799 	bursts = of_getintprop_default(op->dev.of_node->parent, "burst-sizes", 0x00);
800 
801 	if (sbus_can_dma_64bit())
802 		sbus_set_sbus64(&op->dev, bursts);
803 
804 	fore200e->state = FORE200E_STATE_MAP;
805 	return 0;
806 }
807 
fore200e_sba_unmap(struct fore200e * fore200e)808 static void fore200e_sba_unmap(struct fore200e *fore200e)
809 {
810 	struct platform_device *op = fore200e->bus_dev;
811 
812 	of_iounmap(&op->resource[0], fore200e->regs.sba.hcr, SBA200E_HCR_LENGTH);
813 	of_iounmap(&op->resource[1], fore200e->regs.sba.bsr, SBA200E_BSR_LENGTH);
814 	of_iounmap(&op->resource[2], fore200e->regs.sba.isr, SBA200E_ISR_LENGTH);
815 	of_iounmap(&op->resource[3], fore200e->virt_base,    SBA200E_RAM_LENGTH);
816 }
817 
fore200e_sba_configure(struct fore200e * fore200e)818 static int __init fore200e_sba_configure(struct fore200e *fore200e)
819 {
820 	fore200e->state = FORE200E_STATE_CONFIGURE;
821 	return 0;
822 }
823 
fore200e_sba_prom_read(struct fore200e * fore200e,struct prom_data * prom)824 static int __init fore200e_sba_prom_read(struct fore200e *fore200e, struct prom_data *prom)
825 {
826 	struct platform_device *op = fore200e->bus_dev;
827 	const u8 *prop;
828 	int len;
829 
830 	prop = of_get_property(op->dev.of_node, "madaddrlo2", &len);
831 	if (!prop)
832 		return -ENODEV;
833 	memcpy(&prom->mac_addr[4], prop, 4);
834 
835 	prop = of_get_property(op->dev.of_node, "madaddrhi4", &len);
836 	if (!prop)
837 		return -ENODEV;
838 	memcpy(&prom->mac_addr[2], prop, 4);
839 
840 	prom->serial_number = of_getintprop_default(op->dev.of_node,
841 						    "serialnumber", 0);
842 	prom->hw_revision = of_getintprop_default(op->dev.of_node,
843 						  "promversion", 0);
844 
845 	return 0;
846 }
847 
fore200e_sba_proc_read(struct fore200e * fore200e,char * page)848 static int fore200e_sba_proc_read(struct fore200e *fore200e, char *page)
849 {
850 	struct platform_device *op = fore200e->bus_dev;
851 	const struct linux_prom_registers *regs;
852 
853 	regs = of_get_property(op->dev.of_node, "reg", NULL);
854 
855 	return sprintf(page, "   SBUS slot/device:\t\t%d/'%s'\n",
856 		       (regs ? regs->which_io : 0), op->dev.of_node->name);
857 }
858 #endif /* CONFIG_SBUS */
859 
860 
861 static void
fore200e_tx_irq(struct fore200e * fore200e)862 fore200e_tx_irq(struct fore200e* fore200e)
863 {
864     struct host_txq*        txq = &fore200e->host_txq;
865     struct host_txq_entry*  entry;
866     struct atm_vcc*         vcc;
867     struct fore200e_vc_map* vc_map;
868 
869     if (fore200e->host_txq.txing == 0)
870 	return;
871 
872     for (;;) {
873 
874 	entry = &txq->host_entry[ txq->tail ];
875 
876         if ((*entry->status & STATUS_COMPLETE) == 0) {
877 	    break;
878 	}
879 
880 	DPRINTK(3, "TX COMPLETED: entry = %p [tail = %d], vc_map = %p, skb = %p\n",
881 		entry, txq->tail, entry->vc_map, entry->skb);
882 
883 	/* free copy of misaligned data */
884 	kfree(entry->data);
885 
886 	/* remove DMA mapping */
887 	fore200e->bus->dma_unmap(fore200e, entry->tpd->tsd[ 0 ].buffer, entry->tpd->tsd[ 0 ].length,
888 				 DMA_TO_DEVICE);
889 
890 	vc_map = entry->vc_map;
891 
892 	/* vcc closed since the time the entry was submitted for tx? */
893 	if ((vc_map->vcc == NULL) ||
894 	    (test_bit(ATM_VF_READY, &vc_map->vcc->flags) == 0)) {
895 
896 	    DPRINTK(1, "no ready vcc found for PDU sent on device %d\n",
897 		    fore200e->atm_dev->number);
898 
899 	    dev_kfree_skb_any(entry->skb);
900 	}
901 	else {
902 	    ASSERT(vc_map->vcc);
903 
904 	    /* vcc closed then immediately re-opened? */
905 	    if (vc_map->incarn != entry->incarn) {
906 
907 		/* when a vcc is closed, some PDUs may be still pending in the tx queue.
908 		   if the same vcc is immediately re-opened, those pending PDUs must
909 		   not be popped after the completion of their emission, as they refer
910 		   to the prior incarnation of that vcc. otherwise, sk_atm(vcc)->sk_wmem_alloc
911 		   would be decremented by the size of the (unrelated) skb, possibly
912 		   leading to a negative sk->sk_wmem_alloc count, ultimately freezing the vcc.
913 		   we thus bind the tx entry to the current incarnation of the vcc
914 		   when the entry is submitted for tx. When the tx later completes,
915 		   if the incarnation number of the tx entry does not match the one
916 		   of the vcc, then this implies that the vcc has been closed then re-opened.
917 		   we thus just drop the skb here. */
918 
919 		DPRINTK(1, "vcc closed-then-re-opened; dropping PDU sent on device %d\n",
920 			fore200e->atm_dev->number);
921 
922 		dev_kfree_skb_any(entry->skb);
923 	    }
924 	    else {
925 		vcc = vc_map->vcc;
926 		ASSERT(vcc);
927 
928 		/* notify tx completion */
929 		if (vcc->pop) {
930 		    vcc->pop(vcc, entry->skb);
931 		}
932 		else {
933 		    dev_kfree_skb_any(entry->skb);
934 		}
935 
936 		/* check error condition */
937 		if (*entry->status & STATUS_ERROR)
938 		    atomic_inc(&vcc->stats->tx_err);
939 		else
940 		    atomic_inc(&vcc->stats->tx);
941 	    }
942 	}
943 
944 	*entry->status = STATUS_FREE;
945 
946 	fore200e->host_txq.txing--;
947 
948 	FORE200E_NEXT_ENTRY(txq->tail, QUEUE_SIZE_TX);
949     }
950 }
951 
952 
953 #ifdef FORE200E_BSQ_DEBUG
bsq_audit(int where,struct host_bsq * bsq,int scheme,int magn)954 int bsq_audit(int where, struct host_bsq* bsq, int scheme, int magn)
955 {
956     struct buffer* buffer;
957     int count = 0;
958 
959     buffer = bsq->freebuf;
960     while (buffer) {
961 
962 	if (buffer->supplied) {
963 	    printk(FORE200E "bsq_audit(%d): queue %d.%d, buffer %ld supplied but in free list!\n",
964 		   where, scheme, magn, buffer->index);
965 	}
966 
967 	if (buffer->magn != magn) {
968 	    printk(FORE200E "bsq_audit(%d): queue %d.%d, buffer %ld, unexpected magn = %d\n",
969 		   where, scheme, magn, buffer->index, buffer->magn);
970 	}
971 
972 	if (buffer->scheme != scheme) {
973 	    printk(FORE200E "bsq_audit(%d): queue %d.%d, buffer %ld, unexpected scheme = %d\n",
974 		   where, scheme, magn, buffer->index, buffer->scheme);
975 	}
976 
977 	if ((buffer->index < 0) || (buffer->index >= fore200e_rx_buf_nbr[ scheme ][ magn ])) {
978 	    printk(FORE200E "bsq_audit(%d): queue %d.%d, out of range buffer index = %ld !\n",
979 		   where, scheme, magn, buffer->index);
980 	}
981 
982 	count++;
983 	buffer = buffer->next;
984     }
985 
986     if (count != bsq->freebuf_count) {
987 	printk(FORE200E "bsq_audit(%d): queue %d.%d, %d bufs in free list, but freebuf_count = %d\n",
988 	       where, scheme, magn, count, bsq->freebuf_count);
989     }
990     return 0;
991 }
992 #endif
993 
994 
995 static void
fore200e_supply(struct fore200e * fore200e)996 fore200e_supply(struct fore200e* fore200e)
997 {
998     int  scheme, magn, i;
999 
1000     struct host_bsq*       bsq;
1001     struct host_bsq_entry* entry;
1002     struct buffer*         buffer;
1003 
1004     for (scheme = 0; scheme < BUFFER_SCHEME_NBR; scheme++) {
1005 	for (magn = 0; magn < BUFFER_MAGN_NBR; magn++) {
1006 
1007 	    bsq = &fore200e->host_bsq[ scheme ][ magn ];
1008 
1009 #ifdef FORE200E_BSQ_DEBUG
1010 	    bsq_audit(1, bsq, scheme, magn);
1011 #endif
1012 	    while (bsq->freebuf_count >= RBD_BLK_SIZE) {
1013 
1014 		DPRINTK(2, "supplying %d rx buffers to queue %d / %d, freebuf_count = %d\n",
1015 			RBD_BLK_SIZE, scheme, magn, bsq->freebuf_count);
1016 
1017 		entry = &bsq->host_entry[ bsq->head ];
1018 
1019 		for (i = 0; i < RBD_BLK_SIZE; i++) {
1020 
1021 		    /* take the first buffer in the free buffer list */
1022 		    buffer = bsq->freebuf;
1023 		    if (!buffer) {
1024 			printk(FORE200E "no more free bufs in queue %d.%d, but freebuf_count = %d\n",
1025 			       scheme, magn, bsq->freebuf_count);
1026 			return;
1027 		    }
1028 		    bsq->freebuf = buffer->next;
1029 
1030 #ifdef FORE200E_BSQ_DEBUG
1031 		    if (buffer->supplied)
1032 			printk(FORE200E "queue %d.%d, buffer %lu already supplied\n",
1033 			       scheme, magn, buffer->index);
1034 		    buffer->supplied = 1;
1035 #endif
1036 		    entry->rbd_block->rbd[ i ].buffer_haddr = buffer->data.dma_addr;
1037 		    entry->rbd_block->rbd[ i ].handle       = FORE200E_BUF2HDL(buffer);
1038 		}
1039 
1040 		FORE200E_NEXT_ENTRY(bsq->head, QUEUE_SIZE_BS);
1041 
1042  		/* decrease accordingly the number of free rx buffers */
1043 		bsq->freebuf_count -= RBD_BLK_SIZE;
1044 
1045 		*entry->status = STATUS_PENDING;
1046 		fore200e->bus->write(entry->rbd_block_dma, &entry->cp_entry->rbd_block_haddr);
1047 	    }
1048 	}
1049     }
1050 }
1051 
1052 
1053 static int
fore200e_push_rpd(struct fore200e * fore200e,struct atm_vcc * vcc,struct rpd * rpd)1054 fore200e_push_rpd(struct fore200e* fore200e, struct atm_vcc* vcc, struct rpd* rpd)
1055 {
1056     struct sk_buff*      skb;
1057     struct buffer*       buffer;
1058     struct fore200e_vcc* fore200e_vcc;
1059     int                  i, pdu_len = 0;
1060 #ifdef FORE200E_52BYTE_AAL0_SDU
1061     u32                  cell_header = 0;
1062 #endif
1063 
1064     ASSERT(vcc);
1065 
1066     fore200e_vcc = FORE200E_VCC(vcc);
1067     ASSERT(fore200e_vcc);
1068 
1069 #ifdef FORE200E_52BYTE_AAL0_SDU
1070     if ((vcc->qos.aal == ATM_AAL0) && (vcc->qos.rxtp.max_sdu == ATM_AAL0_SDU)) {
1071 
1072 	cell_header = (rpd->atm_header.gfc << ATM_HDR_GFC_SHIFT) |
1073 	              (rpd->atm_header.vpi << ATM_HDR_VPI_SHIFT) |
1074                       (rpd->atm_header.vci << ATM_HDR_VCI_SHIFT) |
1075                       (rpd->atm_header.plt << ATM_HDR_PTI_SHIFT) |
1076                        rpd->atm_header.clp;
1077 	pdu_len = 4;
1078     }
1079 #endif
1080 
1081     /* compute total PDU length */
1082     for (i = 0; i < rpd->nseg; i++)
1083 	pdu_len += rpd->rsd[ i ].length;
1084 
1085     skb = alloc_skb(pdu_len, GFP_ATOMIC);
1086     if (skb == NULL) {
1087 	DPRINTK(2, "unable to alloc new skb, rx PDU length = %d\n", pdu_len);
1088 
1089 	atomic_inc(&vcc->stats->rx_drop);
1090 	return -ENOMEM;
1091     }
1092 
1093     __net_timestamp(skb);
1094 
1095 #ifdef FORE200E_52BYTE_AAL0_SDU
1096     if (cell_header) {
1097 	*((u32*)skb_put(skb, 4)) = cell_header;
1098     }
1099 #endif
1100 
1101     /* reassemble segments */
1102     for (i = 0; i < rpd->nseg; i++) {
1103 
1104 	/* rebuild rx buffer address from rsd handle */
1105 	buffer = FORE200E_HDL2BUF(rpd->rsd[ i ].handle);
1106 
1107 	/* Make device DMA transfer visible to CPU.  */
1108 	fore200e->bus->dma_sync_for_cpu(fore200e, buffer->data.dma_addr, rpd->rsd[ i ].length, DMA_FROM_DEVICE);
1109 
1110 	skb_put_data(skb, buffer->data.align_addr, rpd->rsd[i].length);
1111 
1112 	/* Now let the device get at it again.  */
1113 	fore200e->bus->dma_sync_for_device(fore200e, buffer->data.dma_addr, rpd->rsd[ i ].length, DMA_FROM_DEVICE);
1114     }
1115 
1116     DPRINTK(3, "rx skb: len = %d, truesize = %d\n", skb->len, skb->truesize);
1117 
1118     if (pdu_len < fore200e_vcc->rx_min_pdu)
1119 	fore200e_vcc->rx_min_pdu = pdu_len;
1120     if (pdu_len > fore200e_vcc->rx_max_pdu)
1121 	fore200e_vcc->rx_max_pdu = pdu_len;
1122     fore200e_vcc->rx_pdu++;
1123 
1124     /* push PDU */
1125     if (atm_charge(vcc, skb->truesize) == 0) {
1126 
1127 	DPRINTK(2, "receive buffers saturated for %d.%d.%d - PDU dropped\n",
1128 		vcc->itf, vcc->vpi, vcc->vci);
1129 
1130 	dev_kfree_skb_any(skb);
1131 
1132 	atomic_inc(&vcc->stats->rx_drop);
1133 	return -ENOMEM;
1134     }
1135 
1136     vcc->push(vcc, skb);
1137     atomic_inc(&vcc->stats->rx);
1138 
1139     return 0;
1140 }
1141 
1142 
1143 static void
fore200e_collect_rpd(struct fore200e * fore200e,struct rpd * rpd)1144 fore200e_collect_rpd(struct fore200e* fore200e, struct rpd* rpd)
1145 {
1146     struct host_bsq* bsq;
1147     struct buffer*   buffer;
1148     int              i;
1149 
1150     for (i = 0; i < rpd->nseg; i++) {
1151 
1152 	/* rebuild rx buffer address from rsd handle */
1153 	buffer = FORE200E_HDL2BUF(rpd->rsd[ i ].handle);
1154 
1155 	bsq = &fore200e->host_bsq[ buffer->scheme ][ buffer->magn ];
1156 
1157 #ifdef FORE200E_BSQ_DEBUG
1158 	bsq_audit(2, bsq, buffer->scheme, buffer->magn);
1159 
1160 	if (buffer->supplied == 0)
1161 	    printk(FORE200E "queue %d.%d, buffer %ld was not supplied\n",
1162 		   buffer->scheme, buffer->magn, buffer->index);
1163 	buffer->supplied = 0;
1164 #endif
1165 
1166 	/* re-insert the buffer into the free buffer list */
1167 	buffer->next = bsq->freebuf;
1168 	bsq->freebuf = buffer;
1169 
1170 	/* then increment the number of free rx buffers */
1171 	bsq->freebuf_count++;
1172     }
1173 }
1174 
1175 
1176 static void
fore200e_rx_irq(struct fore200e * fore200e)1177 fore200e_rx_irq(struct fore200e* fore200e)
1178 {
1179     struct host_rxq*        rxq = &fore200e->host_rxq;
1180     struct host_rxq_entry*  entry;
1181     struct atm_vcc*         vcc;
1182     struct fore200e_vc_map* vc_map;
1183 
1184     for (;;) {
1185 
1186 	entry = &rxq->host_entry[ rxq->head ];
1187 
1188 	/* no more received PDUs */
1189 	if ((*entry->status & STATUS_COMPLETE) == 0)
1190 	    break;
1191 
1192 	vc_map = FORE200E_VC_MAP(fore200e, entry->rpd->atm_header.vpi, entry->rpd->atm_header.vci);
1193 
1194 	if ((vc_map->vcc == NULL) ||
1195 	    (test_bit(ATM_VF_READY, &vc_map->vcc->flags) == 0)) {
1196 
1197 	    DPRINTK(1, "no ready VC found for PDU received on %d.%d.%d\n",
1198 		    fore200e->atm_dev->number,
1199 		    entry->rpd->atm_header.vpi, entry->rpd->atm_header.vci);
1200 	}
1201 	else {
1202 	    vcc = vc_map->vcc;
1203 	    ASSERT(vcc);
1204 
1205 	    if ((*entry->status & STATUS_ERROR) == 0) {
1206 
1207 		fore200e_push_rpd(fore200e, vcc, entry->rpd);
1208 	    }
1209 	    else {
1210 		DPRINTK(2, "damaged PDU on %d.%d.%d\n",
1211 			fore200e->atm_dev->number,
1212 			entry->rpd->atm_header.vpi, entry->rpd->atm_header.vci);
1213 		atomic_inc(&vcc->stats->rx_err);
1214 	    }
1215 	}
1216 
1217 	FORE200E_NEXT_ENTRY(rxq->head, QUEUE_SIZE_RX);
1218 
1219 	fore200e_collect_rpd(fore200e, entry->rpd);
1220 
1221 	/* rewrite the rpd address to ack the received PDU */
1222 	fore200e->bus->write(entry->rpd_dma, &entry->cp_entry->rpd_haddr);
1223 	*entry->status = STATUS_FREE;
1224 
1225 	fore200e_supply(fore200e);
1226     }
1227 }
1228 
1229 
1230 #ifndef FORE200E_USE_TASKLET
1231 static void
fore200e_irq(struct fore200e * fore200e)1232 fore200e_irq(struct fore200e* fore200e)
1233 {
1234     unsigned long flags;
1235 
1236     spin_lock_irqsave(&fore200e->q_lock, flags);
1237     fore200e_rx_irq(fore200e);
1238     spin_unlock_irqrestore(&fore200e->q_lock, flags);
1239 
1240     spin_lock_irqsave(&fore200e->q_lock, flags);
1241     fore200e_tx_irq(fore200e);
1242     spin_unlock_irqrestore(&fore200e->q_lock, flags);
1243 }
1244 #endif
1245 
1246 
1247 static irqreturn_t
fore200e_interrupt(int irq,void * dev)1248 fore200e_interrupt(int irq, void* dev)
1249 {
1250     struct fore200e* fore200e = FORE200E_DEV((struct atm_dev*)dev);
1251 
1252     if (fore200e->bus->irq_check(fore200e) == 0) {
1253 
1254 	DPRINTK(3, "interrupt NOT triggered by device %d\n", fore200e->atm_dev->number);
1255 	return IRQ_NONE;
1256     }
1257     DPRINTK(3, "interrupt triggered by device %d\n", fore200e->atm_dev->number);
1258 
1259 #ifdef FORE200E_USE_TASKLET
1260     tasklet_schedule(&fore200e->tx_tasklet);
1261     tasklet_schedule(&fore200e->rx_tasklet);
1262 #else
1263     fore200e_irq(fore200e);
1264 #endif
1265 
1266     fore200e->bus->irq_ack(fore200e);
1267     return IRQ_HANDLED;
1268 }
1269 
1270 
1271 #ifdef FORE200E_USE_TASKLET
1272 static void
fore200e_tx_tasklet(unsigned long data)1273 fore200e_tx_tasklet(unsigned long data)
1274 {
1275     struct fore200e* fore200e = (struct fore200e*) data;
1276     unsigned long flags;
1277 
1278     DPRINTK(3, "tx tasklet scheduled for device %d\n", fore200e->atm_dev->number);
1279 
1280     spin_lock_irqsave(&fore200e->q_lock, flags);
1281     fore200e_tx_irq(fore200e);
1282     spin_unlock_irqrestore(&fore200e->q_lock, flags);
1283 }
1284 
1285 
1286 static void
fore200e_rx_tasklet(unsigned long data)1287 fore200e_rx_tasklet(unsigned long data)
1288 {
1289     struct fore200e* fore200e = (struct fore200e*) data;
1290     unsigned long    flags;
1291 
1292     DPRINTK(3, "rx tasklet scheduled for device %d\n", fore200e->atm_dev->number);
1293 
1294     spin_lock_irqsave(&fore200e->q_lock, flags);
1295     fore200e_rx_irq((struct fore200e*) data);
1296     spin_unlock_irqrestore(&fore200e->q_lock, flags);
1297 }
1298 #endif
1299 
1300 
1301 static int
fore200e_select_scheme(struct atm_vcc * vcc)1302 fore200e_select_scheme(struct atm_vcc* vcc)
1303 {
1304     /* fairly balance the VCs over (identical) buffer schemes */
1305     int scheme = vcc->vci % 2 ? BUFFER_SCHEME_ONE : BUFFER_SCHEME_TWO;
1306 
1307     DPRINTK(1, "VC %d.%d.%d uses buffer scheme %d\n",
1308 	    vcc->itf, vcc->vpi, vcc->vci, scheme);
1309 
1310     return scheme;
1311 }
1312 
1313 
1314 static int
fore200e_activate_vcin(struct fore200e * fore200e,int activate,struct atm_vcc * vcc,int mtu)1315 fore200e_activate_vcin(struct fore200e* fore200e, int activate, struct atm_vcc* vcc, int mtu)
1316 {
1317     struct host_cmdq*        cmdq  = &fore200e->host_cmdq;
1318     struct host_cmdq_entry*  entry = &cmdq->host_entry[ cmdq->head ];
1319     struct activate_opcode   activ_opcode;
1320     struct deactivate_opcode deactiv_opcode;
1321     struct vpvc              vpvc;
1322     int                      ok;
1323     enum fore200e_aal        aal = fore200e_atm2fore_aal(vcc->qos.aal);
1324 
1325     FORE200E_NEXT_ENTRY(cmdq->head, QUEUE_SIZE_CMD);
1326 
1327     if (activate) {
1328 	FORE200E_VCC(vcc)->scheme = fore200e_select_scheme(vcc);
1329 
1330 	activ_opcode.opcode = OPCODE_ACTIVATE_VCIN;
1331 	activ_opcode.aal    = aal;
1332 	activ_opcode.scheme = FORE200E_VCC(vcc)->scheme;
1333 	activ_opcode.pad    = 0;
1334     }
1335     else {
1336 	deactiv_opcode.opcode = OPCODE_DEACTIVATE_VCIN;
1337 	deactiv_opcode.pad    = 0;
1338     }
1339 
1340     vpvc.vci = vcc->vci;
1341     vpvc.vpi = vcc->vpi;
1342 
1343     *entry->status = STATUS_PENDING;
1344 
1345     if (activate) {
1346 
1347 #ifdef FORE200E_52BYTE_AAL0_SDU
1348 	mtu = 48;
1349 #endif
1350 	/* the MTU is not used by the cp, except in the case of AAL0 */
1351 	fore200e->bus->write(mtu,                        &entry->cp_entry->cmd.activate_block.mtu);
1352 	fore200e->bus->write(*(u32*)&vpvc,         (u32 __iomem *)&entry->cp_entry->cmd.activate_block.vpvc);
1353 	fore200e->bus->write(*(u32*)&activ_opcode, (u32 __iomem *)&entry->cp_entry->cmd.activate_block.opcode);
1354     }
1355     else {
1356 	fore200e->bus->write(*(u32*)&vpvc,         (u32 __iomem *)&entry->cp_entry->cmd.deactivate_block.vpvc);
1357 	fore200e->bus->write(*(u32*)&deactiv_opcode, (u32 __iomem *)&entry->cp_entry->cmd.deactivate_block.opcode);
1358     }
1359 
1360     ok = fore200e_poll(fore200e, entry->status, STATUS_COMPLETE, 400);
1361 
1362     *entry->status = STATUS_FREE;
1363 
1364     if (ok == 0) {
1365 	printk(FORE200E "unable to %s VC %d.%d.%d\n",
1366 	       activate ? "open" : "close", vcc->itf, vcc->vpi, vcc->vci);
1367 	return -EIO;
1368     }
1369 
1370     DPRINTK(1, "VC %d.%d.%d %sed\n", vcc->itf, vcc->vpi, vcc->vci,
1371 	    activate ? "open" : "clos");
1372 
1373     return 0;
1374 }
1375 
1376 
1377 #define FORE200E_MAX_BACK2BACK_CELLS 255    /* XXX depends on CDVT */
1378 
1379 static void
fore200e_rate_ctrl(struct atm_qos * qos,struct tpd_rate * rate)1380 fore200e_rate_ctrl(struct atm_qos* qos, struct tpd_rate* rate)
1381 {
1382     if (qos->txtp.max_pcr < ATM_OC3_PCR) {
1383 
1384 	/* compute the data cells to idle cells ratio from the tx PCR */
1385 	rate->data_cells = qos->txtp.max_pcr * FORE200E_MAX_BACK2BACK_CELLS / ATM_OC3_PCR;
1386 	rate->idle_cells = FORE200E_MAX_BACK2BACK_CELLS - rate->data_cells;
1387     }
1388     else {
1389 	/* disable rate control */
1390 	rate->data_cells = rate->idle_cells = 0;
1391     }
1392 }
1393 
1394 
1395 static int
fore200e_open(struct atm_vcc * vcc)1396 fore200e_open(struct atm_vcc *vcc)
1397 {
1398     struct fore200e*        fore200e = FORE200E_DEV(vcc->dev);
1399     struct fore200e_vcc*    fore200e_vcc;
1400     struct fore200e_vc_map* vc_map;
1401     unsigned long	    flags;
1402     int			    vci = vcc->vci;
1403     short		    vpi = vcc->vpi;
1404 
1405     ASSERT((vpi >= 0) && (vpi < 1<<FORE200E_VPI_BITS));
1406     ASSERT((vci >= 0) && (vci < 1<<FORE200E_VCI_BITS));
1407 
1408     spin_lock_irqsave(&fore200e->q_lock, flags);
1409 
1410     vc_map = FORE200E_VC_MAP(fore200e, vpi, vci);
1411     if (vc_map->vcc) {
1412 
1413 	spin_unlock_irqrestore(&fore200e->q_lock, flags);
1414 
1415 	printk(FORE200E "VC %d.%d.%d already in use\n",
1416 	       fore200e->atm_dev->number, vpi, vci);
1417 
1418 	return -EINVAL;
1419     }
1420 
1421     vc_map->vcc = vcc;
1422 
1423     spin_unlock_irqrestore(&fore200e->q_lock, flags);
1424 
1425     fore200e_vcc = kzalloc(sizeof(struct fore200e_vcc), GFP_ATOMIC);
1426     if (fore200e_vcc == NULL) {
1427 	vc_map->vcc = NULL;
1428 	return -ENOMEM;
1429     }
1430 
1431     DPRINTK(2, "opening %d.%d.%d:%d QoS = (tx: cl=%s, pcr=%d-%d, cdv=%d, max_sdu=%d; "
1432 	    "rx: cl=%s, pcr=%d-%d, cdv=%d, max_sdu=%d)\n",
1433 	    vcc->itf, vcc->vpi, vcc->vci, fore200e_atm2fore_aal(vcc->qos.aal),
1434 	    fore200e_traffic_class[ vcc->qos.txtp.traffic_class ],
1435 	    vcc->qos.txtp.min_pcr, vcc->qos.txtp.max_pcr, vcc->qos.txtp.max_cdv, vcc->qos.txtp.max_sdu,
1436 	    fore200e_traffic_class[ vcc->qos.rxtp.traffic_class ],
1437 	    vcc->qos.rxtp.min_pcr, vcc->qos.rxtp.max_pcr, vcc->qos.rxtp.max_cdv, vcc->qos.rxtp.max_sdu);
1438 
1439     /* pseudo-CBR bandwidth requested? */
1440     if ((vcc->qos.txtp.traffic_class == ATM_CBR) && (vcc->qos.txtp.max_pcr > 0)) {
1441 
1442 	mutex_lock(&fore200e->rate_mtx);
1443 	if (fore200e->available_cell_rate < vcc->qos.txtp.max_pcr) {
1444 	    mutex_unlock(&fore200e->rate_mtx);
1445 
1446 	    kfree(fore200e_vcc);
1447 	    vc_map->vcc = NULL;
1448 	    return -EAGAIN;
1449 	}
1450 
1451 	/* reserve bandwidth */
1452 	fore200e->available_cell_rate -= vcc->qos.txtp.max_pcr;
1453 	mutex_unlock(&fore200e->rate_mtx);
1454     }
1455 
1456     vcc->itf = vcc->dev->number;
1457 
1458     set_bit(ATM_VF_PARTIAL,&vcc->flags);
1459     set_bit(ATM_VF_ADDR, &vcc->flags);
1460 
1461     vcc->dev_data = fore200e_vcc;
1462 
1463     if (fore200e_activate_vcin(fore200e, 1, vcc, vcc->qos.rxtp.max_sdu) < 0) {
1464 
1465 	vc_map->vcc = NULL;
1466 
1467 	clear_bit(ATM_VF_ADDR, &vcc->flags);
1468 	clear_bit(ATM_VF_PARTIAL,&vcc->flags);
1469 
1470 	vcc->dev_data = NULL;
1471 
1472 	fore200e->available_cell_rate += vcc->qos.txtp.max_pcr;
1473 
1474 	kfree(fore200e_vcc);
1475 	return -EINVAL;
1476     }
1477 
1478     /* compute rate control parameters */
1479     if ((vcc->qos.txtp.traffic_class == ATM_CBR) && (vcc->qos.txtp.max_pcr > 0)) {
1480 
1481 	fore200e_rate_ctrl(&vcc->qos, &fore200e_vcc->rate);
1482 	set_bit(ATM_VF_HASQOS, &vcc->flags);
1483 
1484 	DPRINTK(3, "tx on %d.%d.%d:%d, tx PCR = %d, rx PCR = %d, data_cells = %u, idle_cells = %u\n",
1485 		vcc->itf, vcc->vpi, vcc->vci, fore200e_atm2fore_aal(vcc->qos.aal),
1486 		vcc->qos.txtp.max_pcr, vcc->qos.rxtp.max_pcr,
1487 		fore200e_vcc->rate.data_cells, fore200e_vcc->rate.idle_cells);
1488     }
1489 
1490     fore200e_vcc->tx_min_pdu = fore200e_vcc->rx_min_pdu = MAX_PDU_SIZE + 1;
1491     fore200e_vcc->tx_max_pdu = fore200e_vcc->rx_max_pdu = 0;
1492     fore200e_vcc->tx_pdu     = fore200e_vcc->rx_pdu     = 0;
1493 
1494     /* new incarnation of the vcc */
1495     vc_map->incarn = ++fore200e->incarn_count;
1496 
1497     /* VC unusable before this flag is set */
1498     set_bit(ATM_VF_READY, &vcc->flags);
1499 
1500     return 0;
1501 }
1502 
1503 
1504 static void
fore200e_close(struct atm_vcc * vcc)1505 fore200e_close(struct atm_vcc* vcc)
1506 {
1507     struct fore200e_vcc*    fore200e_vcc;
1508     struct fore200e*        fore200e;
1509     struct fore200e_vc_map* vc_map;
1510     unsigned long           flags;
1511 
1512     ASSERT(vcc);
1513     fore200e = FORE200E_DEV(vcc->dev);
1514 
1515     ASSERT((vcc->vpi >= 0) && (vcc->vpi < 1<<FORE200E_VPI_BITS));
1516     ASSERT((vcc->vci >= 0) && (vcc->vci < 1<<FORE200E_VCI_BITS));
1517 
1518     DPRINTK(2, "closing %d.%d.%d:%d\n", vcc->itf, vcc->vpi, vcc->vci, fore200e_atm2fore_aal(vcc->qos.aal));
1519 
1520     clear_bit(ATM_VF_READY, &vcc->flags);
1521 
1522     fore200e_activate_vcin(fore200e, 0, vcc, 0);
1523 
1524     spin_lock_irqsave(&fore200e->q_lock, flags);
1525 
1526     vc_map = FORE200E_VC_MAP(fore200e, vcc->vpi, vcc->vci);
1527 
1528     /* the vc is no longer considered as "in use" by fore200e_open() */
1529     vc_map->vcc = NULL;
1530 
1531     vcc->itf = vcc->vci = vcc->vpi = 0;
1532 
1533     fore200e_vcc = FORE200E_VCC(vcc);
1534     vcc->dev_data = NULL;
1535 
1536     spin_unlock_irqrestore(&fore200e->q_lock, flags);
1537 
1538     /* release reserved bandwidth, if any */
1539     if ((vcc->qos.txtp.traffic_class == ATM_CBR) && (vcc->qos.txtp.max_pcr > 0)) {
1540 
1541 	mutex_lock(&fore200e->rate_mtx);
1542 	fore200e->available_cell_rate += vcc->qos.txtp.max_pcr;
1543 	mutex_unlock(&fore200e->rate_mtx);
1544 
1545 	clear_bit(ATM_VF_HASQOS, &vcc->flags);
1546     }
1547 
1548     clear_bit(ATM_VF_ADDR, &vcc->flags);
1549     clear_bit(ATM_VF_PARTIAL,&vcc->flags);
1550 
1551     ASSERT(fore200e_vcc);
1552     kfree(fore200e_vcc);
1553 }
1554 
1555 
1556 static int
fore200e_send(struct atm_vcc * vcc,struct sk_buff * skb)1557 fore200e_send(struct atm_vcc *vcc, struct sk_buff *skb)
1558 {
1559     struct fore200e*        fore200e;
1560     struct fore200e_vcc*    fore200e_vcc;
1561     struct fore200e_vc_map* vc_map;
1562     struct host_txq*        txq;
1563     struct host_txq_entry*  entry;
1564     struct tpd*             tpd;
1565     struct tpd_haddr        tpd_haddr;
1566     int                     retry        = CONFIG_ATM_FORE200E_TX_RETRY;
1567     int                     tx_copy      = 0;
1568     int                     tx_len       = skb->len;
1569     u32*                    cell_header  = NULL;
1570     unsigned char*          skb_data;
1571     int                     skb_len;
1572     unsigned char*          data;
1573     unsigned long           flags;
1574 
1575     if (!vcc)
1576         return -EINVAL;
1577 
1578     fore200e = FORE200E_DEV(vcc->dev);
1579     fore200e_vcc = FORE200E_VCC(vcc);
1580 
1581     if (!fore200e)
1582         return -EINVAL;
1583 
1584     txq = &fore200e->host_txq;
1585     if (!fore200e_vcc)
1586         return -EINVAL;
1587 
1588     if (!test_bit(ATM_VF_READY, &vcc->flags)) {
1589 	DPRINTK(1, "VC %d.%d.%d not ready for tx\n", vcc->itf, vcc->vpi, vcc->vpi);
1590 	dev_kfree_skb_any(skb);
1591 	return -EINVAL;
1592     }
1593 
1594 #ifdef FORE200E_52BYTE_AAL0_SDU
1595     if ((vcc->qos.aal == ATM_AAL0) && (vcc->qos.txtp.max_sdu == ATM_AAL0_SDU)) {
1596 	cell_header = (u32*) skb->data;
1597 	skb_data    = skb->data + 4;    /* skip 4-byte cell header */
1598 	skb_len     = tx_len = skb->len  - 4;
1599 
1600 	DPRINTK(3, "user-supplied cell header = 0x%08x\n", *cell_header);
1601     }
1602     else
1603 #endif
1604     {
1605 	skb_data = skb->data;
1606 	skb_len  = skb->len;
1607     }
1608 
1609     if (((unsigned long)skb_data) & 0x3) {
1610 
1611 	DPRINTK(2, "misaligned tx PDU on device %s\n", fore200e->name);
1612 	tx_copy = 1;
1613 	tx_len  = skb_len;
1614     }
1615 
1616     if ((vcc->qos.aal == ATM_AAL0) && (skb_len % ATM_CELL_PAYLOAD)) {
1617 
1618         /* this simply NUKES the PCA board */
1619 	DPRINTK(2, "incomplete tx AAL0 PDU on device %s\n", fore200e->name);
1620 	tx_copy = 1;
1621 	tx_len  = ((skb_len / ATM_CELL_PAYLOAD) + 1) * ATM_CELL_PAYLOAD;
1622     }
1623 
1624     if (tx_copy) {
1625 	data = kmalloc(tx_len, GFP_ATOMIC | GFP_DMA);
1626 	if (data == NULL) {
1627 	    if (vcc->pop) {
1628 		vcc->pop(vcc, skb);
1629 	    }
1630 	    else {
1631 		dev_kfree_skb_any(skb);
1632 	    }
1633 	    return -ENOMEM;
1634 	}
1635 
1636 	memcpy(data, skb_data, skb_len);
1637 	if (skb_len < tx_len)
1638 	    memset(data + skb_len, 0x00, tx_len - skb_len);
1639     }
1640     else {
1641 	data = skb_data;
1642     }
1643 
1644     vc_map = FORE200E_VC_MAP(fore200e, vcc->vpi, vcc->vci);
1645     ASSERT(vc_map->vcc == vcc);
1646 
1647   retry_here:
1648 
1649     spin_lock_irqsave(&fore200e->q_lock, flags);
1650 
1651     entry = &txq->host_entry[ txq->head ];
1652 
1653     if ((*entry->status != STATUS_FREE) || (txq->txing >= QUEUE_SIZE_TX - 2)) {
1654 
1655 	/* try to free completed tx queue entries */
1656 	fore200e_tx_irq(fore200e);
1657 
1658 	if (*entry->status != STATUS_FREE) {
1659 
1660 	    spin_unlock_irqrestore(&fore200e->q_lock, flags);
1661 
1662 	    /* retry once again? */
1663 	    if (--retry > 0) {
1664 		udelay(50);
1665 		goto retry_here;
1666 	    }
1667 
1668 	    atomic_inc(&vcc->stats->tx_err);
1669 
1670 	    fore200e->tx_sat++;
1671 	    DPRINTK(2, "tx queue of device %s is saturated, PDU dropped - heartbeat is %08x\n",
1672 		    fore200e->name, fore200e->cp_queues->heartbeat);
1673 	    if (vcc->pop) {
1674 		vcc->pop(vcc, skb);
1675 	    }
1676 	    else {
1677 		dev_kfree_skb_any(skb);
1678 	    }
1679 
1680 	    if (tx_copy)
1681 		kfree(data);
1682 
1683 	    return -ENOBUFS;
1684 	}
1685     }
1686 
1687     entry->incarn = vc_map->incarn;
1688     entry->vc_map = vc_map;
1689     entry->skb    = skb;
1690     entry->data   = tx_copy ? data : NULL;
1691 
1692     tpd = entry->tpd;
1693     tpd->tsd[ 0 ].buffer = fore200e->bus->dma_map(fore200e, data, tx_len, DMA_TO_DEVICE);
1694     tpd->tsd[ 0 ].length = tx_len;
1695 
1696     FORE200E_NEXT_ENTRY(txq->head, QUEUE_SIZE_TX);
1697     txq->txing++;
1698 
1699     /* The dma_map call above implies a dma_sync so the device can use it,
1700      * thus no explicit dma_sync call is necessary here.
1701      */
1702 
1703     DPRINTK(3, "tx on %d.%d.%d:%d, len = %u (%u)\n",
1704 	    vcc->itf, vcc->vpi, vcc->vci, fore200e_atm2fore_aal(vcc->qos.aal),
1705 	    tpd->tsd[0].length, skb_len);
1706 
1707     if (skb_len < fore200e_vcc->tx_min_pdu)
1708 	fore200e_vcc->tx_min_pdu = skb_len;
1709     if (skb_len > fore200e_vcc->tx_max_pdu)
1710 	fore200e_vcc->tx_max_pdu = skb_len;
1711     fore200e_vcc->tx_pdu++;
1712 
1713     /* set tx rate control information */
1714     tpd->rate.data_cells = fore200e_vcc->rate.data_cells;
1715     tpd->rate.idle_cells = fore200e_vcc->rate.idle_cells;
1716 
1717     if (cell_header) {
1718 	tpd->atm_header.clp = (*cell_header & ATM_HDR_CLP);
1719 	tpd->atm_header.plt = (*cell_header & ATM_HDR_PTI_MASK) >> ATM_HDR_PTI_SHIFT;
1720 	tpd->atm_header.vci = (*cell_header & ATM_HDR_VCI_MASK) >> ATM_HDR_VCI_SHIFT;
1721 	tpd->atm_header.vpi = (*cell_header & ATM_HDR_VPI_MASK) >> ATM_HDR_VPI_SHIFT;
1722 	tpd->atm_header.gfc = (*cell_header & ATM_HDR_GFC_MASK) >> ATM_HDR_GFC_SHIFT;
1723     }
1724     else {
1725 	/* set the ATM header, common to all cells conveying the PDU */
1726 	tpd->atm_header.clp = 0;
1727 	tpd->atm_header.plt = 0;
1728 	tpd->atm_header.vci = vcc->vci;
1729 	tpd->atm_header.vpi = vcc->vpi;
1730 	tpd->atm_header.gfc = 0;
1731     }
1732 
1733     tpd->spec.length = tx_len;
1734     tpd->spec.nseg   = 1;
1735     tpd->spec.aal    = fore200e_atm2fore_aal(vcc->qos.aal);
1736     tpd->spec.intr   = 1;
1737 
1738     tpd_haddr.size  = sizeof(struct tpd) / (1<<TPD_HADDR_SHIFT);  /* size is expressed in 32 byte blocks */
1739     tpd_haddr.pad   = 0;
1740     tpd_haddr.haddr = entry->tpd_dma >> TPD_HADDR_SHIFT;          /* shift the address, as we are in a bitfield */
1741 
1742     *entry->status = STATUS_PENDING;
1743     fore200e->bus->write(*(u32*)&tpd_haddr, (u32 __iomem *)&entry->cp_entry->tpd_haddr);
1744 
1745     spin_unlock_irqrestore(&fore200e->q_lock, flags);
1746 
1747     return 0;
1748 }
1749 
1750 
1751 static int
fore200e_getstats(struct fore200e * fore200e)1752 fore200e_getstats(struct fore200e* fore200e)
1753 {
1754     struct host_cmdq*       cmdq  = &fore200e->host_cmdq;
1755     struct host_cmdq_entry* entry = &cmdq->host_entry[ cmdq->head ];
1756     struct stats_opcode     opcode;
1757     int                     ok;
1758     u32                     stats_dma_addr;
1759 
1760     if (fore200e->stats == NULL) {
1761 	fore200e->stats = kzalloc(sizeof(struct stats), GFP_KERNEL | GFP_DMA);
1762 	if (fore200e->stats == NULL)
1763 	    return -ENOMEM;
1764     }
1765 
1766     stats_dma_addr = fore200e->bus->dma_map(fore200e, fore200e->stats,
1767 					    sizeof(struct stats), DMA_FROM_DEVICE);
1768 
1769     FORE200E_NEXT_ENTRY(cmdq->head, QUEUE_SIZE_CMD);
1770 
1771     opcode.opcode = OPCODE_GET_STATS;
1772     opcode.pad    = 0;
1773 
1774     fore200e->bus->write(stats_dma_addr, &entry->cp_entry->cmd.stats_block.stats_haddr);
1775 
1776     *entry->status = STATUS_PENDING;
1777 
1778     fore200e->bus->write(*(u32*)&opcode, (u32 __iomem *)&entry->cp_entry->cmd.stats_block.opcode);
1779 
1780     ok = fore200e_poll(fore200e, entry->status, STATUS_COMPLETE, 400);
1781 
1782     *entry->status = STATUS_FREE;
1783 
1784     fore200e->bus->dma_unmap(fore200e, stats_dma_addr, sizeof(struct stats), DMA_FROM_DEVICE);
1785 
1786     if (ok == 0) {
1787 	printk(FORE200E "unable to get statistics from device %s\n", fore200e->name);
1788 	return -EIO;
1789     }
1790 
1791     return 0;
1792 }
1793 
1794 
1795 static int
fore200e_getsockopt(struct atm_vcc * vcc,int level,int optname,void __user * optval,int optlen)1796 fore200e_getsockopt(struct atm_vcc* vcc, int level, int optname, void __user *optval, int optlen)
1797 {
1798     /* struct fore200e* fore200e = FORE200E_DEV(vcc->dev); */
1799 
1800     DPRINTK(2, "getsockopt %d.%d.%d, level = %d, optname = 0x%x, optval = 0x%p, optlen = %d\n",
1801 	    vcc->itf, vcc->vpi, vcc->vci, level, optname, optval, optlen);
1802 
1803     return -EINVAL;
1804 }
1805 
1806 
1807 static int
fore200e_setsockopt(struct atm_vcc * vcc,int level,int optname,void __user * optval,unsigned int optlen)1808 fore200e_setsockopt(struct atm_vcc* vcc, int level, int optname, void __user *optval, unsigned int optlen)
1809 {
1810     /* struct fore200e* fore200e = FORE200E_DEV(vcc->dev); */
1811 
1812     DPRINTK(2, "setsockopt %d.%d.%d, level = %d, optname = 0x%x, optval = 0x%p, optlen = %d\n",
1813 	    vcc->itf, vcc->vpi, vcc->vci, level, optname, optval, optlen);
1814 
1815     return -EINVAL;
1816 }
1817 
1818 
1819 #if 0 /* currently unused */
1820 static int
1821 fore200e_get_oc3(struct fore200e* fore200e, struct oc3_regs* regs)
1822 {
1823     struct host_cmdq*       cmdq  = &fore200e->host_cmdq;
1824     struct host_cmdq_entry* entry = &cmdq->host_entry[ cmdq->head ];
1825     struct oc3_opcode       opcode;
1826     int                     ok;
1827     u32                     oc3_regs_dma_addr;
1828 
1829     oc3_regs_dma_addr = fore200e->bus->dma_map(fore200e, regs, sizeof(struct oc3_regs), DMA_FROM_DEVICE);
1830 
1831     FORE200E_NEXT_ENTRY(cmdq->head, QUEUE_SIZE_CMD);
1832 
1833     opcode.opcode = OPCODE_GET_OC3;
1834     opcode.reg    = 0;
1835     opcode.value  = 0;
1836     opcode.mask   = 0;
1837 
1838     fore200e->bus->write(oc3_regs_dma_addr, &entry->cp_entry->cmd.oc3_block.regs_haddr);
1839 
1840     *entry->status = STATUS_PENDING;
1841 
1842     fore200e->bus->write(*(u32*)&opcode, (u32*)&entry->cp_entry->cmd.oc3_block.opcode);
1843 
1844     ok = fore200e_poll(fore200e, entry->status, STATUS_COMPLETE, 400);
1845 
1846     *entry->status = STATUS_FREE;
1847 
1848     fore200e->bus->dma_unmap(fore200e, oc3_regs_dma_addr, sizeof(struct oc3_regs), DMA_FROM_DEVICE);
1849 
1850     if (ok == 0) {
1851 	printk(FORE200E "unable to get OC-3 regs of device %s\n", fore200e->name);
1852 	return -EIO;
1853     }
1854 
1855     return 0;
1856 }
1857 #endif
1858 
1859 
1860 static int
fore200e_set_oc3(struct fore200e * fore200e,u32 reg,u32 value,u32 mask)1861 fore200e_set_oc3(struct fore200e* fore200e, u32 reg, u32 value, u32 mask)
1862 {
1863     struct host_cmdq*       cmdq  = &fore200e->host_cmdq;
1864     struct host_cmdq_entry* entry = &cmdq->host_entry[ cmdq->head ];
1865     struct oc3_opcode       opcode;
1866     int                     ok;
1867 
1868     DPRINTK(2, "set OC-3 reg = 0x%02x, value = 0x%02x, mask = 0x%02x\n", reg, value, mask);
1869 
1870     FORE200E_NEXT_ENTRY(cmdq->head, QUEUE_SIZE_CMD);
1871 
1872     opcode.opcode = OPCODE_SET_OC3;
1873     opcode.reg    = reg;
1874     opcode.value  = value;
1875     opcode.mask   = mask;
1876 
1877     fore200e->bus->write(0, &entry->cp_entry->cmd.oc3_block.regs_haddr);
1878 
1879     *entry->status = STATUS_PENDING;
1880 
1881     fore200e->bus->write(*(u32*)&opcode, (u32 __iomem *)&entry->cp_entry->cmd.oc3_block.opcode);
1882 
1883     ok = fore200e_poll(fore200e, entry->status, STATUS_COMPLETE, 400);
1884 
1885     *entry->status = STATUS_FREE;
1886 
1887     if (ok == 0) {
1888 	printk(FORE200E "unable to set OC-3 reg 0x%02x of device %s\n", reg, fore200e->name);
1889 	return -EIO;
1890     }
1891 
1892     return 0;
1893 }
1894 
1895 
1896 static int
fore200e_setloop(struct fore200e * fore200e,int loop_mode)1897 fore200e_setloop(struct fore200e* fore200e, int loop_mode)
1898 {
1899     u32 mct_value, mct_mask;
1900     int error;
1901 
1902     if (!capable(CAP_NET_ADMIN))
1903 	return -EPERM;
1904 
1905     switch (loop_mode) {
1906 
1907     case ATM_LM_NONE:
1908 	mct_value = 0;
1909 	mct_mask  = SUNI_MCT_DLE | SUNI_MCT_LLE;
1910 	break;
1911 
1912     case ATM_LM_LOC_PHY:
1913 	mct_value = mct_mask = SUNI_MCT_DLE;
1914 	break;
1915 
1916     case ATM_LM_RMT_PHY:
1917 	mct_value = mct_mask = SUNI_MCT_LLE;
1918 	break;
1919 
1920     default:
1921 	return -EINVAL;
1922     }
1923 
1924     error = fore200e_set_oc3(fore200e, SUNI_MCT, mct_value, mct_mask);
1925     if (error == 0)
1926 	fore200e->loop_mode = loop_mode;
1927 
1928     return error;
1929 }
1930 
1931 
1932 static int
fore200e_fetch_stats(struct fore200e * fore200e,struct sonet_stats __user * arg)1933 fore200e_fetch_stats(struct fore200e* fore200e, struct sonet_stats __user *arg)
1934 {
1935     struct sonet_stats tmp;
1936 
1937     if (fore200e_getstats(fore200e) < 0)
1938 	return -EIO;
1939 
1940     tmp.section_bip = be32_to_cpu(fore200e->stats->oc3.section_bip8_errors);
1941     tmp.line_bip    = be32_to_cpu(fore200e->stats->oc3.line_bip24_errors);
1942     tmp.path_bip    = be32_to_cpu(fore200e->stats->oc3.path_bip8_errors);
1943     tmp.line_febe   = be32_to_cpu(fore200e->stats->oc3.line_febe_errors);
1944     tmp.path_febe   = be32_to_cpu(fore200e->stats->oc3.path_febe_errors);
1945     tmp.corr_hcs    = be32_to_cpu(fore200e->stats->oc3.corr_hcs_errors);
1946     tmp.uncorr_hcs  = be32_to_cpu(fore200e->stats->oc3.ucorr_hcs_errors);
1947     tmp.tx_cells    = be32_to_cpu(fore200e->stats->aal0.cells_transmitted)  +
1948 	              be32_to_cpu(fore200e->stats->aal34.cells_transmitted) +
1949 	              be32_to_cpu(fore200e->stats->aal5.cells_transmitted);
1950     tmp.rx_cells    = be32_to_cpu(fore200e->stats->aal0.cells_received)     +
1951 	              be32_to_cpu(fore200e->stats->aal34.cells_received)    +
1952 	              be32_to_cpu(fore200e->stats->aal5.cells_received);
1953 
1954     if (arg)
1955 	return copy_to_user(arg, &tmp, sizeof(struct sonet_stats)) ? -EFAULT : 0;
1956 
1957     return 0;
1958 }
1959 
1960 
1961 static int
fore200e_ioctl(struct atm_dev * dev,unsigned int cmd,void __user * arg)1962 fore200e_ioctl(struct atm_dev* dev, unsigned int cmd, void __user * arg)
1963 {
1964     struct fore200e* fore200e = FORE200E_DEV(dev);
1965 
1966     DPRINTK(2, "ioctl cmd = 0x%x (%u), arg = 0x%p (%lu)\n", cmd, cmd, arg, (unsigned long)arg);
1967 
1968     switch (cmd) {
1969 
1970     case SONET_GETSTAT:
1971 	return fore200e_fetch_stats(fore200e, (struct sonet_stats __user *)arg);
1972 
1973     case SONET_GETDIAG:
1974 	return put_user(0, (int __user *)arg) ? -EFAULT : 0;
1975 
1976     case ATM_SETLOOP:
1977 	return fore200e_setloop(fore200e, (int)(unsigned long)arg);
1978 
1979     case ATM_GETLOOP:
1980 	return put_user(fore200e->loop_mode, (int __user *)arg) ? -EFAULT : 0;
1981 
1982     case ATM_QUERYLOOP:
1983 	return put_user(ATM_LM_LOC_PHY | ATM_LM_RMT_PHY, (int __user *)arg) ? -EFAULT : 0;
1984     }
1985 
1986     return -ENOSYS; /* not implemented */
1987 }
1988 
1989 
1990 static int
fore200e_change_qos(struct atm_vcc * vcc,struct atm_qos * qos,int flags)1991 fore200e_change_qos(struct atm_vcc* vcc,struct atm_qos* qos, int flags)
1992 {
1993     struct fore200e_vcc* fore200e_vcc = FORE200E_VCC(vcc);
1994     struct fore200e*     fore200e     = FORE200E_DEV(vcc->dev);
1995 
1996     if (!test_bit(ATM_VF_READY, &vcc->flags)) {
1997 	DPRINTK(1, "VC %d.%d.%d not ready for QoS change\n", vcc->itf, vcc->vpi, vcc->vpi);
1998 	return -EINVAL;
1999     }
2000 
2001     DPRINTK(2, "change_qos %d.%d.%d, "
2002 	    "(tx: cl=%s, pcr=%d-%d, cdv=%d, max_sdu=%d; "
2003 	    "rx: cl=%s, pcr=%d-%d, cdv=%d, max_sdu=%d), flags = 0x%x\n"
2004 	    "available_cell_rate = %u",
2005 	    vcc->itf, vcc->vpi, vcc->vci,
2006 	    fore200e_traffic_class[ qos->txtp.traffic_class ],
2007 	    qos->txtp.min_pcr, qos->txtp.max_pcr, qos->txtp.max_cdv, qos->txtp.max_sdu,
2008 	    fore200e_traffic_class[ qos->rxtp.traffic_class ],
2009 	    qos->rxtp.min_pcr, qos->rxtp.max_pcr, qos->rxtp.max_cdv, qos->rxtp.max_sdu,
2010 	    flags, fore200e->available_cell_rate);
2011 
2012     if ((qos->txtp.traffic_class == ATM_CBR) && (qos->txtp.max_pcr > 0)) {
2013 
2014 	mutex_lock(&fore200e->rate_mtx);
2015 	if (fore200e->available_cell_rate + vcc->qos.txtp.max_pcr < qos->txtp.max_pcr) {
2016 	    mutex_unlock(&fore200e->rate_mtx);
2017 	    return -EAGAIN;
2018 	}
2019 
2020 	fore200e->available_cell_rate += vcc->qos.txtp.max_pcr;
2021 	fore200e->available_cell_rate -= qos->txtp.max_pcr;
2022 
2023 	mutex_unlock(&fore200e->rate_mtx);
2024 
2025 	memcpy(&vcc->qos, qos, sizeof(struct atm_qos));
2026 
2027 	/* update rate control parameters */
2028 	fore200e_rate_ctrl(qos, &fore200e_vcc->rate);
2029 
2030 	set_bit(ATM_VF_HASQOS, &vcc->flags);
2031 
2032 	return 0;
2033     }
2034 
2035     return -EINVAL;
2036 }
2037 
2038 
fore200e_irq_request(struct fore200e * fore200e)2039 static int fore200e_irq_request(struct fore200e *fore200e)
2040 {
2041     if (request_irq(fore200e->irq, fore200e_interrupt, IRQF_SHARED, fore200e->name, fore200e->atm_dev) < 0) {
2042 
2043 	printk(FORE200E "unable to reserve IRQ %s for device %s\n",
2044 	       fore200e_irq_itoa(fore200e->irq), fore200e->name);
2045 	return -EBUSY;
2046     }
2047 
2048     printk(FORE200E "IRQ %s reserved for device %s\n",
2049 	   fore200e_irq_itoa(fore200e->irq), fore200e->name);
2050 
2051 #ifdef FORE200E_USE_TASKLET
2052     tasklet_init(&fore200e->tx_tasklet, fore200e_tx_tasklet, (unsigned long)fore200e);
2053     tasklet_init(&fore200e->rx_tasklet, fore200e_rx_tasklet, (unsigned long)fore200e);
2054 #endif
2055 
2056     fore200e->state = FORE200E_STATE_IRQ;
2057     return 0;
2058 }
2059 
2060 
fore200e_get_esi(struct fore200e * fore200e)2061 static int fore200e_get_esi(struct fore200e *fore200e)
2062 {
2063     struct prom_data* prom = kzalloc(sizeof(struct prom_data), GFP_KERNEL | GFP_DMA);
2064     int ok, i;
2065 
2066     if (!prom)
2067 	return -ENOMEM;
2068 
2069     ok = fore200e->bus->prom_read(fore200e, prom);
2070     if (ok < 0) {
2071 	kfree(prom);
2072 	return -EBUSY;
2073     }
2074 
2075     printk(FORE200E "device %s, rev. %c, S/N: %d, ESI: %pM\n",
2076 	   fore200e->name,
2077 	   (prom->hw_revision & 0xFF) + '@',    /* probably meaningless with SBA boards */
2078 	   prom->serial_number & 0xFFFF, &prom->mac_addr[2]);
2079 
2080     for (i = 0; i < ESI_LEN; i++) {
2081 	fore200e->esi[ i ] = fore200e->atm_dev->esi[ i ] = prom->mac_addr[ i + 2 ];
2082     }
2083 
2084     kfree(prom);
2085 
2086     return 0;
2087 }
2088 
2089 
fore200e_alloc_rx_buf(struct fore200e * fore200e)2090 static int fore200e_alloc_rx_buf(struct fore200e *fore200e)
2091 {
2092     int scheme, magn, nbr, size, i;
2093 
2094     struct host_bsq* bsq;
2095     struct buffer*   buffer;
2096 
2097     for (scheme = 0; scheme < BUFFER_SCHEME_NBR; scheme++) {
2098 	for (magn = 0; magn < BUFFER_MAGN_NBR; magn++) {
2099 
2100 	    bsq = &fore200e->host_bsq[ scheme ][ magn ];
2101 
2102 	    nbr  = fore200e_rx_buf_nbr[ scheme ][ magn ];
2103 	    size = fore200e_rx_buf_size[ scheme ][ magn ];
2104 
2105 	    DPRINTK(2, "rx buffers %d / %d are being allocated\n", scheme, magn);
2106 
2107 	    /* allocate the array of receive buffers */
2108 	    buffer = bsq->buffer = kcalloc(nbr, sizeof(struct buffer),
2109                                            GFP_KERNEL);
2110 
2111 	    if (buffer == NULL)
2112 		return -ENOMEM;
2113 
2114 	    bsq->freebuf = NULL;
2115 
2116 	    for (i = 0; i < nbr; i++) {
2117 
2118 		buffer[ i ].scheme = scheme;
2119 		buffer[ i ].magn   = magn;
2120 #ifdef FORE200E_BSQ_DEBUG
2121 		buffer[ i ].index  = i;
2122 		buffer[ i ].supplied = 0;
2123 #endif
2124 
2125 		/* allocate the receive buffer body */
2126 		if (fore200e_chunk_alloc(fore200e,
2127 					 &buffer[ i ].data, size, fore200e->bus->buffer_alignment,
2128 					 DMA_FROM_DEVICE) < 0) {
2129 
2130 		    while (i > 0)
2131 			fore200e_chunk_free(fore200e, &buffer[ --i ].data);
2132 		    kfree(buffer);
2133 
2134 		    return -ENOMEM;
2135 		}
2136 
2137 		/* insert the buffer into the free buffer list */
2138 		buffer[ i ].next = bsq->freebuf;
2139 		bsq->freebuf = &buffer[ i ];
2140 	    }
2141 	    /* all the buffers are free, initially */
2142 	    bsq->freebuf_count = nbr;
2143 
2144 #ifdef FORE200E_BSQ_DEBUG
2145 	    bsq_audit(3, bsq, scheme, magn);
2146 #endif
2147 	}
2148     }
2149 
2150     fore200e->state = FORE200E_STATE_ALLOC_BUF;
2151     return 0;
2152 }
2153 
2154 
fore200e_init_bs_queue(struct fore200e * fore200e)2155 static int fore200e_init_bs_queue(struct fore200e *fore200e)
2156 {
2157     int scheme, magn, i;
2158 
2159     struct host_bsq*     bsq;
2160     struct cp_bsq_entry __iomem * cp_entry;
2161 
2162     for (scheme = 0; scheme < BUFFER_SCHEME_NBR; scheme++) {
2163 	for (magn = 0; magn < BUFFER_MAGN_NBR; magn++) {
2164 
2165 	    DPRINTK(2, "buffer supply queue %d / %d is being initialized\n", scheme, magn);
2166 
2167 	    bsq = &fore200e->host_bsq[ scheme ][ magn ];
2168 
2169 	    /* allocate and align the array of status words */
2170 	    if (fore200e->bus->dma_chunk_alloc(fore200e,
2171 					       &bsq->status,
2172 					       sizeof(enum status),
2173 					       QUEUE_SIZE_BS,
2174 					       fore200e->bus->status_alignment) < 0) {
2175 		return -ENOMEM;
2176 	    }
2177 
2178 	    /* allocate and align the array of receive buffer descriptors */
2179 	    if (fore200e->bus->dma_chunk_alloc(fore200e,
2180 					       &bsq->rbd_block,
2181 					       sizeof(struct rbd_block),
2182 					       QUEUE_SIZE_BS,
2183 					       fore200e->bus->descr_alignment) < 0) {
2184 
2185 		fore200e->bus->dma_chunk_free(fore200e, &bsq->status);
2186 		return -ENOMEM;
2187 	    }
2188 
2189 	    /* get the base address of the cp resident buffer supply queue entries */
2190 	    cp_entry = fore200e->virt_base +
2191 		       fore200e->bus->read(&fore200e->cp_queues->cp_bsq[ scheme ][ magn ]);
2192 
2193 	    /* fill the host resident and cp resident buffer supply queue entries */
2194 	    for (i = 0; i < QUEUE_SIZE_BS; i++) {
2195 
2196 		bsq->host_entry[ i ].status =
2197 		                     FORE200E_INDEX(bsq->status.align_addr, enum status, i);
2198 	        bsq->host_entry[ i ].rbd_block =
2199 		                     FORE200E_INDEX(bsq->rbd_block.align_addr, struct rbd_block, i);
2200 		bsq->host_entry[ i ].rbd_block_dma =
2201 		                     FORE200E_DMA_INDEX(bsq->rbd_block.dma_addr, struct rbd_block, i);
2202 		bsq->host_entry[ i ].cp_entry = &cp_entry[ i ];
2203 
2204 		*bsq->host_entry[ i ].status = STATUS_FREE;
2205 
2206 		fore200e->bus->write(FORE200E_DMA_INDEX(bsq->status.dma_addr, enum status, i),
2207 				     &cp_entry[ i ].status_haddr);
2208 	    }
2209 	}
2210     }
2211 
2212     fore200e->state = FORE200E_STATE_INIT_BSQ;
2213     return 0;
2214 }
2215 
2216 
fore200e_init_rx_queue(struct fore200e * fore200e)2217 static int fore200e_init_rx_queue(struct fore200e *fore200e)
2218 {
2219     struct host_rxq*     rxq =  &fore200e->host_rxq;
2220     struct cp_rxq_entry __iomem * cp_entry;
2221     int i;
2222 
2223     DPRINTK(2, "receive queue is being initialized\n");
2224 
2225     /* allocate and align the array of status words */
2226     if (fore200e->bus->dma_chunk_alloc(fore200e,
2227 				       &rxq->status,
2228 				       sizeof(enum status),
2229 				       QUEUE_SIZE_RX,
2230 				       fore200e->bus->status_alignment) < 0) {
2231 	return -ENOMEM;
2232     }
2233 
2234     /* allocate and align the array of receive PDU descriptors */
2235     if (fore200e->bus->dma_chunk_alloc(fore200e,
2236 				       &rxq->rpd,
2237 				       sizeof(struct rpd),
2238 				       QUEUE_SIZE_RX,
2239 				       fore200e->bus->descr_alignment) < 0) {
2240 
2241 	fore200e->bus->dma_chunk_free(fore200e, &rxq->status);
2242 	return -ENOMEM;
2243     }
2244 
2245     /* get the base address of the cp resident rx queue entries */
2246     cp_entry = fore200e->virt_base + fore200e->bus->read(&fore200e->cp_queues->cp_rxq);
2247 
2248     /* fill the host resident and cp resident rx entries */
2249     for (i=0; i < QUEUE_SIZE_RX; i++) {
2250 
2251 	rxq->host_entry[ i ].status =
2252 	                     FORE200E_INDEX(rxq->status.align_addr, enum status, i);
2253 	rxq->host_entry[ i ].rpd =
2254 	                     FORE200E_INDEX(rxq->rpd.align_addr, struct rpd, i);
2255 	rxq->host_entry[ i ].rpd_dma =
2256 	                     FORE200E_DMA_INDEX(rxq->rpd.dma_addr, struct rpd, i);
2257 	rxq->host_entry[ i ].cp_entry = &cp_entry[ i ];
2258 
2259 	*rxq->host_entry[ i ].status = STATUS_FREE;
2260 
2261 	fore200e->bus->write(FORE200E_DMA_INDEX(rxq->status.dma_addr, enum status, i),
2262 			     &cp_entry[ i ].status_haddr);
2263 
2264 	fore200e->bus->write(FORE200E_DMA_INDEX(rxq->rpd.dma_addr, struct rpd, i),
2265 			     &cp_entry[ i ].rpd_haddr);
2266     }
2267 
2268     /* set the head entry of the queue */
2269     rxq->head = 0;
2270 
2271     fore200e->state = FORE200E_STATE_INIT_RXQ;
2272     return 0;
2273 }
2274 
2275 
fore200e_init_tx_queue(struct fore200e * fore200e)2276 static int fore200e_init_tx_queue(struct fore200e *fore200e)
2277 {
2278     struct host_txq*     txq =  &fore200e->host_txq;
2279     struct cp_txq_entry __iomem * cp_entry;
2280     int i;
2281 
2282     DPRINTK(2, "transmit queue is being initialized\n");
2283 
2284     /* allocate and align the array of status words */
2285     if (fore200e->bus->dma_chunk_alloc(fore200e,
2286 				       &txq->status,
2287 				       sizeof(enum status),
2288 				       QUEUE_SIZE_TX,
2289 				       fore200e->bus->status_alignment) < 0) {
2290 	return -ENOMEM;
2291     }
2292 
2293     /* allocate and align the array of transmit PDU descriptors */
2294     if (fore200e->bus->dma_chunk_alloc(fore200e,
2295 				       &txq->tpd,
2296 				       sizeof(struct tpd),
2297 				       QUEUE_SIZE_TX,
2298 				       fore200e->bus->descr_alignment) < 0) {
2299 
2300 	fore200e->bus->dma_chunk_free(fore200e, &txq->status);
2301 	return -ENOMEM;
2302     }
2303 
2304     /* get the base address of the cp resident tx queue entries */
2305     cp_entry = fore200e->virt_base + fore200e->bus->read(&fore200e->cp_queues->cp_txq);
2306 
2307     /* fill the host resident and cp resident tx entries */
2308     for (i=0; i < QUEUE_SIZE_TX; i++) {
2309 
2310 	txq->host_entry[ i ].status =
2311 	                     FORE200E_INDEX(txq->status.align_addr, enum status, i);
2312 	txq->host_entry[ i ].tpd =
2313 	                     FORE200E_INDEX(txq->tpd.align_addr, struct tpd, i);
2314 	txq->host_entry[ i ].tpd_dma  =
2315                              FORE200E_DMA_INDEX(txq->tpd.dma_addr, struct tpd, i);
2316 	txq->host_entry[ i ].cp_entry = &cp_entry[ i ];
2317 
2318 	*txq->host_entry[ i ].status = STATUS_FREE;
2319 
2320 	fore200e->bus->write(FORE200E_DMA_INDEX(txq->status.dma_addr, enum status, i),
2321 			     &cp_entry[ i ].status_haddr);
2322 
2323         /* although there is a one-to-one mapping of tx queue entries and tpds,
2324 	   we do not write here the DMA (physical) base address of each tpd into
2325 	   the related cp resident entry, because the cp relies on this write
2326 	   operation to detect that a new pdu has been submitted for tx */
2327     }
2328 
2329     /* set the head and tail entries of the queue */
2330     txq->head = 0;
2331     txq->tail = 0;
2332 
2333     fore200e->state = FORE200E_STATE_INIT_TXQ;
2334     return 0;
2335 }
2336 
2337 
fore200e_init_cmd_queue(struct fore200e * fore200e)2338 static int fore200e_init_cmd_queue(struct fore200e *fore200e)
2339 {
2340     struct host_cmdq*     cmdq =  &fore200e->host_cmdq;
2341     struct cp_cmdq_entry __iomem * cp_entry;
2342     int i;
2343 
2344     DPRINTK(2, "command queue is being initialized\n");
2345 
2346     /* allocate and align the array of status words */
2347     if (fore200e->bus->dma_chunk_alloc(fore200e,
2348 				       &cmdq->status,
2349 				       sizeof(enum status),
2350 				       QUEUE_SIZE_CMD,
2351 				       fore200e->bus->status_alignment) < 0) {
2352 	return -ENOMEM;
2353     }
2354 
2355     /* get the base address of the cp resident cmd queue entries */
2356     cp_entry = fore200e->virt_base + fore200e->bus->read(&fore200e->cp_queues->cp_cmdq);
2357 
2358     /* fill the host resident and cp resident cmd entries */
2359     for (i=0; i < QUEUE_SIZE_CMD; i++) {
2360 
2361 	cmdq->host_entry[ i ].status   =
2362                               FORE200E_INDEX(cmdq->status.align_addr, enum status, i);
2363 	cmdq->host_entry[ i ].cp_entry = &cp_entry[ i ];
2364 
2365 	*cmdq->host_entry[ i ].status = STATUS_FREE;
2366 
2367 	fore200e->bus->write(FORE200E_DMA_INDEX(cmdq->status.dma_addr, enum status, i),
2368                              &cp_entry[ i ].status_haddr);
2369     }
2370 
2371     /* set the head entry of the queue */
2372     cmdq->head = 0;
2373 
2374     fore200e->state = FORE200E_STATE_INIT_CMDQ;
2375     return 0;
2376 }
2377 
2378 
fore200e_param_bs_queue(struct fore200e * fore200e,enum buffer_scheme scheme,enum buffer_magn magn,int queue_length,int pool_size,int supply_blksize)2379 static void fore200e_param_bs_queue(struct fore200e *fore200e,
2380 				    enum buffer_scheme scheme,
2381 				    enum buffer_magn magn, int queue_length,
2382 				    int pool_size, int supply_blksize)
2383 {
2384     struct bs_spec __iomem * bs_spec = &fore200e->cp_queues->init.bs_spec[ scheme ][ magn ];
2385 
2386     fore200e->bus->write(queue_length,                           &bs_spec->queue_length);
2387     fore200e->bus->write(fore200e_rx_buf_size[ scheme ][ magn ], &bs_spec->buffer_size);
2388     fore200e->bus->write(pool_size,                              &bs_spec->pool_size);
2389     fore200e->bus->write(supply_blksize,                         &bs_spec->supply_blksize);
2390 }
2391 
2392 
fore200e_initialize(struct fore200e * fore200e)2393 static int fore200e_initialize(struct fore200e *fore200e)
2394 {
2395     struct cp_queues __iomem * cpq;
2396     int               ok, scheme, magn;
2397 
2398     DPRINTK(2, "device %s being initialized\n", fore200e->name);
2399 
2400     mutex_init(&fore200e->rate_mtx);
2401     spin_lock_init(&fore200e->q_lock);
2402 
2403     cpq = fore200e->cp_queues = fore200e->virt_base + FORE200E_CP_QUEUES_OFFSET;
2404 
2405     /* enable cp to host interrupts */
2406     fore200e->bus->write(1, &cpq->imask);
2407 
2408     if (fore200e->bus->irq_enable)
2409 	fore200e->bus->irq_enable(fore200e);
2410 
2411     fore200e->bus->write(NBR_CONNECT, &cpq->init.num_connect);
2412 
2413     fore200e->bus->write(QUEUE_SIZE_CMD, &cpq->init.cmd_queue_len);
2414     fore200e->bus->write(QUEUE_SIZE_RX,  &cpq->init.rx_queue_len);
2415     fore200e->bus->write(QUEUE_SIZE_TX,  &cpq->init.tx_queue_len);
2416 
2417     fore200e->bus->write(RSD_EXTENSION,  &cpq->init.rsd_extension);
2418     fore200e->bus->write(TSD_EXTENSION,  &cpq->init.tsd_extension);
2419 
2420     for (scheme = 0; scheme < BUFFER_SCHEME_NBR; scheme++)
2421 	for (magn = 0; magn < BUFFER_MAGN_NBR; magn++)
2422 	    fore200e_param_bs_queue(fore200e, scheme, magn,
2423 				    QUEUE_SIZE_BS,
2424 				    fore200e_rx_buf_nbr[ scheme ][ magn ],
2425 				    RBD_BLK_SIZE);
2426 
2427     /* issue the initialize command */
2428     fore200e->bus->write(STATUS_PENDING,    &cpq->init.status);
2429     fore200e->bus->write(OPCODE_INITIALIZE, &cpq->init.opcode);
2430 
2431     ok = fore200e_io_poll(fore200e, &cpq->init.status, STATUS_COMPLETE, 3000);
2432     if (ok == 0) {
2433 	printk(FORE200E "device %s initialization failed\n", fore200e->name);
2434 	return -ENODEV;
2435     }
2436 
2437     printk(FORE200E "device %s initialized\n", fore200e->name);
2438 
2439     fore200e->state = FORE200E_STATE_INITIALIZE;
2440     return 0;
2441 }
2442 
2443 
fore200e_monitor_putc(struct fore200e * fore200e,char c)2444 static void fore200e_monitor_putc(struct fore200e *fore200e, char c)
2445 {
2446     struct cp_monitor __iomem * monitor = fore200e->cp_monitor;
2447 
2448 #if 0
2449     printk("%c", c);
2450 #endif
2451     fore200e->bus->write(((u32) c) | FORE200E_CP_MONITOR_UART_AVAIL, &monitor->soft_uart.send);
2452 }
2453 
2454 
fore200e_monitor_getc(struct fore200e * fore200e)2455 static int fore200e_monitor_getc(struct fore200e *fore200e)
2456 {
2457     struct cp_monitor __iomem * monitor = fore200e->cp_monitor;
2458     unsigned long      timeout = jiffies + msecs_to_jiffies(50);
2459     int                c;
2460 
2461     while (time_before(jiffies, timeout)) {
2462 
2463 	c = (int) fore200e->bus->read(&monitor->soft_uart.recv);
2464 
2465 	if (c & FORE200E_CP_MONITOR_UART_AVAIL) {
2466 
2467 	    fore200e->bus->write(FORE200E_CP_MONITOR_UART_FREE, &monitor->soft_uart.recv);
2468 #if 0
2469 	    printk("%c", c & 0xFF);
2470 #endif
2471 	    return c & 0xFF;
2472 	}
2473     }
2474 
2475     return -1;
2476 }
2477 
2478 
fore200e_monitor_puts(struct fore200e * fore200e,char * str)2479 static void fore200e_monitor_puts(struct fore200e *fore200e, char *str)
2480 {
2481     while (*str) {
2482 
2483 	/* the i960 monitor doesn't accept any new character if it has something to say */
2484 	while (fore200e_monitor_getc(fore200e) >= 0);
2485 
2486 	fore200e_monitor_putc(fore200e, *str++);
2487     }
2488 
2489     while (fore200e_monitor_getc(fore200e) >= 0);
2490 }
2491 
2492 #ifdef __LITTLE_ENDIAN
2493 #define FW_EXT ".bin"
2494 #else
2495 #define FW_EXT "_ecd.bin2"
2496 #endif
2497 
fore200e_load_and_start_fw(struct fore200e * fore200e)2498 static int fore200e_load_and_start_fw(struct fore200e *fore200e)
2499 {
2500     const struct firmware *firmware;
2501     struct device *device;
2502     const struct fw_header *fw_header;
2503     const __le32 *fw_data;
2504     u32 fw_size;
2505     u32 __iomem *load_addr;
2506     char buf[48];
2507     int err = -ENODEV;
2508 
2509     if (strcmp(fore200e->bus->model_name, "PCA-200E") == 0)
2510 	device = &((struct pci_dev *) fore200e->bus_dev)->dev;
2511 #ifdef CONFIG_SBUS
2512     else if (strcmp(fore200e->bus->model_name, "SBA-200E") == 0)
2513 	device = &((struct platform_device *) fore200e->bus_dev)->dev;
2514 #endif
2515     else
2516 	return err;
2517 
2518     sprintf(buf, "%s%s", fore200e->bus->proc_name, FW_EXT);
2519     if ((err = request_firmware(&firmware, buf, device)) < 0) {
2520 	printk(FORE200E "problem loading firmware image %s\n", fore200e->bus->model_name);
2521 	return err;
2522     }
2523 
2524     fw_data = (const __le32 *)firmware->data;
2525     fw_size = firmware->size / sizeof(u32);
2526     fw_header = (const struct fw_header *)firmware->data;
2527     load_addr = fore200e->virt_base + le32_to_cpu(fw_header->load_offset);
2528 
2529     DPRINTK(2, "device %s firmware being loaded at 0x%p (%d words)\n",
2530 	    fore200e->name, load_addr, fw_size);
2531 
2532     if (le32_to_cpu(fw_header->magic) != FW_HEADER_MAGIC) {
2533 	printk(FORE200E "corrupted %s firmware image\n", fore200e->bus->model_name);
2534 	goto release;
2535     }
2536 
2537     for (; fw_size--; fw_data++, load_addr++)
2538 	fore200e->bus->write(le32_to_cpu(*fw_data), load_addr);
2539 
2540     DPRINTK(2, "device %s firmware being started\n", fore200e->name);
2541 
2542 #if defined(__sparc_v9__)
2543     /* reported to be required by SBA cards on some sparc64 hosts */
2544     fore200e_spin(100);
2545 #endif
2546 
2547     sprintf(buf, "\rgo %x\r", le32_to_cpu(fw_header->start_offset));
2548     fore200e_monitor_puts(fore200e, buf);
2549 
2550     if (fore200e_io_poll(fore200e, &fore200e->cp_monitor->bstat, BSTAT_CP_RUNNING, 1000) == 0) {
2551 	printk(FORE200E "device %s firmware didn't start\n", fore200e->name);
2552 	goto release;
2553     }
2554 
2555     printk(FORE200E "device %s firmware started\n", fore200e->name);
2556 
2557     fore200e->state = FORE200E_STATE_START_FW;
2558     err = 0;
2559 
2560 release:
2561     release_firmware(firmware);
2562     return err;
2563 }
2564 
2565 
fore200e_register(struct fore200e * fore200e,struct device * parent)2566 static int fore200e_register(struct fore200e *fore200e, struct device *parent)
2567 {
2568     struct atm_dev* atm_dev;
2569 
2570     DPRINTK(2, "device %s being registered\n", fore200e->name);
2571 
2572     atm_dev = atm_dev_register(fore200e->bus->proc_name, parent, &fore200e_ops,
2573                                -1, NULL);
2574     if (atm_dev == NULL) {
2575 	printk(FORE200E "unable to register device %s\n", fore200e->name);
2576 	return -ENODEV;
2577     }
2578 
2579     atm_dev->dev_data = fore200e;
2580     fore200e->atm_dev = atm_dev;
2581 
2582     atm_dev->ci_range.vpi_bits = FORE200E_VPI_BITS;
2583     atm_dev->ci_range.vci_bits = FORE200E_VCI_BITS;
2584 
2585     fore200e->available_cell_rate = ATM_OC3_PCR;
2586 
2587     fore200e->state = FORE200E_STATE_REGISTER;
2588     return 0;
2589 }
2590 
2591 
fore200e_init(struct fore200e * fore200e,struct device * parent)2592 static int fore200e_init(struct fore200e *fore200e, struct device *parent)
2593 {
2594     if (fore200e_register(fore200e, parent) < 0)
2595 	return -ENODEV;
2596 
2597     if (fore200e->bus->configure(fore200e) < 0)
2598 	return -ENODEV;
2599 
2600     if (fore200e->bus->map(fore200e) < 0)
2601 	return -ENODEV;
2602 
2603     if (fore200e_reset(fore200e, 1) < 0)
2604 	return -ENODEV;
2605 
2606     if (fore200e_load_and_start_fw(fore200e) < 0)
2607 	return -ENODEV;
2608 
2609     if (fore200e_initialize(fore200e) < 0)
2610 	return -ENODEV;
2611 
2612     if (fore200e_init_cmd_queue(fore200e) < 0)
2613 	return -ENOMEM;
2614 
2615     if (fore200e_init_tx_queue(fore200e) < 0)
2616 	return -ENOMEM;
2617 
2618     if (fore200e_init_rx_queue(fore200e) < 0)
2619 	return -ENOMEM;
2620 
2621     if (fore200e_init_bs_queue(fore200e) < 0)
2622 	return -ENOMEM;
2623 
2624     if (fore200e_alloc_rx_buf(fore200e) < 0)
2625 	return -ENOMEM;
2626 
2627     if (fore200e_get_esi(fore200e) < 0)
2628 	return -EIO;
2629 
2630     if (fore200e_irq_request(fore200e) < 0)
2631 	return -EBUSY;
2632 
2633     fore200e_supply(fore200e);
2634 
2635     /* all done, board initialization is now complete */
2636     fore200e->state = FORE200E_STATE_COMPLETE;
2637     return 0;
2638 }
2639 
2640 #ifdef CONFIG_SBUS
2641 static const struct of_device_id fore200e_sba_match[];
fore200e_sba_probe(struct platform_device * op)2642 static int fore200e_sba_probe(struct platform_device *op)
2643 {
2644 	const struct of_device_id *match;
2645 	const struct fore200e_bus *bus;
2646 	struct fore200e *fore200e;
2647 	static int index = 0;
2648 	int err;
2649 
2650 	match = of_match_device(fore200e_sba_match, &op->dev);
2651 	if (!match)
2652 		return -EINVAL;
2653 	bus = match->data;
2654 
2655 	fore200e = kzalloc(sizeof(struct fore200e), GFP_KERNEL);
2656 	if (!fore200e)
2657 		return -ENOMEM;
2658 
2659 	fore200e->bus = bus;
2660 	fore200e->bus_dev = op;
2661 	fore200e->irq = op->archdata.irqs[0];
2662 	fore200e->phys_base = op->resource[0].start;
2663 
2664 	sprintf(fore200e->name, "%s-%d", bus->model_name, index);
2665 
2666 	err = fore200e_init(fore200e, &op->dev);
2667 	if (err < 0) {
2668 		fore200e_shutdown(fore200e);
2669 		kfree(fore200e);
2670 		return err;
2671 	}
2672 
2673 	index++;
2674 	dev_set_drvdata(&op->dev, fore200e);
2675 
2676 	return 0;
2677 }
2678 
fore200e_sba_remove(struct platform_device * op)2679 static int fore200e_sba_remove(struct platform_device *op)
2680 {
2681 	struct fore200e *fore200e = dev_get_drvdata(&op->dev);
2682 
2683 	fore200e_shutdown(fore200e);
2684 	kfree(fore200e);
2685 
2686 	return 0;
2687 }
2688 
2689 static const struct of_device_id fore200e_sba_match[] = {
2690 	{
2691 		.name = SBA200E_PROM_NAME,
2692 		.data = (void *) &fore200e_bus[1],
2693 	},
2694 	{},
2695 };
2696 MODULE_DEVICE_TABLE(of, fore200e_sba_match);
2697 
2698 static struct platform_driver fore200e_sba_driver = {
2699 	.driver = {
2700 		.name = "fore_200e",
2701 		.of_match_table = fore200e_sba_match,
2702 	},
2703 	.probe		= fore200e_sba_probe,
2704 	.remove		= fore200e_sba_remove,
2705 };
2706 #endif
2707 
2708 #ifdef CONFIG_PCI
fore200e_pca_detect(struct pci_dev * pci_dev,const struct pci_device_id * pci_ent)2709 static int fore200e_pca_detect(struct pci_dev *pci_dev,
2710 			       const struct pci_device_id *pci_ent)
2711 {
2712     const struct fore200e_bus* bus = (struct fore200e_bus*) pci_ent->driver_data;
2713     struct fore200e* fore200e;
2714     int err = 0;
2715     static int index = 0;
2716 
2717     if (pci_enable_device(pci_dev)) {
2718 	err = -EINVAL;
2719 	goto out;
2720     }
2721 
2722     if (dma_set_mask_and_coherent(&pci_dev->dev, DMA_BIT_MASK(32))) {
2723 	err = -EINVAL;
2724 	goto out;
2725     }
2726 
2727     fore200e = kzalloc(sizeof(struct fore200e), GFP_KERNEL);
2728     if (fore200e == NULL) {
2729 	err = -ENOMEM;
2730 	goto out_disable;
2731     }
2732 
2733     fore200e->bus       = bus;
2734     fore200e->bus_dev   = pci_dev;
2735     fore200e->irq       = pci_dev->irq;
2736     fore200e->phys_base = pci_resource_start(pci_dev, 0);
2737 
2738     sprintf(fore200e->name, "%s-%d", bus->model_name, index - 1);
2739 
2740     pci_set_master(pci_dev);
2741 
2742     printk(FORE200E "device %s found at 0x%lx, IRQ %s\n",
2743 	   fore200e->bus->model_name,
2744 	   fore200e->phys_base, fore200e_irq_itoa(fore200e->irq));
2745 
2746     sprintf(fore200e->name, "%s-%d", bus->model_name, index);
2747 
2748     err = fore200e_init(fore200e, &pci_dev->dev);
2749     if (err < 0) {
2750 	fore200e_shutdown(fore200e);
2751 	goto out_free;
2752     }
2753 
2754     ++index;
2755     pci_set_drvdata(pci_dev, fore200e);
2756 
2757 out:
2758     return err;
2759 
2760 out_free:
2761     kfree(fore200e);
2762 out_disable:
2763     pci_disable_device(pci_dev);
2764     goto out;
2765 }
2766 
2767 
fore200e_pca_remove_one(struct pci_dev * pci_dev)2768 static void fore200e_pca_remove_one(struct pci_dev *pci_dev)
2769 {
2770     struct fore200e *fore200e;
2771 
2772     fore200e = pci_get_drvdata(pci_dev);
2773 
2774     fore200e_shutdown(fore200e);
2775     kfree(fore200e);
2776     pci_disable_device(pci_dev);
2777 }
2778 
2779 
2780 static const struct pci_device_id fore200e_pca_tbl[] = {
2781     { PCI_VENDOR_ID_FORE, PCI_DEVICE_ID_FORE_PCA200E, PCI_ANY_ID, PCI_ANY_ID,
2782       0, 0, (unsigned long) &fore200e_bus[0] },
2783     { 0, }
2784 };
2785 
2786 MODULE_DEVICE_TABLE(pci, fore200e_pca_tbl);
2787 
2788 static struct pci_driver fore200e_pca_driver = {
2789     .name =     "fore_200e",
2790     .probe =    fore200e_pca_detect,
2791     .remove =   fore200e_pca_remove_one,
2792     .id_table = fore200e_pca_tbl,
2793 };
2794 #endif
2795 
fore200e_module_init(void)2796 static int __init fore200e_module_init(void)
2797 {
2798 	int err = 0;
2799 
2800 	printk(FORE200E "FORE Systems 200E-series ATM driver - version " FORE200E_VERSION "\n");
2801 
2802 #ifdef CONFIG_SBUS
2803 	err = platform_driver_register(&fore200e_sba_driver);
2804 	if (err)
2805 		return err;
2806 #endif
2807 
2808 #ifdef CONFIG_PCI
2809 	err = pci_register_driver(&fore200e_pca_driver);
2810 #endif
2811 
2812 #ifdef CONFIG_SBUS
2813 	if (err)
2814 		platform_driver_unregister(&fore200e_sba_driver);
2815 #endif
2816 
2817 	return err;
2818 }
2819 
fore200e_module_cleanup(void)2820 static void __exit fore200e_module_cleanup(void)
2821 {
2822 #ifdef CONFIG_PCI
2823 	pci_unregister_driver(&fore200e_pca_driver);
2824 #endif
2825 #ifdef CONFIG_SBUS
2826 	platform_driver_unregister(&fore200e_sba_driver);
2827 #endif
2828 }
2829 
2830 static int
fore200e_proc_read(struct atm_dev * dev,loff_t * pos,char * page)2831 fore200e_proc_read(struct atm_dev *dev, loff_t* pos, char* page)
2832 {
2833     struct fore200e*     fore200e  = FORE200E_DEV(dev);
2834     struct fore200e_vcc* fore200e_vcc;
2835     struct atm_vcc*      vcc;
2836     int                  i, len, left = *pos;
2837     unsigned long        flags;
2838 
2839     if (!left--) {
2840 
2841 	if (fore200e_getstats(fore200e) < 0)
2842 	    return -EIO;
2843 
2844 	len = sprintf(page,"\n"
2845 		       " device:\n"
2846 		       "   internal name:\t\t%s\n", fore200e->name);
2847 
2848 	/* print bus-specific information */
2849 	if (fore200e->bus->proc_read)
2850 	    len += fore200e->bus->proc_read(fore200e, page + len);
2851 
2852 	len += sprintf(page + len,
2853 		"   interrupt line:\t\t%s\n"
2854 		"   physical base address:\t0x%p\n"
2855 		"   virtual base address:\t0x%p\n"
2856 		"   factory address (ESI):\t%pM\n"
2857 		"   board serial number:\t\t%d\n\n",
2858 		fore200e_irq_itoa(fore200e->irq),
2859 		(void*)fore200e->phys_base,
2860 		fore200e->virt_base,
2861 		fore200e->esi,
2862 		fore200e->esi[4] * 256 + fore200e->esi[5]);
2863 
2864 	return len;
2865     }
2866 
2867     if (!left--)
2868 	return sprintf(page,
2869 		       "   free small bufs, scheme 1:\t%d\n"
2870 		       "   free large bufs, scheme 1:\t%d\n"
2871 		       "   free small bufs, scheme 2:\t%d\n"
2872 		       "   free large bufs, scheme 2:\t%d\n",
2873 		       fore200e->host_bsq[ BUFFER_SCHEME_ONE ][ BUFFER_MAGN_SMALL ].freebuf_count,
2874 		       fore200e->host_bsq[ BUFFER_SCHEME_ONE ][ BUFFER_MAGN_LARGE ].freebuf_count,
2875 		       fore200e->host_bsq[ BUFFER_SCHEME_TWO ][ BUFFER_MAGN_SMALL ].freebuf_count,
2876 		       fore200e->host_bsq[ BUFFER_SCHEME_TWO ][ BUFFER_MAGN_LARGE ].freebuf_count);
2877 
2878     if (!left--) {
2879 	u32 hb = fore200e->bus->read(&fore200e->cp_queues->heartbeat);
2880 
2881 	len = sprintf(page,"\n\n"
2882 		      " cell processor:\n"
2883 		      "   heartbeat state:\t\t");
2884 
2885 	if (hb >> 16 != 0xDEAD)
2886 	    len += sprintf(page + len, "0x%08x\n", hb);
2887 	else
2888 	    len += sprintf(page + len, "*** FATAL ERROR %04x ***\n", hb & 0xFFFF);
2889 
2890 	return len;
2891     }
2892 
2893     if (!left--) {
2894 	static const char* media_name[] = {
2895 	    "unshielded twisted pair",
2896 	    "multimode optical fiber ST",
2897 	    "multimode optical fiber SC",
2898 	    "single-mode optical fiber ST",
2899 	    "single-mode optical fiber SC",
2900 	    "unknown"
2901 	};
2902 
2903 	static const char* oc3_mode[] = {
2904 	    "normal operation",
2905 	    "diagnostic loopback",
2906 	    "line loopback",
2907 	    "unknown"
2908 	};
2909 
2910 	u32 fw_release     = fore200e->bus->read(&fore200e->cp_queues->fw_release);
2911 	u32 mon960_release = fore200e->bus->read(&fore200e->cp_queues->mon960_release);
2912 	u32 oc3_revision   = fore200e->bus->read(&fore200e->cp_queues->oc3_revision);
2913 	u32 media_index    = FORE200E_MEDIA_INDEX(fore200e->bus->read(&fore200e->cp_queues->media_type));
2914 	u32 oc3_index;
2915 
2916 	if (media_index > 4)
2917 		media_index = 5;
2918 
2919 	switch (fore200e->loop_mode) {
2920 	    case ATM_LM_NONE:    oc3_index = 0;
2921 		                 break;
2922 	    case ATM_LM_LOC_PHY: oc3_index = 1;
2923 		                 break;
2924 	    case ATM_LM_RMT_PHY: oc3_index = 2;
2925 		                 break;
2926 	    default:             oc3_index = 3;
2927 	}
2928 
2929 	return sprintf(page,
2930 		       "   firmware release:\t\t%d.%d.%d\n"
2931 		       "   monitor release:\t\t%d.%d\n"
2932 		       "   media type:\t\t\t%s\n"
2933 		       "   OC-3 revision:\t\t0x%x\n"
2934                        "   OC-3 mode:\t\t\t%s",
2935 		       fw_release >> 16, fw_release << 16 >> 24,  fw_release << 24 >> 24,
2936 		       mon960_release >> 16, mon960_release << 16 >> 16,
2937 		       media_name[ media_index ],
2938 		       oc3_revision,
2939 		       oc3_mode[ oc3_index ]);
2940     }
2941 
2942     if (!left--) {
2943 	struct cp_monitor __iomem * cp_monitor = fore200e->cp_monitor;
2944 
2945 	return sprintf(page,
2946 		       "\n\n"
2947 		       " monitor:\n"
2948 		       "   version number:\t\t%d\n"
2949 		       "   boot status word:\t\t0x%08x\n",
2950 		       fore200e->bus->read(&cp_monitor->mon_version),
2951 		       fore200e->bus->read(&cp_monitor->bstat));
2952     }
2953 
2954     if (!left--)
2955 	return sprintf(page,
2956 		       "\n"
2957 		       " device statistics:\n"
2958 		       "  4b5b:\n"
2959 		       "     crc_header_errors:\t\t%10u\n"
2960 		       "     framing_errors:\t\t%10u\n",
2961 		       be32_to_cpu(fore200e->stats->phy.crc_header_errors),
2962 		       be32_to_cpu(fore200e->stats->phy.framing_errors));
2963 
2964     if (!left--)
2965 	return sprintf(page, "\n"
2966 		       "  OC-3:\n"
2967 		       "     section_bip8_errors:\t%10u\n"
2968 		       "     path_bip8_errors:\t\t%10u\n"
2969 		       "     line_bip24_errors:\t\t%10u\n"
2970 		       "     line_febe_errors:\t\t%10u\n"
2971 		       "     path_febe_errors:\t\t%10u\n"
2972 		       "     corr_hcs_errors:\t\t%10u\n"
2973 		       "     ucorr_hcs_errors:\t\t%10u\n",
2974 		       be32_to_cpu(fore200e->stats->oc3.section_bip8_errors),
2975 		       be32_to_cpu(fore200e->stats->oc3.path_bip8_errors),
2976 		       be32_to_cpu(fore200e->stats->oc3.line_bip24_errors),
2977 		       be32_to_cpu(fore200e->stats->oc3.line_febe_errors),
2978 		       be32_to_cpu(fore200e->stats->oc3.path_febe_errors),
2979 		       be32_to_cpu(fore200e->stats->oc3.corr_hcs_errors),
2980 		       be32_to_cpu(fore200e->stats->oc3.ucorr_hcs_errors));
2981 
2982     if (!left--)
2983 	return sprintf(page,"\n"
2984 		       "   ATM:\t\t\t\t     cells\n"
2985 		       "     TX:\t\t\t%10u\n"
2986 		       "     RX:\t\t\t%10u\n"
2987 		       "     vpi out of range:\t\t%10u\n"
2988 		       "     vpi no conn:\t\t%10u\n"
2989 		       "     vci out of range:\t\t%10u\n"
2990 		       "     vci no conn:\t\t%10u\n",
2991 		       be32_to_cpu(fore200e->stats->atm.cells_transmitted),
2992 		       be32_to_cpu(fore200e->stats->atm.cells_received),
2993 		       be32_to_cpu(fore200e->stats->atm.vpi_bad_range),
2994 		       be32_to_cpu(fore200e->stats->atm.vpi_no_conn),
2995 		       be32_to_cpu(fore200e->stats->atm.vci_bad_range),
2996 		       be32_to_cpu(fore200e->stats->atm.vci_no_conn));
2997 
2998     if (!left--)
2999 	return sprintf(page,"\n"
3000 		       "   AAL0:\t\t\t     cells\n"
3001 		       "     TX:\t\t\t%10u\n"
3002 		       "     RX:\t\t\t%10u\n"
3003 		       "     dropped:\t\t\t%10u\n",
3004 		       be32_to_cpu(fore200e->stats->aal0.cells_transmitted),
3005 		       be32_to_cpu(fore200e->stats->aal0.cells_received),
3006 		       be32_to_cpu(fore200e->stats->aal0.cells_dropped));
3007 
3008     if (!left--)
3009 	return sprintf(page,"\n"
3010 		       "   AAL3/4:\n"
3011 		       "     SAR sublayer:\t\t     cells\n"
3012 		       "       TX:\t\t\t%10u\n"
3013 		       "       RX:\t\t\t%10u\n"
3014 		       "       dropped:\t\t\t%10u\n"
3015 		       "       CRC errors:\t\t%10u\n"
3016 		       "       protocol errors:\t\t%10u\n\n"
3017 		       "     CS  sublayer:\t\t      PDUs\n"
3018 		       "       TX:\t\t\t%10u\n"
3019 		       "       RX:\t\t\t%10u\n"
3020 		       "       dropped:\t\t\t%10u\n"
3021 		       "       protocol errors:\t\t%10u\n",
3022 		       be32_to_cpu(fore200e->stats->aal34.cells_transmitted),
3023 		       be32_to_cpu(fore200e->stats->aal34.cells_received),
3024 		       be32_to_cpu(fore200e->stats->aal34.cells_dropped),
3025 		       be32_to_cpu(fore200e->stats->aal34.cells_crc_errors),
3026 		       be32_to_cpu(fore200e->stats->aal34.cells_protocol_errors),
3027 		       be32_to_cpu(fore200e->stats->aal34.cspdus_transmitted),
3028 		       be32_to_cpu(fore200e->stats->aal34.cspdus_received),
3029 		       be32_to_cpu(fore200e->stats->aal34.cspdus_dropped),
3030 		       be32_to_cpu(fore200e->stats->aal34.cspdus_protocol_errors));
3031 
3032     if (!left--)
3033 	return sprintf(page,"\n"
3034 		       "   AAL5:\n"
3035 		       "     SAR sublayer:\t\t     cells\n"
3036 		       "       TX:\t\t\t%10u\n"
3037 		       "       RX:\t\t\t%10u\n"
3038 		       "       dropped:\t\t\t%10u\n"
3039 		       "       congestions:\t\t%10u\n\n"
3040 		       "     CS  sublayer:\t\t      PDUs\n"
3041 		       "       TX:\t\t\t%10u\n"
3042 		       "       RX:\t\t\t%10u\n"
3043 		       "       dropped:\t\t\t%10u\n"
3044 		       "       CRC errors:\t\t%10u\n"
3045 		       "       protocol errors:\t\t%10u\n",
3046 		       be32_to_cpu(fore200e->stats->aal5.cells_transmitted),
3047 		       be32_to_cpu(fore200e->stats->aal5.cells_received),
3048 		       be32_to_cpu(fore200e->stats->aal5.cells_dropped),
3049 		       be32_to_cpu(fore200e->stats->aal5.congestion_experienced),
3050 		       be32_to_cpu(fore200e->stats->aal5.cspdus_transmitted),
3051 		       be32_to_cpu(fore200e->stats->aal5.cspdus_received),
3052 		       be32_to_cpu(fore200e->stats->aal5.cspdus_dropped),
3053 		       be32_to_cpu(fore200e->stats->aal5.cspdus_crc_errors),
3054 		       be32_to_cpu(fore200e->stats->aal5.cspdus_protocol_errors));
3055 
3056     if (!left--)
3057 	return sprintf(page,"\n"
3058 		       "   AUX:\t\t       allocation failures\n"
3059 		       "     small b1:\t\t\t%10u\n"
3060 		       "     large b1:\t\t\t%10u\n"
3061 		       "     small b2:\t\t\t%10u\n"
3062 		       "     large b2:\t\t\t%10u\n"
3063 		       "     RX PDUs:\t\t\t%10u\n"
3064 		       "     TX PDUs:\t\t\t%10lu\n",
3065 		       be32_to_cpu(fore200e->stats->aux.small_b1_failed),
3066 		       be32_to_cpu(fore200e->stats->aux.large_b1_failed),
3067 		       be32_to_cpu(fore200e->stats->aux.small_b2_failed),
3068 		       be32_to_cpu(fore200e->stats->aux.large_b2_failed),
3069 		       be32_to_cpu(fore200e->stats->aux.rpd_alloc_failed),
3070 		       fore200e->tx_sat);
3071 
3072     if (!left--)
3073 	return sprintf(page,"\n"
3074 		       " receive carrier:\t\t\t%s\n",
3075 		       fore200e->stats->aux.receive_carrier ? "ON" : "OFF!");
3076 
3077     if (!left--) {
3078         return sprintf(page,"\n"
3079 		       " VCCs:\n  address   VPI VCI   AAL "
3080 		       "TX PDUs   TX min/max size  RX PDUs   RX min/max size\n");
3081     }
3082 
3083     for (i = 0; i < NBR_CONNECT; i++) {
3084 
3085 	vcc = fore200e->vc_map[i].vcc;
3086 
3087 	if (vcc == NULL)
3088 	    continue;
3089 
3090 	spin_lock_irqsave(&fore200e->q_lock, flags);
3091 
3092 	if (vcc && test_bit(ATM_VF_READY, &vcc->flags) && !left--) {
3093 
3094 	    fore200e_vcc = FORE200E_VCC(vcc);
3095 	    ASSERT(fore200e_vcc);
3096 
3097 	    len = sprintf(page,
3098 			  "  %pK  %03d %05d %1d   %09lu %05d/%05d      %09lu %05d/%05d\n",
3099 			  vcc,
3100 			  vcc->vpi, vcc->vci, fore200e_atm2fore_aal(vcc->qos.aal),
3101 			  fore200e_vcc->tx_pdu,
3102 			  fore200e_vcc->tx_min_pdu > 0xFFFF ? 0 : fore200e_vcc->tx_min_pdu,
3103 			  fore200e_vcc->tx_max_pdu,
3104 			  fore200e_vcc->rx_pdu,
3105 			  fore200e_vcc->rx_min_pdu > 0xFFFF ? 0 : fore200e_vcc->rx_min_pdu,
3106 			  fore200e_vcc->rx_max_pdu);
3107 
3108 	    spin_unlock_irqrestore(&fore200e->q_lock, flags);
3109 	    return len;
3110 	}
3111 
3112 	spin_unlock_irqrestore(&fore200e->q_lock, flags);
3113     }
3114 
3115     return 0;
3116 }
3117 
3118 module_init(fore200e_module_init);
3119 module_exit(fore200e_module_cleanup);
3120 
3121 
3122 static const struct atmdev_ops fore200e_ops =
3123 {
3124 	.open       = fore200e_open,
3125 	.close      = fore200e_close,
3126 	.ioctl      = fore200e_ioctl,
3127 	.getsockopt = fore200e_getsockopt,
3128 	.setsockopt = fore200e_setsockopt,
3129 	.send       = fore200e_send,
3130 	.change_qos = fore200e_change_qos,
3131 	.proc_read  = fore200e_proc_read,
3132 	.owner      = THIS_MODULE
3133 };
3134 
3135 
3136 static const struct fore200e_bus fore200e_bus[] = {
3137 #ifdef CONFIG_PCI
3138     { "PCA-200E", "pca200e", 32, 4, 32,
3139       fore200e_pca_read,
3140       fore200e_pca_write,
3141       fore200e_pca_dma_map,
3142       fore200e_pca_dma_unmap,
3143       fore200e_pca_dma_sync_for_cpu,
3144       fore200e_pca_dma_sync_for_device,
3145       fore200e_pca_dma_chunk_alloc,
3146       fore200e_pca_dma_chunk_free,
3147       fore200e_pca_configure,
3148       fore200e_pca_map,
3149       fore200e_pca_reset,
3150       fore200e_pca_prom_read,
3151       fore200e_pca_unmap,
3152       NULL,
3153       fore200e_pca_irq_check,
3154       fore200e_pca_irq_ack,
3155       fore200e_pca_proc_read,
3156     },
3157 #endif
3158 #ifdef CONFIG_SBUS
3159     { "SBA-200E", "sba200e", 32, 64, 32,
3160       fore200e_sba_read,
3161       fore200e_sba_write,
3162       fore200e_sba_dma_map,
3163       fore200e_sba_dma_unmap,
3164       fore200e_sba_dma_sync_for_cpu,
3165       fore200e_sba_dma_sync_for_device,
3166       fore200e_sba_dma_chunk_alloc,
3167       fore200e_sba_dma_chunk_free,
3168       fore200e_sba_configure,
3169       fore200e_sba_map,
3170       fore200e_sba_reset,
3171       fore200e_sba_prom_read,
3172       fore200e_sba_unmap,
3173       fore200e_sba_irq_enable,
3174       fore200e_sba_irq_check,
3175       fore200e_sba_irq_ack,
3176       fore200e_sba_proc_read,
3177     },
3178 #endif
3179     {}
3180 };
3181 
3182 MODULE_LICENSE("GPL");
3183 #ifdef CONFIG_PCI
3184 #ifdef __LITTLE_ENDIAN__
3185 MODULE_FIRMWARE("pca200e.bin");
3186 #else
3187 MODULE_FIRMWARE("pca200e_ecd.bin2");
3188 #endif
3189 #endif /* CONFIG_PCI */
3190 #ifdef CONFIG_SBUS
3191 MODULE_FIRMWARE("sba200e_ecd.bin2");
3192 #endif
3193