• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  *  linux/drivers/block/loop.c
3  *
4  *  Written by Theodore Ts'o, 3/29/93
5  *
6  * Copyright 1993 by Theodore Ts'o.  Redistribution of this file is
7  * permitted under the GNU General Public License.
8  *
9  * DES encryption plus some minor changes by Werner Almesberger, 30-MAY-1993
10  * more DES encryption plus IDEA encryption by Nicholas J. Leon, June 20, 1996
11  *
12  * Modularized and updated for 1.1.16 kernel - Mitch Dsouza 28th May 1994
13  * Adapted for 1.3.59 kernel - Andries Brouwer, 1 Feb 1996
14  *
15  * Fixed do_loop_request() re-entrancy - Vincent.Renardias@waw.com Mar 20, 1997
16  *
17  * Added devfs support - Richard Gooch <rgooch@atnf.csiro.au> 16-Jan-1998
18  *
19  * Handle sparse backing files correctly - Kenn Humborg, Jun 28, 1998
20  *
21  * Loadable modules and other fixes by AK, 1998
22  *
23  * Make real block number available to downstream transfer functions, enables
24  * CBC (and relatives) mode encryption requiring unique IVs per data block.
25  * Reed H. Petty, rhp@draper.net
26  *
27  * Maximum number of loop devices now dynamic via max_loop module parameter.
28  * Russell Kroll <rkroll@exploits.org> 19990701
29  *
30  * Maximum number of loop devices when compiled-in now selectable by passing
31  * max_loop=<1-255> to the kernel on boot.
32  * Erik I. Bolsø, <eriki@himolde.no>, Oct 31, 1999
33  *
34  * Completely rewrite request handling to be make_request_fn style and
35  * non blocking, pushing work to a helper thread. Lots of fixes from
36  * Al Viro too.
37  * Jens Axboe <axboe@suse.de>, Nov 2000
38  *
39  * Support up to 256 loop devices
40  * Heinz Mauelshagen <mge@sistina.com>, Feb 2002
41  *
42  * Support for falling back on the write file operation when the address space
43  * operations write_begin is not available on the backing filesystem.
44  * Anton Altaparmakov, 16 Feb 2005
45  *
46  * Still To Fix:
47  * - Advisory locking is ignored here.
48  * - Should use an own CAP_* category instead of CAP_SYS_ADMIN
49  *
50  */
51 
52 #include <linux/module.h>
53 #include <linux/moduleparam.h>
54 #include <linux/sched.h>
55 #include <linux/fs.h>
56 #include <linux/file.h>
57 #include <linux/stat.h>
58 #include <linux/errno.h>
59 #include <linux/major.h>
60 #include <linux/wait.h>
61 #include <linux/blkdev.h>
62 #include <linux/blkpg.h>
63 #include <linux/init.h>
64 #include <linux/swap.h>
65 #include <linux/slab.h>
66 #include <linux/compat.h>
67 #include <linux/suspend.h>
68 #include <linux/freezer.h>
69 #include <linux/mutex.h>
70 #include <linux/writeback.h>
71 #include <linux/completion.h>
72 #include <linux/highmem.h>
73 #include <linux/kthread.h>
74 #include <linux/splice.h>
75 #include <linux/sysfs.h>
76 #include <linux/miscdevice.h>
77 #include <linux/falloc.h>
78 #include <linux/uio.h>
79 #include <linux/ioprio.h>
80 
81 #include "loop.h"
82 
83 #include <linux/uaccess.h>
84 
85 static DEFINE_IDR(loop_index_idr);
86 static DEFINE_MUTEX(loop_ctl_mutex);
87 
88 static int max_part;
89 static int part_shift;
90 
transfer_xor(struct loop_device * lo,int cmd,struct page * raw_page,unsigned raw_off,struct page * loop_page,unsigned loop_off,int size,sector_t real_block)91 static int transfer_xor(struct loop_device *lo, int cmd,
92 			struct page *raw_page, unsigned raw_off,
93 			struct page *loop_page, unsigned loop_off,
94 			int size, sector_t real_block)
95 {
96 	char *raw_buf = kmap_atomic(raw_page) + raw_off;
97 	char *loop_buf = kmap_atomic(loop_page) + loop_off;
98 	char *in, *out, *key;
99 	int i, keysize;
100 
101 	if (cmd == READ) {
102 		in = raw_buf;
103 		out = loop_buf;
104 	} else {
105 		in = loop_buf;
106 		out = raw_buf;
107 	}
108 
109 	key = lo->lo_encrypt_key;
110 	keysize = lo->lo_encrypt_key_size;
111 	for (i = 0; i < size; i++)
112 		*out++ = *in++ ^ key[(i & 511) % keysize];
113 
114 	kunmap_atomic(loop_buf);
115 	kunmap_atomic(raw_buf);
116 	cond_resched();
117 	return 0;
118 }
119 
xor_init(struct loop_device * lo,const struct loop_info64 * info)120 static int xor_init(struct loop_device *lo, const struct loop_info64 *info)
121 {
122 	if (unlikely(info->lo_encrypt_key_size <= 0))
123 		return -EINVAL;
124 	return 0;
125 }
126 
127 static struct loop_func_table none_funcs = {
128 	.number = LO_CRYPT_NONE,
129 };
130 
131 static struct loop_func_table xor_funcs = {
132 	.number = LO_CRYPT_XOR,
133 	.transfer = transfer_xor,
134 	.init = xor_init
135 };
136 
137 /* xfer_funcs[0] is special - its release function is never called */
138 static struct loop_func_table *xfer_funcs[MAX_LO_CRYPT] = {
139 	&none_funcs,
140 	&xor_funcs
141 };
142 
get_size(loff_t offset,loff_t sizelimit,struct file * file)143 static loff_t get_size(loff_t offset, loff_t sizelimit, struct file *file)
144 {
145 	loff_t loopsize;
146 
147 	/* Compute loopsize in bytes */
148 	loopsize = i_size_read(file->f_mapping->host);
149 	if (offset > 0)
150 		loopsize -= offset;
151 	/* offset is beyond i_size, weird but possible */
152 	if (loopsize < 0)
153 		return 0;
154 
155 	if (sizelimit > 0 && sizelimit < loopsize)
156 		loopsize = sizelimit;
157 	/*
158 	 * Unfortunately, if we want to do I/O on the device,
159 	 * the number of 512-byte sectors has to fit into a sector_t.
160 	 */
161 	return loopsize >> 9;
162 }
163 
get_loop_size(struct loop_device * lo,struct file * file)164 static loff_t get_loop_size(struct loop_device *lo, struct file *file)
165 {
166 	return get_size(lo->lo_offset, lo->lo_sizelimit, file);
167 }
168 
__loop_update_dio(struct loop_device * lo,bool dio)169 static void __loop_update_dio(struct loop_device *lo, bool dio)
170 {
171 	struct file *file = lo->lo_backing_file;
172 	struct address_space *mapping = file->f_mapping;
173 	struct inode *inode = mapping->host;
174 	unsigned short sb_bsize = 0;
175 	unsigned dio_align = 0;
176 	bool use_dio;
177 
178 	if (inode->i_sb->s_bdev) {
179 		sb_bsize = bdev_logical_block_size(inode->i_sb->s_bdev);
180 		dio_align = sb_bsize - 1;
181 	}
182 
183 	/*
184 	 * We support direct I/O only if lo_offset is aligned with the
185 	 * logical I/O size of backing device, and the logical block
186 	 * size of loop is bigger than the backing device's and the loop
187 	 * needn't transform transfer.
188 	 *
189 	 * TODO: the above condition may be loosed in the future, and
190 	 * direct I/O may be switched runtime at that time because most
191 	 * of requests in sane applications should be PAGE_SIZE aligned
192 	 */
193 	if (dio) {
194 		if (queue_logical_block_size(lo->lo_queue) >= sb_bsize &&
195 				!(lo->lo_offset & dio_align) &&
196 				mapping->a_ops->direct_IO &&
197 				!lo->transfer)
198 			use_dio = true;
199 		else
200 			use_dio = false;
201 	} else {
202 		use_dio = false;
203 	}
204 
205 	if (lo->use_dio == use_dio)
206 		return;
207 
208 	/* flush dirty pages before changing direct IO */
209 	vfs_fsync(file, 0);
210 
211 	/*
212 	 * The flag of LO_FLAGS_DIRECT_IO is handled similarly with
213 	 * LO_FLAGS_READ_ONLY, both are set from kernel, and losetup
214 	 * will get updated by ioctl(LOOP_GET_STATUS)
215 	 */
216 	blk_mq_freeze_queue(lo->lo_queue);
217 	lo->use_dio = use_dio;
218 	if (use_dio) {
219 		blk_queue_flag_clear(QUEUE_FLAG_NOMERGES, lo->lo_queue);
220 		lo->lo_flags |= LO_FLAGS_DIRECT_IO;
221 	} else {
222 		blk_queue_flag_set(QUEUE_FLAG_NOMERGES, lo->lo_queue);
223 		lo->lo_flags &= ~LO_FLAGS_DIRECT_IO;
224 	}
225 	blk_mq_unfreeze_queue(lo->lo_queue);
226 }
227 
228 static int
figure_loop_size(struct loop_device * lo,loff_t offset,loff_t sizelimit)229 figure_loop_size(struct loop_device *lo, loff_t offset, loff_t sizelimit)
230 {
231 	loff_t size = get_size(offset, sizelimit, lo->lo_backing_file);
232 	sector_t x = (sector_t)size;
233 	struct block_device *bdev = lo->lo_device;
234 
235 	if (unlikely((loff_t)x != size))
236 		return -EFBIG;
237 	if (lo->lo_offset != offset)
238 		lo->lo_offset = offset;
239 	if (lo->lo_sizelimit != sizelimit)
240 		lo->lo_sizelimit = sizelimit;
241 	set_capacity(lo->lo_disk, x);
242 	bd_set_size(bdev, (loff_t)get_capacity(bdev->bd_disk) << 9);
243 	/* let user-space know about the new size */
244 	kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, KOBJ_CHANGE);
245 	return 0;
246 }
247 
248 static inline int
lo_do_transfer(struct loop_device * lo,int cmd,struct page * rpage,unsigned roffs,struct page * lpage,unsigned loffs,int size,sector_t rblock)249 lo_do_transfer(struct loop_device *lo, int cmd,
250 	       struct page *rpage, unsigned roffs,
251 	       struct page *lpage, unsigned loffs,
252 	       int size, sector_t rblock)
253 {
254 	int ret;
255 
256 	ret = lo->transfer(lo, cmd, rpage, roffs, lpage, loffs, size, rblock);
257 	if (likely(!ret))
258 		return 0;
259 
260 	printk_ratelimited(KERN_ERR
261 		"loop: Transfer error at byte offset %llu, length %i.\n",
262 		(unsigned long long)rblock << 9, size);
263 	return ret;
264 }
265 
lo_write_bvec(struct file * file,struct bio_vec * bvec,loff_t * ppos)266 static int lo_write_bvec(struct file *file, struct bio_vec *bvec, loff_t *ppos)
267 {
268 	struct iov_iter i;
269 	ssize_t bw;
270 
271 	iov_iter_bvec(&i, ITER_BVEC | WRITE, bvec, 1, bvec->bv_len);
272 
273 	file_start_write(file);
274 	bw = vfs_iter_write(file, &i, ppos, 0);
275 	file_end_write(file);
276 
277 	if (likely(bw ==  bvec->bv_len))
278 		return 0;
279 
280 	printk_ratelimited(KERN_ERR
281 		"loop: Write error at byte offset %llu, length %i.\n",
282 		(unsigned long long)*ppos, bvec->bv_len);
283 	if (bw >= 0)
284 		bw = -EIO;
285 	return bw;
286 }
287 
lo_write_simple(struct loop_device * lo,struct request * rq,loff_t pos)288 static int lo_write_simple(struct loop_device *lo, struct request *rq,
289 		loff_t pos)
290 {
291 	struct bio_vec bvec;
292 	struct req_iterator iter;
293 	int ret = 0;
294 
295 	rq_for_each_segment(bvec, rq, iter) {
296 		ret = lo_write_bvec(lo->lo_backing_file, &bvec, &pos);
297 		if (ret < 0)
298 			break;
299 		cond_resched();
300 	}
301 
302 	return ret;
303 }
304 
305 /*
306  * This is the slow, transforming version that needs to double buffer the
307  * data as it cannot do the transformations in place without having direct
308  * access to the destination pages of the backing file.
309  */
lo_write_transfer(struct loop_device * lo,struct request * rq,loff_t pos)310 static int lo_write_transfer(struct loop_device *lo, struct request *rq,
311 		loff_t pos)
312 {
313 	struct bio_vec bvec, b;
314 	struct req_iterator iter;
315 	struct page *page;
316 	int ret = 0;
317 
318 	page = alloc_page(GFP_NOIO);
319 	if (unlikely(!page))
320 		return -ENOMEM;
321 
322 	rq_for_each_segment(bvec, rq, iter) {
323 		ret = lo_do_transfer(lo, WRITE, page, 0, bvec.bv_page,
324 			bvec.bv_offset, bvec.bv_len, pos >> 9);
325 		if (unlikely(ret))
326 			break;
327 
328 		b.bv_page = page;
329 		b.bv_offset = 0;
330 		b.bv_len = bvec.bv_len;
331 		ret = lo_write_bvec(lo->lo_backing_file, &b, &pos);
332 		if (ret < 0)
333 			break;
334 	}
335 
336 	__free_page(page);
337 	return ret;
338 }
339 
lo_read_simple(struct loop_device * lo,struct request * rq,loff_t pos)340 static int lo_read_simple(struct loop_device *lo, struct request *rq,
341 		loff_t pos)
342 {
343 	struct bio_vec bvec;
344 	struct req_iterator iter;
345 	struct iov_iter i;
346 	ssize_t len;
347 
348 	rq_for_each_segment(bvec, rq, iter) {
349 		iov_iter_bvec(&i, ITER_BVEC, &bvec, 1, bvec.bv_len);
350 		len = vfs_iter_read(lo->lo_backing_file, &i, &pos, 0);
351 		if (len < 0)
352 			return len;
353 
354 		flush_dcache_page(bvec.bv_page);
355 
356 		if (len != bvec.bv_len) {
357 			struct bio *bio;
358 
359 			__rq_for_each_bio(bio, rq)
360 				zero_fill_bio(bio);
361 			break;
362 		}
363 		cond_resched();
364 	}
365 
366 	return 0;
367 }
368 
lo_read_transfer(struct loop_device * lo,struct request * rq,loff_t pos)369 static int lo_read_transfer(struct loop_device *lo, struct request *rq,
370 		loff_t pos)
371 {
372 	struct bio_vec bvec, b;
373 	struct req_iterator iter;
374 	struct iov_iter i;
375 	struct page *page;
376 	ssize_t len;
377 	int ret = 0;
378 
379 	page = alloc_page(GFP_NOIO);
380 	if (unlikely(!page))
381 		return -ENOMEM;
382 
383 	rq_for_each_segment(bvec, rq, iter) {
384 		loff_t offset = pos;
385 
386 		b.bv_page = page;
387 		b.bv_offset = 0;
388 		b.bv_len = bvec.bv_len;
389 
390 		iov_iter_bvec(&i, ITER_BVEC, &b, 1, b.bv_len);
391 		len = vfs_iter_read(lo->lo_backing_file, &i, &pos, 0);
392 		if (len < 0) {
393 			ret = len;
394 			goto out_free_page;
395 		}
396 
397 		ret = lo_do_transfer(lo, READ, page, 0, bvec.bv_page,
398 			bvec.bv_offset, len, offset >> 9);
399 		if (ret)
400 			goto out_free_page;
401 
402 		flush_dcache_page(bvec.bv_page);
403 
404 		if (len != bvec.bv_len) {
405 			struct bio *bio;
406 
407 			__rq_for_each_bio(bio, rq)
408 				zero_fill_bio(bio);
409 			break;
410 		}
411 	}
412 
413 	ret = 0;
414 out_free_page:
415 	__free_page(page);
416 	return ret;
417 }
418 
lo_fallocate(struct loop_device * lo,struct request * rq,loff_t pos,int mode)419 static int lo_fallocate(struct loop_device *lo, struct request *rq, loff_t pos,
420 			int mode)
421 {
422 	/*
423 	 * We use fallocate to manipulate the space mappings used by the image
424 	 * a.k.a. discard/zerorange. However we do not support this if
425 	 * encryption is enabled, because it may give an attacker useful
426 	 * information.
427 	 */
428 	struct file *file = lo->lo_backing_file;
429 	struct request_queue *q = lo->lo_queue;
430 	int ret;
431 
432 	mode |= FALLOC_FL_KEEP_SIZE;
433 
434 	if (!blk_queue_discard(q)) {
435 		ret = -EOPNOTSUPP;
436 		goto out;
437 	}
438 
439 	ret = file->f_op->fallocate(file, mode, pos, blk_rq_bytes(rq));
440 	if (unlikely(ret && ret != -EINVAL && ret != -EOPNOTSUPP))
441 		ret = -EIO;
442  out:
443 	return ret;
444 }
445 
lo_req_flush(struct loop_device * lo,struct request * rq)446 static int lo_req_flush(struct loop_device *lo, struct request *rq)
447 {
448 	struct file *file = lo->lo_backing_file;
449 	int ret = vfs_fsync(file, 0);
450 	if (unlikely(ret && ret != -EINVAL))
451 		ret = -EIO;
452 
453 	return ret;
454 }
455 
lo_complete_rq(struct request * rq)456 static void lo_complete_rq(struct request *rq)
457 {
458 	struct loop_cmd *cmd = blk_mq_rq_to_pdu(rq);
459 	blk_status_t ret = BLK_STS_OK;
460 
461 	if (!cmd->use_aio || cmd->ret < 0 || cmd->ret == blk_rq_bytes(rq) ||
462 	    req_op(rq) != REQ_OP_READ) {
463 		if (cmd->ret < 0)
464 			ret = BLK_STS_IOERR;
465 		goto end_io;
466 	}
467 
468 	/*
469 	 * Short READ - if we got some data, advance our request and
470 	 * retry it. If we got no data, end the rest with EIO.
471 	 */
472 	if (cmd->ret) {
473 		blk_update_request(rq, BLK_STS_OK, cmd->ret);
474 		cmd->ret = 0;
475 		blk_mq_requeue_request(rq, true);
476 	} else {
477 		if (cmd->use_aio) {
478 			struct bio *bio = rq->bio;
479 
480 			while (bio) {
481 				zero_fill_bio(bio);
482 				bio = bio->bi_next;
483 			}
484 		}
485 		ret = BLK_STS_IOERR;
486 end_io:
487 		blk_mq_end_request(rq, ret);
488 	}
489 }
490 
lo_rw_aio_do_completion(struct loop_cmd * cmd)491 static void lo_rw_aio_do_completion(struct loop_cmd *cmd)
492 {
493 	struct request *rq = blk_mq_rq_from_pdu(cmd);
494 
495 	if (!atomic_dec_and_test(&cmd->ref))
496 		return;
497 	kfree(cmd->bvec);
498 	cmd->bvec = NULL;
499 	blk_mq_complete_request(rq);
500 }
501 
lo_rw_aio_complete(struct kiocb * iocb,long ret,long ret2)502 static void lo_rw_aio_complete(struct kiocb *iocb, long ret, long ret2)
503 {
504 	struct loop_cmd *cmd = container_of(iocb, struct loop_cmd, iocb);
505 
506 	if (cmd->css)
507 		css_put(cmd->css);
508 	cmd->ret = ret;
509 	lo_rw_aio_do_completion(cmd);
510 }
511 
lo_rw_aio(struct loop_device * lo,struct loop_cmd * cmd,loff_t pos,bool rw)512 static int lo_rw_aio(struct loop_device *lo, struct loop_cmd *cmd,
513 		     loff_t pos, bool rw)
514 {
515 	struct iov_iter iter;
516 	struct bio_vec *bvec;
517 	struct request *rq = blk_mq_rq_from_pdu(cmd);
518 	struct bio *bio = rq->bio;
519 	struct file *file = lo->lo_backing_file;
520 	unsigned int offset;
521 	int segments = 0;
522 	int ret;
523 
524 	if (rq->bio != rq->biotail) {
525 		struct req_iterator iter;
526 		struct bio_vec tmp;
527 
528 		__rq_for_each_bio(bio, rq)
529 			segments += bio_segments(bio);
530 		bvec = kmalloc_array(segments, sizeof(struct bio_vec),
531 				     GFP_NOIO);
532 		if (!bvec)
533 			return -EIO;
534 		cmd->bvec = bvec;
535 
536 		/*
537 		 * The bios of the request may be started from the middle of
538 		 * the 'bvec' because of bio splitting, so we can't directly
539 		 * copy bio->bi_iov_vec to new bvec. The rq_for_each_segment
540 		 * API will take care of all details for us.
541 		 */
542 		rq_for_each_segment(tmp, rq, iter) {
543 			*bvec = tmp;
544 			bvec++;
545 		}
546 		bvec = cmd->bvec;
547 		offset = 0;
548 	} else {
549 		/*
550 		 * Same here, this bio may be started from the middle of the
551 		 * 'bvec' because of bio splitting, so offset from the bvec
552 		 * must be passed to iov iterator
553 		 */
554 		offset = bio->bi_iter.bi_bvec_done;
555 		bvec = __bvec_iter_bvec(bio->bi_io_vec, bio->bi_iter);
556 		segments = bio_segments(bio);
557 	}
558 	atomic_set(&cmd->ref, 2);
559 
560 	iov_iter_bvec(&iter, ITER_BVEC | rw, bvec,
561 		      segments, blk_rq_bytes(rq));
562 	iter.iov_offset = offset;
563 
564 	cmd->iocb.ki_pos = pos;
565 	cmd->iocb.ki_filp = file;
566 	cmd->iocb.ki_complete = lo_rw_aio_complete;
567 	cmd->iocb.ki_flags = IOCB_DIRECT;
568 	cmd->iocb.ki_ioprio = IOPRIO_PRIO_VALUE(IOPRIO_CLASS_NONE, 0);
569 	if (cmd->css)
570 		kthread_associate_blkcg(cmd->css);
571 
572 	if (rw == WRITE)
573 		ret = call_write_iter(file, &cmd->iocb, &iter);
574 	else
575 		ret = call_read_iter(file, &cmd->iocb, &iter);
576 
577 	lo_rw_aio_do_completion(cmd);
578 	kthread_associate_blkcg(NULL);
579 
580 	if (ret != -EIOCBQUEUED)
581 		cmd->iocb.ki_complete(&cmd->iocb, ret, 0);
582 	return 0;
583 }
584 
do_req_filebacked(struct loop_device * lo,struct request * rq)585 static int do_req_filebacked(struct loop_device *lo, struct request *rq)
586 {
587 	struct loop_cmd *cmd = blk_mq_rq_to_pdu(rq);
588 	loff_t pos = ((loff_t) blk_rq_pos(rq) << 9) + lo->lo_offset;
589 
590 	/*
591 	 * lo_write_simple and lo_read_simple should have been covered
592 	 * by io submit style function like lo_rw_aio(), one blocker
593 	 * is that lo_read_simple() need to call flush_dcache_page after
594 	 * the page is written from kernel, and it isn't easy to handle
595 	 * this in io submit style function which submits all segments
596 	 * of the req at one time. And direct read IO doesn't need to
597 	 * run flush_dcache_page().
598 	 */
599 	switch (req_op(rq)) {
600 	case REQ_OP_FLUSH:
601 		return lo_req_flush(lo, rq);
602 	case REQ_OP_WRITE_ZEROES:
603 		/*
604 		 * If the caller doesn't want deallocation, call zeroout to
605 		 * write zeroes the range.  Otherwise, punch them out.
606 		 */
607 		return lo_fallocate(lo, rq, pos,
608 			(rq->cmd_flags & REQ_NOUNMAP) ?
609 				FALLOC_FL_ZERO_RANGE :
610 				FALLOC_FL_PUNCH_HOLE);
611 	case REQ_OP_DISCARD:
612 		return lo_fallocate(lo, rq, pos, FALLOC_FL_PUNCH_HOLE);
613 	case REQ_OP_WRITE:
614 		if (lo->transfer)
615 			return lo_write_transfer(lo, rq, pos);
616 		else if (cmd->use_aio)
617 			return lo_rw_aio(lo, cmd, pos, WRITE);
618 		else
619 			return lo_write_simple(lo, rq, pos);
620 	case REQ_OP_READ:
621 		if (lo->transfer)
622 			return lo_read_transfer(lo, rq, pos);
623 		else if (cmd->use_aio)
624 			return lo_rw_aio(lo, cmd, pos, READ);
625 		else
626 			return lo_read_simple(lo, rq, pos);
627 	default:
628 		WARN_ON_ONCE(1);
629 		return -EIO;
630 		break;
631 	}
632 }
633 
loop_update_dio(struct loop_device * lo)634 static inline void loop_update_dio(struct loop_device *lo)
635 {
636 	__loop_update_dio(lo, io_is_direct(lo->lo_backing_file) |
637 			lo->use_dio);
638 }
639 
loop_reread_partitions(struct loop_device * lo,struct block_device * bdev)640 static void loop_reread_partitions(struct loop_device *lo,
641 				   struct block_device *bdev)
642 {
643 	int rc;
644 
645 	rc = blkdev_reread_part(bdev);
646 	if (rc)
647 		pr_warn("%s: partition scan of loop%d (%s) failed (rc=%d)\n",
648 			__func__, lo->lo_number, lo->lo_file_name, rc);
649 }
650 
is_loop_device(struct file * file)651 static inline int is_loop_device(struct file *file)
652 {
653 	struct inode *i = file->f_mapping->host;
654 
655 	return i && S_ISBLK(i->i_mode) && MAJOR(i->i_rdev) == LOOP_MAJOR;
656 }
657 
loop_validate_file(struct file * file,struct block_device * bdev)658 static int loop_validate_file(struct file *file, struct block_device *bdev)
659 {
660 	struct inode	*inode = file->f_mapping->host;
661 	struct file	*f = file;
662 
663 	/* Avoid recursion */
664 	while (is_loop_device(f)) {
665 		struct loop_device *l;
666 
667 		if (f->f_mapping->host->i_bdev == bdev)
668 			return -EBADF;
669 
670 		l = f->f_mapping->host->i_bdev->bd_disk->private_data;
671 		if (l->lo_state != Lo_bound) {
672 			return -EINVAL;
673 		}
674 		f = l->lo_backing_file;
675 	}
676 	if (!S_ISREG(inode->i_mode) && !S_ISBLK(inode->i_mode))
677 		return -EINVAL;
678 	return 0;
679 }
680 
681 /*
682  * loop_change_fd switched the backing store of a loopback device to
683  * a new file. This is useful for operating system installers to free up
684  * the original file and in High Availability environments to switch to
685  * an alternative location for the content in case of server meltdown.
686  * This can only work if the loop device is used read-only, and if the
687  * new backing store is the same size and type as the old backing store.
688  */
loop_change_fd(struct loop_device * lo,struct block_device * bdev,unsigned int arg)689 static int loop_change_fd(struct loop_device *lo, struct block_device *bdev,
690 			  unsigned int arg)
691 {
692 	struct file	*file = NULL, *old_file;
693 	int		error;
694 	bool		partscan;
695 
696 	error = mutex_lock_killable(&loop_ctl_mutex);
697 	if (error)
698 		return error;
699 	error = -ENXIO;
700 	if (lo->lo_state != Lo_bound)
701 		goto out_err;
702 
703 	/* the loop device has to be read-only */
704 	error = -EINVAL;
705 	if (!(lo->lo_flags & LO_FLAGS_READ_ONLY))
706 		goto out_err;
707 
708 	error = -EBADF;
709 	file = fget(arg);
710 	if (!file)
711 		goto out_err;
712 
713 	error = loop_validate_file(file, bdev);
714 	if (error)
715 		goto out_err;
716 
717 	old_file = lo->lo_backing_file;
718 
719 	error = -EINVAL;
720 
721 	/* size of the new backing store needs to be the same */
722 	if (get_loop_size(lo, file) != get_loop_size(lo, old_file))
723 		goto out_err;
724 
725 	/* and ... switch */
726 	blk_mq_freeze_queue(lo->lo_queue);
727 	mapping_set_gfp_mask(old_file->f_mapping, lo->old_gfp_mask);
728 	lo->lo_backing_file = file;
729 	lo->old_gfp_mask = mapping_gfp_mask(file->f_mapping);
730 	mapping_set_gfp_mask(file->f_mapping,
731 			     lo->old_gfp_mask & ~(__GFP_IO|__GFP_FS));
732 	loop_update_dio(lo);
733 	blk_mq_unfreeze_queue(lo->lo_queue);
734 	partscan = lo->lo_flags & LO_FLAGS_PARTSCAN;
735 	mutex_unlock(&loop_ctl_mutex);
736 	/*
737 	 * We must drop file reference outside of loop_ctl_mutex as dropping
738 	 * the file ref can take bd_mutex which creates circular locking
739 	 * dependency.
740 	 */
741 	fput(old_file);
742 	if (partscan)
743 		loop_reread_partitions(lo, bdev);
744 	return 0;
745 
746 out_err:
747 	mutex_unlock(&loop_ctl_mutex);
748 	if (file)
749 		fput(file);
750 	return error;
751 }
752 
753 /* loop sysfs attributes */
754 
loop_attr_show(struct device * dev,char * page,ssize_t (* callback)(struct loop_device *,char *))755 static ssize_t loop_attr_show(struct device *dev, char *page,
756 			      ssize_t (*callback)(struct loop_device *, char *))
757 {
758 	struct gendisk *disk = dev_to_disk(dev);
759 	struct loop_device *lo = disk->private_data;
760 
761 	return callback(lo, page);
762 }
763 
764 #define LOOP_ATTR_RO(_name)						\
765 static ssize_t loop_attr_##_name##_show(struct loop_device *, char *);	\
766 static ssize_t loop_attr_do_show_##_name(struct device *d,		\
767 				struct device_attribute *attr, char *b)	\
768 {									\
769 	return loop_attr_show(d, b, loop_attr_##_name##_show);		\
770 }									\
771 static struct device_attribute loop_attr_##_name =			\
772 	__ATTR(_name, 0444, loop_attr_do_show_##_name, NULL);
773 
loop_attr_backing_file_show(struct loop_device * lo,char * buf)774 static ssize_t loop_attr_backing_file_show(struct loop_device *lo, char *buf)
775 {
776 	ssize_t ret;
777 	char *p = NULL;
778 
779 	spin_lock_irq(&lo->lo_lock);
780 	if (lo->lo_backing_file)
781 		p = file_path(lo->lo_backing_file, buf, PAGE_SIZE - 1);
782 	spin_unlock_irq(&lo->lo_lock);
783 
784 	if (IS_ERR_OR_NULL(p))
785 		ret = PTR_ERR(p);
786 	else {
787 		ret = strlen(p);
788 		memmove(buf, p, ret);
789 		buf[ret++] = '\n';
790 		buf[ret] = 0;
791 	}
792 
793 	return ret;
794 }
795 
loop_attr_offset_show(struct loop_device * lo,char * buf)796 static ssize_t loop_attr_offset_show(struct loop_device *lo, char *buf)
797 {
798 	return sprintf(buf, "%llu\n", (unsigned long long)lo->lo_offset);
799 }
800 
loop_attr_sizelimit_show(struct loop_device * lo,char * buf)801 static ssize_t loop_attr_sizelimit_show(struct loop_device *lo, char *buf)
802 {
803 	return sprintf(buf, "%llu\n", (unsigned long long)lo->lo_sizelimit);
804 }
805 
loop_attr_autoclear_show(struct loop_device * lo,char * buf)806 static ssize_t loop_attr_autoclear_show(struct loop_device *lo, char *buf)
807 {
808 	int autoclear = (lo->lo_flags & LO_FLAGS_AUTOCLEAR);
809 
810 	return sprintf(buf, "%s\n", autoclear ? "1" : "0");
811 }
812 
loop_attr_partscan_show(struct loop_device * lo,char * buf)813 static ssize_t loop_attr_partscan_show(struct loop_device *lo, char *buf)
814 {
815 	int partscan = (lo->lo_flags & LO_FLAGS_PARTSCAN);
816 
817 	return sprintf(buf, "%s\n", partscan ? "1" : "0");
818 }
819 
loop_attr_dio_show(struct loop_device * lo,char * buf)820 static ssize_t loop_attr_dio_show(struct loop_device *lo, char *buf)
821 {
822 	int dio = (lo->lo_flags & LO_FLAGS_DIRECT_IO);
823 
824 	return sprintf(buf, "%s\n", dio ? "1" : "0");
825 }
826 
827 LOOP_ATTR_RO(backing_file);
828 LOOP_ATTR_RO(offset);
829 LOOP_ATTR_RO(sizelimit);
830 LOOP_ATTR_RO(autoclear);
831 LOOP_ATTR_RO(partscan);
832 LOOP_ATTR_RO(dio);
833 
834 static struct attribute *loop_attrs[] = {
835 	&loop_attr_backing_file.attr,
836 	&loop_attr_offset.attr,
837 	&loop_attr_sizelimit.attr,
838 	&loop_attr_autoclear.attr,
839 	&loop_attr_partscan.attr,
840 	&loop_attr_dio.attr,
841 	NULL,
842 };
843 
844 static struct attribute_group loop_attribute_group = {
845 	.name = "loop",
846 	.attrs= loop_attrs,
847 };
848 
loop_sysfs_init(struct loop_device * lo)849 static void loop_sysfs_init(struct loop_device *lo)
850 {
851 	lo->sysfs_inited = !sysfs_create_group(&disk_to_dev(lo->lo_disk)->kobj,
852 						&loop_attribute_group);
853 }
854 
loop_sysfs_exit(struct loop_device * lo)855 static void loop_sysfs_exit(struct loop_device *lo)
856 {
857 	if (lo->sysfs_inited)
858 		sysfs_remove_group(&disk_to_dev(lo->lo_disk)->kobj,
859 				   &loop_attribute_group);
860 }
861 
loop_config_discard(struct loop_device * lo)862 static void loop_config_discard(struct loop_device *lo)
863 {
864 	struct file *file = lo->lo_backing_file;
865 	struct inode *inode = file->f_mapping->host;
866 	struct request_queue *q = lo->lo_queue;
867 	u32 granularity, max_discard_sectors;
868 
869 	/*
870 	 * If the backing device is a block device, mirror its zeroing
871 	 * capability. Set the discard sectors to the block device's zeroing
872 	 * capabilities because loop discards result in blkdev_issue_zeroout(),
873 	 * not blkdev_issue_discard(). This maintains consistent behavior with
874 	 * file-backed loop devices: discarded regions read back as zero.
875 	 */
876 	if (S_ISBLK(inode->i_mode) && !lo->lo_encrypt_key_size) {
877 		struct request_queue *backingq;
878 
879 		backingq = bdev_get_queue(inode->i_bdev);
880 
881 		max_discard_sectors = backingq->limits.max_write_zeroes_sectors;
882 		granularity = backingq->limits.discard_granularity ?:
883 			queue_physical_block_size(backingq);
884 
885 	/*
886 	 * We use punch hole to reclaim the free space used by the
887 	 * image a.k.a. discard. However we do not support discard if
888 	 * encryption is enabled, because it may give an attacker
889 	 * useful information.
890 	 */
891 	} else if (!file->f_op->fallocate || lo->lo_encrypt_key_size) {
892 		max_discard_sectors = 0;
893 		granularity = 0;
894 
895 	} else {
896 		max_discard_sectors = UINT_MAX >> 9;
897 		granularity = inode->i_sb->s_blocksize;
898 	}
899 
900 	if (max_discard_sectors) {
901 		q->limits.discard_granularity = granularity;
902 		blk_queue_max_discard_sectors(q, max_discard_sectors);
903 		blk_queue_max_write_zeroes_sectors(q, max_discard_sectors);
904 		blk_queue_flag_set(QUEUE_FLAG_DISCARD, q);
905 	} else {
906 		q->limits.discard_granularity = 0;
907 		blk_queue_max_discard_sectors(q, 0);
908 		blk_queue_max_write_zeroes_sectors(q, 0);
909 		blk_queue_flag_clear(QUEUE_FLAG_DISCARD, q);
910 	}
911 	q->limits.discard_alignment = 0;
912 }
913 
loop_unprepare_queue(struct loop_device * lo)914 static void loop_unprepare_queue(struct loop_device *lo)
915 {
916 	kthread_flush_worker(&lo->worker);
917 	kthread_stop(lo->worker_task);
918 }
919 
loop_kthread_worker_fn(void * worker_ptr)920 static int loop_kthread_worker_fn(void *worker_ptr)
921 {
922 	current->flags |= PF_LESS_THROTTLE | PF_MEMALLOC_NOIO;
923 	return kthread_worker_fn(worker_ptr);
924 }
925 
loop_prepare_queue(struct loop_device * lo)926 static int loop_prepare_queue(struct loop_device *lo)
927 {
928 	kthread_init_worker(&lo->worker);
929 	lo->worker_task = kthread_run(loop_kthread_worker_fn,
930 			&lo->worker, "loop%d", lo->lo_number);
931 	if (IS_ERR(lo->worker_task))
932 		return -ENOMEM;
933 	set_user_nice(lo->worker_task, MIN_NICE);
934 	return 0;
935 }
936 
loop_set_fd(struct loop_device * lo,fmode_t mode,struct block_device * bdev,unsigned int arg)937 static int loop_set_fd(struct loop_device *lo, fmode_t mode,
938 		       struct block_device *bdev, unsigned int arg)
939 {
940 	struct file	*file;
941 	struct inode	*inode;
942 	struct address_space *mapping;
943 	int		lo_flags = 0;
944 	int		error;
945 	loff_t		size;
946 	bool		partscan;
947 
948 	/* This is safe, since we have a reference from open(). */
949 	__module_get(THIS_MODULE);
950 
951 	error = -EBADF;
952 	file = fget(arg);
953 	if (!file)
954 		goto out;
955 
956 	error = mutex_lock_killable(&loop_ctl_mutex);
957 	if (error)
958 		goto out_putf;
959 
960 	error = -EBUSY;
961 	if (lo->lo_state != Lo_unbound)
962 		goto out_unlock;
963 
964 	error = loop_validate_file(file, bdev);
965 	if (error)
966 		goto out_unlock;
967 
968 	mapping = file->f_mapping;
969 	inode = mapping->host;
970 
971 	if (!(file->f_mode & FMODE_WRITE) || !(mode & FMODE_WRITE) ||
972 	    !file->f_op->write_iter)
973 		lo_flags |= LO_FLAGS_READ_ONLY;
974 
975 	error = -EFBIG;
976 	size = get_loop_size(lo, file);
977 	if ((loff_t)(sector_t)size != size)
978 		goto out_unlock;
979 	error = loop_prepare_queue(lo);
980 	if (error)
981 		goto out_unlock;
982 
983 	error = 0;
984 
985 	set_device_ro(bdev, (lo_flags & LO_FLAGS_READ_ONLY) != 0);
986 
987 	lo->use_dio = false;
988 	lo->lo_device = bdev;
989 	lo->lo_flags = lo_flags;
990 	lo->lo_backing_file = file;
991 	lo->transfer = NULL;
992 	lo->ioctl = NULL;
993 	lo->lo_sizelimit = 0;
994 	lo->old_gfp_mask = mapping_gfp_mask(mapping);
995 	mapping_set_gfp_mask(mapping, lo->old_gfp_mask & ~(__GFP_IO|__GFP_FS));
996 
997 	if (!(lo_flags & LO_FLAGS_READ_ONLY) && file->f_op->fsync)
998 		blk_queue_write_cache(lo->lo_queue, true, false);
999 
1000 	loop_update_dio(lo);
1001 	set_capacity(lo->lo_disk, size);
1002 	bd_set_size(bdev, size << 9);
1003 	loop_sysfs_init(lo);
1004 	/* let user-space know about the new size */
1005 	kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, KOBJ_CHANGE);
1006 
1007 	set_blocksize(bdev, S_ISBLK(inode->i_mode) ?
1008 		      block_size(inode->i_bdev) : PAGE_SIZE);
1009 
1010 	lo->lo_state = Lo_bound;
1011 	if (part_shift)
1012 		lo->lo_flags |= LO_FLAGS_PARTSCAN;
1013 	partscan = lo->lo_flags & LO_FLAGS_PARTSCAN;
1014 
1015 	/* Grab the block_device to prevent its destruction after we
1016 	 * put /dev/loopXX inode. Later in __loop_clr_fd() we bdput(bdev).
1017 	 */
1018 	bdgrab(bdev);
1019 	mutex_unlock(&loop_ctl_mutex);
1020 	if (partscan)
1021 		loop_reread_partitions(lo, bdev);
1022 	return 0;
1023 
1024 out_unlock:
1025 	mutex_unlock(&loop_ctl_mutex);
1026 out_putf:
1027 	fput(file);
1028 out:
1029 	/* This is safe: open() is still holding a reference. */
1030 	module_put(THIS_MODULE);
1031 	return error;
1032 }
1033 
1034 static int
loop_release_xfer(struct loop_device * lo)1035 loop_release_xfer(struct loop_device *lo)
1036 {
1037 	int err = 0;
1038 	struct loop_func_table *xfer = lo->lo_encryption;
1039 
1040 	if (xfer) {
1041 		if (xfer->release)
1042 			err = xfer->release(lo);
1043 		lo->transfer = NULL;
1044 		lo->lo_encryption = NULL;
1045 		module_put(xfer->owner);
1046 	}
1047 	return err;
1048 }
1049 
1050 static int
loop_init_xfer(struct loop_device * lo,struct loop_func_table * xfer,const struct loop_info64 * i)1051 loop_init_xfer(struct loop_device *lo, struct loop_func_table *xfer,
1052 	       const struct loop_info64 *i)
1053 {
1054 	int err = 0;
1055 
1056 	if (xfer) {
1057 		struct module *owner = xfer->owner;
1058 
1059 		if (!try_module_get(owner))
1060 			return -EINVAL;
1061 		if (xfer->init)
1062 			err = xfer->init(lo, i);
1063 		if (err)
1064 			module_put(owner);
1065 		else
1066 			lo->lo_encryption = xfer;
1067 	}
1068 	return err;
1069 }
1070 
__loop_clr_fd(struct loop_device * lo,bool release)1071 static int __loop_clr_fd(struct loop_device *lo, bool release)
1072 {
1073 	struct file *filp = NULL;
1074 	gfp_t gfp = lo->old_gfp_mask;
1075 	struct block_device *bdev = lo->lo_device;
1076 	int err = 0;
1077 	bool partscan = false;
1078 	int lo_number;
1079 
1080 	mutex_lock(&loop_ctl_mutex);
1081 	if (WARN_ON_ONCE(lo->lo_state != Lo_rundown)) {
1082 		err = -ENXIO;
1083 		goto out_unlock;
1084 	}
1085 
1086 	filp = lo->lo_backing_file;
1087 	if (filp == NULL) {
1088 		err = -EINVAL;
1089 		goto out_unlock;
1090 	}
1091 
1092 	/* freeze request queue during the transition */
1093 	blk_mq_freeze_queue(lo->lo_queue);
1094 
1095 	spin_lock_irq(&lo->lo_lock);
1096 	lo->lo_backing_file = NULL;
1097 	spin_unlock_irq(&lo->lo_lock);
1098 
1099 	loop_release_xfer(lo);
1100 	lo->transfer = NULL;
1101 	lo->ioctl = NULL;
1102 	lo->lo_device = NULL;
1103 	lo->lo_encryption = NULL;
1104 	lo->lo_offset = 0;
1105 	lo->lo_sizelimit = 0;
1106 	lo->lo_encrypt_key_size = 0;
1107 	memset(lo->lo_encrypt_key, 0, LO_KEY_SIZE);
1108 	memset(lo->lo_crypt_name, 0, LO_NAME_SIZE);
1109 	memset(lo->lo_file_name, 0, LO_NAME_SIZE);
1110 	blk_queue_logical_block_size(lo->lo_queue, 512);
1111 	blk_queue_physical_block_size(lo->lo_queue, 512);
1112 	blk_queue_io_min(lo->lo_queue, 512);
1113 	if (bdev) {
1114 		bdput(bdev);
1115 		invalidate_bdev(bdev);
1116 		bdev->bd_inode->i_mapping->wb_err = 0;
1117 	}
1118 	set_capacity(lo->lo_disk, 0);
1119 	loop_sysfs_exit(lo);
1120 	if (bdev) {
1121 		bd_set_size(bdev, 0);
1122 		/* let user-space know about this change */
1123 		kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, KOBJ_CHANGE);
1124 	}
1125 	mapping_set_gfp_mask(filp->f_mapping, gfp);
1126 	/* This is safe: open() is still holding a reference. */
1127 	module_put(THIS_MODULE);
1128 	blk_mq_unfreeze_queue(lo->lo_queue);
1129 
1130 	partscan = lo->lo_flags & LO_FLAGS_PARTSCAN && bdev;
1131 	lo_number = lo->lo_number;
1132 	loop_unprepare_queue(lo);
1133 out_unlock:
1134 	mutex_unlock(&loop_ctl_mutex);
1135 	if (partscan) {
1136 		/*
1137 		 * bd_mutex has been held already in release path, so don't
1138 		 * acquire it if this function is called in such case.
1139 		 *
1140 		 * If the reread partition isn't from release path, lo_refcnt
1141 		 * must be at least one and it can only become zero when the
1142 		 * current holder is released.
1143 		 */
1144 		if (release)
1145 			err = __blkdev_reread_part(bdev);
1146 		else
1147 			err = blkdev_reread_part(bdev);
1148 		if (err)
1149 			pr_warn("%s: partition scan of loop%d failed (rc=%d)\n",
1150 				__func__, lo_number, err);
1151 		/* Device is gone, no point in returning error */
1152 		err = 0;
1153 	}
1154 
1155 	/*
1156 	 * lo->lo_state is set to Lo_unbound here after above partscan has
1157 	 * finished.
1158 	 *
1159 	 * There cannot be anybody else entering __loop_clr_fd() as
1160 	 * lo->lo_backing_file is already cleared and Lo_rundown state
1161 	 * protects us from all the other places trying to change the 'lo'
1162 	 * device.
1163 	 */
1164 	mutex_lock(&loop_ctl_mutex);
1165 	lo->lo_flags = 0;
1166 	if (!part_shift)
1167 		lo->lo_disk->flags |= GENHD_FL_NO_PART_SCAN;
1168 	lo->lo_state = Lo_unbound;
1169 	mutex_unlock(&loop_ctl_mutex);
1170 
1171 	/*
1172 	 * Need not hold loop_ctl_mutex to fput backing file.
1173 	 * Calling fput holding loop_ctl_mutex triggers a circular
1174 	 * lock dependency possibility warning as fput can take
1175 	 * bd_mutex which is usually taken before loop_ctl_mutex.
1176 	 */
1177 	if (filp)
1178 		fput(filp);
1179 	return err;
1180 }
1181 
loop_clr_fd(struct loop_device * lo)1182 static int loop_clr_fd(struct loop_device *lo)
1183 {
1184 	int err;
1185 
1186 	err = mutex_lock_killable(&loop_ctl_mutex);
1187 	if (err)
1188 		return err;
1189 	if (lo->lo_state != Lo_bound) {
1190 		mutex_unlock(&loop_ctl_mutex);
1191 		return -ENXIO;
1192 	}
1193 	/*
1194 	 * If we've explicitly asked to tear down the loop device,
1195 	 * and it has an elevated reference count, set it for auto-teardown when
1196 	 * the last reference goes away. This stops $!~#$@ udev from
1197 	 * preventing teardown because it decided that it needs to run blkid on
1198 	 * the loopback device whenever they appear. xfstests is notorious for
1199 	 * failing tests because blkid via udev races with a losetup
1200 	 * <dev>/do something like mkfs/losetup -d <dev> causing the losetup -d
1201 	 * command to fail with EBUSY.
1202 	 */
1203 	if (atomic_read(&lo->lo_refcnt) > 1) {
1204 		lo->lo_flags |= LO_FLAGS_AUTOCLEAR;
1205 		mutex_unlock(&loop_ctl_mutex);
1206 		return 0;
1207 	}
1208 	lo->lo_state = Lo_rundown;
1209 	mutex_unlock(&loop_ctl_mutex);
1210 
1211 	return __loop_clr_fd(lo, false);
1212 }
1213 
1214 static int
loop_set_status(struct loop_device * lo,const struct loop_info64 * info)1215 loop_set_status(struct loop_device *lo, const struct loop_info64 *info)
1216 {
1217 	int err;
1218 	struct loop_func_table *xfer;
1219 	kuid_t uid = current_uid();
1220 	struct block_device *bdev;
1221 	bool partscan = false;
1222 
1223 	err = mutex_lock_killable(&loop_ctl_mutex);
1224 	if (err)
1225 		return err;
1226 	if (lo->lo_encrypt_key_size &&
1227 	    !uid_eq(lo->lo_key_owner, uid) &&
1228 	    !capable(CAP_SYS_ADMIN)) {
1229 		err = -EPERM;
1230 		goto out_unlock;
1231 	}
1232 	if (lo->lo_state != Lo_bound) {
1233 		err = -ENXIO;
1234 		goto out_unlock;
1235 	}
1236 	if ((unsigned int) info->lo_encrypt_key_size > LO_KEY_SIZE) {
1237 		err = -EINVAL;
1238 		goto out_unlock;
1239 	}
1240 
1241 	if (lo->lo_offset != info->lo_offset ||
1242 	    lo->lo_sizelimit != info->lo_sizelimit) {
1243 		sync_blockdev(lo->lo_device);
1244 		invalidate_bdev(lo->lo_device);
1245 	}
1246 
1247 	/* I/O need to be drained during transfer transition */
1248 	blk_mq_freeze_queue(lo->lo_queue);
1249 
1250 	err = loop_release_xfer(lo);
1251 	if (err)
1252 		goto out_unfreeze;
1253 
1254 	if (info->lo_encrypt_type) {
1255 		unsigned int type = info->lo_encrypt_type;
1256 
1257 		if (type >= MAX_LO_CRYPT) {
1258 			err = -EINVAL;
1259 			goto out_unfreeze;
1260 		}
1261 		xfer = xfer_funcs[type];
1262 		if (xfer == NULL) {
1263 			err = -EINVAL;
1264 			goto out_unfreeze;
1265 		}
1266 	} else
1267 		xfer = NULL;
1268 
1269 	err = loop_init_xfer(lo, xfer, info);
1270 	if (err)
1271 		goto out_unfreeze;
1272 
1273 	if (lo->lo_offset != info->lo_offset ||
1274 	    lo->lo_sizelimit != info->lo_sizelimit) {
1275 		/* kill_bdev should have truncated all the pages */
1276 		if (lo->lo_device->bd_inode->i_mapping->nrpages) {
1277 			err = -EAGAIN;
1278 			pr_warn("%s: loop%d (%s) has still dirty pages (nrpages=%lu)\n",
1279 				__func__, lo->lo_number, lo->lo_file_name,
1280 				lo->lo_device->bd_inode->i_mapping->nrpages);
1281 			goto out_unfreeze;
1282 		}
1283 		if (figure_loop_size(lo, info->lo_offset, info->lo_sizelimit)) {
1284 			err = -EFBIG;
1285 			goto out_unfreeze;
1286 		}
1287 	}
1288 
1289 	loop_config_discard(lo);
1290 
1291 	memcpy(lo->lo_file_name, info->lo_file_name, LO_NAME_SIZE);
1292 	memcpy(lo->lo_crypt_name, info->lo_crypt_name, LO_NAME_SIZE);
1293 	lo->lo_file_name[LO_NAME_SIZE-1] = 0;
1294 	lo->lo_crypt_name[LO_NAME_SIZE-1] = 0;
1295 
1296 	if (!xfer)
1297 		xfer = &none_funcs;
1298 	lo->transfer = xfer->transfer;
1299 	lo->ioctl = xfer->ioctl;
1300 
1301 	if ((lo->lo_flags & LO_FLAGS_AUTOCLEAR) !=
1302 	     (info->lo_flags & LO_FLAGS_AUTOCLEAR))
1303 		lo->lo_flags ^= LO_FLAGS_AUTOCLEAR;
1304 
1305 	lo->lo_encrypt_key_size = info->lo_encrypt_key_size;
1306 	lo->lo_init[0] = info->lo_init[0];
1307 	lo->lo_init[1] = info->lo_init[1];
1308 	if (info->lo_encrypt_key_size) {
1309 		memcpy(lo->lo_encrypt_key, info->lo_encrypt_key,
1310 		       info->lo_encrypt_key_size);
1311 		lo->lo_key_owner = uid;
1312 	}
1313 
1314 	/* update dio if lo_offset or transfer is changed */
1315 	__loop_update_dio(lo, lo->use_dio);
1316 
1317 out_unfreeze:
1318 	blk_mq_unfreeze_queue(lo->lo_queue);
1319 
1320 	if (!err && (info->lo_flags & LO_FLAGS_PARTSCAN) &&
1321 	     !(lo->lo_flags & LO_FLAGS_PARTSCAN)) {
1322 		lo->lo_flags |= LO_FLAGS_PARTSCAN;
1323 		lo->lo_disk->flags &= ~GENHD_FL_NO_PART_SCAN;
1324 		bdev = lo->lo_device;
1325 		partscan = true;
1326 	}
1327 out_unlock:
1328 	mutex_unlock(&loop_ctl_mutex);
1329 	if (partscan)
1330 		loop_reread_partitions(lo, bdev);
1331 
1332 	return err;
1333 }
1334 
1335 static int
loop_get_status(struct loop_device * lo,struct loop_info64 * info)1336 loop_get_status(struct loop_device *lo, struct loop_info64 *info)
1337 {
1338 	struct path path;
1339 	struct kstat stat;
1340 	int ret;
1341 
1342 	ret = mutex_lock_killable(&loop_ctl_mutex);
1343 	if (ret)
1344 		return ret;
1345 	if (lo->lo_state != Lo_bound) {
1346 		mutex_unlock(&loop_ctl_mutex);
1347 		return -ENXIO;
1348 	}
1349 
1350 	memset(info, 0, sizeof(*info));
1351 	info->lo_number = lo->lo_number;
1352 	info->lo_offset = lo->lo_offset;
1353 	info->lo_sizelimit = lo->lo_sizelimit;
1354 	info->lo_flags = lo->lo_flags;
1355 	memcpy(info->lo_file_name, lo->lo_file_name, LO_NAME_SIZE);
1356 	memcpy(info->lo_crypt_name, lo->lo_crypt_name, LO_NAME_SIZE);
1357 	info->lo_encrypt_type =
1358 		lo->lo_encryption ? lo->lo_encryption->number : 0;
1359 	if (lo->lo_encrypt_key_size && capable(CAP_SYS_ADMIN)) {
1360 		info->lo_encrypt_key_size = lo->lo_encrypt_key_size;
1361 		memcpy(info->lo_encrypt_key, lo->lo_encrypt_key,
1362 		       lo->lo_encrypt_key_size);
1363 	}
1364 
1365 	/* Drop loop_ctl_mutex while we call into the filesystem. */
1366 	path = lo->lo_backing_file->f_path;
1367 	path_get(&path);
1368 	mutex_unlock(&loop_ctl_mutex);
1369 	ret = vfs_getattr(&path, &stat, STATX_INO, AT_STATX_SYNC_AS_STAT);
1370 	if (!ret) {
1371 		info->lo_device = huge_encode_dev(stat.dev);
1372 		info->lo_inode = stat.ino;
1373 		info->lo_rdevice = huge_encode_dev(stat.rdev);
1374 	}
1375 	path_put(&path);
1376 	return ret;
1377 }
1378 
1379 static void
loop_info64_from_old(const struct loop_info * info,struct loop_info64 * info64)1380 loop_info64_from_old(const struct loop_info *info, struct loop_info64 *info64)
1381 {
1382 	memset(info64, 0, sizeof(*info64));
1383 	info64->lo_number = info->lo_number;
1384 	info64->lo_device = info->lo_device;
1385 	info64->lo_inode = info->lo_inode;
1386 	info64->lo_rdevice = info->lo_rdevice;
1387 	info64->lo_offset = info->lo_offset;
1388 	info64->lo_sizelimit = 0;
1389 	info64->lo_encrypt_type = info->lo_encrypt_type;
1390 	info64->lo_encrypt_key_size = info->lo_encrypt_key_size;
1391 	info64->lo_flags = info->lo_flags;
1392 	info64->lo_init[0] = info->lo_init[0];
1393 	info64->lo_init[1] = info->lo_init[1];
1394 	if (info->lo_encrypt_type == LO_CRYPT_CRYPTOAPI)
1395 		memcpy(info64->lo_crypt_name, info->lo_name, LO_NAME_SIZE);
1396 	else
1397 		memcpy(info64->lo_file_name, info->lo_name, LO_NAME_SIZE);
1398 	memcpy(info64->lo_encrypt_key, info->lo_encrypt_key, LO_KEY_SIZE);
1399 }
1400 
1401 static int
loop_info64_to_old(const struct loop_info64 * info64,struct loop_info * info)1402 loop_info64_to_old(const struct loop_info64 *info64, struct loop_info *info)
1403 {
1404 	memset(info, 0, sizeof(*info));
1405 	info->lo_number = info64->lo_number;
1406 	info->lo_device = info64->lo_device;
1407 	info->lo_inode = info64->lo_inode;
1408 	info->lo_rdevice = info64->lo_rdevice;
1409 	info->lo_offset = info64->lo_offset;
1410 	info->lo_encrypt_type = info64->lo_encrypt_type;
1411 	info->lo_encrypt_key_size = info64->lo_encrypt_key_size;
1412 	info->lo_flags = info64->lo_flags;
1413 	info->lo_init[0] = info64->lo_init[0];
1414 	info->lo_init[1] = info64->lo_init[1];
1415 	if (info->lo_encrypt_type == LO_CRYPT_CRYPTOAPI)
1416 		memcpy(info->lo_name, info64->lo_crypt_name, LO_NAME_SIZE);
1417 	else
1418 		memcpy(info->lo_name, info64->lo_file_name, LO_NAME_SIZE);
1419 	memcpy(info->lo_encrypt_key, info64->lo_encrypt_key, LO_KEY_SIZE);
1420 
1421 	/* error in case values were truncated */
1422 	if (info->lo_device != info64->lo_device ||
1423 	    info->lo_rdevice != info64->lo_rdevice ||
1424 	    info->lo_inode != info64->lo_inode ||
1425 	    info->lo_offset != info64->lo_offset)
1426 		return -EOVERFLOW;
1427 
1428 	return 0;
1429 }
1430 
1431 static int
loop_set_status_old(struct loop_device * lo,const struct loop_info __user * arg)1432 loop_set_status_old(struct loop_device *lo, const struct loop_info __user *arg)
1433 {
1434 	struct loop_info info;
1435 	struct loop_info64 info64;
1436 
1437 	if (copy_from_user(&info, arg, sizeof (struct loop_info)))
1438 		return -EFAULT;
1439 	loop_info64_from_old(&info, &info64);
1440 	return loop_set_status(lo, &info64);
1441 }
1442 
1443 static int
loop_set_status64(struct loop_device * lo,const struct loop_info64 __user * arg)1444 loop_set_status64(struct loop_device *lo, const struct loop_info64 __user *arg)
1445 {
1446 	struct loop_info64 info64;
1447 
1448 	if (copy_from_user(&info64, arg, sizeof (struct loop_info64)))
1449 		return -EFAULT;
1450 	return loop_set_status(lo, &info64);
1451 }
1452 
1453 static int
loop_get_status_old(struct loop_device * lo,struct loop_info __user * arg)1454 loop_get_status_old(struct loop_device *lo, struct loop_info __user *arg) {
1455 	struct loop_info info;
1456 	struct loop_info64 info64;
1457 	int err;
1458 
1459 	if (!arg)
1460 		return -EINVAL;
1461 	err = loop_get_status(lo, &info64);
1462 	if (!err)
1463 		err = loop_info64_to_old(&info64, &info);
1464 	if (!err && copy_to_user(arg, &info, sizeof(info)))
1465 		err = -EFAULT;
1466 
1467 	return err;
1468 }
1469 
1470 static int
loop_get_status64(struct loop_device * lo,struct loop_info64 __user * arg)1471 loop_get_status64(struct loop_device *lo, struct loop_info64 __user *arg) {
1472 	struct loop_info64 info64;
1473 	int err;
1474 
1475 	if (!arg)
1476 		return -EINVAL;
1477 	err = loop_get_status(lo, &info64);
1478 	if (!err && copy_to_user(arg, &info64, sizeof(info64)))
1479 		err = -EFAULT;
1480 
1481 	return err;
1482 }
1483 
loop_set_capacity(struct loop_device * lo)1484 static int loop_set_capacity(struct loop_device *lo)
1485 {
1486 	if (unlikely(lo->lo_state != Lo_bound))
1487 		return -ENXIO;
1488 
1489 	return figure_loop_size(lo, lo->lo_offset, lo->lo_sizelimit);
1490 }
1491 
loop_set_dio(struct loop_device * lo,unsigned long arg)1492 static int loop_set_dio(struct loop_device *lo, unsigned long arg)
1493 {
1494 	int error = -ENXIO;
1495 	if (lo->lo_state != Lo_bound)
1496 		goto out;
1497 
1498 	__loop_update_dio(lo, !!arg);
1499 	if (lo->use_dio == !!arg)
1500 		return 0;
1501 	error = -EINVAL;
1502  out:
1503 	return error;
1504 }
1505 
loop_set_block_size(struct loop_device * lo,unsigned long arg)1506 static int loop_set_block_size(struct loop_device *lo, unsigned long arg)
1507 {
1508 	int err = 0;
1509 
1510 	if (lo->lo_state != Lo_bound)
1511 		return -ENXIO;
1512 
1513 	if (arg < 512 || arg > PAGE_SIZE || !is_power_of_2(arg))
1514 		return -EINVAL;
1515 
1516 	if (lo->lo_queue->limits.logical_block_size != arg) {
1517 		sync_blockdev(lo->lo_device);
1518 		invalidate_bdev(lo->lo_device);
1519 	}
1520 
1521 	blk_mq_freeze_queue(lo->lo_queue);
1522 
1523 	/* invalidate_bdev should have truncated all the pages */
1524 	if (lo->lo_queue->limits.logical_block_size != arg &&
1525 			lo->lo_device->bd_inode->i_mapping->nrpages) {
1526 		err = -EAGAIN;
1527 		pr_warn("%s: loop%d (%s) has still dirty pages (nrpages=%lu)\n",
1528 			__func__, lo->lo_number, lo->lo_file_name,
1529 			lo->lo_device->bd_inode->i_mapping->nrpages);
1530 		goto out_unfreeze;
1531 	}
1532 
1533 	blk_queue_logical_block_size(lo->lo_queue, arg);
1534 	blk_queue_physical_block_size(lo->lo_queue, arg);
1535 	blk_queue_io_min(lo->lo_queue, arg);
1536 	loop_update_dio(lo);
1537 out_unfreeze:
1538 	blk_mq_unfreeze_queue(lo->lo_queue);
1539 
1540 	return err;
1541 }
1542 
lo_simple_ioctl(struct loop_device * lo,unsigned int cmd,unsigned long arg)1543 static int lo_simple_ioctl(struct loop_device *lo, unsigned int cmd,
1544 			   unsigned long arg)
1545 {
1546 	int err;
1547 
1548 	err = mutex_lock_killable(&loop_ctl_mutex);
1549 	if (err)
1550 		return err;
1551 	switch (cmd) {
1552 	case LOOP_SET_CAPACITY:
1553 		err = loop_set_capacity(lo);
1554 		break;
1555 	case LOOP_SET_DIRECT_IO:
1556 		err = loop_set_dio(lo, arg);
1557 		break;
1558 	case LOOP_SET_BLOCK_SIZE:
1559 		err = loop_set_block_size(lo, arg);
1560 		break;
1561 	default:
1562 		err = lo->ioctl ? lo->ioctl(lo, cmd, arg) : -EINVAL;
1563 	}
1564 	mutex_unlock(&loop_ctl_mutex);
1565 	return err;
1566 }
1567 
lo_ioctl(struct block_device * bdev,fmode_t mode,unsigned int cmd,unsigned long arg)1568 static int lo_ioctl(struct block_device *bdev, fmode_t mode,
1569 	unsigned int cmd, unsigned long arg)
1570 {
1571 	struct loop_device *lo = bdev->bd_disk->private_data;
1572 	int err;
1573 
1574 	switch (cmd) {
1575 	case LOOP_SET_FD:
1576 		return loop_set_fd(lo, mode, bdev, arg);
1577 	case LOOP_CHANGE_FD:
1578 		return loop_change_fd(lo, bdev, arg);
1579 	case LOOP_CLR_FD:
1580 		return loop_clr_fd(lo);
1581 	case LOOP_SET_STATUS:
1582 		err = -EPERM;
1583 		if ((mode & FMODE_WRITE) || capable(CAP_SYS_ADMIN)) {
1584 			err = loop_set_status_old(lo,
1585 					(struct loop_info __user *)arg);
1586 		}
1587 		break;
1588 	case LOOP_GET_STATUS:
1589 		return loop_get_status_old(lo, (struct loop_info __user *) arg);
1590 	case LOOP_SET_STATUS64:
1591 		err = -EPERM;
1592 		if ((mode & FMODE_WRITE) || capable(CAP_SYS_ADMIN)) {
1593 			err = loop_set_status64(lo,
1594 					(struct loop_info64 __user *) arg);
1595 		}
1596 		break;
1597 	case LOOP_GET_STATUS64:
1598 		return loop_get_status64(lo, (struct loop_info64 __user *) arg);
1599 	case LOOP_SET_CAPACITY:
1600 	case LOOP_SET_DIRECT_IO:
1601 	case LOOP_SET_BLOCK_SIZE:
1602 		if (!(mode & FMODE_WRITE) && !capable(CAP_SYS_ADMIN))
1603 			return -EPERM;
1604 		/* Fall through */
1605 	default:
1606 		err = lo_simple_ioctl(lo, cmd, arg);
1607 		break;
1608 	}
1609 
1610 	return err;
1611 }
1612 
1613 #ifdef CONFIG_COMPAT
1614 struct compat_loop_info {
1615 	compat_int_t	lo_number;      /* ioctl r/o */
1616 	compat_dev_t	lo_device;      /* ioctl r/o */
1617 	compat_ulong_t	lo_inode;       /* ioctl r/o */
1618 	compat_dev_t	lo_rdevice;     /* ioctl r/o */
1619 	compat_int_t	lo_offset;
1620 	compat_int_t	lo_encrypt_type;
1621 	compat_int_t	lo_encrypt_key_size;    /* ioctl w/o */
1622 	compat_int_t	lo_flags;       /* ioctl r/o */
1623 	char		lo_name[LO_NAME_SIZE];
1624 	unsigned char	lo_encrypt_key[LO_KEY_SIZE]; /* ioctl w/o */
1625 	compat_ulong_t	lo_init[2];
1626 	char		reserved[4];
1627 };
1628 
1629 /*
1630  * Transfer 32-bit compatibility structure in userspace to 64-bit loop info
1631  * - noinlined to reduce stack space usage in main part of driver
1632  */
1633 static noinline int
loop_info64_from_compat(const struct compat_loop_info __user * arg,struct loop_info64 * info64)1634 loop_info64_from_compat(const struct compat_loop_info __user *arg,
1635 			struct loop_info64 *info64)
1636 {
1637 	struct compat_loop_info info;
1638 
1639 	if (copy_from_user(&info, arg, sizeof(info)))
1640 		return -EFAULT;
1641 
1642 	memset(info64, 0, sizeof(*info64));
1643 	info64->lo_number = info.lo_number;
1644 	info64->lo_device = info.lo_device;
1645 	info64->lo_inode = info.lo_inode;
1646 	info64->lo_rdevice = info.lo_rdevice;
1647 	info64->lo_offset = info.lo_offset;
1648 	info64->lo_sizelimit = 0;
1649 	info64->lo_encrypt_type = info.lo_encrypt_type;
1650 	info64->lo_encrypt_key_size = info.lo_encrypt_key_size;
1651 	info64->lo_flags = info.lo_flags;
1652 	info64->lo_init[0] = info.lo_init[0];
1653 	info64->lo_init[1] = info.lo_init[1];
1654 	if (info.lo_encrypt_type == LO_CRYPT_CRYPTOAPI)
1655 		memcpy(info64->lo_crypt_name, info.lo_name, LO_NAME_SIZE);
1656 	else
1657 		memcpy(info64->lo_file_name, info.lo_name, LO_NAME_SIZE);
1658 	memcpy(info64->lo_encrypt_key, info.lo_encrypt_key, LO_KEY_SIZE);
1659 	return 0;
1660 }
1661 
1662 /*
1663  * Transfer 64-bit loop info to 32-bit compatibility structure in userspace
1664  * - noinlined to reduce stack space usage in main part of driver
1665  */
1666 static noinline int
loop_info64_to_compat(const struct loop_info64 * info64,struct compat_loop_info __user * arg)1667 loop_info64_to_compat(const struct loop_info64 *info64,
1668 		      struct compat_loop_info __user *arg)
1669 {
1670 	struct compat_loop_info info;
1671 
1672 	memset(&info, 0, sizeof(info));
1673 	info.lo_number = info64->lo_number;
1674 	info.lo_device = info64->lo_device;
1675 	info.lo_inode = info64->lo_inode;
1676 	info.lo_rdevice = info64->lo_rdevice;
1677 	info.lo_offset = info64->lo_offset;
1678 	info.lo_encrypt_type = info64->lo_encrypt_type;
1679 	info.lo_encrypt_key_size = info64->lo_encrypt_key_size;
1680 	info.lo_flags = info64->lo_flags;
1681 	info.lo_init[0] = info64->lo_init[0];
1682 	info.lo_init[1] = info64->lo_init[1];
1683 	if (info.lo_encrypt_type == LO_CRYPT_CRYPTOAPI)
1684 		memcpy(info.lo_name, info64->lo_crypt_name, LO_NAME_SIZE);
1685 	else
1686 		memcpy(info.lo_name, info64->lo_file_name, LO_NAME_SIZE);
1687 	memcpy(info.lo_encrypt_key, info64->lo_encrypt_key, LO_KEY_SIZE);
1688 
1689 	/* error in case values were truncated */
1690 	if (info.lo_device != info64->lo_device ||
1691 	    info.lo_rdevice != info64->lo_rdevice ||
1692 	    info.lo_inode != info64->lo_inode ||
1693 	    info.lo_offset != info64->lo_offset ||
1694 	    info.lo_init[0] != info64->lo_init[0] ||
1695 	    info.lo_init[1] != info64->lo_init[1])
1696 		return -EOVERFLOW;
1697 
1698 	if (copy_to_user(arg, &info, sizeof(info)))
1699 		return -EFAULT;
1700 	return 0;
1701 }
1702 
1703 static int
loop_set_status_compat(struct loop_device * lo,const struct compat_loop_info __user * arg)1704 loop_set_status_compat(struct loop_device *lo,
1705 		       const struct compat_loop_info __user *arg)
1706 {
1707 	struct loop_info64 info64;
1708 	int ret;
1709 
1710 	ret = loop_info64_from_compat(arg, &info64);
1711 	if (ret < 0)
1712 		return ret;
1713 	return loop_set_status(lo, &info64);
1714 }
1715 
1716 static int
loop_get_status_compat(struct loop_device * lo,struct compat_loop_info __user * arg)1717 loop_get_status_compat(struct loop_device *lo,
1718 		       struct compat_loop_info __user *arg)
1719 {
1720 	struct loop_info64 info64;
1721 	int err;
1722 
1723 	if (!arg)
1724 		return -EINVAL;
1725 	err = loop_get_status(lo, &info64);
1726 	if (!err)
1727 		err = loop_info64_to_compat(&info64, arg);
1728 	return err;
1729 }
1730 
lo_compat_ioctl(struct block_device * bdev,fmode_t mode,unsigned int cmd,unsigned long arg)1731 static int lo_compat_ioctl(struct block_device *bdev, fmode_t mode,
1732 			   unsigned int cmd, unsigned long arg)
1733 {
1734 	struct loop_device *lo = bdev->bd_disk->private_data;
1735 	int err;
1736 
1737 	switch(cmd) {
1738 	case LOOP_SET_STATUS:
1739 		err = loop_set_status_compat(lo,
1740 			     (const struct compat_loop_info __user *)arg);
1741 		break;
1742 	case LOOP_GET_STATUS:
1743 		err = loop_get_status_compat(lo,
1744 				     (struct compat_loop_info __user *)arg);
1745 		break;
1746 	case LOOP_SET_CAPACITY:
1747 	case LOOP_CLR_FD:
1748 	case LOOP_GET_STATUS64:
1749 	case LOOP_SET_STATUS64:
1750 		arg = (unsigned long) compat_ptr(arg);
1751 		/* fall through */
1752 	case LOOP_SET_FD:
1753 	case LOOP_CHANGE_FD:
1754 	case LOOP_SET_BLOCK_SIZE:
1755 	case LOOP_SET_DIRECT_IO:
1756 		err = lo_ioctl(bdev, mode, cmd, arg);
1757 		break;
1758 	default:
1759 		err = -ENOIOCTLCMD;
1760 		break;
1761 	}
1762 	return err;
1763 }
1764 #endif
1765 
lo_open(struct block_device * bdev,fmode_t mode)1766 static int lo_open(struct block_device *bdev, fmode_t mode)
1767 {
1768 	struct loop_device *lo;
1769 	int err;
1770 
1771 	err = mutex_lock_killable(&loop_ctl_mutex);
1772 	if (err)
1773 		return err;
1774 	lo = bdev->bd_disk->private_data;
1775 	if (!lo) {
1776 		err = -ENXIO;
1777 		goto out;
1778 	}
1779 
1780 	atomic_inc(&lo->lo_refcnt);
1781 out:
1782 	mutex_unlock(&loop_ctl_mutex);
1783 	return err;
1784 }
1785 
lo_release(struct gendisk * disk,fmode_t mode)1786 static void lo_release(struct gendisk *disk, fmode_t mode)
1787 {
1788 	struct loop_device *lo;
1789 
1790 	mutex_lock(&loop_ctl_mutex);
1791 	lo = disk->private_data;
1792 	if (atomic_dec_return(&lo->lo_refcnt))
1793 		goto out_unlock;
1794 
1795 	if (lo->lo_flags & LO_FLAGS_AUTOCLEAR) {
1796 		if (lo->lo_state != Lo_bound)
1797 			goto out_unlock;
1798 		lo->lo_state = Lo_rundown;
1799 		mutex_unlock(&loop_ctl_mutex);
1800 		/*
1801 		 * In autoclear mode, stop the loop thread
1802 		 * and remove configuration after last close.
1803 		 */
1804 		__loop_clr_fd(lo, true);
1805 		return;
1806 	} else if (lo->lo_state == Lo_bound) {
1807 		/*
1808 		 * Otherwise keep thread (if running) and config,
1809 		 * but flush possible ongoing bios in thread.
1810 		 */
1811 		blk_mq_freeze_queue(lo->lo_queue);
1812 		blk_mq_unfreeze_queue(lo->lo_queue);
1813 	}
1814 
1815 out_unlock:
1816 	mutex_unlock(&loop_ctl_mutex);
1817 }
1818 
1819 static const struct block_device_operations lo_fops = {
1820 	.owner =	THIS_MODULE,
1821 	.open =		lo_open,
1822 	.release =	lo_release,
1823 	.ioctl =	lo_ioctl,
1824 #ifdef CONFIG_COMPAT
1825 	.compat_ioctl =	lo_compat_ioctl,
1826 #endif
1827 };
1828 
1829 /*
1830  * And now the modules code and kernel interface.
1831  */
1832 static int max_loop;
1833 module_param(max_loop, int, 0444);
1834 MODULE_PARM_DESC(max_loop, "Maximum number of loop devices");
1835 module_param(max_part, int, 0444);
1836 MODULE_PARM_DESC(max_part, "Maximum number of partitions per loop device");
1837 MODULE_LICENSE("GPL");
1838 MODULE_ALIAS_BLOCKDEV_MAJOR(LOOP_MAJOR);
1839 
loop_register_transfer(struct loop_func_table * funcs)1840 int loop_register_transfer(struct loop_func_table *funcs)
1841 {
1842 	unsigned int n = funcs->number;
1843 
1844 	if (n >= MAX_LO_CRYPT || xfer_funcs[n])
1845 		return -EINVAL;
1846 	xfer_funcs[n] = funcs;
1847 	return 0;
1848 }
1849 
unregister_transfer_cb(int id,void * ptr,void * data)1850 static int unregister_transfer_cb(int id, void *ptr, void *data)
1851 {
1852 	struct loop_device *lo = ptr;
1853 	struct loop_func_table *xfer = data;
1854 
1855 	mutex_lock(&loop_ctl_mutex);
1856 	if (lo->lo_encryption == xfer)
1857 		loop_release_xfer(lo);
1858 	mutex_unlock(&loop_ctl_mutex);
1859 	return 0;
1860 }
1861 
loop_unregister_transfer(int number)1862 int loop_unregister_transfer(int number)
1863 {
1864 	unsigned int n = number;
1865 	struct loop_func_table *xfer;
1866 
1867 	if (n == 0 || n >= MAX_LO_CRYPT || (xfer = xfer_funcs[n]) == NULL)
1868 		return -EINVAL;
1869 
1870 	xfer_funcs[n] = NULL;
1871 	idr_for_each(&loop_index_idr, &unregister_transfer_cb, xfer);
1872 	return 0;
1873 }
1874 
1875 EXPORT_SYMBOL(loop_register_transfer);
1876 EXPORT_SYMBOL(loop_unregister_transfer);
1877 
loop_queue_rq(struct blk_mq_hw_ctx * hctx,const struct blk_mq_queue_data * bd)1878 static blk_status_t loop_queue_rq(struct blk_mq_hw_ctx *hctx,
1879 		const struct blk_mq_queue_data *bd)
1880 {
1881 	struct request *rq = bd->rq;
1882 	struct loop_cmd *cmd = blk_mq_rq_to_pdu(rq);
1883 	struct loop_device *lo = rq->q->queuedata;
1884 
1885 	blk_mq_start_request(rq);
1886 
1887 	if (lo->lo_state != Lo_bound)
1888 		return BLK_STS_IOERR;
1889 
1890 	switch (req_op(rq)) {
1891 	case REQ_OP_FLUSH:
1892 	case REQ_OP_DISCARD:
1893 	case REQ_OP_WRITE_ZEROES:
1894 		cmd->use_aio = false;
1895 		break;
1896 	default:
1897 		cmd->use_aio = lo->use_dio;
1898 		break;
1899 	}
1900 
1901 	/* always use the first bio's css */
1902 #ifdef CONFIG_BLK_CGROUP
1903 	if (cmd->use_aio && rq->bio && rq->bio->bi_css) {
1904 		cmd->css = rq->bio->bi_css;
1905 		css_get(cmd->css);
1906 	} else
1907 #endif
1908 		cmd->css = NULL;
1909 	kthread_queue_work(&lo->worker, &cmd->work);
1910 
1911 	return BLK_STS_OK;
1912 }
1913 
loop_handle_cmd(struct loop_cmd * cmd)1914 static void loop_handle_cmd(struct loop_cmd *cmd)
1915 {
1916 	struct request *rq = blk_mq_rq_from_pdu(cmd);
1917 	const bool write = op_is_write(req_op(rq));
1918 	struct loop_device *lo = rq->q->queuedata;
1919 	int ret = 0;
1920 
1921 	if (write && (lo->lo_flags & LO_FLAGS_READ_ONLY)) {
1922 		ret = -EIO;
1923 		goto failed;
1924 	}
1925 
1926 	ret = do_req_filebacked(lo, rq);
1927  failed:
1928 	/* complete non-aio request */
1929 	if (!cmd->use_aio || ret) {
1930 		cmd->ret = ret ? -EIO : 0;
1931 		blk_mq_complete_request(rq);
1932 	}
1933 }
1934 
loop_queue_work(struct kthread_work * work)1935 static void loop_queue_work(struct kthread_work *work)
1936 {
1937 	struct loop_cmd *cmd =
1938 		container_of(work, struct loop_cmd, work);
1939 
1940 	loop_handle_cmd(cmd);
1941 }
1942 
loop_init_request(struct blk_mq_tag_set * set,struct request * rq,unsigned int hctx_idx,unsigned int numa_node)1943 static int loop_init_request(struct blk_mq_tag_set *set, struct request *rq,
1944 		unsigned int hctx_idx, unsigned int numa_node)
1945 {
1946 	struct loop_cmd *cmd = blk_mq_rq_to_pdu(rq);
1947 
1948 	kthread_init_work(&cmd->work, loop_queue_work);
1949 	return 0;
1950 }
1951 
1952 static const struct blk_mq_ops loop_mq_ops = {
1953 	.queue_rq       = loop_queue_rq,
1954 	.init_request	= loop_init_request,
1955 	.complete	= lo_complete_rq,
1956 };
1957 
loop_add(struct loop_device ** l,int i)1958 static int loop_add(struct loop_device **l, int i)
1959 {
1960 	struct loop_device *lo;
1961 	struct gendisk *disk;
1962 	int err;
1963 
1964 	err = -ENOMEM;
1965 	lo = kzalloc(sizeof(*lo), GFP_KERNEL);
1966 	if (!lo)
1967 		goto out;
1968 
1969 	lo->lo_state = Lo_unbound;
1970 
1971 	/* allocate id, if @id >= 0, we're requesting that specific id */
1972 	if (i >= 0) {
1973 		err = idr_alloc(&loop_index_idr, lo, i, i + 1, GFP_KERNEL);
1974 		if (err == -ENOSPC)
1975 			err = -EEXIST;
1976 	} else {
1977 		err = idr_alloc(&loop_index_idr, lo, 0, 0, GFP_KERNEL);
1978 	}
1979 	if (err < 0)
1980 		goto out_free_dev;
1981 	i = err;
1982 
1983 	err = -ENOMEM;
1984 	lo->tag_set.ops = &loop_mq_ops;
1985 	lo->tag_set.nr_hw_queues = 1;
1986 	lo->tag_set.queue_depth = 128;
1987 	lo->tag_set.numa_node = NUMA_NO_NODE;
1988 	lo->tag_set.cmd_size = sizeof(struct loop_cmd);
1989 	lo->tag_set.flags = BLK_MQ_F_SHOULD_MERGE | BLK_MQ_F_SG_MERGE;
1990 	lo->tag_set.driver_data = lo;
1991 
1992 	err = blk_mq_alloc_tag_set(&lo->tag_set);
1993 	if (err)
1994 		goto out_free_idr;
1995 
1996 	lo->lo_queue = blk_mq_init_queue(&lo->tag_set);
1997 	if (IS_ERR_OR_NULL(lo->lo_queue)) {
1998 		err = PTR_ERR(lo->lo_queue);
1999 		goto out_cleanup_tags;
2000 	}
2001 	lo->lo_queue->queuedata = lo;
2002 
2003 	blk_queue_max_hw_sectors(lo->lo_queue, BLK_DEF_MAX_SECTORS);
2004 
2005 	/*
2006 	 * By default, we do buffer IO, so it doesn't make sense to enable
2007 	 * merge because the I/O submitted to backing file is handled page by
2008 	 * page. For directio mode, merge does help to dispatch bigger request
2009 	 * to underlayer disk. We will enable merge once directio is enabled.
2010 	 */
2011 	blk_queue_flag_set(QUEUE_FLAG_NOMERGES, lo->lo_queue);
2012 
2013 	err = -ENOMEM;
2014 	disk = lo->lo_disk = alloc_disk(1 << part_shift);
2015 	if (!disk)
2016 		goto out_free_queue;
2017 
2018 	/*
2019 	 * Disable partition scanning by default. The in-kernel partition
2020 	 * scanning can be requested individually per-device during its
2021 	 * setup. Userspace can always add and remove partitions from all
2022 	 * devices. The needed partition minors are allocated from the
2023 	 * extended minor space, the main loop device numbers will continue
2024 	 * to match the loop minors, regardless of the number of partitions
2025 	 * used.
2026 	 *
2027 	 * If max_part is given, partition scanning is globally enabled for
2028 	 * all loop devices. The minors for the main loop devices will be
2029 	 * multiples of max_part.
2030 	 *
2031 	 * Note: Global-for-all-devices, set-only-at-init, read-only module
2032 	 * parameteters like 'max_loop' and 'max_part' make things needlessly
2033 	 * complicated, are too static, inflexible and may surprise
2034 	 * userspace tools. Parameters like this in general should be avoided.
2035 	 */
2036 	if (!part_shift)
2037 		disk->flags |= GENHD_FL_NO_PART_SCAN;
2038 	disk->flags |= GENHD_FL_EXT_DEVT;
2039 	atomic_set(&lo->lo_refcnt, 0);
2040 	lo->lo_number		= i;
2041 	spin_lock_init(&lo->lo_lock);
2042 	disk->major		= LOOP_MAJOR;
2043 	disk->first_minor	= i << part_shift;
2044 	disk->fops		= &lo_fops;
2045 	disk->private_data	= lo;
2046 	disk->queue		= lo->lo_queue;
2047 	sprintf(disk->disk_name, "loop%d", i);
2048 	add_disk(disk);
2049 	*l = lo;
2050 	return lo->lo_number;
2051 
2052 out_free_queue:
2053 	blk_cleanup_queue(lo->lo_queue);
2054 out_cleanup_tags:
2055 	blk_mq_free_tag_set(&lo->tag_set);
2056 out_free_idr:
2057 	idr_remove(&loop_index_idr, i);
2058 out_free_dev:
2059 	kfree(lo);
2060 out:
2061 	return err;
2062 }
2063 
loop_remove(struct loop_device * lo)2064 static void loop_remove(struct loop_device *lo)
2065 {
2066 	del_gendisk(lo->lo_disk);
2067 	blk_cleanup_queue(lo->lo_queue);
2068 	blk_mq_free_tag_set(&lo->tag_set);
2069 	put_disk(lo->lo_disk);
2070 	kfree(lo);
2071 }
2072 
find_free_cb(int id,void * ptr,void * data)2073 static int find_free_cb(int id, void *ptr, void *data)
2074 {
2075 	struct loop_device *lo = ptr;
2076 	struct loop_device **l = data;
2077 
2078 	if (lo->lo_state == Lo_unbound) {
2079 		*l = lo;
2080 		return 1;
2081 	}
2082 	return 0;
2083 }
2084 
loop_lookup(struct loop_device ** l,int i)2085 static int loop_lookup(struct loop_device **l, int i)
2086 {
2087 	struct loop_device *lo;
2088 	int ret = -ENODEV;
2089 
2090 	if (i < 0) {
2091 		int err;
2092 
2093 		err = idr_for_each(&loop_index_idr, &find_free_cb, &lo);
2094 		if (err == 1) {
2095 			*l = lo;
2096 			ret = lo->lo_number;
2097 		}
2098 		goto out;
2099 	}
2100 
2101 	/* lookup and return a specific i */
2102 	lo = idr_find(&loop_index_idr, i);
2103 	if (lo) {
2104 		*l = lo;
2105 		ret = lo->lo_number;
2106 	}
2107 out:
2108 	return ret;
2109 }
2110 
loop_probe(dev_t dev,int * part,void * data)2111 static struct kobject *loop_probe(dev_t dev, int *part, void *data)
2112 {
2113 	struct loop_device *lo;
2114 	struct kobject *kobj;
2115 	int err;
2116 
2117 	mutex_lock(&loop_ctl_mutex);
2118 	err = loop_lookup(&lo, MINOR(dev) >> part_shift);
2119 	if (err < 0)
2120 		err = loop_add(&lo, MINOR(dev) >> part_shift);
2121 	if (err < 0)
2122 		kobj = NULL;
2123 	else
2124 		kobj = get_disk_and_module(lo->lo_disk);
2125 	mutex_unlock(&loop_ctl_mutex);
2126 
2127 	*part = 0;
2128 	return kobj;
2129 }
2130 
loop_control_ioctl(struct file * file,unsigned int cmd,unsigned long parm)2131 static long loop_control_ioctl(struct file *file, unsigned int cmd,
2132 			       unsigned long parm)
2133 {
2134 	struct loop_device *lo;
2135 	int ret;
2136 
2137 	ret = mutex_lock_killable(&loop_ctl_mutex);
2138 	if (ret)
2139 		return ret;
2140 
2141 	ret = -ENOSYS;
2142 	switch (cmd) {
2143 	case LOOP_CTL_ADD:
2144 		ret = loop_lookup(&lo, parm);
2145 		if (ret >= 0) {
2146 			ret = -EEXIST;
2147 			break;
2148 		}
2149 		ret = loop_add(&lo, parm);
2150 		break;
2151 	case LOOP_CTL_REMOVE:
2152 		ret = loop_lookup(&lo, parm);
2153 		if (ret < 0)
2154 			break;
2155 		if (lo->lo_state != Lo_unbound) {
2156 			ret = -EBUSY;
2157 			break;
2158 		}
2159 		if (atomic_read(&lo->lo_refcnt) > 0) {
2160 			ret = -EBUSY;
2161 			break;
2162 		}
2163 		lo->lo_disk->private_data = NULL;
2164 		idr_remove(&loop_index_idr, lo->lo_number);
2165 		loop_remove(lo);
2166 		break;
2167 	case LOOP_CTL_GET_FREE:
2168 		ret = loop_lookup(&lo, -1);
2169 		if (ret >= 0)
2170 			break;
2171 		ret = loop_add(&lo, -1);
2172 	}
2173 	mutex_unlock(&loop_ctl_mutex);
2174 
2175 	return ret;
2176 }
2177 
2178 static const struct file_operations loop_ctl_fops = {
2179 	.open		= nonseekable_open,
2180 	.unlocked_ioctl	= loop_control_ioctl,
2181 	.compat_ioctl	= loop_control_ioctl,
2182 	.owner		= THIS_MODULE,
2183 	.llseek		= noop_llseek,
2184 };
2185 
2186 static struct miscdevice loop_misc = {
2187 	.minor		= LOOP_CTRL_MINOR,
2188 	.name		= "loop-control",
2189 	.fops		= &loop_ctl_fops,
2190 };
2191 
2192 MODULE_ALIAS_MISCDEV(LOOP_CTRL_MINOR);
2193 MODULE_ALIAS("devname:loop-control");
2194 
loop_init(void)2195 static int __init loop_init(void)
2196 {
2197 	int i, nr;
2198 	unsigned long range;
2199 	struct loop_device *lo;
2200 	int err;
2201 
2202 	part_shift = 0;
2203 	if (max_part > 0) {
2204 		part_shift = fls(max_part);
2205 
2206 		/*
2207 		 * Adjust max_part according to part_shift as it is exported
2208 		 * to user space so that user can decide correct minor number
2209 		 * if [s]he want to create more devices.
2210 		 *
2211 		 * Note that -1 is required because partition 0 is reserved
2212 		 * for the whole disk.
2213 		 */
2214 		max_part = (1UL << part_shift) - 1;
2215 	}
2216 
2217 	if ((1UL << part_shift) > DISK_MAX_PARTS) {
2218 		err = -EINVAL;
2219 		goto err_out;
2220 	}
2221 
2222 	if (max_loop > 1UL << (MINORBITS - part_shift)) {
2223 		err = -EINVAL;
2224 		goto err_out;
2225 	}
2226 
2227 	/*
2228 	 * If max_loop is specified, create that many devices upfront.
2229 	 * This also becomes a hard limit. If max_loop is not specified,
2230 	 * create CONFIG_BLK_DEV_LOOP_MIN_COUNT loop devices at module
2231 	 * init time. Loop devices can be requested on-demand with the
2232 	 * /dev/loop-control interface, or be instantiated by accessing
2233 	 * a 'dead' device node.
2234 	 */
2235 	if (max_loop) {
2236 		nr = max_loop;
2237 		range = max_loop << part_shift;
2238 	} else {
2239 		nr = CONFIG_BLK_DEV_LOOP_MIN_COUNT;
2240 		range = 1UL << MINORBITS;
2241 	}
2242 
2243 	err = misc_register(&loop_misc);
2244 	if (err < 0)
2245 		goto err_out;
2246 
2247 
2248 	if (register_blkdev(LOOP_MAJOR, "loop")) {
2249 		err = -EIO;
2250 		goto misc_out;
2251 	}
2252 
2253 	blk_register_region(MKDEV(LOOP_MAJOR, 0), range,
2254 				  THIS_MODULE, loop_probe, NULL, NULL);
2255 
2256 	/* pre-create number of devices given by config or max_loop */
2257 	mutex_lock(&loop_ctl_mutex);
2258 	for (i = 0; i < nr; i++)
2259 		loop_add(&lo, i);
2260 	mutex_unlock(&loop_ctl_mutex);
2261 
2262 	printk(KERN_INFO "loop: module loaded\n");
2263 	return 0;
2264 
2265 misc_out:
2266 	misc_deregister(&loop_misc);
2267 err_out:
2268 	return err;
2269 }
2270 
loop_exit_cb(int id,void * ptr,void * data)2271 static int loop_exit_cb(int id, void *ptr, void *data)
2272 {
2273 	struct loop_device *lo = ptr;
2274 
2275 	loop_remove(lo);
2276 	return 0;
2277 }
2278 
loop_exit(void)2279 static void __exit loop_exit(void)
2280 {
2281 	unsigned long range;
2282 
2283 	range = max_loop ? max_loop << part_shift : 1UL << MINORBITS;
2284 
2285 	mutex_lock(&loop_ctl_mutex);
2286 
2287 	idr_for_each(&loop_index_idr, &loop_exit_cb, NULL);
2288 	idr_destroy(&loop_index_idr);
2289 
2290 	blk_unregister_region(MKDEV(LOOP_MAJOR, 0), range);
2291 	unregister_blkdev(LOOP_MAJOR, "loop");
2292 
2293 	misc_deregister(&loop_misc);
2294 
2295 	mutex_unlock(&loop_ctl_mutex);
2296 }
2297 
2298 module_init(loop_init);
2299 module_exit(loop_exit);
2300 
2301 #ifndef MODULE
max_loop_setup(char * str)2302 static int __init max_loop_setup(char *str)
2303 {
2304 	max_loop = simple_strtol(str, NULL, 0);
2305 	return 1;
2306 }
2307 
2308 __setup("max_loop=", max_loop_setup);
2309 #endif
2310