• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Compressed RAM block device
3  *
4  * Copyright (C) 2008, 2009, 2010  Nitin Gupta
5  *               2012, 2013 Minchan Kim
6  *
7  * This code is released using a dual license strategy: BSD/GPL
8  * You can choose the licence that better fits your requirements.
9  *
10  * Released under the terms of 3-clause BSD License
11  * Released under the terms of GNU General Public License Version 2.0
12  *
13  */
14 
15 #define KMSG_COMPONENT "zram"
16 #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
17 
18 #include <linux/module.h>
19 #include <linux/kernel.h>
20 #include <linux/bio.h>
21 #include <linux/bitops.h>
22 #include <linux/blkdev.h>
23 #include <linux/buffer_head.h>
24 #include <linux/device.h>
25 #include <linux/genhd.h>
26 #include <linux/highmem.h>
27 #include <linux/slab.h>
28 #include <linux/backing-dev.h>
29 #include <linux/string.h>
30 #include <linux/vmalloc.h>
31 #include <linux/err.h>
32 #include <linux/idr.h>
33 #include <linux/sysfs.h>
34 #include <linux/debugfs.h>
35 #include <linux/cpuhotplug.h>
36 
37 #include "zram_drv.h"
38 
39 static DEFINE_IDR(zram_index_idr);
40 /* idr index must be protected */
41 static DEFINE_MUTEX(zram_index_mutex);
42 
43 static int zram_major;
44 static const char *default_compressor = "lzo";
45 
46 /* Module params (documentation at end) */
47 static unsigned int num_devices = 1;
48 /*
49  * Pages that compress to sizes equals or greater than this are stored
50  * uncompressed in memory.
51  */
52 static size_t huge_class_size;
53 
54 static void zram_free_page(struct zram *zram, size_t index);
55 
zram_slot_trylock(struct zram * zram,u32 index)56 static int zram_slot_trylock(struct zram *zram, u32 index)
57 {
58 	return bit_spin_trylock(ZRAM_LOCK, &zram->table[index].value);
59 }
60 
zram_slot_lock(struct zram * zram,u32 index)61 static void zram_slot_lock(struct zram *zram, u32 index)
62 {
63 	bit_spin_lock(ZRAM_LOCK, &zram->table[index].value);
64 }
65 
zram_slot_unlock(struct zram * zram,u32 index)66 static void zram_slot_unlock(struct zram *zram, u32 index)
67 {
68 	bit_spin_unlock(ZRAM_LOCK, &zram->table[index].value);
69 }
70 
init_done(struct zram * zram)71 static inline bool init_done(struct zram *zram)
72 {
73 	return zram->disksize;
74 }
75 
zram_allocated(struct zram * zram,u32 index)76 static inline bool zram_allocated(struct zram *zram, u32 index)
77 {
78 
79 	return (zram->table[index].value >> (ZRAM_FLAG_SHIFT + 1)) ||
80 					zram->table[index].handle;
81 }
82 
dev_to_zram(struct device * dev)83 static inline struct zram *dev_to_zram(struct device *dev)
84 {
85 	return (struct zram *)dev_to_disk(dev)->private_data;
86 }
87 
zram_get_handle(struct zram * zram,u32 index)88 static unsigned long zram_get_handle(struct zram *zram, u32 index)
89 {
90 	return zram->table[index].handle;
91 }
92 
zram_set_handle(struct zram * zram,u32 index,unsigned long handle)93 static void zram_set_handle(struct zram *zram, u32 index, unsigned long handle)
94 {
95 	zram->table[index].handle = handle;
96 }
97 
98 /* flag operations require table entry bit_spin_lock() being held */
zram_test_flag(struct zram * zram,u32 index,enum zram_pageflags flag)99 static bool zram_test_flag(struct zram *zram, u32 index,
100 			enum zram_pageflags flag)
101 {
102 	return zram->table[index].value & BIT(flag);
103 }
104 
zram_set_flag(struct zram * zram,u32 index,enum zram_pageflags flag)105 static void zram_set_flag(struct zram *zram, u32 index,
106 			enum zram_pageflags flag)
107 {
108 	zram->table[index].value |= BIT(flag);
109 }
110 
zram_clear_flag(struct zram * zram,u32 index,enum zram_pageflags flag)111 static void zram_clear_flag(struct zram *zram, u32 index,
112 			enum zram_pageflags flag)
113 {
114 	zram->table[index].value &= ~BIT(flag);
115 }
116 
zram_set_element(struct zram * zram,u32 index,unsigned long element)117 static inline void zram_set_element(struct zram *zram, u32 index,
118 			unsigned long element)
119 {
120 	zram->table[index].element = element;
121 }
122 
zram_get_element(struct zram * zram,u32 index)123 static unsigned long zram_get_element(struct zram *zram, u32 index)
124 {
125 	return zram->table[index].element;
126 }
127 
zram_get_obj_size(struct zram * zram,u32 index)128 static size_t zram_get_obj_size(struct zram *zram, u32 index)
129 {
130 	return zram->table[index].value & (BIT(ZRAM_FLAG_SHIFT) - 1);
131 }
132 
zram_set_obj_size(struct zram * zram,u32 index,size_t size)133 static void zram_set_obj_size(struct zram *zram,
134 					u32 index, size_t size)
135 {
136 	unsigned long flags = zram->table[index].value >> ZRAM_FLAG_SHIFT;
137 
138 	zram->table[index].value = (flags << ZRAM_FLAG_SHIFT) | size;
139 }
140 
141 #if PAGE_SIZE != 4096
is_partial_io(struct bio_vec * bvec)142 static inline bool is_partial_io(struct bio_vec *bvec)
143 {
144 	return bvec->bv_len != PAGE_SIZE;
145 }
146 #else
is_partial_io(struct bio_vec * bvec)147 static inline bool is_partial_io(struct bio_vec *bvec)
148 {
149 	return false;
150 }
151 #endif
152 
153 /*
154  * Check if request is within bounds and aligned on zram logical blocks.
155  */
valid_io_request(struct zram * zram,sector_t start,unsigned int size)156 static inline bool valid_io_request(struct zram *zram,
157 		sector_t start, unsigned int size)
158 {
159 	u64 end, bound;
160 
161 	/* unaligned request */
162 	if (unlikely(start & (ZRAM_SECTOR_PER_LOGICAL_BLOCK - 1)))
163 		return false;
164 	if (unlikely(size & (ZRAM_LOGICAL_BLOCK_SIZE - 1)))
165 		return false;
166 
167 	end = start + (size >> SECTOR_SHIFT);
168 	bound = zram->disksize >> SECTOR_SHIFT;
169 	/* out of range range */
170 	if (unlikely(start >= bound || end > bound || start > end))
171 		return false;
172 
173 	/* I/O request is valid */
174 	return true;
175 }
176 
update_position(u32 * index,int * offset,struct bio_vec * bvec)177 static void update_position(u32 *index, int *offset, struct bio_vec *bvec)
178 {
179 	*index  += (*offset + bvec->bv_len) / PAGE_SIZE;
180 	*offset = (*offset + bvec->bv_len) % PAGE_SIZE;
181 }
182 
update_used_max(struct zram * zram,const unsigned long pages)183 static inline void update_used_max(struct zram *zram,
184 					const unsigned long pages)
185 {
186 	unsigned long old_max, cur_max;
187 
188 	old_max = atomic_long_read(&zram->stats.max_used_pages);
189 
190 	do {
191 		cur_max = old_max;
192 		if (pages > cur_max)
193 			old_max = atomic_long_cmpxchg(
194 				&zram->stats.max_used_pages, cur_max, pages);
195 	} while (old_max != cur_max);
196 }
197 
zram_fill_page(void * ptr,unsigned long len,unsigned long value)198 static inline void zram_fill_page(void *ptr, unsigned long len,
199 					unsigned long value)
200 {
201 	WARN_ON_ONCE(!IS_ALIGNED(len, sizeof(unsigned long)));
202 	memset_l(ptr, value, len / sizeof(unsigned long));
203 }
204 
page_same_filled(void * ptr,unsigned long * element)205 static bool page_same_filled(void *ptr, unsigned long *element)
206 {
207 	unsigned int pos;
208 	unsigned long *page;
209 	unsigned long val;
210 
211 	page = (unsigned long *)ptr;
212 	val = page[0];
213 
214 	for (pos = 1; pos < PAGE_SIZE / sizeof(*page); pos++) {
215 		if (val != page[pos])
216 			return false;
217 	}
218 
219 	*element = val;
220 
221 	return true;
222 }
223 
initstate_show(struct device * dev,struct device_attribute * attr,char * buf)224 static ssize_t initstate_show(struct device *dev,
225 		struct device_attribute *attr, char *buf)
226 {
227 	u32 val;
228 	struct zram *zram = dev_to_zram(dev);
229 
230 	down_read(&zram->init_lock);
231 	val = init_done(zram);
232 	up_read(&zram->init_lock);
233 
234 	return scnprintf(buf, PAGE_SIZE, "%u\n", val);
235 }
236 
disksize_show(struct device * dev,struct device_attribute * attr,char * buf)237 static ssize_t disksize_show(struct device *dev,
238 		struct device_attribute *attr, char *buf)
239 {
240 	struct zram *zram = dev_to_zram(dev);
241 
242 	return scnprintf(buf, PAGE_SIZE, "%llu\n", zram->disksize);
243 }
244 
mem_limit_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t len)245 static ssize_t mem_limit_store(struct device *dev,
246 		struct device_attribute *attr, const char *buf, size_t len)
247 {
248 	u64 limit;
249 	char *tmp;
250 	struct zram *zram = dev_to_zram(dev);
251 
252 	limit = memparse(buf, &tmp);
253 	if (buf == tmp) /* no chars parsed, invalid input */
254 		return -EINVAL;
255 
256 	down_write(&zram->init_lock);
257 	zram->limit_pages = PAGE_ALIGN(limit) >> PAGE_SHIFT;
258 	up_write(&zram->init_lock);
259 
260 	return len;
261 }
262 
mem_used_max_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t len)263 static ssize_t mem_used_max_store(struct device *dev,
264 		struct device_attribute *attr, const char *buf, size_t len)
265 {
266 	int err;
267 	unsigned long val;
268 	struct zram *zram = dev_to_zram(dev);
269 
270 	err = kstrtoul(buf, 10, &val);
271 	if (err || val != 0)
272 		return -EINVAL;
273 
274 	down_read(&zram->init_lock);
275 	if (init_done(zram)) {
276 		atomic_long_set(&zram->stats.max_used_pages,
277 				zs_get_total_pages(zram->mem_pool));
278 	}
279 	up_read(&zram->init_lock);
280 
281 	return len;
282 }
283 
284 #ifdef CONFIG_ZRAM_WRITEBACK
zram_wb_enabled(struct zram * zram)285 static bool zram_wb_enabled(struct zram *zram)
286 {
287 	return zram->backing_dev;
288 }
289 
reset_bdev(struct zram * zram)290 static void reset_bdev(struct zram *zram)
291 {
292 	struct block_device *bdev;
293 
294 	if (!zram_wb_enabled(zram))
295 		return;
296 
297 	bdev = zram->bdev;
298 	if (zram->old_block_size)
299 		set_blocksize(bdev, zram->old_block_size);
300 	blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
301 	/* hope filp_close flush all of IO */
302 	filp_close(zram->backing_dev, NULL);
303 	zram->backing_dev = NULL;
304 	zram->old_block_size = 0;
305 	zram->bdev = NULL;
306 	zram->disk->queue->backing_dev_info->capabilities |=
307 				BDI_CAP_SYNCHRONOUS_IO;
308 	kvfree(zram->bitmap);
309 	zram->bitmap = NULL;
310 }
311 
backing_dev_show(struct device * dev,struct device_attribute * attr,char * buf)312 static ssize_t backing_dev_show(struct device *dev,
313 		struct device_attribute *attr, char *buf)
314 {
315 	struct file *file;
316 	struct zram *zram = dev_to_zram(dev);
317 	char *p;
318 	ssize_t ret;
319 
320 	down_read(&zram->init_lock);
321 	file = zram->backing_dev;
322 	if (!file) {
323 		memcpy(buf, "none\n", 5);
324 		up_read(&zram->init_lock);
325 		return 5;
326 	}
327 
328 	p = file_path(file, buf, PAGE_SIZE - 1);
329 	if (IS_ERR(p)) {
330 		ret = PTR_ERR(p);
331 		goto out;
332 	}
333 
334 	ret = strlen(p);
335 	memmove(buf, p, ret);
336 	buf[ret++] = '\n';
337 out:
338 	up_read(&zram->init_lock);
339 	return ret;
340 }
341 
backing_dev_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t len)342 static ssize_t backing_dev_store(struct device *dev,
343 		struct device_attribute *attr, const char *buf, size_t len)
344 {
345 	char *file_name;
346 	size_t sz;
347 	struct file *backing_dev = NULL;
348 	struct inode *inode;
349 	struct address_space *mapping;
350 	unsigned int bitmap_sz, old_block_size = 0;
351 	unsigned long nr_pages, *bitmap = NULL;
352 	struct block_device *bdev = NULL;
353 	int err;
354 	struct zram *zram = dev_to_zram(dev);
355 
356 	file_name = kmalloc(PATH_MAX, GFP_KERNEL);
357 	if (!file_name)
358 		return -ENOMEM;
359 
360 	down_write(&zram->init_lock);
361 	if (init_done(zram)) {
362 		pr_info("Can't setup backing device for initialized device\n");
363 		err = -EBUSY;
364 		goto out;
365 	}
366 
367 	strlcpy(file_name, buf, PATH_MAX);
368 	/* ignore trailing newline */
369 	sz = strlen(file_name);
370 	if (sz > 0 && file_name[sz - 1] == '\n')
371 		file_name[sz - 1] = 0x00;
372 
373 	backing_dev = filp_open(file_name, O_RDWR|O_LARGEFILE, 0);
374 	if (IS_ERR(backing_dev)) {
375 		err = PTR_ERR(backing_dev);
376 		backing_dev = NULL;
377 		goto out;
378 	}
379 
380 	mapping = backing_dev->f_mapping;
381 	inode = mapping->host;
382 
383 	/* Support only block device in this moment */
384 	if (!S_ISBLK(inode->i_mode)) {
385 		err = -ENOTBLK;
386 		goto out;
387 	}
388 
389 	bdev = bdgrab(I_BDEV(inode));
390 	err = blkdev_get(bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL, zram);
391 	if (err < 0) {
392 		bdev = NULL;
393 		goto out;
394 	}
395 
396 	nr_pages = i_size_read(inode) >> PAGE_SHIFT;
397 	bitmap_sz = BITS_TO_LONGS(nr_pages) * sizeof(long);
398 	bitmap = kvzalloc(bitmap_sz, GFP_KERNEL);
399 	if (!bitmap) {
400 		err = -ENOMEM;
401 		goto out;
402 	}
403 
404 	old_block_size = block_size(bdev);
405 	err = set_blocksize(bdev, PAGE_SIZE);
406 	if (err)
407 		goto out;
408 
409 	reset_bdev(zram);
410 
411 	zram->old_block_size = old_block_size;
412 	zram->bdev = bdev;
413 	zram->backing_dev = backing_dev;
414 	zram->bitmap = bitmap;
415 	zram->nr_pages = nr_pages;
416 	/*
417 	 * With writeback feature, zram does asynchronous IO so it's no longer
418 	 * synchronous device so let's remove synchronous io flag. Othewise,
419 	 * upper layer(e.g., swap) could wait IO completion rather than
420 	 * (submit and return), which will cause system sluggish.
421 	 * Furthermore, when the IO function returns(e.g., swap_readpage),
422 	 * upper layer expects IO was done so it could deallocate the page
423 	 * freely but in fact, IO is going on so finally could cause
424 	 * use-after-free when the IO is really done.
425 	 */
426 	zram->disk->queue->backing_dev_info->capabilities &=
427 			~BDI_CAP_SYNCHRONOUS_IO;
428 	up_write(&zram->init_lock);
429 
430 	pr_info("setup backing device %s\n", file_name);
431 	kfree(file_name);
432 
433 	return len;
434 out:
435 	if (bitmap)
436 		kvfree(bitmap);
437 
438 	if (bdev)
439 		blkdev_put(bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
440 
441 	if (backing_dev)
442 		filp_close(backing_dev, NULL);
443 
444 	up_write(&zram->init_lock);
445 
446 	kfree(file_name);
447 
448 	return err;
449 }
450 
get_entry_bdev(struct zram * zram)451 static unsigned long get_entry_bdev(struct zram *zram)
452 {
453 	unsigned long blk_idx = 1;
454 retry:
455 	/* skip 0 bit to confuse zram.handle = 0 */
456 	blk_idx = find_next_zero_bit(zram->bitmap, zram->nr_pages, blk_idx);
457 	if (blk_idx == zram->nr_pages)
458 		return 0;
459 
460 	if (test_and_set_bit(blk_idx, zram->bitmap))
461 		goto retry;
462 
463 	return blk_idx;
464 }
465 
put_entry_bdev(struct zram * zram,unsigned long entry)466 static void put_entry_bdev(struct zram *zram, unsigned long entry)
467 {
468 	int was_set;
469 
470 	was_set = test_and_clear_bit(entry, zram->bitmap);
471 	WARN_ON_ONCE(!was_set);
472 }
473 
zram_page_end_io(struct bio * bio)474 static void zram_page_end_io(struct bio *bio)
475 {
476 	struct page *page = bio_first_page_all(bio);
477 
478 	page_endio(page, op_is_write(bio_op(bio)),
479 			blk_status_to_errno(bio->bi_status));
480 	bio_put(bio);
481 }
482 
483 /*
484  * Returns 1 if the submission is successful.
485  */
read_from_bdev_async(struct zram * zram,struct bio_vec * bvec,unsigned long entry,struct bio * parent)486 static int read_from_bdev_async(struct zram *zram, struct bio_vec *bvec,
487 			unsigned long entry, struct bio *parent)
488 {
489 	struct bio *bio;
490 
491 	bio = bio_alloc(GFP_ATOMIC, 1);
492 	if (!bio)
493 		return -ENOMEM;
494 
495 	bio->bi_iter.bi_sector = entry * (PAGE_SIZE >> 9);
496 	bio_set_dev(bio, zram->bdev);
497 	if (!bio_add_page(bio, bvec->bv_page, bvec->bv_len, bvec->bv_offset)) {
498 		bio_put(bio);
499 		return -EIO;
500 	}
501 
502 	if (!parent) {
503 		bio->bi_opf = REQ_OP_READ;
504 		bio->bi_end_io = zram_page_end_io;
505 	} else {
506 		bio->bi_opf = parent->bi_opf;
507 		bio_chain(bio, parent);
508 	}
509 
510 	submit_bio(bio);
511 	return 1;
512 }
513 
514 struct zram_work {
515 	struct work_struct work;
516 	struct zram *zram;
517 	unsigned long entry;
518 	struct bio *bio;
519 	struct bio_vec bvec;
520 };
521 
522 #if PAGE_SIZE != 4096
zram_sync_read(struct work_struct * work)523 static void zram_sync_read(struct work_struct *work)
524 {
525 	struct zram_work *zw = container_of(work, struct zram_work, work);
526 	struct zram *zram = zw->zram;
527 	unsigned long entry = zw->entry;
528 	struct bio *bio = zw->bio;
529 
530 	read_from_bdev_async(zram, &zw->bvec, entry, bio);
531 }
532 
533 /*
534  * Block layer want one ->make_request_fn to be active at a time
535  * so if we use chained IO with parent IO in same context,
536  * it's a deadlock. To avoid, it, it uses worker thread context.
537  */
read_from_bdev_sync(struct zram * zram,struct bio_vec * bvec,unsigned long entry,struct bio * bio)538 static int read_from_bdev_sync(struct zram *zram, struct bio_vec *bvec,
539 				unsigned long entry, struct bio *bio)
540 {
541 	struct zram_work work;
542 
543 	work.bvec = *bvec;
544 	work.zram = zram;
545 	work.entry = entry;
546 	work.bio = bio;
547 
548 	INIT_WORK_ONSTACK(&work.work, zram_sync_read);
549 	queue_work(system_unbound_wq, &work.work);
550 	flush_work(&work.work);
551 	destroy_work_on_stack(&work.work);
552 
553 	return 1;
554 }
555 #else
read_from_bdev_sync(struct zram * zram,struct bio_vec * bvec,unsigned long entry,struct bio * bio)556 static int read_from_bdev_sync(struct zram *zram, struct bio_vec *bvec,
557 				unsigned long entry, struct bio *bio)
558 {
559 	WARN_ON(1);
560 	return -EIO;
561 }
562 #endif
563 
read_from_bdev(struct zram * zram,struct bio_vec * bvec,unsigned long entry,struct bio * parent,bool sync)564 static int read_from_bdev(struct zram *zram, struct bio_vec *bvec,
565 			unsigned long entry, struct bio *parent, bool sync)
566 {
567 	if (sync)
568 		return read_from_bdev_sync(zram, bvec, entry, parent);
569 	else
570 		return read_from_bdev_async(zram, bvec, entry, parent);
571 }
572 
write_to_bdev(struct zram * zram,struct bio_vec * bvec,u32 index,struct bio * parent,unsigned long * pentry)573 static int write_to_bdev(struct zram *zram, struct bio_vec *bvec,
574 					u32 index, struct bio *parent,
575 					unsigned long *pentry)
576 {
577 	struct bio *bio;
578 	unsigned long entry;
579 
580 	bio = bio_alloc(GFP_ATOMIC, 1);
581 	if (!bio)
582 		return -ENOMEM;
583 
584 	entry = get_entry_bdev(zram);
585 	if (!entry) {
586 		bio_put(bio);
587 		return -ENOSPC;
588 	}
589 
590 	bio->bi_iter.bi_sector = entry * (PAGE_SIZE >> 9);
591 	bio_set_dev(bio, zram->bdev);
592 	if (!bio_add_page(bio, bvec->bv_page, bvec->bv_len,
593 					bvec->bv_offset)) {
594 		bio_put(bio);
595 		put_entry_bdev(zram, entry);
596 		return -EIO;
597 	}
598 
599 	if (!parent) {
600 		bio->bi_opf = REQ_OP_WRITE | REQ_SYNC;
601 		bio->bi_end_io = zram_page_end_io;
602 	} else {
603 		bio->bi_opf = parent->bi_opf;
604 		bio_chain(bio, parent);
605 	}
606 
607 	submit_bio(bio);
608 	*pentry = entry;
609 
610 	return 0;
611 }
612 
zram_wb_clear(struct zram * zram,u32 index)613 static void zram_wb_clear(struct zram *zram, u32 index)
614 {
615 	unsigned long entry;
616 
617 	zram_clear_flag(zram, index, ZRAM_WB);
618 	entry = zram_get_element(zram, index);
619 	zram_set_element(zram, index, 0);
620 	put_entry_bdev(zram, entry);
621 }
622 
623 #else
zram_wb_enabled(struct zram * zram)624 static bool zram_wb_enabled(struct zram *zram) { return false; }
reset_bdev(struct zram * zram)625 static inline void reset_bdev(struct zram *zram) {};
write_to_bdev(struct zram * zram,struct bio_vec * bvec,u32 index,struct bio * parent,unsigned long * pentry)626 static int write_to_bdev(struct zram *zram, struct bio_vec *bvec,
627 					u32 index, struct bio *parent,
628 					unsigned long *pentry)
629 
630 {
631 	return -EIO;
632 }
633 
read_from_bdev(struct zram * zram,struct bio_vec * bvec,unsigned long entry,struct bio * parent,bool sync)634 static int read_from_bdev(struct zram *zram, struct bio_vec *bvec,
635 			unsigned long entry, struct bio *parent, bool sync)
636 {
637 	return -EIO;
638 }
zram_wb_clear(struct zram * zram,u32 index)639 static void zram_wb_clear(struct zram *zram, u32 index) {}
640 #endif
641 
642 #ifdef CONFIG_ZRAM_MEMORY_TRACKING
643 
644 static struct dentry *zram_debugfs_root;
645 
zram_debugfs_create(void)646 static void zram_debugfs_create(void)
647 {
648 	zram_debugfs_root = debugfs_create_dir("zram", NULL);
649 }
650 
zram_debugfs_destroy(void)651 static void zram_debugfs_destroy(void)
652 {
653 	debugfs_remove_recursive(zram_debugfs_root);
654 }
655 
zram_accessed(struct zram * zram,u32 index)656 static void zram_accessed(struct zram *zram, u32 index)
657 {
658 	zram->table[index].ac_time = ktime_get_boottime();
659 }
660 
zram_reset_access(struct zram * zram,u32 index)661 static void zram_reset_access(struct zram *zram, u32 index)
662 {
663 	zram->table[index].ac_time = 0;
664 }
665 
read_block_state(struct file * file,char __user * buf,size_t count,loff_t * ppos)666 static ssize_t read_block_state(struct file *file, char __user *buf,
667 				size_t count, loff_t *ppos)
668 {
669 	char *kbuf;
670 	ssize_t index, written = 0;
671 	struct zram *zram = file->private_data;
672 	unsigned long nr_pages = zram->disksize >> PAGE_SHIFT;
673 	struct timespec64 ts;
674 
675 	kbuf = kvmalloc(count, GFP_KERNEL);
676 	if (!kbuf)
677 		return -ENOMEM;
678 
679 	down_read(&zram->init_lock);
680 	if (!init_done(zram)) {
681 		up_read(&zram->init_lock);
682 		kvfree(kbuf);
683 		return -EINVAL;
684 	}
685 
686 	for (index = *ppos; index < nr_pages; index++) {
687 		int copied;
688 
689 		zram_slot_lock(zram, index);
690 		if (!zram_allocated(zram, index))
691 			goto next;
692 
693 		ts = ktime_to_timespec64(zram->table[index].ac_time);
694 		copied = snprintf(kbuf + written, count,
695 			"%12zd %12lld.%06lu %c%c%c\n",
696 			index, (s64)ts.tv_sec,
697 			ts.tv_nsec / NSEC_PER_USEC,
698 			zram_test_flag(zram, index, ZRAM_SAME) ? 's' : '.',
699 			zram_test_flag(zram, index, ZRAM_WB) ? 'w' : '.',
700 			zram_test_flag(zram, index, ZRAM_HUGE) ? 'h' : '.');
701 
702 		if (count < copied) {
703 			zram_slot_unlock(zram, index);
704 			break;
705 		}
706 		written += copied;
707 		count -= copied;
708 next:
709 		zram_slot_unlock(zram, index);
710 		*ppos += 1;
711 	}
712 
713 	up_read(&zram->init_lock);
714 	if (copy_to_user(buf, kbuf, written))
715 		written = -EFAULT;
716 	kvfree(kbuf);
717 
718 	return written;
719 }
720 
721 static const struct file_operations proc_zram_block_state_op = {
722 	.open = simple_open,
723 	.read = read_block_state,
724 	.llseek = default_llseek,
725 };
726 
zram_debugfs_register(struct zram * zram)727 static void zram_debugfs_register(struct zram *zram)
728 {
729 	if (!zram_debugfs_root)
730 		return;
731 
732 	zram->debugfs_dir = debugfs_create_dir(zram->disk->disk_name,
733 						zram_debugfs_root);
734 	debugfs_create_file("block_state", 0400, zram->debugfs_dir,
735 				zram, &proc_zram_block_state_op);
736 }
737 
zram_debugfs_unregister(struct zram * zram)738 static void zram_debugfs_unregister(struct zram *zram)
739 {
740 	debugfs_remove_recursive(zram->debugfs_dir);
741 }
742 #else
zram_debugfs_create(void)743 static void zram_debugfs_create(void) {};
zram_debugfs_destroy(void)744 static void zram_debugfs_destroy(void) {};
zram_accessed(struct zram * zram,u32 index)745 static void zram_accessed(struct zram *zram, u32 index) {};
zram_reset_access(struct zram * zram,u32 index)746 static void zram_reset_access(struct zram *zram, u32 index) {};
zram_debugfs_register(struct zram * zram)747 static void zram_debugfs_register(struct zram *zram) {};
zram_debugfs_unregister(struct zram * zram)748 static void zram_debugfs_unregister(struct zram *zram) {};
749 #endif
750 
751 /*
752  * We switched to per-cpu streams and this attr is not needed anymore.
753  * However, we will keep it around for some time, because:
754  * a) we may revert per-cpu streams in the future
755  * b) it's visible to user space and we need to follow our 2 years
756  *    retirement rule; but we already have a number of 'soon to be
757  *    altered' attrs, so max_comp_streams need to wait for the next
758  *    layoff cycle.
759  */
max_comp_streams_show(struct device * dev,struct device_attribute * attr,char * buf)760 static ssize_t max_comp_streams_show(struct device *dev,
761 		struct device_attribute *attr, char *buf)
762 {
763 	return scnprintf(buf, PAGE_SIZE, "%d\n", num_online_cpus());
764 }
765 
max_comp_streams_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t len)766 static ssize_t max_comp_streams_store(struct device *dev,
767 		struct device_attribute *attr, const char *buf, size_t len)
768 {
769 	return len;
770 }
771 
comp_algorithm_show(struct device * dev,struct device_attribute * attr,char * buf)772 static ssize_t comp_algorithm_show(struct device *dev,
773 		struct device_attribute *attr, char *buf)
774 {
775 	size_t sz;
776 	struct zram *zram = dev_to_zram(dev);
777 
778 	down_read(&zram->init_lock);
779 	sz = zcomp_available_show(zram->compressor, buf);
780 	up_read(&zram->init_lock);
781 
782 	return sz;
783 }
784 
comp_algorithm_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t len)785 static ssize_t comp_algorithm_store(struct device *dev,
786 		struct device_attribute *attr, const char *buf, size_t len)
787 {
788 	struct zram *zram = dev_to_zram(dev);
789 	char compressor[ARRAY_SIZE(zram->compressor)];
790 	size_t sz;
791 
792 	strlcpy(compressor, buf, sizeof(compressor));
793 	/* ignore trailing newline */
794 	sz = strlen(compressor);
795 	if (sz > 0 && compressor[sz - 1] == '\n')
796 		compressor[sz - 1] = 0x00;
797 
798 	if (!zcomp_available_algorithm(compressor))
799 		return -EINVAL;
800 
801 	down_write(&zram->init_lock);
802 	if (init_done(zram)) {
803 		up_write(&zram->init_lock);
804 		pr_info("Can't change algorithm for initialized device\n");
805 		return -EBUSY;
806 	}
807 
808 	strcpy(zram->compressor, compressor);
809 	up_write(&zram->init_lock);
810 	return len;
811 }
812 
compact_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t len)813 static ssize_t compact_store(struct device *dev,
814 		struct device_attribute *attr, const char *buf, size_t len)
815 {
816 	struct zram *zram = dev_to_zram(dev);
817 
818 	down_read(&zram->init_lock);
819 	if (!init_done(zram)) {
820 		up_read(&zram->init_lock);
821 		return -EINVAL;
822 	}
823 
824 	zs_compact(zram->mem_pool);
825 	up_read(&zram->init_lock);
826 
827 	return len;
828 }
829 
io_stat_show(struct device * dev,struct device_attribute * attr,char * buf)830 static ssize_t io_stat_show(struct device *dev,
831 		struct device_attribute *attr, char *buf)
832 {
833 	struct zram *zram = dev_to_zram(dev);
834 	ssize_t ret;
835 
836 	down_read(&zram->init_lock);
837 	ret = scnprintf(buf, PAGE_SIZE,
838 			"%8llu %8llu %8llu %8llu\n",
839 			(u64)atomic64_read(&zram->stats.failed_reads),
840 			(u64)atomic64_read(&zram->stats.failed_writes),
841 			(u64)atomic64_read(&zram->stats.invalid_io),
842 			(u64)atomic64_read(&zram->stats.notify_free));
843 	up_read(&zram->init_lock);
844 
845 	return ret;
846 }
847 
mm_stat_show(struct device * dev,struct device_attribute * attr,char * buf)848 static ssize_t mm_stat_show(struct device *dev,
849 		struct device_attribute *attr, char *buf)
850 {
851 	struct zram *zram = dev_to_zram(dev);
852 	struct zs_pool_stats pool_stats;
853 	u64 orig_size, mem_used = 0;
854 	long max_used;
855 	ssize_t ret;
856 
857 	memset(&pool_stats, 0x00, sizeof(struct zs_pool_stats));
858 
859 	down_read(&zram->init_lock);
860 	if (init_done(zram)) {
861 		mem_used = zs_get_total_pages(zram->mem_pool);
862 		zs_pool_stats(zram->mem_pool, &pool_stats);
863 	}
864 
865 	orig_size = atomic64_read(&zram->stats.pages_stored);
866 	max_used = atomic_long_read(&zram->stats.max_used_pages);
867 
868 	ret = scnprintf(buf, PAGE_SIZE,
869 			"%8llu %8llu %8llu %8lu %8ld %8llu %8lu %8llu\n",
870 			orig_size << PAGE_SHIFT,
871 			(u64)atomic64_read(&zram->stats.compr_data_size),
872 			mem_used << PAGE_SHIFT,
873 			zram->limit_pages << PAGE_SHIFT,
874 			max_used << PAGE_SHIFT,
875 			(u64)atomic64_read(&zram->stats.same_pages),
876 			pool_stats.pages_compacted,
877 			(u64)atomic64_read(&zram->stats.huge_pages));
878 	up_read(&zram->init_lock);
879 
880 	return ret;
881 }
882 
debug_stat_show(struct device * dev,struct device_attribute * attr,char * buf)883 static ssize_t debug_stat_show(struct device *dev,
884 		struct device_attribute *attr, char *buf)
885 {
886 	int version = 1;
887 	struct zram *zram = dev_to_zram(dev);
888 	ssize_t ret;
889 
890 	down_read(&zram->init_lock);
891 	ret = scnprintf(buf, PAGE_SIZE,
892 			"version: %d\n%8llu %8llu\n",
893 			version,
894 			(u64)atomic64_read(&zram->stats.writestall),
895 			(u64)atomic64_read(&zram->stats.miss_free));
896 	up_read(&zram->init_lock);
897 
898 	return ret;
899 }
900 
901 static DEVICE_ATTR_RO(io_stat);
902 static DEVICE_ATTR_RO(mm_stat);
903 static DEVICE_ATTR_RO(debug_stat);
904 
zram_meta_free(struct zram * zram,u64 disksize)905 static void zram_meta_free(struct zram *zram, u64 disksize)
906 {
907 	size_t num_pages = disksize >> PAGE_SHIFT;
908 	size_t index;
909 
910 	/* Free all pages that are still in this zram device */
911 	for (index = 0; index < num_pages; index++)
912 		zram_free_page(zram, index);
913 
914 	zs_destroy_pool(zram->mem_pool);
915 	vfree(zram->table);
916 }
917 
zram_meta_alloc(struct zram * zram,u64 disksize)918 static bool zram_meta_alloc(struct zram *zram, u64 disksize)
919 {
920 	size_t num_pages;
921 
922 	num_pages = disksize >> PAGE_SHIFT;
923 	zram->table = vzalloc(array_size(num_pages, sizeof(*zram->table)));
924 	if (!zram->table)
925 		return false;
926 
927 	zram->mem_pool = zs_create_pool(zram->disk->disk_name);
928 	if (!zram->mem_pool) {
929 		vfree(zram->table);
930 		return false;
931 	}
932 
933 	if (!huge_class_size)
934 		huge_class_size = zs_huge_class_size(zram->mem_pool);
935 	return true;
936 }
937 
938 /*
939  * To protect concurrent access to the same index entry,
940  * caller should hold this table index entry's bit_spinlock to
941  * indicate this index entry is accessing.
942  */
zram_free_page(struct zram * zram,size_t index)943 static void zram_free_page(struct zram *zram, size_t index)
944 {
945 	unsigned long handle;
946 
947 	zram_reset_access(zram, index);
948 
949 	if (zram_test_flag(zram, index, ZRAM_HUGE)) {
950 		zram_clear_flag(zram, index, ZRAM_HUGE);
951 		atomic64_dec(&zram->stats.huge_pages);
952 	}
953 
954 	if (zram_wb_enabled(zram) && zram_test_flag(zram, index, ZRAM_WB)) {
955 		zram_wb_clear(zram, index);
956 		atomic64_dec(&zram->stats.pages_stored);
957 		return;
958 	}
959 
960 	/*
961 	 * No memory is allocated for same element filled pages.
962 	 * Simply clear same page flag.
963 	 */
964 	if (zram_test_flag(zram, index, ZRAM_SAME)) {
965 		zram_clear_flag(zram, index, ZRAM_SAME);
966 		zram_set_element(zram, index, 0);
967 		atomic64_dec(&zram->stats.same_pages);
968 		atomic64_dec(&zram->stats.pages_stored);
969 		return;
970 	}
971 
972 	handle = zram_get_handle(zram, index);
973 	if (!handle)
974 		return;
975 
976 	zs_free(zram->mem_pool, handle);
977 
978 	atomic64_sub(zram_get_obj_size(zram, index),
979 			&zram->stats.compr_data_size);
980 	atomic64_dec(&zram->stats.pages_stored);
981 
982 	zram_set_handle(zram, index, 0);
983 	zram_set_obj_size(zram, index, 0);
984 }
985 
__zram_bvec_read(struct zram * zram,struct page * page,u32 index,struct bio * bio,bool partial_io)986 static int __zram_bvec_read(struct zram *zram, struct page *page, u32 index,
987 				struct bio *bio, bool partial_io)
988 {
989 	int ret;
990 	unsigned long handle;
991 	unsigned int size;
992 	void *src, *dst;
993 
994 	if (zram_wb_enabled(zram)) {
995 		zram_slot_lock(zram, index);
996 		if (zram_test_flag(zram, index, ZRAM_WB)) {
997 			struct bio_vec bvec;
998 
999 			zram_slot_unlock(zram, index);
1000 
1001 			bvec.bv_page = page;
1002 			bvec.bv_len = PAGE_SIZE;
1003 			bvec.bv_offset = 0;
1004 			return read_from_bdev(zram, &bvec,
1005 					zram_get_element(zram, index),
1006 					bio, partial_io);
1007 		}
1008 		zram_slot_unlock(zram, index);
1009 	}
1010 
1011 	zram_slot_lock(zram, index);
1012 	handle = zram_get_handle(zram, index);
1013 	if (!handle || zram_test_flag(zram, index, ZRAM_SAME)) {
1014 		unsigned long value;
1015 		void *mem;
1016 
1017 		value = handle ? zram_get_element(zram, index) : 0;
1018 		mem = kmap_atomic(page);
1019 		zram_fill_page(mem, PAGE_SIZE, value);
1020 		kunmap_atomic(mem);
1021 		zram_slot_unlock(zram, index);
1022 		return 0;
1023 	}
1024 
1025 	size = zram_get_obj_size(zram, index);
1026 
1027 	src = zs_map_object(zram->mem_pool, handle, ZS_MM_RO);
1028 	if (size == PAGE_SIZE) {
1029 		dst = kmap_atomic(page);
1030 		memcpy(dst, src, PAGE_SIZE);
1031 		kunmap_atomic(dst);
1032 		ret = 0;
1033 	} else {
1034 		struct zcomp_strm *zstrm = zcomp_stream_get(zram->comp);
1035 
1036 		dst = kmap_atomic(page);
1037 		ret = zcomp_decompress(zstrm, src, size, dst);
1038 		kunmap_atomic(dst);
1039 		zcomp_stream_put(zram->comp);
1040 	}
1041 	zs_unmap_object(zram->mem_pool, handle);
1042 	zram_slot_unlock(zram, index);
1043 
1044 	/* Should NEVER happen. Return bio error if it does. */
1045 	if (unlikely(ret))
1046 		pr_err("Decompression failed! err=%d, page=%u\n", ret, index);
1047 
1048 	return ret;
1049 }
1050 
zram_bvec_read(struct zram * zram,struct bio_vec * bvec,u32 index,int offset,struct bio * bio)1051 static int zram_bvec_read(struct zram *zram, struct bio_vec *bvec,
1052 				u32 index, int offset, struct bio *bio)
1053 {
1054 	int ret;
1055 	struct page *page;
1056 
1057 	page = bvec->bv_page;
1058 	if (is_partial_io(bvec)) {
1059 		/* Use a temporary buffer to decompress the page */
1060 		page = alloc_page(GFP_NOIO|__GFP_HIGHMEM);
1061 		if (!page)
1062 			return -ENOMEM;
1063 	}
1064 
1065 	ret = __zram_bvec_read(zram, page, index, bio, is_partial_io(bvec));
1066 	if (unlikely(ret))
1067 		goto out;
1068 
1069 	if (is_partial_io(bvec)) {
1070 		void *dst = kmap_atomic(bvec->bv_page);
1071 		void *src = kmap_atomic(page);
1072 
1073 		memcpy(dst + bvec->bv_offset, src + offset, bvec->bv_len);
1074 		kunmap_atomic(src);
1075 		kunmap_atomic(dst);
1076 	}
1077 out:
1078 	if (is_partial_io(bvec))
1079 		__free_page(page);
1080 
1081 	return ret;
1082 }
1083 
__zram_bvec_write(struct zram * zram,struct bio_vec * bvec,u32 index,struct bio * bio)1084 static int __zram_bvec_write(struct zram *zram, struct bio_vec *bvec,
1085 				u32 index, struct bio *bio)
1086 {
1087 	int ret = 0;
1088 	unsigned long alloced_pages;
1089 	unsigned long handle = 0;
1090 	unsigned int comp_len = 0;
1091 	void *src, *dst, *mem;
1092 	struct zcomp_strm *zstrm;
1093 	struct page *page = bvec->bv_page;
1094 	unsigned long element = 0;
1095 	enum zram_pageflags flags = 0;
1096 	bool allow_wb = true;
1097 
1098 	mem = kmap_atomic(page);
1099 	if (page_same_filled(mem, &element)) {
1100 		kunmap_atomic(mem);
1101 		/* Free memory associated with this sector now. */
1102 		flags = ZRAM_SAME;
1103 		atomic64_inc(&zram->stats.same_pages);
1104 		goto out;
1105 	}
1106 	kunmap_atomic(mem);
1107 
1108 compress_again:
1109 	zstrm = zcomp_stream_get(zram->comp);
1110 	src = kmap_atomic(page);
1111 	ret = zcomp_compress(zstrm, src, &comp_len);
1112 	kunmap_atomic(src);
1113 
1114 	if (unlikely(ret)) {
1115 		zcomp_stream_put(zram->comp);
1116 		pr_err("Compression failed! err=%d\n", ret);
1117 		zs_free(zram->mem_pool, handle);
1118 		return ret;
1119 	}
1120 
1121 	if (unlikely(comp_len >= huge_class_size)) {
1122 		comp_len = PAGE_SIZE;
1123 		if (zram_wb_enabled(zram) && allow_wb) {
1124 			zcomp_stream_put(zram->comp);
1125 			ret = write_to_bdev(zram, bvec, index, bio, &element);
1126 			if (!ret) {
1127 				flags = ZRAM_WB;
1128 				ret = 1;
1129 				goto out;
1130 			}
1131 			allow_wb = false;
1132 			goto compress_again;
1133 		}
1134 	}
1135 
1136 	/*
1137 	 * handle allocation has 2 paths:
1138 	 * a) fast path is executed with preemption disabled (for
1139 	 *  per-cpu streams) and has __GFP_DIRECT_RECLAIM bit clear,
1140 	 *  since we can't sleep;
1141 	 * b) slow path enables preemption and attempts to allocate
1142 	 *  the page with __GFP_DIRECT_RECLAIM bit set. we have to
1143 	 *  put per-cpu compression stream and, thus, to re-do
1144 	 *  the compression once handle is allocated.
1145 	 *
1146 	 * if we have a 'non-null' handle here then we are coming
1147 	 * from the slow path and handle has already been allocated.
1148 	 */
1149 	if (!handle)
1150 		handle = zs_malloc(zram->mem_pool, comp_len,
1151 				__GFP_KSWAPD_RECLAIM |
1152 				__GFP_NOWARN |
1153 				__GFP_HIGHMEM |
1154 				__GFP_MOVABLE);
1155 	if (!handle) {
1156 		zcomp_stream_put(zram->comp);
1157 		atomic64_inc(&zram->stats.writestall);
1158 		handle = zs_malloc(zram->mem_pool, comp_len,
1159 				GFP_NOIO | __GFP_HIGHMEM |
1160 				__GFP_MOVABLE);
1161 		if (handle)
1162 			goto compress_again;
1163 		return -ENOMEM;
1164 	}
1165 
1166 	alloced_pages = zs_get_total_pages(zram->mem_pool);
1167 	update_used_max(zram, alloced_pages);
1168 
1169 	if (zram->limit_pages && alloced_pages > zram->limit_pages) {
1170 		zcomp_stream_put(zram->comp);
1171 		zs_free(zram->mem_pool, handle);
1172 		return -ENOMEM;
1173 	}
1174 
1175 	dst = zs_map_object(zram->mem_pool, handle, ZS_MM_WO);
1176 
1177 	src = zstrm->buffer;
1178 	if (comp_len == PAGE_SIZE)
1179 		src = kmap_atomic(page);
1180 	memcpy(dst, src, comp_len);
1181 	if (comp_len == PAGE_SIZE)
1182 		kunmap_atomic(src);
1183 
1184 	zcomp_stream_put(zram->comp);
1185 	zs_unmap_object(zram->mem_pool, handle);
1186 	atomic64_add(comp_len, &zram->stats.compr_data_size);
1187 out:
1188 	/*
1189 	 * Free memory associated with this sector
1190 	 * before overwriting unused sectors.
1191 	 */
1192 	zram_slot_lock(zram, index);
1193 	zram_free_page(zram, index);
1194 
1195 	if (comp_len == PAGE_SIZE) {
1196 		zram_set_flag(zram, index, ZRAM_HUGE);
1197 		atomic64_inc(&zram->stats.huge_pages);
1198 	}
1199 
1200 	if (flags) {
1201 		zram_set_flag(zram, index, flags);
1202 		zram_set_element(zram, index, element);
1203 	}  else {
1204 		zram_set_handle(zram, index, handle);
1205 		zram_set_obj_size(zram, index, comp_len);
1206 	}
1207 	zram_slot_unlock(zram, index);
1208 
1209 	/* Update stats */
1210 	atomic64_inc(&zram->stats.pages_stored);
1211 	return ret;
1212 }
1213 
zram_bvec_write(struct zram * zram,struct bio_vec * bvec,u32 index,int offset,struct bio * bio)1214 static int zram_bvec_write(struct zram *zram, struct bio_vec *bvec,
1215 				u32 index, int offset, struct bio *bio)
1216 {
1217 	int ret;
1218 	struct page *page = NULL;
1219 	void *src;
1220 	struct bio_vec vec;
1221 
1222 	vec = *bvec;
1223 	if (is_partial_io(bvec)) {
1224 		void *dst;
1225 		/*
1226 		 * This is a partial IO. We need to read the full page
1227 		 * before to write the changes.
1228 		 */
1229 		page = alloc_page(GFP_NOIO|__GFP_HIGHMEM);
1230 		if (!page)
1231 			return -ENOMEM;
1232 
1233 		ret = __zram_bvec_read(zram, page, index, bio, true);
1234 		if (ret)
1235 			goto out;
1236 
1237 		src = kmap_atomic(bvec->bv_page);
1238 		dst = kmap_atomic(page);
1239 		memcpy(dst + offset, src + bvec->bv_offset, bvec->bv_len);
1240 		kunmap_atomic(dst);
1241 		kunmap_atomic(src);
1242 
1243 		vec.bv_page = page;
1244 		vec.bv_len = PAGE_SIZE;
1245 		vec.bv_offset = 0;
1246 	}
1247 
1248 	ret = __zram_bvec_write(zram, &vec, index, bio);
1249 out:
1250 	if (is_partial_io(bvec))
1251 		__free_page(page);
1252 	return ret;
1253 }
1254 
1255 /*
1256  * zram_bio_discard - handler on discard request
1257  * @index: physical block index in PAGE_SIZE units
1258  * @offset: byte offset within physical block
1259  */
zram_bio_discard(struct zram * zram,u32 index,int offset,struct bio * bio)1260 static void zram_bio_discard(struct zram *zram, u32 index,
1261 			     int offset, struct bio *bio)
1262 {
1263 	size_t n = bio->bi_iter.bi_size;
1264 
1265 	/*
1266 	 * zram manages data in physical block size units. Because logical block
1267 	 * size isn't identical with physical block size on some arch, we
1268 	 * could get a discard request pointing to a specific offset within a
1269 	 * certain physical block.  Although we can handle this request by
1270 	 * reading that physiclal block and decompressing and partially zeroing
1271 	 * and re-compressing and then re-storing it, this isn't reasonable
1272 	 * because our intent with a discard request is to save memory.  So
1273 	 * skipping this logical block is appropriate here.
1274 	 */
1275 	if (offset) {
1276 		if (n <= (PAGE_SIZE - offset))
1277 			return;
1278 
1279 		n -= (PAGE_SIZE - offset);
1280 		index++;
1281 	}
1282 
1283 	while (n >= PAGE_SIZE) {
1284 		zram_slot_lock(zram, index);
1285 		zram_free_page(zram, index);
1286 		zram_slot_unlock(zram, index);
1287 		atomic64_inc(&zram->stats.notify_free);
1288 		index++;
1289 		n -= PAGE_SIZE;
1290 	}
1291 }
1292 
1293 /*
1294  * Returns errno if it has some problem. Otherwise return 0 or 1.
1295  * Returns 0 if IO request was done synchronously
1296  * Returns 1 if IO request was successfully submitted.
1297  */
zram_bvec_rw(struct zram * zram,struct bio_vec * bvec,u32 index,int offset,unsigned int op,struct bio * bio)1298 static int zram_bvec_rw(struct zram *zram, struct bio_vec *bvec, u32 index,
1299 			int offset, unsigned int op, struct bio *bio)
1300 {
1301 	unsigned long start_time = jiffies;
1302 	struct request_queue *q = zram->disk->queue;
1303 	int ret;
1304 
1305 	generic_start_io_acct(q, op, bvec->bv_len >> SECTOR_SHIFT,
1306 			&zram->disk->part0);
1307 
1308 	if (!op_is_write(op)) {
1309 		atomic64_inc(&zram->stats.num_reads);
1310 		ret = zram_bvec_read(zram, bvec, index, offset, bio);
1311 		flush_dcache_page(bvec->bv_page);
1312 	} else {
1313 		atomic64_inc(&zram->stats.num_writes);
1314 		ret = zram_bvec_write(zram, bvec, index, offset, bio);
1315 	}
1316 
1317 	generic_end_io_acct(q, op, &zram->disk->part0, start_time);
1318 
1319 	zram_slot_lock(zram, index);
1320 	zram_accessed(zram, index);
1321 	zram_slot_unlock(zram, index);
1322 
1323 	if (unlikely(ret < 0)) {
1324 		if (!op_is_write(op))
1325 			atomic64_inc(&zram->stats.failed_reads);
1326 		else
1327 			atomic64_inc(&zram->stats.failed_writes);
1328 	}
1329 
1330 	return ret;
1331 }
1332 
__zram_make_request(struct zram * zram,struct bio * bio)1333 static void __zram_make_request(struct zram *zram, struct bio *bio)
1334 {
1335 	int offset;
1336 	u32 index;
1337 	struct bio_vec bvec;
1338 	struct bvec_iter iter;
1339 
1340 	index = bio->bi_iter.bi_sector >> SECTORS_PER_PAGE_SHIFT;
1341 	offset = (bio->bi_iter.bi_sector &
1342 		  (SECTORS_PER_PAGE - 1)) << SECTOR_SHIFT;
1343 
1344 	switch (bio_op(bio)) {
1345 	case REQ_OP_DISCARD:
1346 	case REQ_OP_WRITE_ZEROES:
1347 		zram_bio_discard(zram, index, offset, bio);
1348 		bio_endio(bio);
1349 		return;
1350 	default:
1351 		break;
1352 	}
1353 
1354 	bio_for_each_segment(bvec, bio, iter) {
1355 		struct bio_vec bv = bvec;
1356 		unsigned int unwritten = bvec.bv_len;
1357 
1358 		do {
1359 			bv.bv_len = min_t(unsigned int, PAGE_SIZE - offset,
1360 							unwritten);
1361 			if (zram_bvec_rw(zram, &bv, index, offset,
1362 					 bio_op(bio), bio) < 0)
1363 				goto out;
1364 
1365 			bv.bv_offset += bv.bv_len;
1366 			unwritten -= bv.bv_len;
1367 
1368 			update_position(&index, &offset, &bv);
1369 		} while (unwritten);
1370 	}
1371 
1372 	bio_endio(bio);
1373 	return;
1374 
1375 out:
1376 	bio_io_error(bio);
1377 }
1378 
1379 /*
1380  * Handler function for all zram I/O requests.
1381  */
zram_make_request(struct request_queue * queue,struct bio * bio)1382 static blk_qc_t zram_make_request(struct request_queue *queue, struct bio *bio)
1383 {
1384 	struct zram *zram = queue->queuedata;
1385 
1386 	if (!valid_io_request(zram, bio->bi_iter.bi_sector,
1387 					bio->bi_iter.bi_size)) {
1388 		atomic64_inc(&zram->stats.invalid_io);
1389 		goto error;
1390 	}
1391 
1392 	__zram_make_request(zram, bio);
1393 	return BLK_QC_T_NONE;
1394 
1395 error:
1396 	bio_io_error(bio);
1397 	return BLK_QC_T_NONE;
1398 }
1399 
zram_slot_free_notify(struct block_device * bdev,unsigned long index)1400 static void zram_slot_free_notify(struct block_device *bdev,
1401 				unsigned long index)
1402 {
1403 	struct zram *zram;
1404 
1405 	zram = bdev->bd_disk->private_data;
1406 
1407 	atomic64_inc(&zram->stats.notify_free);
1408 	if (!zram_slot_trylock(zram, index)) {
1409 		atomic64_inc(&zram->stats.miss_free);
1410 		return;
1411 	}
1412 
1413 	zram_free_page(zram, index);
1414 	zram_slot_unlock(zram, index);
1415 }
1416 
zram_rw_page(struct block_device * bdev,sector_t sector,struct page * page,unsigned int op)1417 static int zram_rw_page(struct block_device *bdev, sector_t sector,
1418 		       struct page *page, unsigned int op)
1419 {
1420 	int offset, ret;
1421 	u32 index;
1422 	struct zram *zram;
1423 	struct bio_vec bv;
1424 
1425 	if (PageTransHuge(page))
1426 		return -ENOTSUPP;
1427 	zram = bdev->bd_disk->private_data;
1428 
1429 	if (!valid_io_request(zram, sector, PAGE_SIZE)) {
1430 		atomic64_inc(&zram->stats.invalid_io);
1431 		ret = -EINVAL;
1432 		goto out;
1433 	}
1434 
1435 	index = sector >> SECTORS_PER_PAGE_SHIFT;
1436 	offset = (sector & (SECTORS_PER_PAGE - 1)) << SECTOR_SHIFT;
1437 
1438 	bv.bv_page = page;
1439 	bv.bv_len = PAGE_SIZE;
1440 	bv.bv_offset = 0;
1441 
1442 	ret = zram_bvec_rw(zram, &bv, index, offset, op, NULL);
1443 out:
1444 	/*
1445 	 * If I/O fails, just return error(ie, non-zero) without
1446 	 * calling page_endio.
1447 	 * It causes resubmit the I/O with bio request by upper functions
1448 	 * of rw_page(e.g., swap_readpage, __swap_writepage) and
1449 	 * bio->bi_end_io does things to handle the error
1450 	 * (e.g., SetPageError, set_page_dirty and extra works).
1451 	 */
1452 	if (unlikely(ret < 0))
1453 		return ret;
1454 
1455 	switch (ret) {
1456 	case 0:
1457 		page_endio(page, op_is_write(op), 0);
1458 		break;
1459 	case 1:
1460 		ret = 0;
1461 		break;
1462 	default:
1463 		WARN_ON(1);
1464 	}
1465 	return ret;
1466 }
1467 
zram_reset_device(struct zram * zram)1468 static void zram_reset_device(struct zram *zram)
1469 {
1470 	struct zcomp *comp;
1471 	u64 disksize;
1472 
1473 	down_write(&zram->init_lock);
1474 
1475 	zram->limit_pages = 0;
1476 
1477 	if (!init_done(zram)) {
1478 		up_write(&zram->init_lock);
1479 		return;
1480 	}
1481 
1482 	comp = zram->comp;
1483 	disksize = zram->disksize;
1484 	zram->disksize = 0;
1485 
1486 	set_capacity(zram->disk, 0);
1487 	part_stat_set_all(&zram->disk->part0, 0);
1488 
1489 	up_write(&zram->init_lock);
1490 	/* I/O operation under all of CPU are done so let's free */
1491 	zram_meta_free(zram, disksize);
1492 	memset(&zram->stats, 0, sizeof(zram->stats));
1493 	zcomp_destroy(comp);
1494 	reset_bdev(zram);
1495 }
1496 
disksize_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t len)1497 static ssize_t disksize_store(struct device *dev,
1498 		struct device_attribute *attr, const char *buf, size_t len)
1499 {
1500 	u64 disksize;
1501 	struct zcomp *comp;
1502 	struct zram *zram = dev_to_zram(dev);
1503 	int err;
1504 
1505 	disksize = memparse(buf, NULL);
1506 	if (!disksize)
1507 		return -EINVAL;
1508 
1509 	down_write(&zram->init_lock);
1510 	if (init_done(zram)) {
1511 		pr_info("Cannot change disksize for initialized device\n");
1512 		err = -EBUSY;
1513 		goto out_unlock;
1514 	}
1515 
1516 	disksize = PAGE_ALIGN(disksize);
1517 	if (!zram_meta_alloc(zram, disksize)) {
1518 		err = -ENOMEM;
1519 		goto out_unlock;
1520 	}
1521 
1522 	comp = zcomp_create(zram->compressor);
1523 	if (IS_ERR(comp)) {
1524 		pr_err("Cannot initialise %s compressing backend\n",
1525 				zram->compressor);
1526 		err = PTR_ERR(comp);
1527 		goto out_free_meta;
1528 	}
1529 
1530 	zram->comp = comp;
1531 	zram->disksize = disksize;
1532 	set_capacity(zram->disk, zram->disksize >> SECTOR_SHIFT);
1533 
1534 	revalidate_disk(zram->disk);
1535 	up_write(&zram->init_lock);
1536 
1537 	return len;
1538 
1539 out_free_meta:
1540 	zram_meta_free(zram, disksize);
1541 out_unlock:
1542 	up_write(&zram->init_lock);
1543 	return err;
1544 }
1545 
reset_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t len)1546 static ssize_t reset_store(struct device *dev,
1547 		struct device_attribute *attr, const char *buf, size_t len)
1548 {
1549 	int ret;
1550 	unsigned short do_reset;
1551 	struct zram *zram;
1552 	struct block_device *bdev;
1553 
1554 	ret = kstrtou16(buf, 10, &do_reset);
1555 	if (ret)
1556 		return ret;
1557 
1558 	if (!do_reset)
1559 		return -EINVAL;
1560 
1561 	zram = dev_to_zram(dev);
1562 	bdev = bdget_disk(zram->disk, 0);
1563 	if (!bdev)
1564 		return -ENOMEM;
1565 
1566 	mutex_lock(&bdev->bd_mutex);
1567 	/* Do not reset an active device or claimed device */
1568 	if (bdev->bd_openers || zram->claim) {
1569 		mutex_unlock(&bdev->bd_mutex);
1570 		bdput(bdev);
1571 		return -EBUSY;
1572 	}
1573 
1574 	/* From now on, anyone can't open /dev/zram[0-9] */
1575 	zram->claim = true;
1576 	mutex_unlock(&bdev->bd_mutex);
1577 
1578 	/* Make sure all the pending I/O are finished */
1579 	fsync_bdev(bdev);
1580 	zram_reset_device(zram);
1581 	revalidate_disk(zram->disk);
1582 	bdput(bdev);
1583 
1584 	mutex_lock(&bdev->bd_mutex);
1585 	zram->claim = false;
1586 	mutex_unlock(&bdev->bd_mutex);
1587 
1588 	return len;
1589 }
1590 
zram_open(struct block_device * bdev,fmode_t mode)1591 static int zram_open(struct block_device *bdev, fmode_t mode)
1592 {
1593 	int ret = 0;
1594 	struct zram *zram;
1595 
1596 	WARN_ON(!mutex_is_locked(&bdev->bd_mutex));
1597 
1598 	zram = bdev->bd_disk->private_data;
1599 	/* zram was claimed to reset so open request fails */
1600 	if (zram->claim)
1601 		ret = -EBUSY;
1602 
1603 	return ret;
1604 }
1605 
1606 static const struct block_device_operations zram_devops = {
1607 	.open = zram_open,
1608 	.swap_slot_free_notify = zram_slot_free_notify,
1609 	.rw_page = zram_rw_page,
1610 	.owner = THIS_MODULE
1611 };
1612 
1613 static DEVICE_ATTR_WO(compact);
1614 static DEVICE_ATTR_RW(disksize);
1615 static DEVICE_ATTR_RO(initstate);
1616 static DEVICE_ATTR_WO(reset);
1617 static DEVICE_ATTR_WO(mem_limit);
1618 static DEVICE_ATTR_WO(mem_used_max);
1619 static DEVICE_ATTR_RW(max_comp_streams);
1620 static DEVICE_ATTR_RW(comp_algorithm);
1621 #ifdef CONFIG_ZRAM_WRITEBACK
1622 static DEVICE_ATTR_RW(backing_dev);
1623 #endif
1624 
1625 static struct attribute *zram_disk_attrs[] = {
1626 	&dev_attr_disksize.attr,
1627 	&dev_attr_initstate.attr,
1628 	&dev_attr_reset.attr,
1629 	&dev_attr_compact.attr,
1630 	&dev_attr_mem_limit.attr,
1631 	&dev_attr_mem_used_max.attr,
1632 	&dev_attr_max_comp_streams.attr,
1633 	&dev_attr_comp_algorithm.attr,
1634 #ifdef CONFIG_ZRAM_WRITEBACK
1635 	&dev_attr_backing_dev.attr,
1636 #endif
1637 	&dev_attr_io_stat.attr,
1638 	&dev_attr_mm_stat.attr,
1639 	&dev_attr_debug_stat.attr,
1640 	NULL,
1641 };
1642 
1643 static const struct attribute_group zram_disk_attr_group = {
1644 	.attrs = zram_disk_attrs,
1645 };
1646 
1647 static const struct attribute_group *zram_disk_attr_groups[] = {
1648 	&zram_disk_attr_group,
1649 	NULL,
1650 };
1651 
1652 /*
1653  * Allocate and initialize new zram device. the function returns
1654  * '>= 0' device_id upon success, and negative value otherwise.
1655  */
zram_add(void)1656 static int zram_add(void)
1657 {
1658 	struct zram *zram;
1659 	struct request_queue *queue;
1660 	int ret, device_id;
1661 
1662 	zram = kzalloc(sizeof(struct zram), GFP_KERNEL);
1663 	if (!zram)
1664 		return -ENOMEM;
1665 
1666 	ret = idr_alloc(&zram_index_idr, zram, 0, 0, GFP_KERNEL);
1667 	if (ret < 0)
1668 		goto out_free_dev;
1669 	device_id = ret;
1670 
1671 	init_rwsem(&zram->init_lock);
1672 
1673 	queue = blk_alloc_queue(GFP_KERNEL);
1674 	if (!queue) {
1675 		pr_err("Error allocating disk queue for device %d\n",
1676 			device_id);
1677 		ret = -ENOMEM;
1678 		goto out_free_idr;
1679 	}
1680 
1681 	blk_queue_make_request(queue, zram_make_request);
1682 
1683 	/* gendisk structure */
1684 	zram->disk = alloc_disk(1);
1685 	if (!zram->disk) {
1686 		pr_err("Error allocating disk structure for device %d\n",
1687 			device_id);
1688 		ret = -ENOMEM;
1689 		goto out_free_queue;
1690 	}
1691 
1692 	zram->disk->major = zram_major;
1693 	zram->disk->first_minor = device_id;
1694 	zram->disk->fops = &zram_devops;
1695 	zram->disk->queue = queue;
1696 	zram->disk->queue->queuedata = zram;
1697 	zram->disk->private_data = zram;
1698 	snprintf(zram->disk->disk_name, 16, "zram%d", device_id);
1699 
1700 	/* Actual capacity set using syfs (/sys/block/zram<id>/disksize */
1701 	set_capacity(zram->disk, 0);
1702 	/* zram devices sort of resembles non-rotational disks */
1703 	blk_queue_flag_set(QUEUE_FLAG_NONROT, zram->disk->queue);
1704 	blk_queue_flag_clear(QUEUE_FLAG_ADD_RANDOM, zram->disk->queue);
1705 
1706 	/*
1707 	 * To ensure that we always get PAGE_SIZE aligned
1708 	 * and n*PAGE_SIZED sized I/O requests.
1709 	 */
1710 	blk_queue_physical_block_size(zram->disk->queue, PAGE_SIZE);
1711 	blk_queue_logical_block_size(zram->disk->queue,
1712 					ZRAM_LOGICAL_BLOCK_SIZE);
1713 	blk_queue_io_min(zram->disk->queue, PAGE_SIZE);
1714 	blk_queue_io_opt(zram->disk->queue, PAGE_SIZE);
1715 	zram->disk->queue->limits.discard_granularity = PAGE_SIZE;
1716 	blk_queue_max_discard_sectors(zram->disk->queue, UINT_MAX);
1717 	blk_queue_flag_set(QUEUE_FLAG_DISCARD, zram->disk->queue);
1718 
1719 	/*
1720 	 * zram_bio_discard() will clear all logical blocks if logical block
1721 	 * size is identical with physical block size(PAGE_SIZE). But if it is
1722 	 * different, we will skip discarding some parts of logical blocks in
1723 	 * the part of the request range which isn't aligned to physical block
1724 	 * size.  So we can't ensure that all discarded logical blocks are
1725 	 * zeroed.
1726 	 */
1727 	if (ZRAM_LOGICAL_BLOCK_SIZE == PAGE_SIZE)
1728 		blk_queue_max_write_zeroes_sectors(zram->disk->queue, UINT_MAX);
1729 
1730 	zram->disk->queue->backing_dev_info->capabilities |=
1731 			(BDI_CAP_STABLE_WRITES | BDI_CAP_SYNCHRONOUS_IO);
1732 	disk_to_dev(zram->disk)->groups = zram_disk_attr_groups;
1733 	add_disk(zram->disk);
1734 
1735 	strlcpy(zram->compressor, default_compressor, sizeof(zram->compressor));
1736 
1737 	zram_debugfs_register(zram);
1738 	pr_info("Added device: %s\n", zram->disk->disk_name);
1739 	return device_id;
1740 
1741 out_free_queue:
1742 	blk_cleanup_queue(queue);
1743 out_free_idr:
1744 	idr_remove(&zram_index_idr, device_id);
1745 out_free_dev:
1746 	kfree(zram);
1747 	return ret;
1748 }
1749 
zram_remove(struct zram * zram)1750 static int zram_remove(struct zram *zram)
1751 {
1752 	struct block_device *bdev;
1753 
1754 	bdev = bdget_disk(zram->disk, 0);
1755 	if (!bdev)
1756 		return -ENOMEM;
1757 
1758 	mutex_lock(&bdev->bd_mutex);
1759 	if (bdev->bd_openers || zram->claim) {
1760 		mutex_unlock(&bdev->bd_mutex);
1761 		bdput(bdev);
1762 		return -EBUSY;
1763 	}
1764 
1765 	zram->claim = true;
1766 	mutex_unlock(&bdev->bd_mutex);
1767 
1768 	zram_debugfs_unregister(zram);
1769 	/* Make sure all the pending I/O are finished */
1770 	fsync_bdev(bdev);
1771 	zram_reset_device(zram);
1772 	bdput(bdev);
1773 
1774 	pr_info("Removed device: %s\n", zram->disk->disk_name);
1775 
1776 	del_gendisk(zram->disk);
1777 	blk_cleanup_queue(zram->disk->queue);
1778 	put_disk(zram->disk);
1779 	kfree(zram);
1780 	return 0;
1781 }
1782 
1783 /* zram-control sysfs attributes */
1784 
1785 /*
1786  * NOTE: hot_add attribute is not the usual read-only sysfs attribute. In a
1787  * sense that reading from this file does alter the state of your system -- it
1788  * creates a new un-initialized zram device and returns back this device's
1789  * device_id (or an error code if it fails to create a new device).
1790  */
hot_add_show(struct class * class,struct class_attribute * attr,char * buf)1791 static ssize_t hot_add_show(struct class *class,
1792 			struct class_attribute *attr,
1793 			char *buf)
1794 {
1795 	int ret;
1796 
1797 	mutex_lock(&zram_index_mutex);
1798 	ret = zram_add();
1799 	mutex_unlock(&zram_index_mutex);
1800 
1801 	if (ret < 0)
1802 		return ret;
1803 	return scnprintf(buf, PAGE_SIZE, "%d\n", ret);
1804 }
1805 static struct class_attribute class_attr_hot_add =
1806 	__ATTR(hot_add, 0400, hot_add_show, NULL);
1807 
hot_remove_store(struct class * class,struct class_attribute * attr,const char * buf,size_t count)1808 static ssize_t hot_remove_store(struct class *class,
1809 			struct class_attribute *attr,
1810 			const char *buf,
1811 			size_t count)
1812 {
1813 	struct zram *zram;
1814 	int ret, dev_id;
1815 
1816 	/* dev_id is gendisk->first_minor, which is `int' */
1817 	ret = kstrtoint(buf, 10, &dev_id);
1818 	if (ret)
1819 		return ret;
1820 	if (dev_id < 0)
1821 		return -EINVAL;
1822 
1823 	mutex_lock(&zram_index_mutex);
1824 
1825 	zram = idr_find(&zram_index_idr, dev_id);
1826 	if (zram) {
1827 		ret = zram_remove(zram);
1828 		if (!ret)
1829 			idr_remove(&zram_index_idr, dev_id);
1830 	} else {
1831 		ret = -ENODEV;
1832 	}
1833 
1834 	mutex_unlock(&zram_index_mutex);
1835 	return ret ? ret : count;
1836 }
1837 static CLASS_ATTR_WO(hot_remove);
1838 
1839 static struct attribute *zram_control_class_attrs[] = {
1840 	&class_attr_hot_add.attr,
1841 	&class_attr_hot_remove.attr,
1842 	NULL,
1843 };
1844 ATTRIBUTE_GROUPS(zram_control_class);
1845 
1846 static struct class zram_control_class = {
1847 	.name		= "zram-control",
1848 	.owner		= THIS_MODULE,
1849 	.class_groups	= zram_control_class_groups,
1850 };
1851 
zram_remove_cb(int id,void * ptr,void * data)1852 static int zram_remove_cb(int id, void *ptr, void *data)
1853 {
1854 	zram_remove(ptr);
1855 	return 0;
1856 }
1857 
destroy_devices(void)1858 static void destroy_devices(void)
1859 {
1860 	class_unregister(&zram_control_class);
1861 	idr_for_each(&zram_index_idr, &zram_remove_cb, NULL);
1862 	zram_debugfs_destroy();
1863 	idr_destroy(&zram_index_idr);
1864 	unregister_blkdev(zram_major, "zram");
1865 	cpuhp_remove_multi_state(CPUHP_ZCOMP_PREPARE);
1866 }
1867 
zram_init(void)1868 static int __init zram_init(void)
1869 {
1870 	int ret;
1871 
1872 	ret = cpuhp_setup_state_multi(CPUHP_ZCOMP_PREPARE, "block/zram:prepare",
1873 				      zcomp_cpu_up_prepare, zcomp_cpu_dead);
1874 	if (ret < 0)
1875 		return ret;
1876 
1877 	ret = class_register(&zram_control_class);
1878 	if (ret) {
1879 		pr_err("Unable to register zram-control class\n");
1880 		cpuhp_remove_multi_state(CPUHP_ZCOMP_PREPARE);
1881 		return ret;
1882 	}
1883 
1884 	zram_debugfs_create();
1885 	zram_major = register_blkdev(0, "zram");
1886 	if (zram_major <= 0) {
1887 		pr_err("Unable to get major number\n");
1888 		class_unregister(&zram_control_class);
1889 		cpuhp_remove_multi_state(CPUHP_ZCOMP_PREPARE);
1890 		return -EBUSY;
1891 	}
1892 
1893 	while (num_devices != 0) {
1894 		mutex_lock(&zram_index_mutex);
1895 		ret = zram_add();
1896 		mutex_unlock(&zram_index_mutex);
1897 		if (ret < 0)
1898 			goto out_error;
1899 		num_devices--;
1900 	}
1901 
1902 	return 0;
1903 
1904 out_error:
1905 	destroy_devices();
1906 	return ret;
1907 }
1908 
zram_exit(void)1909 static void __exit zram_exit(void)
1910 {
1911 	destroy_devices();
1912 }
1913 
1914 module_init(zram_init);
1915 module_exit(zram_exit);
1916 
1917 module_param(num_devices, uint, 0);
1918 MODULE_PARM_DESC(num_devices, "Number of pre-created zram devices");
1919 
1920 MODULE_LICENSE("Dual BSD/GPL");
1921 MODULE_AUTHOR("Nitin Gupta <ngupta@vflare.org>");
1922 MODULE_DESCRIPTION("Compressed RAM Block Device");
1923