• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * random.c -- A strong random number generator
3  *
4  * Copyright (C) 2017 Jason A. Donenfeld <Jason@zx2c4.com>. All
5  * Rights Reserved.
6  *
7  * Copyright Matt Mackall <mpm@selenic.com>, 2003, 2004, 2005
8  *
9  * Copyright Theodore Ts'o, 1994, 1995, 1996, 1997, 1998, 1999.  All
10  * rights reserved.
11  *
12  * Redistribution and use in source and binary forms, with or without
13  * modification, are permitted provided that the following conditions
14  * are met:
15  * 1. Redistributions of source code must retain the above copyright
16  *    notice, and the entire permission notice in its entirety,
17  *    including the disclaimer of warranties.
18  * 2. Redistributions in binary form must reproduce the above copyright
19  *    notice, this list of conditions and the following disclaimer in the
20  *    documentation and/or other materials provided with the distribution.
21  * 3. The name of the author may not be used to endorse or promote
22  *    products derived from this software without specific prior
23  *    written permission.
24  *
25  * ALTERNATIVELY, this product may be distributed under the terms of
26  * the GNU General Public License, in which case the provisions of the GPL are
27  * required INSTEAD OF the above restrictions.  (This clause is
28  * necessary due to a potential bad interaction between the GPL and
29  * the restrictions contained in a BSD-style copyright.)
30  *
31  * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
32  * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
33  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, ALL OF
34  * WHICH ARE HEREBY DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR BE
35  * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
36  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT
37  * OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
38  * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
39  * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
40  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
41  * USE OF THIS SOFTWARE, EVEN IF NOT ADVISED OF THE POSSIBILITY OF SUCH
42  * DAMAGE.
43  */
44 
45 /*
46  * (now, with legal B.S. out of the way.....)
47  *
48  * This routine gathers environmental noise from device drivers, etc.,
49  * and returns good random numbers, suitable for cryptographic use.
50  * Besides the obvious cryptographic uses, these numbers are also good
51  * for seeding TCP sequence numbers, and other places where it is
52  * desirable to have numbers which are not only random, but hard to
53  * predict by an attacker.
54  *
55  * Theory of operation
56  * ===================
57  *
58  * Computers are very predictable devices.  Hence it is extremely hard
59  * to produce truly random numbers on a computer --- as opposed to
60  * pseudo-random numbers, which can easily generated by using a
61  * algorithm.  Unfortunately, it is very easy for attackers to guess
62  * the sequence of pseudo-random number generators, and for some
63  * applications this is not acceptable.  So instead, we must try to
64  * gather "environmental noise" from the computer's environment, which
65  * must be hard for outside attackers to observe, and use that to
66  * generate random numbers.  In a Unix environment, this is best done
67  * from inside the kernel.
68  *
69  * Sources of randomness from the environment include inter-keyboard
70  * timings, inter-interrupt timings from some interrupts, and other
71  * events which are both (a) non-deterministic and (b) hard for an
72  * outside observer to measure.  Randomness from these sources are
73  * added to an "entropy pool", which is mixed using a CRC-like function.
74  * This is not cryptographically strong, but it is adequate assuming
75  * the randomness is not chosen maliciously, and it is fast enough that
76  * the overhead of doing it on every interrupt is very reasonable.
77  * As random bytes are mixed into the entropy pool, the routines keep
78  * an *estimate* of how many bits of randomness have been stored into
79  * the random number generator's internal state.
80  *
81  * When random bytes are desired, they are obtained by taking the SHA
82  * hash of the contents of the "entropy pool".  The SHA hash avoids
83  * exposing the internal state of the entropy pool.  It is believed to
84  * be computationally infeasible to derive any useful information
85  * about the input of SHA from its output.  Even if it is possible to
86  * analyze SHA in some clever way, as long as the amount of data
87  * returned from the generator is less than the inherent entropy in
88  * the pool, the output data is totally unpredictable.  For this
89  * reason, the routine decreases its internal estimate of how many
90  * bits of "true randomness" are contained in the entropy pool as it
91  * outputs random numbers.
92  *
93  * If this estimate goes to zero, the routine can still generate
94  * random numbers; however, an attacker may (at least in theory) be
95  * able to infer the future output of the generator from prior
96  * outputs.  This requires successful cryptanalysis of SHA, which is
97  * not believed to be feasible, but there is a remote possibility.
98  * Nonetheless, these numbers should be useful for the vast majority
99  * of purposes.
100  *
101  * Exported interfaces ---- output
102  * ===============================
103  *
104  * There are three exported interfaces; the first is one designed to
105  * be used from within the kernel:
106  *
107  * 	void get_random_bytes(void *buf, int nbytes);
108  *
109  * This interface will return the requested number of random bytes,
110  * and place it in the requested buffer.
111  *
112  * The two other interfaces are two character devices /dev/random and
113  * /dev/urandom.  /dev/random is suitable for use when very high
114  * quality randomness is desired (for example, for key generation or
115  * one-time pads), as it will only return a maximum of the number of
116  * bits of randomness (as estimated by the random number generator)
117  * contained in the entropy pool.
118  *
119  * The /dev/urandom device does not have this limit, and will return
120  * as many bytes as are requested.  As more and more random bytes are
121  * requested without giving time for the entropy pool to recharge,
122  * this will result in random numbers that are merely cryptographically
123  * strong.  For many applications, however, this is acceptable.
124  *
125  * Exported interfaces ---- input
126  * ==============================
127  *
128  * The current exported interfaces for gathering environmental noise
129  * from the devices are:
130  *
131  *	void add_device_randomness(const void *buf, unsigned int size);
132  * 	void add_input_randomness(unsigned int type, unsigned int code,
133  *                                unsigned int value);
134  *	void add_interrupt_randomness(int irq, int irq_flags);
135  * 	void add_disk_randomness(struct gendisk *disk);
136  *
137  * add_device_randomness() is for adding data to the random pool that
138  * is likely to differ between two devices (or possibly even per boot).
139  * This would be things like MAC addresses or serial numbers, or the
140  * read-out of the RTC. This does *not* add any actual entropy to the
141  * pool, but it initializes the pool to different values for devices
142  * that might otherwise be identical and have very little entropy
143  * available to them (particularly common in the embedded world).
144  *
145  * add_input_randomness() uses the input layer interrupt timing, as well as
146  * the event type information from the hardware.
147  *
148  * add_interrupt_randomness() uses the interrupt timing as random
149  * inputs to the entropy pool. Using the cycle counters and the irq source
150  * as inputs, it feeds the randomness roughly once a second.
151  *
152  * add_disk_randomness() uses what amounts to the seek time of block
153  * layer request events, on a per-disk_devt basis, as input to the
154  * entropy pool. Note that high-speed solid state drives with very low
155  * seek times do not make for good sources of entropy, as their seek
156  * times are usually fairly consistent.
157  *
158  * All of these routines try to estimate how many bits of randomness a
159  * particular randomness source.  They do this by keeping track of the
160  * first and second order deltas of the event timings.
161  *
162  * Ensuring unpredictability at system startup
163  * ============================================
164  *
165  * When any operating system starts up, it will go through a sequence
166  * of actions that are fairly predictable by an adversary, especially
167  * if the start-up does not involve interaction with a human operator.
168  * This reduces the actual number of bits of unpredictability in the
169  * entropy pool below the value in entropy_count.  In order to
170  * counteract this effect, it helps to carry information in the
171  * entropy pool across shut-downs and start-ups.  To do this, put the
172  * following lines an appropriate script which is run during the boot
173  * sequence:
174  *
175  *	echo "Initializing random number generator..."
176  *	random_seed=/var/run/random-seed
177  *	# Carry a random seed from start-up to start-up
178  *	# Load and then save the whole entropy pool
179  *	if [ -f $random_seed ]; then
180  *		cat $random_seed >/dev/urandom
181  *	else
182  *		touch $random_seed
183  *	fi
184  *	chmod 600 $random_seed
185  *	dd if=/dev/urandom of=$random_seed count=1 bs=512
186  *
187  * and the following lines in an appropriate script which is run as
188  * the system is shutdown:
189  *
190  *	# Carry a random seed from shut-down to start-up
191  *	# Save the whole entropy pool
192  *	echo "Saving random seed..."
193  *	random_seed=/var/run/random-seed
194  *	touch $random_seed
195  *	chmod 600 $random_seed
196  *	dd if=/dev/urandom of=$random_seed count=1 bs=512
197  *
198  * For example, on most modern systems using the System V init
199  * scripts, such code fragments would be found in
200  * /etc/rc.d/init.d/random.  On older Linux systems, the correct script
201  * location might be in /etc/rcb.d/rc.local or /etc/rc.d/rc.0.
202  *
203  * Effectively, these commands cause the contents of the entropy pool
204  * to be saved at shut-down time and reloaded into the entropy pool at
205  * start-up.  (The 'dd' in the addition to the bootup script is to
206  * make sure that /etc/random-seed is different for every start-up,
207  * even if the system crashes without executing rc.0.)  Even with
208  * complete knowledge of the start-up activities, predicting the state
209  * of the entropy pool requires knowledge of the previous history of
210  * the system.
211  *
212  * Configuring the /dev/random driver under Linux
213  * ==============================================
214  *
215  * The /dev/random driver under Linux uses minor numbers 8 and 9 of
216  * the /dev/mem major number (#1).  So if your system does not have
217  * /dev/random and /dev/urandom created already, they can be created
218  * by using the commands:
219  *
220  * 	mknod /dev/random c 1 8
221  * 	mknod /dev/urandom c 1 9
222  *
223  * Acknowledgements:
224  * =================
225  *
226  * Ideas for constructing this random number generator were derived
227  * from Pretty Good Privacy's random number generator, and from private
228  * discussions with Phil Karn.  Colin Plumb provided a faster random
229  * number generator, which speed up the mixing function of the entropy
230  * pool, taken from PGPfone.  Dale Worley has also contributed many
231  * useful ideas and suggestions to improve this driver.
232  *
233  * Any flaws in the design are solely my responsibility, and should
234  * not be attributed to the Phil, Colin, or any of authors of PGP.
235  *
236  * Further background information on this topic may be obtained from
237  * RFC 1750, "Randomness Recommendations for Security", by Donald
238  * Eastlake, Steve Crocker, and Jeff Schiller.
239  */
240 
241 #include <linux/utsname.h>
242 #include <linux/module.h>
243 #include <linux/kernel.h>
244 #include <linux/major.h>
245 #include <linux/string.h>
246 #include <linux/fcntl.h>
247 #include <linux/slab.h>
248 #include <linux/random.h>
249 #include <linux/poll.h>
250 #include <linux/init.h>
251 #include <linux/fs.h>
252 #include <linux/genhd.h>
253 #include <linux/interrupt.h>
254 #include <linux/mm.h>
255 #include <linux/nodemask.h>
256 #include <linux/spinlock.h>
257 #include <linux/kthread.h>
258 #include <linux/percpu.h>
259 #include <linux/cryptohash.h>
260 #include <linux/fips.h>
261 #include <linux/ptrace.h>
262 #include <linux/workqueue.h>
263 #include <linux/irq.h>
264 #include <linux/ratelimit.h>
265 #include <linux/syscalls.h>
266 #include <linux/completion.h>
267 #include <linux/uuid.h>
268 #include <crypto/chacha20.h>
269 
270 #include <asm/processor.h>
271 #include <linux/uaccess.h>
272 #include <asm/irq.h>
273 #include <asm/irq_regs.h>
274 #include <asm/io.h>
275 
276 #define CREATE_TRACE_POINTS
277 #include <trace/events/random.h>
278 
279 /* #define ADD_INTERRUPT_BENCH */
280 
281 /*
282  * Configuration information
283  */
284 #define INPUT_POOL_SHIFT	12
285 #define INPUT_POOL_WORDS	(1 << (INPUT_POOL_SHIFT-5))
286 #define OUTPUT_POOL_SHIFT	10
287 #define OUTPUT_POOL_WORDS	(1 << (OUTPUT_POOL_SHIFT-5))
288 #define SEC_XFER_SIZE		512
289 #define EXTRACT_SIZE		10
290 
291 
292 #define LONGS(x) (((x) + sizeof(unsigned long) - 1)/sizeof(unsigned long))
293 
294 /*
295  * To allow fractional bits to be tracked, the entropy_count field is
296  * denominated in units of 1/8th bits.
297  *
298  * 2*(ENTROPY_SHIFT + log2(poolbits)) must <= 31, or the multiply in
299  * credit_entropy_bits() needs to be 64 bits wide.
300  */
301 #define ENTROPY_SHIFT 3
302 #define ENTROPY_BITS(r) ((r)->entropy_count >> ENTROPY_SHIFT)
303 
304 /*
305  * The minimum number of bits of entropy before we wake up a read on
306  * /dev/random.  Should be enough to do a significant reseed.
307  */
308 static int random_read_wakeup_bits = 64;
309 
310 /*
311  * If the entropy count falls under this number of bits, then we
312  * should wake up processes which are selecting or polling on write
313  * access to /dev/random.
314  */
315 static int random_write_wakeup_bits = 28 * OUTPUT_POOL_WORDS;
316 
317 /*
318  * Originally, we used a primitive polynomial of degree .poolwords
319  * over GF(2).  The taps for various sizes are defined below.  They
320  * were chosen to be evenly spaced except for the last tap, which is 1
321  * to get the twisting happening as fast as possible.
322  *
323  * For the purposes of better mixing, we use the CRC-32 polynomial as
324  * well to make a (modified) twisted Generalized Feedback Shift
325  * Register.  (See M. Matsumoto & Y. Kurita, 1992.  Twisted GFSR
326  * generators.  ACM Transactions on Modeling and Computer Simulation
327  * 2(3):179-194.  Also see M. Matsumoto & Y. Kurita, 1994.  Twisted
328  * GFSR generators II.  ACM Transactions on Modeling and Computer
329  * Simulation 4:254-266)
330  *
331  * Thanks to Colin Plumb for suggesting this.
332  *
333  * The mixing operation is much less sensitive than the output hash,
334  * where we use SHA-1.  All that we want of mixing operation is that
335  * it be a good non-cryptographic hash; i.e. it not produce collisions
336  * when fed "random" data of the sort we expect to see.  As long as
337  * the pool state differs for different inputs, we have preserved the
338  * input entropy and done a good job.  The fact that an intelligent
339  * attacker can construct inputs that will produce controlled
340  * alterations to the pool's state is not important because we don't
341  * consider such inputs to contribute any randomness.  The only
342  * property we need with respect to them is that the attacker can't
343  * increase his/her knowledge of the pool's state.  Since all
344  * additions are reversible (knowing the final state and the input,
345  * you can reconstruct the initial state), if an attacker has any
346  * uncertainty about the initial state, he/she can only shuffle that
347  * uncertainty about, but never cause any collisions (which would
348  * decrease the uncertainty).
349  *
350  * Our mixing functions were analyzed by Lacharme, Roeck, Strubel, and
351  * Videau in their paper, "The Linux Pseudorandom Number Generator
352  * Revisited" (see: http://eprint.iacr.org/2012/251.pdf).  In their
353  * paper, they point out that we are not using a true Twisted GFSR,
354  * since Matsumoto & Kurita used a trinomial feedback polynomial (that
355  * is, with only three taps, instead of the six that we are using).
356  * As a result, the resulting polynomial is neither primitive nor
357  * irreducible, and hence does not have a maximal period over
358  * GF(2**32).  They suggest a slight change to the generator
359  * polynomial which improves the resulting TGFSR polynomial to be
360  * irreducible, which we have made here.
361  */
362 static struct poolinfo {
363 	int poolbitshift, poolwords, poolbytes, poolbits, poolfracbits;
364 #define S(x) ilog2(x)+5, (x), (x)*4, (x)*32, (x) << (ENTROPY_SHIFT+5)
365 	int tap1, tap2, tap3, tap4, tap5;
366 } poolinfo_table[] = {
367 	/* was: x^128 + x^103 + x^76 + x^51 +x^25 + x + 1 */
368 	/* x^128 + x^104 + x^76 + x^51 +x^25 + x + 1 */
369 	{ S(128),	104,	76,	51,	25,	1 },
370 	/* was: x^32 + x^26 + x^20 + x^14 + x^7 + x + 1 */
371 	/* x^32 + x^26 + x^19 + x^14 + x^7 + x + 1 */
372 	{ S(32),	26,	19,	14,	7,	1 },
373 #if 0
374 	/* x^2048 + x^1638 + x^1231 + x^819 + x^411 + x + 1  -- 115 */
375 	{ S(2048),	1638,	1231,	819,	411,	1 },
376 
377 	/* x^1024 + x^817 + x^615 + x^412 + x^204 + x + 1 -- 290 */
378 	{ S(1024),	817,	615,	412,	204,	1 },
379 
380 	/* x^1024 + x^819 + x^616 + x^410 + x^207 + x^2 + 1 -- 115 */
381 	{ S(1024),	819,	616,	410,	207,	2 },
382 
383 	/* x^512 + x^411 + x^308 + x^208 + x^104 + x + 1 -- 225 */
384 	{ S(512),	411,	308,	208,	104,	1 },
385 
386 	/* x^512 + x^409 + x^307 + x^206 + x^102 + x^2 + 1 -- 95 */
387 	{ S(512),	409,	307,	206,	102,	2 },
388 	/* x^512 + x^409 + x^309 + x^205 + x^103 + x^2 + 1 -- 95 */
389 	{ S(512),	409,	309,	205,	103,	2 },
390 
391 	/* x^256 + x^205 + x^155 + x^101 + x^52 + x + 1 -- 125 */
392 	{ S(256),	205,	155,	101,	52,	1 },
393 
394 	/* x^128 + x^103 + x^78 + x^51 + x^27 + x^2 + 1 -- 70 */
395 	{ S(128),	103,	78,	51,	27,	2 },
396 
397 	/* x^64 + x^52 + x^39 + x^26 + x^14 + x + 1 -- 15 */
398 	{ S(64),	52,	39,	26,	14,	1 },
399 #endif
400 };
401 
402 /*
403  * Static global variables
404  */
405 static DECLARE_WAIT_QUEUE_HEAD(random_read_wait);
406 static DECLARE_WAIT_QUEUE_HEAD(random_write_wait);
407 static struct fasync_struct *fasync;
408 
409 static DEFINE_SPINLOCK(random_ready_list_lock);
410 static LIST_HEAD(random_ready_list);
411 
412 struct crng_state {
413 	__u32		state[16];
414 	unsigned long	init_time;
415 	spinlock_t	lock;
416 };
417 
418 struct crng_state primary_crng = {
419 	.lock = __SPIN_LOCK_UNLOCKED(primary_crng.lock),
420 };
421 
422 /*
423  * crng_init =  0 --> Uninitialized
424  *		1 --> Initialized
425  *		2 --> Initialized from input_pool
426  *
427  * crng_init is protected by primary_crng->lock, and only increases
428  * its value (from 0->1->2).
429  */
430 static int crng_init = 0;
431 #define crng_ready() (likely(crng_init > 1))
432 static int crng_init_cnt = 0;
433 static unsigned long crng_global_init_time = 0;
434 #define CRNG_INIT_CNT_THRESH (2*CHACHA20_KEY_SIZE)
435 static void _extract_crng(struct crng_state *crng,
436 			  __u8 out[CHACHA20_BLOCK_SIZE]);
437 static void _crng_backtrack_protect(struct crng_state *crng,
438 				    __u8 tmp[CHACHA20_BLOCK_SIZE], int used);
439 static void process_random_ready_list(void);
440 static void _get_random_bytes(void *buf, int nbytes);
441 
442 static struct ratelimit_state unseeded_warning =
443 	RATELIMIT_STATE_INIT("warn_unseeded_randomness", HZ, 3);
444 static struct ratelimit_state urandom_warning =
445 	RATELIMIT_STATE_INIT("warn_urandom_randomness", HZ, 3);
446 
447 static int ratelimit_disable __read_mostly;
448 
449 module_param_named(ratelimit_disable, ratelimit_disable, int, 0644);
450 MODULE_PARM_DESC(ratelimit_disable, "Disable random ratelimit suppression");
451 
452 /**********************************************************************
453  *
454  * OS independent entropy store.   Here are the functions which handle
455  * storing entropy in an entropy pool.
456  *
457  **********************************************************************/
458 
459 struct entropy_store;
460 struct entropy_store {
461 	/* read-only data: */
462 	const struct poolinfo *poolinfo;
463 	__u32 *pool;
464 	const char *name;
465 	struct entropy_store *pull;
466 	struct work_struct push_work;
467 
468 	/* read-write data: */
469 	unsigned long last_pulled;
470 	spinlock_t lock;
471 	unsigned short add_ptr;
472 	unsigned short input_rotate;
473 	int entropy_count;
474 	int entropy_total;
475 	unsigned int initialized:1;
476 	unsigned int last_data_init:1;
477 	__u8 last_data[EXTRACT_SIZE];
478 };
479 
480 static ssize_t extract_entropy(struct entropy_store *r, void *buf,
481 			       size_t nbytes, int min, int rsvd);
482 static ssize_t _extract_entropy(struct entropy_store *r, void *buf,
483 				size_t nbytes, int fips);
484 
485 static void crng_reseed(struct crng_state *crng, struct entropy_store *r);
486 static void push_to_pool(struct work_struct *work);
487 static __u32 input_pool_data[INPUT_POOL_WORDS] __latent_entropy;
488 static __u32 blocking_pool_data[OUTPUT_POOL_WORDS] __latent_entropy;
489 
490 static struct entropy_store input_pool = {
491 	.poolinfo = &poolinfo_table[0],
492 	.name = "input",
493 	.lock = __SPIN_LOCK_UNLOCKED(input_pool.lock),
494 	.pool = input_pool_data
495 };
496 
497 static struct entropy_store blocking_pool = {
498 	.poolinfo = &poolinfo_table[1],
499 	.name = "blocking",
500 	.pull = &input_pool,
501 	.lock = __SPIN_LOCK_UNLOCKED(blocking_pool.lock),
502 	.pool = blocking_pool_data,
503 	.push_work = __WORK_INITIALIZER(blocking_pool.push_work,
504 					push_to_pool),
505 };
506 
507 static __u32 const twist_table[8] = {
508 	0x00000000, 0x3b6e20c8, 0x76dc4190, 0x4db26158,
509 	0xedb88320, 0xd6d6a3e8, 0x9b64c2b0, 0xa00ae278 };
510 
511 /*
512  * This function adds bytes into the entropy "pool".  It does not
513  * update the entropy estimate.  The caller should call
514  * credit_entropy_bits if this is appropriate.
515  *
516  * The pool is stirred with a primitive polynomial of the appropriate
517  * degree, and then twisted.  We twist by three bits at a time because
518  * it's cheap to do so and helps slightly in the expected case where
519  * the entropy is concentrated in the low-order bits.
520  */
_mix_pool_bytes(struct entropy_store * r,const void * in,int nbytes)521 static void _mix_pool_bytes(struct entropy_store *r, const void *in,
522 			    int nbytes)
523 {
524 	unsigned long i, tap1, tap2, tap3, tap4, tap5;
525 	int input_rotate;
526 	int wordmask = r->poolinfo->poolwords - 1;
527 	const char *bytes = in;
528 	__u32 w;
529 
530 	tap1 = r->poolinfo->tap1;
531 	tap2 = r->poolinfo->tap2;
532 	tap3 = r->poolinfo->tap3;
533 	tap4 = r->poolinfo->tap4;
534 	tap5 = r->poolinfo->tap5;
535 
536 	input_rotate = r->input_rotate;
537 	i = r->add_ptr;
538 
539 	/* mix one byte at a time to simplify size handling and churn faster */
540 	while (nbytes--) {
541 		w = rol32(*bytes++, input_rotate);
542 		i = (i - 1) & wordmask;
543 
544 		/* XOR in the various taps */
545 		w ^= r->pool[i];
546 		w ^= r->pool[(i + tap1) & wordmask];
547 		w ^= r->pool[(i + tap2) & wordmask];
548 		w ^= r->pool[(i + tap3) & wordmask];
549 		w ^= r->pool[(i + tap4) & wordmask];
550 		w ^= r->pool[(i + tap5) & wordmask];
551 
552 		/* Mix the result back in with a twist */
553 		r->pool[i] = (w >> 3) ^ twist_table[w & 7];
554 
555 		/*
556 		 * Normally, we add 7 bits of rotation to the pool.
557 		 * At the beginning of the pool, add an extra 7 bits
558 		 * rotation, so that successive passes spread the
559 		 * input bits across the pool evenly.
560 		 */
561 		input_rotate = (input_rotate + (i ? 7 : 14)) & 31;
562 	}
563 
564 	r->input_rotate = input_rotate;
565 	r->add_ptr = i;
566 }
567 
__mix_pool_bytes(struct entropy_store * r,const void * in,int nbytes)568 static void __mix_pool_bytes(struct entropy_store *r, const void *in,
569 			     int nbytes)
570 {
571 	trace_mix_pool_bytes_nolock(r->name, nbytes, _RET_IP_);
572 	_mix_pool_bytes(r, in, nbytes);
573 }
574 
mix_pool_bytes(struct entropy_store * r,const void * in,int nbytes)575 static void mix_pool_bytes(struct entropy_store *r, const void *in,
576 			   int nbytes)
577 {
578 	unsigned long flags;
579 
580 	trace_mix_pool_bytes(r->name, nbytes, _RET_IP_);
581 	spin_lock_irqsave(&r->lock, flags);
582 	_mix_pool_bytes(r, in, nbytes);
583 	spin_unlock_irqrestore(&r->lock, flags);
584 }
585 
586 struct fast_pool {
587 	__u32		pool[4];
588 	unsigned long	last;
589 	unsigned short	reg_idx;
590 	unsigned char	count;
591 };
592 
593 /*
594  * This is a fast mixing routine used by the interrupt randomness
595  * collector.  It's hardcoded for an 128 bit pool and assumes that any
596  * locks that might be needed are taken by the caller.
597  */
fast_mix(struct fast_pool * f)598 static void fast_mix(struct fast_pool *f)
599 {
600 	__u32 a = f->pool[0],	b = f->pool[1];
601 	__u32 c = f->pool[2],	d = f->pool[3];
602 
603 	a += b;			c += d;
604 	b = rol32(b, 6);	d = rol32(d, 27);
605 	d ^= a;			b ^= c;
606 
607 	a += b;			c += d;
608 	b = rol32(b, 16);	d = rol32(d, 14);
609 	d ^= a;			b ^= c;
610 
611 	a += b;			c += d;
612 	b = rol32(b, 6);	d = rol32(d, 27);
613 	d ^= a;			b ^= c;
614 
615 	a += b;			c += d;
616 	b = rol32(b, 16);	d = rol32(d, 14);
617 	d ^= a;			b ^= c;
618 
619 	f->pool[0] = a;  f->pool[1] = b;
620 	f->pool[2] = c;  f->pool[3] = d;
621 	f->count++;
622 }
623 
process_random_ready_list(void)624 static void process_random_ready_list(void)
625 {
626 	unsigned long flags;
627 	struct random_ready_callback *rdy, *tmp;
628 
629 	spin_lock_irqsave(&random_ready_list_lock, flags);
630 	list_for_each_entry_safe(rdy, tmp, &random_ready_list, list) {
631 		struct module *owner = rdy->owner;
632 
633 		list_del_init(&rdy->list);
634 		rdy->func(rdy);
635 		module_put(owner);
636 	}
637 	spin_unlock_irqrestore(&random_ready_list_lock, flags);
638 }
639 
640 /*
641  * Credit (or debit) the entropy store with n bits of entropy.
642  * Use credit_entropy_bits_safe() if the value comes from userspace
643  * or otherwise should be checked for extreme values.
644  */
credit_entropy_bits(struct entropy_store * r,int nbits)645 static void credit_entropy_bits(struct entropy_store *r, int nbits)
646 {
647 	int entropy_count, orig;
648 	const int pool_size = r->poolinfo->poolfracbits;
649 	int nfrac = nbits << ENTROPY_SHIFT;
650 
651 	if (!nbits)
652 		return;
653 
654 retry:
655 	entropy_count = orig = READ_ONCE(r->entropy_count);
656 	if (nfrac < 0) {
657 		/* Debit */
658 		entropy_count += nfrac;
659 	} else {
660 		/*
661 		 * Credit: we have to account for the possibility of
662 		 * overwriting already present entropy.	 Even in the
663 		 * ideal case of pure Shannon entropy, new contributions
664 		 * approach the full value asymptotically:
665 		 *
666 		 * entropy <- entropy + (pool_size - entropy) *
667 		 *	(1 - exp(-add_entropy/pool_size))
668 		 *
669 		 * For add_entropy <= pool_size/2 then
670 		 * (1 - exp(-add_entropy/pool_size)) >=
671 		 *    (add_entropy/pool_size)*0.7869...
672 		 * so we can approximate the exponential with
673 		 * 3/4*add_entropy/pool_size and still be on the
674 		 * safe side by adding at most pool_size/2 at a time.
675 		 *
676 		 * The use of pool_size-2 in the while statement is to
677 		 * prevent rounding artifacts from making the loop
678 		 * arbitrarily long; this limits the loop to log2(pool_size)*2
679 		 * turns no matter how large nbits is.
680 		 */
681 		int pnfrac = nfrac;
682 		const int s = r->poolinfo->poolbitshift + ENTROPY_SHIFT + 2;
683 		/* The +2 corresponds to the /4 in the denominator */
684 
685 		do {
686 			unsigned int anfrac = min(pnfrac, pool_size/2);
687 			unsigned int add =
688 				((pool_size - entropy_count)*anfrac*3) >> s;
689 
690 			entropy_count += add;
691 			pnfrac -= anfrac;
692 		} while (unlikely(entropy_count < pool_size-2 && pnfrac));
693 	}
694 
695 	if (unlikely(entropy_count < 0)) {
696 		pr_warn("random: negative entropy/overflow: pool %s count %d\n",
697 			r->name, entropy_count);
698 		WARN_ON(1);
699 		entropy_count = 0;
700 	} else if (entropy_count > pool_size)
701 		entropy_count = pool_size;
702 	if (cmpxchg(&r->entropy_count, orig, entropy_count) != orig)
703 		goto retry;
704 
705 	r->entropy_total += nbits;
706 	if (!r->initialized && r->entropy_total > 128) {
707 		r->initialized = 1;
708 		r->entropy_total = 0;
709 	}
710 
711 	trace_credit_entropy_bits(r->name, nbits,
712 				  entropy_count >> ENTROPY_SHIFT,
713 				  r->entropy_total, _RET_IP_);
714 
715 	if (r == &input_pool) {
716 		int entropy_bits = entropy_count >> ENTROPY_SHIFT;
717 
718 		if (crng_init < 2 && entropy_bits >= 128) {
719 			crng_reseed(&primary_crng, r);
720 			entropy_bits = r->entropy_count >> ENTROPY_SHIFT;
721 		}
722 
723 		/* should we wake readers? */
724 		if (entropy_bits >= random_read_wakeup_bits &&
725 		    wq_has_sleeper(&random_read_wait)) {
726 			wake_up_interruptible(&random_read_wait);
727 			kill_fasync(&fasync, SIGIO, POLL_IN);
728 		}
729 		/* If the input pool is getting full, send some
730 		 * entropy to the blocking pool until it is 75% full.
731 		 */
732 		if (entropy_bits > random_write_wakeup_bits &&
733 		    r->initialized &&
734 		    r->entropy_total >= 2*random_read_wakeup_bits) {
735 			struct entropy_store *other = &blocking_pool;
736 
737 			if (other->entropy_count <=
738 			    3 * other->poolinfo->poolfracbits / 4) {
739 				schedule_work(&other->push_work);
740 				r->entropy_total = 0;
741 			}
742 		}
743 	}
744 }
745 
credit_entropy_bits_safe(struct entropy_store * r,int nbits)746 static int credit_entropy_bits_safe(struct entropy_store *r, int nbits)
747 {
748 	const int nbits_max = r->poolinfo->poolwords * 32;
749 
750 	if (nbits < 0)
751 		return -EINVAL;
752 
753 	/* Cap the value to avoid overflows */
754 	nbits = min(nbits,  nbits_max);
755 
756 	credit_entropy_bits(r, nbits);
757 	return 0;
758 }
759 
760 /*********************************************************************
761  *
762  * CRNG using CHACHA20
763  *
764  *********************************************************************/
765 
766 #define CRNG_RESEED_INTERVAL (300*HZ)
767 
768 static DECLARE_WAIT_QUEUE_HEAD(crng_init_wait);
769 
770 #ifdef CONFIG_NUMA
771 /*
772  * Hack to deal with crazy userspace progams when they are all trying
773  * to access /dev/urandom in parallel.  The programs are almost
774  * certainly doing something terribly wrong, but we'll work around
775  * their brain damage.
776  */
777 static struct crng_state **crng_node_pool __read_mostly;
778 #endif
779 
780 static void invalidate_batched_entropy(void);
781 static void numa_crng_init(void);
782 
783 static bool trust_cpu __ro_after_init = IS_ENABLED(CONFIG_RANDOM_TRUST_CPU);
parse_trust_cpu(char * arg)784 static int __init parse_trust_cpu(char *arg)
785 {
786 	return kstrtobool(arg, &trust_cpu);
787 }
788 early_param("random.trust_cpu", parse_trust_cpu);
789 
crng_initialize(struct crng_state * crng)790 static void crng_initialize(struct crng_state *crng)
791 {
792 	int		i;
793 	int		arch_init = 1;
794 	unsigned long	rv;
795 
796 	memcpy(&crng->state[0], "expand 32-byte k", 16);
797 	if (crng == &primary_crng)
798 		_extract_entropy(&input_pool, &crng->state[4],
799 				 sizeof(__u32) * 12, 0);
800 	else
801 		_get_random_bytes(&crng->state[4], sizeof(__u32) * 12);
802 	for (i = 4; i < 16; i++) {
803 		if (!arch_get_random_seed_long(&rv) &&
804 		    !arch_get_random_long(&rv)) {
805 			rv = random_get_entropy();
806 			arch_init = 0;
807 		}
808 		crng->state[i] ^= rv;
809 	}
810 	if (trust_cpu && arch_init && crng == &primary_crng) {
811 		invalidate_batched_entropy();
812 		numa_crng_init();
813 		crng_init = 2;
814 		pr_notice("random: crng done (trusting CPU's manufacturer)\n");
815 	}
816 	crng->init_time = jiffies - CRNG_RESEED_INTERVAL - 1;
817 }
818 
819 #ifdef CONFIG_NUMA
do_numa_crng_init(struct work_struct * work)820 static void do_numa_crng_init(struct work_struct *work)
821 {
822 	int i;
823 	struct crng_state *crng;
824 	struct crng_state **pool;
825 
826 	pool = kcalloc(nr_node_ids, sizeof(*pool), GFP_KERNEL|__GFP_NOFAIL);
827 	for_each_online_node(i) {
828 		crng = kmalloc_node(sizeof(struct crng_state),
829 				    GFP_KERNEL | __GFP_NOFAIL, i);
830 		spin_lock_init(&crng->lock);
831 		crng_initialize(crng);
832 		pool[i] = crng;
833 	}
834 	mb();
835 	if (cmpxchg(&crng_node_pool, NULL, pool)) {
836 		for_each_node(i)
837 			kfree(pool[i]);
838 		kfree(pool);
839 	}
840 }
841 
842 static DECLARE_WORK(numa_crng_init_work, do_numa_crng_init);
843 
numa_crng_init(void)844 static void numa_crng_init(void)
845 {
846 	schedule_work(&numa_crng_init_work);
847 }
848 #else
numa_crng_init(void)849 static void numa_crng_init(void) {}
850 #endif
851 
852 /*
853  * crng_fast_load() can be called by code in the interrupt service
854  * path.  So we can't afford to dilly-dally.
855  */
crng_fast_load(const char * cp,size_t len)856 static int crng_fast_load(const char *cp, size_t len)
857 {
858 	unsigned long flags;
859 	char *p;
860 
861 	if (!spin_trylock_irqsave(&primary_crng.lock, flags))
862 		return 0;
863 	if (crng_init != 0) {
864 		spin_unlock_irqrestore(&primary_crng.lock, flags);
865 		return 0;
866 	}
867 	p = (unsigned char *) &primary_crng.state[4];
868 	while (len > 0 && crng_init_cnt < CRNG_INIT_CNT_THRESH) {
869 		p[crng_init_cnt % CHACHA20_KEY_SIZE] ^= *cp;
870 		cp++; crng_init_cnt++; len--;
871 	}
872 	spin_unlock_irqrestore(&primary_crng.lock, flags);
873 	if (crng_init_cnt >= CRNG_INIT_CNT_THRESH) {
874 		invalidate_batched_entropy();
875 		crng_init = 1;
876 		wake_up_interruptible(&crng_init_wait);
877 		pr_notice("random: fast init done\n");
878 	}
879 	return 1;
880 }
881 
882 /*
883  * crng_slow_load() is called by add_device_randomness, which has two
884  * attributes.  (1) We can't trust the buffer passed to it is
885  * guaranteed to be unpredictable (so it might not have any entropy at
886  * all), and (2) it doesn't have the performance constraints of
887  * crng_fast_load().
888  *
889  * So we do something more comprehensive which is guaranteed to touch
890  * all of the primary_crng's state, and which uses a LFSR with a
891  * period of 255 as part of the mixing algorithm.  Finally, we do
892  * *not* advance crng_init_cnt since buffer we may get may be something
893  * like a fixed DMI table (for example), which might very well be
894  * unique to the machine, but is otherwise unvarying.
895  */
crng_slow_load(const char * cp,size_t len)896 static int crng_slow_load(const char *cp, size_t len)
897 {
898 	unsigned long		flags;
899 	static unsigned char	lfsr = 1;
900 	unsigned char		tmp;
901 	unsigned		i, max = CHACHA20_KEY_SIZE;
902 	const char *		src_buf = cp;
903 	char *			dest_buf = (char *) &primary_crng.state[4];
904 
905 	if (!spin_trylock_irqsave(&primary_crng.lock, flags))
906 		return 0;
907 	if (crng_init != 0) {
908 		spin_unlock_irqrestore(&primary_crng.lock, flags);
909 		return 0;
910 	}
911 	if (len > max)
912 		max = len;
913 
914 	for (i = 0; i < max ; i++) {
915 		tmp = lfsr;
916 		lfsr >>= 1;
917 		if (tmp & 1)
918 			lfsr ^= 0xE1;
919 		tmp = dest_buf[i % CHACHA20_KEY_SIZE];
920 		dest_buf[i % CHACHA20_KEY_SIZE] ^= src_buf[i % len] ^ lfsr;
921 		lfsr += (tmp << 3) | (tmp >> 5);
922 	}
923 	spin_unlock_irqrestore(&primary_crng.lock, flags);
924 	return 1;
925 }
926 
crng_reseed(struct crng_state * crng,struct entropy_store * r)927 static void crng_reseed(struct crng_state *crng, struct entropy_store *r)
928 {
929 	unsigned long	flags;
930 	int		i, num;
931 	union {
932 		__u8	block[CHACHA20_BLOCK_SIZE];
933 		__u32	key[8];
934 	} buf;
935 
936 	if (r) {
937 		num = extract_entropy(r, &buf, 32, 16, 0);
938 		if (num == 0)
939 			return;
940 	} else {
941 		_extract_crng(&primary_crng, buf.block);
942 		_crng_backtrack_protect(&primary_crng, buf.block,
943 					CHACHA20_KEY_SIZE);
944 	}
945 	spin_lock_irqsave(&crng->lock, flags);
946 	for (i = 0; i < 8; i++) {
947 		unsigned long	rv;
948 		if (!arch_get_random_seed_long(&rv) &&
949 		    !arch_get_random_long(&rv))
950 			rv = random_get_entropy();
951 		crng->state[i+4] ^= buf.key[i] ^ rv;
952 	}
953 	memzero_explicit(&buf, sizeof(buf));
954 	crng->init_time = jiffies;
955 	spin_unlock_irqrestore(&crng->lock, flags);
956 	if (crng == &primary_crng && crng_init < 2) {
957 		invalidate_batched_entropy();
958 		numa_crng_init();
959 		crng_init = 2;
960 		process_random_ready_list();
961 		wake_up_interruptible(&crng_init_wait);
962 		pr_notice("random: crng init done\n");
963 		if (unseeded_warning.missed) {
964 			pr_notice("random: %d get_random_xx warning(s) missed "
965 				  "due to ratelimiting\n",
966 				  unseeded_warning.missed);
967 			unseeded_warning.missed = 0;
968 		}
969 		if (urandom_warning.missed) {
970 			pr_notice("random: %d urandom warning(s) missed "
971 				  "due to ratelimiting\n",
972 				  urandom_warning.missed);
973 			urandom_warning.missed = 0;
974 		}
975 	}
976 }
977 
_extract_crng(struct crng_state * crng,__u8 out[CHACHA20_BLOCK_SIZE])978 static void _extract_crng(struct crng_state *crng,
979 			  __u8 out[CHACHA20_BLOCK_SIZE])
980 {
981 	unsigned long v, flags;
982 
983 	if (crng_ready() &&
984 	    (time_after(crng_global_init_time, crng->init_time) ||
985 	     time_after(jiffies, crng->init_time + CRNG_RESEED_INTERVAL)))
986 		crng_reseed(crng, crng == &primary_crng ? &input_pool : NULL);
987 	spin_lock_irqsave(&crng->lock, flags);
988 	if (arch_get_random_long(&v))
989 		crng->state[14] ^= v;
990 	chacha20_block(&crng->state[0], out);
991 	if (crng->state[12] == 0)
992 		crng->state[13]++;
993 	spin_unlock_irqrestore(&crng->lock, flags);
994 }
995 
extract_crng(__u8 out[CHACHA20_BLOCK_SIZE])996 static void extract_crng(__u8 out[CHACHA20_BLOCK_SIZE])
997 {
998 	struct crng_state *crng = NULL;
999 
1000 #ifdef CONFIG_NUMA
1001 	if (crng_node_pool)
1002 		crng = crng_node_pool[numa_node_id()];
1003 	if (crng == NULL)
1004 #endif
1005 		crng = &primary_crng;
1006 	_extract_crng(crng, out);
1007 }
1008 
1009 /*
1010  * Use the leftover bytes from the CRNG block output (if there is
1011  * enough) to mutate the CRNG key to provide backtracking protection.
1012  */
_crng_backtrack_protect(struct crng_state * crng,__u8 tmp[CHACHA20_BLOCK_SIZE],int used)1013 static void _crng_backtrack_protect(struct crng_state *crng,
1014 				    __u8 tmp[CHACHA20_BLOCK_SIZE], int used)
1015 {
1016 	unsigned long	flags;
1017 	__u32		*s, *d;
1018 	int		i;
1019 
1020 	used = round_up(used, sizeof(__u32));
1021 	if (used + CHACHA20_KEY_SIZE > CHACHA20_BLOCK_SIZE) {
1022 		extract_crng(tmp);
1023 		used = 0;
1024 	}
1025 	spin_lock_irqsave(&crng->lock, flags);
1026 	s = (__u32 *) &tmp[used];
1027 	d = &crng->state[4];
1028 	for (i=0; i < 8; i++)
1029 		*d++ ^= *s++;
1030 	spin_unlock_irqrestore(&crng->lock, flags);
1031 }
1032 
crng_backtrack_protect(__u8 tmp[CHACHA20_BLOCK_SIZE],int used)1033 static void crng_backtrack_protect(__u8 tmp[CHACHA20_BLOCK_SIZE], int used)
1034 {
1035 	struct crng_state *crng = NULL;
1036 
1037 #ifdef CONFIG_NUMA
1038 	if (crng_node_pool)
1039 		crng = crng_node_pool[numa_node_id()];
1040 	if (crng == NULL)
1041 #endif
1042 		crng = &primary_crng;
1043 	_crng_backtrack_protect(crng, tmp, used);
1044 }
1045 
extract_crng_user(void __user * buf,size_t nbytes)1046 static ssize_t extract_crng_user(void __user *buf, size_t nbytes)
1047 {
1048 	ssize_t ret = 0, i = CHACHA20_BLOCK_SIZE;
1049 	__u8 tmp[CHACHA20_BLOCK_SIZE] __aligned(4);
1050 	int large_request = (nbytes > 256);
1051 
1052 	while (nbytes) {
1053 		if (large_request && need_resched()) {
1054 			if (signal_pending(current)) {
1055 				if (ret == 0)
1056 					ret = -ERESTARTSYS;
1057 				break;
1058 			}
1059 			schedule();
1060 		}
1061 
1062 		extract_crng(tmp);
1063 		i = min_t(int, nbytes, CHACHA20_BLOCK_SIZE);
1064 		if (copy_to_user(buf, tmp, i)) {
1065 			ret = -EFAULT;
1066 			break;
1067 		}
1068 
1069 		nbytes -= i;
1070 		buf += i;
1071 		ret += i;
1072 	}
1073 	crng_backtrack_protect(tmp, i);
1074 
1075 	/* Wipe data just written to memory */
1076 	memzero_explicit(tmp, sizeof(tmp));
1077 
1078 	return ret;
1079 }
1080 
1081 
1082 /*********************************************************************
1083  *
1084  * Entropy input management
1085  *
1086  *********************************************************************/
1087 
1088 /* There is one of these per entropy source */
1089 struct timer_rand_state {
1090 	cycles_t last_time;
1091 	long last_delta, last_delta2;
1092 };
1093 
1094 #define INIT_TIMER_RAND_STATE { INITIAL_JIFFIES, };
1095 
1096 /*
1097  * Add device- or boot-specific data to the input pool to help
1098  * initialize it.
1099  *
1100  * None of this adds any entropy; it is meant to avoid the problem of
1101  * the entropy pool having similar initial state across largely
1102  * identical devices.
1103  */
add_device_randomness(const void * buf,unsigned int size)1104 void add_device_randomness(const void *buf, unsigned int size)
1105 {
1106 	unsigned long time = random_get_entropy() ^ jiffies;
1107 	unsigned long flags;
1108 
1109 	if (!crng_ready() && size)
1110 		crng_slow_load(buf, size);
1111 
1112 	trace_add_device_randomness(size, _RET_IP_);
1113 	spin_lock_irqsave(&input_pool.lock, flags);
1114 	_mix_pool_bytes(&input_pool, buf, size);
1115 	_mix_pool_bytes(&input_pool, &time, sizeof(time));
1116 	spin_unlock_irqrestore(&input_pool.lock, flags);
1117 }
1118 EXPORT_SYMBOL(add_device_randomness);
1119 
1120 static struct timer_rand_state input_timer_state = INIT_TIMER_RAND_STATE;
1121 
1122 /*
1123  * This function adds entropy to the entropy "pool" by using timing
1124  * delays.  It uses the timer_rand_state structure to make an estimate
1125  * of how many bits of entropy this call has added to the pool.
1126  *
1127  * The number "num" is also added to the pool - it should somehow describe
1128  * the type of event which just happened.  This is currently 0-255 for
1129  * keyboard scan codes, and 256 upwards for interrupts.
1130  *
1131  */
add_timer_randomness(struct timer_rand_state * state,unsigned num)1132 static void add_timer_randomness(struct timer_rand_state *state, unsigned num)
1133 {
1134 	struct entropy_store	*r;
1135 	struct {
1136 		long jiffies;
1137 		unsigned cycles;
1138 		unsigned num;
1139 	} sample;
1140 	long delta, delta2, delta3;
1141 
1142 	sample.jiffies = jiffies;
1143 	sample.cycles = random_get_entropy();
1144 	sample.num = num;
1145 	r = &input_pool;
1146 	mix_pool_bytes(r, &sample, sizeof(sample));
1147 
1148 	/*
1149 	 * Calculate number of bits of randomness we probably added.
1150 	 * We take into account the first, second and third-order deltas
1151 	 * in order to make our estimate.
1152 	 */
1153 	delta = sample.jiffies - READ_ONCE(state->last_time);
1154 	WRITE_ONCE(state->last_time, sample.jiffies);
1155 
1156 	delta2 = delta - READ_ONCE(state->last_delta);
1157 	WRITE_ONCE(state->last_delta, delta);
1158 
1159 	delta3 = delta2 - READ_ONCE(state->last_delta2);
1160 	WRITE_ONCE(state->last_delta2, delta2);
1161 
1162 	if (delta < 0)
1163 		delta = -delta;
1164 	if (delta2 < 0)
1165 		delta2 = -delta2;
1166 	if (delta3 < 0)
1167 		delta3 = -delta3;
1168 	if (delta > delta2)
1169 		delta = delta2;
1170 	if (delta > delta3)
1171 		delta = delta3;
1172 
1173 	/*
1174 	 * delta is now minimum absolute delta.
1175 	 * Round down by 1 bit on general principles,
1176 	 * and limit entropy entimate to 12 bits.
1177 	 */
1178 	credit_entropy_bits(r, min_t(int, fls(delta>>1), 11));
1179 }
1180 
add_input_randomness(unsigned int type,unsigned int code,unsigned int value)1181 void add_input_randomness(unsigned int type, unsigned int code,
1182 				 unsigned int value)
1183 {
1184 	static unsigned char last_value;
1185 
1186 	/* ignore autorepeat and the like */
1187 	if (value == last_value)
1188 		return;
1189 
1190 	last_value = value;
1191 	add_timer_randomness(&input_timer_state,
1192 			     (type << 4) ^ code ^ (code >> 4) ^ value);
1193 	trace_add_input_randomness(ENTROPY_BITS(&input_pool));
1194 }
1195 EXPORT_SYMBOL_GPL(add_input_randomness);
1196 
1197 static DEFINE_PER_CPU(struct fast_pool, irq_randomness);
1198 
1199 #ifdef ADD_INTERRUPT_BENCH
1200 static unsigned long avg_cycles, avg_deviation;
1201 
1202 #define AVG_SHIFT 8     /* Exponential average factor k=1/256 */
1203 #define FIXED_1_2 (1 << (AVG_SHIFT-1))
1204 
add_interrupt_bench(cycles_t start)1205 static void add_interrupt_bench(cycles_t start)
1206 {
1207         long delta = random_get_entropy() - start;
1208 
1209         /* Use a weighted moving average */
1210         delta = delta - ((avg_cycles + FIXED_1_2) >> AVG_SHIFT);
1211         avg_cycles += delta;
1212         /* And average deviation */
1213         delta = abs(delta) - ((avg_deviation + FIXED_1_2) >> AVG_SHIFT);
1214         avg_deviation += delta;
1215 }
1216 #else
1217 #define add_interrupt_bench(x)
1218 #endif
1219 
get_reg(struct fast_pool * f,struct pt_regs * regs)1220 static __u32 get_reg(struct fast_pool *f, struct pt_regs *regs)
1221 {
1222 	__u32 *ptr = (__u32 *) regs;
1223 	unsigned int idx;
1224 
1225 	if (regs == NULL)
1226 		return 0;
1227 	idx = READ_ONCE(f->reg_idx);
1228 	if (idx >= sizeof(struct pt_regs) / sizeof(__u32))
1229 		idx = 0;
1230 	ptr += idx++;
1231 	WRITE_ONCE(f->reg_idx, idx);
1232 	return *ptr;
1233 }
1234 
add_interrupt_randomness(int irq,int irq_flags)1235 void add_interrupt_randomness(int irq, int irq_flags)
1236 {
1237 	struct entropy_store	*r;
1238 	struct fast_pool	*fast_pool = this_cpu_ptr(&irq_randomness);
1239 	struct pt_regs		*regs = get_irq_regs();
1240 	unsigned long		now = jiffies;
1241 	cycles_t		cycles = random_get_entropy();
1242 	__u32			c_high, j_high;
1243 	__u64			ip;
1244 	unsigned long		seed;
1245 	int			credit = 0;
1246 
1247 	if (cycles == 0)
1248 		cycles = get_reg(fast_pool, regs);
1249 	c_high = (sizeof(cycles) > 4) ? cycles >> 32 : 0;
1250 	j_high = (sizeof(now) > 4) ? now >> 32 : 0;
1251 	fast_pool->pool[0] ^= cycles ^ j_high ^ irq;
1252 	fast_pool->pool[1] ^= now ^ c_high;
1253 	ip = regs ? instruction_pointer(regs) : _RET_IP_;
1254 	fast_pool->pool[2] ^= ip;
1255 	fast_pool->pool[3] ^= (sizeof(ip) > 4) ? ip >> 32 :
1256 		get_reg(fast_pool, regs);
1257 
1258 	fast_mix(fast_pool);
1259 	add_interrupt_bench(cycles);
1260 	this_cpu_add(net_rand_state.s1, fast_pool->pool[cycles & 3]);
1261 
1262 	if (unlikely(crng_init == 0)) {
1263 		if ((fast_pool->count >= 64) &&
1264 		    crng_fast_load((char *) fast_pool->pool,
1265 				   sizeof(fast_pool->pool))) {
1266 			fast_pool->count = 0;
1267 			fast_pool->last = now;
1268 		}
1269 		return;
1270 	}
1271 
1272 	if ((fast_pool->count < 64) &&
1273 	    !time_after(now, fast_pool->last + HZ))
1274 		return;
1275 
1276 	r = &input_pool;
1277 	if (!spin_trylock(&r->lock))
1278 		return;
1279 
1280 	fast_pool->last = now;
1281 	__mix_pool_bytes(r, &fast_pool->pool, sizeof(fast_pool->pool));
1282 
1283 	/*
1284 	 * If we have architectural seed generator, produce a seed and
1285 	 * add it to the pool.  For the sake of paranoia don't let the
1286 	 * architectural seed generator dominate the input from the
1287 	 * interrupt noise.
1288 	 */
1289 	if (arch_get_random_seed_long(&seed)) {
1290 		__mix_pool_bytes(r, &seed, sizeof(seed));
1291 		credit = 1;
1292 	}
1293 	spin_unlock(&r->lock);
1294 
1295 	fast_pool->count = 0;
1296 
1297 	/* award one bit for the contents of the fast pool */
1298 	credit_entropy_bits(r, credit + 1);
1299 }
1300 EXPORT_SYMBOL_GPL(add_interrupt_randomness);
1301 
1302 #ifdef CONFIG_BLOCK
add_disk_randomness(struct gendisk * disk)1303 void add_disk_randomness(struct gendisk *disk)
1304 {
1305 	if (!disk || !disk->random)
1306 		return;
1307 	/* first major is 1, so we get >= 0x200 here */
1308 	add_timer_randomness(disk->random, 0x100 + disk_devt(disk));
1309 	trace_add_disk_randomness(disk_devt(disk), ENTROPY_BITS(&input_pool));
1310 }
1311 EXPORT_SYMBOL_GPL(add_disk_randomness);
1312 #endif
1313 
1314 /*********************************************************************
1315  *
1316  * Entropy extraction routines
1317  *
1318  *********************************************************************/
1319 
1320 /*
1321  * This utility inline function is responsible for transferring entropy
1322  * from the primary pool to the secondary extraction pool. We make
1323  * sure we pull enough for a 'catastrophic reseed'.
1324  */
1325 static void _xfer_secondary_pool(struct entropy_store *r, size_t nbytes);
xfer_secondary_pool(struct entropy_store * r,size_t nbytes)1326 static void xfer_secondary_pool(struct entropy_store *r, size_t nbytes)
1327 {
1328 	if (!r->pull ||
1329 	    r->entropy_count >= (nbytes << (ENTROPY_SHIFT + 3)) ||
1330 	    r->entropy_count > r->poolinfo->poolfracbits)
1331 		return;
1332 
1333 	_xfer_secondary_pool(r, nbytes);
1334 }
1335 
_xfer_secondary_pool(struct entropy_store * r,size_t nbytes)1336 static void _xfer_secondary_pool(struct entropy_store *r, size_t nbytes)
1337 {
1338 	__u32	tmp[OUTPUT_POOL_WORDS];
1339 
1340 	int bytes = nbytes;
1341 
1342 	/* pull at least as much as a wakeup */
1343 	bytes = max_t(int, bytes, random_read_wakeup_bits / 8);
1344 	/* but never more than the buffer size */
1345 	bytes = min_t(int, bytes, sizeof(tmp));
1346 
1347 	trace_xfer_secondary_pool(r->name, bytes * 8, nbytes * 8,
1348 				  ENTROPY_BITS(r), ENTROPY_BITS(r->pull));
1349 	bytes = extract_entropy(r->pull, tmp, bytes,
1350 				random_read_wakeup_bits / 8, 0);
1351 	mix_pool_bytes(r, tmp, bytes);
1352 	credit_entropy_bits(r, bytes*8);
1353 }
1354 
1355 /*
1356  * Used as a workqueue function so that when the input pool is getting
1357  * full, we can "spill over" some entropy to the output pools.  That
1358  * way the output pools can store some of the excess entropy instead
1359  * of letting it go to waste.
1360  */
push_to_pool(struct work_struct * work)1361 static void push_to_pool(struct work_struct *work)
1362 {
1363 	struct entropy_store *r = container_of(work, struct entropy_store,
1364 					      push_work);
1365 	BUG_ON(!r);
1366 	_xfer_secondary_pool(r, random_read_wakeup_bits/8);
1367 	trace_push_to_pool(r->name, r->entropy_count >> ENTROPY_SHIFT,
1368 			   r->pull->entropy_count >> ENTROPY_SHIFT);
1369 }
1370 
1371 /*
1372  * This function decides how many bytes to actually take from the
1373  * given pool, and also debits the entropy count accordingly.
1374  */
account(struct entropy_store * r,size_t nbytes,int min,int reserved)1375 static size_t account(struct entropy_store *r, size_t nbytes, int min,
1376 		      int reserved)
1377 {
1378 	int entropy_count, orig, have_bytes;
1379 	size_t ibytes, nfrac;
1380 
1381 	BUG_ON(r->entropy_count > r->poolinfo->poolfracbits);
1382 
1383 	/* Can we pull enough? */
1384 retry:
1385 	entropy_count = orig = READ_ONCE(r->entropy_count);
1386 	ibytes = nbytes;
1387 	/* never pull more than available */
1388 	have_bytes = entropy_count >> (ENTROPY_SHIFT + 3);
1389 
1390 	if ((have_bytes -= reserved) < 0)
1391 		have_bytes = 0;
1392 	ibytes = min_t(size_t, ibytes, have_bytes);
1393 	if (ibytes < min)
1394 		ibytes = 0;
1395 
1396 	if (unlikely(entropy_count < 0)) {
1397 		pr_warn("random: negative entropy count: pool %s count %d\n",
1398 			r->name, entropy_count);
1399 		WARN_ON(1);
1400 		entropy_count = 0;
1401 	}
1402 	nfrac = ibytes << (ENTROPY_SHIFT + 3);
1403 	if ((size_t) entropy_count > nfrac)
1404 		entropy_count -= nfrac;
1405 	else
1406 		entropy_count = 0;
1407 
1408 	if (cmpxchg(&r->entropy_count, orig, entropy_count) != orig)
1409 		goto retry;
1410 
1411 	trace_debit_entropy(r->name, 8 * ibytes);
1412 	if (ibytes &&
1413 	    (r->entropy_count >> ENTROPY_SHIFT) < random_write_wakeup_bits) {
1414 		wake_up_interruptible(&random_write_wait);
1415 		kill_fasync(&fasync, SIGIO, POLL_OUT);
1416 	}
1417 
1418 	return ibytes;
1419 }
1420 
1421 /*
1422  * This function does the actual extraction for extract_entropy and
1423  * extract_entropy_user.
1424  *
1425  * Note: we assume that .poolwords is a multiple of 16 words.
1426  */
extract_buf(struct entropy_store * r,__u8 * out)1427 static void extract_buf(struct entropy_store *r, __u8 *out)
1428 {
1429 	int i;
1430 	union {
1431 		__u32 w[5];
1432 		unsigned long l[LONGS(20)];
1433 	} hash;
1434 	__u32 workspace[SHA_WORKSPACE_WORDS];
1435 	unsigned long flags;
1436 
1437 	/*
1438 	 * If we have an architectural hardware random number
1439 	 * generator, use it for SHA's initial vector
1440 	 */
1441 	sha_init(hash.w);
1442 	for (i = 0; i < LONGS(20); i++) {
1443 		unsigned long v;
1444 		if (!arch_get_random_long(&v))
1445 			break;
1446 		hash.l[i] = v;
1447 	}
1448 
1449 	/* Generate a hash across the pool, 16 words (512 bits) at a time */
1450 	spin_lock_irqsave(&r->lock, flags);
1451 	for (i = 0; i < r->poolinfo->poolwords; i += 16)
1452 		sha_transform(hash.w, (__u8 *)(r->pool + i), workspace);
1453 
1454 	/*
1455 	 * We mix the hash back into the pool to prevent backtracking
1456 	 * attacks (where the attacker knows the state of the pool
1457 	 * plus the current outputs, and attempts to find previous
1458 	 * ouputs), unless the hash function can be inverted. By
1459 	 * mixing at least a SHA1 worth of hash data back, we make
1460 	 * brute-forcing the feedback as hard as brute-forcing the
1461 	 * hash.
1462 	 */
1463 	__mix_pool_bytes(r, hash.w, sizeof(hash.w));
1464 	spin_unlock_irqrestore(&r->lock, flags);
1465 
1466 	memzero_explicit(workspace, sizeof(workspace));
1467 
1468 	/*
1469 	 * In case the hash function has some recognizable output
1470 	 * pattern, we fold it in half. Thus, we always feed back
1471 	 * twice as much data as we output.
1472 	 */
1473 	hash.w[0] ^= hash.w[3];
1474 	hash.w[1] ^= hash.w[4];
1475 	hash.w[2] ^= rol32(hash.w[2], 16);
1476 
1477 	memcpy(out, &hash, EXTRACT_SIZE);
1478 	memzero_explicit(&hash, sizeof(hash));
1479 }
1480 
_extract_entropy(struct entropy_store * r,void * buf,size_t nbytes,int fips)1481 static ssize_t _extract_entropy(struct entropy_store *r, void *buf,
1482 				size_t nbytes, int fips)
1483 {
1484 	ssize_t ret = 0, i;
1485 	__u8 tmp[EXTRACT_SIZE];
1486 	unsigned long flags;
1487 
1488 	while (nbytes) {
1489 		extract_buf(r, tmp);
1490 
1491 		if (fips) {
1492 			spin_lock_irqsave(&r->lock, flags);
1493 			if (!memcmp(tmp, r->last_data, EXTRACT_SIZE))
1494 				panic("Hardware RNG duplicated output!\n");
1495 			memcpy(r->last_data, tmp, EXTRACT_SIZE);
1496 			spin_unlock_irqrestore(&r->lock, flags);
1497 		}
1498 		i = min_t(int, nbytes, EXTRACT_SIZE);
1499 		memcpy(buf, tmp, i);
1500 		nbytes -= i;
1501 		buf += i;
1502 		ret += i;
1503 	}
1504 
1505 	/* Wipe data just returned from memory */
1506 	memzero_explicit(tmp, sizeof(tmp));
1507 
1508 	return ret;
1509 }
1510 
1511 /*
1512  * This function extracts randomness from the "entropy pool", and
1513  * returns it in a buffer.
1514  *
1515  * The min parameter specifies the minimum amount we can pull before
1516  * failing to avoid races that defeat catastrophic reseeding while the
1517  * reserved parameter indicates how much entropy we must leave in the
1518  * pool after each pull to avoid starving other readers.
1519  */
extract_entropy(struct entropy_store * r,void * buf,size_t nbytes,int min,int reserved)1520 static ssize_t extract_entropy(struct entropy_store *r, void *buf,
1521 				 size_t nbytes, int min, int reserved)
1522 {
1523 	__u8 tmp[EXTRACT_SIZE];
1524 	unsigned long flags;
1525 
1526 	/* if last_data isn't primed, we need EXTRACT_SIZE extra bytes */
1527 	if (fips_enabled) {
1528 		spin_lock_irqsave(&r->lock, flags);
1529 		if (!r->last_data_init) {
1530 			r->last_data_init = 1;
1531 			spin_unlock_irqrestore(&r->lock, flags);
1532 			trace_extract_entropy(r->name, EXTRACT_SIZE,
1533 					      ENTROPY_BITS(r), _RET_IP_);
1534 			xfer_secondary_pool(r, EXTRACT_SIZE);
1535 			extract_buf(r, tmp);
1536 			spin_lock_irqsave(&r->lock, flags);
1537 			memcpy(r->last_data, tmp, EXTRACT_SIZE);
1538 		}
1539 		spin_unlock_irqrestore(&r->lock, flags);
1540 	}
1541 
1542 	trace_extract_entropy(r->name, nbytes, ENTROPY_BITS(r), _RET_IP_);
1543 	xfer_secondary_pool(r, nbytes);
1544 	nbytes = account(r, nbytes, min, reserved);
1545 
1546 	return _extract_entropy(r, buf, nbytes, fips_enabled);
1547 }
1548 
1549 /*
1550  * This function extracts randomness from the "entropy pool", and
1551  * returns it in a userspace buffer.
1552  */
extract_entropy_user(struct entropy_store * r,void __user * buf,size_t nbytes)1553 static ssize_t extract_entropy_user(struct entropy_store *r, void __user *buf,
1554 				    size_t nbytes)
1555 {
1556 	ssize_t ret = 0, i;
1557 	__u8 tmp[EXTRACT_SIZE];
1558 	int large_request = (nbytes > 256);
1559 
1560 	trace_extract_entropy_user(r->name, nbytes, ENTROPY_BITS(r), _RET_IP_);
1561 	xfer_secondary_pool(r, nbytes);
1562 	nbytes = account(r, nbytes, 0, 0);
1563 
1564 	while (nbytes) {
1565 		if (large_request && need_resched()) {
1566 			if (signal_pending(current)) {
1567 				if (ret == 0)
1568 					ret = -ERESTARTSYS;
1569 				break;
1570 			}
1571 			schedule();
1572 		}
1573 
1574 		extract_buf(r, tmp);
1575 		i = min_t(int, nbytes, EXTRACT_SIZE);
1576 		if (copy_to_user(buf, tmp, i)) {
1577 			ret = -EFAULT;
1578 			break;
1579 		}
1580 
1581 		nbytes -= i;
1582 		buf += i;
1583 		ret += i;
1584 	}
1585 
1586 	/* Wipe data just returned from memory */
1587 	memzero_explicit(tmp, sizeof(tmp));
1588 
1589 	return ret;
1590 }
1591 
1592 #define warn_unseeded_randomness(previous) \
1593 	_warn_unseeded_randomness(__func__, (void *) _RET_IP_, (previous))
1594 
_warn_unseeded_randomness(const char * func_name,void * caller,void ** previous)1595 static void _warn_unseeded_randomness(const char *func_name, void *caller,
1596 				      void **previous)
1597 {
1598 #ifdef CONFIG_WARN_ALL_UNSEEDED_RANDOM
1599 	const bool print_once = false;
1600 #else
1601 	static bool print_once __read_mostly;
1602 #endif
1603 
1604 	if (print_once ||
1605 	    crng_ready() ||
1606 	    (previous && (caller == READ_ONCE(*previous))))
1607 		return;
1608 	WRITE_ONCE(*previous, caller);
1609 #ifndef CONFIG_WARN_ALL_UNSEEDED_RANDOM
1610 	print_once = true;
1611 #endif
1612 	if (__ratelimit(&unseeded_warning))
1613 		pr_notice("random: %s called from %pS with crng_init=%d\n",
1614 			  func_name, caller, crng_init);
1615 }
1616 
1617 /*
1618  * This function is the exported kernel interface.  It returns some
1619  * number of good random numbers, suitable for key generation, seeding
1620  * TCP sequence numbers, etc.  It does not rely on the hardware random
1621  * number generator.  For random bytes direct from the hardware RNG
1622  * (when available), use get_random_bytes_arch(). In order to ensure
1623  * that the randomness provided by this function is okay, the function
1624  * wait_for_random_bytes() should be called and return 0 at least once
1625  * at any point prior.
1626  */
_get_random_bytes(void * buf,int nbytes)1627 static void _get_random_bytes(void *buf, int nbytes)
1628 {
1629 	__u8 tmp[CHACHA20_BLOCK_SIZE] __aligned(4);
1630 
1631 	trace_get_random_bytes(nbytes, _RET_IP_);
1632 
1633 	while (nbytes >= CHACHA20_BLOCK_SIZE) {
1634 		extract_crng(buf);
1635 		buf += CHACHA20_BLOCK_SIZE;
1636 		nbytes -= CHACHA20_BLOCK_SIZE;
1637 	}
1638 
1639 	if (nbytes > 0) {
1640 		extract_crng(tmp);
1641 		memcpy(buf, tmp, nbytes);
1642 		crng_backtrack_protect(tmp, nbytes);
1643 	} else
1644 		crng_backtrack_protect(tmp, CHACHA20_BLOCK_SIZE);
1645 	memzero_explicit(tmp, sizeof(tmp));
1646 }
1647 
get_random_bytes(void * buf,int nbytes)1648 void get_random_bytes(void *buf, int nbytes)
1649 {
1650 	static void *previous;
1651 
1652 	warn_unseeded_randomness(&previous);
1653 	_get_random_bytes(buf, nbytes);
1654 }
1655 EXPORT_SYMBOL(get_random_bytes);
1656 
1657 
1658 /*
1659  * Each time the timer fires, we expect that we got an unpredictable
1660  * jump in the cycle counter. Even if the timer is running on another
1661  * CPU, the timer activity will be touching the stack of the CPU that is
1662  * generating entropy..
1663  *
1664  * Note that we don't re-arm the timer in the timer itself - we are
1665  * happy to be scheduled away, since that just makes the load more
1666  * complex, but we do not want the timer to keep ticking unless the
1667  * entropy loop is running.
1668  *
1669  * So the re-arming always happens in the entropy loop itself.
1670  */
entropy_timer(struct timer_list * t)1671 static void entropy_timer(struct timer_list *t)
1672 {
1673 	credit_entropy_bits(&input_pool, 1);
1674 }
1675 
1676 /*
1677  * If we have an actual cycle counter, see if we can
1678  * generate enough entropy with timing noise
1679  */
try_to_generate_entropy(void)1680 static void try_to_generate_entropy(void)
1681 {
1682 	struct {
1683 		unsigned long now;
1684 		struct timer_list timer;
1685 	} stack;
1686 
1687 	stack.now = random_get_entropy();
1688 
1689 	/* Slow counter - or none. Don't even bother */
1690 	if (stack.now == random_get_entropy())
1691 		return;
1692 
1693 	timer_setup_on_stack(&stack.timer, entropy_timer, 0);
1694 	while (!crng_ready()) {
1695 		if (!timer_pending(&stack.timer))
1696 			mod_timer(&stack.timer, jiffies+1);
1697 		mix_pool_bytes(&input_pool, &stack.now, sizeof(stack.now));
1698 		schedule();
1699 		stack.now = random_get_entropy();
1700 	}
1701 
1702 	del_timer_sync(&stack.timer);
1703 	destroy_timer_on_stack(&stack.timer);
1704 	mix_pool_bytes(&input_pool, &stack.now, sizeof(stack.now));
1705 }
1706 
1707 /*
1708  * Wait for the urandom pool to be seeded and thus guaranteed to supply
1709  * cryptographically secure random numbers. This applies to: the /dev/urandom
1710  * device, the get_random_bytes function, and the get_random_{u32,u64,int,long}
1711  * family of functions. Using any of these functions without first calling
1712  * this function forfeits the guarantee of security.
1713  *
1714  * Returns: 0 if the urandom pool has been seeded.
1715  *          -ERESTARTSYS if the function was interrupted by a signal.
1716  */
wait_for_random_bytes(void)1717 int wait_for_random_bytes(void)
1718 {
1719 	if (likely(crng_ready()))
1720 		return 0;
1721 
1722 	do {
1723 		int ret;
1724 		ret = wait_event_interruptible_timeout(crng_init_wait, crng_ready(), HZ);
1725 		if (ret)
1726 			return ret > 0 ? 0 : ret;
1727 
1728 		try_to_generate_entropy();
1729 	} while (!crng_ready());
1730 
1731 	return 0;
1732 }
1733 EXPORT_SYMBOL(wait_for_random_bytes);
1734 
1735 /*
1736  * Returns whether or not the urandom pool has been seeded and thus guaranteed
1737  * to supply cryptographically secure random numbers. This applies to: the
1738  * /dev/urandom device, the get_random_bytes function, and the get_random_{u32,
1739  * ,u64,int,long} family of functions.
1740  *
1741  * Returns: true if the urandom pool has been seeded.
1742  *          false if the urandom pool has not been seeded.
1743  */
rng_is_initialized(void)1744 bool rng_is_initialized(void)
1745 {
1746 	return crng_ready();
1747 }
1748 EXPORT_SYMBOL(rng_is_initialized);
1749 
1750 /*
1751  * Add a callback function that will be invoked when the nonblocking
1752  * pool is initialised.
1753  *
1754  * returns: 0 if callback is successfully added
1755  *	    -EALREADY if pool is already initialised (callback not called)
1756  *	    -ENOENT if module for callback is not alive
1757  */
add_random_ready_callback(struct random_ready_callback * rdy)1758 int add_random_ready_callback(struct random_ready_callback *rdy)
1759 {
1760 	struct module *owner;
1761 	unsigned long flags;
1762 	int err = -EALREADY;
1763 
1764 	if (crng_ready())
1765 		return err;
1766 
1767 	owner = rdy->owner;
1768 	if (!try_module_get(owner))
1769 		return -ENOENT;
1770 
1771 	spin_lock_irqsave(&random_ready_list_lock, flags);
1772 	if (crng_ready())
1773 		goto out;
1774 
1775 	owner = NULL;
1776 
1777 	list_add(&rdy->list, &random_ready_list);
1778 	err = 0;
1779 
1780 out:
1781 	spin_unlock_irqrestore(&random_ready_list_lock, flags);
1782 
1783 	module_put(owner);
1784 
1785 	return err;
1786 }
1787 EXPORT_SYMBOL(add_random_ready_callback);
1788 
1789 /*
1790  * Delete a previously registered readiness callback function.
1791  */
del_random_ready_callback(struct random_ready_callback * rdy)1792 void del_random_ready_callback(struct random_ready_callback *rdy)
1793 {
1794 	unsigned long flags;
1795 	struct module *owner = NULL;
1796 
1797 	spin_lock_irqsave(&random_ready_list_lock, flags);
1798 	if (!list_empty(&rdy->list)) {
1799 		list_del_init(&rdy->list);
1800 		owner = rdy->owner;
1801 	}
1802 	spin_unlock_irqrestore(&random_ready_list_lock, flags);
1803 
1804 	module_put(owner);
1805 }
1806 EXPORT_SYMBOL(del_random_ready_callback);
1807 
1808 /*
1809  * This function will use the architecture-specific hardware random
1810  * number generator if it is available.  The arch-specific hw RNG will
1811  * almost certainly be faster than what we can do in software, but it
1812  * is impossible to verify that it is implemented securely (as
1813  * opposed, to, say, the AES encryption of a sequence number using a
1814  * key known by the NSA).  So it's useful if we need the speed, but
1815  * only if we're willing to trust the hardware manufacturer not to
1816  * have put in a back door.
1817  *
1818  * Return number of bytes filled in.
1819  */
get_random_bytes_arch(void * buf,int nbytes)1820 int __must_check get_random_bytes_arch(void *buf, int nbytes)
1821 {
1822 	int left = nbytes;
1823 	char *p = buf;
1824 
1825 	trace_get_random_bytes_arch(left, _RET_IP_);
1826 	while (left) {
1827 		unsigned long v;
1828 		int chunk = min_t(int, left, sizeof(unsigned long));
1829 
1830 		if (!arch_get_random_long(&v))
1831 			break;
1832 
1833 		memcpy(p, &v, chunk);
1834 		p += chunk;
1835 		left -= chunk;
1836 	}
1837 
1838 	return nbytes - left;
1839 }
1840 EXPORT_SYMBOL(get_random_bytes_arch);
1841 
1842 /*
1843  * init_std_data - initialize pool with system data
1844  *
1845  * @r: pool to initialize
1846  *
1847  * This function clears the pool's entropy count and mixes some system
1848  * data into the pool to prepare it for use. The pool is not cleared
1849  * as that can only decrease the entropy in the pool.
1850  */
init_std_data(struct entropy_store * r)1851 static void init_std_data(struct entropy_store *r)
1852 {
1853 	int i;
1854 	ktime_t now = ktime_get_real();
1855 	unsigned long rv;
1856 
1857 	r->last_pulled = jiffies;
1858 	mix_pool_bytes(r, &now, sizeof(now));
1859 	for (i = r->poolinfo->poolbytes; i > 0; i -= sizeof(rv)) {
1860 		if (!arch_get_random_seed_long(&rv) &&
1861 		    !arch_get_random_long(&rv))
1862 			rv = random_get_entropy();
1863 		mix_pool_bytes(r, &rv, sizeof(rv));
1864 	}
1865 	mix_pool_bytes(r, utsname(), sizeof(*(utsname())));
1866 }
1867 
1868 /*
1869  * Note that setup_arch() may call add_device_randomness()
1870  * long before we get here. This allows seeding of the pools
1871  * with some platform dependent data very early in the boot
1872  * process. But it limits our options here. We must use
1873  * statically allocated structures that already have all
1874  * initializations complete at compile time. We should also
1875  * take care not to overwrite the precious per platform data
1876  * we were given.
1877  */
rand_initialize(void)1878 static int rand_initialize(void)
1879 {
1880 	init_std_data(&input_pool);
1881 	init_std_data(&blocking_pool);
1882 	crng_initialize(&primary_crng);
1883 	crng_global_init_time = jiffies;
1884 	if (ratelimit_disable) {
1885 		urandom_warning.interval = 0;
1886 		unseeded_warning.interval = 0;
1887 	}
1888 	return 0;
1889 }
1890 early_initcall(rand_initialize);
1891 
1892 #ifdef CONFIG_BLOCK
rand_initialize_disk(struct gendisk * disk)1893 void rand_initialize_disk(struct gendisk *disk)
1894 {
1895 	struct timer_rand_state *state;
1896 
1897 	/*
1898 	 * If kzalloc returns null, we just won't use that entropy
1899 	 * source.
1900 	 */
1901 	state = kzalloc(sizeof(struct timer_rand_state), GFP_KERNEL);
1902 	if (state) {
1903 		state->last_time = INITIAL_JIFFIES;
1904 		disk->random = state;
1905 	}
1906 }
1907 #endif
1908 
1909 static ssize_t
_random_read(int nonblock,char __user * buf,size_t nbytes)1910 _random_read(int nonblock, char __user *buf, size_t nbytes)
1911 {
1912 	ssize_t n;
1913 
1914 	if (nbytes == 0)
1915 		return 0;
1916 
1917 	nbytes = min_t(size_t, nbytes, SEC_XFER_SIZE);
1918 	while (1) {
1919 		n = extract_entropy_user(&blocking_pool, buf, nbytes);
1920 		if (n < 0)
1921 			return n;
1922 		trace_random_read(n*8, (nbytes-n)*8,
1923 				  ENTROPY_BITS(&blocking_pool),
1924 				  ENTROPY_BITS(&input_pool));
1925 		if (n > 0)
1926 			return n;
1927 
1928 		/* Pool is (near) empty.  Maybe wait and retry. */
1929 		if (nonblock)
1930 			return -EAGAIN;
1931 
1932 		wait_event_interruptible(random_read_wait,
1933 			ENTROPY_BITS(&input_pool) >=
1934 			random_read_wakeup_bits);
1935 		if (signal_pending(current))
1936 			return -ERESTARTSYS;
1937 	}
1938 }
1939 
1940 static ssize_t
random_read(struct file * file,char __user * buf,size_t nbytes,loff_t * ppos)1941 random_read(struct file *file, char __user *buf, size_t nbytes, loff_t *ppos)
1942 {
1943 	return _random_read(file->f_flags & O_NONBLOCK, buf, nbytes);
1944 }
1945 
1946 static ssize_t
urandom_read(struct file * file,char __user * buf,size_t nbytes,loff_t * ppos)1947 urandom_read(struct file *file, char __user *buf, size_t nbytes, loff_t *ppos)
1948 {
1949 	unsigned long flags;
1950 	static int maxwarn = 10;
1951 	int ret;
1952 
1953 	if (!crng_ready() && maxwarn > 0) {
1954 		maxwarn--;
1955 		if (__ratelimit(&urandom_warning))
1956 			printk(KERN_NOTICE "random: %s: uninitialized "
1957 			       "urandom read (%zd bytes read)\n",
1958 			       current->comm, nbytes);
1959 		spin_lock_irqsave(&primary_crng.lock, flags);
1960 		crng_init_cnt = 0;
1961 		spin_unlock_irqrestore(&primary_crng.lock, flags);
1962 	}
1963 	nbytes = min_t(size_t, nbytes, INT_MAX >> (ENTROPY_SHIFT + 3));
1964 	ret = extract_crng_user(buf, nbytes);
1965 	trace_urandom_read(8 * nbytes, 0, ENTROPY_BITS(&input_pool));
1966 	return ret;
1967 }
1968 
1969 static __poll_t
random_poll(struct file * file,poll_table * wait)1970 random_poll(struct file *file, poll_table * wait)
1971 {
1972 	__poll_t mask;
1973 
1974 	poll_wait(file, &random_read_wait, wait);
1975 	poll_wait(file, &random_write_wait, wait);
1976 	mask = 0;
1977 	if (ENTROPY_BITS(&input_pool) >= random_read_wakeup_bits)
1978 		mask |= EPOLLIN | EPOLLRDNORM;
1979 	if (ENTROPY_BITS(&input_pool) < random_write_wakeup_bits)
1980 		mask |= EPOLLOUT | EPOLLWRNORM;
1981 	return mask;
1982 }
1983 
1984 static int
write_pool(struct entropy_store * r,const char __user * buffer,size_t count)1985 write_pool(struct entropy_store *r, const char __user *buffer, size_t count)
1986 {
1987 	size_t bytes;
1988 	__u32 t, buf[16];
1989 	const char __user *p = buffer;
1990 
1991 	while (count > 0) {
1992 		int b, i = 0;
1993 
1994 		bytes = min(count, sizeof(buf));
1995 		if (copy_from_user(&buf, p, bytes))
1996 			return -EFAULT;
1997 
1998 		for (b = bytes ; b > 0 ; b -= sizeof(__u32), i++) {
1999 			if (!arch_get_random_int(&t))
2000 				break;
2001 			buf[i] ^= t;
2002 		}
2003 
2004 		count -= bytes;
2005 		p += bytes;
2006 
2007 		mix_pool_bytes(r, buf, bytes);
2008 		cond_resched();
2009 	}
2010 
2011 	return 0;
2012 }
2013 
random_write(struct file * file,const char __user * buffer,size_t count,loff_t * ppos)2014 static ssize_t random_write(struct file *file, const char __user *buffer,
2015 			    size_t count, loff_t *ppos)
2016 {
2017 	size_t ret;
2018 
2019 	ret = write_pool(&input_pool, buffer, count);
2020 	if (ret)
2021 		return ret;
2022 
2023 	return (ssize_t)count;
2024 }
2025 
random_ioctl(struct file * f,unsigned int cmd,unsigned long arg)2026 static long random_ioctl(struct file *f, unsigned int cmd, unsigned long arg)
2027 {
2028 	int size, ent_count;
2029 	int __user *p = (int __user *)arg;
2030 	int retval;
2031 
2032 	switch (cmd) {
2033 	case RNDGETENTCNT:
2034 		/* inherently racy, no point locking */
2035 		ent_count = ENTROPY_BITS(&input_pool);
2036 		if (put_user(ent_count, p))
2037 			return -EFAULT;
2038 		return 0;
2039 	case RNDADDTOENTCNT:
2040 		if (!capable(CAP_SYS_ADMIN))
2041 			return -EPERM;
2042 		if (get_user(ent_count, p))
2043 			return -EFAULT;
2044 		return credit_entropy_bits_safe(&input_pool, ent_count);
2045 	case RNDADDENTROPY:
2046 		if (!capable(CAP_SYS_ADMIN))
2047 			return -EPERM;
2048 		if (get_user(ent_count, p++))
2049 			return -EFAULT;
2050 		if (ent_count < 0)
2051 			return -EINVAL;
2052 		if (get_user(size, p++))
2053 			return -EFAULT;
2054 		retval = write_pool(&input_pool, (const char __user *)p,
2055 				    size);
2056 		if (retval < 0)
2057 			return retval;
2058 		return credit_entropy_bits_safe(&input_pool, ent_count);
2059 	case RNDZAPENTCNT:
2060 	case RNDCLEARPOOL:
2061 		/*
2062 		 * Clear the entropy pool counters. We no longer clear
2063 		 * the entropy pool, as that's silly.
2064 		 */
2065 		if (!capable(CAP_SYS_ADMIN))
2066 			return -EPERM;
2067 		input_pool.entropy_count = 0;
2068 		blocking_pool.entropy_count = 0;
2069 		return 0;
2070 	case RNDRESEEDCRNG:
2071 		if (!capable(CAP_SYS_ADMIN))
2072 			return -EPERM;
2073 		if (crng_init < 2)
2074 			return -ENODATA;
2075 		crng_reseed(&primary_crng, NULL);
2076 		crng_global_init_time = jiffies - 1;
2077 		return 0;
2078 	default:
2079 		return -EINVAL;
2080 	}
2081 }
2082 
random_fasync(int fd,struct file * filp,int on)2083 static int random_fasync(int fd, struct file *filp, int on)
2084 {
2085 	return fasync_helper(fd, filp, on, &fasync);
2086 }
2087 
2088 const struct file_operations random_fops = {
2089 	.read  = random_read,
2090 	.write = random_write,
2091 	.poll  = random_poll,
2092 	.unlocked_ioctl = random_ioctl,
2093 	.fasync = random_fasync,
2094 	.llseek = noop_llseek,
2095 };
2096 
2097 const struct file_operations urandom_fops = {
2098 	.read  = urandom_read,
2099 	.write = random_write,
2100 	.unlocked_ioctl = random_ioctl,
2101 	.fasync = random_fasync,
2102 	.llseek = noop_llseek,
2103 };
2104 
SYSCALL_DEFINE3(getrandom,char __user *,buf,size_t,count,unsigned int,flags)2105 SYSCALL_DEFINE3(getrandom, char __user *, buf, size_t, count,
2106 		unsigned int, flags)
2107 {
2108 	int ret;
2109 
2110 	if (flags & ~(GRND_NONBLOCK|GRND_RANDOM))
2111 		return -EINVAL;
2112 
2113 	if (count > INT_MAX)
2114 		count = INT_MAX;
2115 
2116 	if (flags & GRND_RANDOM)
2117 		return _random_read(flags & GRND_NONBLOCK, buf, count);
2118 
2119 	if (!crng_ready()) {
2120 		if (flags & GRND_NONBLOCK)
2121 			return -EAGAIN;
2122 		ret = wait_for_random_bytes();
2123 		if (unlikely(ret))
2124 			return ret;
2125 	}
2126 	return urandom_read(NULL, buf, count, NULL);
2127 }
2128 
2129 /********************************************************************
2130  *
2131  * Sysctl interface
2132  *
2133  ********************************************************************/
2134 
2135 #ifdef CONFIG_SYSCTL
2136 
2137 #include <linux/sysctl.h>
2138 
2139 static int min_read_thresh = 8, min_write_thresh;
2140 static int max_read_thresh = OUTPUT_POOL_WORDS * 32;
2141 static int max_write_thresh = INPUT_POOL_WORDS * 32;
2142 static int random_min_urandom_seed = 60;
2143 static char sysctl_bootid[16];
2144 
2145 /*
2146  * This function is used to return both the bootid UUID, and random
2147  * UUID.  The difference is in whether table->data is NULL; if it is,
2148  * then a new UUID is generated and returned to the user.
2149  *
2150  * If the user accesses this via the proc interface, the UUID will be
2151  * returned as an ASCII string in the standard UUID format; if via the
2152  * sysctl system call, as 16 bytes of binary data.
2153  */
proc_do_uuid(struct ctl_table * table,int write,void __user * buffer,size_t * lenp,loff_t * ppos)2154 static int proc_do_uuid(struct ctl_table *table, int write,
2155 			void __user *buffer, size_t *lenp, loff_t *ppos)
2156 {
2157 	struct ctl_table fake_table;
2158 	unsigned char buf[64], tmp_uuid[16], *uuid;
2159 
2160 	uuid = table->data;
2161 	if (!uuid) {
2162 		uuid = tmp_uuid;
2163 		generate_random_uuid(uuid);
2164 	} else {
2165 		static DEFINE_SPINLOCK(bootid_spinlock);
2166 
2167 		spin_lock(&bootid_spinlock);
2168 		if (!uuid[8])
2169 			generate_random_uuid(uuid);
2170 		spin_unlock(&bootid_spinlock);
2171 	}
2172 
2173 	sprintf(buf, "%pU", uuid);
2174 
2175 	fake_table.data = buf;
2176 	fake_table.maxlen = sizeof(buf);
2177 
2178 	return proc_dostring(&fake_table, write, buffer, lenp, ppos);
2179 }
2180 
2181 /*
2182  * Return entropy available scaled to integral bits
2183  */
proc_do_entropy(struct ctl_table * table,int write,void __user * buffer,size_t * lenp,loff_t * ppos)2184 static int proc_do_entropy(struct ctl_table *table, int write,
2185 			   void __user *buffer, size_t *lenp, loff_t *ppos)
2186 {
2187 	struct ctl_table fake_table;
2188 	int entropy_count;
2189 
2190 	entropy_count = *(int *)table->data >> ENTROPY_SHIFT;
2191 
2192 	fake_table.data = &entropy_count;
2193 	fake_table.maxlen = sizeof(entropy_count);
2194 
2195 	return proc_dointvec(&fake_table, write, buffer, lenp, ppos);
2196 }
2197 
2198 static int sysctl_poolsize = INPUT_POOL_WORDS * 32;
2199 extern struct ctl_table random_table[];
2200 struct ctl_table random_table[] = {
2201 	{
2202 		.procname	= "poolsize",
2203 		.data		= &sysctl_poolsize,
2204 		.maxlen		= sizeof(int),
2205 		.mode		= 0444,
2206 		.proc_handler	= proc_dointvec,
2207 	},
2208 	{
2209 		.procname	= "entropy_avail",
2210 		.maxlen		= sizeof(int),
2211 		.mode		= 0444,
2212 		.proc_handler	= proc_do_entropy,
2213 		.data		= &input_pool.entropy_count,
2214 	},
2215 	{
2216 		.procname	= "read_wakeup_threshold",
2217 		.data		= &random_read_wakeup_bits,
2218 		.maxlen		= sizeof(int),
2219 		.mode		= 0644,
2220 		.proc_handler	= proc_dointvec_minmax,
2221 		.extra1		= &min_read_thresh,
2222 		.extra2		= &max_read_thresh,
2223 	},
2224 	{
2225 		.procname	= "write_wakeup_threshold",
2226 		.data		= &random_write_wakeup_bits,
2227 		.maxlen		= sizeof(int),
2228 		.mode		= 0644,
2229 		.proc_handler	= proc_dointvec_minmax,
2230 		.extra1		= &min_write_thresh,
2231 		.extra2		= &max_write_thresh,
2232 	},
2233 	{
2234 		.procname	= "urandom_min_reseed_secs",
2235 		.data		= &random_min_urandom_seed,
2236 		.maxlen		= sizeof(int),
2237 		.mode		= 0644,
2238 		.proc_handler	= proc_dointvec,
2239 	},
2240 	{
2241 		.procname	= "boot_id",
2242 		.data		= &sysctl_bootid,
2243 		.maxlen		= 16,
2244 		.mode		= 0444,
2245 		.proc_handler	= proc_do_uuid,
2246 	},
2247 	{
2248 		.procname	= "uuid",
2249 		.maxlen		= 16,
2250 		.mode		= 0444,
2251 		.proc_handler	= proc_do_uuid,
2252 	},
2253 #ifdef ADD_INTERRUPT_BENCH
2254 	{
2255 		.procname	= "add_interrupt_avg_cycles",
2256 		.data		= &avg_cycles,
2257 		.maxlen		= sizeof(avg_cycles),
2258 		.mode		= 0444,
2259 		.proc_handler	= proc_doulongvec_minmax,
2260 	},
2261 	{
2262 		.procname	= "add_interrupt_avg_deviation",
2263 		.data		= &avg_deviation,
2264 		.maxlen		= sizeof(avg_deviation),
2265 		.mode		= 0444,
2266 		.proc_handler	= proc_doulongvec_minmax,
2267 	},
2268 #endif
2269 	{ }
2270 };
2271 #endif 	/* CONFIG_SYSCTL */
2272 
2273 struct batched_entropy {
2274 	union {
2275 		u64 entropy_u64[CHACHA20_BLOCK_SIZE / sizeof(u64)];
2276 		u32 entropy_u32[CHACHA20_BLOCK_SIZE / sizeof(u32)];
2277 	};
2278 	unsigned int position;
2279 	spinlock_t batch_lock;
2280 };
2281 
2282 /*
2283  * Get a random word for internal kernel use only. The quality of the random
2284  * number is good as /dev/urandom, but there is no backtrack protection, with
2285  * the goal of being quite fast and not depleting entropy. In order to ensure
2286  * that the randomness provided by this function is okay, the function
2287  * wait_for_random_bytes() should be called and return 0 at least once at any
2288  * point prior.
2289  */
2290 static DEFINE_PER_CPU(struct batched_entropy, batched_entropy_u64) = {
2291 	.batch_lock	= __SPIN_LOCK_UNLOCKED(batched_entropy_u64.lock),
2292 };
2293 
get_random_u64(void)2294 u64 get_random_u64(void)
2295 {
2296 	u64 ret;
2297 	unsigned long flags;
2298 	struct batched_entropy *batch;
2299 	static void *previous;
2300 
2301 	warn_unseeded_randomness(&previous);
2302 
2303 	batch = raw_cpu_ptr(&batched_entropy_u64);
2304 	spin_lock_irqsave(&batch->batch_lock, flags);
2305 	if (batch->position % ARRAY_SIZE(batch->entropy_u64) == 0) {
2306 		extract_crng((u8 *)batch->entropy_u64);
2307 		batch->position = 0;
2308 	}
2309 	ret = batch->entropy_u64[batch->position++];
2310 	spin_unlock_irqrestore(&batch->batch_lock, flags);
2311 	return ret;
2312 }
2313 EXPORT_SYMBOL(get_random_u64);
2314 
2315 static DEFINE_PER_CPU(struct batched_entropy, batched_entropy_u32) = {
2316 	.batch_lock	= __SPIN_LOCK_UNLOCKED(batched_entropy_u32.lock),
2317 };
get_random_u32(void)2318 u32 get_random_u32(void)
2319 {
2320 	u32 ret;
2321 	unsigned long flags;
2322 	struct batched_entropy *batch;
2323 	static void *previous;
2324 
2325 	warn_unseeded_randomness(&previous);
2326 
2327 	batch = raw_cpu_ptr(&batched_entropy_u32);
2328 	spin_lock_irqsave(&batch->batch_lock, flags);
2329 	if (batch->position % ARRAY_SIZE(batch->entropy_u32) == 0) {
2330 		extract_crng((u8 *)batch->entropy_u32);
2331 		batch->position = 0;
2332 	}
2333 	ret = batch->entropy_u32[batch->position++];
2334 	spin_unlock_irqrestore(&batch->batch_lock, flags);
2335 	return ret;
2336 }
2337 EXPORT_SYMBOL(get_random_u32);
2338 
2339 /* It's important to invalidate all potential batched entropy that might
2340  * be stored before the crng is initialized, which we can do lazily by
2341  * simply resetting the counter to zero so that it's re-extracted on the
2342  * next usage. */
invalidate_batched_entropy(void)2343 static void invalidate_batched_entropy(void)
2344 {
2345 	int cpu;
2346 	unsigned long flags;
2347 
2348 	for_each_possible_cpu (cpu) {
2349 		struct batched_entropy *batched_entropy;
2350 
2351 		batched_entropy = per_cpu_ptr(&batched_entropy_u32, cpu);
2352 		spin_lock_irqsave(&batched_entropy->batch_lock, flags);
2353 		batched_entropy->position = 0;
2354 		spin_unlock(&batched_entropy->batch_lock);
2355 
2356 		batched_entropy = per_cpu_ptr(&batched_entropy_u64, cpu);
2357 		spin_lock(&batched_entropy->batch_lock);
2358 		batched_entropy->position = 0;
2359 		spin_unlock_irqrestore(&batched_entropy->batch_lock, flags);
2360 	}
2361 }
2362 
2363 /**
2364  * randomize_page - Generate a random, page aligned address
2365  * @start:	The smallest acceptable address the caller will take.
2366  * @range:	The size of the area, starting at @start, within which the
2367  *		random address must fall.
2368  *
2369  * If @start + @range would overflow, @range is capped.
2370  *
2371  * NOTE: Historical use of randomize_range, which this replaces, presumed that
2372  * @start was already page aligned.  We now align it regardless.
2373  *
2374  * Return: A page aligned address within [start, start + range).  On error,
2375  * @start is returned.
2376  */
2377 unsigned long
randomize_page(unsigned long start,unsigned long range)2378 randomize_page(unsigned long start, unsigned long range)
2379 {
2380 	if (!PAGE_ALIGNED(start)) {
2381 		range -= PAGE_ALIGN(start) - start;
2382 		start = PAGE_ALIGN(start);
2383 	}
2384 
2385 	if (start > ULONG_MAX - range)
2386 		range = ULONG_MAX - start;
2387 
2388 	range >>= PAGE_SHIFT;
2389 
2390 	if (range == 0)
2391 		return start;
2392 
2393 	return start + (get_random_long() % range << PAGE_SHIFT);
2394 }
2395 
2396 /* Interface for in-kernel drivers of true hardware RNGs.
2397  * Those devices may produce endless random bits and will be throttled
2398  * when our pool is full.
2399  */
add_hwgenerator_randomness(const char * buffer,size_t count,size_t entropy)2400 void add_hwgenerator_randomness(const char *buffer, size_t count,
2401 				size_t entropy)
2402 {
2403 	struct entropy_store *poolp = &input_pool;
2404 
2405 	if (unlikely(crng_init == 0)) {
2406 		crng_fast_load(buffer, count);
2407 		return;
2408 	}
2409 
2410 	/* Suspend writing if we're above the trickle threshold.
2411 	 * We'll be woken up again once below random_write_wakeup_thresh,
2412 	 * or when the calling thread is about to terminate.
2413 	 */
2414 	wait_event_interruptible(random_write_wait, kthread_should_stop() ||
2415 			ENTROPY_BITS(&input_pool) <= random_write_wakeup_bits);
2416 	mix_pool_bytes(poolp, buffer, count);
2417 	credit_entropy_bits(poolp, entropy);
2418 }
2419 EXPORT_SYMBOL_GPL(add_hwgenerator_randomness);
2420