• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  *  linux/drivers/clocksource/arm_arch_timer.c
3  *
4  *  Copyright (C) 2011 ARM Ltd.
5  *  All Rights Reserved
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  */
11 
12 #define pr_fmt(fmt)	"arm_arch_timer: " fmt
13 
14 #include <linux/init.h>
15 #include <linux/kernel.h>
16 #include <linux/device.h>
17 #include <linux/smp.h>
18 #include <linux/cpu.h>
19 #include <linux/cpu_pm.h>
20 #include <linux/clockchips.h>
21 #include <linux/clocksource.h>
22 #include <linux/interrupt.h>
23 #include <linux/of_irq.h>
24 #include <linux/of_address.h>
25 #include <linux/io.h>
26 #include <linux/slab.h>
27 #include <linux/sched/clock.h>
28 #include <linux/sched_clock.h>
29 #include <linux/acpi.h>
30 
31 #include <asm/arch_timer.h>
32 #include <asm/virt.h>
33 
34 #include <clocksource/arm_arch_timer.h>
35 
36 #undef pr_fmt
37 #define pr_fmt(fmt) "arch_timer: " fmt
38 
39 #define CNTTIDR		0x08
40 #define CNTTIDR_VIRT(n)	(BIT(1) << ((n) * 4))
41 
42 #define CNTACR(n)	(0x40 + ((n) * 4))
43 #define CNTACR_RPCT	BIT(0)
44 #define CNTACR_RVCT	BIT(1)
45 #define CNTACR_RFRQ	BIT(2)
46 #define CNTACR_RVOFF	BIT(3)
47 #define CNTACR_RWVT	BIT(4)
48 #define CNTACR_RWPT	BIT(5)
49 
50 #define CNTVCT_LO	0x08
51 #define CNTVCT_HI	0x0c
52 #define CNTFRQ		0x10
53 #define CNTP_TVAL	0x28
54 #define CNTP_CTL	0x2c
55 #define CNTV_TVAL	0x38
56 #define CNTV_CTL	0x3c
57 
58 static unsigned arch_timers_present __initdata;
59 
60 static void __iomem *arch_counter_base;
61 
62 struct arch_timer {
63 	void __iomem *base;
64 	struct clock_event_device evt;
65 };
66 
67 #define to_arch_timer(e) container_of(e, struct arch_timer, evt)
68 
69 static u32 arch_timer_rate;
70 static int arch_timer_ppi[ARCH_TIMER_MAX_TIMER_PPI];
71 
72 static struct clock_event_device __percpu *arch_timer_evt;
73 
74 static enum arch_timer_ppi_nr arch_timer_uses_ppi = ARCH_TIMER_VIRT_PPI;
75 static bool arch_timer_c3stop;
76 static bool arch_timer_mem_use_virtual;
77 static bool arch_counter_suspend_stop;
78 static bool vdso_default = true;
79 
80 static cpumask_t evtstrm_available = CPU_MASK_NONE;
81 static bool evtstrm_enable = IS_ENABLED(CONFIG_ARM_ARCH_TIMER_EVTSTREAM);
82 
early_evtstrm_cfg(char * buf)83 static int __init early_evtstrm_cfg(char *buf)
84 {
85 	return strtobool(buf, &evtstrm_enable);
86 }
87 early_param("clocksource.arm_arch_timer.evtstrm", early_evtstrm_cfg);
88 
89 /*
90  * Architected system timer support.
91  */
92 
93 static __always_inline
arch_timer_reg_write(int access,enum arch_timer_reg reg,u32 val,struct clock_event_device * clk)94 void arch_timer_reg_write(int access, enum arch_timer_reg reg, u32 val,
95 			  struct clock_event_device *clk)
96 {
97 	if (access == ARCH_TIMER_MEM_PHYS_ACCESS) {
98 		struct arch_timer *timer = to_arch_timer(clk);
99 		switch (reg) {
100 		case ARCH_TIMER_REG_CTRL:
101 			writel_relaxed(val, timer->base + CNTP_CTL);
102 			break;
103 		case ARCH_TIMER_REG_TVAL:
104 			writel_relaxed(val, timer->base + CNTP_TVAL);
105 			break;
106 		}
107 	} else if (access == ARCH_TIMER_MEM_VIRT_ACCESS) {
108 		struct arch_timer *timer = to_arch_timer(clk);
109 		switch (reg) {
110 		case ARCH_TIMER_REG_CTRL:
111 			writel_relaxed(val, timer->base + CNTV_CTL);
112 			break;
113 		case ARCH_TIMER_REG_TVAL:
114 			writel_relaxed(val, timer->base + CNTV_TVAL);
115 			break;
116 		}
117 	} else {
118 		arch_timer_reg_write_cp15(access, reg, val);
119 	}
120 }
121 
122 static __always_inline
arch_timer_reg_read(int access,enum arch_timer_reg reg,struct clock_event_device * clk)123 u32 arch_timer_reg_read(int access, enum arch_timer_reg reg,
124 			struct clock_event_device *clk)
125 {
126 	u32 val;
127 
128 	if (access == ARCH_TIMER_MEM_PHYS_ACCESS) {
129 		struct arch_timer *timer = to_arch_timer(clk);
130 		switch (reg) {
131 		case ARCH_TIMER_REG_CTRL:
132 			val = readl_relaxed(timer->base + CNTP_CTL);
133 			break;
134 		case ARCH_TIMER_REG_TVAL:
135 			val = readl_relaxed(timer->base + CNTP_TVAL);
136 			break;
137 		}
138 	} else if (access == ARCH_TIMER_MEM_VIRT_ACCESS) {
139 		struct arch_timer *timer = to_arch_timer(clk);
140 		switch (reg) {
141 		case ARCH_TIMER_REG_CTRL:
142 			val = readl_relaxed(timer->base + CNTV_CTL);
143 			break;
144 		case ARCH_TIMER_REG_TVAL:
145 			val = readl_relaxed(timer->base + CNTV_TVAL);
146 			break;
147 		}
148 	} else {
149 		val = arch_timer_reg_read_cp15(access, reg);
150 	}
151 
152 	return val;
153 }
154 
155 /*
156  * Default to cp15 based access because arm64 uses this function for
157  * sched_clock() before DT is probed and the cp15 method is guaranteed
158  * to exist on arm64. arm doesn't use this before DT is probed so even
159  * if we don't have the cp15 accessors we won't have a problem.
160  */
161 u64 (*arch_timer_read_counter)(void) = arch_counter_get_cntvct;
162 EXPORT_SYMBOL_GPL(arch_timer_read_counter);
163 
arch_counter_read(struct clocksource * cs)164 static u64 arch_counter_read(struct clocksource *cs)
165 {
166 	return arch_timer_read_counter();
167 }
168 
arch_counter_read_cc(const struct cyclecounter * cc)169 static u64 arch_counter_read_cc(const struct cyclecounter *cc)
170 {
171 	return arch_timer_read_counter();
172 }
173 
174 static struct clocksource clocksource_counter = {
175 	.name	= "arch_sys_counter",
176 	.rating	= 400,
177 	.read	= arch_counter_read,
178 	.mask	= CLOCKSOURCE_MASK(56),
179 	.flags	= CLOCK_SOURCE_IS_CONTINUOUS,
180 };
181 
182 static struct cyclecounter cyclecounter __ro_after_init = {
183 	.read	= arch_counter_read_cc,
184 	.mask	= CLOCKSOURCE_MASK(56),
185 };
186 
187 struct ate_acpi_oem_info {
188 	char oem_id[ACPI_OEM_ID_SIZE + 1];
189 	char oem_table_id[ACPI_OEM_TABLE_ID_SIZE + 1];
190 	u32 oem_revision;
191 };
192 
193 #ifdef CONFIG_FSL_ERRATUM_A008585
194 /*
195  * The number of retries is an arbitrary value well beyond the highest number
196  * of iterations the loop has been observed to take.
197  */
198 #define __fsl_a008585_read_reg(reg) ({			\
199 	u64 _old, _new;					\
200 	int _retries = 200;				\
201 							\
202 	do {						\
203 		_old = read_sysreg(reg);		\
204 		_new = read_sysreg(reg);		\
205 		_retries--;				\
206 	} while (unlikely(_old != _new) && _retries);	\
207 							\
208 	WARN_ON_ONCE(!_retries);			\
209 	_new;						\
210 })
211 
fsl_a008585_read_cntp_tval_el0(void)212 static u32 notrace fsl_a008585_read_cntp_tval_el0(void)
213 {
214 	return __fsl_a008585_read_reg(cntp_tval_el0);
215 }
216 
fsl_a008585_read_cntv_tval_el0(void)217 static u32 notrace fsl_a008585_read_cntv_tval_el0(void)
218 {
219 	return __fsl_a008585_read_reg(cntv_tval_el0);
220 }
221 
fsl_a008585_read_cntpct_el0(void)222 static u64 notrace fsl_a008585_read_cntpct_el0(void)
223 {
224 	return __fsl_a008585_read_reg(cntpct_el0);
225 }
226 
fsl_a008585_read_cntvct_el0(void)227 static u64 notrace fsl_a008585_read_cntvct_el0(void)
228 {
229 	return __fsl_a008585_read_reg(cntvct_el0);
230 }
231 #endif
232 
233 #ifdef CONFIG_HISILICON_ERRATUM_161010101
234 /*
235  * Verify whether the value of the second read is larger than the first by
236  * less than 32 is the only way to confirm the value is correct, so clear the
237  * lower 5 bits to check whether the difference is greater than 32 or not.
238  * Theoretically the erratum should not occur more than twice in succession
239  * when reading the system counter, but it is possible that some interrupts
240  * may lead to more than twice read errors, triggering the warning, so setting
241  * the number of retries far beyond the number of iterations the loop has been
242  * observed to take.
243  */
244 #define __hisi_161010101_read_reg(reg) ({				\
245 	u64 _old, _new;						\
246 	int _retries = 50;					\
247 								\
248 	do {							\
249 		_old = read_sysreg(reg);			\
250 		_new = read_sysreg(reg);			\
251 		_retries--;					\
252 	} while (unlikely((_new - _old) >> 5) && _retries);	\
253 								\
254 	WARN_ON_ONCE(!_retries);				\
255 	_new;							\
256 })
257 
hisi_161010101_read_cntp_tval_el0(void)258 static u32 notrace hisi_161010101_read_cntp_tval_el0(void)
259 {
260 	return __hisi_161010101_read_reg(cntp_tval_el0);
261 }
262 
hisi_161010101_read_cntv_tval_el0(void)263 static u32 notrace hisi_161010101_read_cntv_tval_el0(void)
264 {
265 	return __hisi_161010101_read_reg(cntv_tval_el0);
266 }
267 
hisi_161010101_read_cntpct_el0(void)268 static u64 notrace hisi_161010101_read_cntpct_el0(void)
269 {
270 	return __hisi_161010101_read_reg(cntpct_el0);
271 }
272 
hisi_161010101_read_cntvct_el0(void)273 static u64 notrace hisi_161010101_read_cntvct_el0(void)
274 {
275 	return __hisi_161010101_read_reg(cntvct_el0);
276 }
277 
278 static struct ate_acpi_oem_info hisi_161010101_oem_info[] = {
279 	/*
280 	 * Note that trailing spaces are required to properly match
281 	 * the OEM table information.
282 	 */
283 	{
284 		.oem_id		= "HISI  ",
285 		.oem_table_id	= "HIP05   ",
286 		.oem_revision	= 0,
287 	},
288 	{
289 		.oem_id		= "HISI  ",
290 		.oem_table_id	= "HIP06   ",
291 		.oem_revision	= 0,
292 	},
293 	{
294 		.oem_id		= "HISI  ",
295 		.oem_table_id	= "HIP07   ",
296 		.oem_revision	= 0,
297 	},
298 	{ /* Sentinel indicating the end of the OEM array */ },
299 };
300 #endif
301 
302 #ifdef CONFIG_ARM64_ERRATUM_858921
arm64_858921_read_cntpct_el0(void)303 static u64 notrace arm64_858921_read_cntpct_el0(void)
304 {
305 	u64 old, new;
306 
307 	old = read_sysreg(cntpct_el0);
308 	new = read_sysreg(cntpct_el0);
309 	return (((old ^ new) >> 32) & 1) ? old : new;
310 }
311 
arm64_858921_read_cntvct_el0(void)312 static u64 notrace arm64_858921_read_cntvct_el0(void)
313 {
314 	u64 old, new;
315 
316 	old = read_sysreg(cntvct_el0);
317 	new = read_sysreg(cntvct_el0);
318 	return (((old ^ new) >> 32) & 1) ? old : new;
319 }
320 #endif
321 
322 #ifdef CONFIG_SUN50I_ERRATUM_UNKNOWN1
323 /*
324  * The low bits of the counter registers are indeterminate while bit 10 or
325  * greater is rolling over. Since the counter value can jump both backward
326  * (7ff -> 000 -> 800) and forward (7ff -> fff -> 800), ignore register values
327  * with all ones or all zeros in the low bits. Bound the loop by the maximum
328  * number of CPU cycles in 3 consecutive 24 MHz counter periods.
329  */
330 #define __sun50i_a64_read_reg(reg) ({					\
331 	u64 _val;							\
332 	int _retries = 150;						\
333 									\
334 	do {								\
335 		_val = read_sysreg(reg);				\
336 		_retries--;						\
337 	} while (((_val + 1) & GENMASK(9, 0)) <= 1 && _retries);	\
338 									\
339 	WARN_ON_ONCE(!_retries);					\
340 	_val;								\
341 })
342 
sun50i_a64_read_cntpct_el0(void)343 static u64 notrace sun50i_a64_read_cntpct_el0(void)
344 {
345 	return __sun50i_a64_read_reg(cntpct_el0);
346 }
347 
sun50i_a64_read_cntvct_el0(void)348 static u64 notrace sun50i_a64_read_cntvct_el0(void)
349 {
350 	return __sun50i_a64_read_reg(cntvct_el0);
351 }
352 
sun50i_a64_read_cntp_tval_el0(void)353 static u32 notrace sun50i_a64_read_cntp_tval_el0(void)
354 {
355 	return read_sysreg(cntp_cval_el0) - sun50i_a64_read_cntpct_el0();
356 }
357 
sun50i_a64_read_cntv_tval_el0(void)358 static u32 notrace sun50i_a64_read_cntv_tval_el0(void)
359 {
360 	return read_sysreg(cntv_cval_el0) - sun50i_a64_read_cntvct_el0();
361 }
362 #endif
363 
364 #ifdef CONFIG_ARM_ARCH_TIMER_OOL_WORKAROUND
365 DEFINE_PER_CPU(const struct arch_timer_erratum_workaround *, timer_unstable_counter_workaround);
366 EXPORT_SYMBOL_GPL(timer_unstable_counter_workaround);
367 
368 DEFINE_STATIC_KEY_FALSE(arch_timer_read_ool_enabled);
369 EXPORT_SYMBOL_GPL(arch_timer_read_ool_enabled);
370 
erratum_set_next_event_tval_generic(const int access,unsigned long evt,struct clock_event_device * clk)371 static void erratum_set_next_event_tval_generic(const int access, unsigned long evt,
372 						struct clock_event_device *clk)
373 {
374 	unsigned long ctrl;
375 	u64 cval;
376 
377 	ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, clk);
378 	ctrl |= ARCH_TIMER_CTRL_ENABLE;
379 	ctrl &= ~ARCH_TIMER_CTRL_IT_MASK;
380 
381 	if (access == ARCH_TIMER_PHYS_ACCESS) {
382 		cval = evt + arch_counter_get_cntpct();
383 		write_sysreg(cval, cntp_cval_el0);
384 	} else {
385 		cval = evt + arch_counter_get_cntvct();
386 		write_sysreg(cval, cntv_cval_el0);
387 	}
388 
389 	arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, clk);
390 }
391 
erratum_set_next_event_tval_virt(unsigned long evt,struct clock_event_device * clk)392 static __maybe_unused int erratum_set_next_event_tval_virt(unsigned long evt,
393 					    struct clock_event_device *clk)
394 {
395 	erratum_set_next_event_tval_generic(ARCH_TIMER_VIRT_ACCESS, evt, clk);
396 	return 0;
397 }
398 
erratum_set_next_event_tval_phys(unsigned long evt,struct clock_event_device * clk)399 static __maybe_unused int erratum_set_next_event_tval_phys(unsigned long evt,
400 					    struct clock_event_device *clk)
401 {
402 	erratum_set_next_event_tval_generic(ARCH_TIMER_PHYS_ACCESS, evt, clk);
403 	return 0;
404 }
405 
406 static const struct arch_timer_erratum_workaround ool_workarounds[] = {
407 #ifdef CONFIG_FSL_ERRATUM_A008585
408 	{
409 		.match_type = ate_match_dt,
410 		.id = "fsl,erratum-a008585",
411 		.desc = "Freescale erratum a005858",
412 		.read_cntp_tval_el0 = fsl_a008585_read_cntp_tval_el0,
413 		.read_cntv_tval_el0 = fsl_a008585_read_cntv_tval_el0,
414 		.read_cntpct_el0 = fsl_a008585_read_cntpct_el0,
415 		.read_cntvct_el0 = fsl_a008585_read_cntvct_el0,
416 		.set_next_event_phys = erratum_set_next_event_tval_phys,
417 		.set_next_event_virt = erratum_set_next_event_tval_virt,
418 	},
419 #endif
420 #ifdef CONFIG_HISILICON_ERRATUM_161010101
421 	{
422 		.match_type = ate_match_dt,
423 		.id = "hisilicon,erratum-161010101",
424 		.desc = "HiSilicon erratum 161010101",
425 		.read_cntp_tval_el0 = hisi_161010101_read_cntp_tval_el0,
426 		.read_cntv_tval_el0 = hisi_161010101_read_cntv_tval_el0,
427 		.read_cntpct_el0 = hisi_161010101_read_cntpct_el0,
428 		.read_cntvct_el0 = hisi_161010101_read_cntvct_el0,
429 		.set_next_event_phys = erratum_set_next_event_tval_phys,
430 		.set_next_event_virt = erratum_set_next_event_tval_virt,
431 	},
432 	{
433 		.match_type = ate_match_acpi_oem_info,
434 		.id = hisi_161010101_oem_info,
435 		.desc = "HiSilicon erratum 161010101",
436 		.read_cntp_tval_el0 = hisi_161010101_read_cntp_tval_el0,
437 		.read_cntv_tval_el0 = hisi_161010101_read_cntv_tval_el0,
438 		.read_cntpct_el0 = hisi_161010101_read_cntpct_el0,
439 		.read_cntvct_el0 = hisi_161010101_read_cntvct_el0,
440 		.set_next_event_phys = erratum_set_next_event_tval_phys,
441 		.set_next_event_virt = erratum_set_next_event_tval_virt,
442 	},
443 #endif
444 #ifdef CONFIG_ARM64_ERRATUM_858921
445 	{
446 		.match_type = ate_match_local_cap_id,
447 		.id = (void *)ARM64_WORKAROUND_858921,
448 		.desc = "ARM erratum 858921",
449 		.read_cntpct_el0 = arm64_858921_read_cntpct_el0,
450 		.read_cntvct_el0 = arm64_858921_read_cntvct_el0,
451 	},
452 #endif
453 #ifdef CONFIG_SUN50I_ERRATUM_UNKNOWN1
454 	{
455 		.match_type = ate_match_dt,
456 		.id = "allwinner,erratum-unknown1",
457 		.desc = "Allwinner erratum UNKNOWN1",
458 		.read_cntp_tval_el0 = sun50i_a64_read_cntp_tval_el0,
459 		.read_cntv_tval_el0 = sun50i_a64_read_cntv_tval_el0,
460 		.read_cntpct_el0 = sun50i_a64_read_cntpct_el0,
461 		.read_cntvct_el0 = sun50i_a64_read_cntvct_el0,
462 		.set_next_event_phys = erratum_set_next_event_tval_phys,
463 		.set_next_event_virt = erratum_set_next_event_tval_virt,
464 	},
465 #endif
466 };
467 
468 typedef bool (*ate_match_fn_t)(const struct arch_timer_erratum_workaround *,
469 			       const void *);
470 
471 static
arch_timer_check_dt_erratum(const struct arch_timer_erratum_workaround * wa,const void * arg)472 bool arch_timer_check_dt_erratum(const struct arch_timer_erratum_workaround *wa,
473 				 const void *arg)
474 {
475 	const struct device_node *np = arg;
476 
477 	return of_property_read_bool(np, wa->id);
478 }
479 
480 static
arch_timer_check_local_cap_erratum(const struct arch_timer_erratum_workaround * wa,const void * arg)481 bool arch_timer_check_local_cap_erratum(const struct arch_timer_erratum_workaround *wa,
482 					const void *arg)
483 {
484 	return this_cpu_has_cap((uintptr_t)wa->id);
485 }
486 
487 
488 static
arch_timer_check_acpi_oem_erratum(const struct arch_timer_erratum_workaround * wa,const void * arg)489 bool arch_timer_check_acpi_oem_erratum(const struct arch_timer_erratum_workaround *wa,
490 				       const void *arg)
491 {
492 	static const struct ate_acpi_oem_info empty_oem_info = {};
493 	const struct ate_acpi_oem_info *info = wa->id;
494 	const struct acpi_table_header *table = arg;
495 
496 	/* Iterate over the ACPI OEM info array, looking for a match */
497 	while (memcmp(info, &empty_oem_info, sizeof(*info))) {
498 		if (!memcmp(info->oem_id, table->oem_id, ACPI_OEM_ID_SIZE) &&
499 		    !memcmp(info->oem_table_id, table->oem_table_id, ACPI_OEM_TABLE_ID_SIZE) &&
500 		    info->oem_revision == table->oem_revision)
501 			return true;
502 
503 		info++;
504 	}
505 
506 	return false;
507 }
508 
509 static const struct arch_timer_erratum_workaround *
arch_timer_iterate_errata(enum arch_timer_erratum_match_type type,ate_match_fn_t match_fn,void * arg)510 arch_timer_iterate_errata(enum arch_timer_erratum_match_type type,
511 			  ate_match_fn_t match_fn,
512 			  void *arg)
513 {
514 	int i;
515 
516 	for (i = 0; i < ARRAY_SIZE(ool_workarounds); i++) {
517 		if (ool_workarounds[i].match_type != type)
518 			continue;
519 
520 		if (match_fn(&ool_workarounds[i], arg))
521 			return &ool_workarounds[i];
522 	}
523 
524 	return NULL;
525 }
526 
527 static
arch_timer_enable_workaround(const struct arch_timer_erratum_workaround * wa,bool local)528 void arch_timer_enable_workaround(const struct arch_timer_erratum_workaround *wa,
529 				  bool local)
530 {
531 	int i;
532 
533 	if (local) {
534 		__this_cpu_write(timer_unstable_counter_workaround, wa);
535 	} else {
536 		for_each_possible_cpu(i)
537 			per_cpu(timer_unstable_counter_workaround, i) = wa;
538 	}
539 
540 	/*
541 	 * Use the locked version, as we're called from the CPU
542 	 * hotplug framework. Otherwise, we end-up in deadlock-land.
543 	 */
544 	static_branch_enable_cpuslocked(&arch_timer_read_ool_enabled);
545 
546 	/*
547 	 * Don't use the vdso fastpath if errata require using the
548 	 * out-of-line counter accessor. We may change our mind pretty
549 	 * late in the game (with a per-CPU erratum, for example), so
550 	 * change both the default value and the vdso itself.
551 	 */
552 	if (wa->read_cntvct_el0) {
553 		clocksource_counter.archdata.vdso_direct = false;
554 		vdso_default = false;
555 	}
556 }
557 
arch_timer_check_ool_workaround(enum arch_timer_erratum_match_type type,void * arg)558 static void arch_timer_check_ool_workaround(enum arch_timer_erratum_match_type type,
559 					    void *arg)
560 {
561 	const struct arch_timer_erratum_workaround *wa;
562 	ate_match_fn_t match_fn = NULL;
563 	bool local = false;
564 
565 	switch (type) {
566 	case ate_match_dt:
567 		match_fn = arch_timer_check_dt_erratum;
568 		break;
569 	case ate_match_local_cap_id:
570 		match_fn = arch_timer_check_local_cap_erratum;
571 		local = true;
572 		break;
573 	case ate_match_acpi_oem_info:
574 		match_fn = arch_timer_check_acpi_oem_erratum;
575 		break;
576 	default:
577 		WARN_ON(1);
578 		return;
579 	}
580 
581 	wa = arch_timer_iterate_errata(type, match_fn, arg);
582 	if (!wa)
583 		return;
584 
585 	if (needs_unstable_timer_counter_workaround()) {
586 		const struct arch_timer_erratum_workaround *__wa;
587 		__wa = __this_cpu_read(timer_unstable_counter_workaround);
588 		if (__wa && wa != __wa)
589 			pr_warn("Can't enable workaround for %s (clashes with %s\n)",
590 				wa->desc, __wa->desc);
591 
592 		if (__wa)
593 			return;
594 	}
595 
596 	arch_timer_enable_workaround(wa, local);
597 	pr_info("Enabling %s workaround for %s\n",
598 		local ? "local" : "global", wa->desc);
599 }
600 
601 #define erratum_handler(fn, r, ...)					\
602 ({									\
603 	bool __val;							\
604 	if (needs_unstable_timer_counter_workaround()) {		\
605 		const struct arch_timer_erratum_workaround *__wa;	\
606 		__wa = __this_cpu_read(timer_unstable_counter_workaround); \
607 		if (__wa && __wa->fn) {					\
608 			r = __wa->fn(__VA_ARGS__);			\
609 			__val = true;					\
610 		} else {						\
611 			__val = false;					\
612 		}							\
613 	} else {							\
614 		__val = false;						\
615 	}								\
616 	__val;								\
617 })
618 
arch_timer_this_cpu_has_cntvct_wa(void)619 static bool arch_timer_this_cpu_has_cntvct_wa(void)
620 {
621 	const struct arch_timer_erratum_workaround *wa;
622 
623 	wa = __this_cpu_read(timer_unstable_counter_workaround);
624 	return wa && wa->read_cntvct_el0;
625 }
626 #else
627 #define arch_timer_check_ool_workaround(t,a)		do { } while(0)
628 #define erratum_set_next_event_tval_virt(...)		({BUG(); 0;})
629 #define erratum_set_next_event_tval_phys(...)		({BUG(); 0;})
630 #define erratum_handler(fn, r, ...)			({false;})
631 #define arch_timer_this_cpu_has_cntvct_wa()		({false;})
632 #endif /* CONFIG_ARM_ARCH_TIMER_OOL_WORKAROUND */
633 
timer_handler(const int access,struct clock_event_device * evt)634 static __always_inline irqreturn_t timer_handler(const int access,
635 					struct clock_event_device *evt)
636 {
637 	unsigned long ctrl;
638 
639 	ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, evt);
640 	if (ctrl & ARCH_TIMER_CTRL_IT_STAT) {
641 		ctrl |= ARCH_TIMER_CTRL_IT_MASK;
642 		arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, evt);
643 		evt->event_handler(evt);
644 		return IRQ_HANDLED;
645 	}
646 
647 	return IRQ_NONE;
648 }
649 
arch_timer_handler_virt(int irq,void * dev_id)650 static irqreturn_t arch_timer_handler_virt(int irq, void *dev_id)
651 {
652 	struct clock_event_device *evt = dev_id;
653 
654 	return timer_handler(ARCH_TIMER_VIRT_ACCESS, evt);
655 }
656 
arch_timer_handler_phys(int irq,void * dev_id)657 static irqreturn_t arch_timer_handler_phys(int irq, void *dev_id)
658 {
659 	struct clock_event_device *evt = dev_id;
660 
661 	return timer_handler(ARCH_TIMER_PHYS_ACCESS, evt);
662 }
663 
arch_timer_handler_phys_mem(int irq,void * dev_id)664 static irqreturn_t arch_timer_handler_phys_mem(int irq, void *dev_id)
665 {
666 	struct clock_event_device *evt = dev_id;
667 
668 	return timer_handler(ARCH_TIMER_MEM_PHYS_ACCESS, evt);
669 }
670 
arch_timer_handler_virt_mem(int irq,void * dev_id)671 static irqreturn_t arch_timer_handler_virt_mem(int irq, void *dev_id)
672 {
673 	struct clock_event_device *evt = dev_id;
674 
675 	return timer_handler(ARCH_TIMER_MEM_VIRT_ACCESS, evt);
676 }
677 
timer_shutdown(const int access,struct clock_event_device * clk)678 static __always_inline int timer_shutdown(const int access,
679 					  struct clock_event_device *clk)
680 {
681 	unsigned long ctrl;
682 
683 	ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, clk);
684 	ctrl &= ~ARCH_TIMER_CTRL_ENABLE;
685 	arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, clk);
686 
687 	return 0;
688 }
689 
arch_timer_shutdown_virt(struct clock_event_device * clk)690 static int arch_timer_shutdown_virt(struct clock_event_device *clk)
691 {
692 	return timer_shutdown(ARCH_TIMER_VIRT_ACCESS, clk);
693 }
694 
arch_timer_shutdown_phys(struct clock_event_device * clk)695 static int arch_timer_shutdown_phys(struct clock_event_device *clk)
696 {
697 	return timer_shutdown(ARCH_TIMER_PHYS_ACCESS, clk);
698 }
699 
arch_timer_shutdown_virt_mem(struct clock_event_device * clk)700 static int arch_timer_shutdown_virt_mem(struct clock_event_device *clk)
701 {
702 	return timer_shutdown(ARCH_TIMER_MEM_VIRT_ACCESS, clk);
703 }
704 
arch_timer_shutdown_phys_mem(struct clock_event_device * clk)705 static int arch_timer_shutdown_phys_mem(struct clock_event_device *clk)
706 {
707 	return timer_shutdown(ARCH_TIMER_MEM_PHYS_ACCESS, clk);
708 }
709 
set_next_event(const int access,unsigned long evt,struct clock_event_device * clk)710 static __always_inline void set_next_event(const int access, unsigned long evt,
711 					   struct clock_event_device *clk)
712 {
713 	unsigned long ctrl;
714 	ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, clk);
715 	ctrl |= ARCH_TIMER_CTRL_ENABLE;
716 	ctrl &= ~ARCH_TIMER_CTRL_IT_MASK;
717 	arch_timer_reg_write(access, ARCH_TIMER_REG_TVAL, evt, clk);
718 	arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, clk);
719 }
720 
arch_timer_set_next_event_virt(unsigned long evt,struct clock_event_device * clk)721 static int arch_timer_set_next_event_virt(unsigned long evt,
722 					  struct clock_event_device *clk)
723 {
724 	int ret;
725 
726 	if (erratum_handler(set_next_event_virt, ret, evt, clk))
727 		return ret;
728 
729 	set_next_event(ARCH_TIMER_VIRT_ACCESS, evt, clk);
730 	return 0;
731 }
732 
arch_timer_set_next_event_phys(unsigned long evt,struct clock_event_device * clk)733 static int arch_timer_set_next_event_phys(unsigned long evt,
734 					  struct clock_event_device *clk)
735 {
736 	int ret;
737 
738 	if (erratum_handler(set_next_event_phys, ret, evt, clk))
739 		return ret;
740 
741 	set_next_event(ARCH_TIMER_PHYS_ACCESS, evt, clk);
742 	return 0;
743 }
744 
arch_timer_set_next_event_virt_mem(unsigned long evt,struct clock_event_device * clk)745 static int arch_timer_set_next_event_virt_mem(unsigned long evt,
746 					      struct clock_event_device *clk)
747 {
748 	set_next_event(ARCH_TIMER_MEM_VIRT_ACCESS, evt, clk);
749 	return 0;
750 }
751 
arch_timer_set_next_event_phys_mem(unsigned long evt,struct clock_event_device * clk)752 static int arch_timer_set_next_event_phys_mem(unsigned long evt,
753 					      struct clock_event_device *clk)
754 {
755 	set_next_event(ARCH_TIMER_MEM_PHYS_ACCESS, evt, clk);
756 	return 0;
757 }
758 
__arch_timer_setup(unsigned type,struct clock_event_device * clk)759 static void __arch_timer_setup(unsigned type,
760 			       struct clock_event_device *clk)
761 {
762 	clk->features = CLOCK_EVT_FEAT_ONESHOT;
763 
764 	if (type == ARCH_TIMER_TYPE_CP15) {
765 		if (arch_timer_c3stop)
766 			clk->features |= CLOCK_EVT_FEAT_C3STOP;
767 		clk->name = "arch_sys_timer";
768 		clk->rating = 450;
769 		clk->cpumask = cpumask_of(smp_processor_id());
770 		clk->irq = arch_timer_ppi[arch_timer_uses_ppi];
771 		switch (arch_timer_uses_ppi) {
772 		case ARCH_TIMER_VIRT_PPI:
773 			clk->set_state_shutdown = arch_timer_shutdown_virt;
774 			clk->set_state_oneshot_stopped = arch_timer_shutdown_virt;
775 			clk->set_next_event = arch_timer_set_next_event_virt;
776 			break;
777 		case ARCH_TIMER_PHYS_SECURE_PPI:
778 		case ARCH_TIMER_PHYS_NONSECURE_PPI:
779 		case ARCH_TIMER_HYP_PPI:
780 			clk->set_state_shutdown = arch_timer_shutdown_phys;
781 			clk->set_state_oneshot_stopped = arch_timer_shutdown_phys;
782 			clk->set_next_event = arch_timer_set_next_event_phys;
783 			break;
784 		default:
785 			BUG();
786 		}
787 
788 		arch_timer_check_ool_workaround(ate_match_local_cap_id, NULL);
789 	} else {
790 		clk->features |= CLOCK_EVT_FEAT_DYNIRQ;
791 		clk->name = "arch_mem_timer";
792 		clk->rating = 400;
793 		clk->cpumask = cpu_possible_mask;
794 		if (arch_timer_mem_use_virtual) {
795 			clk->set_state_shutdown = arch_timer_shutdown_virt_mem;
796 			clk->set_state_oneshot_stopped = arch_timer_shutdown_virt_mem;
797 			clk->set_next_event =
798 				arch_timer_set_next_event_virt_mem;
799 		} else {
800 			clk->set_state_shutdown = arch_timer_shutdown_phys_mem;
801 			clk->set_state_oneshot_stopped = arch_timer_shutdown_phys_mem;
802 			clk->set_next_event =
803 				arch_timer_set_next_event_phys_mem;
804 		}
805 	}
806 
807 	clk->set_state_shutdown(clk);
808 
809 	clockevents_config_and_register(clk, arch_timer_rate, 0xf, 0x7fffffff);
810 }
811 
arch_timer_evtstrm_enable(int divider)812 static void arch_timer_evtstrm_enable(int divider)
813 {
814 	u32 cntkctl = arch_timer_get_cntkctl();
815 
816 	cntkctl &= ~ARCH_TIMER_EVT_TRIGGER_MASK;
817 	/* Set the divider and enable virtual event stream */
818 	cntkctl |= (divider << ARCH_TIMER_EVT_TRIGGER_SHIFT)
819 			| ARCH_TIMER_VIRT_EVT_EN;
820 	arch_timer_set_cntkctl(cntkctl);
821 	elf_hwcap |= HWCAP_EVTSTRM;
822 #ifdef CONFIG_COMPAT
823 	compat_elf_hwcap |= COMPAT_HWCAP_EVTSTRM;
824 #endif
825 	cpumask_set_cpu(smp_processor_id(), &evtstrm_available);
826 }
827 
arch_timer_configure_evtstream(void)828 static void arch_timer_configure_evtstream(void)
829 {
830 	int evt_stream_div, pos;
831 
832 	/* Find the closest power of two to the divisor */
833 	evt_stream_div = arch_timer_rate / ARCH_TIMER_EVT_STREAM_FREQ;
834 	pos = fls(evt_stream_div);
835 	if (pos > 1 && !(evt_stream_div & (1 << (pos - 2))))
836 		pos--;
837 	/* enable event stream */
838 	arch_timer_evtstrm_enable(min(pos, 15));
839 }
840 
arch_counter_set_user_access(void)841 static void arch_counter_set_user_access(void)
842 {
843 	u32 cntkctl = arch_timer_get_cntkctl();
844 
845 	/* Disable user access to the timers and both counters */
846 	/* Also disable virtual event stream */
847 	cntkctl &= ~(ARCH_TIMER_USR_PT_ACCESS_EN
848 			| ARCH_TIMER_USR_VT_ACCESS_EN
849 		        | ARCH_TIMER_USR_VCT_ACCESS_EN
850 			| ARCH_TIMER_VIRT_EVT_EN
851 			| ARCH_TIMER_USR_PCT_ACCESS_EN);
852 
853 	/*
854 	 * Enable user access to the virtual counter if it doesn't
855 	 * need to be workaround. The vdso may have been already
856 	 * disabled though.
857 	 */
858 	if (arch_timer_this_cpu_has_cntvct_wa())
859 		pr_info("CPU%d: Trapping CNTVCT access\n", smp_processor_id());
860 	else
861 		cntkctl |= ARCH_TIMER_USR_VCT_ACCESS_EN;
862 
863 	arch_timer_set_cntkctl(cntkctl);
864 }
865 
arch_timer_has_nonsecure_ppi(void)866 static bool arch_timer_has_nonsecure_ppi(void)
867 {
868 	return (arch_timer_uses_ppi == ARCH_TIMER_PHYS_SECURE_PPI &&
869 		arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI]);
870 }
871 
check_ppi_trigger(int irq)872 static u32 check_ppi_trigger(int irq)
873 {
874 	u32 flags = irq_get_trigger_type(irq);
875 
876 	if (flags != IRQF_TRIGGER_HIGH && flags != IRQF_TRIGGER_LOW) {
877 		pr_warn("WARNING: Invalid trigger for IRQ%d, assuming level low\n", irq);
878 		pr_warn("WARNING: Please fix your firmware\n");
879 		flags = IRQF_TRIGGER_LOW;
880 	}
881 
882 	return flags;
883 }
884 
arch_timer_starting_cpu(unsigned int cpu)885 static int arch_timer_starting_cpu(unsigned int cpu)
886 {
887 	struct clock_event_device *clk = this_cpu_ptr(arch_timer_evt);
888 	u32 flags;
889 
890 	__arch_timer_setup(ARCH_TIMER_TYPE_CP15, clk);
891 
892 	flags = check_ppi_trigger(arch_timer_ppi[arch_timer_uses_ppi]);
893 	enable_percpu_irq(arch_timer_ppi[arch_timer_uses_ppi], flags);
894 
895 	if (arch_timer_has_nonsecure_ppi()) {
896 		flags = check_ppi_trigger(arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI]);
897 		enable_percpu_irq(arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI],
898 				  flags);
899 	}
900 
901 	arch_counter_set_user_access();
902 	if (evtstrm_enable)
903 		arch_timer_configure_evtstream();
904 
905 	return 0;
906 }
907 
908 /*
909  * For historical reasons, when probing with DT we use whichever (non-zero)
910  * rate was probed first, and don't verify that others match. If the first node
911  * probed has a clock-frequency property, this overrides the HW register.
912  */
arch_timer_of_configure_rate(u32 rate,struct device_node * np)913 static void arch_timer_of_configure_rate(u32 rate, struct device_node *np)
914 {
915 	/* Who has more than one independent system counter? */
916 	if (arch_timer_rate)
917 		return;
918 
919 	if (of_property_read_u32(np, "clock-frequency", &arch_timer_rate))
920 		arch_timer_rate = rate;
921 
922 	/* Check the timer frequency. */
923 	if (arch_timer_rate == 0)
924 		pr_warn("frequency not available\n");
925 }
926 
arch_timer_banner(unsigned type)927 static void arch_timer_banner(unsigned type)
928 {
929 	pr_info("%s%s%s timer(s) running at %lu.%02luMHz (%s%s%s).\n",
930 		type & ARCH_TIMER_TYPE_CP15 ? "cp15" : "",
931 		type == (ARCH_TIMER_TYPE_CP15 | ARCH_TIMER_TYPE_MEM) ?
932 			" and " : "",
933 		type & ARCH_TIMER_TYPE_MEM ? "mmio" : "",
934 		(unsigned long)arch_timer_rate / 1000000,
935 		(unsigned long)(arch_timer_rate / 10000) % 100,
936 		type & ARCH_TIMER_TYPE_CP15 ?
937 			(arch_timer_uses_ppi == ARCH_TIMER_VIRT_PPI) ? "virt" : "phys" :
938 			"",
939 		type == (ARCH_TIMER_TYPE_CP15 | ARCH_TIMER_TYPE_MEM) ? "/" : "",
940 		type & ARCH_TIMER_TYPE_MEM ?
941 			arch_timer_mem_use_virtual ? "virt" : "phys" :
942 			"");
943 }
944 
arch_timer_get_rate(void)945 u32 arch_timer_get_rate(void)
946 {
947 	return arch_timer_rate;
948 }
949 
arch_timer_evtstrm_available(void)950 bool arch_timer_evtstrm_available(void)
951 {
952 	/*
953 	 * We might get called from a preemptible context. This is fine
954 	 * because availability of the event stream should be always the same
955 	 * for a preemptible context and context where we might resume a task.
956 	 */
957 	return cpumask_test_cpu(raw_smp_processor_id(), &evtstrm_available);
958 }
959 
arch_counter_get_cntvct_mem(void)960 static u64 arch_counter_get_cntvct_mem(void)
961 {
962 	u32 vct_lo, vct_hi, tmp_hi;
963 
964 	do {
965 		vct_hi = readl_relaxed(arch_counter_base + CNTVCT_HI);
966 		vct_lo = readl_relaxed(arch_counter_base + CNTVCT_LO);
967 		tmp_hi = readl_relaxed(arch_counter_base + CNTVCT_HI);
968 	} while (vct_hi != tmp_hi);
969 
970 	return ((u64) vct_hi << 32) | vct_lo;
971 }
972 
973 static struct arch_timer_kvm_info arch_timer_kvm_info;
974 
arch_timer_get_kvm_info(void)975 struct arch_timer_kvm_info *arch_timer_get_kvm_info(void)
976 {
977 	return &arch_timer_kvm_info;
978 }
979 
arch_counter_register(unsigned type)980 static void __init arch_counter_register(unsigned type)
981 {
982 	u64 start_count;
983 
984 	/* Register the CP15 based counter if we have one */
985 	if (type & ARCH_TIMER_TYPE_CP15) {
986 		if ((IS_ENABLED(CONFIG_ARM64) && !is_hyp_mode_available()) ||
987 		    arch_timer_uses_ppi == ARCH_TIMER_VIRT_PPI)
988 			arch_timer_read_counter = arch_counter_get_cntvct;
989 		else
990 			arch_timer_read_counter = arch_counter_get_cntpct;
991 
992 		clocksource_counter.archdata.vdso_direct = vdso_default;
993 	} else {
994 		arch_timer_read_counter = arch_counter_get_cntvct_mem;
995 	}
996 
997 	if (!arch_counter_suspend_stop)
998 		clocksource_counter.flags |= CLOCK_SOURCE_SUSPEND_NONSTOP;
999 	start_count = arch_timer_read_counter();
1000 	clocksource_register_hz(&clocksource_counter, arch_timer_rate);
1001 	cyclecounter.mult = clocksource_counter.mult;
1002 	cyclecounter.shift = clocksource_counter.shift;
1003 	timecounter_init(&arch_timer_kvm_info.timecounter,
1004 			 &cyclecounter, start_count);
1005 
1006 	/* 56 bits minimum, so we assume worst case rollover */
1007 	sched_clock_register(arch_timer_read_counter, 56, arch_timer_rate);
1008 }
1009 
arch_timer_stop(struct clock_event_device * clk)1010 static void arch_timer_stop(struct clock_event_device *clk)
1011 {
1012 	pr_debug("disable IRQ%d cpu #%d\n", clk->irq, smp_processor_id());
1013 
1014 	disable_percpu_irq(arch_timer_ppi[arch_timer_uses_ppi]);
1015 	if (arch_timer_has_nonsecure_ppi())
1016 		disable_percpu_irq(arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI]);
1017 
1018 	clk->set_state_shutdown(clk);
1019 }
1020 
arch_timer_dying_cpu(unsigned int cpu)1021 static int arch_timer_dying_cpu(unsigned int cpu)
1022 {
1023 	struct clock_event_device *clk = this_cpu_ptr(arch_timer_evt);
1024 
1025 	cpumask_clear_cpu(smp_processor_id(), &evtstrm_available);
1026 
1027 	arch_timer_stop(clk);
1028 	return 0;
1029 }
1030 
1031 #ifdef CONFIG_CPU_PM
1032 static DEFINE_PER_CPU(unsigned long, saved_cntkctl);
arch_timer_cpu_pm_notify(struct notifier_block * self,unsigned long action,void * hcpu)1033 static int arch_timer_cpu_pm_notify(struct notifier_block *self,
1034 				    unsigned long action, void *hcpu)
1035 {
1036 	if (action == CPU_PM_ENTER) {
1037 		__this_cpu_write(saved_cntkctl, arch_timer_get_cntkctl());
1038 
1039 		cpumask_clear_cpu(smp_processor_id(), &evtstrm_available);
1040 	} else if (action == CPU_PM_ENTER_FAILED || action == CPU_PM_EXIT) {
1041 		arch_timer_set_cntkctl(__this_cpu_read(saved_cntkctl));
1042 
1043 		if (elf_hwcap & HWCAP_EVTSTRM)
1044 			cpumask_set_cpu(smp_processor_id(), &evtstrm_available);
1045 	}
1046 	return NOTIFY_OK;
1047 }
1048 
1049 static struct notifier_block arch_timer_cpu_pm_notifier = {
1050 	.notifier_call = arch_timer_cpu_pm_notify,
1051 };
1052 
arch_timer_cpu_pm_init(void)1053 static int __init arch_timer_cpu_pm_init(void)
1054 {
1055 	return cpu_pm_register_notifier(&arch_timer_cpu_pm_notifier);
1056 }
1057 
arch_timer_cpu_pm_deinit(void)1058 static void __init arch_timer_cpu_pm_deinit(void)
1059 {
1060 	WARN_ON(cpu_pm_unregister_notifier(&arch_timer_cpu_pm_notifier));
1061 }
1062 
1063 #else
arch_timer_cpu_pm_init(void)1064 static int __init arch_timer_cpu_pm_init(void)
1065 {
1066 	return 0;
1067 }
1068 
arch_timer_cpu_pm_deinit(void)1069 static void __init arch_timer_cpu_pm_deinit(void)
1070 {
1071 }
1072 #endif
1073 
arch_timer_register(void)1074 static int __init arch_timer_register(void)
1075 {
1076 	int err;
1077 	int ppi;
1078 
1079 	arch_timer_evt = alloc_percpu(struct clock_event_device);
1080 	if (!arch_timer_evt) {
1081 		err = -ENOMEM;
1082 		goto out;
1083 	}
1084 
1085 	ppi = arch_timer_ppi[arch_timer_uses_ppi];
1086 	switch (arch_timer_uses_ppi) {
1087 	case ARCH_TIMER_VIRT_PPI:
1088 		err = request_percpu_irq(ppi, arch_timer_handler_virt,
1089 					 "arch_timer", arch_timer_evt);
1090 		break;
1091 	case ARCH_TIMER_PHYS_SECURE_PPI:
1092 	case ARCH_TIMER_PHYS_NONSECURE_PPI:
1093 		err = request_percpu_irq(ppi, arch_timer_handler_phys,
1094 					 "arch_timer", arch_timer_evt);
1095 		if (!err && arch_timer_has_nonsecure_ppi()) {
1096 			ppi = arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI];
1097 			err = request_percpu_irq(ppi, arch_timer_handler_phys,
1098 						 "arch_timer", arch_timer_evt);
1099 			if (err)
1100 				free_percpu_irq(arch_timer_ppi[ARCH_TIMER_PHYS_SECURE_PPI],
1101 						arch_timer_evt);
1102 		}
1103 		break;
1104 	case ARCH_TIMER_HYP_PPI:
1105 		err = request_percpu_irq(ppi, arch_timer_handler_phys,
1106 					 "arch_timer", arch_timer_evt);
1107 		break;
1108 	default:
1109 		BUG();
1110 	}
1111 
1112 	if (err) {
1113 		pr_err("can't register interrupt %d (%d)\n", ppi, err);
1114 		goto out_free;
1115 	}
1116 
1117 	err = arch_timer_cpu_pm_init();
1118 	if (err)
1119 		goto out_unreg_notify;
1120 
1121 	/* Register and immediately configure the timer on the boot CPU */
1122 	err = cpuhp_setup_state(CPUHP_AP_ARM_ARCH_TIMER_STARTING,
1123 				"clockevents/arm/arch_timer:starting",
1124 				arch_timer_starting_cpu, arch_timer_dying_cpu);
1125 	if (err)
1126 		goto out_unreg_cpupm;
1127 	return 0;
1128 
1129 out_unreg_cpupm:
1130 	arch_timer_cpu_pm_deinit();
1131 
1132 out_unreg_notify:
1133 	free_percpu_irq(arch_timer_ppi[arch_timer_uses_ppi], arch_timer_evt);
1134 	if (arch_timer_has_nonsecure_ppi())
1135 		free_percpu_irq(arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI],
1136 				arch_timer_evt);
1137 
1138 out_free:
1139 	free_percpu(arch_timer_evt);
1140 out:
1141 	return err;
1142 }
1143 
arch_timer_mem_register(void __iomem * base,unsigned int irq)1144 static int __init arch_timer_mem_register(void __iomem *base, unsigned int irq)
1145 {
1146 	int ret;
1147 	irq_handler_t func;
1148 	struct arch_timer *t;
1149 
1150 	t = kzalloc(sizeof(*t), GFP_KERNEL);
1151 	if (!t)
1152 		return -ENOMEM;
1153 
1154 	t->base = base;
1155 	t->evt.irq = irq;
1156 	__arch_timer_setup(ARCH_TIMER_TYPE_MEM, &t->evt);
1157 
1158 	if (arch_timer_mem_use_virtual)
1159 		func = arch_timer_handler_virt_mem;
1160 	else
1161 		func = arch_timer_handler_phys_mem;
1162 
1163 	ret = request_irq(irq, func, IRQF_TIMER, "arch_mem_timer", &t->evt);
1164 	if (ret) {
1165 		pr_err("Failed to request mem timer irq\n");
1166 		kfree(t);
1167 	}
1168 
1169 	return ret;
1170 }
1171 
1172 static const struct of_device_id arch_timer_of_match[] __initconst = {
1173 	{ .compatible   = "arm,armv7-timer",    },
1174 	{ .compatible   = "arm,armv8-timer",    },
1175 	{},
1176 };
1177 
1178 static const struct of_device_id arch_timer_mem_of_match[] __initconst = {
1179 	{ .compatible   = "arm,armv7-timer-mem", },
1180 	{},
1181 };
1182 
arch_timer_needs_of_probing(void)1183 static bool __init arch_timer_needs_of_probing(void)
1184 {
1185 	struct device_node *dn;
1186 	bool needs_probing = false;
1187 	unsigned int mask = ARCH_TIMER_TYPE_CP15 | ARCH_TIMER_TYPE_MEM;
1188 
1189 	/* We have two timers, and both device-tree nodes are probed. */
1190 	if ((arch_timers_present & mask) == mask)
1191 		return false;
1192 
1193 	/*
1194 	 * Only one type of timer is probed,
1195 	 * check if we have another type of timer node in device-tree.
1196 	 */
1197 	if (arch_timers_present & ARCH_TIMER_TYPE_CP15)
1198 		dn = of_find_matching_node(NULL, arch_timer_mem_of_match);
1199 	else
1200 		dn = of_find_matching_node(NULL, arch_timer_of_match);
1201 
1202 	if (dn && of_device_is_available(dn))
1203 		needs_probing = true;
1204 
1205 	of_node_put(dn);
1206 
1207 	return needs_probing;
1208 }
1209 
arch_timer_common_init(void)1210 static int __init arch_timer_common_init(void)
1211 {
1212 	arch_timer_banner(arch_timers_present);
1213 	arch_counter_register(arch_timers_present);
1214 	return arch_timer_arch_init();
1215 }
1216 
1217 /**
1218  * arch_timer_select_ppi() - Select suitable PPI for the current system.
1219  *
1220  * If HYP mode is available, we know that the physical timer
1221  * has been configured to be accessible from PL1. Use it, so
1222  * that a guest can use the virtual timer instead.
1223  *
1224  * On ARMv8.1 with VH extensions, the kernel runs in HYP. VHE
1225  * accesses to CNTP_*_EL1 registers are silently redirected to
1226  * their CNTHP_*_EL2 counterparts, and use a different PPI
1227  * number.
1228  *
1229  * If no interrupt provided for virtual timer, we'll have to
1230  * stick to the physical timer. It'd better be accessible...
1231  * For arm64 we never use the secure interrupt.
1232  *
1233  * Return: a suitable PPI type for the current system.
1234  */
arch_timer_select_ppi(void)1235 static enum arch_timer_ppi_nr __init arch_timer_select_ppi(void)
1236 {
1237 	if (is_kernel_in_hyp_mode())
1238 		return ARCH_TIMER_HYP_PPI;
1239 
1240 	if (!is_hyp_mode_available() && arch_timer_ppi[ARCH_TIMER_VIRT_PPI])
1241 		return ARCH_TIMER_VIRT_PPI;
1242 
1243 	if (IS_ENABLED(CONFIG_ARM64))
1244 		return ARCH_TIMER_PHYS_NONSECURE_PPI;
1245 
1246 	return ARCH_TIMER_PHYS_SECURE_PPI;
1247 }
1248 
arch_timer_of_init(struct device_node * np)1249 static int __init arch_timer_of_init(struct device_node *np)
1250 {
1251 	int i, ret;
1252 	u32 rate;
1253 
1254 	if (arch_timers_present & ARCH_TIMER_TYPE_CP15) {
1255 		pr_warn("multiple nodes in dt, skipping\n");
1256 		return 0;
1257 	}
1258 
1259 	arch_timers_present |= ARCH_TIMER_TYPE_CP15;
1260 	for (i = ARCH_TIMER_PHYS_SECURE_PPI; i < ARCH_TIMER_MAX_TIMER_PPI; i++)
1261 		arch_timer_ppi[i] = irq_of_parse_and_map(np, i);
1262 
1263 	arch_timer_kvm_info.virtual_irq = arch_timer_ppi[ARCH_TIMER_VIRT_PPI];
1264 
1265 	rate = arch_timer_get_cntfrq();
1266 	arch_timer_of_configure_rate(rate, np);
1267 
1268 	arch_timer_c3stop = !of_property_read_bool(np, "always-on");
1269 
1270 	/* Check for globally applicable workarounds */
1271 	arch_timer_check_ool_workaround(ate_match_dt, np);
1272 
1273 	/*
1274 	 * If we cannot rely on firmware initializing the timer registers then
1275 	 * we should use the physical timers instead.
1276 	 */
1277 	if (IS_ENABLED(CONFIG_ARM) &&
1278 	    of_property_read_bool(np, "arm,cpu-registers-not-fw-configured"))
1279 		arch_timer_uses_ppi = ARCH_TIMER_PHYS_SECURE_PPI;
1280 	else
1281 		arch_timer_uses_ppi = arch_timer_select_ppi();
1282 
1283 	if (!arch_timer_ppi[arch_timer_uses_ppi]) {
1284 		pr_err("No interrupt available, giving up\n");
1285 		return -EINVAL;
1286 	}
1287 
1288 	/* On some systems, the counter stops ticking when in suspend. */
1289 	arch_counter_suspend_stop = of_property_read_bool(np,
1290 							 "arm,no-tick-in-suspend");
1291 
1292 	ret = arch_timer_register();
1293 	if (ret)
1294 		return ret;
1295 
1296 	if (arch_timer_needs_of_probing())
1297 		return 0;
1298 
1299 	return arch_timer_common_init();
1300 }
1301 TIMER_OF_DECLARE(armv7_arch_timer, "arm,armv7-timer", arch_timer_of_init);
1302 TIMER_OF_DECLARE(armv8_arch_timer, "arm,armv8-timer", arch_timer_of_init);
1303 
1304 static u32 __init
arch_timer_mem_frame_get_cntfrq(struct arch_timer_mem_frame * frame)1305 arch_timer_mem_frame_get_cntfrq(struct arch_timer_mem_frame *frame)
1306 {
1307 	void __iomem *base;
1308 	u32 rate;
1309 
1310 	base = ioremap(frame->cntbase, frame->size);
1311 	if (!base) {
1312 		pr_err("Unable to map frame @ %pa\n", &frame->cntbase);
1313 		return 0;
1314 	}
1315 
1316 	rate = readl_relaxed(base + CNTFRQ);
1317 
1318 	iounmap(base);
1319 
1320 	return rate;
1321 }
1322 
1323 static struct arch_timer_mem_frame * __init
arch_timer_mem_find_best_frame(struct arch_timer_mem * timer_mem)1324 arch_timer_mem_find_best_frame(struct arch_timer_mem *timer_mem)
1325 {
1326 	struct arch_timer_mem_frame *frame, *best_frame = NULL;
1327 	void __iomem *cntctlbase;
1328 	u32 cnttidr;
1329 	int i;
1330 
1331 	cntctlbase = ioremap(timer_mem->cntctlbase, timer_mem->size);
1332 	if (!cntctlbase) {
1333 		pr_err("Can't map CNTCTLBase @ %pa\n",
1334 			&timer_mem->cntctlbase);
1335 		return NULL;
1336 	}
1337 
1338 	cnttidr = readl_relaxed(cntctlbase + CNTTIDR);
1339 
1340 	/*
1341 	 * Try to find a virtual capable frame. Otherwise fall back to a
1342 	 * physical capable frame.
1343 	 */
1344 	for (i = 0; i < ARCH_TIMER_MEM_MAX_FRAMES; i++) {
1345 		u32 cntacr = CNTACR_RFRQ | CNTACR_RWPT | CNTACR_RPCT |
1346 			     CNTACR_RWVT | CNTACR_RVOFF | CNTACR_RVCT;
1347 
1348 		frame = &timer_mem->frame[i];
1349 		if (!frame->valid)
1350 			continue;
1351 
1352 		/* Try enabling everything, and see what sticks */
1353 		writel_relaxed(cntacr, cntctlbase + CNTACR(i));
1354 		cntacr = readl_relaxed(cntctlbase + CNTACR(i));
1355 
1356 		if ((cnttidr & CNTTIDR_VIRT(i)) &&
1357 		    !(~cntacr & (CNTACR_RWVT | CNTACR_RVCT))) {
1358 			best_frame = frame;
1359 			arch_timer_mem_use_virtual = true;
1360 			break;
1361 		}
1362 
1363 		if (~cntacr & (CNTACR_RWPT | CNTACR_RPCT))
1364 			continue;
1365 
1366 		best_frame = frame;
1367 	}
1368 
1369 	iounmap(cntctlbase);
1370 
1371 	return best_frame;
1372 }
1373 
1374 static int __init
arch_timer_mem_frame_register(struct arch_timer_mem_frame * frame)1375 arch_timer_mem_frame_register(struct arch_timer_mem_frame *frame)
1376 {
1377 	void __iomem *base;
1378 	int ret, irq = 0;
1379 
1380 	if (arch_timer_mem_use_virtual)
1381 		irq = frame->virt_irq;
1382 	else
1383 		irq = frame->phys_irq;
1384 
1385 	if (!irq) {
1386 		pr_err("Frame missing %s irq.\n",
1387 		       arch_timer_mem_use_virtual ? "virt" : "phys");
1388 		return -EINVAL;
1389 	}
1390 
1391 	if (!request_mem_region(frame->cntbase, frame->size,
1392 				"arch_mem_timer"))
1393 		return -EBUSY;
1394 
1395 	base = ioremap(frame->cntbase, frame->size);
1396 	if (!base) {
1397 		pr_err("Can't map frame's registers\n");
1398 		return -ENXIO;
1399 	}
1400 
1401 	ret = arch_timer_mem_register(base, irq);
1402 	if (ret) {
1403 		iounmap(base);
1404 		return ret;
1405 	}
1406 
1407 	arch_counter_base = base;
1408 	arch_timers_present |= ARCH_TIMER_TYPE_MEM;
1409 
1410 	return 0;
1411 }
1412 
arch_timer_mem_of_init(struct device_node * np)1413 static int __init arch_timer_mem_of_init(struct device_node *np)
1414 {
1415 	struct arch_timer_mem *timer_mem;
1416 	struct arch_timer_mem_frame *frame;
1417 	struct device_node *frame_node;
1418 	struct resource res;
1419 	int ret = -EINVAL;
1420 	u32 rate;
1421 
1422 	timer_mem = kzalloc(sizeof(*timer_mem), GFP_KERNEL);
1423 	if (!timer_mem)
1424 		return -ENOMEM;
1425 
1426 	if (of_address_to_resource(np, 0, &res))
1427 		goto out;
1428 	timer_mem->cntctlbase = res.start;
1429 	timer_mem->size = resource_size(&res);
1430 
1431 	for_each_available_child_of_node(np, frame_node) {
1432 		u32 n;
1433 		struct arch_timer_mem_frame *frame;
1434 
1435 		if (of_property_read_u32(frame_node, "frame-number", &n)) {
1436 			pr_err(FW_BUG "Missing frame-number.\n");
1437 			of_node_put(frame_node);
1438 			goto out;
1439 		}
1440 		if (n >= ARCH_TIMER_MEM_MAX_FRAMES) {
1441 			pr_err(FW_BUG "Wrong frame-number, only 0-%u are permitted.\n",
1442 			       ARCH_TIMER_MEM_MAX_FRAMES - 1);
1443 			of_node_put(frame_node);
1444 			goto out;
1445 		}
1446 		frame = &timer_mem->frame[n];
1447 
1448 		if (frame->valid) {
1449 			pr_err(FW_BUG "Duplicated frame-number.\n");
1450 			of_node_put(frame_node);
1451 			goto out;
1452 		}
1453 
1454 		if (of_address_to_resource(frame_node, 0, &res)) {
1455 			of_node_put(frame_node);
1456 			goto out;
1457 		}
1458 		frame->cntbase = res.start;
1459 		frame->size = resource_size(&res);
1460 
1461 		frame->virt_irq = irq_of_parse_and_map(frame_node,
1462 						       ARCH_TIMER_VIRT_SPI);
1463 		frame->phys_irq = irq_of_parse_and_map(frame_node,
1464 						       ARCH_TIMER_PHYS_SPI);
1465 
1466 		frame->valid = true;
1467 	}
1468 
1469 	frame = arch_timer_mem_find_best_frame(timer_mem);
1470 	if (!frame) {
1471 		pr_err("Unable to find a suitable frame in timer @ %pa\n",
1472 			&timer_mem->cntctlbase);
1473 		ret = -EINVAL;
1474 		goto out;
1475 	}
1476 
1477 	rate = arch_timer_mem_frame_get_cntfrq(frame);
1478 	arch_timer_of_configure_rate(rate, np);
1479 
1480 	ret = arch_timer_mem_frame_register(frame);
1481 	if (!ret && !arch_timer_needs_of_probing())
1482 		ret = arch_timer_common_init();
1483 out:
1484 	kfree(timer_mem);
1485 	return ret;
1486 }
1487 TIMER_OF_DECLARE(armv7_arch_timer_mem, "arm,armv7-timer-mem",
1488 		       arch_timer_mem_of_init);
1489 
1490 #ifdef CONFIG_ACPI_GTDT
1491 static int __init
arch_timer_mem_verify_cntfrq(struct arch_timer_mem * timer_mem)1492 arch_timer_mem_verify_cntfrq(struct arch_timer_mem *timer_mem)
1493 {
1494 	struct arch_timer_mem_frame *frame;
1495 	u32 rate;
1496 	int i;
1497 
1498 	for (i = 0; i < ARCH_TIMER_MEM_MAX_FRAMES; i++) {
1499 		frame = &timer_mem->frame[i];
1500 
1501 		if (!frame->valid)
1502 			continue;
1503 
1504 		rate = arch_timer_mem_frame_get_cntfrq(frame);
1505 		if (rate == arch_timer_rate)
1506 			continue;
1507 
1508 		pr_err(FW_BUG "CNTFRQ mismatch: frame @ %pa: (0x%08lx), CPU: (0x%08lx)\n",
1509 			&frame->cntbase,
1510 			(unsigned long)rate, (unsigned long)arch_timer_rate);
1511 
1512 		return -EINVAL;
1513 	}
1514 
1515 	return 0;
1516 }
1517 
arch_timer_mem_acpi_init(int platform_timer_count)1518 static int __init arch_timer_mem_acpi_init(int platform_timer_count)
1519 {
1520 	struct arch_timer_mem *timers, *timer;
1521 	struct arch_timer_mem_frame *frame, *best_frame = NULL;
1522 	int timer_count, i, ret = 0;
1523 
1524 	timers = kcalloc(platform_timer_count, sizeof(*timers),
1525 			    GFP_KERNEL);
1526 	if (!timers)
1527 		return -ENOMEM;
1528 
1529 	ret = acpi_arch_timer_mem_init(timers, &timer_count);
1530 	if (ret || !timer_count)
1531 		goto out;
1532 
1533 	/*
1534 	 * While unlikely, it's theoretically possible that none of the frames
1535 	 * in a timer expose the combination of feature we want.
1536 	 */
1537 	for (i = 0; i < timer_count; i++) {
1538 		timer = &timers[i];
1539 
1540 		frame = arch_timer_mem_find_best_frame(timer);
1541 		if (!best_frame)
1542 			best_frame = frame;
1543 
1544 		ret = arch_timer_mem_verify_cntfrq(timer);
1545 		if (ret) {
1546 			pr_err("Disabling MMIO timers due to CNTFRQ mismatch\n");
1547 			goto out;
1548 		}
1549 
1550 		if (!best_frame) /* implies !frame */
1551 			/*
1552 			 * Only complain about missing suitable frames if we
1553 			 * haven't already found one in a previous iteration.
1554 			 */
1555 			pr_err("Unable to find a suitable frame in timer @ %pa\n",
1556 				&timer->cntctlbase);
1557 	}
1558 
1559 	if (best_frame)
1560 		ret = arch_timer_mem_frame_register(best_frame);
1561 out:
1562 	kfree(timers);
1563 	return ret;
1564 }
1565 
1566 /* Initialize per-processor generic timer and memory-mapped timer(if present) */
arch_timer_acpi_init(struct acpi_table_header * table)1567 static int __init arch_timer_acpi_init(struct acpi_table_header *table)
1568 {
1569 	int ret, platform_timer_count;
1570 
1571 	if (arch_timers_present & ARCH_TIMER_TYPE_CP15) {
1572 		pr_warn("already initialized, skipping\n");
1573 		return -EINVAL;
1574 	}
1575 
1576 	arch_timers_present |= ARCH_TIMER_TYPE_CP15;
1577 
1578 	ret = acpi_gtdt_init(table, &platform_timer_count);
1579 	if (ret) {
1580 		pr_err("Failed to init GTDT table.\n");
1581 		return ret;
1582 	}
1583 
1584 	arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI] =
1585 		acpi_gtdt_map_ppi(ARCH_TIMER_PHYS_NONSECURE_PPI);
1586 
1587 	arch_timer_ppi[ARCH_TIMER_VIRT_PPI] =
1588 		acpi_gtdt_map_ppi(ARCH_TIMER_VIRT_PPI);
1589 
1590 	arch_timer_ppi[ARCH_TIMER_HYP_PPI] =
1591 		acpi_gtdt_map_ppi(ARCH_TIMER_HYP_PPI);
1592 
1593 	arch_timer_kvm_info.virtual_irq = arch_timer_ppi[ARCH_TIMER_VIRT_PPI];
1594 
1595 	/*
1596 	 * When probing via ACPI, we have no mechanism to override the sysreg
1597 	 * CNTFRQ value. This *must* be correct.
1598 	 */
1599 	arch_timer_rate = arch_timer_get_cntfrq();
1600 	if (!arch_timer_rate) {
1601 		pr_err(FW_BUG "frequency not available.\n");
1602 		return -EINVAL;
1603 	}
1604 
1605 	arch_timer_uses_ppi = arch_timer_select_ppi();
1606 	if (!arch_timer_ppi[arch_timer_uses_ppi]) {
1607 		pr_err("No interrupt available, giving up\n");
1608 		return -EINVAL;
1609 	}
1610 
1611 	/* Always-on capability */
1612 	arch_timer_c3stop = acpi_gtdt_c3stop(arch_timer_uses_ppi);
1613 
1614 	/* Check for globally applicable workarounds */
1615 	arch_timer_check_ool_workaround(ate_match_acpi_oem_info, table);
1616 
1617 	ret = arch_timer_register();
1618 	if (ret)
1619 		return ret;
1620 
1621 	if (platform_timer_count &&
1622 	    arch_timer_mem_acpi_init(platform_timer_count))
1623 		pr_err("Failed to initialize memory-mapped timer.\n");
1624 
1625 	return arch_timer_common_init();
1626 }
1627 TIMER_ACPI_DECLARE(arch_timer, ACPI_SIG_GTDT, arch_timer_acpi_init);
1628 #endif
1629