1 /*
2 * linux/drivers/clocksource/arm_arch_timer.c
3 *
4 * Copyright (C) 2011 ARM Ltd.
5 * All Rights Reserved
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 */
11
12 #define pr_fmt(fmt) "arm_arch_timer: " fmt
13
14 #include <linux/init.h>
15 #include <linux/kernel.h>
16 #include <linux/device.h>
17 #include <linux/smp.h>
18 #include <linux/cpu.h>
19 #include <linux/cpu_pm.h>
20 #include <linux/clockchips.h>
21 #include <linux/clocksource.h>
22 #include <linux/interrupt.h>
23 #include <linux/of_irq.h>
24 #include <linux/of_address.h>
25 #include <linux/io.h>
26 #include <linux/slab.h>
27 #include <linux/sched/clock.h>
28 #include <linux/sched_clock.h>
29 #include <linux/acpi.h>
30
31 #include <asm/arch_timer.h>
32 #include <asm/virt.h>
33
34 #include <clocksource/arm_arch_timer.h>
35
36 #undef pr_fmt
37 #define pr_fmt(fmt) "arch_timer: " fmt
38
39 #define CNTTIDR 0x08
40 #define CNTTIDR_VIRT(n) (BIT(1) << ((n) * 4))
41
42 #define CNTACR(n) (0x40 + ((n) * 4))
43 #define CNTACR_RPCT BIT(0)
44 #define CNTACR_RVCT BIT(1)
45 #define CNTACR_RFRQ BIT(2)
46 #define CNTACR_RVOFF BIT(3)
47 #define CNTACR_RWVT BIT(4)
48 #define CNTACR_RWPT BIT(5)
49
50 #define CNTVCT_LO 0x08
51 #define CNTVCT_HI 0x0c
52 #define CNTFRQ 0x10
53 #define CNTP_TVAL 0x28
54 #define CNTP_CTL 0x2c
55 #define CNTV_TVAL 0x38
56 #define CNTV_CTL 0x3c
57
58 static unsigned arch_timers_present __initdata;
59
60 static void __iomem *arch_counter_base;
61
62 struct arch_timer {
63 void __iomem *base;
64 struct clock_event_device evt;
65 };
66
67 #define to_arch_timer(e) container_of(e, struct arch_timer, evt)
68
69 static u32 arch_timer_rate;
70 static int arch_timer_ppi[ARCH_TIMER_MAX_TIMER_PPI];
71
72 static struct clock_event_device __percpu *arch_timer_evt;
73
74 static enum arch_timer_ppi_nr arch_timer_uses_ppi = ARCH_TIMER_VIRT_PPI;
75 static bool arch_timer_c3stop;
76 static bool arch_timer_mem_use_virtual;
77 static bool arch_counter_suspend_stop;
78 static bool vdso_default = true;
79
80 static cpumask_t evtstrm_available = CPU_MASK_NONE;
81 static bool evtstrm_enable = IS_ENABLED(CONFIG_ARM_ARCH_TIMER_EVTSTREAM);
82
early_evtstrm_cfg(char * buf)83 static int __init early_evtstrm_cfg(char *buf)
84 {
85 return strtobool(buf, &evtstrm_enable);
86 }
87 early_param("clocksource.arm_arch_timer.evtstrm", early_evtstrm_cfg);
88
89 /*
90 * Architected system timer support.
91 */
92
93 static __always_inline
arch_timer_reg_write(int access,enum arch_timer_reg reg,u32 val,struct clock_event_device * clk)94 void arch_timer_reg_write(int access, enum arch_timer_reg reg, u32 val,
95 struct clock_event_device *clk)
96 {
97 if (access == ARCH_TIMER_MEM_PHYS_ACCESS) {
98 struct arch_timer *timer = to_arch_timer(clk);
99 switch (reg) {
100 case ARCH_TIMER_REG_CTRL:
101 writel_relaxed(val, timer->base + CNTP_CTL);
102 break;
103 case ARCH_TIMER_REG_TVAL:
104 writel_relaxed(val, timer->base + CNTP_TVAL);
105 break;
106 }
107 } else if (access == ARCH_TIMER_MEM_VIRT_ACCESS) {
108 struct arch_timer *timer = to_arch_timer(clk);
109 switch (reg) {
110 case ARCH_TIMER_REG_CTRL:
111 writel_relaxed(val, timer->base + CNTV_CTL);
112 break;
113 case ARCH_TIMER_REG_TVAL:
114 writel_relaxed(val, timer->base + CNTV_TVAL);
115 break;
116 }
117 } else {
118 arch_timer_reg_write_cp15(access, reg, val);
119 }
120 }
121
122 static __always_inline
arch_timer_reg_read(int access,enum arch_timer_reg reg,struct clock_event_device * clk)123 u32 arch_timer_reg_read(int access, enum arch_timer_reg reg,
124 struct clock_event_device *clk)
125 {
126 u32 val;
127
128 if (access == ARCH_TIMER_MEM_PHYS_ACCESS) {
129 struct arch_timer *timer = to_arch_timer(clk);
130 switch (reg) {
131 case ARCH_TIMER_REG_CTRL:
132 val = readl_relaxed(timer->base + CNTP_CTL);
133 break;
134 case ARCH_TIMER_REG_TVAL:
135 val = readl_relaxed(timer->base + CNTP_TVAL);
136 break;
137 }
138 } else if (access == ARCH_TIMER_MEM_VIRT_ACCESS) {
139 struct arch_timer *timer = to_arch_timer(clk);
140 switch (reg) {
141 case ARCH_TIMER_REG_CTRL:
142 val = readl_relaxed(timer->base + CNTV_CTL);
143 break;
144 case ARCH_TIMER_REG_TVAL:
145 val = readl_relaxed(timer->base + CNTV_TVAL);
146 break;
147 }
148 } else {
149 val = arch_timer_reg_read_cp15(access, reg);
150 }
151
152 return val;
153 }
154
155 /*
156 * Default to cp15 based access because arm64 uses this function for
157 * sched_clock() before DT is probed and the cp15 method is guaranteed
158 * to exist on arm64. arm doesn't use this before DT is probed so even
159 * if we don't have the cp15 accessors we won't have a problem.
160 */
161 u64 (*arch_timer_read_counter)(void) = arch_counter_get_cntvct;
162 EXPORT_SYMBOL_GPL(arch_timer_read_counter);
163
arch_counter_read(struct clocksource * cs)164 static u64 arch_counter_read(struct clocksource *cs)
165 {
166 return arch_timer_read_counter();
167 }
168
arch_counter_read_cc(const struct cyclecounter * cc)169 static u64 arch_counter_read_cc(const struct cyclecounter *cc)
170 {
171 return arch_timer_read_counter();
172 }
173
174 static struct clocksource clocksource_counter = {
175 .name = "arch_sys_counter",
176 .rating = 400,
177 .read = arch_counter_read,
178 .mask = CLOCKSOURCE_MASK(56),
179 .flags = CLOCK_SOURCE_IS_CONTINUOUS,
180 };
181
182 static struct cyclecounter cyclecounter __ro_after_init = {
183 .read = arch_counter_read_cc,
184 .mask = CLOCKSOURCE_MASK(56),
185 };
186
187 struct ate_acpi_oem_info {
188 char oem_id[ACPI_OEM_ID_SIZE + 1];
189 char oem_table_id[ACPI_OEM_TABLE_ID_SIZE + 1];
190 u32 oem_revision;
191 };
192
193 #ifdef CONFIG_FSL_ERRATUM_A008585
194 /*
195 * The number of retries is an arbitrary value well beyond the highest number
196 * of iterations the loop has been observed to take.
197 */
198 #define __fsl_a008585_read_reg(reg) ({ \
199 u64 _old, _new; \
200 int _retries = 200; \
201 \
202 do { \
203 _old = read_sysreg(reg); \
204 _new = read_sysreg(reg); \
205 _retries--; \
206 } while (unlikely(_old != _new) && _retries); \
207 \
208 WARN_ON_ONCE(!_retries); \
209 _new; \
210 })
211
fsl_a008585_read_cntp_tval_el0(void)212 static u32 notrace fsl_a008585_read_cntp_tval_el0(void)
213 {
214 return __fsl_a008585_read_reg(cntp_tval_el0);
215 }
216
fsl_a008585_read_cntv_tval_el0(void)217 static u32 notrace fsl_a008585_read_cntv_tval_el0(void)
218 {
219 return __fsl_a008585_read_reg(cntv_tval_el0);
220 }
221
fsl_a008585_read_cntpct_el0(void)222 static u64 notrace fsl_a008585_read_cntpct_el0(void)
223 {
224 return __fsl_a008585_read_reg(cntpct_el0);
225 }
226
fsl_a008585_read_cntvct_el0(void)227 static u64 notrace fsl_a008585_read_cntvct_el0(void)
228 {
229 return __fsl_a008585_read_reg(cntvct_el0);
230 }
231 #endif
232
233 #ifdef CONFIG_HISILICON_ERRATUM_161010101
234 /*
235 * Verify whether the value of the second read is larger than the first by
236 * less than 32 is the only way to confirm the value is correct, so clear the
237 * lower 5 bits to check whether the difference is greater than 32 or not.
238 * Theoretically the erratum should not occur more than twice in succession
239 * when reading the system counter, but it is possible that some interrupts
240 * may lead to more than twice read errors, triggering the warning, so setting
241 * the number of retries far beyond the number of iterations the loop has been
242 * observed to take.
243 */
244 #define __hisi_161010101_read_reg(reg) ({ \
245 u64 _old, _new; \
246 int _retries = 50; \
247 \
248 do { \
249 _old = read_sysreg(reg); \
250 _new = read_sysreg(reg); \
251 _retries--; \
252 } while (unlikely((_new - _old) >> 5) && _retries); \
253 \
254 WARN_ON_ONCE(!_retries); \
255 _new; \
256 })
257
hisi_161010101_read_cntp_tval_el0(void)258 static u32 notrace hisi_161010101_read_cntp_tval_el0(void)
259 {
260 return __hisi_161010101_read_reg(cntp_tval_el0);
261 }
262
hisi_161010101_read_cntv_tval_el0(void)263 static u32 notrace hisi_161010101_read_cntv_tval_el0(void)
264 {
265 return __hisi_161010101_read_reg(cntv_tval_el0);
266 }
267
hisi_161010101_read_cntpct_el0(void)268 static u64 notrace hisi_161010101_read_cntpct_el0(void)
269 {
270 return __hisi_161010101_read_reg(cntpct_el0);
271 }
272
hisi_161010101_read_cntvct_el0(void)273 static u64 notrace hisi_161010101_read_cntvct_el0(void)
274 {
275 return __hisi_161010101_read_reg(cntvct_el0);
276 }
277
278 static struct ate_acpi_oem_info hisi_161010101_oem_info[] = {
279 /*
280 * Note that trailing spaces are required to properly match
281 * the OEM table information.
282 */
283 {
284 .oem_id = "HISI ",
285 .oem_table_id = "HIP05 ",
286 .oem_revision = 0,
287 },
288 {
289 .oem_id = "HISI ",
290 .oem_table_id = "HIP06 ",
291 .oem_revision = 0,
292 },
293 {
294 .oem_id = "HISI ",
295 .oem_table_id = "HIP07 ",
296 .oem_revision = 0,
297 },
298 { /* Sentinel indicating the end of the OEM array */ },
299 };
300 #endif
301
302 #ifdef CONFIG_ARM64_ERRATUM_858921
arm64_858921_read_cntpct_el0(void)303 static u64 notrace arm64_858921_read_cntpct_el0(void)
304 {
305 u64 old, new;
306
307 old = read_sysreg(cntpct_el0);
308 new = read_sysreg(cntpct_el0);
309 return (((old ^ new) >> 32) & 1) ? old : new;
310 }
311
arm64_858921_read_cntvct_el0(void)312 static u64 notrace arm64_858921_read_cntvct_el0(void)
313 {
314 u64 old, new;
315
316 old = read_sysreg(cntvct_el0);
317 new = read_sysreg(cntvct_el0);
318 return (((old ^ new) >> 32) & 1) ? old : new;
319 }
320 #endif
321
322 #ifdef CONFIG_SUN50I_ERRATUM_UNKNOWN1
323 /*
324 * The low bits of the counter registers are indeterminate while bit 10 or
325 * greater is rolling over. Since the counter value can jump both backward
326 * (7ff -> 000 -> 800) and forward (7ff -> fff -> 800), ignore register values
327 * with all ones or all zeros in the low bits. Bound the loop by the maximum
328 * number of CPU cycles in 3 consecutive 24 MHz counter periods.
329 */
330 #define __sun50i_a64_read_reg(reg) ({ \
331 u64 _val; \
332 int _retries = 150; \
333 \
334 do { \
335 _val = read_sysreg(reg); \
336 _retries--; \
337 } while (((_val + 1) & GENMASK(9, 0)) <= 1 && _retries); \
338 \
339 WARN_ON_ONCE(!_retries); \
340 _val; \
341 })
342
sun50i_a64_read_cntpct_el0(void)343 static u64 notrace sun50i_a64_read_cntpct_el0(void)
344 {
345 return __sun50i_a64_read_reg(cntpct_el0);
346 }
347
sun50i_a64_read_cntvct_el0(void)348 static u64 notrace sun50i_a64_read_cntvct_el0(void)
349 {
350 return __sun50i_a64_read_reg(cntvct_el0);
351 }
352
sun50i_a64_read_cntp_tval_el0(void)353 static u32 notrace sun50i_a64_read_cntp_tval_el0(void)
354 {
355 return read_sysreg(cntp_cval_el0) - sun50i_a64_read_cntpct_el0();
356 }
357
sun50i_a64_read_cntv_tval_el0(void)358 static u32 notrace sun50i_a64_read_cntv_tval_el0(void)
359 {
360 return read_sysreg(cntv_cval_el0) - sun50i_a64_read_cntvct_el0();
361 }
362 #endif
363
364 #ifdef CONFIG_ARM_ARCH_TIMER_OOL_WORKAROUND
365 DEFINE_PER_CPU(const struct arch_timer_erratum_workaround *, timer_unstable_counter_workaround);
366 EXPORT_SYMBOL_GPL(timer_unstable_counter_workaround);
367
368 DEFINE_STATIC_KEY_FALSE(arch_timer_read_ool_enabled);
369 EXPORT_SYMBOL_GPL(arch_timer_read_ool_enabled);
370
erratum_set_next_event_tval_generic(const int access,unsigned long evt,struct clock_event_device * clk)371 static void erratum_set_next_event_tval_generic(const int access, unsigned long evt,
372 struct clock_event_device *clk)
373 {
374 unsigned long ctrl;
375 u64 cval;
376
377 ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, clk);
378 ctrl |= ARCH_TIMER_CTRL_ENABLE;
379 ctrl &= ~ARCH_TIMER_CTRL_IT_MASK;
380
381 if (access == ARCH_TIMER_PHYS_ACCESS) {
382 cval = evt + arch_counter_get_cntpct();
383 write_sysreg(cval, cntp_cval_el0);
384 } else {
385 cval = evt + arch_counter_get_cntvct();
386 write_sysreg(cval, cntv_cval_el0);
387 }
388
389 arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, clk);
390 }
391
erratum_set_next_event_tval_virt(unsigned long evt,struct clock_event_device * clk)392 static __maybe_unused int erratum_set_next_event_tval_virt(unsigned long evt,
393 struct clock_event_device *clk)
394 {
395 erratum_set_next_event_tval_generic(ARCH_TIMER_VIRT_ACCESS, evt, clk);
396 return 0;
397 }
398
erratum_set_next_event_tval_phys(unsigned long evt,struct clock_event_device * clk)399 static __maybe_unused int erratum_set_next_event_tval_phys(unsigned long evt,
400 struct clock_event_device *clk)
401 {
402 erratum_set_next_event_tval_generic(ARCH_TIMER_PHYS_ACCESS, evt, clk);
403 return 0;
404 }
405
406 static const struct arch_timer_erratum_workaround ool_workarounds[] = {
407 #ifdef CONFIG_FSL_ERRATUM_A008585
408 {
409 .match_type = ate_match_dt,
410 .id = "fsl,erratum-a008585",
411 .desc = "Freescale erratum a005858",
412 .read_cntp_tval_el0 = fsl_a008585_read_cntp_tval_el0,
413 .read_cntv_tval_el0 = fsl_a008585_read_cntv_tval_el0,
414 .read_cntpct_el0 = fsl_a008585_read_cntpct_el0,
415 .read_cntvct_el0 = fsl_a008585_read_cntvct_el0,
416 .set_next_event_phys = erratum_set_next_event_tval_phys,
417 .set_next_event_virt = erratum_set_next_event_tval_virt,
418 },
419 #endif
420 #ifdef CONFIG_HISILICON_ERRATUM_161010101
421 {
422 .match_type = ate_match_dt,
423 .id = "hisilicon,erratum-161010101",
424 .desc = "HiSilicon erratum 161010101",
425 .read_cntp_tval_el0 = hisi_161010101_read_cntp_tval_el0,
426 .read_cntv_tval_el0 = hisi_161010101_read_cntv_tval_el0,
427 .read_cntpct_el0 = hisi_161010101_read_cntpct_el0,
428 .read_cntvct_el0 = hisi_161010101_read_cntvct_el0,
429 .set_next_event_phys = erratum_set_next_event_tval_phys,
430 .set_next_event_virt = erratum_set_next_event_tval_virt,
431 },
432 {
433 .match_type = ate_match_acpi_oem_info,
434 .id = hisi_161010101_oem_info,
435 .desc = "HiSilicon erratum 161010101",
436 .read_cntp_tval_el0 = hisi_161010101_read_cntp_tval_el0,
437 .read_cntv_tval_el0 = hisi_161010101_read_cntv_tval_el0,
438 .read_cntpct_el0 = hisi_161010101_read_cntpct_el0,
439 .read_cntvct_el0 = hisi_161010101_read_cntvct_el0,
440 .set_next_event_phys = erratum_set_next_event_tval_phys,
441 .set_next_event_virt = erratum_set_next_event_tval_virt,
442 },
443 #endif
444 #ifdef CONFIG_ARM64_ERRATUM_858921
445 {
446 .match_type = ate_match_local_cap_id,
447 .id = (void *)ARM64_WORKAROUND_858921,
448 .desc = "ARM erratum 858921",
449 .read_cntpct_el0 = arm64_858921_read_cntpct_el0,
450 .read_cntvct_el0 = arm64_858921_read_cntvct_el0,
451 },
452 #endif
453 #ifdef CONFIG_SUN50I_ERRATUM_UNKNOWN1
454 {
455 .match_type = ate_match_dt,
456 .id = "allwinner,erratum-unknown1",
457 .desc = "Allwinner erratum UNKNOWN1",
458 .read_cntp_tval_el0 = sun50i_a64_read_cntp_tval_el0,
459 .read_cntv_tval_el0 = sun50i_a64_read_cntv_tval_el0,
460 .read_cntpct_el0 = sun50i_a64_read_cntpct_el0,
461 .read_cntvct_el0 = sun50i_a64_read_cntvct_el0,
462 .set_next_event_phys = erratum_set_next_event_tval_phys,
463 .set_next_event_virt = erratum_set_next_event_tval_virt,
464 },
465 #endif
466 };
467
468 typedef bool (*ate_match_fn_t)(const struct arch_timer_erratum_workaround *,
469 const void *);
470
471 static
arch_timer_check_dt_erratum(const struct arch_timer_erratum_workaround * wa,const void * arg)472 bool arch_timer_check_dt_erratum(const struct arch_timer_erratum_workaround *wa,
473 const void *arg)
474 {
475 const struct device_node *np = arg;
476
477 return of_property_read_bool(np, wa->id);
478 }
479
480 static
arch_timer_check_local_cap_erratum(const struct arch_timer_erratum_workaround * wa,const void * arg)481 bool arch_timer_check_local_cap_erratum(const struct arch_timer_erratum_workaround *wa,
482 const void *arg)
483 {
484 return this_cpu_has_cap((uintptr_t)wa->id);
485 }
486
487
488 static
arch_timer_check_acpi_oem_erratum(const struct arch_timer_erratum_workaround * wa,const void * arg)489 bool arch_timer_check_acpi_oem_erratum(const struct arch_timer_erratum_workaround *wa,
490 const void *arg)
491 {
492 static const struct ate_acpi_oem_info empty_oem_info = {};
493 const struct ate_acpi_oem_info *info = wa->id;
494 const struct acpi_table_header *table = arg;
495
496 /* Iterate over the ACPI OEM info array, looking for a match */
497 while (memcmp(info, &empty_oem_info, sizeof(*info))) {
498 if (!memcmp(info->oem_id, table->oem_id, ACPI_OEM_ID_SIZE) &&
499 !memcmp(info->oem_table_id, table->oem_table_id, ACPI_OEM_TABLE_ID_SIZE) &&
500 info->oem_revision == table->oem_revision)
501 return true;
502
503 info++;
504 }
505
506 return false;
507 }
508
509 static const struct arch_timer_erratum_workaround *
arch_timer_iterate_errata(enum arch_timer_erratum_match_type type,ate_match_fn_t match_fn,void * arg)510 arch_timer_iterate_errata(enum arch_timer_erratum_match_type type,
511 ate_match_fn_t match_fn,
512 void *arg)
513 {
514 int i;
515
516 for (i = 0; i < ARRAY_SIZE(ool_workarounds); i++) {
517 if (ool_workarounds[i].match_type != type)
518 continue;
519
520 if (match_fn(&ool_workarounds[i], arg))
521 return &ool_workarounds[i];
522 }
523
524 return NULL;
525 }
526
527 static
arch_timer_enable_workaround(const struct arch_timer_erratum_workaround * wa,bool local)528 void arch_timer_enable_workaround(const struct arch_timer_erratum_workaround *wa,
529 bool local)
530 {
531 int i;
532
533 if (local) {
534 __this_cpu_write(timer_unstable_counter_workaround, wa);
535 } else {
536 for_each_possible_cpu(i)
537 per_cpu(timer_unstable_counter_workaround, i) = wa;
538 }
539
540 /*
541 * Use the locked version, as we're called from the CPU
542 * hotplug framework. Otherwise, we end-up in deadlock-land.
543 */
544 static_branch_enable_cpuslocked(&arch_timer_read_ool_enabled);
545
546 /*
547 * Don't use the vdso fastpath if errata require using the
548 * out-of-line counter accessor. We may change our mind pretty
549 * late in the game (with a per-CPU erratum, for example), so
550 * change both the default value and the vdso itself.
551 */
552 if (wa->read_cntvct_el0) {
553 clocksource_counter.archdata.vdso_direct = false;
554 vdso_default = false;
555 }
556 }
557
arch_timer_check_ool_workaround(enum arch_timer_erratum_match_type type,void * arg)558 static void arch_timer_check_ool_workaround(enum arch_timer_erratum_match_type type,
559 void *arg)
560 {
561 const struct arch_timer_erratum_workaround *wa;
562 ate_match_fn_t match_fn = NULL;
563 bool local = false;
564
565 switch (type) {
566 case ate_match_dt:
567 match_fn = arch_timer_check_dt_erratum;
568 break;
569 case ate_match_local_cap_id:
570 match_fn = arch_timer_check_local_cap_erratum;
571 local = true;
572 break;
573 case ate_match_acpi_oem_info:
574 match_fn = arch_timer_check_acpi_oem_erratum;
575 break;
576 default:
577 WARN_ON(1);
578 return;
579 }
580
581 wa = arch_timer_iterate_errata(type, match_fn, arg);
582 if (!wa)
583 return;
584
585 if (needs_unstable_timer_counter_workaround()) {
586 const struct arch_timer_erratum_workaround *__wa;
587 __wa = __this_cpu_read(timer_unstable_counter_workaround);
588 if (__wa && wa != __wa)
589 pr_warn("Can't enable workaround for %s (clashes with %s\n)",
590 wa->desc, __wa->desc);
591
592 if (__wa)
593 return;
594 }
595
596 arch_timer_enable_workaround(wa, local);
597 pr_info("Enabling %s workaround for %s\n",
598 local ? "local" : "global", wa->desc);
599 }
600
601 #define erratum_handler(fn, r, ...) \
602 ({ \
603 bool __val; \
604 if (needs_unstable_timer_counter_workaround()) { \
605 const struct arch_timer_erratum_workaround *__wa; \
606 __wa = __this_cpu_read(timer_unstable_counter_workaround); \
607 if (__wa && __wa->fn) { \
608 r = __wa->fn(__VA_ARGS__); \
609 __val = true; \
610 } else { \
611 __val = false; \
612 } \
613 } else { \
614 __val = false; \
615 } \
616 __val; \
617 })
618
arch_timer_this_cpu_has_cntvct_wa(void)619 static bool arch_timer_this_cpu_has_cntvct_wa(void)
620 {
621 const struct arch_timer_erratum_workaround *wa;
622
623 wa = __this_cpu_read(timer_unstable_counter_workaround);
624 return wa && wa->read_cntvct_el0;
625 }
626 #else
627 #define arch_timer_check_ool_workaround(t,a) do { } while(0)
628 #define erratum_set_next_event_tval_virt(...) ({BUG(); 0;})
629 #define erratum_set_next_event_tval_phys(...) ({BUG(); 0;})
630 #define erratum_handler(fn, r, ...) ({false;})
631 #define arch_timer_this_cpu_has_cntvct_wa() ({false;})
632 #endif /* CONFIG_ARM_ARCH_TIMER_OOL_WORKAROUND */
633
timer_handler(const int access,struct clock_event_device * evt)634 static __always_inline irqreturn_t timer_handler(const int access,
635 struct clock_event_device *evt)
636 {
637 unsigned long ctrl;
638
639 ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, evt);
640 if (ctrl & ARCH_TIMER_CTRL_IT_STAT) {
641 ctrl |= ARCH_TIMER_CTRL_IT_MASK;
642 arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, evt);
643 evt->event_handler(evt);
644 return IRQ_HANDLED;
645 }
646
647 return IRQ_NONE;
648 }
649
arch_timer_handler_virt(int irq,void * dev_id)650 static irqreturn_t arch_timer_handler_virt(int irq, void *dev_id)
651 {
652 struct clock_event_device *evt = dev_id;
653
654 return timer_handler(ARCH_TIMER_VIRT_ACCESS, evt);
655 }
656
arch_timer_handler_phys(int irq,void * dev_id)657 static irqreturn_t arch_timer_handler_phys(int irq, void *dev_id)
658 {
659 struct clock_event_device *evt = dev_id;
660
661 return timer_handler(ARCH_TIMER_PHYS_ACCESS, evt);
662 }
663
arch_timer_handler_phys_mem(int irq,void * dev_id)664 static irqreturn_t arch_timer_handler_phys_mem(int irq, void *dev_id)
665 {
666 struct clock_event_device *evt = dev_id;
667
668 return timer_handler(ARCH_TIMER_MEM_PHYS_ACCESS, evt);
669 }
670
arch_timer_handler_virt_mem(int irq,void * dev_id)671 static irqreturn_t arch_timer_handler_virt_mem(int irq, void *dev_id)
672 {
673 struct clock_event_device *evt = dev_id;
674
675 return timer_handler(ARCH_TIMER_MEM_VIRT_ACCESS, evt);
676 }
677
timer_shutdown(const int access,struct clock_event_device * clk)678 static __always_inline int timer_shutdown(const int access,
679 struct clock_event_device *clk)
680 {
681 unsigned long ctrl;
682
683 ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, clk);
684 ctrl &= ~ARCH_TIMER_CTRL_ENABLE;
685 arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, clk);
686
687 return 0;
688 }
689
arch_timer_shutdown_virt(struct clock_event_device * clk)690 static int arch_timer_shutdown_virt(struct clock_event_device *clk)
691 {
692 return timer_shutdown(ARCH_TIMER_VIRT_ACCESS, clk);
693 }
694
arch_timer_shutdown_phys(struct clock_event_device * clk)695 static int arch_timer_shutdown_phys(struct clock_event_device *clk)
696 {
697 return timer_shutdown(ARCH_TIMER_PHYS_ACCESS, clk);
698 }
699
arch_timer_shutdown_virt_mem(struct clock_event_device * clk)700 static int arch_timer_shutdown_virt_mem(struct clock_event_device *clk)
701 {
702 return timer_shutdown(ARCH_TIMER_MEM_VIRT_ACCESS, clk);
703 }
704
arch_timer_shutdown_phys_mem(struct clock_event_device * clk)705 static int arch_timer_shutdown_phys_mem(struct clock_event_device *clk)
706 {
707 return timer_shutdown(ARCH_TIMER_MEM_PHYS_ACCESS, clk);
708 }
709
set_next_event(const int access,unsigned long evt,struct clock_event_device * clk)710 static __always_inline void set_next_event(const int access, unsigned long evt,
711 struct clock_event_device *clk)
712 {
713 unsigned long ctrl;
714 ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, clk);
715 ctrl |= ARCH_TIMER_CTRL_ENABLE;
716 ctrl &= ~ARCH_TIMER_CTRL_IT_MASK;
717 arch_timer_reg_write(access, ARCH_TIMER_REG_TVAL, evt, clk);
718 arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, clk);
719 }
720
arch_timer_set_next_event_virt(unsigned long evt,struct clock_event_device * clk)721 static int arch_timer_set_next_event_virt(unsigned long evt,
722 struct clock_event_device *clk)
723 {
724 int ret;
725
726 if (erratum_handler(set_next_event_virt, ret, evt, clk))
727 return ret;
728
729 set_next_event(ARCH_TIMER_VIRT_ACCESS, evt, clk);
730 return 0;
731 }
732
arch_timer_set_next_event_phys(unsigned long evt,struct clock_event_device * clk)733 static int arch_timer_set_next_event_phys(unsigned long evt,
734 struct clock_event_device *clk)
735 {
736 int ret;
737
738 if (erratum_handler(set_next_event_phys, ret, evt, clk))
739 return ret;
740
741 set_next_event(ARCH_TIMER_PHYS_ACCESS, evt, clk);
742 return 0;
743 }
744
arch_timer_set_next_event_virt_mem(unsigned long evt,struct clock_event_device * clk)745 static int arch_timer_set_next_event_virt_mem(unsigned long evt,
746 struct clock_event_device *clk)
747 {
748 set_next_event(ARCH_TIMER_MEM_VIRT_ACCESS, evt, clk);
749 return 0;
750 }
751
arch_timer_set_next_event_phys_mem(unsigned long evt,struct clock_event_device * clk)752 static int arch_timer_set_next_event_phys_mem(unsigned long evt,
753 struct clock_event_device *clk)
754 {
755 set_next_event(ARCH_TIMER_MEM_PHYS_ACCESS, evt, clk);
756 return 0;
757 }
758
__arch_timer_setup(unsigned type,struct clock_event_device * clk)759 static void __arch_timer_setup(unsigned type,
760 struct clock_event_device *clk)
761 {
762 clk->features = CLOCK_EVT_FEAT_ONESHOT;
763
764 if (type == ARCH_TIMER_TYPE_CP15) {
765 if (arch_timer_c3stop)
766 clk->features |= CLOCK_EVT_FEAT_C3STOP;
767 clk->name = "arch_sys_timer";
768 clk->rating = 450;
769 clk->cpumask = cpumask_of(smp_processor_id());
770 clk->irq = arch_timer_ppi[arch_timer_uses_ppi];
771 switch (arch_timer_uses_ppi) {
772 case ARCH_TIMER_VIRT_PPI:
773 clk->set_state_shutdown = arch_timer_shutdown_virt;
774 clk->set_state_oneshot_stopped = arch_timer_shutdown_virt;
775 clk->set_next_event = arch_timer_set_next_event_virt;
776 break;
777 case ARCH_TIMER_PHYS_SECURE_PPI:
778 case ARCH_TIMER_PHYS_NONSECURE_PPI:
779 case ARCH_TIMER_HYP_PPI:
780 clk->set_state_shutdown = arch_timer_shutdown_phys;
781 clk->set_state_oneshot_stopped = arch_timer_shutdown_phys;
782 clk->set_next_event = arch_timer_set_next_event_phys;
783 break;
784 default:
785 BUG();
786 }
787
788 arch_timer_check_ool_workaround(ate_match_local_cap_id, NULL);
789 } else {
790 clk->features |= CLOCK_EVT_FEAT_DYNIRQ;
791 clk->name = "arch_mem_timer";
792 clk->rating = 400;
793 clk->cpumask = cpu_possible_mask;
794 if (arch_timer_mem_use_virtual) {
795 clk->set_state_shutdown = arch_timer_shutdown_virt_mem;
796 clk->set_state_oneshot_stopped = arch_timer_shutdown_virt_mem;
797 clk->set_next_event =
798 arch_timer_set_next_event_virt_mem;
799 } else {
800 clk->set_state_shutdown = arch_timer_shutdown_phys_mem;
801 clk->set_state_oneshot_stopped = arch_timer_shutdown_phys_mem;
802 clk->set_next_event =
803 arch_timer_set_next_event_phys_mem;
804 }
805 }
806
807 clk->set_state_shutdown(clk);
808
809 clockevents_config_and_register(clk, arch_timer_rate, 0xf, 0x7fffffff);
810 }
811
arch_timer_evtstrm_enable(int divider)812 static void arch_timer_evtstrm_enable(int divider)
813 {
814 u32 cntkctl = arch_timer_get_cntkctl();
815
816 cntkctl &= ~ARCH_TIMER_EVT_TRIGGER_MASK;
817 /* Set the divider and enable virtual event stream */
818 cntkctl |= (divider << ARCH_TIMER_EVT_TRIGGER_SHIFT)
819 | ARCH_TIMER_VIRT_EVT_EN;
820 arch_timer_set_cntkctl(cntkctl);
821 elf_hwcap |= HWCAP_EVTSTRM;
822 #ifdef CONFIG_COMPAT
823 compat_elf_hwcap |= COMPAT_HWCAP_EVTSTRM;
824 #endif
825 cpumask_set_cpu(smp_processor_id(), &evtstrm_available);
826 }
827
arch_timer_configure_evtstream(void)828 static void arch_timer_configure_evtstream(void)
829 {
830 int evt_stream_div, pos;
831
832 /* Find the closest power of two to the divisor */
833 evt_stream_div = arch_timer_rate / ARCH_TIMER_EVT_STREAM_FREQ;
834 pos = fls(evt_stream_div);
835 if (pos > 1 && !(evt_stream_div & (1 << (pos - 2))))
836 pos--;
837 /* enable event stream */
838 arch_timer_evtstrm_enable(min(pos, 15));
839 }
840
arch_counter_set_user_access(void)841 static void arch_counter_set_user_access(void)
842 {
843 u32 cntkctl = arch_timer_get_cntkctl();
844
845 /* Disable user access to the timers and both counters */
846 /* Also disable virtual event stream */
847 cntkctl &= ~(ARCH_TIMER_USR_PT_ACCESS_EN
848 | ARCH_TIMER_USR_VT_ACCESS_EN
849 | ARCH_TIMER_USR_VCT_ACCESS_EN
850 | ARCH_TIMER_VIRT_EVT_EN
851 | ARCH_TIMER_USR_PCT_ACCESS_EN);
852
853 /*
854 * Enable user access to the virtual counter if it doesn't
855 * need to be workaround. The vdso may have been already
856 * disabled though.
857 */
858 if (arch_timer_this_cpu_has_cntvct_wa())
859 pr_info("CPU%d: Trapping CNTVCT access\n", smp_processor_id());
860 else
861 cntkctl |= ARCH_TIMER_USR_VCT_ACCESS_EN;
862
863 arch_timer_set_cntkctl(cntkctl);
864 }
865
arch_timer_has_nonsecure_ppi(void)866 static bool arch_timer_has_nonsecure_ppi(void)
867 {
868 return (arch_timer_uses_ppi == ARCH_TIMER_PHYS_SECURE_PPI &&
869 arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI]);
870 }
871
check_ppi_trigger(int irq)872 static u32 check_ppi_trigger(int irq)
873 {
874 u32 flags = irq_get_trigger_type(irq);
875
876 if (flags != IRQF_TRIGGER_HIGH && flags != IRQF_TRIGGER_LOW) {
877 pr_warn("WARNING: Invalid trigger for IRQ%d, assuming level low\n", irq);
878 pr_warn("WARNING: Please fix your firmware\n");
879 flags = IRQF_TRIGGER_LOW;
880 }
881
882 return flags;
883 }
884
arch_timer_starting_cpu(unsigned int cpu)885 static int arch_timer_starting_cpu(unsigned int cpu)
886 {
887 struct clock_event_device *clk = this_cpu_ptr(arch_timer_evt);
888 u32 flags;
889
890 __arch_timer_setup(ARCH_TIMER_TYPE_CP15, clk);
891
892 flags = check_ppi_trigger(arch_timer_ppi[arch_timer_uses_ppi]);
893 enable_percpu_irq(arch_timer_ppi[arch_timer_uses_ppi], flags);
894
895 if (arch_timer_has_nonsecure_ppi()) {
896 flags = check_ppi_trigger(arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI]);
897 enable_percpu_irq(arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI],
898 flags);
899 }
900
901 arch_counter_set_user_access();
902 if (evtstrm_enable)
903 arch_timer_configure_evtstream();
904
905 return 0;
906 }
907
908 /*
909 * For historical reasons, when probing with DT we use whichever (non-zero)
910 * rate was probed first, and don't verify that others match. If the first node
911 * probed has a clock-frequency property, this overrides the HW register.
912 */
arch_timer_of_configure_rate(u32 rate,struct device_node * np)913 static void arch_timer_of_configure_rate(u32 rate, struct device_node *np)
914 {
915 /* Who has more than one independent system counter? */
916 if (arch_timer_rate)
917 return;
918
919 if (of_property_read_u32(np, "clock-frequency", &arch_timer_rate))
920 arch_timer_rate = rate;
921
922 /* Check the timer frequency. */
923 if (arch_timer_rate == 0)
924 pr_warn("frequency not available\n");
925 }
926
arch_timer_banner(unsigned type)927 static void arch_timer_banner(unsigned type)
928 {
929 pr_info("%s%s%s timer(s) running at %lu.%02luMHz (%s%s%s).\n",
930 type & ARCH_TIMER_TYPE_CP15 ? "cp15" : "",
931 type == (ARCH_TIMER_TYPE_CP15 | ARCH_TIMER_TYPE_MEM) ?
932 " and " : "",
933 type & ARCH_TIMER_TYPE_MEM ? "mmio" : "",
934 (unsigned long)arch_timer_rate / 1000000,
935 (unsigned long)(arch_timer_rate / 10000) % 100,
936 type & ARCH_TIMER_TYPE_CP15 ?
937 (arch_timer_uses_ppi == ARCH_TIMER_VIRT_PPI) ? "virt" : "phys" :
938 "",
939 type == (ARCH_TIMER_TYPE_CP15 | ARCH_TIMER_TYPE_MEM) ? "/" : "",
940 type & ARCH_TIMER_TYPE_MEM ?
941 arch_timer_mem_use_virtual ? "virt" : "phys" :
942 "");
943 }
944
arch_timer_get_rate(void)945 u32 arch_timer_get_rate(void)
946 {
947 return arch_timer_rate;
948 }
949
arch_timer_evtstrm_available(void)950 bool arch_timer_evtstrm_available(void)
951 {
952 /*
953 * We might get called from a preemptible context. This is fine
954 * because availability of the event stream should be always the same
955 * for a preemptible context and context where we might resume a task.
956 */
957 return cpumask_test_cpu(raw_smp_processor_id(), &evtstrm_available);
958 }
959
arch_counter_get_cntvct_mem(void)960 static u64 arch_counter_get_cntvct_mem(void)
961 {
962 u32 vct_lo, vct_hi, tmp_hi;
963
964 do {
965 vct_hi = readl_relaxed(arch_counter_base + CNTVCT_HI);
966 vct_lo = readl_relaxed(arch_counter_base + CNTVCT_LO);
967 tmp_hi = readl_relaxed(arch_counter_base + CNTVCT_HI);
968 } while (vct_hi != tmp_hi);
969
970 return ((u64) vct_hi << 32) | vct_lo;
971 }
972
973 static struct arch_timer_kvm_info arch_timer_kvm_info;
974
arch_timer_get_kvm_info(void)975 struct arch_timer_kvm_info *arch_timer_get_kvm_info(void)
976 {
977 return &arch_timer_kvm_info;
978 }
979
arch_counter_register(unsigned type)980 static void __init arch_counter_register(unsigned type)
981 {
982 u64 start_count;
983
984 /* Register the CP15 based counter if we have one */
985 if (type & ARCH_TIMER_TYPE_CP15) {
986 if ((IS_ENABLED(CONFIG_ARM64) && !is_hyp_mode_available()) ||
987 arch_timer_uses_ppi == ARCH_TIMER_VIRT_PPI)
988 arch_timer_read_counter = arch_counter_get_cntvct;
989 else
990 arch_timer_read_counter = arch_counter_get_cntpct;
991
992 clocksource_counter.archdata.vdso_direct = vdso_default;
993 } else {
994 arch_timer_read_counter = arch_counter_get_cntvct_mem;
995 }
996
997 if (!arch_counter_suspend_stop)
998 clocksource_counter.flags |= CLOCK_SOURCE_SUSPEND_NONSTOP;
999 start_count = arch_timer_read_counter();
1000 clocksource_register_hz(&clocksource_counter, arch_timer_rate);
1001 cyclecounter.mult = clocksource_counter.mult;
1002 cyclecounter.shift = clocksource_counter.shift;
1003 timecounter_init(&arch_timer_kvm_info.timecounter,
1004 &cyclecounter, start_count);
1005
1006 /* 56 bits minimum, so we assume worst case rollover */
1007 sched_clock_register(arch_timer_read_counter, 56, arch_timer_rate);
1008 }
1009
arch_timer_stop(struct clock_event_device * clk)1010 static void arch_timer_stop(struct clock_event_device *clk)
1011 {
1012 pr_debug("disable IRQ%d cpu #%d\n", clk->irq, smp_processor_id());
1013
1014 disable_percpu_irq(arch_timer_ppi[arch_timer_uses_ppi]);
1015 if (arch_timer_has_nonsecure_ppi())
1016 disable_percpu_irq(arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI]);
1017
1018 clk->set_state_shutdown(clk);
1019 }
1020
arch_timer_dying_cpu(unsigned int cpu)1021 static int arch_timer_dying_cpu(unsigned int cpu)
1022 {
1023 struct clock_event_device *clk = this_cpu_ptr(arch_timer_evt);
1024
1025 cpumask_clear_cpu(smp_processor_id(), &evtstrm_available);
1026
1027 arch_timer_stop(clk);
1028 return 0;
1029 }
1030
1031 #ifdef CONFIG_CPU_PM
1032 static DEFINE_PER_CPU(unsigned long, saved_cntkctl);
arch_timer_cpu_pm_notify(struct notifier_block * self,unsigned long action,void * hcpu)1033 static int arch_timer_cpu_pm_notify(struct notifier_block *self,
1034 unsigned long action, void *hcpu)
1035 {
1036 if (action == CPU_PM_ENTER) {
1037 __this_cpu_write(saved_cntkctl, arch_timer_get_cntkctl());
1038
1039 cpumask_clear_cpu(smp_processor_id(), &evtstrm_available);
1040 } else if (action == CPU_PM_ENTER_FAILED || action == CPU_PM_EXIT) {
1041 arch_timer_set_cntkctl(__this_cpu_read(saved_cntkctl));
1042
1043 if (elf_hwcap & HWCAP_EVTSTRM)
1044 cpumask_set_cpu(smp_processor_id(), &evtstrm_available);
1045 }
1046 return NOTIFY_OK;
1047 }
1048
1049 static struct notifier_block arch_timer_cpu_pm_notifier = {
1050 .notifier_call = arch_timer_cpu_pm_notify,
1051 };
1052
arch_timer_cpu_pm_init(void)1053 static int __init arch_timer_cpu_pm_init(void)
1054 {
1055 return cpu_pm_register_notifier(&arch_timer_cpu_pm_notifier);
1056 }
1057
arch_timer_cpu_pm_deinit(void)1058 static void __init arch_timer_cpu_pm_deinit(void)
1059 {
1060 WARN_ON(cpu_pm_unregister_notifier(&arch_timer_cpu_pm_notifier));
1061 }
1062
1063 #else
arch_timer_cpu_pm_init(void)1064 static int __init arch_timer_cpu_pm_init(void)
1065 {
1066 return 0;
1067 }
1068
arch_timer_cpu_pm_deinit(void)1069 static void __init arch_timer_cpu_pm_deinit(void)
1070 {
1071 }
1072 #endif
1073
arch_timer_register(void)1074 static int __init arch_timer_register(void)
1075 {
1076 int err;
1077 int ppi;
1078
1079 arch_timer_evt = alloc_percpu(struct clock_event_device);
1080 if (!arch_timer_evt) {
1081 err = -ENOMEM;
1082 goto out;
1083 }
1084
1085 ppi = arch_timer_ppi[arch_timer_uses_ppi];
1086 switch (arch_timer_uses_ppi) {
1087 case ARCH_TIMER_VIRT_PPI:
1088 err = request_percpu_irq(ppi, arch_timer_handler_virt,
1089 "arch_timer", arch_timer_evt);
1090 break;
1091 case ARCH_TIMER_PHYS_SECURE_PPI:
1092 case ARCH_TIMER_PHYS_NONSECURE_PPI:
1093 err = request_percpu_irq(ppi, arch_timer_handler_phys,
1094 "arch_timer", arch_timer_evt);
1095 if (!err && arch_timer_has_nonsecure_ppi()) {
1096 ppi = arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI];
1097 err = request_percpu_irq(ppi, arch_timer_handler_phys,
1098 "arch_timer", arch_timer_evt);
1099 if (err)
1100 free_percpu_irq(arch_timer_ppi[ARCH_TIMER_PHYS_SECURE_PPI],
1101 arch_timer_evt);
1102 }
1103 break;
1104 case ARCH_TIMER_HYP_PPI:
1105 err = request_percpu_irq(ppi, arch_timer_handler_phys,
1106 "arch_timer", arch_timer_evt);
1107 break;
1108 default:
1109 BUG();
1110 }
1111
1112 if (err) {
1113 pr_err("can't register interrupt %d (%d)\n", ppi, err);
1114 goto out_free;
1115 }
1116
1117 err = arch_timer_cpu_pm_init();
1118 if (err)
1119 goto out_unreg_notify;
1120
1121 /* Register and immediately configure the timer on the boot CPU */
1122 err = cpuhp_setup_state(CPUHP_AP_ARM_ARCH_TIMER_STARTING,
1123 "clockevents/arm/arch_timer:starting",
1124 arch_timer_starting_cpu, arch_timer_dying_cpu);
1125 if (err)
1126 goto out_unreg_cpupm;
1127 return 0;
1128
1129 out_unreg_cpupm:
1130 arch_timer_cpu_pm_deinit();
1131
1132 out_unreg_notify:
1133 free_percpu_irq(arch_timer_ppi[arch_timer_uses_ppi], arch_timer_evt);
1134 if (arch_timer_has_nonsecure_ppi())
1135 free_percpu_irq(arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI],
1136 arch_timer_evt);
1137
1138 out_free:
1139 free_percpu(arch_timer_evt);
1140 out:
1141 return err;
1142 }
1143
arch_timer_mem_register(void __iomem * base,unsigned int irq)1144 static int __init arch_timer_mem_register(void __iomem *base, unsigned int irq)
1145 {
1146 int ret;
1147 irq_handler_t func;
1148 struct arch_timer *t;
1149
1150 t = kzalloc(sizeof(*t), GFP_KERNEL);
1151 if (!t)
1152 return -ENOMEM;
1153
1154 t->base = base;
1155 t->evt.irq = irq;
1156 __arch_timer_setup(ARCH_TIMER_TYPE_MEM, &t->evt);
1157
1158 if (arch_timer_mem_use_virtual)
1159 func = arch_timer_handler_virt_mem;
1160 else
1161 func = arch_timer_handler_phys_mem;
1162
1163 ret = request_irq(irq, func, IRQF_TIMER, "arch_mem_timer", &t->evt);
1164 if (ret) {
1165 pr_err("Failed to request mem timer irq\n");
1166 kfree(t);
1167 }
1168
1169 return ret;
1170 }
1171
1172 static const struct of_device_id arch_timer_of_match[] __initconst = {
1173 { .compatible = "arm,armv7-timer", },
1174 { .compatible = "arm,armv8-timer", },
1175 {},
1176 };
1177
1178 static const struct of_device_id arch_timer_mem_of_match[] __initconst = {
1179 { .compatible = "arm,armv7-timer-mem", },
1180 {},
1181 };
1182
arch_timer_needs_of_probing(void)1183 static bool __init arch_timer_needs_of_probing(void)
1184 {
1185 struct device_node *dn;
1186 bool needs_probing = false;
1187 unsigned int mask = ARCH_TIMER_TYPE_CP15 | ARCH_TIMER_TYPE_MEM;
1188
1189 /* We have two timers, and both device-tree nodes are probed. */
1190 if ((arch_timers_present & mask) == mask)
1191 return false;
1192
1193 /*
1194 * Only one type of timer is probed,
1195 * check if we have another type of timer node in device-tree.
1196 */
1197 if (arch_timers_present & ARCH_TIMER_TYPE_CP15)
1198 dn = of_find_matching_node(NULL, arch_timer_mem_of_match);
1199 else
1200 dn = of_find_matching_node(NULL, arch_timer_of_match);
1201
1202 if (dn && of_device_is_available(dn))
1203 needs_probing = true;
1204
1205 of_node_put(dn);
1206
1207 return needs_probing;
1208 }
1209
arch_timer_common_init(void)1210 static int __init arch_timer_common_init(void)
1211 {
1212 arch_timer_banner(arch_timers_present);
1213 arch_counter_register(arch_timers_present);
1214 return arch_timer_arch_init();
1215 }
1216
1217 /**
1218 * arch_timer_select_ppi() - Select suitable PPI for the current system.
1219 *
1220 * If HYP mode is available, we know that the physical timer
1221 * has been configured to be accessible from PL1. Use it, so
1222 * that a guest can use the virtual timer instead.
1223 *
1224 * On ARMv8.1 with VH extensions, the kernel runs in HYP. VHE
1225 * accesses to CNTP_*_EL1 registers are silently redirected to
1226 * their CNTHP_*_EL2 counterparts, and use a different PPI
1227 * number.
1228 *
1229 * If no interrupt provided for virtual timer, we'll have to
1230 * stick to the physical timer. It'd better be accessible...
1231 * For arm64 we never use the secure interrupt.
1232 *
1233 * Return: a suitable PPI type for the current system.
1234 */
arch_timer_select_ppi(void)1235 static enum arch_timer_ppi_nr __init arch_timer_select_ppi(void)
1236 {
1237 if (is_kernel_in_hyp_mode())
1238 return ARCH_TIMER_HYP_PPI;
1239
1240 if (!is_hyp_mode_available() && arch_timer_ppi[ARCH_TIMER_VIRT_PPI])
1241 return ARCH_TIMER_VIRT_PPI;
1242
1243 if (IS_ENABLED(CONFIG_ARM64))
1244 return ARCH_TIMER_PHYS_NONSECURE_PPI;
1245
1246 return ARCH_TIMER_PHYS_SECURE_PPI;
1247 }
1248
arch_timer_of_init(struct device_node * np)1249 static int __init arch_timer_of_init(struct device_node *np)
1250 {
1251 int i, ret;
1252 u32 rate;
1253
1254 if (arch_timers_present & ARCH_TIMER_TYPE_CP15) {
1255 pr_warn("multiple nodes in dt, skipping\n");
1256 return 0;
1257 }
1258
1259 arch_timers_present |= ARCH_TIMER_TYPE_CP15;
1260 for (i = ARCH_TIMER_PHYS_SECURE_PPI; i < ARCH_TIMER_MAX_TIMER_PPI; i++)
1261 arch_timer_ppi[i] = irq_of_parse_and_map(np, i);
1262
1263 arch_timer_kvm_info.virtual_irq = arch_timer_ppi[ARCH_TIMER_VIRT_PPI];
1264
1265 rate = arch_timer_get_cntfrq();
1266 arch_timer_of_configure_rate(rate, np);
1267
1268 arch_timer_c3stop = !of_property_read_bool(np, "always-on");
1269
1270 /* Check for globally applicable workarounds */
1271 arch_timer_check_ool_workaround(ate_match_dt, np);
1272
1273 /*
1274 * If we cannot rely on firmware initializing the timer registers then
1275 * we should use the physical timers instead.
1276 */
1277 if (IS_ENABLED(CONFIG_ARM) &&
1278 of_property_read_bool(np, "arm,cpu-registers-not-fw-configured"))
1279 arch_timer_uses_ppi = ARCH_TIMER_PHYS_SECURE_PPI;
1280 else
1281 arch_timer_uses_ppi = arch_timer_select_ppi();
1282
1283 if (!arch_timer_ppi[arch_timer_uses_ppi]) {
1284 pr_err("No interrupt available, giving up\n");
1285 return -EINVAL;
1286 }
1287
1288 /* On some systems, the counter stops ticking when in suspend. */
1289 arch_counter_suspend_stop = of_property_read_bool(np,
1290 "arm,no-tick-in-suspend");
1291
1292 ret = arch_timer_register();
1293 if (ret)
1294 return ret;
1295
1296 if (arch_timer_needs_of_probing())
1297 return 0;
1298
1299 return arch_timer_common_init();
1300 }
1301 TIMER_OF_DECLARE(armv7_arch_timer, "arm,armv7-timer", arch_timer_of_init);
1302 TIMER_OF_DECLARE(armv8_arch_timer, "arm,armv8-timer", arch_timer_of_init);
1303
1304 static u32 __init
arch_timer_mem_frame_get_cntfrq(struct arch_timer_mem_frame * frame)1305 arch_timer_mem_frame_get_cntfrq(struct arch_timer_mem_frame *frame)
1306 {
1307 void __iomem *base;
1308 u32 rate;
1309
1310 base = ioremap(frame->cntbase, frame->size);
1311 if (!base) {
1312 pr_err("Unable to map frame @ %pa\n", &frame->cntbase);
1313 return 0;
1314 }
1315
1316 rate = readl_relaxed(base + CNTFRQ);
1317
1318 iounmap(base);
1319
1320 return rate;
1321 }
1322
1323 static struct arch_timer_mem_frame * __init
arch_timer_mem_find_best_frame(struct arch_timer_mem * timer_mem)1324 arch_timer_mem_find_best_frame(struct arch_timer_mem *timer_mem)
1325 {
1326 struct arch_timer_mem_frame *frame, *best_frame = NULL;
1327 void __iomem *cntctlbase;
1328 u32 cnttidr;
1329 int i;
1330
1331 cntctlbase = ioremap(timer_mem->cntctlbase, timer_mem->size);
1332 if (!cntctlbase) {
1333 pr_err("Can't map CNTCTLBase @ %pa\n",
1334 &timer_mem->cntctlbase);
1335 return NULL;
1336 }
1337
1338 cnttidr = readl_relaxed(cntctlbase + CNTTIDR);
1339
1340 /*
1341 * Try to find a virtual capable frame. Otherwise fall back to a
1342 * physical capable frame.
1343 */
1344 for (i = 0; i < ARCH_TIMER_MEM_MAX_FRAMES; i++) {
1345 u32 cntacr = CNTACR_RFRQ | CNTACR_RWPT | CNTACR_RPCT |
1346 CNTACR_RWVT | CNTACR_RVOFF | CNTACR_RVCT;
1347
1348 frame = &timer_mem->frame[i];
1349 if (!frame->valid)
1350 continue;
1351
1352 /* Try enabling everything, and see what sticks */
1353 writel_relaxed(cntacr, cntctlbase + CNTACR(i));
1354 cntacr = readl_relaxed(cntctlbase + CNTACR(i));
1355
1356 if ((cnttidr & CNTTIDR_VIRT(i)) &&
1357 !(~cntacr & (CNTACR_RWVT | CNTACR_RVCT))) {
1358 best_frame = frame;
1359 arch_timer_mem_use_virtual = true;
1360 break;
1361 }
1362
1363 if (~cntacr & (CNTACR_RWPT | CNTACR_RPCT))
1364 continue;
1365
1366 best_frame = frame;
1367 }
1368
1369 iounmap(cntctlbase);
1370
1371 return best_frame;
1372 }
1373
1374 static int __init
arch_timer_mem_frame_register(struct arch_timer_mem_frame * frame)1375 arch_timer_mem_frame_register(struct arch_timer_mem_frame *frame)
1376 {
1377 void __iomem *base;
1378 int ret, irq = 0;
1379
1380 if (arch_timer_mem_use_virtual)
1381 irq = frame->virt_irq;
1382 else
1383 irq = frame->phys_irq;
1384
1385 if (!irq) {
1386 pr_err("Frame missing %s irq.\n",
1387 arch_timer_mem_use_virtual ? "virt" : "phys");
1388 return -EINVAL;
1389 }
1390
1391 if (!request_mem_region(frame->cntbase, frame->size,
1392 "arch_mem_timer"))
1393 return -EBUSY;
1394
1395 base = ioremap(frame->cntbase, frame->size);
1396 if (!base) {
1397 pr_err("Can't map frame's registers\n");
1398 return -ENXIO;
1399 }
1400
1401 ret = arch_timer_mem_register(base, irq);
1402 if (ret) {
1403 iounmap(base);
1404 return ret;
1405 }
1406
1407 arch_counter_base = base;
1408 arch_timers_present |= ARCH_TIMER_TYPE_MEM;
1409
1410 return 0;
1411 }
1412
arch_timer_mem_of_init(struct device_node * np)1413 static int __init arch_timer_mem_of_init(struct device_node *np)
1414 {
1415 struct arch_timer_mem *timer_mem;
1416 struct arch_timer_mem_frame *frame;
1417 struct device_node *frame_node;
1418 struct resource res;
1419 int ret = -EINVAL;
1420 u32 rate;
1421
1422 timer_mem = kzalloc(sizeof(*timer_mem), GFP_KERNEL);
1423 if (!timer_mem)
1424 return -ENOMEM;
1425
1426 if (of_address_to_resource(np, 0, &res))
1427 goto out;
1428 timer_mem->cntctlbase = res.start;
1429 timer_mem->size = resource_size(&res);
1430
1431 for_each_available_child_of_node(np, frame_node) {
1432 u32 n;
1433 struct arch_timer_mem_frame *frame;
1434
1435 if (of_property_read_u32(frame_node, "frame-number", &n)) {
1436 pr_err(FW_BUG "Missing frame-number.\n");
1437 of_node_put(frame_node);
1438 goto out;
1439 }
1440 if (n >= ARCH_TIMER_MEM_MAX_FRAMES) {
1441 pr_err(FW_BUG "Wrong frame-number, only 0-%u are permitted.\n",
1442 ARCH_TIMER_MEM_MAX_FRAMES - 1);
1443 of_node_put(frame_node);
1444 goto out;
1445 }
1446 frame = &timer_mem->frame[n];
1447
1448 if (frame->valid) {
1449 pr_err(FW_BUG "Duplicated frame-number.\n");
1450 of_node_put(frame_node);
1451 goto out;
1452 }
1453
1454 if (of_address_to_resource(frame_node, 0, &res)) {
1455 of_node_put(frame_node);
1456 goto out;
1457 }
1458 frame->cntbase = res.start;
1459 frame->size = resource_size(&res);
1460
1461 frame->virt_irq = irq_of_parse_and_map(frame_node,
1462 ARCH_TIMER_VIRT_SPI);
1463 frame->phys_irq = irq_of_parse_and_map(frame_node,
1464 ARCH_TIMER_PHYS_SPI);
1465
1466 frame->valid = true;
1467 }
1468
1469 frame = arch_timer_mem_find_best_frame(timer_mem);
1470 if (!frame) {
1471 pr_err("Unable to find a suitable frame in timer @ %pa\n",
1472 &timer_mem->cntctlbase);
1473 ret = -EINVAL;
1474 goto out;
1475 }
1476
1477 rate = arch_timer_mem_frame_get_cntfrq(frame);
1478 arch_timer_of_configure_rate(rate, np);
1479
1480 ret = arch_timer_mem_frame_register(frame);
1481 if (!ret && !arch_timer_needs_of_probing())
1482 ret = arch_timer_common_init();
1483 out:
1484 kfree(timer_mem);
1485 return ret;
1486 }
1487 TIMER_OF_DECLARE(armv7_arch_timer_mem, "arm,armv7-timer-mem",
1488 arch_timer_mem_of_init);
1489
1490 #ifdef CONFIG_ACPI_GTDT
1491 static int __init
arch_timer_mem_verify_cntfrq(struct arch_timer_mem * timer_mem)1492 arch_timer_mem_verify_cntfrq(struct arch_timer_mem *timer_mem)
1493 {
1494 struct arch_timer_mem_frame *frame;
1495 u32 rate;
1496 int i;
1497
1498 for (i = 0; i < ARCH_TIMER_MEM_MAX_FRAMES; i++) {
1499 frame = &timer_mem->frame[i];
1500
1501 if (!frame->valid)
1502 continue;
1503
1504 rate = arch_timer_mem_frame_get_cntfrq(frame);
1505 if (rate == arch_timer_rate)
1506 continue;
1507
1508 pr_err(FW_BUG "CNTFRQ mismatch: frame @ %pa: (0x%08lx), CPU: (0x%08lx)\n",
1509 &frame->cntbase,
1510 (unsigned long)rate, (unsigned long)arch_timer_rate);
1511
1512 return -EINVAL;
1513 }
1514
1515 return 0;
1516 }
1517
arch_timer_mem_acpi_init(int platform_timer_count)1518 static int __init arch_timer_mem_acpi_init(int platform_timer_count)
1519 {
1520 struct arch_timer_mem *timers, *timer;
1521 struct arch_timer_mem_frame *frame, *best_frame = NULL;
1522 int timer_count, i, ret = 0;
1523
1524 timers = kcalloc(platform_timer_count, sizeof(*timers),
1525 GFP_KERNEL);
1526 if (!timers)
1527 return -ENOMEM;
1528
1529 ret = acpi_arch_timer_mem_init(timers, &timer_count);
1530 if (ret || !timer_count)
1531 goto out;
1532
1533 /*
1534 * While unlikely, it's theoretically possible that none of the frames
1535 * in a timer expose the combination of feature we want.
1536 */
1537 for (i = 0; i < timer_count; i++) {
1538 timer = &timers[i];
1539
1540 frame = arch_timer_mem_find_best_frame(timer);
1541 if (!best_frame)
1542 best_frame = frame;
1543
1544 ret = arch_timer_mem_verify_cntfrq(timer);
1545 if (ret) {
1546 pr_err("Disabling MMIO timers due to CNTFRQ mismatch\n");
1547 goto out;
1548 }
1549
1550 if (!best_frame) /* implies !frame */
1551 /*
1552 * Only complain about missing suitable frames if we
1553 * haven't already found one in a previous iteration.
1554 */
1555 pr_err("Unable to find a suitable frame in timer @ %pa\n",
1556 &timer->cntctlbase);
1557 }
1558
1559 if (best_frame)
1560 ret = arch_timer_mem_frame_register(best_frame);
1561 out:
1562 kfree(timers);
1563 return ret;
1564 }
1565
1566 /* Initialize per-processor generic timer and memory-mapped timer(if present) */
arch_timer_acpi_init(struct acpi_table_header * table)1567 static int __init arch_timer_acpi_init(struct acpi_table_header *table)
1568 {
1569 int ret, platform_timer_count;
1570
1571 if (arch_timers_present & ARCH_TIMER_TYPE_CP15) {
1572 pr_warn("already initialized, skipping\n");
1573 return -EINVAL;
1574 }
1575
1576 arch_timers_present |= ARCH_TIMER_TYPE_CP15;
1577
1578 ret = acpi_gtdt_init(table, &platform_timer_count);
1579 if (ret) {
1580 pr_err("Failed to init GTDT table.\n");
1581 return ret;
1582 }
1583
1584 arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI] =
1585 acpi_gtdt_map_ppi(ARCH_TIMER_PHYS_NONSECURE_PPI);
1586
1587 arch_timer_ppi[ARCH_TIMER_VIRT_PPI] =
1588 acpi_gtdt_map_ppi(ARCH_TIMER_VIRT_PPI);
1589
1590 arch_timer_ppi[ARCH_TIMER_HYP_PPI] =
1591 acpi_gtdt_map_ppi(ARCH_TIMER_HYP_PPI);
1592
1593 arch_timer_kvm_info.virtual_irq = arch_timer_ppi[ARCH_TIMER_VIRT_PPI];
1594
1595 /*
1596 * When probing via ACPI, we have no mechanism to override the sysreg
1597 * CNTFRQ value. This *must* be correct.
1598 */
1599 arch_timer_rate = arch_timer_get_cntfrq();
1600 if (!arch_timer_rate) {
1601 pr_err(FW_BUG "frequency not available.\n");
1602 return -EINVAL;
1603 }
1604
1605 arch_timer_uses_ppi = arch_timer_select_ppi();
1606 if (!arch_timer_ppi[arch_timer_uses_ppi]) {
1607 pr_err("No interrupt available, giving up\n");
1608 return -EINVAL;
1609 }
1610
1611 /* Always-on capability */
1612 arch_timer_c3stop = acpi_gtdt_c3stop(arch_timer_uses_ppi);
1613
1614 /* Check for globally applicable workarounds */
1615 arch_timer_check_ool_workaround(ate_match_acpi_oem_info, table);
1616
1617 ret = arch_timer_register();
1618 if (ret)
1619 return ret;
1620
1621 if (platform_timer_count &&
1622 arch_timer_mem_acpi_init(platform_timer_count))
1623 pr_err("Failed to initialize memory-mapped timer.\n");
1624
1625 return arch_timer_common_init();
1626 }
1627 TIMER_ACPI_DECLARE(arch_timer, ACPI_SIG_GTDT, arch_timer_acpi_init);
1628 #endif
1629