• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * SuperH Timer Support - CMT
3  *
4  *  Copyright (C) 2008 Magnus Damm
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License as published by
8  * the Free Software Foundation; either version 2 of the License
9  *
10  * This program is distributed in the hope that it will be useful,
11  * but WITHOUT ANY WARRANTY; without even the implied warranty of
12  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13  * GNU General Public License for more details.
14  */
15 
16 #include <linux/clk.h>
17 #include <linux/clockchips.h>
18 #include <linux/clocksource.h>
19 #include <linux/delay.h>
20 #include <linux/err.h>
21 #include <linux/init.h>
22 #include <linux/interrupt.h>
23 #include <linux/io.h>
24 #include <linux/ioport.h>
25 #include <linux/irq.h>
26 #include <linux/module.h>
27 #include <linux/of.h>
28 #include <linux/of_device.h>
29 #include <linux/platform_device.h>
30 #include <linux/pm_domain.h>
31 #include <linux/pm_runtime.h>
32 #include <linux/sh_timer.h>
33 #include <linux/slab.h>
34 #include <linux/spinlock.h>
35 
36 struct sh_cmt_device;
37 
38 /*
39  * The CMT comes in 5 different identified flavours, depending not only on the
40  * SoC but also on the particular instance. The following table lists the main
41  * characteristics of those flavours.
42  *
43  *			16B	32B	32B-F	48B	R-Car Gen2
44  * -----------------------------------------------------------------------------
45  * Channels		2	1/4	1	6	2/8
46  * Control Width	16	16	16	16	32
47  * Counter Width	16	32	32	32/48	32/48
48  * Shared Start/Stop	Y	Y	Y	Y	N
49  *
50  * The r8a73a4 / R-Car Gen2 version has a per-channel start/stop register
51  * located in the channel registers block. All other versions have a shared
52  * start/stop register located in the global space.
53  *
54  * Channels are indexed from 0 to N-1 in the documentation. The channel index
55  * infers the start/stop bit position in the control register and the channel
56  * registers block address. Some CMT instances have a subset of channels
57  * available, in which case the index in the documentation doesn't match the
58  * "real" index as implemented in hardware. This is for instance the case with
59  * CMT0 on r8a7740, which is a 32-bit variant with a single channel numbered 0
60  * in the documentation but using start/stop bit 5 and having its registers
61  * block at 0x60.
62  *
63  * Similarly CMT0 on r8a73a4, r8a7790 and r8a7791, while implementing 32-bit
64  * channels only, is a 48-bit gen2 CMT with the 48-bit channels unavailable.
65  */
66 
67 enum sh_cmt_model {
68 	SH_CMT_16BIT,
69 	SH_CMT_32BIT,
70 	SH_CMT_48BIT,
71 	SH_CMT0_RCAR_GEN2,
72 	SH_CMT1_RCAR_GEN2,
73 };
74 
75 struct sh_cmt_info {
76 	enum sh_cmt_model model;
77 
78 	unsigned int channels_mask;
79 
80 	unsigned long width; /* 16 or 32 bit version of hardware block */
81 	u32 overflow_bit;
82 	u32 clear_bits;
83 
84 	/* callbacks for CMSTR and CMCSR access */
85 	u32 (*read_control)(void __iomem *base, unsigned long offs);
86 	void (*write_control)(void __iomem *base, unsigned long offs,
87 			      u32 value);
88 
89 	/* callbacks for CMCNT and CMCOR access */
90 	u32 (*read_count)(void __iomem *base, unsigned long offs);
91 	void (*write_count)(void __iomem *base, unsigned long offs, u32 value);
92 };
93 
94 struct sh_cmt_channel {
95 	struct sh_cmt_device *cmt;
96 
97 	unsigned int index;	/* Index in the documentation */
98 	unsigned int hwidx;	/* Real hardware index */
99 
100 	void __iomem *iostart;
101 	void __iomem *ioctrl;
102 
103 	unsigned int timer_bit;
104 	unsigned long flags;
105 	u32 match_value;
106 	u32 next_match_value;
107 	u32 max_match_value;
108 	raw_spinlock_t lock;
109 	struct clock_event_device ced;
110 	struct clocksource cs;
111 	u64 total_cycles;
112 	bool cs_enabled;
113 };
114 
115 struct sh_cmt_device {
116 	struct platform_device *pdev;
117 
118 	const struct sh_cmt_info *info;
119 
120 	void __iomem *mapbase;
121 	struct clk *clk;
122 	unsigned long rate;
123 
124 	raw_spinlock_t lock; /* Protect the shared start/stop register */
125 
126 	struct sh_cmt_channel *channels;
127 	unsigned int num_channels;
128 	unsigned int hw_channels;
129 
130 	bool has_clockevent;
131 	bool has_clocksource;
132 };
133 
134 #define SH_CMT16_CMCSR_CMF		(1 << 7)
135 #define SH_CMT16_CMCSR_CMIE		(1 << 6)
136 #define SH_CMT16_CMCSR_CKS8		(0 << 0)
137 #define SH_CMT16_CMCSR_CKS32		(1 << 0)
138 #define SH_CMT16_CMCSR_CKS128		(2 << 0)
139 #define SH_CMT16_CMCSR_CKS512		(3 << 0)
140 #define SH_CMT16_CMCSR_CKS_MASK		(3 << 0)
141 
142 #define SH_CMT32_CMCSR_CMF		(1 << 15)
143 #define SH_CMT32_CMCSR_OVF		(1 << 14)
144 #define SH_CMT32_CMCSR_WRFLG		(1 << 13)
145 #define SH_CMT32_CMCSR_STTF		(1 << 12)
146 #define SH_CMT32_CMCSR_STPF		(1 << 11)
147 #define SH_CMT32_CMCSR_SSIE		(1 << 10)
148 #define SH_CMT32_CMCSR_CMS		(1 << 9)
149 #define SH_CMT32_CMCSR_CMM		(1 << 8)
150 #define SH_CMT32_CMCSR_CMTOUT_IE	(1 << 7)
151 #define SH_CMT32_CMCSR_CMR_NONE		(0 << 4)
152 #define SH_CMT32_CMCSR_CMR_DMA		(1 << 4)
153 #define SH_CMT32_CMCSR_CMR_IRQ		(2 << 4)
154 #define SH_CMT32_CMCSR_CMR_MASK		(3 << 4)
155 #define SH_CMT32_CMCSR_DBGIVD		(1 << 3)
156 #define SH_CMT32_CMCSR_CKS_RCLK8	(4 << 0)
157 #define SH_CMT32_CMCSR_CKS_RCLK32	(5 << 0)
158 #define SH_CMT32_CMCSR_CKS_RCLK128	(6 << 0)
159 #define SH_CMT32_CMCSR_CKS_RCLK1	(7 << 0)
160 #define SH_CMT32_CMCSR_CKS_MASK		(7 << 0)
161 
sh_cmt_read16(void __iomem * base,unsigned long offs)162 static u32 sh_cmt_read16(void __iomem *base, unsigned long offs)
163 {
164 	return ioread16(base + (offs << 1));
165 }
166 
sh_cmt_read32(void __iomem * base,unsigned long offs)167 static u32 sh_cmt_read32(void __iomem *base, unsigned long offs)
168 {
169 	return ioread32(base + (offs << 2));
170 }
171 
sh_cmt_write16(void __iomem * base,unsigned long offs,u32 value)172 static void sh_cmt_write16(void __iomem *base, unsigned long offs, u32 value)
173 {
174 	iowrite16(value, base + (offs << 1));
175 }
176 
sh_cmt_write32(void __iomem * base,unsigned long offs,u32 value)177 static void sh_cmt_write32(void __iomem *base, unsigned long offs, u32 value)
178 {
179 	iowrite32(value, base + (offs << 2));
180 }
181 
182 static const struct sh_cmt_info sh_cmt_info[] = {
183 	[SH_CMT_16BIT] = {
184 		.model = SH_CMT_16BIT,
185 		.width = 16,
186 		.overflow_bit = SH_CMT16_CMCSR_CMF,
187 		.clear_bits = ~SH_CMT16_CMCSR_CMF,
188 		.read_control = sh_cmt_read16,
189 		.write_control = sh_cmt_write16,
190 		.read_count = sh_cmt_read16,
191 		.write_count = sh_cmt_write16,
192 	},
193 	[SH_CMT_32BIT] = {
194 		.model = SH_CMT_32BIT,
195 		.width = 32,
196 		.overflow_bit = SH_CMT32_CMCSR_CMF,
197 		.clear_bits = ~(SH_CMT32_CMCSR_CMF | SH_CMT32_CMCSR_OVF),
198 		.read_control = sh_cmt_read16,
199 		.write_control = sh_cmt_write16,
200 		.read_count = sh_cmt_read32,
201 		.write_count = sh_cmt_write32,
202 	},
203 	[SH_CMT_48BIT] = {
204 		.model = SH_CMT_48BIT,
205 		.channels_mask = 0x3f,
206 		.width = 32,
207 		.overflow_bit = SH_CMT32_CMCSR_CMF,
208 		.clear_bits = ~(SH_CMT32_CMCSR_CMF | SH_CMT32_CMCSR_OVF),
209 		.read_control = sh_cmt_read32,
210 		.write_control = sh_cmt_write32,
211 		.read_count = sh_cmt_read32,
212 		.write_count = sh_cmt_write32,
213 	},
214 	[SH_CMT0_RCAR_GEN2] = {
215 		.model = SH_CMT0_RCAR_GEN2,
216 		.channels_mask = 0x60,
217 		.width = 32,
218 		.overflow_bit = SH_CMT32_CMCSR_CMF,
219 		.clear_bits = ~(SH_CMT32_CMCSR_CMF | SH_CMT32_CMCSR_OVF),
220 		.read_control = sh_cmt_read32,
221 		.write_control = sh_cmt_write32,
222 		.read_count = sh_cmt_read32,
223 		.write_count = sh_cmt_write32,
224 	},
225 	[SH_CMT1_RCAR_GEN2] = {
226 		.model = SH_CMT1_RCAR_GEN2,
227 		.channels_mask = 0xff,
228 		.width = 32,
229 		.overflow_bit = SH_CMT32_CMCSR_CMF,
230 		.clear_bits = ~(SH_CMT32_CMCSR_CMF | SH_CMT32_CMCSR_OVF),
231 		.read_control = sh_cmt_read32,
232 		.write_control = sh_cmt_write32,
233 		.read_count = sh_cmt_read32,
234 		.write_count = sh_cmt_write32,
235 	},
236 };
237 
238 #define CMCSR 0 /* channel register */
239 #define CMCNT 1 /* channel register */
240 #define CMCOR 2 /* channel register */
241 
sh_cmt_read_cmstr(struct sh_cmt_channel * ch)242 static inline u32 sh_cmt_read_cmstr(struct sh_cmt_channel *ch)
243 {
244 	if (ch->iostart)
245 		return ch->cmt->info->read_control(ch->iostart, 0);
246 	else
247 		return ch->cmt->info->read_control(ch->cmt->mapbase, 0);
248 }
249 
sh_cmt_write_cmstr(struct sh_cmt_channel * ch,u32 value)250 static inline void sh_cmt_write_cmstr(struct sh_cmt_channel *ch, u32 value)
251 {
252 	if (ch->iostart)
253 		ch->cmt->info->write_control(ch->iostart, 0, value);
254 	else
255 		ch->cmt->info->write_control(ch->cmt->mapbase, 0, value);
256 }
257 
sh_cmt_read_cmcsr(struct sh_cmt_channel * ch)258 static inline u32 sh_cmt_read_cmcsr(struct sh_cmt_channel *ch)
259 {
260 	return ch->cmt->info->read_control(ch->ioctrl, CMCSR);
261 }
262 
sh_cmt_write_cmcsr(struct sh_cmt_channel * ch,u32 value)263 static inline void sh_cmt_write_cmcsr(struct sh_cmt_channel *ch, u32 value)
264 {
265 	ch->cmt->info->write_control(ch->ioctrl, CMCSR, value);
266 }
267 
sh_cmt_read_cmcnt(struct sh_cmt_channel * ch)268 static inline u32 sh_cmt_read_cmcnt(struct sh_cmt_channel *ch)
269 {
270 	return ch->cmt->info->read_count(ch->ioctrl, CMCNT);
271 }
272 
sh_cmt_write_cmcnt(struct sh_cmt_channel * ch,u32 value)273 static inline void sh_cmt_write_cmcnt(struct sh_cmt_channel *ch, u32 value)
274 {
275 	ch->cmt->info->write_count(ch->ioctrl, CMCNT, value);
276 }
277 
sh_cmt_write_cmcor(struct sh_cmt_channel * ch,u32 value)278 static inline void sh_cmt_write_cmcor(struct sh_cmt_channel *ch, u32 value)
279 {
280 	ch->cmt->info->write_count(ch->ioctrl, CMCOR, value);
281 }
282 
sh_cmt_get_counter(struct sh_cmt_channel * ch,u32 * has_wrapped)283 static u32 sh_cmt_get_counter(struct sh_cmt_channel *ch, u32 *has_wrapped)
284 {
285 	u32 v1, v2, v3;
286 	u32 o1, o2;
287 
288 	o1 = sh_cmt_read_cmcsr(ch) & ch->cmt->info->overflow_bit;
289 
290 	/* Make sure the timer value is stable. Stolen from acpi_pm.c */
291 	do {
292 		o2 = o1;
293 		v1 = sh_cmt_read_cmcnt(ch);
294 		v2 = sh_cmt_read_cmcnt(ch);
295 		v3 = sh_cmt_read_cmcnt(ch);
296 		o1 = sh_cmt_read_cmcsr(ch) & ch->cmt->info->overflow_bit;
297 	} while (unlikely((o1 != o2) || (v1 > v2 && v1 < v3)
298 			  || (v2 > v3 && v2 < v1) || (v3 > v1 && v3 < v2)));
299 
300 	*has_wrapped = o1;
301 	return v2;
302 }
303 
sh_cmt_start_stop_ch(struct sh_cmt_channel * ch,int start)304 static void sh_cmt_start_stop_ch(struct sh_cmt_channel *ch, int start)
305 {
306 	unsigned long flags;
307 	u32 value;
308 
309 	/* start stop register shared by multiple timer channels */
310 	raw_spin_lock_irqsave(&ch->cmt->lock, flags);
311 	value = sh_cmt_read_cmstr(ch);
312 
313 	if (start)
314 		value |= 1 << ch->timer_bit;
315 	else
316 		value &= ~(1 << ch->timer_bit);
317 
318 	sh_cmt_write_cmstr(ch, value);
319 	raw_spin_unlock_irqrestore(&ch->cmt->lock, flags);
320 }
321 
sh_cmt_enable(struct sh_cmt_channel * ch)322 static int sh_cmt_enable(struct sh_cmt_channel *ch)
323 {
324 	int k, ret;
325 
326 	pm_runtime_get_sync(&ch->cmt->pdev->dev);
327 	dev_pm_syscore_device(&ch->cmt->pdev->dev, true);
328 
329 	/* enable clock */
330 	ret = clk_enable(ch->cmt->clk);
331 	if (ret) {
332 		dev_err(&ch->cmt->pdev->dev, "ch%u: cannot enable clock\n",
333 			ch->index);
334 		goto err0;
335 	}
336 
337 	/* make sure channel is disabled */
338 	sh_cmt_start_stop_ch(ch, 0);
339 
340 	/* configure channel, periodic mode and maximum timeout */
341 	if (ch->cmt->info->width == 16) {
342 		sh_cmt_write_cmcsr(ch, SH_CMT16_CMCSR_CMIE |
343 				   SH_CMT16_CMCSR_CKS512);
344 	} else {
345 		sh_cmt_write_cmcsr(ch, SH_CMT32_CMCSR_CMM |
346 				   SH_CMT32_CMCSR_CMTOUT_IE |
347 				   SH_CMT32_CMCSR_CMR_IRQ |
348 				   SH_CMT32_CMCSR_CKS_RCLK8);
349 	}
350 
351 	sh_cmt_write_cmcor(ch, 0xffffffff);
352 	sh_cmt_write_cmcnt(ch, 0);
353 
354 	/*
355 	 * According to the sh73a0 user's manual, as CMCNT can be operated
356 	 * only by the RCLK (Pseudo 32 KHz), there's one restriction on
357 	 * modifying CMCNT register; two RCLK cycles are necessary before
358 	 * this register is either read or any modification of the value
359 	 * it holds is reflected in the LSI's actual operation.
360 	 *
361 	 * While at it, we're supposed to clear out the CMCNT as of this
362 	 * moment, so make sure it's processed properly here.  This will
363 	 * take RCLKx2 at maximum.
364 	 */
365 	for (k = 0; k < 100; k++) {
366 		if (!sh_cmt_read_cmcnt(ch))
367 			break;
368 		udelay(1);
369 	}
370 
371 	if (sh_cmt_read_cmcnt(ch)) {
372 		dev_err(&ch->cmt->pdev->dev, "ch%u: cannot clear CMCNT\n",
373 			ch->index);
374 		ret = -ETIMEDOUT;
375 		goto err1;
376 	}
377 
378 	/* enable channel */
379 	sh_cmt_start_stop_ch(ch, 1);
380 	return 0;
381  err1:
382 	/* stop clock */
383 	clk_disable(ch->cmt->clk);
384 
385  err0:
386 	return ret;
387 }
388 
sh_cmt_disable(struct sh_cmt_channel * ch)389 static void sh_cmt_disable(struct sh_cmt_channel *ch)
390 {
391 	/* disable channel */
392 	sh_cmt_start_stop_ch(ch, 0);
393 
394 	/* disable interrupts in CMT block */
395 	sh_cmt_write_cmcsr(ch, 0);
396 
397 	/* stop clock */
398 	clk_disable(ch->cmt->clk);
399 
400 	dev_pm_syscore_device(&ch->cmt->pdev->dev, false);
401 	pm_runtime_put(&ch->cmt->pdev->dev);
402 }
403 
404 /* private flags */
405 #define FLAG_CLOCKEVENT (1 << 0)
406 #define FLAG_CLOCKSOURCE (1 << 1)
407 #define FLAG_REPROGRAM (1 << 2)
408 #define FLAG_SKIPEVENT (1 << 3)
409 #define FLAG_IRQCONTEXT (1 << 4)
410 
sh_cmt_clock_event_program_verify(struct sh_cmt_channel * ch,int absolute)411 static void sh_cmt_clock_event_program_verify(struct sh_cmt_channel *ch,
412 					      int absolute)
413 {
414 	u32 value = ch->next_match_value;
415 	u32 new_match;
416 	u32 delay = 0;
417 	u32 now = 0;
418 	u32 has_wrapped;
419 
420 	now = sh_cmt_get_counter(ch, &has_wrapped);
421 	ch->flags |= FLAG_REPROGRAM; /* force reprogram */
422 
423 	if (has_wrapped) {
424 		/* we're competing with the interrupt handler.
425 		 *  -> let the interrupt handler reprogram the timer.
426 		 *  -> interrupt number two handles the event.
427 		 */
428 		ch->flags |= FLAG_SKIPEVENT;
429 		return;
430 	}
431 
432 	if (absolute)
433 		now = 0;
434 
435 	do {
436 		/* reprogram the timer hardware,
437 		 * but don't save the new match value yet.
438 		 */
439 		new_match = now + value + delay;
440 		if (new_match > ch->max_match_value)
441 			new_match = ch->max_match_value;
442 
443 		sh_cmt_write_cmcor(ch, new_match);
444 
445 		now = sh_cmt_get_counter(ch, &has_wrapped);
446 		if (has_wrapped && (new_match > ch->match_value)) {
447 			/* we are changing to a greater match value,
448 			 * so this wrap must be caused by the counter
449 			 * matching the old value.
450 			 * -> first interrupt reprograms the timer.
451 			 * -> interrupt number two handles the event.
452 			 */
453 			ch->flags |= FLAG_SKIPEVENT;
454 			break;
455 		}
456 
457 		if (has_wrapped) {
458 			/* we are changing to a smaller match value,
459 			 * so the wrap must be caused by the counter
460 			 * matching the new value.
461 			 * -> save programmed match value.
462 			 * -> let isr handle the event.
463 			 */
464 			ch->match_value = new_match;
465 			break;
466 		}
467 
468 		/* be safe: verify hardware settings */
469 		if (now < new_match) {
470 			/* timer value is below match value, all good.
471 			 * this makes sure we won't miss any match events.
472 			 * -> save programmed match value.
473 			 * -> let isr handle the event.
474 			 */
475 			ch->match_value = new_match;
476 			break;
477 		}
478 
479 		/* the counter has reached a value greater
480 		 * than our new match value. and since the
481 		 * has_wrapped flag isn't set we must have
482 		 * programmed a too close event.
483 		 * -> increase delay and retry.
484 		 */
485 		if (delay)
486 			delay <<= 1;
487 		else
488 			delay = 1;
489 
490 		if (!delay)
491 			dev_warn(&ch->cmt->pdev->dev, "ch%u: too long delay\n",
492 				 ch->index);
493 
494 	} while (delay);
495 }
496 
__sh_cmt_set_next(struct sh_cmt_channel * ch,unsigned long delta)497 static void __sh_cmt_set_next(struct sh_cmt_channel *ch, unsigned long delta)
498 {
499 	if (delta > ch->max_match_value)
500 		dev_warn(&ch->cmt->pdev->dev, "ch%u: delta out of range\n",
501 			 ch->index);
502 
503 	ch->next_match_value = delta;
504 	sh_cmt_clock_event_program_verify(ch, 0);
505 }
506 
sh_cmt_set_next(struct sh_cmt_channel * ch,unsigned long delta)507 static void sh_cmt_set_next(struct sh_cmt_channel *ch, unsigned long delta)
508 {
509 	unsigned long flags;
510 
511 	raw_spin_lock_irqsave(&ch->lock, flags);
512 	__sh_cmt_set_next(ch, delta);
513 	raw_spin_unlock_irqrestore(&ch->lock, flags);
514 }
515 
sh_cmt_interrupt(int irq,void * dev_id)516 static irqreturn_t sh_cmt_interrupt(int irq, void *dev_id)
517 {
518 	struct sh_cmt_channel *ch = dev_id;
519 
520 	/* clear flags */
521 	sh_cmt_write_cmcsr(ch, sh_cmt_read_cmcsr(ch) &
522 			   ch->cmt->info->clear_bits);
523 
524 	/* update clock source counter to begin with if enabled
525 	 * the wrap flag should be cleared by the timer specific
526 	 * isr before we end up here.
527 	 */
528 	if (ch->flags & FLAG_CLOCKSOURCE)
529 		ch->total_cycles += ch->match_value + 1;
530 
531 	if (!(ch->flags & FLAG_REPROGRAM))
532 		ch->next_match_value = ch->max_match_value;
533 
534 	ch->flags |= FLAG_IRQCONTEXT;
535 
536 	if (ch->flags & FLAG_CLOCKEVENT) {
537 		if (!(ch->flags & FLAG_SKIPEVENT)) {
538 			if (clockevent_state_oneshot(&ch->ced)) {
539 				ch->next_match_value = ch->max_match_value;
540 				ch->flags |= FLAG_REPROGRAM;
541 			}
542 
543 			ch->ced.event_handler(&ch->ced);
544 		}
545 	}
546 
547 	ch->flags &= ~FLAG_SKIPEVENT;
548 
549 	if (ch->flags & FLAG_REPROGRAM) {
550 		ch->flags &= ~FLAG_REPROGRAM;
551 		sh_cmt_clock_event_program_verify(ch, 1);
552 
553 		if (ch->flags & FLAG_CLOCKEVENT)
554 			if ((clockevent_state_shutdown(&ch->ced))
555 			    || (ch->match_value == ch->next_match_value))
556 				ch->flags &= ~FLAG_REPROGRAM;
557 	}
558 
559 	ch->flags &= ~FLAG_IRQCONTEXT;
560 
561 	return IRQ_HANDLED;
562 }
563 
sh_cmt_start(struct sh_cmt_channel * ch,unsigned long flag)564 static int sh_cmt_start(struct sh_cmt_channel *ch, unsigned long flag)
565 {
566 	int ret = 0;
567 	unsigned long flags;
568 
569 	raw_spin_lock_irqsave(&ch->lock, flags);
570 
571 	if (!(ch->flags & (FLAG_CLOCKEVENT | FLAG_CLOCKSOURCE)))
572 		ret = sh_cmt_enable(ch);
573 
574 	if (ret)
575 		goto out;
576 	ch->flags |= flag;
577 
578 	/* setup timeout if no clockevent */
579 	if ((flag == FLAG_CLOCKSOURCE) && (!(ch->flags & FLAG_CLOCKEVENT)))
580 		__sh_cmt_set_next(ch, ch->max_match_value);
581  out:
582 	raw_spin_unlock_irqrestore(&ch->lock, flags);
583 
584 	return ret;
585 }
586 
sh_cmt_stop(struct sh_cmt_channel * ch,unsigned long flag)587 static void sh_cmt_stop(struct sh_cmt_channel *ch, unsigned long flag)
588 {
589 	unsigned long flags;
590 	unsigned long f;
591 
592 	raw_spin_lock_irqsave(&ch->lock, flags);
593 
594 	f = ch->flags & (FLAG_CLOCKEVENT | FLAG_CLOCKSOURCE);
595 	ch->flags &= ~flag;
596 
597 	if (f && !(ch->flags & (FLAG_CLOCKEVENT | FLAG_CLOCKSOURCE)))
598 		sh_cmt_disable(ch);
599 
600 	/* adjust the timeout to maximum if only clocksource left */
601 	if ((flag == FLAG_CLOCKEVENT) && (ch->flags & FLAG_CLOCKSOURCE))
602 		__sh_cmt_set_next(ch, ch->max_match_value);
603 
604 	raw_spin_unlock_irqrestore(&ch->lock, flags);
605 }
606 
cs_to_sh_cmt(struct clocksource * cs)607 static struct sh_cmt_channel *cs_to_sh_cmt(struct clocksource *cs)
608 {
609 	return container_of(cs, struct sh_cmt_channel, cs);
610 }
611 
sh_cmt_clocksource_read(struct clocksource * cs)612 static u64 sh_cmt_clocksource_read(struct clocksource *cs)
613 {
614 	struct sh_cmt_channel *ch = cs_to_sh_cmt(cs);
615 	unsigned long flags;
616 	u32 has_wrapped;
617 	u64 value;
618 	u32 raw;
619 
620 	raw_spin_lock_irqsave(&ch->lock, flags);
621 	value = ch->total_cycles;
622 	raw = sh_cmt_get_counter(ch, &has_wrapped);
623 
624 	if (unlikely(has_wrapped))
625 		raw += ch->match_value + 1;
626 	raw_spin_unlock_irqrestore(&ch->lock, flags);
627 
628 	return value + raw;
629 }
630 
sh_cmt_clocksource_enable(struct clocksource * cs)631 static int sh_cmt_clocksource_enable(struct clocksource *cs)
632 {
633 	int ret;
634 	struct sh_cmt_channel *ch = cs_to_sh_cmt(cs);
635 
636 	WARN_ON(ch->cs_enabled);
637 
638 	ch->total_cycles = 0;
639 
640 	ret = sh_cmt_start(ch, FLAG_CLOCKSOURCE);
641 	if (!ret)
642 		ch->cs_enabled = true;
643 
644 	return ret;
645 }
646 
sh_cmt_clocksource_disable(struct clocksource * cs)647 static void sh_cmt_clocksource_disable(struct clocksource *cs)
648 {
649 	struct sh_cmt_channel *ch = cs_to_sh_cmt(cs);
650 
651 	WARN_ON(!ch->cs_enabled);
652 
653 	sh_cmt_stop(ch, FLAG_CLOCKSOURCE);
654 	ch->cs_enabled = false;
655 }
656 
sh_cmt_clocksource_suspend(struct clocksource * cs)657 static void sh_cmt_clocksource_suspend(struct clocksource *cs)
658 {
659 	struct sh_cmt_channel *ch = cs_to_sh_cmt(cs);
660 
661 	if (!ch->cs_enabled)
662 		return;
663 
664 	sh_cmt_stop(ch, FLAG_CLOCKSOURCE);
665 	pm_genpd_syscore_poweroff(&ch->cmt->pdev->dev);
666 }
667 
sh_cmt_clocksource_resume(struct clocksource * cs)668 static void sh_cmt_clocksource_resume(struct clocksource *cs)
669 {
670 	struct sh_cmt_channel *ch = cs_to_sh_cmt(cs);
671 
672 	if (!ch->cs_enabled)
673 		return;
674 
675 	pm_genpd_syscore_poweron(&ch->cmt->pdev->dev);
676 	sh_cmt_start(ch, FLAG_CLOCKSOURCE);
677 }
678 
sh_cmt_register_clocksource(struct sh_cmt_channel * ch,const char * name)679 static int sh_cmt_register_clocksource(struct sh_cmt_channel *ch,
680 				       const char *name)
681 {
682 	struct clocksource *cs = &ch->cs;
683 
684 	cs->name = name;
685 	cs->rating = 125;
686 	cs->read = sh_cmt_clocksource_read;
687 	cs->enable = sh_cmt_clocksource_enable;
688 	cs->disable = sh_cmt_clocksource_disable;
689 	cs->suspend = sh_cmt_clocksource_suspend;
690 	cs->resume = sh_cmt_clocksource_resume;
691 	cs->mask = CLOCKSOURCE_MASK(sizeof(u64) * 8);
692 	cs->flags = CLOCK_SOURCE_IS_CONTINUOUS;
693 
694 	dev_info(&ch->cmt->pdev->dev, "ch%u: used as clock source\n",
695 		 ch->index);
696 
697 	clocksource_register_hz(cs, ch->cmt->rate);
698 	return 0;
699 }
700 
ced_to_sh_cmt(struct clock_event_device * ced)701 static struct sh_cmt_channel *ced_to_sh_cmt(struct clock_event_device *ced)
702 {
703 	return container_of(ced, struct sh_cmt_channel, ced);
704 }
705 
sh_cmt_clock_event_start(struct sh_cmt_channel * ch,int periodic)706 static void sh_cmt_clock_event_start(struct sh_cmt_channel *ch, int periodic)
707 {
708 	sh_cmt_start(ch, FLAG_CLOCKEVENT);
709 
710 	if (periodic)
711 		sh_cmt_set_next(ch, ((ch->cmt->rate + HZ/2) / HZ) - 1);
712 	else
713 		sh_cmt_set_next(ch, ch->max_match_value);
714 }
715 
sh_cmt_clock_event_shutdown(struct clock_event_device * ced)716 static int sh_cmt_clock_event_shutdown(struct clock_event_device *ced)
717 {
718 	struct sh_cmt_channel *ch = ced_to_sh_cmt(ced);
719 
720 	sh_cmt_stop(ch, FLAG_CLOCKEVENT);
721 	return 0;
722 }
723 
sh_cmt_clock_event_set_state(struct clock_event_device * ced,int periodic)724 static int sh_cmt_clock_event_set_state(struct clock_event_device *ced,
725 					int periodic)
726 {
727 	struct sh_cmt_channel *ch = ced_to_sh_cmt(ced);
728 
729 	/* deal with old setting first */
730 	if (clockevent_state_oneshot(ced) || clockevent_state_periodic(ced))
731 		sh_cmt_stop(ch, FLAG_CLOCKEVENT);
732 
733 	dev_info(&ch->cmt->pdev->dev, "ch%u: used for %s clock events\n",
734 		 ch->index, periodic ? "periodic" : "oneshot");
735 	sh_cmt_clock_event_start(ch, periodic);
736 	return 0;
737 }
738 
sh_cmt_clock_event_set_oneshot(struct clock_event_device * ced)739 static int sh_cmt_clock_event_set_oneshot(struct clock_event_device *ced)
740 {
741 	return sh_cmt_clock_event_set_state(ced, 0);
742 }
743 
sh_cmt_clock_event_set_periodic(struct clock_event_device * ced)744 static int sh_cmt_clock_event_set_periodic(struct clock_event_device *ced)
745 {
746 	return sh_cmt_clock_event_set_state(ced, 1);
747 }
748 
sh_cmt_clock_event_next(unsigned long delta,struct clock_event_device * ced)749 static int sh_cmt_clock_event_next(unsigned long delta,
750 				   struct clock_event_device *ced)
751 {
752 	struct sh_cmt_channel *ch = ced_to_sh_cmt(ced);
753 
754 	BUG_ON(!clockevent_state_oneshot(ced));
755 	if (likely(ch->flags & FLAG_IRQCONTEXT))
756 		ch->next_match_value = delta - 1;
757 	else
758 		sh_cmt_set_next(ch, delta - 1);
759 
760 	return 0;
761 }
762 
sh_cmt_clock_event_suspend(struct clock_event_device * ced)763 static void sh_cmt_clock_event_suspend(struct clock_event_device *ced)
764 {
765 	struct sh_cmt_channel *ch = ced_to_sh_cmt(ced);
766 
767 	pm_genpd_syscore_poweroff(&ch->cmt->pdev->dev);
768 	clk_unprepare(ch->cmt->clk);
769 }
770 
sh_cmt_clock_event_resume(struct clock_event_device * ced)771 static void sh_cmt_clock_event_resume(struct clock_event_device *ced)
772 {
773 	struct sh_cmt_channel *ch = ced_to_sh_cmt(ced);
774 
775 	clk_prepare(ch->cmt->clk);
776 	pm_genpd_syscore_poweron(&ch->cmt->pdev->dev);
777 }
778 
sh_cmt_register_clockevent(struct sh_cmt_channel * ch,const char * name)779 static int sh_cmt_register_clockevent(struct sh_cmt_channel *ch,
780 				      const char *name)
781 {
782 	struct clock_event_device *ced = &ch->ced;
783 	int irq;
784 	int ret;
785 
786 	irq = platform_get_irq(ch->cmt->pdev, ch->index);
787 	if (irq < 0) {
788 		dev_err(&ch->cmt->pdev->dev, "ch%u: failed to get irq\n",
789 			ch->index);
790 		return irq;
791 	}
792 
793 	ret = request_irq(irq, sh_cmt_interrupt,
794 			  IRQF_TIMER | IRQF_IRQPOLL | IRQF_NOBALANCING,
795 			  dev_name(&ch->cmt->pdev->dev), ch);
796 	if (ret) {
797 		dev_err(&ch->cmt->pdev->dev, "ch%u: failed to request irq %d\n",
798 			ch->index, irq);
799 		return ret;
800 	}
801 
802 	ced->name = name;
803 	ced->features = CLOCK_EVT_FEAT_PERIODIC;
804 	ced->features |= CLOCK_EVT_FEAT_ONESHOT;
805 	ced->rating = 125;
806 	ced->cpumask = cpu_possible_mask;
807 	ced->set_next_event = sh_cmt_clock_event_next;
808 	ced->set_state_shutdown = sh_cmt_clock_event_shutdown;
809 	ced->set_state_periodic = sh_cmt_clock_event_set_periodic;
810 	ced->set_state_oneshot = sh_cmt_clock_event_set_oneshot;
811 	ced->suspend = sh_cmt_clock_event_suspend;
812 	ced->resume = sh_cmt_clock_event_resume;
813 
814 	/* TODO: calculate good shift from rate and counter bit width */
815 	ced->shift = 32;
816 	ced->mult = div_sc(ch->cmt->rate, NSEC_PER_SEC, ced->shift);
817 	ced->max_delta_ns = clockevent_delta2ns(ch->max_match_value, ced);
818 	ced->max_delta_ticks = ch->max_match_value;
819 	ced->min_delta_ns = clockevent_delta2ns(0x1f, ced);
820 	ced->min_delta_ticks = 0x1f;
821 
822 	dev_info(&ch->cmt->pdev->dev, "ch%u: used for clock events\n",
823 		 ch->index);
824 	clockevents_register_device(ced);
825 
826 	return 0;
827 }
828 
sh_cmt_register(struct sh_cmt_channel * ch,const char * name,bool clockevent,bool clocksource)829 static int sh_cmt_register(struct sh_cmt_channel *ch, const char *name,
830 			   bool clockevent, bool clocksource)
831 {
832 	int ret;
833 
834 	if (clockevent) {
835 		ch->cmt->has_clockevent = true;
836 		ret = sh_cmt_register_clockevent(ch, name);
837 		if (ret < 0)
838 			return ret;
839 	}
840 
841 	if (clocksource) {
842 		ch->cmt->has_clocksource = true;
843 		sh_cmt_register_clocksource(ch, name);
844 	}
845 
846 	return 0;
847 }
848 
sh_cmt_setup_channel(struct sh_cmt_channel * ch,unsigned int index,unsigned int hwidx,bool clockevent,bool clocksource,struct sh_cmt_device * cmt)849 static int sh_cmt_setup_channel(struct sh_cmt_channel *ch, unsigned int index,
850 				unsigned int hwidx, bool clockevent,
851 				bool clocksource, struct sh_cmt_device *cmt)
852 {
853 	int ret;
854 
855 	/* Skip unused channels. */
856 	if (!clockevent && !clocksource)
857 		return 0;
858 
859 	ch->cmt = cmt;
860 	ch->index = index;
861 	ch->hwidx = hwidx;
862 	ch->timer_bit = hwidx;
863 
864 	/*
865 	 * Compute the address of the channel control register block. For the
866 	 * timers with a per-channel start/stop register, compute its address
867 	 * as well.
868 	 */
869 	switch (cmt->info->model) {
870 	case SH_CMT_16BIT:
871 		ch->ioctrl = cmt->mapbase + 2 + ch->hwidx * 6;
872 		break;
873 	case SH_CMT_32BIT:
874 	case SH_CMT_48BIT:
875 		ch->ioctrl = cmt->mapbase + 0x10 + ch->hwidx * 0x10;
876 		break;
877 	case SH_CMT0_RCAR_GEN2:
878 	case SH_CMT1_RCAR_GEN2:
879 		ch->iostart = cmt->mapbase + ch->hwidx * 0x100;
880 		ch->ioctrl = ch->iostart + 0x10;
881 		ch->timer_bit = 0;
882 		break;
883 	}
884 
885 	if (cmt->info->width == (sizeof(ch->max_match_value) * 8))
886 		ch->max_match_value = ~0;
887 	else
888 		ch->max_match_value = (1 << cmt->info->width) - 1;
889 
890 	ch->match_value = ch->max_match_value;
891 	raw_spin_lock_init(&ch->lock);
892 
893 	ret = sh_cmt_register(ch, dev_name(&cmt->pdev->dev),
894 			      clockevent, clocksource);
895 	if (ret) {
896 		dev_err(&cmt->pdev->dev, "ch%u: registration failed\n",
897 			ch->index);
898 		return ret;
899 	}
900 	ch->cs_enabled = false;
901 
902 	return 0;
903 }
904 
sh_cmt_map_memory(struct sh_cmt_device * cmt)905 static int sh_cmt_map_memory(struct sh_cmt_device *cmt)
906 {
907 	struct resource *mem;
908 
909 	mem = platform_get_resource(cmt->pdev, IORESOURCE_MEM, 0);
910 	if (!mem) {
911 		dev_err(&cmt->pdev->dev, "failed to get I/O memory\n");
912 		return -ENXIO;
913 	}
914 
915 	cmt->mapbase = ioremap_nocache(mem->start, resource_size(mem));
916 	if (cmt->mapbase == NULL) {
917 		dev_err(&cmt->pdev->dev, "failed to remap I/O memory\n");
918 		return -ENXIO;
919 	}
920 
921 	return 0;
922 }
923 
924 static const struct platform_device_id sh_cmt_id_table[] = {
925 	{ "sh-cmt-16", (kernel_ulong_t)&sh_cmt_info[SH_CMT_16BIT] },
926 	{ "sh-cmt-32", (kernel_ulong_t)&sh_cmt_info[SH_CMT_32BIT] },
927 	{ }
928 };
929 MODULE_DEVICE_TABLE(platform, sh_cmt_id_table);
930 
931 static const struct of_device_id sh_cmt_of_table[] __maybe_unused = {
932 	{ .compatible = "renesas,cmt-48", .data = &sh_cmt_info[SH_CMT_48BIT] },
933 	{
934 		/* deprecated, preserved for backward compatibility */
935 		.compatible = "renesas,cmt-48-gen2",
936 		.data = &sh_cmt_info[SH_CMT0_RCAR_GEN2]
937 	},
938 	{ .compatible = "renesas,rcar-gen2-cmt0", .data = &sh_cmt_info[SH_CMT0_RCAR_GEN2] },
939 	{ .compatible = "renesas,rcar-gen2-cmt1", .data = &sh_cmt_info[SH_CMT1_RCAR_GEN2] },
940 	{ }
941 };
942 MODULE_DEVICE_TABLE(of, sh_cmt_of_table);
943 
sh_cmt_setup(struct sh_cmt_device * cmt,struct platform_device * pdev)944 static int sh_cmt_setup(struct sh_cmt_device *cmt, struct platform_device *pdev)
945 {
946 	unsigned int mask;
947 	unsigned int i;
948 	int ret;
949 
950 	cmt->pdev = pdev;
951 	raw_spin_lock_init(&cmt->lock);
952 
953 	if (IS_ENABLED(CONFIG_OF) && pdev->dev.of_node) {
954 		cmt->info = of_device_get_match_data(&pdev->dev);
955 		cmt->hw_channels = cmt->info->channels_mask;
956 	} else if (pdev->dev.platform_data) {
957 		struct sh_timer_config *cfg = pdev->dev.platform_data;
958 		const struct platform_device_id *id = pdev->id_entry;
959 
960 		cmt->info = (const struct sh_cmt_info *)id->driver_data;
961 		cmt->hw_channels = cfg->channels_mask;
962 	} else {
963 		dev_err(&cmt->pdev->dev, "missing platform data\n");
964 		return -ENXIO;
965 	}
966 
967 	/* Get hold of clock. */
968 	cmt->clk = clk_get(&cmt->pdev->dev, "fck");
969 	if (IS_ERR(cmt->clk)) {
970 		dev_err(&cmt->pdev->dev, "cannot get clock\n");
971 		return PTR_ERR(cmt->clk);
972 	}
973 
974 	ret = clk_prepare(cmt->clk);
975 	if (ret < 0)
976 		goto err_clk_put;
977 
978 	/* Determine clock rate. */
979 	ret = clk_enable(cmt->clk);
980 	if (ret < 0)
981 		goto err_clk_unprepare;
982 
983 	if (cmt->info->width == 16)
984 		cmt->rate = clk_get_rate(cmt->clk) / 512;
985 	else
986 		cmt->rate = clk_get_rate(cmt->clk) / 8;
987 
988 	clk_disable(cmt->clk);
989 
990 	/* Map the memory resource(s). */
991 	ret = sh_cmt_map_memory(cmt);
992 	if (ret < 0)
993 		goto err_clk_unprepare;
994 
995 	/* Allocate and setup the channels. */
996 	cmt->num_channels = hweight8(cmt->hw_channels);
997 	cmt->channels = kcalloc(cmt->num_channels, sizeof(*cmt->channels),
998 				GFP_KERNEL);
999 	if (cmt->channels == NULL) {
1000 		ret = -ENOMEM;
1001 		goto err_unmap;
1002 	}
1003 
1004 	/*
1005 	 * Use the first channel as a clock event device and the second channel
1006 	 * as a clock source. If only one channel is available use it for both.
1007 	 */
1008 	for (i = 0, mask = cmt->hw_channels; i < cmt->num_channels; ++i) {
1009 		unsigned int hwidx = ffs(mask) - 1;
1010 		bool clocksource = i == 1 || cmt->num_channels == 1;
1011 		bool clockevent = i == 0;
1012 
1013 		ret = sh_cmt_setup_channel(&cmt->channels[i], i, hwidx,
1014 					   clockevent, clocksource, cmt);
1015 		if (ret < 0)
1016 			goto err_unmap;
1017 
1018 		mask &= ~(1 << hwidx);
1019 	}
1020 
1021 	platform_set_drvdata(pdev, cmt);
1022 
1023 	return 0;
1024 
1025 err_unmap:
1026 	kfree(cmt->channels);
1027 	iounmap(cmt->mapbase);
1028 err_clk_unprepare:
1029 	clk_unprepare(cmt->clk);
1030 err_clk_put:
1031 	clk_put(cmt->clk);
1032 	return ret;
1033 }
1034 
sh_cmt_probe(struct platform_device * pdev)1035 static int sh_cmt_probe(struct platform_device *pdev)
1036 {
1037 	struct sh_cmt_device *cmt = platform_get_drvdata(pdev);
1038 	int ret;
1039 
1040 	if (!is_early_platform_device(pdev)) {
1041 		pm_runtime_set_active(&pdev->dev);
1042 		pm_runtime_enable(&pdev->dev);
1043 	}
1044 
1045 	if (cmt) {
1046 		dev_info(&pdev->dev, "kept as earlytimer\n");
1047 		goto out;
1048 	}
1049 
1050 	cmt = kzalloc(sizeof(*cmt), GFP_KERNEL);
1051 	if (cmt == NULL)
1052 		return -ENOMEM;
1053 
1054 	ret = sh_cmt_setup(cmt, pdev);
1055 	if (ret) {
1056 		kfree(cmt);
1057 		pm_runtime_idle(&pdev->dev);
1058 		return ret;
1059 	}
1060 	if (is_early_platform_device(pdev))
1061 		return 0;
1062 
1063  out:
1064 	if (cmt->has_clockevent || cmt->has_clocksource)
1065 		pm_runtime_irq_safe(&pdev->dev);
1066 	else
1067 		pm_runtime_idle(&pdev->dev);
1068 
1069 	return 0;
1070 }
1071 
sh_cmt_remove(struct platform_device * pdev)1072 static int sh_cmt_remove(struct platform_device *pdev)
1073 {
1074 	return -EBUSY; /* cannot unregister clockevent and clocksource */
1075 }
1076 
1077 static struct platform_driver sh_cmt_device_driver = {
1078 	.probe		= sh_cmt_probe,
1079 	.remove		= sh_cmt_remove,
1080 	.driver		= {
1081 		.name	= "sh_cmt",
1082 		.of_match_table = of_match_ptr(sh_cmt_of_table),
1083 	},
1084 	.id_table	= sh_cmt_id_table,
1085 };
1086 
sh_cmt_init(void)1087 static int __init sh_cmt_init(void)
1088 {
1089 	return platform_driver_register(&sh_cmt_device_driver);
1090 }
1091 
sh_cmt_exit(void)1092 static void __exit sh_cmt_exit(void)
1093 {
1094 	platform_driver_unregister(&sh_cmt_device_driver);
1095 }
1096 
1097 early_platform_init("earlytimer", &sh_cmt_device_driver);
1098 subsys_initcall(sh_cmt_init);
1099 module_exit(sh_cmt_exit);
1100 
1101 MODULE_AUTHOR("Magnus Damm");
1102 MODULE_DESCRIPTION("SuperH CMT Timer Driver");
1103 MODULE_LICENSE("GPL v2");
1104