• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Cryptographic API.
3  *
4  * Support for ATMEL AES HW acceleration.
5  *
6  * Copyright (c) 2012 Eukréa Electromatique - ATMEL
7  * Author: Nicolas Royer <nicolas@eukrea.com>
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License version 2 as published
11  * by the Free Software Foundation.
12  *
13  * Some ideas are from omap-aes.c driver.
14  */
15 
16 
17 #include <linux/kernel.h>
18 #include <linux/module.h>
19 #include <linux/slab.h>
20 #include <linux/err.h>
21 #include <linux/clk.h>
22 #include <linux/io.h>
23 #include <linux/hw_random.h>
24 #include <linux/platform_device.h>
25 
26 #include <linux/device.h>
27 #include <linux/init.h>
28 #include <linux/errno.h>
29 #include <linux/interrupt.h>
30 #include <linux/irq.h>
31 #include <linux/scatterlist.h>
32 #include <linux/dma-mapping.h>
33 #include <linux/of_device.h>
34 #include <linux/delay.h>
35 #include <linux/crypto.h>
36 #include <crypto/scatterwalk.h>
37 #include <crypto/algapi.h>
38 #include <crypto/aes.h>
39 #include <crypto/gcm.h>
40 #include <crypto/xts.h>
41 #include <crypto/internal/aead.h>
42 #include <linux/platform_data/crypto-atmel.h>
43 #include <dt-bindings/dma/at91.h>
44 #include "atmel-aes-regs.h"
45 #include "atmel-authenc.h"
46 
47 #define ATMEL_AES_PRIORITY	300
48 
49 #define ATMEL_AES_BUFFER_ORDER	2
50 #define ATMEL_AES_BUFFER_SIZE	(PAGE_SIZE << ATMEL_AES_BUFFER_ORDER)
51 
52 #define CFB8_BLOCK_SIZE		1
53 #define CFB16_BLOCK_SIZE	2
54 #define CFB32_BLOCK_SIZE	4
55 #define CFB64_BLOCK_SIZE	8
56 
57 #define SIZE_IN_WORDS(x)	((x) >> 2)
58 
59 /* AES flags */
60 /* Reserve bits [18:16] [14:12] [1:0] for mode (same as for AES_MR) */
61 #define AES_FLAGS_ENCRYPT	AES_MR_CYPHER_ENC
62 #define AES_FLAGS_GTAGEN	AES_MR_GTAGEN
63 #define AES_FLAGS_OPMODE_MASK	(AES_MR_OPMOD_MASK | AES_MR_CFBS_MASK)
64 #define AES_FLAGS_ECB		AES_MR_OPMOD_ECB
65 #define AES_FLAGS_CBC		AES_MR_OPMOD_CBC
66 #define AES_FLAGS_OFB		AES_MR_OPMOD_OFB
67 #define AES_FLAGS_CFB128	(AES_MR_OPMOD_CFB | AES_MR_CFBS_128b)
68 #define AES_FLAGS_CFB64		(AES_MR_OPMOD_CFB | AES_MR_CFBS_64b)
69 #define AES_FLAGS_CFB32		(AES_MR_OPMOD_CFB | AES_MR_CFBS_32b)
70 #define AES_FLAGS_CFB16		(AES_MR_OPMOD_CFB | AES_MR_CFBS_16b)
71 #define AES_FLAGS_CFB8		(AES_MR_OPMOD_CFB | AES_MR_CFBS_8b)
72 #define AES_FLAGS_CTR		AES_MR_OPMOD_CTR
73 #define AES_FLAGS_GCM		AES_MR_OPMOD_GCM
74 #define AES_FLAGS_XTS		AES_MR_OPMOD_XTS
75 
76 #define AES_FLAGS_MODE_MASK	(AES_FLAGS_OPMODE_MASK |	\
77 				 AES_FLAGS_ENCRYPT |		\
78 				 AES_FLAGS_GTAGEN)
79 
80 #define AES_FLAGS_BUSY		BIT(3)
81 #define AES_FLAGS_DUMP_REG	BIT(4)
82 #define AES_FLAGS_OWN_SHA	BIT(5)
83 
84 #define AES_FLAGS_PERSISTENT	AES_FLAGS_BUSY
85 
86 #define ATMEL_AES_QUEUE_LENGTH	50
87 
88 #define ATMEL_AES_DMA_THRESHOLD		256
89 
90 
91 struct atmel_aes_caps {
92 	bool			has_dualbuff;
93 	bool			has_cfb64;
94 	bool			has_gcm;
95 	bool			has_xts;
96 	bool			has_authenc;
97 	u32			max_burst_size;
98 };
99 
100 struct atmel_aes_dev;
101 
102 
103 typedef int (*atmel_aes_fn_t)(struct atmel_aes_dev *);
104 
105 
106 struct atmel_aes_base_ctx {
107 	struct atmel_aes_dev	*dd;
108 	atmel_aes_fn_t		start;
109 	int			keylen;
110 	u32			key[AES_KEYSIZE_256 / sizeof(u32)];
111 	u16			block_size;
112 	bool			is_aead;
113 };
114 
115 struct atmel_aes_ctx {
116 	struct atmel_aes_base_ctx	base;
117 };
118 
119 struct atmel_aes_ctr_ctx {
120 	struct atmel_aes_base_ctx	base;
121 
122 	u32			iv[AES_BLOCK_SIZE / sizeof(u32)];
123 	size_t			offset;
124 	struct scatterlist	src[2];
125 	struct scatterlist	dst[2];
126 };
127 
128 struct atmel_aes_gcm_ctx {
129 	struct atmel_aes_base_ctx	base;
130 
131 	struct scatterlist	src[2];
132 	struct scatterlist	dst[2];
133 
134 	u32			j0[AES_BLOCK_SIZE / sizeof(u32)];
135 	u32			tag[AES_BLOCK_SIZE / sizeof(u32)];
136 	u32			ghash[AES_BLOCK_SIZE / sizeof(u32)];
137 	size_t			textlen;
138 
139 	const u32		*ghash_in;
140 	u32			*ghash_out;
141 	atmel_aes_fn_t		ghash_resume;
142 };
143 
144 struct atmel_aes_xts_ctx {
145 	struct atmel_aes_base_ctx	base;
146 
147 	u32			key2[AES_KEYSIZE_256 / sizeof(u32)];
148 };
149 
150 #if IS_ENABLED(CONFIG_CRYPTO_DEV_ATMEL_AUTHENC)
151 struct atmel_aes_authenc_ctx {
152 	struct atmel_aes_base_ctx	base;
153 	struct atmel_sha_authenc_ctx	*auth;
154 };
155 #endif
156 
157 struct atmel_aes_reqctx {
158 	unsigned long		mode;
159 	u32			lastc[AES_BLOCK_SIZE / sizeof(u32)];
160 };
161 
162 #if IS_ENABLED(CONFIG_CRYPTO_DEV_ATMEL_AUTHENC)
163 struct atmel_aes_authenc_reqctx {
164 	struct atmel_aes_reqctx	base;
165 
166 	struct scatterlist	src[2];
167 	struct scatterlist	dst[2];
168 	size_t			textlen;
169 	u32			digest[SHA512_DIGEST_SIZE / sizeof(u32)];
170 
171 	/* auth_req MUST be place last. */
172 	struct ahash_request	auth_req;
173 };
174 #endif
175 
176 struct atmel_aes_dma {
177 	struct dma_chan		*chan;
178 	struct scatterlist	*sg;
179 	int			nents;
180 	unsigned int		remainder;
181 	unsigned int		sg_len;
182 };
183 
184 struct atmel_aes_dev {
185 	struct list_head	list;
186 	unsigned long		phys_base;
187 	void __iomem		*io_base;
188 
189 	struct crypto_async_request	*areq;
190 	struct atmel_aes_base_ctx	*ctx;
191 
192 	bool			is_async;
193 	atmel_aes_fn_t		resume;
194 	atmel_aes_fn_t		cpu_transfer_complete;
195 
196 	struct device		*dev;
197 	struct clk		*iclk;
198 	int			irq;
199 
200 	unsigned long		flags;
201 
202 	spinlock_t		lock;
203 	struct crypto_queue	queue;
204 
205 	struct tasklet_struct	done_task;
206 	struct tasklet_struct	queue_task;
207 
208 	size_t			total;
209 	size_t			datalen;
210 	u32			*data;
211 
212 	struct atmel_aes_dma	src;
213 	struct atmel_aes_dma	dst;
214 
215 	size_t			buflen;
216 	void			*buf;
217 	struct scatterlist	aligned_sg;
218 	struct scatterlist	*real_dst;
219 
220 	struct atmel_aes_caps	caps;
221 
222 	u32			hw_version;
223 };
224 
225 struct atmel_aes_drv {
226 	struct list_head	dev_list;
227 	spinlock_t		lock;
228 };
229 
230 static struct atmel_aes_drv atmel_aes = {
231 	.dev_list = LIST_HEAD_INIT(atmel_aes.dev_list),
232 	.lock = __SPIN_LOCK_UNLOCKED(atmel_aes.lock),
233 };
234 
235 #ifdef VERBOSE_DEBUG
atmel_aes_reg_name(u32 offset,char * tmp,size_t sz)236 static const char *atmel_aes_reg_name(u32 offset, char *tmp, size_t sz)
237 {
238 	switch (offset) {
239 	case AES_CR:
240 		return "CR";
241 
242 	case AES_MR:
243 		return "MR";
244 
245 	case AES_ISR:
246 		return "ISR";
247 
248 	case AES_IMR:
249 		return "IMR";
250 
251 	case AES_IER:
252 		return "IER";
253 
254 	case AES_IDR:
255 		return "IDR";
256 
257 	case AES_KEYWR(0):
258 	case AES_KEYWR(1):
259 	case AES_KEYWR(2):
260 	case AES_KEYWR(3):
261 	case AES_KEYWR(4):
262 	case AES_KEYWR(5):
263 	case AES_KEYWR(6):
264 	case AES_KEYWR(7):
265 		snprintf(tmp, sz, "KEYWR[%u]", (offset - AES_KEYWR(0)) >> 2);
266 		break;
267 
268 	case AES_IDATAR(0):
269 	case AES_IDATAR(1):
270 	case AES_IDATAR(2):
271 	case AES_IDATAR(3):
272 		snprintf(tmp, sz, "IDATAR[%u]", (offset - AES_IDATAR(0)) >> 2);
273 		break;
274 
275 	case AES_ODATAR(0):
276 	case AES_ODATAR(1):
277 	case AES_ODATAR(2):
278 	case AES_ODATAR(3):
279 		snprintf(tmp, sz, "ODATAR[%u]", (offset - AES_ODATAR(0)) >> 2);
280 		break;
281 
282 	case AES_IVR(0):
283 	case AES_IVR(1):
284 	case AES_IVR(2):
285 	case AES_IVR(3):
286 		snprintf(tmp, sz, "IVR[%u]", (offset - AES_IVR(0)) >> 2);
287 		break;
288 
289 	case AES_AADLENR:
290 		return "AADLENR";
291 
292 	case AES_CLENR:
293 		return "CLENR";
294 
295 	case AES_GHASHR(0):
296 	case AES_GHASHR(1):
297 	case AES_GHASHR(2):
298 	case AES_GHASHR(3):
299 		snprintf(tmp, sz, "GHASHR[%u]", (offset - AES_GHASHR(0)) >> 2);
300 		break;
301 
302 	case AES_TAGR(0):
303 	case AES_TAGR(1):
304 	case AES_TAGR(2):
305 	case AES_TAGR(3):
306 		snprintf(tmp, sz, "TAGR[%u]", (offset - AES_TAGR(0)) >> 2);
307 		break;
308 
309 	case AES_CTRR:
310 		return "CTRR";
311 
312 	case AES_GCMHR(0):
313 	case AES_GCMHR(1):
314 	case AES_GCMHR(2):
315 	case AES_GCMHR(3):
316 		snprintf(tmp, sz, "GCMHR[%u]", (offset - AES_GCMHR(0)) >> 2);
317 		break;
318 
319 	case AES_EMR:
320 		return "EMR";
321 
322 	case AES_TWR(0):
323 	case AES_TWR(1):
324 	case AES_TWR(2):
325 	case AES_TWR(3):
326 		snprintf(tmp, sz, "TWR[%u]", (offset - AES_TWR(0)) >> 2);
327 		break;
328 
329 	case AES_ALPHAR(0):
330 	case AES_ALPHAR(1):
331 	case AES_ALPHAR(2):
332 	case AES_ALPHAR(3):
333 		snprintf(tmp, sz, "ALPHAR[%u]", (offset - AES_ALPHAR(0)) >> 2);
334 		break;
335 
336 	default:
337 		snprintf(tmp, sz, "0x%02x", offset);
338 		break;
339 	}
340 
341 	return tmp;
342 }
343 #endif /* VERBOSE_DEBUG */
344 
345 /* Shared functions */
346 
atmel_aes_read(struct atmel_aes_dev * dd,u32 offset)347 static inline u32 atmel_aes_read(struct atmel_aes_dev *dd, u32 offset)
348 {
349 	u32 value = readl_relaxed(dd->io_base + offset);
350 
351 #ifdef VERBOSE_DEBUG
352 	if (dd->flags & AES_FLAGS_DUMP_REG) {
353 		char tmp[16];
354 
355 		dev_vdbg(dd->dev, "read 0x%08x from %s\n", value,
356 			 atmel_aes_reg_name(offset, tmp, sizeof(tmp)));
357 	}
358 #endif /* VERBOSE_DEBUG */
359 
360 	return value;
361 }
362 
atmel_aes_write(struct atmel_aes_dev * dd,u32 offset,u32 value)363 static inline void atmel_aes_write(struct atmel_aes_dev *dd,
364 					u32 offset, u32 value)
365 {
366 #ifdef VERBOSE_DEBUG
367 	if (dd->flags & AES_FLAGS_DUMP_REG) {
368 		char tmp[16];
369 
370 		dev_vdbg(dd->dev, "write 0x%08x into %s\n", value,
371 			 atmel_aes_reg_name(offset, tmp, sizeof(tmp)));
372 	}
373 #endif /* VERBOSE_DEBUG */
374 
375 	writel_relaxed(value, dd->io_base + offset);
376 }
377 
atmel_aes_read_n(struct atmel_aes_dev * dd,u32 offset,u32 * value,int count)378 static void atmel_aes_read_n(struct atmel_aes_dev *dd, u32 offset,
379 					u32 *value, int count)
380 {
381 	for (; count--; value++, offset += 4)
382 		*value = atmel_aes_read(dd, offset);
383 }
384 
atmel_aes_write_n(struct atmel_aes_dev * dd,u32 offset,const u32 * value,int count)385 static void atmel_aes_write_n(struct atmel_aes_dev *dd, u32 offset,
386 			      const u32 *value, int count)
387 {
388 	for (; count--; value++, offset += 4)
389 		atmel_aes_write(dd, offset, *value);
390 }
391 
atmel_aes_read_block(struct atmel_aes_dev * dd,u32 offset,u32 * value)392 static inline void atmel_aes_read_block(struct atmel_aes_dev *dd, u32 offset,
393 					u32 *value)
394 {
395 	atmel_aes_read_n(dd, offset, value, SIZE_IN_WORDS(AES_BLOCK_SIZE));
396 }
397 
atmel_aes_write_block(struct atmel_aes_dev * dd,u32 offset,const u32 * value)398 static inline void atmel_aes_write_block(struct atmel_aes_dev *dd, u32 offset,
399 					 const u32 *value)
400 {
401 	atmel_aes_write_n(dd, offset, value, SIZE_IN_WORDS(AES_BLOCK_SIZE));
402 }
403 
atmel_aes_wait_for_data_ready(struct atmel_aes_dev * dd,atmel_aes_fn_t resume)404 static inline int atmel_aes_wait_for_data_ready(struct atmel_aes_dev *dd,
405 						atmel_aes_fn_t resume)
406 {
407 	u32 isr = atmel_aes_read(dd, AES_ISR);
408 
409 	if (unlikely(isr & AES_INT_DATARDY))
410 		return resume(dd);
411 
412 	dd->resume = resume;
413 	atmel_aes_write(dd, AES_IER, AES_INT_DATARDY);
414 	return -EINPROGRESS;
415 }
416 
atmel_aes_padlen(size_t len,size_t block_size)417 static inline size_t atmel_aes_padlen(size_t len, size_t block_size)
418 {
419 	len &= block_size - 1;
420 	return len ? block_size - len : 0;
421 }
422 
atmel_aes_find_dev(struct atmel_aes_base_ctx * ctx)423 static struct atmel_aes_dev *atmel_aes_find_dev(struct atmel_aes_base_ctx *ctx)
424 {
425 	struct atmel_aes_dev *aes_dd = NULL;
426 	struct atmel_aes_dev *tmp;
427 
428 	spin_lock_bh(&atmel_aes.lock);
429 	if (!ctx->dd) {
430 		list_for_each_entry(tmp, &atmel_aes.dev_list, list) {
431 			aes_dd = tmp;
432 			break;
433 		}
434 		ctx->dd = aes_dd;
435 	} else {
436 		aes_dd = ctx->dd;
437 	}
438 
439 	spin_unlock_bh(&atmel_aes.lock);
440 
441 	return aes_dd;
442 }
443 
atmel_aes_hw_init(struct atmel_aes_dev * dd)444 static int atmel_aes_hw_init(struct atmel_aes_dev *dd)
445 {
446 	int err;
447 
448 	err = clk_enable(dd->iclk);
449 	if (err)
450 		return err;
451 
452 	atmel_aes_write(dd, AES_CR, AES_CR_SWRST);
453 	atmel_aes_write(dd, AES_MR, 0xE << AES_MR_CKEY_OFFSET);
454 
455 	return 0;
456 }
457 
atmel_aes_get_version(struct atmel_aes_dev * dd)458 static inline unsigned int atmel_aes_get_version(struct atmel_aes_dev *dd)
459 {
460 	return atmel_aes_read(dd, AES_HW_VERSION) & 0x00000fff;
461 }
462 
atmel_aes_hw_version_init(struct atmel_aes_dev * dd)463 static int atmel_aes_hw_version_init(struct atmel_aes_dev *dd)
464 {
465 	int err;
466 
467 	err = atmel_aes_hw_init(dd);
468 	if (err)
469 		return err;
470 
471 	dd->hw_version = atmel_aes_get_version(dd);
472 
473 	dev_info(dd->dev, "version: 0x%x\n", dd->hw_version);
474 
475 	clk_disable(dd->iclk);
476 	return 0;
477 }
478 
atmel_aes_set_mode(struct atmel_aes_dev * dd,const struct atmel_aes_reqctx * rctx)479 static inline void atmel_aes_set_mode(struct atmel_aes_dev *dd,
480 				      const struct atmel_aes_reqctx *rctx)
481 {
482 	/* Clear all but persistent flags and set request flags. */
483 	dd->flags = (dd->flags & AES_FLAGS_PERSISTENT) | rctx->mode;
484 }
485 
atmel_aes_is_encrypt(const struct atmel_aes_dev * dd)486 static inline bool atmel_aes_is_encrypt(const struct atmel_aes_dev *dd)
487 {
488 	return (dd->flags & AES_FLAGS_ENCRYPT);
489 }
490 
491 #if IS_ENABLED(CONFIG_CRYPTO_DEV_ATMEL_AUTHENC)
492 static void atmel_aes_authenc_complete(struct atmel_aes_dev *dd, int err);
493 #endif
494 
atmel_aes_set_iv_as_last_ciphertext_block(struct atmel_aes_dev * dd)495 static void atmel_aes_set_iv_as_last_ciphertext_block(struct atmel_aes_dev *dd)
496 {
497 	struct ablkcipher_request *req = ablkcipher_request_cast(dd->areq);
498 	struct atmel_aes_reqctx *rctx = ablkcipher_request_ctx(req);
499 	struct crypto_ablkcipher *ablkcipher = crypto_ablkcipher_reqtfm(req);
500 	unsigned int ivsize = crypto_ablkcipher_ivsize(ablkcipher);
501 
502 	if (req->nbytes < ivsize)
503 		return;
504 
505 	if (rctx->mode & AES_FLAGS_ENCRYPT) {
506 		scatterwalk_map_and_copy(req->info, req->dst,
507 					 req->nbytes - ivsize, ivsize, 0);
508 	} else {
509 		if (req->src == req->dst)
510 			memcpy(req->info, rctx->lastc, ivsize);
511 		else
512 			scatterwalk_map_and_copy(req->info, req->src,
513 						 req->nbytes - ivsize,
514 						 ivsize, 0);
515 	}
516 }
517 
atmel_aes_complete(struct atmel_aes_dev * dd,int err)518 static inline int atmel_aes_complete(struct atmel_aes_dev *dd, int err)
519 {
520 #if IS_ENABLED(CONFIG_CRYPTO_DEV_ATMEL_AUTHENC)
521 	if (dd->ctx->is_aead)
522 		atmel_aes_authenc_complete(dd, err);
523 #endif
524 
525 	clk_disable(dd->iclk);
526 	dd->flags &= ~AES_FLAGS_BUSY;
527 
528 	if (!dd->ctx->is_aead)
529 		atmel_aes_set_iv_as_last_ciphertext_block(dd);
530 
531 	if (dd->is_async)
532 		dd->areq->complete(dd->areq, err);
533 
534 	tasklet_schedule(&dd->queue_task);
535 
536 	return err;
537 }
538 
atmel_aes_write_ctrl_key(struct atmel_aes_dev * dd,bool use_dma,const u32 * iv,const u32 * key,int keylen)539 static void atmel_aes_write_ctrl_key(struct atmel_aes_dev *dd, bool use_dma,
540 				     const u32 *iv, const u32 *key, int keylen)
541 {
542 	u32 valmr = 0;
543 
544 	/* MR register must be set before IV registers */
545 	if (keylen == AES_KEYSIZE_128)
546 		valmr |= AES_MR_KEYSIZE_128;
547 	else if (keylen == AES_KEYSIZE_192)
548 		valmr |= AES_MR_KEYSIZE_192;
549 	else
550 		valmr |= AES_MR_KEYSIZE_256;
551 
552 	valmr |= dd->flags & AES_FLAGS_MODE_MASK;
553 
554 	if (use_dma) {
555 		valmr |= AES_MR_SMOD_IDATAR0;
556 		if (dd->caps.has_dualbuff)
557 			valmr |= AES_MR_DUALBUFF;
558 	} else {
559 		valmr |= AES_MR_SMOD_AUTO;
560 	}
561 
562 	atmel_aes_write(dd, AES_MR, valmr);
563 
564 	atmel_aes_write_n(dd, AES_KEYWR(0), key, SIZE_IN_WORDS(keylen));
565 
566 	if (iv && (valmr & AES_MR_OPMOD_MASK) != AES_MR_OPMOD_ECB)
567 		atmel_aes_write_block(dd, AES_IVR(0), iv);
568 }
569 
atmel_aes_write_ctrl(struct atmel_aes_dev * dd,bool use_dma,const u32 * iv)570 static inline void atmel_aes_write_ctrl(struct atmel_aes_dev *dd, bool use_dma,
571 					const u32 *iv)
572 
573 {
574 	atmel_aes_write_ctrl_key(dd, use_dma, iv,
575 				 dd->ctx->key, dd->ctx->keylen);
576 }
577 
578 /* CPU transfer */
579 
atmel_aes_cpu_transfer(struct atmel_aes_dev * dd)580 static int atmel_aes_cpu_transfer(struct atmel_aes_dev *dd)
581 {
582 	int err = 0;
583 	u32 isr;
584 
585 	for (;;) {
586 		atmel_aes_read_block(dd, AES_ODATAR(0), dd->data);
587 		dd->data += 4;
588 		dd->datalen -= AES_BLOCK_SIZE;
589 
590 		if (dd->datalen < AES_BLOCK_SIZE)
591 			break;
592 
593 		atmel_aes_write_block(dd, AES_IDATAR(0), dd->data);
594 
595 		isr = atmel_aes_read(dd, AES_ISR);
596 		if (!(isr & AES_INT_DATARDY)) {
597 			dd->resume = atmel_aes_cpu_transfer;
598 			atmel_aes_write(dd, AES_IER, AES_INT_DATARDY);
599 			return -EINPROGRESS;
600 		}
601 	}
602 
603 	if (!sg_copy_from_buffer(dd->real_dst, sg_nents(dd->real_dst),
604 				 dd->buf, dd->total))
605 		err = -EINVAL;
606 
607 	if (err)
608 		return atmel_aes_complete(dd, err);
609 
610 	return dd->cpu_transfer_complete(dd);
611 }
612 
atmel_aes_cpu_start(struct atmel_aes_dev * dd,struct scatterlist * src,struct scatterlist * dst,size_t len,atmel_aes_fn_t resume)613 static int atmel_aes_cpu_start(struct atmel_aes_dev *dd,
614 			       struct scatterlist *src,
615 			       struct scatterlist *dst,
616 			       size_t len,
617 			       atmel_aes_fn_t resume)
618 {
619 	size_t padlen = atmel_aes_padlen(len, AES_BLOCK_SIZE);
620 
621 	if (unlikely(len == 0))
622 		return -EINVAL;
623 
624 	sg_copy_to_buffer(src, sg_nents(src), dd->buf, len);
625 
626 	dd->total = len;
627 	dd->real_dst = dst;
628 	dd->cpu_transfer_complete = resume;
629 	dd->datalen = len + padlen;
630 	dd->data = (u32 *)dd->buf;
631 	atmel_aes_write_block(dd, AES_IDATAR(0), dd->data);
632 	return atmel_aes_wait_for_data_ready(dd, atmel_aes_cpu_transfer);
633 }
634 
635 
636 /* DMA transfer */
637 
638 static void atmel_aes_dma_callback(void *data);
639 
atmel_aes_check_aligned(struct atmel_aes_dev * dd,struct scatterlist * sg,size_t len,struct atmel_aes_dma * dma)640 static bool atmel_aes_check_aligned(struct atmel_aes_dev *dd,
641 				    struct scatterlist *sg,
642 				    size_t len,
643 				    struct atmel_aes_dma *dma)
644 {
645 	int nents;
646 
647 	if (!IS_ALIGNED(len, dd->ctx->block_size))
648 		return false;
649 
650 	for (nents = 0; sg; sg = sg_next(sg), ++nents) {
651 		if (!IS_ALIGNED(sg->offset, sizeof(u32)))
652 			return false;
653 
654 		if (len <= sg->length) {
655 			if (!IS_ALIGNED(len, dd->ctx->block_size))
656 				return false;
657 
658 			dma->nents = nents+1;
659 			dma->remainder = sg->length - len;
660 			sg->length = len;
661 			return true;
662 		}
663 
664 		if (!IS_ALIGNED(sg->length, dd->ctx->block_size))
665 			return false;
666 
667 		len -= sg->length;
668 	}
669 
670 	return false;
671 }
672 
atmel_aes_restore_sg(const struct atmel_aes_dma * dma)673 static inline void atmel_aes_restore_sg(const struct atmel_aes_dma *dma)
674 {
675 	struct scatterlist *sg = dma->sg;
676 	int nents = dma->nents;
677 
678 	if (!dma->remainder)
679 		return;
680 
681 	while (--nents > 0 && sg)
682 		sg = sg_next(sg);
683 
684 	if (!sg)
685 		return;
686 
687 	sg->length += dma->remainder;
688 }
689 
atmel_aes_map(struct atmel_aes_dev * dd,struct scatterlist * src,struct scatterlist * dst,size_t len)690 static int atmel_aes_map(struct atmel_aes_dev *dd,
691 			 struct scatterlist *src,
692 			 struct scatterlist *dst,
693 			 size_t len)
694 {
695 	bool src_aligned, dst_aligned;
696 	size_t padlen;
697 
698 	dd->total = len;
699 	dd->src.sg = src;
700 	dd->dst.sg = dst;
701 	dd->real_dst = dst;
702 
703 	src_aligned = atmel_aes_check_aligned(dd, src, len, &dd->src);
704 	if (src == dst)
705 		dst_aligned = src_aligned;
706 	else
707 		dst_aligned = atmel_aes_check_aligned(dd, dst, len, &dd->dst);
708 	if (!src_aligned || !dst_aligned) {
709 		padlen = atmel_aes_padlen(len, dd->ctx->block_size);
710 
711 		if (dd->buflen < len + padlen)
712 			return -ENOMEM;
713 
714 		if (!src_aligned) {
715 			sg_copy_to_buffer(src, sg_nents(src), dd->buf, len);
716 			dd->src.sg = &dd->aligned_sg;
717 			dd->src.nents = 1;
718 			dd->src.remainder = 0;
719 		}
720 
721 		if (!dst_aligned) {
722 			dd->dst.sg = &dd->aligned_sg;
723 			dd->dst.nents = 1;
724 			dd->dst.remainder = 0;
725 		}
726 
727 		sg_init_table(&dd->aligned_sg, 1);
728 		sg_set_buf(&dd->aligned_sg, dd->buf, len + padlen);
729 	}
730 
731 	if (dd->src.sg == dd->dst.sg) {
732 		dd->src.sg_len = dma_map_sg(dd->dev, dd->src.sg, dd->src.nents,
733 					    DMA_BIDIRECTIONAL);
734 		dd->dst.sg_len = dd->src.sg_len;
735 		if (!dd->src.sg_len)
736 			return -EFAULT;
737 	} else {
738 		dd->src.sg_len = dma_map_sg(dd->dev, dd->src.sg, dd->src.nents,
739 					    DMA_TO_DEVICE);
740 		if (!dd->src.sg_len)
741 			return -EFAULT;
742 
743 		dd->dst.sg_len = dma_map_sg(dd->dev, dd->dst.sg, dd->dst.nents,
744 					    DMA_FROM_DEVICE);
745 		if (!dd->dst.sg_len) {
746 			dma_unmap_sg(dd->dev, dd->src.sg, dd->src.nents,
747 				     DMA_TO_DEVICE);
748 			return -EFAULT;
749 		}
750 	}
751 
752 	return 0;
753 }
754 
atmel_aes_unmap(struct atmel_aes_dev * dd)755 static void atmel_aes_unmap(struct atmel_aes_dev *dd)
756 {
757 	if (dd->src.sg == dd->dst.sg) {
758 		dma_unmap_sg(dd->dev, dd->src.sg, dd->src.nents,
759 			     DMA_BIDIRECTIONAL);
760 
761 		if (dd->src.sg != &dd->aligned_sg)
762 			atmel_aes_restore_sg(&dd->src);
763 	} else {
764 		dma_unmap_sg(dd->dev, dd->dst.sg, dd->dst.nents,
765 			     DMA_FROM_DEVICE);
766 
767 		if (dd->dst.sg != &dd->aligned_sg)
768 			atmel_aes_restore_sg(&dd->dst);
769 
770 		dma_unmap_sg(dd->dev, dd->src.sg, dd->src.nents,
771 			     DMA_TO_DEVICE);
772 
773 		if (dd->src.sg != &dd->aligned_sg)
774 			atmel_aes_restore_sg(&dd->src);
775 	}
776 
777 	if (dd->dst.sg == &dd->aligned_sg)
778 		sg_copy_from_buffer(dd->real_dst, sg_nents(dd->real_dst),
779 				    dd->buf, dd->total);
780 }
781 
atmel_aes_dma_transfer_start(struct atmel_aes_dev * dd,enum dma_slave_buswidth addr_width,enum dma_transfer_direction dir,u32 maxburst)782 static int atmel_aes_dma_transfer_start(struct atmel_aes_dev *dd,
783 					enum dma_slave_buswidth addr_width,
784 					enum dma_transfer_direction dir,
785 					u32 maxburst)
786 {
787 	struct dma_async_tx_descriptor *desc;
788 	struct dma_slave_config config;
789 	dma_async_tx_callback callback;
790 	struct atmel_aes_dma *dma;
791 	int err;
792 
793 	memset(&config, 0, sizeof(config));
794 	config.direction = dir;
795 	config.src_addr_width = addr_width;
796 	config.dst_addr_width = addr_width;
797 	config.src_maxburst = maxburst;
798 	config.dst_maxburst = maxburst;
799 
800 	switch (dir) {
801 	case DMA_MEM_TO_DEV:
802 		dma = &dd->src;
803 		callback = NULL;
804 		config.dst_addr = dd->phys_base + AES_IDATAR(0);
805 		break;
806 
807 	case DMA_DEV_TO_MEM:
808 		dma = &dd->dst;
809 		callback = atmel_aes_dma_callback;
810 		config.src_addr = dd->phys_base + AES_ODATAR(0);
811 		break;
812 
813 	default:
814 		return -EINVAL;
815 	}
816 
817 	err = dmaengine_slave_config(dma->chan, &config);
818 	if (err)
819 		return err;
820 
821 	desc = dmaengine_prep_slave_sg(dma->chan, dma->sg, dma->sg_len, dir,
822 				       DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
823 	if (!desc)
824 		return -ENOMEM;
825 
826 	desc->callback = callback;
827 	desc->callback_param = dd;
828 	dmaengine_submit(desc);
829 	dma_async_issue_pending(dma->chan);
830 
831 	return 0;
832 }
833 
atmel_aes_dma_transfer_stop(struct atmel_aes_dev * dd,enum dma_transfer_direction dir)834 static void atmel_aes_dma_transfer_stop(struct atmel_aes_dev *dd,
835 					enum dma_transfer_direction dir)
836 {
837 	struct atmel_aes_dma *dma;
838 
839 	switch (dir) {
840 	case DMA_MEM_TO_DEV:
841 		dma = &dd->src;
842 		break;
843 
844 	case DMA_DEV_TO_MEM:
845 		dma = &dd->dst;
846 		break;
847 
848 	default:
849 		return;
850 	}
851 
852 	dmaengine_terminate_all(dma->chan);
853 }
854 
atmel_aes_dma_start(struct atmel_aes_dev * dd,struct scatterlist * src,struct scatterlist * dst,size_t len,atmel_aes_fn_t resume)855 static int atmel_aes_dma_start(struct atmel_aes_dev *dd,
856 			       struct scatterlist *src,
857 			       struct scatterlist *dst,
858 			       size_t len,
859 			       atmel_aes_fn_t resume)
860 {
861 	enum dma_slave_buswidth addr_width;
862 	u32 maxburst;
863 	int err;
864 
865 	switch (dd->ctx->block_size) {
866 	case CFB8_BLOCK_SIZE:
867 		addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
868 		maxburst = 1;
869 		break;
870 
871 	case CFB16_BLOCK_SIZE:
872 		addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES;
873 		maxburst = 1;
874 		break;
875 
876 	case CFB32_BLOCK_SIZE:
877 	case CFB64_BLOCK_SIZE:
878 		addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
879 		maxburst = 1;
880 		break;
881 
882 	case AES_BLOCK_SIZE:
883 		addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
884 		maxburst = dd->caps.max_burst_size;
885 		break;
886 
887 	default:
888 		err = -EINVAL;
889 		goto exit;
890 	}
891 
892 	err = atmel_aes_map(dd, src, dst, len);
893 	if (err)
894 		goto exit;
895 
896 	dd->resume = resume;
897 
898 	/* Set output DMA transfer first */
899 	err = atmel_aes_dma_transfer_start(dd, addr_width, DMA_DEV_TO_MEM,
900 					   maxburst);
901 	if (err)
902 		goto unmap;
903 
904 	/* Then set input DMA transfer */
905 	err = atmel_aes_dma_transfer_start(dd, addr_width, DMA_MEM_TO_DEV,
906 					   maxburst);
907 	if (err)
908 		goto output_transfer_stop;
909 
910 	return -EINPROGRESS;
911 
912 output_transfer_stop:
913 	atmel_aes_dma_transfer_stop(dd, DMA_DEV_TO_MEM);
914 unmap:
915 	atmel_aes_unmap(dd);
916 exit:
917 	return atmel_aes_complete(dd, err);
918 }
919 
atmel_aes_dma_stop(struct atmel_aes_dev * dd)920 static void atmel_aes_dma_stop(struct atmel_aes_dev *dd)
921 {
922 	atmel_aes_dma_transfer_stop(dd, DMA_MEM_TO_DEV);
923 	atmel_aes_dma_transfer_stop(dd, DMA_DEV_TO_MEM);
924 	atmel_aes_unmap(dd);
925 }
926 
atmel_aes_dma_callback(void * data)927 static void atmel_aes_dma_callback(void *data)
928 {
929 	struct atmel_aes_dev *dd = data;
930 
931 	atmel_aes_dma_stop(dd);
932 	dd->is_async = true;
933 	(void)dd->resume(dd);
934 }
935 
atmel_aes_handle_queue(struct atmel_aes_dev * dd,struct crypto_async_request * new_areq)936 static int atmel_aes_handle_queue(struct atmel_aes_dev *dd,
937 				  struct crypto_async_request *new_areq)
938 {
939 	struct crypto_async_request *areq, *backlog;
940 	struct atmel_aes_base_ctx *ctx;
941 	unsigned long flags;
942 	bool start_async;
943 	int err, ret = 0;
944 
945 	spin_lock_irqsave(&dd->lock, flags);
946 	if (new_areq)
947 		ret = crypto_enqueue_request(&dd->queue, new_areq);
948 	if (dd->flags & AES_FLAGS_BUSY) {
949 		spin_unlock_irqrestore(&dd->lock, flags);
950 		return ret;
951 	}
952 	backlog = crypto_get_backlog(&dd->queue);
953 	areq = crypto_dequeue_request(&dd->queue);
954 	if (areq)
955 		dd->flags |= AES_FLAGS_BUSY;
956 	spin_unlock_irqrestore(&dd->lock, flags);
957 
958 	if (!areq)
959 		return ret;
960 
961 	if (backlog)
962 		backlog->complete(backlog, -EINPROGRESS);
963 
964 	ctx = crypto_tfm_ctx(areq->tfm);
965 
966 	dd->areq = areq;
967 	dd->ctx = ctx;
968 	start_async = (areq != new_areq);
969 	dd->is_async = start_async;
970 
971 	/* WARNING: ctx->start() MAY change dd->is_async. */
972 	err = ctx->start(dd);
973 	return (start_async) ? ret : err;
974 }
975 
976 
977 /* AES async block ciphers */
978 
atmel_aes_transfer_complete(struct atmel_aes_dev * dd)979 static int atmel_aes_transfer_complete(struct atmel_aes_dev *dd)
980 {
981 	return atmel_aes_complete(dd, 0);
982 }
983 
atmel_aes_start(struct atmel_aes_dev * dd)984 static int atmel_aes_start(struct atmel_aes_dev *dd)
985 {
986 	struct ablkcipher_request *req = ablkcipher_request_cast(dd->areq);
987 	struct atmel_aes_reqctx *rctx = ablkcipher_request_ctx(req);
988 	bool use_dma = (req->nbytes >= ATMEL_AES_DMA_THRESHOLD ||
989 			dd->ctx->block_size != AES_BLOCK_SIZE);
990 	int err;
991 
992 	atmel_aes_set_mode(dd, rctx);
993 
994 	err = atmel_aes_hw_init(dd);
995 	if (err)
996 		return atmel_aes_complete(dd, err);
997 
998 	atmel_aes_write_ctrl(dd, use_dma, req->info);
999 	if (use_dma)
1000 		return atmel_aes_dma_start(dd, req->src, req->dst, req->nbytes,
1001 					   atmel_aes_transfer_complete);
1002 
1003 	return atmel_aes_cpu_start(dd, req->src, req->dst, req->nbytes,
1004 				   atmel_aes_transfer_complete);
1005 }
1006 
1007 static inline struct atmel_aes_ctr_ctx *
atmel_aes_ctr_ctx_cast(struct atmel_aes_base_ctx * ctx)1008 atmel_aes_ctr_ctx_cast(struct atmel_aes_base_ctx *ctx)
1009 {
1010 	return container_of(ctx, struct atmel_aes_ctr_ctx, base);
1011 }
1012 
atmel_aes_ctr_transfer(struct atmel_aes_dev * dd)1013 static int atmel_aes_ctr_transfer(struct atmel_aes_dev *dd)
1014 {
1015 	struct atmel_aes_ctr_ctx *ctx = atmel_aes_ctr_ctx_cast(dd->ctx);
1016 	struct ablkcipher_request *req = ablkcipher_request_cast(dd->areq);
1017 	struct scatterlist *src, *dst;
1018 	size_t datalen;
1019 	u32 ctr;
1020 	u16 blocks, start, end;
1021 	bool use_dma, fragmented = false;
1022 
1023 	/* Check for transfer completion. */
1024 	ctx->offset += dd->total;
1025 	if (ctx->offset >= req->nbytes)
1026 		return atmel_aes_transfer_complete(dd);
1027 
1028 	/* Compute data length. */
1029 	datalen = req->nbytes - ctx->offset;
1030 	blocks = DIV_ROUND_UP(datalen, AES_BLOCK_SIZE);
1031 	ctr = be32_to_cpu(ctx->iv[3]);
1032 
1033 	/* Check 16bit counter overflow. */
1034 	start = ctr & 0xffff;
1035 	end = start + blocks - 1;
1036 
1037 	if (blocks >> 16 || end < start) {
1038 		ctr |= 0xffff;
1039 		datalen = AES_BLOCK_SIZE * (0x10000 - start);
1040 		fragmented = true;
1041 	}
1042 
1043 	use_dma = (datalen >= ATMEL_AES_DMA_THRESHOLD);
1044 
1045 	/* Jump to offset. */
1046 	src = scatterwalk_ffwd(ctx->src, req->src, ctx->offset);
1047 	dst = ((req->src == req->dst) ? src :
1048 	       scatterwalk_ffwd(ctx->dst, req->dst, ctx->offset));
1049 
1050 	/* Configure hardware. */
1051 	atmel_aes_write_ctrl(dd, use_dma, ctx->iv);
1052 	if (unlikely(fragmented)) {
1053 		/*
1054 		 * Increment the counter manually to cope with the hardware
1055 		 * counter overflow.
1056 		 */
1057 		ctx->iv[3] = cpu_to_be32(ctr);
1058 		crypto_inc((u8 *)ctx->iv, AES_BLOCK_SIZE);
1059 	}
1060 
1061 	if (use_dma)
1062 		return atmel_aes_dma_start(dd, src, dst, datalen,
1063 					   atmel_aes_ctr_transfer);
1064 
1065 	return atmel_aes_cpu_start(dd, src, dst, datalen,
1066 				   atmel_aes_ctr_transfer);
1067 }
1068 
atmel_aes_ctr_start(struct atmel_aes_dev * dd)1069 static int atmel_aes_ctr_start(struct atmel_aes_dev *dd)
1070 {
1071 	struct atmel_aes_ctr_ctx *ctx = atmel_aes_ctr_ctx_cast(dd->ctx);
1072 	struct ablkcipher_request *req = ablkcipher_request_cast(dd->areq);
1073 	struct atmel_aes_reqctx *rctx = ablkcipher_request_ctx(req);
1074 	int err;
1075 
1076 	atmel_aes_set_mode(dd, rctx);
1077 
1078 	err = atmel_aes_hw_init(dd);
1079 	if (err)
1080 		return atmel_aes_complete(dd, err);
1081 
1082 	memcpy(ctx->iv, req->info, AES_BLOCK_SIZE);
1083 	ctx->offset = 0;
1084 	dd->total = 0;
1085 	return atmel_aes_ctr_transfer(dd);
1086 }
1087 
atmel_aes_crypt(struct ablkcipher_request * req,unsigned long mode)1088 static int atmel_aes_crypt(struct ablkcipher_request *req, unsigned long mode)
1089 {
1090 	struct crypto_ablkcipher *ablkcipher = crypto_ablkcipher_reqtfm(req);
1091 	struct atmel_aes_base_ctx *ctx = crypto_ablkcipher_ctx(ablkcipher);
1092 	struct atmel_aes_reqctx *rctx;
1093 	struct atmel_aes_dev *dd;
1094 
1095 	switch (mode & AES_FLAGS_OPMODE_MASK) {
1096 	case AES_FLAGS_CFB8:
1097 		ctx->block_size = CFB8_BLOCK_SIZE;
1098 		break;
1099 
1100 	case AES_FLAGS_CFB16:
1101 		ctx->block_size = CFB16_BLOCK_SIZE;
1102 		break;
1103 
1104 	case AES_FLAGS_CFB32:
1105 		ctx->block_size = CFB32_BLOCK_SIZE;
1106 		break;
1107 
1108 	case AES_FLAGS_CFB64:
1109 		ctx->block_size = CFB64_BLOCK_SIZE;
1110 		break;
1111 
1112 	default:
1113 		ctx->block_size = AES_BLOCK_SIZE;
1114 		break;
1115 	}
1116 	ctx->is_aead = false;
1117 
1118 	dd = atmel_aes_find_dev(ctx);
1119 	if (!dd)
1120 		return -ENODEV;
1121 
1122 	rctx = ablkcipher_request_ctx(req);
1123 	rctx->mode = mode;
1124 
1125 	if (!(mode & AES_FLAGS_ENCRYPT) && (req->src == req->dst)) {
1126 		unsigned int ivsize = crypto_ablkcipher_ivsize(ablkcipher);
1127 
1128 		if (req->nbytes >= ivsize)
1129 			scatterwalk_map_and_copy(rctx->lastc, req->src,
1130 						 req->nbytes - ivsize,
1131 						 ivsize, 0);
1132 	}
1133 
1134 	return atmel_aes_handle_queue(dd, &req->base);
1135 }
1136 
atmel_aes_setkey(struct crypto_ablkcipher * tfm,const u8 * key,unsigned int keylen)1137 static int atmel_aes_setkey(struct crypto_ablkcipher *tfm, const u8 *key,
1138 			   unsigned int keylen)
1139 {
1140 	struct atmel_aes_base_ctx *ctx = crypto_ablkcipher_ctx(tfm);
1141 
1142 	if (keylen != AES_KEYSIZE_128 &&
1143 	    keylen != AES_KEYSIZE_192 &&
1144 	    keylen != AES_KEYSIZE_256) {
1145 		crypto_ablkcipher_set_flags(tfm, CRYPTO_TFM_RES_BAD_KEY_LEN);
1146 		return -EINVAL;
1147 	}
1148 
1149 	memcpy(ctx->key, key, keylen);
1150 	ctx->keylen = keylen;
1151 
1152 	return 0;
1153 }
1154 
atmel_aes_ecb_encrypt(struct ablkcipher_request * req)1155 static int atmel_aes_ecb_encrypt(struct ablkcipher_request *req)
1156 {
1157 	return atmel_aes_crypt(req, AES_FLAGS_ECB | AES_FLAGS_ENCRYPT);
1158 }
1159 
atmel_aes_ecb_decrypt(struct ablkcipher_request * req)1160 static int atmel_aes_ecb_decrypt(struct ablkcipher_request *req)
1161 {
1162 	return atmel_aes_crypt(req, AES_FLAGS_ECB);
1163 }
1164 
atmel_aes_cbc_encrypt(struct ablkcipher_request * req)1165 static int atmel_aes_cbc_encrypt(struct ablkcipher_request *req)
1166 {
1167 	return atmel_aes_crypt(req, AES_FLAGS_CBC | AES_FLAGS_ENCRYPT);
1168 }
1169 
atmel_aes_cbc_decrypt(struct ablkcipher_request * req)1170 static int atmel_aes_cbc_decrypt(struct ablkcipher_request *req)
1171 {
1172 	return atmel_aes_crypt(req, AES_FLAGS_CBC);
1173 }
1174 
atmel_aes_ofb_encrypt(struct ablkcipher_request * req)1175 static int atmel_aes_ofb_encrypt(struct ablkcipher_request *req)
1176 {
1177 	return atmel_aes_crypt(req, AES_FLAGS_OFB | AES_FLAGS_ENCRYPT);
1178 }
1179 
atmel_aes_ofb_decrypt(struct ablkcipher_request * req)1180 static int atmel_aes_ofb_decrypt(struct ablkcipher_request *req)
1181 {
1182 	return atmel_aes_crypt(req, AES_FLAGS_OFB);
1183 }
1184 
atmel_aes_cfb_encrypt(struct ablkcipher_request * req)1185 static int atmel_aes_cfb_encrypt(struct ablkcipher_request *req)
1186 {
1187 	return atmel_aes_crypt(req, AES_FLAGS_CFB128 | AES_FLAGS_ENCRYPT);
1188 }
1189 
atmel_aes_cfb_decrypt(struct ablkcipher_request * req)1190 static int atmel_aes_cfb_decrypt(struct ablkcipher_request *req)
1191 {
1192 	return atmel_aes_crypt(req, AES_FLAGS_CFB128);
1193 }
1194 
atmel_aes_cfb64_encrypt(struct ablkcipher_request * req)1195 static int atmel_aes_cfb64_encrypt(struct ablkcipher_request *req)
1196 {
1197 	return atmel_aes_crypt(req, AES_FLAGS_CFB64 | AES_FLAGS_ENCRYPT);
1198 }
1199 
atmel_aes_cfb64_decrypt(struct ablkcipher_request * req)1200 static int atmel_aes_cfb64_decrypt(struct ablkcipher_request *req)
1201 {
1202 	return atmel_aes_crypt(req, AES_FLAGS_CFB64);
1203 }
1204 
atmel_aes_cfb32_encrypt(struct ablkcipher_request * req)1205 static int atmel_aes_cfb32_encrypt(struct ablkcipher_request *req)
1206 {
1207 	return atmel_aes_crypt(req, AES_FLAGS_CFB32 | AES_FLAGS_ENCRYPT);
1208 }
1209 
atmel_aes_cfb32_decrypt(struct ablkcipher_request * req)1210 static int atmel_aes_cfb32_decrypt(struct ablkcipher_request *req)
1211 {
1212 	return atmel_aes_crypt(req, AES_FLAGS_CFB32);
1213 }
1214 
atmel_aes_cfb16_encrypt(struct ablkcipher_request * req)1215 static int atmel_aes_cfb16_encrypt(struct ablkcipher_request *req)
1216 {
1217 	return atmel_aes_crypt(req, AES_FLAGS_CFB16 | AES_FLAGS_ENCRYPT);
1218 }
1219 
atmel_aes_cfb16_decrypt(struct ablkcipher_request * req)1220 static int atmel_aes_cfb16_decrypt(struct ablkcipher_request *req)
1221 {
1222 	return atmel_aes_crypt(req, AES_FLAGS_CFB16);
1223 }
1224 
atmel_aes_cfb8_encrypt(struct ablkcipher_request * req)1225 static int atmel_aes_cfb8_encrypt(struct ablkcipher_request *req)
1226 {
1227 	return atmel_aes_crypt(req, AES_FLAGS_CFB8 | AES_FLAGS_ENCRYPT);
1228 }
1229 
atmel_aes_cfb8_decrypt(struct ablkcipher_request * req)1230 static int atmel_aes_cfb8_decrypt(struct ablkcipher_request *req)
1231 {
1232 	return atmel_aes_crypt(req, AES_FLAGS_CFB8);
1233 }
1234 
atmel_aes_ctr_encrypt(struct ablkcipher_request * req)1235 static int atmel_aes_ctr_encrypt(struct ablkcipher_request *req)
1236 {
1237 	return atmel_aes_crypt(req, AES_FLAGS_CTR | AES_FLAGS_ENCRYPT);
1238 }
1239 
atmel_aes_ctr_decrypt(struct ablkcipher_request * req)1240 static int atmel_aes_ctr_decrypt(struct ablkcipher_request *req)
1241 {
1242 	return atmel_aes_crypt(req, AES_FLAGS_CTR);
1243 }
1244 
atmel_aes_cra_init(struct crypto_tfm * tfm)1245 static int atmel_aes_cra_init(struct crypto_tfm *tfm)
1246 {
1247 	struct atmel_aes_ctx *ctx = crypto_tfm_ctx(tfm);
1248 
1249 	tfm->crt_ablkcipher.reqsize = sizeof(struct atmel_aes_reqctx);
1250 	ctx->base.start = atmel_aes_start;
1251 
1252 	return 0;
1253 }
1254 
atmel_aes_ctr_cra_init(struct crypto_tfm * tfm)1255 static int atmel_aes_ctr_cra_init(struct crypto_tfm *tfm)
1256 {
1257 	struct atmel_aes_ctx *ctx = crypto_tfm_ctx(tfm);
1258 
1259 	tfm->crt_ablkcipher.reqsize = sizeof(struct atmel_aes_reqctx);
1260 	ctx->base.start = atmel_aes_ctr_start;
1261 
1262 	return 0;
1263 }
1264 
1265 static struct crypto_alg aes_algs[] = {
1266 {
1267 	.cra_name		= "ecb(aes)",
1268 	.cra_driver_name	= "atmel-ecb-aes",
1269 	.cra_priority		= ATMEL_AES_PRIORITY,
1270 	.cra_flags		= CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC,
1271 	.cra_blocksize		= AES_BLOCK_SIZE,
1272 	.cra_ctxsize		= sizeof(struct atmel_aes_ctx),
1273 	.cra_alignmask		= 0xf,
1274 	.cra_type		= &crypto_ablkcipher_type,
1275 	.cra_module		= THIS_MODULE,
1276 	.cra_init		= atmel_aes_cra_init,
1277 	.cra_u.ablkcipher = {
1278 		.min_keysize	= AES_MIN_KEY_SIZE,
1279 		.max_keysize	= AES_MAX_KEY_SIZE,
1280 		.setkey		= atmel_aes_setkey,
1281 		.encrypt	= atmel_aes_ecb_encrypt,
1282 		.decrypt	= atmel_aes_ecb_decrypt,
1283 	}
1284 },
1285 {
1286 	.cra_name		= "cbc(aes)",
1287 	.cra_driver_name	= "atmel-cbc-aes",
1288 	.cra_priority		= ATMEL_AES_PRIORITY,
1289 	.cra_flags		= CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC,
1290 	.cra_blocksize		= AES_BLOCK_SIZE,
1291 	.cra_ctxsize		= sizeof(struct atmel_aes_ctx),
1292 	.cra_alignmask		= 0xf,
1293 	.cra_type		= &crypto_ablkcipher_type,
1294 	.cra_module		= THIS_MODULE,
1295 	.cra_init		= atmel_aes_cra_init,
1296 	.cra_u.ablkcipher = {
1297 		.min_keysize	= AES_MIN_KEY_SIZE,
1298 		.max_keysize	= AES_MAX_KEY_SIZE,
1299 		.ivsize		= AES_BLOCK_SIZE,
1300 		.setkey		= atmel_aes_setkey,
1301 		.encrypt	= atmel_aes_cbc_encrypt,
1302 		.decrypt	= atmel_aes_cbc_decrypt,
1303 	}
1304 },
1305 {
1306 	.cra_name		= "ofb(aes)",
1307 	.cra_driver_name	= "atmel-ofb-aes",
1308 	.cra_priority		= ATMEL_AES_PRIORITY,
1309 	.cra_flags		= CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC,
1310 	.cra_blocksize		= AES_BLOCK_SIZE,
1311 	.cra_ctxsize		= sizeof(struct atmel_aes_ctx),
1312 	.cra_alignmask		= 0xf,
1313 	.cra_type		= &crypto_ablkcipher_type,
1314 	.cra_module		= THIS_MODULE,
1315 	.cra_init		= atmel_aes_cra_init,
1316 	.cra_u.ablkcipher = {
1317 		.min_keysize	= AES_MIN_KEY_SIZE,
1318 		.max_keysize	= AES_MAX_KEY_SIZE,
1319 		.ivsize		= AES_BLOCK_SIZE,
1320 		.setkey		= atmel_aes_setkey,
1321 		.encrypt	= atmel_aes_ofb_encrypt,
1322 		.decrypt	= atmel_aes_ofb_decrypt,
1323 	}
1324 },
1325 {
1326 	.cra_name		= "cfb(aes)",
1327 	.cra_driver_name	= "atmel-cfb-aes",
1328 	.cra_priority		= ATMEL_AES_PRIORITY,
1329 	.cra_flags		= CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC,
1330 	.cra_blocksize		= AES_BLOCK_SIZE,
1331 	.cra_ctxsize		= sizeof(struct atmel_aes_ctx),
1332 	.cra_alignmask		= 0xf,
1333 	.cra_type		= &crypto_ablkcipher_type,
1334 	.cra_module		= THIS_MODULE,
1335 	.cra_init		= atmel_aes_cra_init,
1336 	.cra_u.ablkcipher = {
1337 		.min_keysize	= AES_MIN_KEY_SIZE,
1338 		.max_keysize	= AES_MAX_KEY_SIZE,
1339 		.ivsize		= AES_BLOCK_SIZE,
1340 		.setkey		= atmel_aes_setkey,
1341 		.encrypt	= atmel_aes_cfb_encrypt,
1342 		.decrypt	= atmel_aes_cfb_decrypt,
1343 	}
1344 },
1345 {
1346 	.cra_name		= "cfb32(aes)",
1347 	.cra_driver_name	= "atmel-cfb32-aes",
1348 	.cra_priority		= ATMEL_AES_PRIORITY,
1349 	.cra_flags		= CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC,
1350 	.cra_blocksize		= CFB32_BLOCK_SIZE,
1351 	.cra_ctxsize		= sizeof(struct atmel_aes_ctx),
1352 	.cra_alignmask		= 0x3,
1353 	.cra_type		= &crypto_ablkcipher_type,
1354 	.cra_module		= THIS_MODULE,
1355 	.cra_init		= atmel_aes_cra_init,
1356 	.cra_u.ablkcipher = {
1357 		.min_keysize	= AES_MIN_KEY_SIZE,
1358 		.max_keysize	= AES_MAX_KEY_SIZE,
1359 		.ivsize		= AES_BLOCK_SIZE,
1360 		.setkey		= atmel_aes_setkey,
1361 		.encrypt	= atmel_aes_cfb32_encrypt,
1362 		.decrypt	= atmel_aes_cfb32_decrypt,
1363 	}
1364 },
1365 {
1366 	.cra_name		= "cfb16(aes)",
1367 	.cra_driver_name	= "atmel-cfb16-aes",
1368 	.cra_priority		= ATMEL_AES_PRIORITY,
1369 	.cra_flags		= CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC,
1370 	.cra_blocksize		= CFB16_BLOCK_SIZE,
1371 	.cra_ctxsize		= sizeof(struct atmel_aes_ctx),
1372 	.cra_alignmask		= 0x1,
1373 	.cra_type		= &crypto_ablkcipher_type,
1374 	.cra_module		= THIS_MODULE,
1375 	.cra_init		= atmel_aes_cra_init,
1376 	.cra_u.ablkcipher = {
1377 		.min_keysize	= AES_MIN_KEY_SIZE,
1378 		.max_keysize	= AES_MAX_KEY_SIZE,
1379 		.ivsize		= AES_BLOCK_SIZE,
1380 		.setkey		= atmel_aes_setkey,
1381 		.encrypt	= atmel_aes_cfb16_encrypt,
1382 		.decrypt	= atmel_aes_cfb16_decrypt,
1383 	}
1384 },
1385 {
1386 	.cra_name		= "cfb8(aes)",
1387 	.cra_driver_name	= "atmel-cfb8-aes",
1388 	.cra_priority		= ATMEL_AES_PRIORITY,
1389 	.cra_flags		= CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC,
1390 	.cra_blocksize		= CFB8_BLOCK_SIZE,
1391 	.cra_ctxsize		= sizeof(struct atmel_aes_ctx),
1392 	.cra_alignmask		= 0x0,
1393 	.cra_type		= &crypto_ablkcipher_type,
1394 	.cra_module		= THIS_MODULE,
1395 	.cra_init		= atmel_aes_cra_init,
1396 	.cra_u.ablkcipher = {
1397 		.min_keysize	= AES_MIN_KEY_SIZE,
1398 		.max_keysize	= AES_MAX_KEY_SIZE,
1399 		.ivsize		= AES_BLOCK_SIZE,
1400 		.setkey		= atmel_aes_setkey,
1401 		.encrypt	= atmel_aes_cfb8_encrypt,
1402 		.decrypt	= atmel_aes_cfb8_decrypt,
1403 	}
1404 },
1405 {
1406 	.cra_name		= "ctr(aes)",
1407 	.cra_driver_name	= "atmel-ctr-aes",
1408 	.cra_priority		= ATMEL_AES_PRIORITY,
1409 	.cra_flags		= CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC,
1410 	.cra_blocksize		= 1,
1411 	.cra_ctxsize		= sizeof(struct atmel_aes_ctr_ctx),
1412 	.cra_alignmask		= 0xf,
1413 	.cra_type		= &crypto_ablkcipher_type,
1414 	.cra_module		= THIS_MODULE,
1415 	.cra_init		= atmel_aes_ctr_cra_init,
1416 	.cra_u.ablkcipher = {
1417 		.min_keysize	= AES_MIN_KEY_SIZE,
1418 		.max_keysize	= AES_MAX_KEY_SIZE,
1419 		.ivsize		= AES_BLOCK_SIZE,
1420 		.setkey		= atmel_aes_setkey,
1421 		.encrypt	= atmel_aes_ctr_encrypt,
1422 		.decrypt	= atmel_aes_ctr_decrypt,
1423 	}
1424 },
1425 };
1426 
1427 static struct crypto_alg aes_cfb64_alg = {
1428 	.cra_name		= "cfb64(aes)",
1429 	.cra_driver_name	= "atmel-cfb64-aes",
1430 	.cra_priority		= ATMEL_AES_PRIORITY,
1431 	.cra_flags		= CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC,
1432 	.cra_blocksize		= CFB64_BLOCK_SIZE,
1433 	.cra_ctxsize		= sizeof(struct atmel_aes_ctx),
1434 	.cra_alignmask		= 0x7,
1435 	.cra_type		= &crypto_ablkcipher_type,
1436 	.cra_module		= THIS_MODULE,
1437 	.cra_init		= atmel_aes_cra_init,
1438 	.cra_u.ablkcipher = {
1439 		.min_keysize	= AES_MIN_KEY_SIZE,
1440 		.max_keysize	= AES_MAX_KEY_SIZE,
1441 		.ivsize		= AES_BLOCK_SIZE,
1442 		.setkey		= atmel_aes_setkey,
1443 		.encrypt	= atmel_aes_cfb64_encrypt,
1444 		.decrypt	= atmel_aes_cfb64_decrypt,
1445 	}
1446 };
1447 
1448 
1449 /* gcm aead functions */
1450 
1451 static int atmel_aes_gcm_ghash(struct atmel_aes_dev *dd,
1452 			       const u32 *data, size_t datalen,
1453 			       const u32 *ghash_in, u32 *ghash_out,
1454 			       atmel_aes_fn_t resume);
1455 static int atmel_aes_gcm_ghash_init(struct atmel_aes_dev *dd);
1456 static int atmel_aes_gcm_ghash_finalize(struct atmel_aes_dev *dd);
1457 
1458 static int atmel_aes_gcm_start(struct atmel_aes_dev *dd);
1459 static int atmel_aes_gcm_process(struct atmel_aes_dev *dd);
1460 static int atmel_aes_gcm_length(struct atmel_aes_dev *dd);
1461 static int atmel_aes_gcm_data(struct atmel_aes_dev *dd);
1462 static int atmel_aes_gcm_tag_init(struct atmel_aes_dev *dd);
1463 static int atmel_aes_gcm_tag(struct atmel_aes_dev *dd);
1464 static int atmel_aes_gcm_finalize(struct atmel_aes_dev *dd);
1465 
1466 static inline struct atmel_aes_gcm_ctx *
atmel_aes_gcm_ctx_cast(struct atmel_aes_base_ctx * ctx)1467 atmel_aes_gcm_ctx_cast(struct atmel_aes_base_ctx *ctx)
1468 {
1469 	return container_of(ctx, struct atmel_aes_gcm_ctx, base);
1470 }
1471 
atmel_aes_gcm_ghash(struct atmel_aes_dev * dd,const u32 * data,size_t datalen,const u32 * ghash_in,u32 * ghash_out,atmel_aes_fn_t resume)1472 static int atmel_aes_gcm_ghash(struct atmel_aes_dev *dd,
1473 			       const u32 *data, size_t datalen,
1474 			       const u32 *ghash_in, u32 *ghash_out,
1475 			       atmel_aes_fn_t resume)
1476 {
1477 	struct atmel_aes_gcm_ctx *ctx = atmel_aes_gcm_ctx_cast(dd->ctx);
1478 
1479 	dd->data = (u32 *)data;
1480 	dd->datalen = datalen;
1481 	ctx->ghash_in = ghash_in;
1482 	ctx->ghash_out = ghash_out;
1483 	ctx->ghash_resume = resume;
1484 
1485 	atmel_aes_write_ctrl(dd, false, NULL);
1486 	return atmel_aes_wait_for_data_ready(dd, atmel_aes_gcm_ghash_init);
1487 }
1488 
atmel_aes_gcm_ghash_init(struct atmel_aes_dev * dd)1489 static int atmel_aes_gcm_ghash_init(struct atmel_aes_dev *dd)
1490 {
1491 	struct atmel_aes_gcm_ctx *ctx = atmel_aes_gcm_ctx_cast(dd->ctx);
1492 
1493 	/* Set the data length. */
1494 	atmel_aes_write(dd, AES_AADLENR, dd->total);
1495 	atmel_aes_write(dd, AES_CLENR, 0);
1496 
1497 	/* If needed, overwrite the GCM Intermediate Hash Word Registers */
1498 	if (ctx->ghash_in)
1499 		atmel_aes_write_block(dd, AES_GHASHR(0), ctx->ghash_in);
1500 
1501 	return atmel_aes_gcm_ghash_finalize(dd);
1502 }
1503 
atmel_aes_gcm_ghash_finalize(struct atmel_aes_dev * dd)1504 static int atmel_aes_gcm_ghash_finalize(struct atmel_aes_dev *dd)
1505 {
1506 	struct atmel_aes_gcm_ctx *ctx = atmel_aes_gcm_ctx_cast(dd->ctx);
1507 	u32 isr;
1508 
1509 	/* Write data into the Input Data Registers. */
1510 	while (dd->datalen > 0) {
1511 		atmel_aes_write_block(dd, AES_IDATAR(0), dd->data);
1512 		dd->data += 4;
1513 		dd->datalen -= AES_BLOCK_SIZE;
1514 
1515 		isr = atmel_aes_read(dd, AES_ISR);
1516 		if (!(isr & AES_INT_DATARDY)) {
1517 			dd->resume = atmel_aes_gcm_ghash_finalize;
1518 			atmel_aes_write(dd, AES_IER, AES_INT_DATARDY);
1519 			return -EINPROGRESS;
1520 		}
1521 	}
1522 
1523 	/* Read the computed hash from GHASHRx. */
1524 	atmel_aes_read_block(dd, AES_GHASHR(0), ctx->ghash_out);
1525 
1526 	return ctx->ghash_resume(dd);
1527 }
1528 
1529 
atmel_aes_gcm_start(struct atmel_aes_dev * dd)1530 static int atmel_aes_gcm_start(struct atmel_aes_dev *dd)
1531 {
1532 	struct atmel_aes_gcm_ctx *ctx = atmel_aes_gcm_ctx_cast(dd->ctx);
1533 	struct aead_request *req = aead_request_cast(dd->areq);
1534 	struct crypto_aead *tfm = crypto_aead_reqtfm(req);
1535 	struct atmel_aes_reqctx *rctx = aead_request_ctx(req);
1536 	size_t ivsize = crypto_aead_ivsize(tfm);
1537 	size_t datalen, padlen;
1538 	const void *iv = req->iv;
1539 	u8 *data = dd->buf;
1540 	int err;
1541 
1542 	atmel_aes_set_mode(dd, rctx);
1543 
1544 	err = atmel_aes_hw_init(dd);
1545 	if (err)
1546 		return atmel_aes_complete(dd, err);
1547 
1548 	if (likely(ivsize == GCM_AES_IV_SIZE)) {
1549 		memcpy(ctx->j0, iv, ivsize);
1550 		ctx->j0[3] = cpu_to_be32(1);
1551 		return atmel_aes_gcm_process(dd);
1552 	}
1553 
1554 	padlen = atmel_aes_padlen(ivsize, AES_BLOCK_SIZE);
1555 	datalen = ivsize + padlen + AES_BLOCK_SIZE;
1556 	if (datalen > dd->buflen)
1557 		return atmel_aes_complete(dd, -EINVAL);
1558 
1559 	memcpy(data, iv, ivsize);
1560 	memset(data + ivsize, 0, padlen + sizeof(u64));
1561 	((u64 *)(data + datalen))[-1] = cpu_to_be64(ivsize * 8);
1562 
1563 	return atmel_aes_gcm_ghash(dd, (const u32 *)data, datalen,
1564 				   NULL, ctx->j0, atmel_aes_gcm_process);
1565 }
1566 
atmel_aes_gcm_process(struct atmel_aes_dev * dd)1567 static int atmel_aes_gcm_process(struct atmel_aes_dev *dd)
1568 {
1569 	struct atmel_aes_gcm_ctx *ctx = atmel_aes_gcm_ctx_cast(dd->ctx);
1570 	struct aead_request *req = aead_request_cast(dd->areq);
1571 	struct crypto_aead *tfm = crypto_aead_reqtfm(req);
1572 	bool enc = atmel_aes_is_encrypt(dd);
1573 	u32 authsize;
1574 
1575 	/* Compute text length. */
1576 	authsize = crypto_aead_authsize(tfm);
1577 	ctx->textlen = req->cryptlen - (enc ? 0 : authsize);
1578 
1579 	/*
1580 	 * According to tcrypt test suite, the GCM Automatic Tag Generation
1581 	 * fails when both the message and its associated data are empty.
1582 	 */
1583 	if (likely(req->assoclen != 0 || ctx->textlen != 0))
1584 		dd->flags |= AES_FLAGS_GTAGEN;
1585 
1586 	atmel_aes_write_ctrl(dd, false, NULL);
1587 	return atmel_aes_wait_for_data_ready(dd, atmel_aes_gcm_length);
1588 }
1589 
atmel_aes_gcm_length(struct atmel_aes_dev * dd)1590 static int atmel_aes_gcm_length(struct atmel_aes_dev *dd)
1591 {
1592 	struct atmel_aes_gcm_ctx *ctx = atmel_aes_gcm_ctx_cast(dd->ctx);
1593 	struct aead_request *req = aead_request_cast(dd->areq);
1594 	u32 j0_lsw, *j0 = ctx->j0;
1595 	size_t padlen;
1596 
1597 	/* Write incr32(J0) into IV. */
1598 	j0_lsw = j0[3];
1599 	j0[3] = cpu_to_be32(be32_to_cpu(j0[3]) + 1);
1600 	atmel_aes_write_block(dd, AES_IVR(0), j0);
1601 	j0[3] = j0_lsw;
1602 
1603 	/* Set aad and text lengths. */
1604 	atmel_aes_write(dd, AES_AADLENR, req->assoclen);
1605 	atmel_aes_write(dd, AES_CLENR, ctx->textlen);
1606 
1607 	/* Check whether AAD are present. */
1608 	if (unlikely(req->assoclen == 0)) {
1609 		dd->datalen = 0;
1610 		return atmel_aes_gcm_data(dd);
1611 	}
1612 
1613 	/* Copy assoc data and add padding. */
1614 	padlen = atmel_aes_padlen(req->assoclen, AES_BLOCK_SIZE);
1615 	if (unlikely(req->assoclen + padlen > dd->buflen))
1616 		return atmel_aes_complete(dd, -EINVAL);
1617 	sg_copy_to_buffer(req->src, sg_nents(req->src), dd->buf, req->assoclen);
1618 
1619 	/* Write assoc data into the Input Data register. */
1620 	dd->data = (u32 *)dd->buf;
1621 	dd->datalen = req->assoclen + padlen;
1622 	return atmel_aes_gcm_data(dd);
1623 }
1624 
atmel_aes_gcm_data(struct atmel_aes_dev * dd)1625 static int atmel_aes_gcm_data(struct atmel_aes_dev *dd)
1626 {
1627 	struct atmel_aes_gcm_ctx *ctx = atmel_aes_gcm_ctx_cast(dd->ctx);
1628 	struct aead_request *req = aead_request_cast(dd->areq);
1629 	bool use_dma = (ctx->textlen >= ATMEL_AES_DMA_THRESHOLD);
1630 	struct scatterlist *src, *dst;
1631 	u32 isr, mr;
1632 
1633 	/* Write AAD first. */
1634 	while (dd->datalen > 0) {
1635 		atmel_aes_write_block(dd, AES_IDATAR(0), dd->data);
1636 		dd->data += 4;
1637 		dd->datalen -= AES_BLOCK_SIZE;
1638 
1639 		isr = atmel_aes_read(dd, AES_ISR);
1640 		if (!(isr & AES_INT_DATARDY)) {
1641 			dd->resume = atmel_aes_gcm_data;
1642 			atmel_aes_write(dd, AES_IER, AES_INT_DATARDY);
1643 			return -EINPROGRESS;
1644 		}
1645 	}
1646 
1647 	/* GMAC only. */
1648 	if (unlikely(ctx->textlen == 0))
1649 		return atmel_aes_gcm_tag_init(dd);
1650 
1651 	/* Prepare src and dst scatter lists to transfer cipher/plain texts */
1652 	src = scatterwalk_ffwd(ctx->src, req->src, req->assoclen);
1653 	dst = ((req->src == req->dst) ? src :
1654 	       scatterwalk_ffwd(ctx->dst, req->dst, req->assoclen));
1655 
1656 	if (use_dma) {
1657 		/* Update the Mode Register for DMA transfers. */
1658 		mr = atmel_aes_read(dd, AES_MR);
1659 		mr &= ~(AES_MR_SMOD_MASK | AES_MR_DUALBUFF);
1660 		mr |= AES_MR_SMOD_IDATAR0;
1661 		if (dd->caps.has_dualbuff)
1662 			mr |= AES_MR_DUALBUFF;
1663 		atmel_aes_write(dd, AES_MR, mr);
1664 
1665 		return atmel_aes_dma_start(dd, src, dst, ctx->textlen,
1666 					   atmel_aes_gcm_tag_init);
1667 	}
1668 
1669 	return atmel_aes_cpu_start(dd, src, dst, ctx->textlen,
1670 				   atmel_aes_gcm_tag_init);
1671 }
1672 
atmel_aes_gcm_tag_init(struct atmel_aes_dev * dd)1673 static int atmel_aes_gcm_tag_init(struct atmel_aes_dev *dd)
1674 {
1675 	struct atmel_aes_gcm_ctx *ctx = atmel_aes_gcm_ctx_cast(dd->ctx);
1676 	struct aead_request *req = aead_request_cast(dd->areq);
1677 	u64 *data = dd->buf;
1678 
1679 	if (likely(dd->flags & AES_FLAGS_GTAGEN)) {
1680 		if (!(atmel_aes_read(dd, AES_ISR) & AES_INT_TAGRDY)) {
1681 			dd->resume = atmel_aes_gcm_tag_init;
1682 			atmel_aes_write(dd, AES_IER, AES_INT_TAGRDY);
1683 			return -EINPROGRESS;
1684 		}
1685 
1686 		return atmel_aes_gcm_finalize(dd);
1687 	}
1688 
1689 	/* Read the GCM Intermediate Hash Word Registers. */
1690 	atmel_aes_read_block(dd, AES_GHASHR(0), ctx->ghash);
1691 
1692 	data[0] = cpu_to_be64(req->assoclen * 8);
1693 	data[1] = cpu_to_be64(ctx->textlen * 8);
1694 
1695 	return atmel_aes_gcm_ghash(dd, (const u32 *)data, AES_BLOCK_SIZE,
1696 				   ctx->ghash, ctx->ghash, atmel_aes_gcm_tag);
1697 }
1698 
atmel_aes_gcm_tag(struct atmel_aes_dev * dd)1699 static int atmel_aes_gcm_tag(struct atmel_aes_dev *dd)
1700 {
1701 	struct atmel_aes_gcm_ctx *ctx = atmel_aes_gcm_ctx_cast(dd->ctx);
1702 	unsigned long flags;
1703 
1704 	/*
1705 	 * Change mode to CTR to complete the tag generation.
1706 	 * Use J0 as Initialization Vector.
1707 	 */
1708 	flags = dd->flags;
1709 	dd->flags &= ~(AES_FLAGS_OPMODE_MASK | AES_FLAGS_GTAGEN);
1710 	dd->flags |= AES_FLAGS_CTR;
1711 	atmel_aes_write_ctrl(dd, false, ctx->j0);
1712 	dd->flags = flags;
1713 
1714 	atmel_aes_write_block(dd, AES_IDATAR(0), ctx->ghash);
1715 	return atmel_aes_wait_for_data_ready(dd, atmel_aes_gcm_finalize);
1716 }
1717 
atmel_aes_gcm_finalize(struct atmel_aes_dev * dd)1718 static int atmel_aes_gcm_finalize(struct atmel_aes_dev *dd)
1719 {
1720 	struct atmel_aes_gcm_ctx *ctx = atmel_aes_gcm_ctx_cast(dd->ctx);
1721 	struct aead_request *req = aead_request_cast(dd->areq);
1722 	struct crypto_aead *tfm = crypto_aead_reqtfm(req);
1723 	bool enc = atmel_aes_is_encrypt(dd);
1724 	u32 offset, authsize, itag[4], *otag = ctx->tag;
1725 	int err;
1726 
1727 	/* Read the computed tag. */
1728 	if (likely(dd->flags & AES_FLAGS_GTAGEN))
1729 		atmel_aes_read_block(dd, AES_TAGR(0), ctx->tag);
1730 	else
1731 		atmel_aes_read_block(dd, AES_ODATAR(0), ctx->tag);
1732 
1733 	offset = req->assoclen + ctx->textlen;
1734 	authsize = crypto_aead_authsize(tfm);
1735 	if (enc) {
1736 		scatterwalk_map_and_copy(otag, req->dst, offset, authsize, 1);
1737 		err = 0;
1738 	} else {
1739 		scatterwalk_map_and_copy(itag, req->src, offset, authsize, 0);
1740 		err = crypto_memneq(itag, otag, authsize) ? -EBADMSG : 0;
1741 	}
1742 
1743 	return atmel_aes_complete(dd, err);
1744 }
1745 
atmel_aes_gcm_crypt(struct aead_request * req,unsigned long mode)1746 static int atmel_aes_gcm_crypt(struct aead_request *req,
1747 			       unsigned long mode)
1748 {
1749 	struct atmel_aes_base_ctx *ctx;
1750 	struct atmel_aes_reqctx *rctx;
1751 	struct atmel_aes_dev *dd;
1752 
1753 	ctx = crypto_aead_ctx(crypto_aead_reqtfm(req));
1754 	ctx->block_size = AES_BLOCK_SIZE;
1755 	ctx->is_aead = true;
1756 
1757 	dd = atmel_aes_find_dev(ctx);
1758 	if (!dd)
1759 		return -ENODEV;
1760 
1761 	rctx = aead_request_ctx(req);
1762 	rctx->mode = AES_FLAGS_GCM | mode;
1763 
1764 	return atmel_aes_handle_queue(dd, &req->base);
1765 }
1766 
atmel_aes_gcm_setkey(struct crypto_aead * tfm,const u8 * key,unsigned int keylen)1767 static int atmel_aes_gcm_setkey(struct crypto_aead *tfm, const u8 *key,
1768 				unsigned int keylen)
1769 {
1770 	struct atmel_aes_base_ctx *ctx = crypto_aead_ctx(tfm);
1771 
1772 	if (keylen != AES_KEYSIZE_256 &&
1773 	    keylen != AES_KEYSIZE_192 &&
1774 	    keylen != AES_KEYSIZE_128) {
1775 		crypto_aead_set_flags(tfm, CRYPTO_TFM_RES_BAD_KEY_LEN);
1776 		return -EINVAL;
1777 	}
1778 
1779 	memcpy(ctx->key, key, keylen);
1780 	ctx->keylen = keylen;
1781 
1782 	return 0;
1783 }
1784 
atmel_aes_gcm_setauthsize(struct crypto_aead * tfm,unsigned int authsize)1785 static int atmel_aes_gcm_setauthsize(struct crypto_aead *tfm,
1786 				     unsigned int authsize)
1787 {
1788 	/* Same as crypto_gcm_authsize() from crypto/gcm.c */
1789 	switch (authsize) {
1790 	case 4:
1791 	case 8:
1792 	case 12:
1793 	case 13:
1794 	case 14:
1795 	case 15:
1796 	case 16:
1797 		break;
1798 	default:
1799 		return -EINVAL;
1800 	}
1801 
1802 	return 0;
1803 }
1804 
atmel_aes_gcm_encrypt(struct aead_request * req)1805 static int atmel_aes_gcm_encrypt(struct aead_request *req)
1806 {
1807 	return atmel_aes_gcm_crypt(req, AES_FLAGS_ENCRYPT);
1808 }
1809 
atmel_aes_gcm_decrypt(struct aead_request * req)1810 static int atmel_aes_gcm_decrypt(struct aead_request *req)
1811 {
1812 	return atmel_aes_gcm_crypt(req, 0);
1813 }
1814 
atmel_aes_gcm_init(struct crypto_aead * tfm)1815 static int atmel_aes_gcm_init(struct crypto_aead *tfm)
1816 {
1817 	struct atmel_aes_gcm_ctx *ctx = crypto_aead_ctx(tfm);
1818 
1819 	crypto_aead_set_reqsize(tfm, sizeof(struct atmel_aes_reqctx));
1820 	ctx->base.start = atmel_aes_gcm_start;
1821 
1822 	return 0;
1823 }
1824 
1825 static struct aead_alg aes_gcm_alg = {
1826 	.setkey		= atmel_aes_gcm_setkey,
1827 	.setauthsize	= atmel_aes_gcm_setauthsize,
1828 	.encrypt	= atmel_aes_gcm_encrypt,
1829 	.decrypt	= atmel_aes_gcm_decrypt,
1830 	.init		= atmel_aes_gcm_init,
1831 	.ivsize		= GCM_AES_IV_SIZE,
1832 	.maxauthsize	= AES_BLOCK_SIZE,
1833 
1834 	.base = {
1835 		.cra_name		= "gcm(aes)",
1836 		.cra_driver_name	= "atmel-gcm-aes",
1837 		.cra_priority		= ATMEL_AES_PRIORITY,
1838 		.cra_flags		= CRYPTO_ALG_ASYNC,
1839 		.cra_blocksize		= 1,
1840 		.cra_ctxsize		= sizeof(struct atmel_aes_gcm_ctx),
1841 		.cra_alignmask		= 0xf,
1842 		.cra_module		= THIS_MODULE,
1843 	},
1844 };
1845 
1846 
1847 /* xts functions */
1848 
1849 static inline struct atmel_aes_xts_ctx *
atmel_aes_xts_ctx_cast(struct atmel_aes_base_ctx * ctx)1850 atmel_aes_xts_ctx_cast(struct atmel_aes_base_ctx *ctx)
1851 {
1852 	return container_of(ctx, struct atmel_aes_xts_ctx, base);
1853 }
1854 
1855 static int atmel_aes_xts_process_data(struct atmel_aes_dev *dd);
1856 
atmel_aes_xts_start(struct atmel_aes_dev * dd)1857 static int atmel_aes_xts_start(struct atmel_aes_dev *dd)
1858 {
1859 	struct atmel_aes_xts_ctx *ctx = atmel_aes_xts_ctx_cast(dd->ctx);
1860 	struct ablkcipher_request *req = ablkcipher_request_cast(dd->areq);
1861 	struct atmel_aes_reqctx *rctx = ablkcipher_request_ctx(req);
1862 	unsigned long flags;
1863 	int err;
1864 
1865 	atmel_aes_set_mode(dd, rctx);
1866 
1867 	err = atmel_aes_hw_init(dd);
1868 	if (err)
1869 		return atmel_aes_complete(dd, err);
1870 
1871 	/* Compute the tweak value from req->info with ecb(aes). */
1872 	flags = dd->flags;
1873 	dd->flags &= ~AES_FLAGS_MODE_MASK;
1874 	dd->flags |= (AES_FLAGS_ECB | AES_FLAGS_ENCRYPT);
1875 	atmel_aes_write_ctrl_key(dd, false, NULL,
1876 				 ctx->key2, ctx->base.keylen);
1877 	dd->flags = flags;
1878 
1879 	atmel_aes_write_block(dd, AES_IDATAR(0), req->info);
1880 	return atmel_aes_wait_for_data_ready(dd, atmel_aes_xts_process_data);
1881 }
1882 
atmel_aes_xts_process_data(struct atmel_aes_dev * dd)1883 static int atmel_aes_xts_process_data(struct atmel_aes_dev *dd)
1884 {
1885 	struct ablkcipher_request *req = ablkcipher_request_cast(dd->areq);
1886 	bool use_dma = (req->nbytes >= ATMEL_AES_DMA_THRESHOLD);
1887 	u32 tweak[AES_BLOCK_SIZE / sizeof(u32)];
1888 	static const u32 one[AES_BLOCK_SIZE / sizeof(u32)] = {cpu_to_le32(1), };
1889 	u8 *tweak_bytes = (u8 *)tweak;
1890 	int i;
1891 
1892 	/* Read the computed ciphered tweak value. */
1893 	atmel_aes_read_block(dd, AES_ODATAR(0), tweak);
1894 	/*
1895 	 * Hardware quirk:
1896 	 * the order of the ciphered tweak bytes need to be reversed before
1897 	 * writing them into the ODATARx registers.
1898 	 */
1899 	for (i = 0; i < AES_BLOCK_SIZE/2; ++i) {
1900 		u8 tmp = tweak_bytes[AES_BLOCK_SIZE - 1 - i];
1901 
1902 		tweak_bytes[AES_BLOCK_SIZE - 1 - i] = tweak_bytes[i];
1903 		tweak_bytes[i] = tmp;
1904 	}
1905 
1906 	/* Process the data. */
1907 	atmel_aes_write_ctrl(dd, use_dma, NULL);
1908 	atmel_aes_write_block(dd, AES_TWR(0), tweak);
1909 	atmel_aes_write_block(dd, AES_ALPHAR(0), one);
1910 	if (use_dma)
1911 		return atmel_aes_dma_start(dd, req->src, req->dst, req->nbytes,
1912 					   atmel_aes_transfer_complete);
1913 
1914 	return atmel_aes_cpu_start(dd, req->src, req->dst, req->nbytes,
1915 				   atmel_aes_transfer_complete);
1916 }
1917 
atmel_aes_xts_setkey(struct crypto_ablkcipher * tfm,const u8 * key,unsigned int keylen)1918 static int atmel_aes_xts_setkey(struct crypto_ablkcipher *tfm, const u8 *key,
1919 				unsigned int keylen)
1920 {
1921 	struct atmel_aes_xts_ctx *ctx = crypto_ablkcipher_ctx(tfm);
1922 	int err;
1923 
1924 	err = xts_check_key(crypto_ablkcipher_tfm(tfm), key, keylen);
1925 	if (err)
1926 		return err;
1927 
1928 	memcpy(ctx->base.key, key, keylen/2);
1929 	memcpy(ctx->key2, key + keylen/2, keylen/2);
1930 	ctx->base.keylen = keylen/2;
1931 
1932 	return 0;
1933 }
1934 
atmel_aes_xts_encrypt(struct ablkcipher_request * req)1935 static int atmel_aes_xts_encrypt(struct ablkcipher_request *req)
1936 {
1937 	return atmel_aes_crypt(req, AES_FLAGS_XTS | AES_FLAGS_ENCRYPT);
1938 }
1939 
atmel_aes_xts_decrypt(struct ablkcipher_request * req)1940 static int atmel_aes_xts_decrypt(struct ablkcipher_request *req)
1941 {
1942 	return atmel_aes_crypt(req, AES_FLAGS_XTS);
1943 }
1944 
atmel_aes_xts_cra_init(struct crypto_tfm * tfm)1945 static int atmel_aes_xts_cra_init(struct crypto_tfm *tfm)
1946 {
1947 	struct atmel_aes_xts_ctx *ctx = crypto_tfm_ctx(tfm);
1948 
1949 	tfm->crt_ablkcipher.reqsize = sizeof(struct atmel_aes_reqctx);
1950 	ctx->base.start = atmel_aes_xts_start;
1951 
1952 	return 0;
1953 }
1954 
1955 static struct crypto_alg aes_xts_alg = {
1956 	.cra_name		= "xts(aes)",
1957 	.cra_driver_name	= "atmel-xts-aes",
1958 	.cra_priority		= ATMEL_AES_PRIORITY,
1959 	.cra_flags		= CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC,
1960 	.cra_blocksize		= AES_BLOCK_SIZE,
1961 	.cra_ctxsize		= sizeof(struct atmel_aes_xts_ctx),
1962 	.cra_alignmask		= 0xf,
1963 	.cra_type		= &crypto_ablkcipher_type,
1964 	.cra_module		= THIS_MODULE,
1965 	.cra_init		= atmel_aes_xts_cra_init,
1966 	.cra_u.ablkcipher = {
1967 		.min_keysize	= 2 * AES_MIN_KEY_SIZE,
1968 		.max_keysize	= 2 * AES_MAX_KEY_SIZE,
1969 		.ivsize		= AES_BLOCK_SIZE,
1970 		.setkey		= atmel_aes_xts_setkey,
1971 		.encrypt	= atmel_aes_xts_encrypt,
1972 		.decrypt	= atmel_aes_xts_decrypt,
1973 	}
1974 };
1975 
1976 #if IS_ENABLED(CONFIG_CRYPTO_DEV_ATMEL_AUTHENC)
1977 /* authenc aead functions */
1978 
1979 static int atmel_aes_authenc_start(struct atmel_aes_dev *dd);
1980 static int atmel_aes_authenc_init(struct atmel_aes_dev *dd, int err,
1981 				  bool is_async);
1982 static int atmel_aes_authenc_transfer(struct atmel_aes_dev *dd, int err,
1983 				      bool is_async);
1984 static int atmel_aes_authenc_digest(struct atmel_aes_dev *dd);
1985 static int atmel_aes_authenc_final(struct atmel_aes_dev *dd, int err,
1986 				   bool is_async);
1987 
atmel_aes_authenc_complete(struct atmel_aes_dev * dd,int err)1988 static void atmel_aes_authenc_complete(struct atmel_aes_dev *dd, int err)
1989 {
1990 	struct aead_request *req = aead_request_cast(dd->areq);
1991 	struct atmel_aes_authenc_reqctx *rctx = aead_request_ctx(req);
1992 
1993 	if (err && (dd->flags & AES_FLAGS_OWN_SHA))
1994 		atmel_sha_authenc_abort(&rctx->auth_req);
1995 	dd->flags &= ~AES_FLAGS_OWN_SHA;
1996 }
1997 
atmel_aes_authenc_start(struct atmel_aes_dev * dd)1998 static int atmel_aes_authenc_start(struct atmel_aes_dev *dd)
1999 {
2000 	struct aead_request *req = aead_request_cast(dd->areq);
2001 	struct atmel_aes_authenc_reqctx *rctx = aead_request_ctx(req);
2002 	struct crypto_aead *tfm = crypto_aead_reqtfm(req);
2003 	struct atmel_aes_authenc_ctx *ctx = crypto_aead_ctx(tfm);
2004 	int err;
2005 
2006 	atmel_aes_set_mode(dd, &rctx->base);
2007 
2008 	err = atmel_aes_hw_init(dd);
2009 	if (err)
2010 		return atmel_aes_complete(dd, err);
2011 
2012 	return atmel_sha_authenc_schedule(&rctx->auth_req, ctx->auth,
2013 					  atmel_aes_authenc_init, dd);
2014 }
2015 
atmel_aes_authenc_init(struct atmel_aes_dev * dd,int err,bool is_async)2016 static int atmel_aes_authenc_init(struct atmel_aes_dev *dd, int err,
2017 				  bool is_async)
2018 {
2019 	struct aead_request *req = aead_request_cast(dd->areq);
2020 	struct atmel_aes_authenc_reqctx *rctx = aead_request_ctx(req);
2021 
2022 	if (is_async)
2023 		dd->is_async = true;
2024 	if (err)
2025 		return atmel_aes_complete(dd, err);
2026 
2027 	/* If here, we've got the ownership of the SHA device. */
2028 	dd->flags |= AES_FLAGS_OWN_SHA;
2029 
2030 	/* Configure the SHA device. */
2031 	return atmel_sha_authenc_init(&rctx->auth_req,
2032 				      req->src, req->assoclen,
2033 				      rctx->textlen,
2034 				      atmel_aes_authenc_transfer, dd);
2035 }
2036 
atmel_aes_authenc_transfer(struct atmel_aes_dev * dd,int err,bool is_async)2037 static int atmel_aes_authenc_transfer(struct atmel_aes_dev *dd, int err,
2038 				      bool is_async)
2039 {
2040 	struct aead_request *req = aead_request_cast(dd->areq);
2041 	struct atmel_aes_authenc_reqctx *rctx = aead_request_ctx(req);
2042 	bool enc = atmel_aes_is_encrypt(dd);
2043 	struct scatterlist *src, *dst;
2044 	u32 iv[AES_BLOCK_SIZE / sizeof(u32)];
2045 	u32 emr;
2046 
2047 	if (is_async)
2048 		dd->is_async = true;
2049 	if (err)
2050 		return atmel_aes_complete(dd, err);
2051 
2052 	/* Prepare src and dst scatter-lists to transfer cipher/plain texts. */
2053 	src = scatterwalk_ffwd(rctx->src, req->src, req->assoclen);
2054 	dst = src;
2055 
2056 	if (req->src != req->dst)
2057 		dst = scatterwalk_ffwd(rctx->dst, req->dst, req->assoclen);
2058 
2059 	/* Configure the AES device. */
2060 	memcpy(iv, req->iv, sizeof(iv));
2061 
2062 	/*
2063 	 * Here we always set the 2nd parameter of atmel_aes_write_ctrl() to
2064 	 * 'true' even if the data transfer is actually performed by the CPU (so
2065 	 * not by the DMA) because we must force the AES_MR_SMOD bitfield to the
2066 	 * value AES_MR_SMOD_IDATAR0. Indeed, both AES_MR_SMOD and SHA_MR_SMOD
2067 	 * must be set to *_MR_SMOD_IDATAR0.
2068 	 */
2069 	atmel_aes_write_ctrl(dd, true, iv);
2070 	emr = AES_EMR_PLIPEN;
2071 	if (!enc)
2072 		emr |= AES_EMR_PLIPD;
2073 	atmel_aes_write(dd, AES_EMR, emr);
2074 
2075 	/* Transfer data. */
2076 	return atmel_aes_dma_start(dd, src, dst, rctx->textlen,
2077 				   atmel_aes_authenc_digest);
2078 }
2079 
atmel_aes_authenc_digest(struct atmel_aes_dev * dd)2080 static int atmel_aes_authenc_digest(struct atmel_aes_dev *dd)
2081 {
2082 	struct aead_request *req = aead_request_cast(dd->areq);
2083 	struct atmel_aes_authenc_reqctx *rctx = aead_request_ctx(req);
2084 
2085 	/* atmel_sha_authenc_final() releases the SHA device. */
2086 	dd->flags &= ~AES_FLAGS_OWN_SHA;
2087 	return atmel_sha_authenc_final(&rctx->auth_req,
2088 				       rctx->digest, sizeof(rctx->digest),
2089 				       atmel_aes_authenc_final, dd);
2090 }
2091 
atmel_aes_authenc_final(struct atmel_aes_dev * dd,int err,bool is_async)2092 static int atmel_aes_authenc_final(struct atmel_aes_dev *dd, int err,
2093 				   bool is_async)
2094 {
2095 	struct aead_request *req = aead_request_cast(dd->areq);
2096 	struct atmel_aes_authenc_reqctx *rctx = aead_request_ctx(req);
2097 	struct crypto_aead *tfm = crypto_aead_reqtfm(req);
2098 	bool enc = atmel_aes_is_encrypt(dd);
2099 	u32 idigest[SHA512_DIGEST_SIZE / sizeof(u32)], *odigest = rctx->digest;
2100 	u32 offs, authsize;
2101 
2102 	if (is_async)
2103 		dd->is_async = true;
2104 	if (err)
2105 		goto complete;
2106 
2107 	offs = req->assoclen + rctx->textlen;
2108 	authsize = crypto_aead_authsize(tfm);
2109 	if (enc) {
2110 		scatterwalk_map_and_copy(odigest, req->dst, offs, authsize, 1);
2111 	} else {
2112 		scatterwalk_map_and_copy(idigest, req->src, offs, authsize, 0);
2113 		if (crypto_memneq(idigest, odigest, authsize))
2114 			err = -EBADMSG;
2115 	}
2116 
2117 complete:
2118 	return atmel_aes_complete(dd, err);
2119 }
2120 
atmel_aes_authenc_setkey(struct crypto_aead * tfm,const u8 * key,unsigned int keylen)2121 static int atmel_aes_authenc_setkey(struct crypto_aead *tfm, const u8 *key,
2122 				    unsigned int keylen)
2123 {
2124 	struct atmel_aes_authenc_ctx *ctx = crypto_aead_ctx(tfm);
2125 	struct crypto_authenc_keys keys;
2126 	u32 flags;
2127 	int err;
2128 
2129 	if (crypto_authenc_extractkeys(&keys, key, keylen) != 0)
2130 		goto badkey;
2131 
2132 	if (keys.enckeylen > sizeof(ctx->base.key))
2133 		goto badkey;
2134 
2135 	/* Save auth key. */
2136 	flags = crypto_aead_get_flags(tfm);
2137 	err = atmel_sha_authenc_setkey(ctx->auth,
2138 				       keys.authkey, keys.authkeylen,
2139 				       &flags);
2140 	crypto_aead_set_flags(tfm, flags & CRYPTO_TFM_RES_MASK);
2141 	if (err) {
2142 		memzero_explicit(&keys, sizeof(keys));
2143 		return err;
2144 	}
2145 
2146 	/* Save enc key. */
2147 	ctx->base.keylen = keys.enckeylen;
2148 	memcpy(ctx->base.key, keys.enckey, keys.enckeylen);
2149 
2150 	memzero_explicit(&keys, sizeof(keys));
2151 	return 0;
2152 
2153 badkey:
2154 	crypto_aead_set_flags(tfm, CRYPTO_TFM_RES_BAD_KEY_LEN);
2155 	memzero_explicit(&keys, sizeof(keys));
2156 	return -EINVAL;
2157 }
2158 
atmel_aes_authenc_init_tfm(struct crypto_aead * tfm,unsigned long auth_mode)2159 static int atmel_aes_authenc_init_tfm(struct crypto_aead *tfm,
2160 				      unsigned long auth_mode)
2161 {
2162 	struct atmel_aes_authenc_ctx *ctx = crypto_aead_ctx(tfm);
2163 	unsigned int auth_reqsize = atmel_sha_authenc_get_reqsize();
2164 
2165 	ctx->auth = atmel_sha_authenc_spawn(auth_mode);
2166 	if (IS_ERR(ctx->auth))
2167 		return PTR_ERR(ctx->auth);
2168 
2169 	crypto_aead_set_reqsize(tfm, (sizeof(struct atmel_aes_authenc_reqctx) +
2170 				      auth_reqsize));
2171 	ctx->base.start = atmel_aes_authenc_start;
2172 
2173 	return 0;
2174 }
2175 
atmel_aes_authenc_hmac_sha1_init_tfm(struct crypto_aead * tfm)2176 static int atmel_aes_authenc_hmac_sha1_init_tfm(struct crypto_aead *tfm)
2177 {
2178 	return atmel_aes_authenc_init_tfm(tfm, SHA_FLAGS_HMAC_SHA1);
2179 }
2180 
atmel_aes_authenc_hmac_sha224_init_tfm(struct crypto_aead * tfm)2181 static int atmel_aes_authenc_hmac_sha224_init_tfm(struct crypto_aead *tfm)
2182 {
2183 	return atmel_aes_authenc_init_tfm(tfm, SHA_FLAGS_HMAC_SHA224);
2184 }
2185 
atmel_aes_authenc_hmac_sha256_init_tfm(struct crypto_aead * tfm)2186 static int atmel_aes_authenc_hmac_sha256_init_tfm(struct crypto_aead *tfm)
2187 {
2188 	return atmel_aes_authenc_init_tfm(tfm, SHA_FLAGS_HMAC_SHA256);
2189 }
2190 
atmel_aes_authenc_hmac_sha384_init_tfm(struct crypto_aead * tfm)2191 static int atmel_aes_authenc_hmac_sha384_init_tfm(struct crypto_aead *tfm)
2192 {
2193 	return atmel_aes_authenc_init_tfm(tfm, SHA_FLAGS_HMAC_SHA384);
2194 }
2195 
atmel_aes_authenc_hmac_sha512_init_tfm(struct crypto_aead * tfm)2196 static int atmel_aes_authenc_hmac_sha512_init_tfm(struct crypto_aead *tfm)
2197 {
2198 	return atmel_aes_authenc_init_tfm(tfm, SHA_FLAGS_HMAC_SHA512);
2199 }
2200 
atmel_aes_authenc_exit_tfm(struct crypto_aead * tfm)2201 static void atmel_aes_authenc_exit_tfm(struct crypto_aead *tfm)
2202 {
2203 	struct atmel_aes_authenc_ctx *ctx = crypto_aead_ctx(tfm);
2204 
2205 	atmel_sha_authenc_free(ctx->auth);
2206 }
2207 
atmel_aes_authenc_crypt(struct aead_request * req,unsigned long mode)2208 static int atmel_aes_authenc_crypt(struct aead_request *req,
2209 				   unsigned long mode)
2210 {
2211 	struct atmel_aes_authenc_reqctx *rctx = aead_request_ctx(req);
2212 	struct crypto_aead *tfm = crypto_aead_reqtfm(req);
2213 	struct atmel_aes_base_ctx *ctx = crypto_aead_ctx(tfm);
2214 	u32 authsize = crypto_aead_authsize(tfm);
2215 	bool enc = (mode & AES_FLAGS_ENCRYPT);
2216 	struct atmel_aes_dev *dd;
2217 
2218 	/* Compute text length. */
2219 	if (!enc && req->cryptlen < authsize)
2220 		return -EINVAL;
2221 	rctx->textlen = req->cryptlen - (enc ? 0 : authsize);
2222 
2223 	/*
2224 	 * Currently, empty messages are not supported yet:
2225 	 * the SHA auto-padding can be used only on non-empty messages.
2226 	 * Hence a special case needs to be implemented for empty message.
2227 	 */
2228 	if (!rctx->textlen && !req->assoclen)
2229 		return -EINVAL;
2230 
2231 	rctx->base.mode = mode;
2232 	ctx->block_size = AES_BLOCK_SIZE;
2233 	ctx->is_aead = true;
2234 
2235 	dd = atmel_aes_find_dev(ctx);
2236 	if (!dd)
2237 		return -ENODEV;
2238 
2239 	return atmel_aes_handle_queue(dd, &req->base);
2240 }
2241 
atmel_aes_authenc_cbc_aes_encrypt(struct aead_request * req)2242 static int atmel_aes_authenc_cbc_aes_encrypt(struct aead_request *req)
2243 {
2244 	return atmel_aes_authenc_crypt(req, AES_FLAGS_CBC | AES_FLAGS_ENCRYPT);
2245 }
2246 
atmel_aes_authenc_cbc_aes_decrypt(struct aead_request * req)2247 static int atmel_aes_authenc_cbc_aes_decrypt(struct aead_request *req)
2248 {
2249 	return atmel_aes_authenc_crypt(req, AES_FLAGS_CBC);
2250 }
2251 
2252 static struct aead_alg aes_authenc_algs[] = {
2253 {
2254 	.setkey		= atmel_aes_authenc_setkey,
2255 	.encrypt	= atmel_aes_authenc_cbc_aes_encrypt,
2256 	.decrypt	= atmel_aes_authenc_cbc_aes_decrypt,
2257 	.init		= atmel_aes_authenc_hmac_sha1_init_tfm,
2258 	.exit		= atmel_aes_authenc_exit_tfm,
2259 	.ivsize		= AES_BLOCK_SIZE,
2260 	.maxauthsize	= SHA1_DIGEST_SIZE,
2261 
2262 	.base = {
2263 		.cra_name		= "authenc(hmac(sha1),cbc(aes))",
2264 		.cra_driver_name	= "atmel-authenc-hmac-sha1-cbc-aes",
2265 		.cra_priority		= ATMEL_AES_PRIORITY,
2266 		.cra_flags		= CRYPTO_ALG_ASYNC,
2267 		.cra_blocksize		= AES_BLOCK_SIZE,
2268 		.cra_ctxsize		= sizeof(struct atmel_aes_authenc_ctx),
2269 		.cra_alignmask		= 0xf,
2270 		.cra_module		= THIS_MODULE,
2271 	},
2272 },
2273 {
2274 	.setkey		= atmel_aes_authenc_setkey,
2275 	.encrypt	= atmel_aes_authenc_cbc_aes_encrypt,
2276 	.decrypt	= atmel_aes_authenc_cbc_aes_decrypt,
2277 	.init		= atmel_aes_authenc_hmac_sha224_init_tfm,
2278 	.exit		= atmel_aes_authenc_exit_tfm,
2279 	.ivsize		= AES_BLOCK_SIZE,
2280 	.maxauthsize	= SHA224_DIGEST_SIZE,
2281 
2282 	.base = {
2283 		.cra_name		= "authenc(hmac(sha224),cbc(aes))",
2284 		.cra_driver_name	= "atmel-authenc-hmac-sha224-cbc-aes",
2285 		.cra_priority		= ATMEL_AES_PRIORITY,
2286 		.cra_flags		= CRYPTO_ALG_ASYNC,
2287 		.cra_blocksize		= AES_BLOCK_SIZE,
2288 		.cra_ctxsize		= sizeof(struct atmel_aes_authenc_ctx),
2289 		.cra_alignmask		= 0xf,
2290 		.cra_module		= THIS_MODULE,
2291 	},
2292 },
2293 {
2294 	.setkey		= atmel_aes_authenc_setkey,
2295 	.encrypt	= atmel_aes_authenc_cbc_aes_encrypt,
2296 	.decrypt	= atmel_aes_authenc_cbc_aes_decrypt,
2297 	.init		= atmel_aes_authenc_hmac_sha256_init_tfm,
2298 	.exit		= atmel_aes_authenc_exit_tfm,
2299 	.ivsize		= AES_BLOCK_SIZE,
2300 	.maxauthsize	= SHA256_DIGEST_SIZE,
2301 
2302 	.base = {
2303 		.cra_name		= "authenc(hmac(sha256),cbc(aes))",
2304 		.cra_driver_name	= "atmel-authenc-hmac-sha256-cbc-aes",
2305 		.cra_priority		= ATMEL_AES_PRIORITY,
2306 		.cra_flags		= CRYPTO_ALG_ASYNC,
2307 		.cra_blocksize		= AES_BLOCK_SIZE,
2308 		.cra_ctxsize		= sizeof(struct atmel_aes_authenc_ctx),
2309 		.cra_alignmask		= 0xf,
2310 		.cra_module		= THIS_MODULE,
2311 	},
2312 },
2313 {
2314 	.setkey		= atmel_aes_authenc_setkey,
2315 	.encrypt	= atmel_aes_authenc_cbc_aes_encrypt,
2316 	.decrypt	= atmel_aes_authenc_cbc_aes_decrypt,
2317 	.init		= atmel_aes_authenc_hmac_sha384_init_tfm,
2318 	.exit		= atmel_aes_authenc_exit_tfm,
2319 	.ivsize		= AES_BLOCK_SIZE,
2320 	.maxauthsize	= SHA384_DIGEST_SIZE,
2321 
2322 	.base = {
2323 		.cra_name		= "authenc(hmac(sha384),cbc(aes))",
2324 		.cra_driver_name	= "atmel-authenc-hmac-sha384-cbc-aes",
2325 		.cra_priority		= ATMEL_AES_PRIORITY,
2326 		.cra_flags		= CRYPTO_ALG_ASYNC,
2327 		.cra_blocksize		= AES_BLOCK_SIZE,
2328 		.cra_ctxsize		= sizeof(struct atmel_aes_authenc_ctx),
2329 		.cra_alignmask		= 0xf,
2330 		.cra_module		= THIS_MODULE,
2331 	},
2332 },
2333 {
2334 	.setkey		= atmel_aes_authenc_setkey,
2335 	.encrypt	= atmel_aes_authenc_cbc_aes_encrypt,
2336 	.decrypt	= atmel_aes_authenc_cbc_aes_decrypt,
2337 	.init		= atmel_aes_authenc_hmac_sha512_init_tfm,
2338 	.exit		= atmel_aes_authenc_exit_tfm,
2339 	.ivsize		= AES_BLOCK_SIZE,
2340 	.maxauthsize	= SHA512_DIGEST_SIZE,
2341 
2342 	.base = {
2343 		.cra_name		= "authenc(hmac(sha512),cbc(aes))",
2344 		.cra_driver_name	= "atmel-authenc-hmac-sha512-cbc-aes",
2345 		.cra_priority		= ATMEL_AES_PRIORITY,
2346 		.cra_flags		= CRYPTO_ALG_ASYNC,
2347 		.cra_blocksize		= AES_BLOCK_SIZE,
2348 		.cra_ctxsize		= sizeof(struct atmel_aes_authenc_ctx),
2349 		.cra_alignmask		= 0xf,
2350 		.cra_module		= THIS_MODULE,
2351 	},
2352 },
2353 };
2354 #endif /* CONFIG_CRYPTO_DEV_ATMEL_AUTHENC */
2355 
2356 /* Probe functions */
2357 
atmel_aes_buff_init(struct atmel_aes_dev * dd)2358 static int atmel_aes_buff_init(struct atmel_aes_dev *dd)
2359 {
2360 	dd->buf = (void *)__get_free_pages(GFP_KERNEL, ATMEL_AES_BUFFER_ORDER);
2361 	dd->buflen = ATMEL_AES_BUFFER_SIZE;
2362 	dd->buflen &= ~(AES_BLOCK_SIZE - 1);
2363 
2364 	if (!dd->buf) {
2365 		dev_err(dd->dev, "unable to alloc pages.\n");
2366 		return -ENOMEM;
2367 	}
2368 
2369 	return 0;
2370 }
2371 
atmel_aes_buff_cleanup(struct atmel_aes_dev * dd)2372 static void atmel_aes_buff_cleanup(struct atmel_aes_dev *dd)
2373 {
2374 	free_page((unsigned long)dd->buf);
2375 }
2376 
atmel_aes_filter(struct dma_chan * chan,void * slave)2377 static bool atmel_aes_filter(struct dma_chan *chan, void *slave)
2378 {
2379 	struct at_dma_slave	*sl = slave;
2380 
2381 	if (sl && sl->dma_dev == chan->device->dev) {
2382 		chan->private = sl;
2383 		return true;
2384 	} else {
2385 		return false;
2386 	}
2387 }
2388 
atmel_aes_dma_init(struct atmel_aes_dev * dd,struct crypto_platform_data * pdata)2389 static int atmel_aes_dma_init(struct atmel_aes_dev *dd,
2390 			      struct crypto_platform_data *pdata)
2391 {
2392 	struct at_dma_slave *slave;
2393 	dma_cap_mask_t mask;
2394 
2395 	dma_cap_zero(mask);
2396 	dma_cap_set(DMA_SLAVE, mask);
2397 
2398 	/* Try to grab 2 DMA channels */
2399 	slave = &pdata->dma_slave->rxdata;
2400 	dd->src.chan = dma_request_slave_channel_compat(mask, atmel_aes_filter,
2401 							slave, dd->dev, "tx");
2402 	if (!dd->src.chan)
2403 		goto err_dma_in;
2404 
2405 	slave = &pdata->dma_slave->txdata;
2406 	dd->dst.chan = dma_request_slave_channel_compat(mask, atmel_aes_filter,
2407 							slave, dd->dev, "rx");
2408 	if (!dd->dst.chan)
2409 		goto err_dma_out;
2410 
2411 	return 0;
2412 
2413 err_dma_out:
2414 	dma_release_channel(dd->src.chan);
2415 err_dma_in:
2416 	dev_warn(dd->dev, "no DMA channel available\n");
2417 	return -ENODEV;
2418 }
2419 
atmel_aes_dma_cleanup(struct atmel_aes_dev * dd)2420 static void atmel_aes_dma_cleanup(struct atmel_aes_dev *dd)
2421 {
2422 	dma_release_channel(dd->dst.chan);
2423 	dma_release_channel(dd->src.chan);
2424 }
2425 
atmel_aes_queue_task(unsigned long data)2426 static void atmel_aes_queue_task(unsigned long data)
2427 {
2428 	struct atmel_aes_dev *dd = (struct atmel_aes_dev *)data;
2429 
2430 	atmel_aes_handle_queue(dd, NULL);
2431 }
2432 
atmel_aes_done_task(unsigned long data)2433 static void atmel_aes_done_task(unsigned long data)
2434 {
2435 	struct atmel_aes_dev *dd = (struct atmel_aes_dev *)data;
2436 
2437 	dd->is_async = true;
2438 	(void)dd->resume(dd);
2439 }
2440 
atmel_aes_irq(int irq,void * dev_id)2441 static irqreturn_t atmel_aes_irq(int irq, void *dev_id)
2442 {
2443 	struct atmel_aes_dev *aes_dd = dev_id;
2444 	u32 reg;
2445 
2446 	reg = atmel_aes_read(aes_dd, AES_ISR);
2447 	if (reg & atmel_aes_read(aes_dd, AES_IMR)) {
2448 		atmel_aes_write(aes_dd, AES_IDR, reg);
2449 		if (AES_FLAGS_BUSY & aes_dd->flags)
2450 			tasklet_schedule(&aes_dd->done_task);
2451 		else
2452 			dev_warn(aes_dd->dev, "AES interrupt when no active requests.\n");
2453 		return IRQ_HANDLED;
2454 	}
2455 
2456 	return IRQ_NONE;
2457 }
2458 
atmel_aes_unregister_algs(struct atmel_aes_dev * dd)2459 static void atmel_aes_unregister_algs(struct atmel_aes_dev *dd)
2460 {
2461 	int i;
2462 
2463 #if IS_ENABLED(CONFIG_CRYPTO_DEV_ATMEL_AUTHENC)
2464 	if (dd->caps.has_authenc)
2465 		for (i = 0; i < ARRAY_SIZE(aes_authenc_algs); i++)
2466 			crypto_unregister_aead(&aes_authenc_algs[i]);
2467 #endif
2468 
2469 	if (dd->caps.has_xts)
2470 		crypto_unregister_alg(&aes_xts_alg);
2471 
2472 	if (dd->caps.has_gcm)
2473 		crypto_unregister_aead(&aes_gcm_alg);
2474 
2475 	if (dd->caps.has_cfb64)
2476 		crypto_unregister_alg(&aes_cfb64_alg);
2477 
2478 	for (i = 0; i < ARRAY_SIZE(aes_algs); i++)
2479 		crypto_unregister_alg(&aes_algs[i]);
2480 }
2481 
atmel_aes_register_algs(struct atmel_aes_dev * dd)2482 static int atmel_aes_register_algs(struct atmel_aes_dev *dd)
2483 {
2484 	int err, i, j;
2485 
2486 	for (i = 0; i < ARRAY_SIZE(aes_algs); i++) {
2487 		err = crypto_register_alg(&aes_algs[i]);
2488 		if (err)
2489 			goto err_aes_algs;
2490 	}
2491 
2492 	if (dd->caps.has_cfb64) {
2493 		err = crypto_register_alg(&aes_cfb64_alg);
2494 		if (err)
2495 			goto err_aes_cfb64_alg;
2496 	}
2497 
2498 	if (dd->caps.has_gcm) {
2499 		err = crypto_register_aead(&aes_gcm_alg);
2500 		if (err)
2501 			goto err_aes_gcm_alg;
2502 	}
2503 
2504 	if (dd->caps.has_xts) {
2505 		err = crypto_register_alg(&aes_xts_alg);
2506 		if (err)
2507 			goto err_aes_xts_alg;
2508 	}
2509 
2510 #if IS_ENABLED(CONFIG_CRYPTO_DEV_ATMEL_AUTHENC)
2511 	if (dd->caps.has_authenc) {
2512 		for (i = 0; i < ARRAY_SIZE(aes_authenc_algs); i++) {
2513 			err = crypto_register_aead(&aes_authenc_algs[i]);
2514 			if (err)
2515 				goto err_aes_authenc_alg;
2516 		}
2517 	}
2518 #endif
2519 
2520 	return 0;
2521 
2522 #if IS_ENABLED(CONFIG_CRYPTO_DEV_ATMEL_AUTHENC)
2523 	/* i = ARRAY_SIZE(aes_authenc_algs); */
2524 err_aes_authenc_alg:
2525 	for (j = 0; j < i; j++)
2526 		crypto_unregister_aead(&aes_authenc_algs[j]);
2527 	crypto_unregister_alg(&aes_xts_alg);
2528 #endif
2529 err_aes_xts_alg:
2530 	crypto_unregister_aead(&aes_gcm_alg);
2531 err_aes_gcm_alg:
2532 	crypto_unregister_alg(&aes_cfb64_alg);
2533 err_aes_cfb64_alg:
2534 	i = ARRAY_SIZE(aes_algs);
2535 err_aes_algs:
2536 	for (j = 0; j < i; j++)
2537 		crypto_unregister_alg(&aes_algs[j]);
2538 
2539 	return err;
2540 }
2541 
atmel_aes_get_cap(struct atmel_aes_dev * dd)2542 static void atmel_aes_get_cap(struct atmel_aes_dev *dd)
2543 {
2544 	dd->caps.has_dualbuff = 0;
2545 	dd->caps.has_cfb64 = 0;
2546 	dd->caps.has_gcm = 0;
2547 	dd->caps.has_xts = 0;
2548 	dd->caps.has_authenc = 0;
2549 	dd->caps.max_burst_size = 1;
2550 
2551 	/* keep only major version number */
2552 	switch (dd->hw_version & 0xff0) {
2553 	case 0x500:
2554 		dd->caps.has_dualbuff = 1;
2555 		dd->caps.has_cfb64 = 1;
2556 		dd->caps.has_gcm = 1;
2557 		dd->caps.has_xts = 1;
2558 		dd->caps.has_authenc = 1;
2559 		dd->caps.max_burst_size = 4;
2560 		break;
2561 	case 0x200:
2562 		dd->caps.has_dualbuff = 1;
2563 		dd->caps.has_cfb64 = 1;
2564 		dd->caps.has_gcm = 1;
2565 		dd->caps.max_burst_size = 4;
2566 		break;
2567 	case 0x130:
2568 		dd->caps.has_dualbuff = 1;
2569 		dd->caps.has_cfb64 = 1;
2570 		dd->caps.max_burst_size = 4;
2571 		break;
2572 	case 0x120:
2573 		break;
2574 	default:
2575 		dev_warn(dd->dev,
2576 				"Unmanaged aes version, set minimum capabilities\n");
2577 		break;
2578 	}
2579 }
2580 
2581 #if defined(CONFIG_OF)
2582 static const struct of_device_id atmel_aes_dt_ids[] = {
2583 	{ .compatible = "atmel,at91sam9g46-aes" },
2584 	{ /* sentinel */ }
2585 };
2586 MODULE_DEVICE_TABLE(of, atmel_aes_dt_ids);
2587 
atmel_aes_of_init(struct platform_device * pdev)2588 static struct crypto_platform_data *atmel_aes_of_init(struct platform_device *pdev)
2589 {
2590 	struct device_node *np = pdev->dev.of_node;
2591 	struct crypto_platform_data *pdata;
2592 
2593 	if (!np) {
2594 		dev_err(&pdev->dev, "device node not found\n");
2595 		return ERR_PTR(-EINVAL);
2596 	}
2597 
2598 	pdata = devm_kzalloc(&pdev->dev, sizeof(*pdata), GFP_KERNEL);
2599 	if (!pdata)
2600 		return ERR_PTR(-ENOMEM);
2601 
2602 	pdata->dma_slave = devm_kzalloc(&pdev->dev,
2603 					sizeof(*(pdata->dma_slave)),
2604 					GFP_KERNEL);
2605 	if (!pdata->dma_slave) {
2606 		devm_kfree(&pdev->dev, pdata);
2607 		return ERR_PTR(-ENOMEM);
2608 	}
2609 
2610 	return pdata;
2611 }
2612 #else
atmel_aes_of_init(struct platform_device * pdev)2613 static inline struct crypto_platform_data *atmel_aes_of_init(struct platform_device *pdev)
2614 {
2615 	return ERR_PTR(-EINVAL);
2616 }
2617 #endif
2618 
atmel_aes_probe(struct platform_device * pdev)2619 static int atmel_aes_probe(struct platform_device *pdev)
2620 {
2621 	struct atmel_aes_dev *aes_dd;
2622 	struct crypto_platform_data *pdata;
2623 	struct device *dev = &pdev->dev;
2624 	struct resource *aes_res;
2625 	int err;
2626 
2627 	pdata = pdev->dev.platform_data;
2628 	if (!pdata) {
2629 		pdata = atmel_aes_of_init(pdev);
2630 		if (IS_ERR(pdata)) {
2631 			err = PTR_ERR(pdata);
2632 			goto aes_dd_err;
2633 		}
2634 	}
2635 
2636 	if (!pdata->dma_slave) {
2637 		err = -ENXIO;
2638 		goto aes_dd_err;
2639 	}
2640 
2641 	aes_dd = devm_kzalloc(&pdev->dev, sizeof(*aes_dd), GFP_KERNEL);
2642 	if (aes_dd == NULL) {
2643 		err = -ENOMEM;
2644 		goto aes_dd_err;
2645 	}
2646 
2647 	aes_dd->dev = dev;
2648 
2649 	platform_set_drvdata(pdev, aes_dd);
2650 
2651 	INIT_LIST_HEAD(&aes_dd->list);
2652 	spin_lock_init(&aes_dd->lock);
2653 
2654 	tasklet_init(&aes_dd->done_task, atmel_aes_done_task,
2655 					(unsigned long)aes_dd);
2656 	tasklet_init(&aes_dd->queue_task, atmel_aes_queue_task,
2657 					(unsigned long)aes_dd);
2658 
2659 	crypto_init_queue(&aes_dd->queue, ATMEL_AES_QUEUE_LENGTH);
2660 
2661 	/* Get the base address */
2662 	aes_res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2663 	if (!aes_res) {
2664 		dev_err(dev, "no MEM resource info\n");
2665 		err = -ENODEV;
2666 		goto res_err;
2667 	}
2668 	aes_dd->phys_base = aes_res->start;
2669 
2670 	/* Get the IRQ */
2671 	aes_dd->irq = platform_get_irq(pdev,  0);
2672 	if (aes_dd->irq < 0) {
2673 		dev_err(dev, "no IRQ resource info\n");
2674 		err = aes_dd->irq;
2675 		goto res_err;
2676 	}
2677 
2678 	err = devm_request_irq(&pdev->dev, aes_dd->irq, atmel_aes_irq,
2679 			       IRQF_SHARED, "atmel-aes", aes_dd);
2680 	if (err) {
2681 		dev_err(dev, "unable to request aes irq.\n");
2682 		goto res_err;
2683 	}
2684 
2685 	/* Initializing the clock */
2686 	aes_dd->iclk = devm_clk_get(&pdev->dev, "aes_clk");
2687 	if (IS_ERR(aes_dd->iclk)) {
2688 		dev_err(dev, "clock initialization failed.\n");
2689 		err = PTR_ERR(aes_dd->iclk);
2690 		goto res_err;
2691 	}
2692 
2693 	aes_dd->io_base = devm_ioremap_resource(&pdev->dev, aes_res);
2694 	if (IS_ERR(aes_dd->io_base)) {
2695 		dev_err(dev, "can't ioremap\n");
2696 		err = PTR_ERR(aes_dd->io_base);
2697 		goto res_err;
2698 	}
2699 
2700 	err = clk_prepare(aes_dd->iclk);
2701 	if (err)
2702 		goto res_err;
2703 
2704 	err = atmel_aes_hw_version_init(aes_dd);
2705 	if (err)
2706 		goto iclk_unprepare;
2707 
2708 	atmel_aes_get_cap(aes_dd);
2709 
2710 #if IS_ENABLED(CONFIG_CRYPTO_DEV_ATMEL_AUTHENC)
2711 	if (aes_dd->caps.has_authenc && !atmel_sha_authenc_is_ready()) {
2712 		err = -EPROBE_DEFER;
2713 		goto iclk_unprepare;
2714 	}
2715 #endif
2716 
2717 	err = atmel_aes_buff_init(aes_dd);
2718 	if (err)
2719 		goto err_aes_buff;
2720 
2721 	err = atmel_aes_dma_init(aes_dd, pdata);
2722 	if (err)
2723 		goto err_aes_dma;
2724 
2725 	spin_lock(&atmel_aes.lock);
2726 	list_add_tail(&aes_dd->list, &atmel_aes.dev_list);
2727 	spin_unlock(&atmel_aes.lock);
2728 
2729 	err = atmel_aes_register_algs(aes_dd);
2730 	if (err)
2731 		goto err_algs;
2732 
2733 	dev_info(dev, "Atmel AES - Using %s, %s for DMA transfers\n",
2734 			dma_chan_name(aes_dd->src.chan),
2735 			dma_chan_name(aes_dd->dst.chan));
2736 
2737 	return 0;
2738 
2739 err_algs:
2740 	spin_lock(&atmel_aes.lock);
2741 	list_del(&aes_dd->list);
2742 	spin_unlock(&atmel_aes.lock);
2743 	atmel_aes_dma_cleanup(aes_dd);
2744 err_aes_dma:
2745 	atmel_aes_buff_cleanup(aes_dd);
2746 err_aes_buff:
2747 iclk_unprepare:
2748 	clk_unprepare(aes_dd->iclk);
2749 res_err:
2750 	tasklet_kill(&aes_dd->done_task);
2751 	tasklet_kill(&aes_dd->queue_task);
2752 aes_dd_err:
2753 	if (err != -EPROBE_DEFER)
2754 		dev_err(dev, "initialization failed.\n");
2755 
2756 	return err;
2757 }
2758 
atmel_aes_remove(struct platform_device * pdev)2759 static int atmel_aes_remove(struct platform_device *pdev)
2760 {
2761 	struct atmel_aes_dev *aes_dd;
2762 
2763 	aes_dd = platform_get_drvdata(pdev);
2764 	if (!aes_dd)
2765 		return -ENODEV;
2766 	spin_lock(&atmel_aes.lock);
2767 	list_del(&aes_dd->list);
2768 	spin_unlock(&atmel_aes.lock);
2769 
2770 	atmel_aes_unregister_algs(aes_dd);
2771 
2772 	tasklet_kill(&aes_dd->done_task);
2773 	tasklet_kill(&aes_dd->queue_task);
2774 
2775 	atmel_aes_dma_cleanup(aes_dd);
2776 	atmel_aes_buff_cleanup(aes_dd);
2777 
2778 	clk_unprepare(aes_dd->iclk);
2779 
2780 	return 0;
2781 }
2782 
2783 static struct platform_driver atmel_aes_driver = {
2784 	.probe		= atmel_aes_probe,
2785 	.remove		= atmel_aes_remove,
2786 	.driver		= {
2787 		.name	= "atmel_aes",
2788 		.of_match_table = of_match_ptr(atmel_aes_dt_ids),
2789 	},
2790 };
2791 
2792 module_platform_driver(atmel_aes_driver);
2793 
2794 MODULE_DESCRIPTION("Atmel AES hw acceleration support.");
2795 MODULE_LICENSE("GPL v2");
2796 MODULE_AUTHOR("Nicolas Royer - Eukréa Electromatique");
2797