• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Freescale i.MX23/i.MX28 Data Co-Processor driver
3  *
4  * Copyright (C) 2013 Marek Vasut <marex@denx.de>
5  *
6  * The code contained herein is licensed under the GNU General Public
7  * License. You may obtain a copy of the GNU General Public License
8  * Version 2 or later at the following locations:
9  *
10  * http://www.opensource.org/licenses/gpl-license.html
11  * http://www.gnu.org/copyleft/gpl.html
12  */
13 
14 #include <linux/dma-mapping.h>
15 #include <linux/interrupt.h>
16 #include <linux/io.h>
17 #include <linux/kernel.h>
18 #include <linux/kthread.h>
19 #include <linux/module.h>
20 #include <linux/of.h>
21 #include <linux/platform_device.h>
22 #include <linux/stmp_device.h>
23 
24 #include <crypto/aes.h>
25 #include <crypto/sha.h>
26 #include <crypto/internal/hash.h>
27 #include <crypto/internal/skcipher.h>
28 #include <crypto/scatterwalk.h>
29 
30 #define DCP_MAX_CHANS	4
31 #define DCP_BUF_SZ	PAGE_SIZE
32 #define DCP_SHA_PAY_SZ  64
33 
34 #define DCP_ALIGNMENT	64
35 
36 /*
37  * Null hashes to align with hw behavior on imx6sl and ull
38  * these are flipped for consistency with hw output
39  */
40 static const uint8_t sha1_null_hash[] =
41 	"\x09\x07\xd8\xaf\x90\x18\x60\x95\xef\xbf"
42 	"\x55\x32\x0d\x4b\x6b\x5e\xee\xa3\x39\xda";
43 
44 static const uint8_t sha256_null_hash[] =
45 	"\x55\xb8\x52\x78\x1b\x99\x95\xa4"
46 	"\x4c\x93\x9b\x64\xe4\x41\xae\x27"
47 	"\x24\xb9\x6f\x99\xc8\xf4\xfb\x9a"
48 	"\x14\x1c\xfc\x98\x42\xc4\xb0\xe3";
49 
50 /* DCP DMA descriptor. */
51 struct dcp_dma_desc {
52 	uint32_t	next_cmd_addr;
53 	uint32_t	control0;
54 	uint32_t	control1;
55 	uint32_t	source;
56 	uint32_t	destination;
57 	uint32_t	size;
58 	uint32_t	payload;
59 	uint32_t	status;
60 };
61 
62 /* Coherent aligned block for bounce buffering. */
63 struct dcp_coherent_block {
64 	uint8_t			aes_in_buf[DCP_BUF_SZ];
65 	uint8_t			aes_out_buf[DCP_BUF_SZ];
66 	uint8_t			sha_in_buf[DCP_BUF_SZ];
67 	uint8_t			sha_out_buf[DCP_SHA_PAY_SZ];
68 
69 	uint8_t			aes_key[2 * AES_KEYSIZE_128];
70 
71 	struct dcp_dma_desc	desc[DCP_MAX_CHANS];
72 };
73 
74 struct dcp {
75 	struct device			*dev;
76 	void __iomem			*base;
77 
78 	uint32_t			caps;
79 
80 	struct dcp_coherent_block	*coh;
81 
82 	struct completion		completion[DCP_MAX_CHANS];
83 	spinlock_t			lock[DCP_MAX_CHANS];
84 	struct task_struct		*thread[DCP_MAX_CHANS];
85 	struct crypto_queue		queue[DCP_MAX_CHANS];
86 };
87 
88 enum dcp_chan {
89 	DCP_CHAN_HASH_SHA	= 0,
90 	DCP_CHAN_CRYPTO		= 2,
91 };
92 
93 struct dcp_async_ctx {
94 	/* Common context */
95 	enum dcp_chan	chan;
96 	uint32_t	fill;
97 
98 	/* SHA Hash-specific context */
99 	struct mutex			mutex;
100 	uint32_t			alg;
101 	unsigned int			hot:1;
102 
103 	/* Crypto-specific context */
104 	struct crypto_skcipher		*fallback;
105 	unsigned int			key_len;
106 	uint8_t				key[AES_KEYSIZE_128];
107 };
108 
109 struct dcp_aes_req_ctx {
110 	unsigned int	enc:1;
111 	unsigned int	ecb:1;
112 };
113 
114 struct dcp_sha_req_ctx {
115 	unsigned int	init:1;
116 	unsigned int	fini:1;
117 };
118 
119 /*
120  * There can even be only one instance of the MXS DCP due to the
121  * design of Linux Crypto API.
122  */
123 static struct dcp *global_sdcp;
124 
125 /* DCP register layout. */
126 #define MXS_DCP_CTRL				0x00
127 #define MXS_DCP_CTRL_GATHER_RESIDUAL_WRITES	(1 << 23)
128 #define MXS_DCP_CTRL_ENABLE_CONTEXT_CACHING	(1 << 22)
129 
130 #define MXS_DCP_STAT				0x10
131 #define MXS_DCP_STAT_CLR			0x18
132 #define MXS_DCP_STAT_IRQ_MASK			0xf
133 
134 #define MXS_DCP_CHANNELCTRL			0x20
135 #define MXS_DCP_CHANNELCTRL_ENABLE_CHANNEL_MASK	0xff
136 
137 #define MXS_DCP_CAPABILITY1			0x40
138 #define MXS_DCP_CAPABILITY1_SHA256		(4 << 16)
139 #define MXS_DCP_CAPABILITY1_SHA1		(1 << 16)
140 #define MXS_DCP_CAPABILITY1_AES128		(1 << 0)
141 
142 #define MXS_DCP_CONTEXT				0x50
143 
144 #define MXS_DCP_CH_N_CMDPTR(n)			(0x100 + ((n) * 0x40))
145 
146 #define MXS_DCP_CH_N_SEMA(n)			(0x110 + ((n) * 0x40))
147 
148 #define MXS_DCP_CH_N_STAT(n)			(0x120 + ((n) * 0x40))
149 #define MXS_DCP_CH_N_STAT_CLR(n)		(0x128 + ((n) * 0x40))
150 
151 /* DMA descriptor bits. */
152 #define MXS_DCP_CONTROL0_HASH_TERM		(1 << 13)
153 #define MXS_DCP_CONTROL0_HASH_INIT		(1 << 12)
154 #define MXS_DCP_CONTROL0_PAYLOAD_KEY		(1 << 11)
155 #define MXS_DCP_CONTROL0_CIPHER_ENCRYPT		(1 << 8)
156 #define MXS_DCP_CONTROL0_CIPHER_INIT		(1 << 9)
157 #define MXS_DCP_CONTROL0_ENABLE_HASH		(1 << 6)
158 #define MXS_DCP_CONTROL0_ENABLE_CIPHER		(1 << 5)
159 #define MXS_DCP_CONTROL0_DECR_SEMAPHORE		(1 << 1)
160 #define MXS_DCP_CONTROL0_INTERRUPT		(1 << 0)
161 
162 #define MXS_DCP_CONTROL1_HASH_SELECT_SHA256	(2 << 16)
163 #define MXS_DCP_CONTROL1_HASH_SELECT_SHA1	(0 << 16)
164 #define MXS_DCP_CONTROL1_CIPHER_MODE_CBC	(1 << 4)
165 #define MXS_DCP_CONTROL1_CIPHER_MODE_ECB	(0 << 4)
166 #define MXS_DCP_CONTROL1_CIPHER_SELECT_AES128	(0 << 0)
167 
mxs_dcp_start_dma(struct dcp_async_ctx * actx)168 static int mxs_dcp_start_dma(struct dcp_async_ctx *actx)
169 {
170 	struct dcp *sdcp = global_sdcp;
171 	const int chan = actx->chan;
172 	uint32_t stat;
173 	unsigned long ret;
174 	struct dcp_dma_desc *desc = &sdcp->coh->desc[actx->chan];
175 
176 	dma_addr_t desc_phys = dma_map_single(sdcp->dev, desc, sizeof(*desc),
177 					      DMA_TO_DEVICE);
178 
179 	reinit_completion(&sdcp->completion[chan]);
180 
181 	/* Clear status register. */
182 	writel(0xffffffff, sdcp->base + MXS_DCP_CH_N_STAT_CLR(chan));
183 
184 	/* Load the DMA descriptor. */
185 	writel(desc_phys, sdcp->base + MXS_DCP_CH_N_CMDPTR(chan));
186 
187 	/* Increment the semaphore to start the DMA transfer. */
188 	writel(1, sdcp->base + MXS_DCP_CH_N_SEMA(chan));
189 
190 	ret = wait_for_completion_timeout(&sdcp->completion[chan],
191 					  msecs_to_jiffies(1000));
192 	if (!ret) {
193 		dev_err(sdcp->dev, "Channel %i timeout (DCP_STAT=0x%08x)\n",
194 			chan, readl(sdcp->base + MXS_DCP_STAT));
195 		return -ETIMEDOUT;
196 	}
197 
198 	stat = readl(sdcp->base + MXS_DCP_CH_N_STAT(chan));
199 	if (stat & 0xff) {
200 		dev_err(sdcp->dev, "Channel %i error (CH_STAT=0x%08x)\n",
201 			chan, stat);
202 		return -EINVAL;
203 	}
204 
205 	dma_unmap_single(sdcp->dev, desc_phys, sizeof(*desc), DMA_TO_DEVICE);
206 
207 	return 0;
208 }
209 
210 /*
211  * Encryption (AES128)
212  */
mxs_dcp_run_aes(struct dcp_async_ctx * actx,struct ablkcipher_request * req,int init)213 static int mxs_dcp_run_aes(struct dcp_async_ctx *actx,
214 			   struct ablkcipher_request *req, int init)
215 {
216 	struct dcp *sdcp = global_sdcp;
217 	struct dcp_dma_desc *desc = &sdcp->coh->desc[actx->chan];
218 	struct dcp_aes_req_ctx *rctx = ablkcipher_request_ctx(req);
219 	int ret;
220 
221 	dma_addr_t key_phys = dma_map_single(sdcp->dev, sdcp->coh->aes_key,
222 					     2 * AES_KEYSIZE_128,
223 					     DMA_TO_DEVICE);
224 	dma_addr_t src_phys = dma_map_single(sdcp->dev, sdcp->coh->aes_in_buf,
225 					     DCP_BUF_SZ, DMA_TO_DEVICE);
226 	dma_addr_t dst_phys = dma_map_single(sdcp->dev, sdcp->coh->aes_out_buf,
227 					     DCP_BUF_SZ, DMA_FROM_DEVICE);
228 
229 	if (actx->fill % AES_BLOCK_SIZE) {
230 		dev_err(sdcp->dev, "Invalid block size!\n");
231 		ret = -EINVAL;
232 		goto aes_done_run;
233 	}
234 
235 	/* Fill in the DMA descriptor. */
236 	desc->control0 = MXS_DCP_CONTROL0_DECR_SEMAPHORE |
237 		    MXS_DCP_CONTROL0_INTERRUPT |
238 		    MXS_DCP_CONTROL0_ENABLE_CIPHER;
239 
240 	/* Payload contains the key. */
241 	desc->control0 |= MXS_DCP_CONTROL0_PAYLOAD_KEY;
242 
243 	if (rctx->enc)
244 		desc->control0 |= MXS_DCP_CONTROL0_CIPHER_ENCRYPT;
245 	if (init)
246 		desc->control0 |= MXS_DCP_CONTROL0_CIPHER_INIT;
247 
248 	desc->control1 = MXS_DCP_CONTROL1_CIPHER_SELECT_AES128;
249 
250 	if (rctx->ecb)
251 		desc->control1 |= MXS_DCP_CONTROL1_CIPHER_MODE_ECB;
252 	else
253 		desc->control1 |= MXS_DCP_CONTROL1_CIPHER_MODE_CBC;
254 
255 	desc->next_cmd_addr = 0;
256 	desc->source = src_phys;
257 	desc->destination = dst_phys;
258 	desc->size = actx->fill;
259 	desc->payload = key_phys;
260 	desc->status = 0;
261 
262 	ret = mxs_dcp_start_dma(actx);
263 
264 aes_done_run:
265 	dma_unmap_single(sdcp->dev, key_phys, 2 * AES_KEYSIZE_128,
266 			 DMA_TO_DEVICE);
267 	dma_unmap_single(sdcp->dev, src_phys, DCP_BUF_SZ, DMA_TO_DEVICE);
268 	dma_unmap_single(sdcp->dev, dst_phys, DCP_BUF_SZ, DMA_FROM_DEVICE);
269 
270 	return ret;
271 }
272 
mxs_dcp_aes_block_crypt(struct crypto_async_request * arq)273 static int mxs_dcp_aes_block_crypt(struct crypto_async_request *arq)
274 {
275 	struct dcp *sdcp = global_sdcp;
276 
277 	struct ablkcipher_request *req = ablkcipher_request_cast(arq);
278 	struct dcp_async_ctx *actx = crypto_tfm_ctx(arq->tfm);
279 	struct dcp_aes_req_ctx *rctx = ablkcipher_request_ctx(req);
280 
281 	struct scatterlist *dst = req->dst;
282 	struct scatterlist *src = req->src;
283 	const int nents = sg_nents(req->src);
284 
285 	const int out_off = DCP_BUF_SZ;
286 	uint8_t *in_buf = sdcp->coh->aes_in_buf;
287 	uint8_t *out_buf = sdcp->coh->aes_out_buf;
288 
289 	uint8_t *out_tmp, *src_buf, *dst_buf = NULL;
290 	uint32_t dst_off = 0;
291 	uint32_t last_out_len = 0;
292 
293 	uint8_t *key = sdcp->coh->aes_key;
294 
295 	int ret = 0;
296 	int split = 0;
297 	unsigned int i, len, clen, rem = 0, tlen = 0;
298 	int init = 0;
299 	bool limit_hit = false;
300 
301 	actx->fill = 0;
302 
303 	/* Copy the key from the temporary location. */
304 	memcpy(key, actx->key, actx->key_len);
305 
306 	if (!rctx->ecb) {
307 		/* Copy the CBC IV just past the key. */
308 		memcpy(key + AES_KEYSIZE_128, req->info, AES_KEYSIZE_128);
309 		/* CBC needs the INIT set. */
310 		init = 1;
311 	} else {
312 		memset(key + AES_KEYSIZE_128, 0, AES_KEYSIZE_128);
313 	}
314 
315 	for_each_sg(req->src, src, nents, i) {
316 		src_buf = sg_virt(src);
317 		len = sg_dma_len(src);
318 		tlen += len;
319 		limit_hit = tlen > req->nbytes;
320 
321 		if (limit_hit)
322 			len = req->nbytes - (tlen - len);
323 
324 		do {
325 			if (actx->fill + len > out_off)
326 				clen = out_off - actx->fill;
327 			else
328 				clen = len;
329 
330 			memcpy(in_buf + actx->fill, src_buf, clen);
331 			len -= clen;
332 			src_buf += clen;
333 			actx->fill += clen;
334 
335 			/*
336 			 * If we filled the buffer or this is the last SG,
337 			 * submit the buffer.
338 			 */
339 			if (actx->fill == out_off || sg_is_last(src) ||
340 				limit_hit) {
341 				ret = mxs_dcp_run_aes(actx, req, init);
342 				if (ret)
343 					return ret;
344 				init = 0;
345 
346 				out_tmp = out_buf;
347 				last_out_len = actx->fill;
348 				while (dst && actx->fill) {
349 					if (!split) {
350 						dst_buf = sg_virt(dst);
351 						dst_off = 0;
352 					}
353 					rem = min(sg_dma_len(dst) - dst_off,
354 						  actx->fill);
355 
356 					memcpy(dst_buf + dst_off, out_tmp, rem);
357 					out_tmp += rem;
358 					dst_off += rem;
359 					actx->fill -= rem;
360 
361 					if (dst_off == sg_dma_len(dst)) {
362 						dst = sg_next(dst);
363 						split = 0;
364 					} else {
365 						split = 1;
366 					}
367 				}
368 			}
369 		} while (len);
370 
371 		if (limit_hit)
372 			break;
373 	}
374 
375 	/* Copy the IV for CBC for chaining */
376 	if (!rctx->ecb) {
377 		if (rctx->enc)
378 			memcpy(req->info, out_buf+(last_out_len-AES_BLOCK_SIZE),
379 				AES_BLOCK_SIZE);
380 		else
381 			memcpy(req->info, in_buf+(last_out_len-AES_BLOCK_SIZE),
382 				AES_BLOCK_SIZE);
383 	}
384 
385 	return ret;
386 }
387 
dcp_chan_thread_aes(void * data)388 static int dcp_chan_thread_aes(void *data)
389 {
390 	struct dcp *sdcp = global_sdcp;
391 	const int chan = DCP_CHAN_CRYPTO;
392 
393 	struct crypto_async_request *backlog;
394 	struct crypto_async_request *arq;
395 
396 	int ret;
397 
398 	while (!kthread_should_stop()) {
399 		set_current_state(TASK_INTERRUPTIBLE);
400 
401 		spin_lock(&sdcp->lock[chan]);
402 		backlog = crypto_get_backlog(&sdcp->queue[chan]);
403 		arq = crypto_dequeue_request(&sdcp->queue[chan]);
404 		spin_unlock(&sdcp->lock[chan]);
405 
406 		if (!backlog && !arq) {
407 			schedule();
408 			continue;
409 		}
410 
411 		set_current_state(TASK_RUNNING);
412 
413 		if (backlog)
414 			backlog->complete(backlog, -EINPROGRESS);
415 
416 		if (arq) {
417 			ret = mxs_dcp_aes_block_crypt(arq);
418 			arq->complete(arq, ret);
419 		}
420 	}
421 
422 	return 0;
423 }
424 
mxs_dcp_block_fallback(struct ablkcipher_request * req,int enc)425 static int mxs_dcp_block_fallback(struct ablkcipher_request *req, int enc)
426 {
427 	struct crypto_ablkcipher *tfm = crypto_ablkcipher_reqtfm(req);
428 	struct dcp_async_ctx *ctx = crypto_ablkcipher_ctx(tfm);
429 	SKCIPHER_REQUEST_ON_STACK(subreq, ctx->fallback);
430 	int ret;
431 
432 	skcipher_request_set_tfm(subreq, ctx->fallback);
433 	skcipher_request_set_callback(subreq, req->base.flags, NULL, NULL);
434 	skcipher_request_set_crypt(subreq, req->src, req->dst,
435 				   req->nbytes, req->info);
436 
437 	if (enc)
438 		ret = crypto_skcipher_encrypt(subreq);
439 	else
440 		ret = crypto_skcipher_decrypt(subreq);
441 
442 	skcipher_request_zero(subreq);
443 
444 	return ret;
445 }
446 
mxs_dcp_aes_enqueue(struct ablkcipher_request * req,int enc,int ecb)447 static int mxs_dcp_aes_enqueue(struct ablkcipher_request *req, int enc, int ecb)
448 {
449 	struct dcp *sdcp = global_sdcp;
450 	struct crypto_async_request *arq = &req->base;
451 	struct dcp_async_ctx *actx = crypto_tfm_ctx(arq->tfm);
452 	struct dcp_aes_req_ctx *rctx = ablkcipher_request_ctx(req);
453 	int ret;
454 
455 	if (unlikely(actx->key_len != AES_KEYSIZE_128))
456 		return mxs_dcp_block_fallback(req, enc);
457 
458 	rctx->enc = enc;
459 	rctx->ecb = ecb;
460 	actx->chan = DCP_CHAN_CRYPTO;
461 
462 	spin_lock(&sdcp->lock[actx->chan]);
463 	ret = crypto_enqueue_request(&sdcp->queue[actx->chan], &req->base);
464 	spin_unlock(&sdcp->lock[actx->chan]);
465 
466 	wake_up_process(sdcp->thread[actx->chan]);
467 
468 	return -EINPROGRESS;
469 }
470 
mxs_dcp_aes_ecb_decrypt(struct ablkcipher_request * req)471 static int mxs_dcp_aes_ecb_decrypt(struct ablkcipher_request *req)
472 {
473 	return mxs_dcp_aes_enqueue(req, 0, 1);
474 }
475 
mxs_dcp_aes_ecb_encrypt(struct ablkcipher_request * req)476 static int mxs_dcp_aes_ecb_encrypt(struct ablkcipher_request *req)
477 {
478 	return mxs_dcp_aes_enqueue(req, 1, 1);
479 }
480 
mxs_dcp_aes_cbc_decrypt(struct ablkcipher_request * req)481 static int mxs_dcp_aes_cbc_decrypt(struct ablkcipher_request *req)
482 {
483 	return mxs_dcp_aes_enqueue(req, 0, 0);
484 }
485 
mxs_dcp_aes_cbc_encrypt(struct ablkcipher_request * req)486 static int mxs_dcp_aes_cbc_encrypt(struct ablkcipher_request *req)
487 {
488 	return mxs_dcp_aes_enqueue(req, 1, 0);
489 }
490 
mxs_dcp_aes_setkey(struct crypto_ablkcipher * tfm,const u8 * key,unsigned int len)491 static int mxs_dcp_aes_setkey(struct crypto_ablkcipher *tfm, const u8 *key,
492 			      unsigned int len)
493 {
494 	struct dcp_async_ctx *actx = crypto_ablkcipher_ctx(tfm);
495 	unsigned int ret;
496 
497 	/*
498 	 * AES 128 is supposed by the hardware, store key into temporary
499 	 * buffer and exit. We must use the temporary buffer here, since
500 	 * there can still be an operation in progress.
501 	 */
502 	actx->key_len = len;
503 	if (len == AES_KEYSIZE_128) {
504 		memcpy(actx->key, key, len);
505 		return 0;
506 	}
507 
508 	/*
509 	 * If the requested AES key size is not supported by the hardware,
510 	 * but is supported by in-kernel software implementation, we use
511 	 * software fallback.
512 	 */
513 	crypto_skcipher_clear_flags(actx->fallback, CRYPTO_TFM_REQ_MASK);
514 	crypto_skcipher_set_flags(actx->fallback,
515 				  tfm->base.crt_flags & CRYPTO_TFM_REQ_MASK);
516 
517 	ret = crypto_skcipher_setkey(actx->fallback, key, len);
518 	if (!ret)
519 		return 0;
520 
521 	tfm->base.crt_flags &= ~CRYPTO_TFM_RES_MASK;
522 	tfm->base.crt_flags |= crypto_skcipher_get_flags(actx->fallback) &
523 			       CRYPTO_TFM_RES_MASK;
524 
525 	return ret;
526 }
527 
mxs_dcp_aes_fallback_init(struct crypto_tfm * tfm)528 static int mxs_dcp_aes_fallback_init(struct crypto_tfm *tfm)
529 {
530 	const char *name = crypto_tfm_alg_name(tfm);
531 	const uint32_t flags = CRYPTO_ALG_ASYNC | CRYPTO_ALG_NEED_FALLBACK;
532 	struct dcp_async_ctx *actx = crypto_tfm_ctx(tfm);
533 	struct crypto_skcipher *blk;
534 
535 	blk = crypto_alloc_skcipher(name, 0, flags);
536 	if (IS_ERR(blk))
537 		return PTR_ERR(blk);
538 
539 	actx->fallback = blk;
540 	tfm->crt_ablkcipher.reqsize = sizeof(struct dcp_aes_req_ctx);
541 	return 0;
542 }
543 
mxs_dcp_aes_fallback_exit(struct crypto_tfm * tfm)544 static void mxs_dcp_aes_fallback_exit(struct crypto_tfm *tfm)
545 {
546 	struct dcp_async_ctx *actx = crypto_tfm_ctx(tfm);
547 
548 	crypto_free_skcipher(actx->fallback);
549 }
550 
551 /*
552  * Hashing (SHA1/SHA256)
553  */
mxs_dcp_run_sha(struct ahash_request * req)554 static int mxs_dcp_run_sha(struct ahash_request *req)
555 {
556 	struct dcp *sdcp = global_sdcp;
557 	int ret;
558 
559 	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
560 	struct dcp_async_ctx *actx = crypto_ahash_ctx(tfm);
561 	struct dcp_sha_req_ctx *rctx = ahash_request_ctx(req);
562 	struct dcp_dma_desc *desc = &sdcp->coh->desc[actx->chan];
563 
564 	dma_addr_t digest_phys = 0;
565 	dma_addr_t buf_phys = dma_map_single(sdcp->dev, sdcp->coh->sha_in_buf,
566 					     DCP_BUF_SZ, DMA_TO_DEVICE);
567 
568 	/* Fill in the DMA descriptor. */
569 	desc->control0 = MXS_DCP_CONTROL0_DECR_SEMAPHORE |
570 		    MXS_DCP_CONTROL0_INTERRUPT |
571 		    MXS_DCP_CONTROL0_ENABLE_HASH;
572 	if (rctx->init)
573 		desc->control0 |= MXS_DCP_CONTROL0_HASH_INIT;
574 
575 	desc->control1 = actx->alg;
576 	desc->next_cmd_addr = 0;
577 	desc->source = buf_phys;
578 	desc->destination = 0;
579 	desc->size = actx->fill;
580 	desc->payload = 0;
581 	desc->status = 0;
582 
583 	/*
584 	 * Align driver with hw behavior when generating null hashes
585 	 */
586 	if (rctx->init && rctx->fini && desc->size == 0) {
587 		struct hash_alg_common *halg = crypto_hash_alg_common(tfm);
588 		const uint8_t *sha_buf =
589 			(actx->alg == MXS_DCP_CONTROL1_HASH_SELECT_SHA1) ?
590 			sha1_null_hash : sha256_null_hash;
591 		memcpy(sdcp->coh->sha_out_buf, sha_buf, halg->digestsize);
592 		ret = 0;
593 		goto done_run;
594 	}
595 
596 	/* Set HASH_TERM bit for last transfer block. */
597 	if (rctx->fini) {
598 		digest_phys = dma_map_single(sdcp->dev, sdcp->coh->sha_out_buf,
599 					     DCP_SHA_PAY_SZ, DMA_FROM_DEVICE);
600 		desc->control0 |= MXS_DCP_CONTROL0_HASH_TERM;
601 		desc->payload = digest_phys;
602 	}
603 
604 	ret = mxs_dcp_start_dma(actx);
605 
606 	if (rctx->fini)
607 		dma_unmap_single(sdcp->dev, digest_phys, DCP_SHA_PAY_SZ,
608 				 DMA_FROM_DEVICE);
609 
610 done_run:
611 	dma_unmap_single(sdcp->dev, buf_phys, DCP_BUF_SZ, DMA_TO_DEVICE);
612 
613 	return ret;
614 }
615 
dcp_sha_req_to_buf(struct crypto_async_request * arq)616 static int dcp_sha_req_to_buf(struct crypto_async_request *arq)
617 {
618 	struct dcp *sdcp = global_sdcp;
619 
620 	struct ahash_request *req = ahash_request_cast(arq);
621 	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
622 	struct dcp_async_ctx *actx = crypto_ahash_ctx(tfm);
623 	struct dcp_sha_req_ctx *rctx = ahash_request_ctx(req);
624 	struct hash_alg_common *halg = crypto_hash_alg_common(tfm);
625 
626 	uint8_t *in_buf = sdcp->coh->sha_in_buf;
627 	uint8_t *out_buf = sdcp->coh->sha_out_buf;
628 
629 	struct scatterlist *src;
630 
631 	unsigned int i, len, clen, oft = 0;
632 	int ret;
633 
634 	int fin = rctx->fini;
635 	if (fin)
636 		rctx->fini = 0;
637 
638 	src = req->src;
639 	len = req->nbytes;
640 
641 	while (len) {
642 		if (actx->fill + len > DCP_BUF_SZ)
643 			clen = DCP_BUF_SZ - actx->fill;
644 		else
645 			clen = len;
646 
647 		scatterwalk_map_and_copy(in_buf + actx->fill, src, oft, clen,
648 					 0);
649 
650 		len -= clen;
651 		oft += clen;
652 		actx->fill += clen;
653 
654 		/*
655 		 * If we filled the buffer and still have some
656 		 * more data, submit the buffer.
657 		 */
658 		if (len && actx->fill == DCP_BUF_SZ) {
659 			ret = mxs_dcp_run_sha(req);
660 			if (ret)
661 				return ret;
662 			actx->fill = 0;
663 			rctx->init = 0;
664 		}
665 	}
666 
667 	if (fin) {
668 		rctx->fini = 1;
669 
670 		/* Submit whatever is left. */
671 		if (!req->result)
672 			return -EINVAL;
673 
674 		ret = mxs_dcp_run_sha(req);
675 		if (ret)
676 			return ret;
677 
678 		actx->fill = 0;
679 
680 		/* For some reason the result is flipped */
681 		for (i = 0; i < halg->digestsize; i++)
682 			req->result[i] = out_buf[halg->digestsize - i - 1];
683 	}
684 
685 	return 0;
686 }
687 
dcp_chan_thread_sha(void * data)688 static int dcp_chan_thread_sha(void *data)
689 {
690 	struct dcp *sdcp = global_sdcp;
691 	const int chan = DCP_CHAN_HASH_SHA;
692 
693 	struct crypto_async_request *backlog;
694 	struct crypto_async_request *arq;
695 
696 	struct dcp_sha_req_ctx *rctx;
697 
698 	struct ahash_request *req;
699 	int ret, fini;
700 
701 	while (!kthread_should_stop()) {
702 		set_current_state(TASK_INTERRUPTIBLE);
703 
704 		spin_lock(&sdcp->lock[chan]);
705 		backlog = crypto_get_backlog(&sdcp->queue[chan]);
706 		arq = crypto_dequeue_request(&sdcp->queue[chan]);
707 		spin_unlock(&sdcp->lock[chan]);
708 
709 		if (!backlog && !arq) {
710 			schedule();
711 			continue;
712 		}
713 
714 		set_current_state(TASK_RUNNING);
715 
716 		if (backlog)
717 			backlog->complete(backlog, -EINPROGRESS);
718 
719 		if (arq) {
720 			req = ahash_request_cast(arq);
721 			rctx = ahash_request_ctx(req);
722 
723 			ret = dcp_sha_req_to_buf(arq);
724 			fini = rctx->fini;
725 			arq->complete(arq, ret);
726 		}
727 	}
728 
729 	return 0;
730 }
731 
dcp_sha_init(struct ahash_request * req)732 static int dcp_sha_init(struct ahash_request *req)
733 {
734 	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
735 	struct dcp_async_ctx *actx = crypto_ahash_ctx(tfm);
736 
737 	struct hash_alg_common *halg = crypto_hash_alg_common(tfm);
738 
739 	/*
740 	 * Start hashing session. The code below only inits the
741 	 * hashing session context, nothing more.
742 	 */
743 	memset(actx, 0, sizeof(*actx));
744 
745 	if (strcmp(halg->base.cra_name, "sha1") == 0)
746 		actx->alg = MXS_DCP_CONTROL1_HASH_SELECT_SHA1;
747 	else
748 		actx->alg = MXS_DCP_CONTROL1_HASH_SELECT_SHA256;
749 
750 	actx->fill = 0;
751 	actx->hot = 0;
752 	actx->chan = DCP_CHAN_HASH_SHA;
753 
754 	mutex_init(&actx->mutex);
755 
756 	return 0;
757 }
758 
dcp_sha_update_fx(struct ahash_request * req,int fini)759 static int dcp_sha_update_fx(struct ahash_request *req, int fini)
760 {
761 	struct dcp *sdcp = global_sdcp;
762 
763 	struct dcp_sha_req_ctx *rctx = ahash_request_ctx(req);
764 	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
765 	struct dcp_async_ctx *actx = crypto_ahash_ctx(tfm);
766 
767 	int ret;
768 
769 	/*
770 	 * Ignore requests that have no data in them and are not
771 	 * the trailing requests in the stream of requests.
772 	 */
773 	if (!req->nbytes && !fini)
774 		return 0;
775 
776 	mutex_lock(&actx->mutex);
777 
778 	rctx->fini = fini;
779 
780 	if (!actx->hot) {
781 		actx->hot = 1;
782 		rctx->init = 1;
783 	}
784 
785 	spin_lock(&sdcp->lock[actx->chan]);
786 	ret = crypto_enqueue_request(&sdcp->queue[actx->chan], &req->base);
787 	spin_unlock(&sdcp->lock[actx->chan]);
788 
789 	wake_up_process(sdcp->thread[actx->chan]);
790 	mutex_unlock(&actx->mutex);
791 
792 	return -EINPROGRESS;
793 }
794 
dcp_sha_update(struct ahash_request * req)795 static int dcp_sha_update(struct ahash_request *req)
796 {
797 	return dcp_sha_update_fx(req, 0);
798 }
799 
dcp_sha_final(struct ahash_request * req)800 static int dcp_sha_final(struct ahash_request *req)
801 {
802 	ahash_request_set_crypt(req, NULL, req->result, 0);
803 	req->nbytes = 0;
804 	return dcp_sha_update_fx(req, 1);
805 }
806 
dcp_sha_finup(struct ahash_request * req)807 static int dcp_sha_finup(struct ahash_request *req)
808 {
809 	return dcp_sha_update_fx(req, 1);
810 }
811 
dcp_sha_digest(struct ahash_request * req)812 static int dcp_sha_digest(struct ahash_request *req)
813 {
814 	int ret;
815 
816 	ret = dcp_sha_init(req);
817 	if (ret)
818 		return ret;
819 
820 	return dcp_sha_finup(req);
821 }
822 
dcp_sha_noimport(struct ahash_request * req,const void * in)823 static int dcp_sha_noimport(struct ahash_request *req, const void *in)
824 {
825 	return -ENOSYS;
826 }
827 
dcp_sha_noexport(struct ahash_request * req,void * out)828 static int dcp_sha_noexport(struct ahash_request *req, void *out)
829 {
830 	return -ENOSYS;
831 }
832 
dcp_sha_cra_init(struct crypto_tfm * tfm)833 static int dcp_sha_cra_init(struct crypto_tfm *tfm)
834 {
835 	crypto_ahash_set_reqsize(__crypto_ahash_cast(tfm),
836 				 sizeof(struct dcp_sha_req_ctx));
837 	return 0;
838 }
839 
dcp_sha_cra_exit(struct crypto_tfm * tfm)840 static void dcp_sha_cra_exit(struct crypto_tfm *tfm)
841 {
842 }
843 
844 /* AES 128 ECB and AES 128 CBC */
845 static struct crypto_alg dcp_aes_algs[] = {
846 	{
847 		.cra_name		= "ecb(aes)",
848 		.cra_driver_name	= "ecb-aes-dcp",
849 		.cra_priority		= 400,
850 		.cra_alignmask		= 15,
851 		.cra_flags		= CRYPTO_ALG_TYPE_ABLKCIPHER |
852 					  CRYPTO_ALG_ASYNC |
853 					  CRYPTO_ALG_NEED_FALLBACK,
854 		.cra_init		= mxs_dcp_aes_fallback_init,
855 		.cra_exit		= mxs_dcp_aes_fallback_exit,
856 		.cra_blocksize		= AES_BLOCK_SIZE,
857 		.cra_ctxsize		= sizeof(struct dcp_async_ctx),
858 		.cra_type		= &crypto_ablkcipher_type,
859 		.cra_module		= THIS_MODULE,
860 		.cra_u	= {
861 			.ablkcipher = {
862 				.min_keysize	= AES_MIN_KEY_SIZE,
863 				.max_keysize	= AES_MAX_KEY_SIZE,
864 				.setkey		= mxs_dcp_aes_setkey,
865 				.encrypt	= mxs_dcp_aes_ecb_encrypt,
866 				.decrypt	= mxs_dcp_aes_ecb_decrypt
867 			},
868 		},
869 	}, {
870 		.cra_name		= "cbc(aes)",
871 		.cra_driver_name	= "cbc-aes-dcp",
872 		.cra_priority		= 400,
873 		.cra_alignmask		= 15,
874 		.cra_flags		= CRYPTO_ALG_TYPE_ABLKCIPHER |
875 					  CRYPTO_ALG_ASYNC |
876 					  CRYPTO_ALG_NEED_FALLBACK,
877 		.cra_init		= mxs_dcp_aes_fallback_init,
878 		.cra_exit		= mxs_dcp_aes_fallback_exit,
879 		.cra_blocksize		= AES_BLOCK_SIZE,
880 		.cra_ctxsize		= sizeof(struct dcp_async_ctx),
881 		.cra_type		= &crypto_ablkcipher_type,
882 		.cra_module		= THIS_MODULE,
883 		.cra_u = {
884 			.ablkcipher = {
885 				.min_keysize	= AES_MIN_KEY_SIZE,
886 				.max_keysize	= AES_MAX_KEY_SIZE,
887 				.setkey		= mxs_dcp_aes_setkey,
888 				.encrypt	= mxs_dcp_aes_cbc_encrypt,
889 				.decrypt	= mxs_dcp_aes_cbc_decrypt,
890 				.ivsize		= AES_BLOCK_SIZE,
891 			},
892 		},
893 	},
894 };
895 
896 /* SHA1 */
897 static struct ahash_alg dcp_sha1_alg = {
898 	.init	= dcp_sha_init,
899 	.update	= dcp_sha_update,
900 	.final	= dcp_sha_final,
901 	.finup	= dcp_sha_finup,
902 	.digest	= dcp_sha_digest,
903 	.import = dcp_sha_noimport,
904 	.export = dcp_sha_noexport,
905 	.halg	= {
906 		.digestsize	= SHA1_DIGEST_SIZE,
907 		.base		= {
908 			.cra_name		= "sha1",
909 			.cra_driver_name	= "sha1-dcp",
910 			.cra_priority		= 400,
911 			.cra_alignmask		= 63,
912 			.cra_flags		= CRYPTO_ALG_ASYNC,
913 			.cra_blocksize		= SHA1_BLOCK_SIZE,
914 			.cra_ctxsize		= sizeof(struct dcp_async_ctx),
915 			.cra_module		= THIS_MODULE,
916 			.cra_init		= dcp_sha_cra_init,
917 			.cra_exit		= dcp_sha_cra_exit,
918 		},
919 	},
920 };
921 
922 /* SHA256 */
923 static struct ahash_alg dcp_sha256_alg = {
924 	.init	= dcp_sha_init,
925 	.update	= dcp_sha_update,
926 	.final	= dcp_sha_final,
927 	.finup	= dcp_sha_finup,
928 	.digest	= dcp_sha_digest,
929 	.import = dcp_sha_noimport,
930 	.export = dcp_sha_noexport,
931 	.halg	= {
932 		.digestsize	= SHA256_DIGEST_SIZE,
933 		.base		= {
934 			.cra_name		= "sha256",
935 			.cra_driver_name	= "sha256-dcp",
936 			.cra_priority		= 400,
937 			.cra_alignmask		= 63,
938 			.cra_flags		= CRYPTO_ALG_ASYNC,
939 			.cra_blocksize		= SHA256_BLOCK_SIZE,
940 			.cra_ctxsize		= sizeof(struct dcp_async_ctx),
941 			.cra_module		= THIS_MODULE,
942 			.cra_init		= dcp_sha_cra_init,
943 			.cra_exit		= dcp_sha_cra_exit,
944 		},
945 	},
946 };
947 
mxs_dcp_irq(int irq,void * context)948 static irqreturn_t mxs_dcp_irq(int irq, void *context)
949 {
950 	struct dcp *sdcp = context;
951 	uint32_t stat;
952 	int i;
953 
954 	stat = readl(sdcp->base + MXS_DCP_STAT);
955 	stat &= MXS_DCP_STAT_IRQ_MASK;
956 	if (!stat)
957 		return IRQ_NONE;
958 
959 	/* Clear the interrupts. */
960 	writel(stat, sdcp->base + MXS_DCP_STAT_CLR);
961 
962 	/* Complete the DMA requests that finished. */
963 	for (i = 0; i < DCP_MAX_CHANS; i++)
964 		if (stat & (1 << i))
965 			complete(&sdcp->completion[i]);
966 
967 	return IRQ_HANDLED;
968 }
969 
mxs_dcp_probe(struct platform_device * pdev)970 static int mxs_dcp_probe(struct platform_device *pdev)
971 {
972 	struct device *dev = &pdev->dev;
973 	struct dcp *sdcp = NULL;
974 	int i, ret;
975 
976 	struct resource *iores;
977 	int dcp_vmi_irq, dcp_irq;
978 
979 	if (global_sdcp) {
980 		dev_err(dev, "Only one DCP instance allowed!\n");
981 		return -ENODEV;
982 	}
983 
984 	iores = platform_get_resource(pdev, IORESOURCE_MEM, 0);
985 	dcp_vmi_irq = platform_get_irq(pdev, 0);
986 	if (dcp_vmi_irq < 0) {
987 		dev_err(dev, "Failed to get IRQ: (%d)!\n", dcp_vmi_irq);
988 		return dcp_vmi_irq;
989 	}
990 
991 	dcp_irq = platform_get_irq(pdev, 1);
992 	if (dcp_irq < 0) {
993 		dev_err(dev, "Failed to get IRQ: (%d)!\n", dcp_irq);
994 		return dcp_irq;
995 	}
996 
997 	sdcp = devm_kzalloc(dev, sizeof(*sdcp), GFP_KERNEL);
998 	if (!sdcp)
999 		return -ENOMEM;
1000 
1001 	sdcp->dev = dev;
1002 	sdcp->base = devm_ioremap_resource(dev, iores);
1003 	if (IS_ERR(sdcp->base))
1004 		return PTR_ERR(sdcp->base);
1005 
1006 
1007 	ret = devm_request_irq(dev, dcp_vmi_irq, mxs_dcp_irq, 0,
1008 			       "dcp-vmi-irq", sdcp);
1009 	if (ret) {
1010 		dev_err(dev, "Failed to claim DCP VMI IRQ!\n");
1011 		return ret;
1012 	}
1013 
1014 	ret = devm_request_irq(dev, dcp_irq, mxs_dcp_irq, 0,
1015 			       "dcp-irq", sdcp);
1016 	if (ret) {
1017 		dev_err(dev, "Failed to claim DCP IRQ!\n");
1018 		return ret;
1019 	}
1020 
1021 	/* Allocate coherent helper block. */
1022 	sdcp->coh = devm_kzalloc(dev, sizeof(*sdcp->coh) + DCP_ALIGNMENT,
1023 				   GFP_KERNEL);
1024 	if (!sdcp->coh)
1025 		return -ENOMEM;
1026 
1027 	/* Re-align the structure so it fits the DCP constraints. */
1028 	sdcp->coh = PTR_ALIGN(sdcp->coh, DCP_ALIGNMENT);
1029 
1030 	/* Restart the DCP block. */
1031 	ret = stmp_reset_block(sdcp->base);
1032 	if (ret)
1033 		return ret;
1034 
1035 	/* Initialize control register. */
1036 	writel(MXS_DCP_CTRL_GATHER_RESIDUAL_WRITES |
1037 	       MXS_DCP_CTRL_ENABLE_CONTEXT_CACHING | 0xf,
1038 	       sdcp->base + MXS_DCP_CTRL);
1039 
1040 	/* Enable all DCP DMA channels. */
1041 	writel(MXS_DCP_CHANNELCTRL_ENABLE_CHANNEL_MASK,
1042 	       sdcp->base + MXS_DCP_CHANNELCTRL);
1043 
1044 	/*
1045 	 * We do not enable context switching. Give the context buffer a
1046 	 * pointer to an illegal address so if context switching is
1047 	 * inadvertantly enabled, the DCP will return an error instead of
1048 	 * trashing good memory. The DCP DMA cannot access ROM, so any ROM
1049 	 * address will do.
1050 	 */
1051 	writel(0xffff0000, sdcp->base + MXS_DCP_CONTEXT);
1052 	for (i = 0; i < DCP_MAX_CHANS; i++)
1053 		writel(0xffffffff, sdcp->base + MXS_DCP_CH_N_STAT_CLR(i));
1054 	writel(0xffffffff, sdcp->base + MXS_DCP_STAT_CLR);
1055 
1056 	global_sdcp = sdcp;
1057 
1058 	platform_set_drvdata(pdev, sdcp);
1059 
1060 	for (i = 0; i < DCP_MAX_CHANS; i++) {
1061 		spin_lock_init(&sdcp->lock[i]);
1062 		init_completion(&sdcp->completion[i]);
1063 		crypto_init_queue(&sdcp->queue[i], 50);
1064 	}
1065 
1066 	/* Create the SHA and AES handler threads. */
1067 	sdcp->thread[DCP_CHAN_HASH_SHA] = kthread_run(dcp_chan_thread_sha,
1068 						      NULL, "mxs_dcp_chan/sha");
1069 	if (IS_ERR(sdcp->thread[DCP_CHAN_HASH_SHA])) {
1070 		dev_err(dev, "Error starting SHA thread!\n");
1071 		return PTR_ERR(sdcp->thread[DCP_CHAN_HASH_SHA]);
1072 	}
1073 
1074 	sdcp->thread[DCP_CHAN_CRYPTO] = kthread_run(dcp_chan_thread_aes,
1075 						    NULL, "mxs_dcp_chan/aes");
1076 	if (IS_ERR(sdcp->thread[DCP_CHAN_CRYPTO])) {
1077 		dev_err(dev, "Error starting SHA thread!\n");
1078 		ret = PTR_ERR(sdcp->thread[DCP_CHAN_CRYPTO]);
1079 		goto err_destroy_sha_thread;
1080 	}
1081 
1082 	/* Register the various crypto algorithms. */
1083 	sdcp->caps = readl(sdcp->base + MXS_DCP_CAPABILITY1);
1084 
1085 	if (sdcp->caps & MXS_DCP_CAPABILITY1_AES128) {
1086 		ret = crypto_register_algs(dcp_aes_algs,
1087 					   ARRAY_SIZE(dcp_aes_algs));
1088 		if (ret) {
1089 			/* Failed to register algorithm. */
1090 			dev_err(dev, "Failed to register AES crypto!\n");
1091 			goto err_destroy_aes_thread;
1092 		}
1093 	}
1094 
1095 	if (sdcp->caps & MXS_DCP_CAPABILITY1_SHA1) {
1096 		ret = crypto_register_ahash(&dcp_sha1_alg);
1097 		if (ret) {
1098 			dev_err(dev, "Failed to register %s hash!\n",
1099 				dcp_sha1_alg.halg.base.cra_name);
1100 			goto err_unregister_aes;
1101 		}
1102 	}
1103 
1104 	if (sdcp->caps & MXS_DCP_CAPABILITY1_SHA256) {
1105 		ret = crypto_register_ahash(&dcp_sha256_alg);
1106 		if (ret) {
1107 			dev_err(dev, "Failed to register %s hash!\n",
1108 				dcp_sha256_alg.halg.base.cra_name);
1109 			goto err_unregister_sha1;
1110 		}
1111 	}
1112 
1113 	return 0;
1114 
1115 err_unregister_sha1:
1116 	if (sdcp->caps & MXS_DCP_CAPABILITY1_SHA1)
1117 		crypto_unregister_ahash(&dcp_sha1_alg);
1118 
1119 err_unregister_aes:
1120 	if (sdcp->caps & MXS_DCP_CAPABILITY1_AES128)
1121 		crypto_unregister_algs(dcp_aes_algs, ARRAY_SIZE(dcp_aes_algs));
1122 
1123 err_destroy_aes_thread:
1124 	kthread_stop(sdcp->thread[DCP_CHAN_CRYPTO]);
1125 
1126 err_destroy_sha_thread:
1127 	kthread_stop(sdcp->thread[DCP_CHAN_HASH_SHA]);
1128 	return ret;
1129 }
1130 
mxs_dcp_remove(struct platform_device * pdev)1131 static int mxs_dcp_remove(struct platform_device *pdev)
1132 {
1133 	struct dcp *sdcp = platform_get_drvdata(pdev);
1134 
1135 	if (sdcp->caps & MXS_DCP_CAPABILITY1_SHA256)
1136 		crypto_unregister_ahash(&dcp_sha256_alg);
1137 
1138 	if (sdcp->caps & MXS_DCP_CAPABILITY1_SHA1)
1139 		crypto_unregister_ahash(&dcp_sha1_alg);
1140 
1141 	if (sdcp->caps & MXS_DCP_CAPABILITY1_AES128)
1142 		crypto_unregister_algs(dcp_aes_algs, ARRAY_SIZE(dcp_aes_algs));
1143 
1144 	kthread_stop(sdcp->thread[DCP_CHAN_HASH_SHA]);
1145 	kthread_stop(sdcp->thread[DCP_CHAN_CRYPTO]);
1146 
1147 	platform_set_drvdata(pdev, NULL);
1148 
1149 	global_sdcp = NULL;
1150 
1151 	return 0;
1152 }
1153 
1154 static const struct of_device_id mxs_dcp_dt_ids[] = {
1155 	{ .compatible = "fsl,imx23-dcp", .data = NULL, },
1156 	{ .compatible = "fsl,imx28-dcp", .data = NULL, },
1157 	{ /* sentinel */ }
1158 };
1159 
1160 MODULE_DEVICE_TABLE(of, mxs_dcp_dt_ids);
1161 
1162 static struct platform_driver mxs_dcp_driver = {
1163 	.probe	= mxs_dcp_probe,
1164 	.remove	= mxs_dcp_remove,
1165 	.driver	= {
1166 		.name		= "mxs-dcp",
1167 		.of_match_table	= mxs_dcp_dt_ids,
1168 	},
1169 };
1170 
1171 module_platform_driver(mxs_dcp_driver);
1172 
1173 MODULE_AUTHOR("Marek Vasut <marex@denx.de>");
1174 MODULE_DESCRIPTION("Freescale MXS DCP Driver");
1175 MODULE_LICENSE("GPL");
1176 MODULE_ALIAS("platform:mxs-dcp");
1177