1 /**
2 * Copyright (C) ST-Ericsson SA 2010
3 * Author: Shujuan Chen <shujuan.chen@stericsson.com> for ST-Ericsson.
4 * Author: Joakim Bech <joakim.xx.bech@stericsson.com> for ST-Ericsson.
5 * Author: Berne Hebark <berne.herbark@stericsson.com> for ST-Ericsson.
6 * Author: Niklas Hernaeus <niklas.hernaeus@stericsson.com> for ST-Ericsson.
7 * Author: Jonas Linde <jonas.linde@stericsson.com> for ST-Ericsson.
8 * Author: Andreas Westin <andreas.westin@stericsson.com> for ST-Ericsson.
9 * License terms: GNU General Public License (GPL) version 2
10 */
11
12 #include <linux/clk.h>
13 #include <linux/completion.h>
14 #include <linux/crypto.h>
15 #include <linux/dmaengine.h>
16 #include <linux/err.h>
17 #include <linux/errno.h>
18 #include <linux/interrupt.h>
19 #include <linux/io.h>
20 #include <linux/irqreturn.h>
21 #include <linux/klist.h>
22 #include <linux/module.h>
23 #include <linux/mod_devicetable.h>
24 #include <linux/platform_device.h>
25 #include <linux/regulator/consumer.h>
26 #include <linux/semaphore.h>
27 #include <linux/platform_data/dma-ste-dma40.h>
28
29 #include <crypto/aes.h>
30 #include <crypto/algapi.h>
31 #include <crypto/ctr.h>
32 #include <crypto/des.h>
33 #include <crypto/scatterwalk.h>
34
35 #include <linux/platform_data/crypto-ux500.h>
36
37 #include "cryp_p.h"
38 #include "cryp.h"
39
40 #define CRYP_MAX_KEY_SIZE 32
41 #define BYTES_PER_WORD 4
42
43 static int cryp_mode;
44 static atomic_t session_id;
45
46 static struct stedma40_chan_cfg *mem_to_engine;
47 static struct stedma40_chan_cfg *engine_to_mem;
48
49 /**
50 * struct cryp_driver_data - data specific to the driver.
51 *
52 * @device_list: A list of registered devices to choose from.
53 * @device_allocation: A semaphore initialized with number of devices.
54 */
55 struct cryp_driver_data {
56 struct klist device_list;
57 struct semaphore device_allocation;
58 };
59
60 /**
61 * struct cryp_ctx - Crypto context
62 * @config: Crypto mode.
63 * @key[CRYP_MAX_KEY_SIZE]: Key.
64 * @keylen: Length of key.
65 * @iv: Pointer to initialization vector.
66 * @indata: Pointer to indata.
67 * @outdata: Pointer to outdata.
68 * @datalen: Length of indata.
69 * @outlen: Length of outdata.
70 * @blocksize: Size of blocks.
71 * @updated: Updated flag.
72 * @dev_ctx: Device dependent context.
73 * @device: Pointer to the device.
74 */
75 struct cryp_ctx {
76 struct cryp_config config;
77 u8 key[CRYP_MAX_KEY_SIZE];
78 u32 keylen;
79 u8 *iv;
80 const u8 *indata;
81 u8 *outdata;
82 u32 datalen;
83 u32 outlen;
84 u32 blocksize;
85 u8 updated;
86 struct cryp_device_context dev_ctx;
87 struct cryp_device_data *device;
88 u32 session_id;
89 };
90
91 static struct cryp_driver_data driver_data;
92
93 /**
94 * uint8p_to_uint32_be - 4*uint8 to uint32 big endian
95 * @in: Data to convert.
96 */
uint8p_to_uint32_be(u8 * in)97 static inline u32 uint8p_to_uint32_be(u8 *in)
98 {
99 u32 *data = (u32 *)in;
100
101 return cpu_to_be32p(data);
102 }
103
104 /**
105 * swap_bits_in_byte - mirror the bits in a byte
106 * @b: the byte to be mirrored
107 *
108 * The bits are swapped the following way:
109 * Byte b include bits 0-7, nibble 1 (n1) include bits 0-3 and
110 * nibble 2 (n2) bits 4-7.
111 *
112 * Nibble 1 (n1):
113 * (The "old" (moved) bit is replaced with a zero)
114 * 1. Move bit 6 and 7, 4 positions to the left.
115 * 2. Move bit 3 and 5, 2 positions to the left.
116 * 3. Move bit 1-4, 1 position to the left.
117 *
118 * Nibble 2 (n2):
119 * 1. Move bit 0 and 1, 4 positions to the right.
120 * 2. Move bit 2 and 4, 2 positions to the right.
121 * 3. Move bit 3-6, 1 position to the right.
122 *
123 * Combine the two nibbles to a complete and swapped byte.
124 */
125
swap_bits_in_byte(u8 b)126 static inline u8 swap_bits_in_byte(u8 b)
127 {
128 #define R_SHIFT_4_MASK 0xc0 /* Bits 6 and 7, right shift 4 */
129 #define R_SHIFT_2_MASK 0x28 /* (After right shift 4) Bits 3 and 5,
130 right shift 2 */
131 #define R_SHIFT_1_MASK 0x1e /* (After right shift 2) Bits 1-4,
132 right shift 1 */
133 #define L_SHIFT_4_MASK 0x03 /* Bits 0 and 1, left shift 4 */
134 #define L_SHIFT_2_MASK 0x14 /* (After left shift 4) Bits 2 and 4,
135 left shift 2 */
136 #define L_SHIFT_1_MASK 0x78 /* (After left shift 1) Bits 3-6,
137 left shift 1 */
138
139 u8 n1;
140 u8 n2;
141
142 /* Swap most significant nibble */
143 /* Right shift 4, bits 6 and 7 */
144 n1 = ((b & R_SHIFT_4_MASK) >> 4) | (b & ~(R_SHIFT_4_MASK >> 4));
145 /* Right shift 2, bits 3 and 5 */
146 n1 = ((n1 & R_SHIFT_2_MASK) >> 2) | (n1 & ~(R_SHIFT_2_MASK >> 2));
147 /* Right shift 1, bits 1-4 */
148 n1 = (n1 & R_SHIFT_1_MASK) >> 1;
149
150 /* Swap least significant nibble */
151 /* Left shift 4, bits 0 and 1 */
152 n2 = ((b & L_SHIFT_4_MASK) << 4) | (b & ~(L_SHIFT_4_MASK << 4));
153 /* Left shift 2, bits 2 and 4 */
154 n2 = ((n2 & L_SHIFT_2_MASK) << 2) | (n2 & ~(L_SHIFT_2_MASK << 2));
155 /* Left shift 1, bits 3-6 */
156 n2 = (n2 & L_SHIFT_1_MASK) << 1;
157
158 return n1 | n2;
159 }
160
swap_words_in_key_and_bits_in_byte(const u8 * in,u8 * out,u32 len)161 static inline void swap_words_in_key_and_bits_in_byte(const u8 *in,
162 u8 *out, u32 len)
163 {
164 unsigned int i = 0;
165 int j;
166 int index = 0;
167
168 j = len - BYTES_PER_WORD;
169 while (j >= 0) {
170 for (i = 0; i < BYTES_PER_WORD; i++) {
171 index = len - j - BYTES_PER_WORD + i;
172 out[j + i] =
173 swap_bits_in_byte(in[index]);
174 }
175 j -= BYTES_PER_WORD;
176 }
177 }
178
add_session_id(struct cryp_ctx * ctx)179 static void add_session_id(struct cryp_ctx *ctx)
180 {
181 /*
182 * We never want 0 to be a valid value, since this is the default value
183 * for the software context.
184 */
185 if (unlikely(atomic_inc_and_test(&session_id)))
186 atomic_inc(&session_id);
187
188 ctx->session_id = atomic_read(&session_id);
189 }
190
cryp_interrupt_handler(int irq,void * param)191 static irqreturn_t cryp_interrupt_handler(int irq, void *param)
192 {
193 struct cryp_ctx *ctx;
194 int count;
195 struct cryp_device_data *device_data;
196
197 if (param == NULL) {
198 BUG_ON(!param);
199 return IRQ_HANDLED;
200 }
201
202 /* The device is coming from the one found in hw_crypt_noxts. */
203 device_data = (struct cryp_device_data *)param;
204
205 ctx = device_data->current_ctx;
206
207 if (ctx == NULL) {
208 BUG_ON(!ctx);
209 return IRQ_HANDLED;
210 }
211
212 dev_dbg(ctx->device->dev, "[%s] (len: %d) %s, ", __func__, ctx->outlen,
213 cryp_pending_irq_src(device_data, CRYP_IRQ_SRC_OUTPUT_FIFO) ?
214 "out" : "in");
215
216 if (cryp_pending_irq_src(device_data,
217 CRYP_IRQ_SRC_OUTPUT_FIFO)) {
218 if (ctx->outlen / ctx->blocksize > 0) {
219 count = ctx->blocksize / 4;
220
221 readsl(&device_data->base->dout, ctx->outdata, count);
222 ctx->outdata += count;
223 ctx->outlen -= count;
224
225 if (ctx->outlen == 0) {
226 cryp_disable_irq_src(device_data,
227 CRYP_IRQ_SRC_OUTPUT_FIFO);
228 }
229 }
230 } else if (cryp_pending_irq_src(device_data,
231 CRYP_IRQ_SRC_INPUT_FIFO)) {
232 if (ctx->datalen / ctx->blocksize > 0) {
233 count = ctx->blocksize / 4;
234
235 writesl(&device_data->base->din, ctx->indata, count);
236
237 ctx->indata += count;
238 ctx->datalen -= count;
239
240 if (ctx->datalen == 0)
241 cryp_disable_irq_src(device_data,
242 CRYP_IRQ_SRC_INPUT_FIFO);
243
244 if (ctx->config.algomode == CRYP_ALGO_AES_XTS) {
245 CRYP_PUT_BITS(&device_data->base->cr,
246 CRYP_START_ENABLE,
247 CRYP_CR_START_POS,
248 CRYP_CR_START_MASK);
249
250 cryp_wait_until_done(device_data);
251 }
252 }
253 }
254
255 return IRQ_HANDLED;
256 }
257
mode_is_aes(enum cryp_algo_mode mode)258 static int mode_is_aes(enum cryp_algo_mode mode)
259 {
260 return CRYP_ALGO_AES_ECB == mode ||
261 CRYP_ALGO_AES_CBC == mode ||
262 CRYP_ALGO_AES_CTR == mode ||
263 CRYP_ALGO_AES_XTS == mode;
264 }
265
cfg_iv(struct cryp_device_data * device_data,u32 left,u32 right,enum cryp_init_vector_index index)266 static int cfg_iv(struct cryp_device_data *device_data, u32 left, u32 right,
267 enum cryp_init_vector_index index)
268 {
269 struct cryp_init_vector_value vector_value;
270
271 dev_dbg(device_data->dev, "[%s]", __func__);
272
273 vector_value.init_value_left = left;
274 vector_value.init_value_right = right;
275
276 return cryp_configure_init_vector(device_data,
277 index,
278 vector_value);
279 }
280
cfg_ivs(struct cryp_device_data * device_data,struct cryp_ctx * ctx)281 static int cfg_ivs(struct cryp_device_data *device_data, struct cryp_ctx *ctx)
282 {
283 int i;
284 int status = 0;
285 int num_of_regs = ctx->blocksize / 8;
286 u32 iv[AES_BLOCK_SIZE / 4];
287
288 dev_dbg(device_data->dev, "[%s]", __func__);
289
290 /*
291 * Since we loop on num_of_regs we need to have a check in case
292 * someone provides an incorrect blocksize which would force calling
293 * cfg_iv with i greater than 2 which is an error.
294 */
295 if (num_of_regs > 2) {
296 dev_err(device_data->dev, "[%s] Incorrect blocksize %d",
297 __func__, ctx->blocksize);
298 return -EINVAL;
299 }
300
301 for (i = 0; i < ctx->blocksize / 4; i++)
302 iv[i] = uint8p_to_uint32_be(ctx->iv + i*4);
303
304 for (i = 0; i < num_of_regs; i++) {
305 status = cfg_iv(device_data, iv[i*2], iv[i*2+1],
306 (enum cryp_init_vector_index) i);
307 if (status != 0)
308 return status;
309 }
310 return status;
311 }
312
set_key(struct cryp_device_data * device_data,u32 left_key,u32 right_key,enum cryp_key_reg_index index)313 static int set_key(struct cryp_device_data *device_data,
314 u32 left_key,
315 u32 right_key,
316 enum cryp_key_reg_index index)
317 {
318 struct cryp_key_value key_value;
319 int cryp_error;
320
321 dev_dbg(device_data->dev, "[%s]", __func__);
322
323 key_value.key_value_left = left_key;
324 key_value.key_value_right = right_key;
325
326 cryp_error = cryp_configure_key_values(device_data,
327 index,
328 key_value);
329 if (cryp_error != 0)
330 dev_err(device_data->dev, "[%s]: "
331 "cryp_configure_key_values() failed!", __func__);
332
333 return cryp_error;
334 }
335
cfg_keys(struct cryp_ctx * ctx)336 static int cfg_keys(struct cryp_ctx *ctx)
337 {
338 int i;
339 int num_of_regs = ctx->keylen / 8;
340 u32 swapped_key[CRYP_MAX_KEY_SIZE / 4];
341 int cryp_error = 0;
342
343 dev_dbg(ctx->device->dev, "[%s]", __func__);
344
345 if (mode_is_aes(ctx->config.algomode)) {
346 swap_words_in_key_and_bits_in_byte((u8 *)ctx->key,
347 (u8 *)swapped_key,
348 ctx->keylen);
349 } else {
350 for (i = 0; i < ctx->keylen / 4; i++)
351 swapped_key[i] = uint8p_to_uint32_be(ctx->key + i*4);
352 }
353
354 for (i = 0; i < num_of_regs; i++) {
355 cryp_error = set_key(ctx->device,
356 *(((u32 *)swapped_key)+i*2),
357 *(((u32 *)swapped_key)+i*2+1),
358 (enum cryp_key_reg_index) i);
359
360 if (cryp_error != 0) {
361 dev_err(ctx->device->dev, "[%s]: set_key() failed!",
362 __func__);
363 return cryp_error;
364 }
365 }
366 return cryp_error;
367 }
368
cryp_setup_context(struct cryp_ctx * ctx,struct cryp_device_data * device_data)369 static int cryp_setup_context(struct cryp_ctx *ctx,
370 struct cryp_device_data *device_data)
371 {
372 u32 control_register = CRYP_CR_DEFAULT;
373
374 switch (cryp_mode) {
375 case CRYP_MODE_INTERRUPT:
376 writel_relaxed(CRYP_IMSC_DEFAULT, &device_data->base->imsc);
377 break;
378
379 case CRYP_MODE_DMA:
380 writel_relaxed(CRYP_DMACR_DEFAULT, &device_data->base->dmacr);
381 break;
382
383 default:
384 break;
385 }
386
387 if (ctx->updated == 0) {
388 cryp_flush_inoutfifo(device_data);
389 if (cfg_keys(ctx) != 0) {
390 dev_err(ctx->device->dev, "[%s]: cfg_keys failed!",
391 __func__);
392 return -EINVAL;
393 }
394
395 if (ctx->iv &&
396 CRYP_ALGO_AES_ECB != ctx->config.algomode &&
397 CRYP_ALGO_DES_ECB != ctx->config.algomode &&
398 CRYP_ALGO_TDES_ECB != ctx->config.algomode) {
399 if (cfg_ivs(device_data, ctx) != 0)
400 return -EPERM;
401 }
402
403 cryp_set_configuration(device_data, &ctx->config,
404 &control_register);
405 add_session_id(ctx);
406 } else if (ctx->updated == 1 &&
407 ctx->session_id != atomic_read(&session_id)) {
408 cryp_flush_inoutfifo(device_data);
409 cryp_restore_device_context(device_data, &ctx->dev_ctx);
410
411 add_session_id(ctx);
412 control_register = ctx->dev_ctx.cr;
413 } else
414 control_register = ctx->dev_ctx.cr;
415
416 writel(control_register |
417 (CRYP_CRYPEN_ENABLE << CRYP_CR_CRYPEN_POS),
418 &device_data->base->cr);
419
420 return 0;
421 }
422
cryp_get_device_data(struct cryp_ctx * ctx,struct cryp_device_data ** device_data)423 static int cryp_get_device_data(struct cryp_ctx *ctx,
424 struct cryp_device_data **device_data)
425 {
426 int ret;
427 struct klist_iter device_iterator;
428 struct klist_node *device_node;
429 struct cryp_device_data *local_device_data = NULL;
430 pr_debug(DEV_DBG_NAME " [%s]", __func__);
431
432 /* Wait until a device is available */
433 ret = down_interruptible(&driver_data.device_allocation);
434 if (ret)
435 return ret; /* Interrupted */
436
437 /* Select a device */
438 klist_iter_init(&driver_data.device_list, &device_iterator);
439
440 device_node = klist_next(&device_iterator);
441 while (device_node) {
442 local_device_data = container_of(device_node,
443 struct cryp_device_data, list_node);
444 spin_lock(&local_device_data->ctx_lock);
445 /* current_ctx allocates a device, NULL = unallocated */
446 if (local_device_data->current_ctx) {
447 device_node = klist_next(&device_iterator);
448 } else {
449 local_device_data->current_ctx = ctx;
450 ctx->device = local_device_data;
451 spin_unlock(&local_device_data->ctx_lock);
452 break;
453 }
454 spin_unlock(&local_device_data->ctx_lock);
455 }
456 klist_iter_exit(&device_iterator);
457
458 if (!device_node) {
459 /**
460 * No free device found.
461 * Since we allocated a device with down_interruptible, this
462 * should not be able to happen.
463 * Number of available devices, which are contained in
464 * device_allocation, is therefore decremented by not doing
465 * an up(device_allocation).
466 */
467 return -EBUSY;
468 }
469
470 *device_data = local_device_data;
471
472 return 0;
473 }
474
cryp_dma_setup_channel(struct cryp_device_data * device_data,struct device * dev)475 static void cryp_dma_setup_channel(struct cryp_device_data *device_data,
476 struct device *dev)
477 {
478 struct dma_slave_config mem2cryp = {
479 .direction = DMA_MEM_TO_DEV,
480 .dst_addr = device_data->phybase + CRYP_DMA_TX_FIFO,
481 .dst_addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES,
482 .dst_maxburst = 4,
483 };
484 struct dma_slave_config cryp2mem = {
485 .direction = DMA_DEV_TO_MEM,
486 .src_addr = device_data->phybase + CRYP_DMA_RX_FIFO,
487 .src_addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES,
488 .src_maxburst = 4,
489 };
490
491 dma_cap_zero(device_data->dma.mask);
492 dma_cap_set(DMA_SLAVE, device_data->dma.mask);
493
494 device_data->dma.cfg_mem2cryp = mem_to_engine;
495 device_data->dma.chan_mem2cryp =
496 dma_request_channel(device_data->dma.mask,
497 stedma40_filter,
498 device_data->dma.cfg_mem2cryp);
499
500 device_data->dma.cfg_cryp2mem = engine_to_mem;
501 device_data->dma.chan_cryp2mem =
502 dma_request_channel(device_data->dma.mask,
503 stedma40_filter,
504 device_data->dma.cfg_cryp2mem);
505
506 dmaengine_slave_config(device_data->dma.chan_mem2cryp, &mem2cryp);
507 dmaengine_slave_config(device_data->dma.chan_cryp2mem, &cryp2mem);
508
509 init_completion(&device_data->dma.cryp_dma_complete);
510 }
511
cryp_dma_out_callback(void * data)512 static void cryp_dma_out_callback(void *data)
513 {
514 struct cryp_ctx *ctx = (struct cryp_ctx *) data;
515 dev_dbg(ctx->device->dev, "[%s]: ", __func__);
516
517 complete(&ctx->device->dma.cryp_dma_complete);
518 }
519
cryp_set_dma_transfer(struct cryp_ctx * ctx,struct scatterlist * sg,int len,enum dma_data_direction direction)520 static int cryp_set_dma_transfer(struct cryp_ctx *ctx,
521 struct scatterlist *sg,
522 int len,
523 enum dma_data_direction direction)
524 {
525 struct dma_async_tx_descriptor *desc;
526 struct dma_chan *channel = NULL;
527 dma_cookie_t cookie;
528
529 dev_dbg(ctx->device->dev, "[%s]: ", __func__);
530
531 if (unlikely(!IS_ALIGNED((u32)sg, 4))) {
532 dev_err(ctx->device->dev, "[%s]: Data in sg list isn't "
533 "aligned! Addr: 0x%08x", __func__, (u32)sg);
534 return -EFAULT;
535 }
536
537 switch (direction) {
538 case DMA_TO_DEVICE:
539 channel = ctx->device->dma.chan_mem2cryp;
540 ctx->device->dma.sg_src = sg;
541 ctx->device->dma.sg_src_len = dma_map_sg(channel->device->dev,
542 ctx->device->dma.sg_src,
543 ctx->device->dma.nents_src,
544 direction);
545
546 if (!ctx->device->dma.sg_src_len) {
547 dev_dbg(ctx->device->dev,
548 "[%s]: Could not map the sg list (TO_DEVICE)",
549 __func__);
550 return -EFAULT;
551 }
552
553 dev_dbg(ctx->device->dev, "[%s]: Setting up DMA for buffer "
554 "(TO_DEVICE)", __func__);
555
556 desc = dmaengine_prep_slave_sg(channel,
557 ctx->device->dma.sg_src,
558 ctx->device->dma.sg_src_len,
559 DMA_MEM_TO_DEV, DMA_CTRL_ACK);
560 break;
561
562 case DMA_FROM_DEVICE:
563 channel = ctx->device->dma.chan_cryp2mem;
564 ctx->device->dma.sg_dst = sg;
565 ctx->device->dma.sg_dst_len = dma_map_sg(channel->device->dev,
566 ctx->device->dma.sg_dst,
567 ctx->device->dma.nents_dst,
568 direction);
569
570 if (!ctx->device->dma.sg_dst_len) {
571 dev_dbg(ctx->device->dev,
572 "[%s]: Could not map the sg list (FROM_DEVICE)",
573 __func__);
574 return -EFAULT;
575 }
576
577 dev_dbg(ctx->device->dev, "[%s]: Setting up DMA for buffer "
578 "(FROM_DEVICE)", __func__);
579
580 desc = dmaengine_prep_slave_sg(channel,
581 ctx->device->dma.sg_dst,
582 ctx->device->dma.sg_dst_len,
583 DMA_DEV_TO_MEM,
584 DMA_CTRL_ACK |
585 DMA_PREP_INTERRUPT);
586
587 desc->callback = cryp_dma_out_callback;
588 desc->callback_param = ctx;
589 break;
590
591 default:
592 dev_dbg(ctx->device->dev, "[%s]: Invalid DMA direction",
593 __func__);
594 return -EFAULT;
595 }
596
597 cookie = dmaengine_submit(desc);
598 dma_async_issue_pending(channel);
599
600 return 0;
601 }
602
cryp_dma_done(struct cryp_ctx * ctx)603 static void cryp_dma_done(struct cryp_ctx *ctx)
604 {
605 struct dma_chan *chan;
606
607 dev_dbg(ctx->device->dev, "[%s]: ", __func__);
608
609 chan = ctx->device->dma.chan_mem2cryp;
610 dmaengine_terminate_all(chan);
611 dma_unmap_sg(chan->device->dev, ctx->device->dma.sg_src,
612 ctx->device->dma.sg_src_len, DMA_TO_DEVICE);
613
614 chan = ctx->device->dma.chan_cryp2mem;
615 dmaengine_terminate_all(chan);
616 dma_unmap_sg(chan->device->dev, ctx->device->dma.sg_dst,
617 ctx->device->dma.sg_dst_len, DMA_FROM_DEVICE);
618 }
619
cryp_dma_write(struct cryp_ctx * ctx,struct scatterlist * sg,int len)620 static int cryp_dma_write(struct cryp_ctx *ctx, struct scatterlist *sg,
621 int len)
622 {
623 int error = cryp_set_dma_transfer(ctx, sg, len, DMA_TO_DEVICE);
624 dev_dbg(ctx->device->dev, "[%s]: ", __func__);
625
626 if (error) {
627 dev_dbg(ctx->device->dev, "[%s]: cryp_set_dma_transfer() "
628 "failed", __func__);
629 return error;
630 }
631
632 return len;
633 }
634
cryp_dma_read(struct cryp_ctx * ctx,struct scatterlist * sg,int len)635 static int cryp_dma_read(struct cryp_ctx *ctx, struct scatterlist *sg, int len)
636 {
637 int error = cryp_set_dma_transfer(ctx, sg, len, DMA_FROM_DEVICE);
638 if (error) {
639 dev_dbg(ctx->device->dev, "[%s]: cryp_set_dma_transfer() "
640 "failed", __func__);
641 return error;
642 }
643
644 return len;
645 }
646
cryp_polling_mode(struct cryp_ctx * ctx,struct cryp_device_data * device_data)647 static void cryp_polling_mode(struct cryp_ctx *ctx,
648 struct cryp_device_data *device_data)
649 {
650 int len = ctx->blocksize / BYTES_PER_WORD;
651 int remaining_length = ctx->datalen;
652 u32 *indata = (u32 *)ctx->indata;
653 u32 *outdata = (u32 *)ctx->outdata;
654
655 while (remaining_length > 0) {
656 writesl(&device_data->base->din, indata, len);
657 indata += len;
658 remaining_length -= (len * BYTES_PER_WORD);
659 cryp_wait_until_done(device_data);
660
661 readsl(&device_data->base->dout, outdata, len);
662 outdata += len;
663 cryp_wait_until_done(device_data);
664 }
665 }
666
cryp_disable_power(struct device * dev,struct cryp_device_data * device_data,bool save_device_context)667 static int cryp_disable_power(struct device *dev,
668 struct cryp_device_data *device_data,
669 bool save_device_context)
670 {
671 int ret = 0;
672
673 dev_dbg(dev, "[%s]", __func__);
674
675 spin_lock(&device_data->power_state_spinlock);
676 if (!device_data->power_state)
677 goto out;
678
679 spin_lock(&device_data->ctx_lock);
680 if (save_device_context && device_data->current_ctx) {
681 cryp_save_device_context(device_data,
682 &device_data->current_ctx->dev_ctx,
683 cryp_mode);
684 device_data->restore_dev_ctx = true;
685 }
686 spin_unlock(&device_data->ctx_lock);
687
688 clk_disable(device_data->clk);
689 ret = regulator_disable(device_data->pwr_regulator);
690 if (ret)
691 dev_err(dev, "[%s]: "
692 "regulator_disable() failed!",
693 __func__);
694
695 device_data->power_state = false;
696
697 out:
698 spin_unlock(&device_data->power_state_spinlock);
699
700 return ret;
701 }
702
cryp_enable_power(struct device * dev,struct cryp_device_data * device_data,bool restore_device_context)703 static int cryp_enable_power(
704 struct device *dev,
705 struct cryp_device_data *device_data,
706 bool restore_device_context)
707 {
708 int ret = 0;
709
710 dev_dbg(dev, "[%s]", __func__);
711
712 spin_lock(&device_data->power_state_spinlock);
713 if (!device_data->power_state) {
714 ret = regulator_enable(device_data->pwr_regulator);
715 if (ret) {
716 dev_err(dev, "[%s]: regulator_enable() failed!",
717 __func__);
718 goto out;
719 }
720
721 ret = clk_enable(device_data->clk);
722 if (ret) {
723 dev_err(dev, "[%s]: clk_enable() failed!",
724 __func__);
725 regulator_disable(device_data->pwr_regulator);
726 goto out;
727 }
728 device_data->power_state = true;
729 }
730
731 if (device_data->restore_dev_ctx) {
732 spin_lock(&device_data->ctx_lock);
733 if (restore_device_context && device_data->current_ctx) {
734 device_data->restore_dev_ctx = false;
735 cryp_restore_device_context(device_data,
736 &device_data->current_ctx->dev_ctx);
737 }
738 spin_unlock(&device_data->ctx_lock);
739 }
740 out:
741 spin_unlock(&device_data->power_state_spinlock);
742
743 return ret;
744 }
745
hw_crypt_noxts(struct cryp_ctx * ctx,struct cryp_device_data * device_data)746 static int hw_crypt_noxts(struct cryp_ctx *ctx,
747 struct cryp_device_data *device_data)
748 {
749 int ret = 0;
750
751 const u8 *indata = ctx->indata;
752 u8 *outdata = ctx->outdata;
753 u32 datalen = ctx->datalen;
754 u32 outlen = datalen;
755
756 pr_debug(DEV_DBG_NAME " [%s]", __func__);
757
758 ctx->outlen = ctx->datalen;
759
760 if (unlikely(!IS_ALIGNED((u32)indata, 4))) {
761 pr_debug(DEV_DBG_NAME " [%s]: Data isn't aligned! Addr: "
762 "0x%08x", __func__, (u32)indata);
763 return -EINVAL;
764 }
765
766 ret = cryp_setup_context(ctx, device_data);
767
768 if (ret)
769 goto out;
770
771 if (cryp_mode == CRYP_MODE_INTERRUPT) {
772 cryp_enable_irq_src(device_data, CRYP_IRQ_SRC_INPUT_FIFO |
773 CRYP_IRQ_SRC_OUTPUT_FIFO);
774
775 /*
776 * ctx->outlen is decremented in the cryp_interrupt_handler
777 * function. We had to add cpu_relax() (barrier) to make sure
778 * that gcc didn't optimze away this variable.
779 */
780 while (ctx->outlen > 0)
781 cpu_relax();
782 } else if (cryp_mode == CRYP_MODE_POLLING ||
783 cryp_mode == CRYP_MODE_DMA) {
784 /*
785 * The reason for having DMA in this if case is that if we are
786 * running cryp_mode = 2, then we separate DMA routines for
787 * handling cipher/plaintext > blocksize, except when
788 * running the normal CRYPTO_ALG_TYPE_CIPHER, then we still use
789 * the polling mode. Overhead of doing DMA setup eats up the
790 * benefits using it.
791 */
792 cryp_polling_mode(ctx, device_data);
793 } else {
794 dev_err(ctx->device->dev, "[%s]: Invalid operation mode!",
795 __func__);
796 ret = -EPERM;
797 goto out;
798 }
799
800 cryp_save_device_context(device_data, &ctx->dev_ctx, cryp_mode);
801 ctx->updated = 1;
802
803 out:
804 ctx->indata = indata;
805 ctx->outdata = outdata;
806 ctx->datalen = datalen;
807 ctx->outlen = outlen;
808
809 return ret;
810 }
811
get_nents(struct scatterlist * sg,int nbytes)812 static int get_nents(struct scatterlist *sg, int nbytes)
813 {
814 int nents = 0;
815
816 while (nbytes > 0) {
817 nbytes -= sg->length;
818 sg = sg_next(sg);
819 nents++;
820 }
821
822 return nents;
823 }
824
ablk_dma_crypt(struct ablkcipher_request * areq)825 static int ablk_dma_crypt(struct ablkcipher_request *areq)
826 {
827 struct crypto_ablkcipher *cipher = crypto_ablkcipher_reqtfm(areq);
828 struct cryp_ctx *ctx = crypto_ablkcipher_ctx(cipher);
829 struct cryp_device_data *device_data;
830
831 int bytes_written = 0;
832 int bytes_read = 0;
833 int ret;
834
835 pr_debug(DEV_DBG_NAME " [%s]", __func__);
836
837 ctx->datalen = areq->nbytes;
838 ctx->outlen = areq->nbytes;
839
840 ret = cryp_get_device_data(ctx, &device_data);
841 if (ret)
842 return ret;
843
844 ret = cryp_setup_context(ctx, device_data);
845 if (ret)
846 goto out;
847
848 /* We have the device now, so store the nents in the dma struct. */
849 ctx->device->dma.nents_src = get_nents(areq->src, ctx->datalen);
850 ctx->device->dma.nents_dst = get_nents(areq->dst, ctx->outlen);
851
852 /* Enable DMA in- and output. */
853 cryp_configure_for_dma(device_data, CRYP_DMA_ENABLE_BOTH_DIRECTIONS);
854
855 bytes_written = cryp_dma_write(ctx, areq->src, ctx->datalen);
856 bytes_read = cryp_dma_read(ctx, areq->dst, bytes_written);
857
858 wait_for_completion(&ctx->device->dma.cryp_dma_complete);
859 cryp_dma_done(ctx);
860
861 cryp_save_device_context(device_data, &ctx->dev_ctx, cryp_mode);
862 ctx->updated = 1;
863
864 out:
865 spin_lock(&device_data->ctx_lock);
866 device_data->current_ctx = NULL;
867 ctx->device = NULL;
868 spin_unlock(&device_data->ctx_lock);
869
870 /*
871 * The down_interruptible part for this semaphore is called in
872 * cryp_get_device_data.
873 */
874 up(&driver_data.device_allocation);
875
876 if (unlikely(bytes_written != bytes_read))
877 return -EPERM;
878
879 return 0;
880 }
881
ablk_crypt(struct ablkcipher_request * areq)882 static int ablk_crypt(struct ablkcipher_request *areq)
883 {
884 struct ablkcipher_walk walk;
885 struct crypto_ablkcipher *cipher = crypto_ablkcipher_reqtfm(areq);
886 struct cryp_ctx *ctx = crypto_ablkcipher_ctx(cipher);
887 struct cryp_device_data *device_data;
888 unsigned long src_paddr;
889 unsigned long dst_paddr;
890 int ret;
891 int nbytes;
892
893 pr_debug(DEV_DBG_NAME " [%s]", __func__);
894
895 ret = cryp_get_device_data(ctx, &device_data);
896 if (ret)
897 goto out;
898
899 ablkcipher_walk_init(&walk, areq->dst, areq->src, areq->nbytes);
900 ret = ablkcipher_walk_phys(areq, &walk);
901
902 if (ret) {
903 pr_err(DEV_DBG_NAME "[%s]: ablkcipher_walk_phys() failed!",
904 __func__);
905 goto out;
906 }
907
908 while ((nbytes = walk.nbytes) > 0) {
909 ctx->iv = walk.iv;
910 src_paddr = (page_to_phys(walk.src.page) + walk.src.offset);
911 ctx->indata = phys_to_virt(src_paddr);
912
913 dst_paddr = (page_to_phys(walk.dst.page) + walk.dst.offset);
914 ctx->outdata = phys_to_virt(dst_paddr);
915
916 ctx->datalen = nbytes - (nbytes % ctx->blocksize);
917
918 ret = hw_crypt_noxts(ctx, device_data);
919 if (ret)
920 goto out;
921
922 nbytes -= ctx->datalen;
923 ret = ablkcipher_walk_done(areq, &walk, nbytes);
924 if (ret)
925 goto out;
926 }
927 ablkcipher_walk_complete(&walk);
928
929 out:
930 /* Release the device */
931 spin_lock(&device_data->ctx_lock);
932 device_data->current_ctx = NULL;
933 ctx->device = NULL;
934 spin_unlock(&device_data->ctx_lock);
935
936 /*
937 * The down_interruptible part for this semaphore is called in
938 * cryp_get_device_data.
939 */
940 up(&driver_data.device_allocation);
941
942 return ret;
943 }
944
aes_ablkcipher_setkey(struct crypto_ablkcipher * cipher,const u8 * key,unsigned int keylen)945 static int aes_ablkcipher_setkey(struct crypto_ablkcipher *cipher,
946 const u8 *key, unsigned int keylen)
947 {
948 struct cryp_ctx *ctx = crypto_ablkcipher_ctx(cipher);
949 u32 *flags = &cipher->base.crt_flags;
950
951 pr_debug(DEV_DBG_NAME " [%s]", __func__);
952
953 switch (keylen) {
954 case AES_KEYSIZE_128:
955 ctx->config.keysize = CRYP_KEY_SIZE_128;
956 break;
957
958 case AES_KEYSIZE_192:
959 ctx->config.keysize = CRYP_KEY_SIZE_192;
960 break;
961
962 case AES_KEYSIZE_256:
963 ctx->config.keysize = CRYP_KEY_SIZE_256;
964 break;
965
966 default:
967 pr_err(DEV_DBG_NAME "[%s]: Unknown keylen!", __func__);
968 *flags |= CRYPTO_TFM_RES_BAD_KEY_LEN;
969 return -EINVAL;
970 }
971
972 memcpy(ctx->key, key, keylen);
973 ctx->keylen = keylen;
974
975 ctx->updated = 0;
976
977 return 0;
978 }
979
des_ablkcipher_setkey(struct crypto_ablkcipher * cipher,const u8 * key,unsigned int keylen)980 static int des_ablkcipher_setkey(struct crypto_ablkcipher *cipher,
981 const u8 *key, unsigned int keylen)
982 {
983 struct cryp_ctx *ctx = crypto_ablkcipher_ctx(cipher);
984 u32 *flags = &cipher->base.crt_flags;
985 u32 tmp[DES_EXPKEY_WORDS];
986 int ret;
987
988 pr_debug(DEV_DBG_NAME " [%s]", __func__);
989 if (keylen != DES_KEY_SIZE) {
990 *flags |= CRYPTO_TFM_RES_BAD_KEY_LEN;
991 pr_debug(DEV_DBG_NAME " [%s]: CRYPTO_TFM_RES_BAD_KEY_LEN",
992 __func__);
993 return -EINVAL;
994 }
995
996 ret = des_ekey(tmp, key);
997 if (unlikely(ret == 0) && (*flags & CRYPTO_TFM_REQ_WEAK_KEY)) {
998 *flags |= CRYPTO_TFM_RES_WEAK_KEY;
999 pr_debug(DEV_DBG_NAME " [%s]: CRYPTO_TFM_REQ_WEAK_KEY",
1000 __func__);
1001 return -EINVAL;
1002 }
1003
1004 memcpy(ctx->key, key, keylen);
1005 ctx->keylen = keylen;
1006
1007 ctx->updated = 0;
1008 return 0;
1009 }
1010
des3_ablkcipher_setkey(struct crypto_ablkcipher * cipher,const u8 * key,unsigned int keylen)1011 static int des3_ablkcipher_setkey(struct crypto_ablkcipher *cipher,
1012 const u8 *key, unsigned int keylen)
1013 {
1014 struct cryp_ctx *ctx = crypto_ablkcipher_ctx(cipher);
1015 u32 *flags = &cipher->base.crt_flags;
1016 const u32 *K = (const u32 *)key;
1017 u32 tmp[DES3_EDE_EXPKEY_WORDS];
1018 int i, ret;
1019
1020 pr_debug(DEV_DBG_NAME " [%s]", __func__);
1021 if (keylen != DES3_EDE_KEY_SIZE) {
1022 *flags |= CRYPTO_TFM_RES_BAD_KEY_LEN;
1023 pr_debug(DEV_DBG_NAME " [%s]: CRYPTO_TFM_RES_BAD_KEY_LEN",
1024 __func__);
1025 return -EINVAL;
1026 }
1027
1028 /* Checking key interdependency for weak key detection. */
1029 if (unlikely(!((K[0] ^ K[2]) | (K[1] ^ K[3])) ||
1030 !((K[2] ^ K[4]) | (K[3] ^ K[5]))) &&
1031 (*flags & CRYPTO_TFM_REQ_WEAK_KEY)) {
1032 *flags |= CRYPTO_TFM_RES_WEAK_KEY;
1033 pr_debug(DEV_DBG_NAME " [%s]: CRYPTO_TFM_REQ_WEAK_KEY",
1034 __func__);
1035 return -EINVAL;
1036 }
1037 for (i = 0; i < 3; i++) {
1038 ret = des_ekey(tmp, key + i*DES_KEY_SIZE);
1039 if (unlikely(ret == 0) && (*flags & CRYPTO_TFM_REQ_WEAK_KEY)) {
1040 *flags |= CRYPTO_TFM_RES_WEAK_KEY;
1041 pr_debug(DEV_DBG_NAME " [%s]: "
1042 "CRYPTO_TFM_REQ_WEAK_KEY", __func__);
1043 return -EINVAL;
1044 }
1045 }
1046
1047 memcpy(ctx->key, key, keylen);
1048 ctx->keylen = keylen;
1049
1050 ctx->updated = 0;
1051 return 0;
1052 }
1053
cryp_blk_encrypt(struct ablkcipher_request * areq)1054 static int cryp_blk_encrypt(struct ablkcipher_request *areq)
1055 {
1056 struct crypto_ablkcipher *cipher = crypto_ablkcipher_reqtfm(areq);
1057 struct cryp_ctx *ctx = crypto_ablkcipher_ctx(cipher);
1058
1059 pr_debug(DEV_DBG_NAME " [%s]", __func__);
1060
1061 ctx->config.algodir = CRYP_ALGORITHM_ENCRYPT;
1062
1063 /*
1064 * DMA does not work for DES due to a hw bug */
1065 if (cryp_mode == CRYP_MODE_DMA && mode_is_aes(ctx->config.algomode))
1066 return ablk_dma_crypt(areq);
1067
1068 /* For everything except DMA, we run the non DMA version. */
1069 return ablk_crypt(areq);
1070 }
1071
cryp_blk_decrypt(struct ablkcipher_request * areq)1072 static int cryp_blk_decrypt(struct ablkcipher_request *areq)
1073 {
1074 struct crypto_ablkcipher *cipher = crypto_ablkcipher_reqtfm(areq);
1075 struct cryp_ctx *ctx = crypto_ablkcipher_ctx(cipher);
1076
1077 pr_debug(DEV_DBG_NAME " [%s]", __func__);
1078
1079 ctx->config.algodir = CRYP_ALGORITHM_DECRYPT;
1080
1081 /* DMA does not work for DES due to a hw bug */
1082 if (cryp_mode == CRYP_MODE_DMA && mode_is_aes(ctx->config.algomode))
1083 return ablk_dma_crypt(areq);
1084
1085 /* For everything except DMA, we run the non DMA version. */
1086 return ablk_crypt(areq);
1087 }
1088
1089 struct cryp_algo_template {
1090 enum cryp_algo_mode algomode;
1091 struct crypto_alg crypto;
1092 };
1093
cryp_cra_init(struct crypto_tfm * tfm)1094 static int cryp_cra_init(struct crypto_tfm *tfm)
1095 {
1096 struct cryp_ctx *ctx = crypto_tfm_ctx(tfm);
1097 struct crypto_alg *alg = tfm->__crt_alg;
1098 struct cryp_algo_template *cryp_alg = container_of(alg,
1099 struct cryp_algo_template,
1100 crypto);
1101
1102 ctx->config.algomode = cryp_alg->algomode;
1103 ctx->blocksize = crypto_tfm_alg_blocksize(tfm);
1104
1105 return 0;
1106 }
1107
1108 static struct cryp_algo_template cryp_algs[] = {
1109 {
1110 .algomode = CRYP_ALGO_AES_ECB,
1111 .crypto = {
1112 .cra_name = "aes",
1113 .cra_driver_name = "aes-ux500",
1114 .cra_priority = 300,
1115 .cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER |
1116 CRYPTO_ALG_ASYNC,
1117 .cra_blocksize = AES_BLOCK_SIZE,
1118 .cra_ctxsize = sizeof(struct cryp_ctx),
1119 .cra_alignmask = 3,
1120 .cra_type = &crypto_ablkcipher_type,
1121 .cra_init = cryp_cra_init,
1122 .cra_module = THIS_MODULE,
1123 .cra_u = {
1124 .ablkcipher = {
1125 .min_keysize = AES_MIN_KEY_SIZE,
1126 .max_keysize = AES_MAX_KEY_SIZE,
1127 .setkey = aes_ablkcipher_setkey,
1128 .encrypt = cryp_blk_encrypt,
1129 .decrypt = cryp_blk_decrypt
1130 }
1131 }
1132 }
1133 },
1134 {
1135 .algomode = CRYP_ALGO_AES_ECB,
1136 .crypto = {
1137 .cra_name = "ecb(aes)",
1138 .cra_driver_name = "ecb-aes-ux500",
1139 .cra_priority = 300,
1140 .cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER |
1141 CRYPTO_ALG_ASYNC,
1142 .cra_blocksize = AES_BLOCK_SIZE,
1143 .cra_ctxsize = sizeof(struct cryp_ctx),
1144 .cra_alignmask = 3,
1145 .cra_type = &crypto_ablkcipher_type,
1146 .cra_init = cryp_cra_init,
1147 .cra_module = THIS_MODULE,
1148 .cra_u = {
1149 .ablkcipher = {
1150 .min_keysize = AES_MIN_KEY_SIZE,
1151 .max_keysize = AES_MAX_KEY_SIZE,
1152 .setkey = aes_ablkcipher_setkey,
1153 .encrypt = cryp_blk_encrypt,
1154 .decrypt = cryp_blk_decrypt,
1155 }
1156 }
1157 }
1158 },
1159 {
1160 .algomode = CRYP_ALGO_AES_CBC,
1161 .crypto = {
1162 .cra_name = "cbc(aes)",
1163 .cra_driver_name = "cbc-aes-ux500",
1164 .cra_priority = 300,
1165 .cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER |
1166 CRYPTO_ALG_ASYNC,
1167 .cra_blocksize = AES_BLOCK_SIZE,
1168 .cra_ctxsize = sizeof(struct cryp_ctx),
1169 .cra_alignmask = 3,
1170 .cra_type = &crypto_ablkcipher_type,
1171 .cra_init = cryp_cra_init,
1172 .cra_module = THIS_MODULE,
1173 .cra_u = {
1174 .ablkcipher = {
1175 .min_keysize = AES_MIN_KEY_SIZE,
1176 .max_keysize = AES_MAX_KEY_SIZE,
1177 .setkey = aes_ablkcipher_setkey,
1178 .encrypt = cryp_blk_encrypt,
1179 .decrypt = cryp_blk_decrypt,
1180 .ivsize = AES_BLOCK_SIZE,
1181 }
1182 }
1183 }
1184 },
1185 {
1186 .algomode = CRYP_ALGO_AES_CTR,
1187 .crypto = {
1188 .cra_name = "ctr(aes)",
1189 .cra_driver_name = "ctr-aes-ux500",
1190 .cra_priority = 300,
1191 .cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER |
1192 CRYPTO_ALG_ASYNC,
1193 .cra_blocksize = AES_BLOCK_SIZE,
1194 .cra_ctxsize = sizeof(struct cryp_ctx),
1195 .cra_alignmask = 3,
1196 .cra_type = &crypto_ablkcipher_type,
1197 .cra_init = cryp_cra_init,
1198 .cra_module = THIS_MODULE,
1199 .cra_u = {
1200 .ablkcipher = {
1201 .min_keysize = AES_MIN_KEY_SIZE,
1202 .max_keysize = AES_MAX_KEY_SIZE,
1203 .setkey = aes_ablkcipher_setkey,
1204 .encrypt = cryp_blk_encrypt,
1205 .decrypt = cryp_blk_decrypt,
1206 .ivsize = AES_BLOCK_SIZE,
1207 }
1208 }
1209 }
1210 },
1211 {
1212 .algomode = CRYP_ALGO_DES_ECB,
1213 .crypto = {
1214 .cra_name = "des",
1215 .cra_driver_name = "des-ux500",
1216 .cra_priority = 300,
1217 .cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER |
1218 CRYPTO_ALG_ASYNC,
1219 .cra_blocksize = DES_BLOCK_SIZE,
1220 .cra_ctxsize = sizeof(struct cryp_ctx),
1221 .cra_alignmask = 3,
1222 .cra_type = &crypto_ablkcipher_type,
1223 .cra_init = cryp_cra_init,
1224 .cra_module = THIS_MODULE,
1225 .cra_u = {
1226 .ablkcipher = {
1227 .min_keysize = DES_KEY_SIZE,
1228 .max_keysize = DES_KEY_SIZE,
1229 .setkey = des_ablkcipher_setkey,
1230 .encrypt = cryp_blk_encrypt,
1231 .decrypt = cryp_blk_decrypt
1232 }
1233 }
1234 }
1235
1236 },
1237 {
1238 .algomode = CRYP_ALGO_TDES_ECB,
1239 .crypto = {
1240 .cra_name = "des3_ede",
1241 .cra_driver_name = "des3_ede-ux500",
1242 .cra_priority = 300,
1243 .cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER |
1244 CRYPTO_ALG_ASYNC,
1245 .cra_blocksize = DES3_EDE_BLOCK_SIZE,
1246 .cra_ctxsize = sizeof(struct cryp_ctx),
1247 .cra_alignmask = 3,
1248 .cra_type = &crypto_ablkcipher_type,
1249 .cra_init = cryp_cra_init,
1250 .cra_module = THIS_MODULE,
1251 .cra_u = {
1252 .ablkcipher = {
1253 .min_keysize = DES3_EDE_KEY_SIZE,
1254 .max_keysize = DES3_EDE_KEY_SIZE,
1255 .setkey = des_ablkcipher_setkey,
1256 .encrypt = cryp_blk_encrypt,
1257 .decrypt = cryp_blk_decrypt
1258 }
1259 }
1260 }
1261 },
1262 {
1263 .algomode = CRYP_ALGO_DES_ECB,
1264 .crypto = {
1265 .cra_name = "ecb(des)",
1266 .cra_driver_name = "ecb-des-ux500",
1267 .cra_priority = 300,
1268 .cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER |
1269 CRYPTO_ALG_ASYNC,
1270 .cra_blocksize = DES_BLOCK_SIZE,
1271 .cra_ctxsize = sizeof(struct cryp_ctx),
1272 .cra_alignmask = 3,
1273 .cra_type = &crypto_ablkcipher_type,
1274 .cra_init = cryp_cra_init,
1275 .cra_module = THIS_MODULE,
1276 .cra_u = {
1277 .ablkcipher = {
1278 .min_keysize = DES_KEY_SIZE,
1279 .max_keysize = DES_KEY_SIZE,
1280 .setkey = des_ablkcipher_setkey,
1281 .encrypt = cryp_blk_encrypt,
1282 .decrypt = cryp_blk_decrypt,
1283 }
1284 }
1285 }
1286 },
1287 {
1288 .algomode = CRYP_ALGO_TDES_ECB,
1289 .crypto = {
1290 .cra_name = "ecb(des3_ede)",
1291 .cra_driver_name = "ecb-des3_ede-ux500",
1292 .cra_priority = 300,
1293 .cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER |
1294 CRYPTO_ALG_ASYNC,
1295 .cra_blocksize = DES3_EDE_BLOCK_SIZE,
1296 .cra_ctxsize = sizeof(struct cryp_ctx),
1297 .cra_alignmask = 3,
1298 .cra_type = &crypto_ablkcipher_type,
1299 .cra_init = cryp_cra_init,
1300 .cra_module = THIS_MODULE,
1301 .cra_u = {
1302 .ablkcipher = {
1303 .min_keysize = DES3_EDE_KEY_SIZE,
1304 .max_keysize = DES3_EDE_KEY_SIZE,
1305 .setkey = des3_ablkcipher_setkey,
1306 .encrypt = cryp_blk_encrypt,
1307 .decrypt = cryp_blk_decrypt,
1308 }
1309 }
1310 }
1311 },
1312 {
1313 .algomode = CRYP_ALGO_DES_CBC,
1314 .crypto = {
1315 .cra_name = "cbc(des)",
1316 .cra_driver_name = "cbc-des-ux500",
1317 .cra_priority = 300,
1318 .cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER |
1319 CRYPTO_ALG_ASYNC,
1320 .cra_blocksize = DES_BLOCK_SIZE,
1321 .cra_ctxsize = sizeof(struct cryp_ctx),
1322 .cra_alignmask = 3,
1323 .cra_type = &crypto_ablkcipher_type,
1324 .cra_init = cryp_cra_init,
1325 .cra_module = THIS_MODULE,
1326 .cra_u = {
1327 .ablkcipher = {
1328 .min_keysize = DES_KEY_SIZE,
1329 .max_keysize = DES_KEY_SIZE,
1330 .setkey = des_ablkcipher_setkey,
1331 .encrypt = cryp_blk_encrypt,
1332 .decrypt = cryp_blk_decrypt,
1333 }
1334 }
1335 }
1336 },
1337 {
1338 .algomode = CRYP_ALGO_TDES_CBC,
1339 .crypto = {
1340 .cra_name = "cbc(des3_ede)",
1341 .cra_driver_name = "cbc-des3_ede-ux500",
1342 .cra_priority = 300,
1343 .cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER |
1344 CRYPTO_ALG_ASYNC,
1345 .cra_blocksize = DES3_EDE_BLOCK_SIZE,
1346 .cra_ctxsize = sizeof(struct cryp_ctx),
1347 .cra_alignmask = 3,
1348 .cra_type = &crypto_ablkcipher_type,
1349 .cra_init = cryp_cra_init,
1350 .cra_module = THIS_MODULE,
1351 .cra_u = {
1352 .ablkcipher = {
1353 .min_keysize = DES3_EDE_KEY_SIZE,
1354 .max_keysize = DES3_EDE_KEY_SIZE,
1355 .setkey = des3_ablkcipher_setkey,
1356 .encrypt = cryp_blk_encrypt,
1357 .decrypt = cryp_blk_decrypt,
1358 .ivsize = DES3_EDE_BLOCK_SIZE,
1359 }
1360 }
1361 }
1362 }
1363 };
1364
1365 /**
1366 * cryp_algs_register_all -
1367 */
cryp_algs_register_all(void)1368 static int cryp_algs_register_all(void)
1369 {
1370 int ret;
1371 int i;
1372 int count;
1373
1374 pr_debug("[%s]", __func__);
1375
1376 for (i = 0; i < ARRAY_SIZE(cryp_algs); i++) {
1377 ret = crypto_register_alg(&cryp_algs[i].crypto);
1378 if (ret) {
1379 count = i;
1380 pr_err("[%s] alg registration failed",
1381 cryp_algs[i].crypto.cra_driver_name);
1382 goto unreg;
1383 }
1384 }
1385 return 0;
1386 unreg:
1387 for (i = 0; i < count; i++)
1388 crypto_unregister_alg(&cryp_algs[i].crypto);
1389 return ret;
1390 }
1391
1392 /**
1393 * cryp_algs_unregister_all -
1394 */
cryp_algs_unregister_all(void)1395 static void cryp_algs_unregister_all(void)
1396 {
1397 int i;
1398
1399 pr_debug(DEV_DBG_NAME " [%s]", __func__);
1400
1401 for (i = 0; i < ARRAY_SIZE(cryp_algs); i++)
1402 crypto_unregister_alg(&cryp_algs[i].crypto);
1403 }
1404
ux500_cryp_probe(struct platform_device * pdev)1405 static int ux500_cryp_probe(struct platform_device *pdev)
1406 {
1407 int ret;
1408 struct resource *res;
1409 struct resource *res_irq;
1410 struct cryp_device_data *device_data;
1411 struct cryp_protection_config prot = {
1412 .privilege_access = CRYP_STATE_ENABLE
1413 };
1414 struct device *dev = &pdev->dev;
1415
1416 dev_dbg(dev, "[%s]", __func__);
1417 device_data = devm_kzalloc(dev, sizeof(*device_data), GFP_ATOMIC);
1418 if (!device_data) {
1419 ret = -ENOMEM;
1420 goto out;
1421 }
1422
1423 device_data->dev = dev;
1424 device_data->current_ctx = NULL;
1425
1426 /* Grab the DMA configuration from platform data. */
1427 mem_to_engine = &((struct cryp_platform_data *)
1428 dev->platform_data)->mem_to_engine;
1429 engine_to_mem = &((struct cryp_platform_data *)
1430 dev->platform_data)->engine_to_mem;
1431
1432 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1433 if (!res) {
1434 dev_err(dev, "[%s]: platform_get_resource() failed",
1435 __func__);
1436 ret = -ENODEV;
1437 goto out;
1438 }
1439
1440 device_data->phybase = res->start;
1441 device_data->base = devm_ioremap_resource(dev, res);
1442 if (IS_ERR(device_data->base)) {
1443 dev_err(dev, "[%s]: ioremap failed!", __func__);
1444 ret = PTR_ERR(device_data->base);
1445 goto out;
1446 }
1447
1448 spin_lock_init(&device_data->ctx_lock);
1449 spin_lock_init(&device_data->power_state_spinlock);
1450
1451 /* Enable power for CRYP hardware block */
1452 device_data->pwr_regulator = regulator_get(&pdev->dev, "v-ape");
1453 if (IS_ERR(device_data->pwr_regulator)) {
1454 dev_err(dev, "[%s]: could not get cryp regulator", __func__);
1455 ret = PTR_ERR(device_data->pwr_regulator);
1456 device_data->pwr_regulator = NULL;
1457 goto out;
1458 }
1459
1460 /* Enable the clk for CRYP hardware block */
1461 device_data->clk = devm_clk_get(&pdev->dev, NULL);
1462 if (IS_ERR(device_data->clk)) {
1463 dev_err(dev, "[%s]: clk_get() failed!", __func__);
1464 ret = PTR_ERR(device_data->clk);
1465 goto out_regulator;
1466 }
1467
1468 ret = clk_prepare(device_data->clk);
1469 if (ret) {
1470 dev_err(dev, "[%s]: clk_prepare() failed!", __func__);
1471 goto out_regulator;
1472 }
1473
1474 /* Enable device power (and clock) */
1475 ret = cryp_enable_power(device_data->dev, device_data, false);
1476 if (ret) {
1477 dev_err(dev, "[%s]: cryp_enable_power() failed!", __func__);
1478 goto out_clk_unprepare;
1479 }
1480
1481 if (cryp_check(device_data)) {
1482 dev_err(dev, "[%s]: cryp_check() failed!", __func__);
1483 ret = -EINVAL;
1484 goto out_power;
1485 }
1486
1487 if (cryp_configure_protection(device_data, &prot)) {
1488 dev_err(dev, "[%s]: cryp_configure_protection() failed!",
1489 __func__);
1490 ret = -EINVAL;
1491 goto out_power;
1492 }
1493
1494 res_irq = platform_get_resource(pdev, IORESOURCE_IRQ, 0);
1495 if (!res_irq) {
1496 dev_err(dev, "[%s]: IORESOURCE_IRQ unavailable",
1497 __func__);
1498 ret = -ENODEV;
1499 goto out_power;
1500 }
1501
1502 ret = devm_request_irq(&pdev->dev, res_irq->start,
1503 cryp_interrupt_handler, 0, "cryp1", device_data);
1504 if (ret) {
1505 dev_err(dev, "[%s]: Unable to request IRQ", __func__);
1506 goto out_power;
1507 }
1508
1509 if (cryp_mode == CRYP_MODE_DMA)
1510 cryp_dma_setup_channel(device_data, dev);
1511
1512 platform_set_drvdata(pdev, device_data);
1513
1514 /* Put the new device into the device list... */
1515 klist_add_tail(&device_data->list_node, &driver_data.device_list);
1516
1517 /* ... and signal that a new device is available. */
1518 up(&driver_data.device_allocation);
1519
1520 atomic_set(&session_id, 1);
1521
1522 ret = cryp_algs_register_all();
1523 if (ret) {
1524 dev_err(dev, "[%s]: cryp_algs_register_all() failed!",
1525 __func__);
1526 goto out_power;
1527 }
1528
1529 dev_info(dev, "successfully registered\n");
1530
1531 return 0;
1532
1533 out_power:
1534 cryp_disable_power(device_data->dev, device_data, false);
1535
1536 out_clk_unprepare:
1537 clk_unprepare(device_data->clk);
1538
1539 out_regulator:
1540 regulator_put(device_data->pwr_regulator);
1541
1542 out:
1543 return ret;
1544 }
1545
ux500_cryp_remove(struct platform_device * pdev)1546 static int ux500_cryp_remove(struct platform_device *pdev)
1547 {
1548 struct cryp_device_data *device_data;
1549
1550 dev_dbg(&pdev->dev, "[%s]", __func__);
1551 device_data = platform_get_drvdata(pdev);
1552 if (!device_data) {
1553 dev_err(&pdev->dev, "[%s]: platform_get_drvdata() failed!",
1554 __func__);
1555 return -ENOMEM;
1556 }
1557
1558 /* Try to decrease the number of available devices. */
1559 if (down_trylock(&driver_data.device_allocation))
1560 return -EBUSY;
1561
1562 /* Check that the device is free */
1563 spin_lock(&device_data->ctx_lock);
1564 /* current_ctx allocates a device, NULL = unallocated */
1565 if (device_data->current_ctx) {
1566 /* The device is busy */
1567 spin_unlock(&device_data->ctx_lock);
1568 /* Return the device to the pool. */
1569 up(&driver_data.device_allocation);
1570 return -EBUSY;
1571 }
1572
1573 spin_unlock(&device_data->ctx_lock);
1574
1575 /* Remove the device from the list */
1576 if (klist_node_attached(&device_data->list_node))
1577 klist_remove(&device_data->list_node);
1578
1579 /* If this was the last device, remove the services */
1580 if (list_empty(&driver_data.device_list.k_list))
1581 cryp_algs_unregister_all();
1582
1583 if (cryp_disable_power(&pdev->dev, device_data, false))
1584 dev_err(&pdev->dev, "[%s]: cryp_disable_power() failed",
1585 __func__);
1586
1587 clk_unprepare(device_data->clk);
1588 regulator_put(device_data->pwr_regulator);
1589
1590 return 0;
1591 }
1592
ux500_cryp_shutdown(struct platform_device * pdev)1593 static void ux500_cryp_shutdown(struct platform_device *pdev)
1594 {
1595 struct cryp_device_data *device_data;
1596
1597 dev_dbg(&pdev->dev, "[%s]", __func__);
1598
1599 device_data = platform_get_drvdata(pdev);
1600 if (!device_data) {
1601 dev_err(&pdev->dev, "[%s]: platform_get_drvdata() failed!",
1602 __func__);
1603 return;
1604 }
1605
1606 /* Check that the device is free */
1607 spin_lock(&device_data->ctx_lock);
1608 /* current_ctx allocates a device, NULL = unallocated */
1609 if (!device_data->current_ctx) {
1610 if (down_trylock(&driver_data.device_allocation))
1611 dev_dbg(&pdev->dev, "[%s]: Cryp still in use!"
1612 "Shutting down anyway...", __func__);
1613 /**
1614 * (Allocate the device)
1615 * Need to set this to non-null (dummy) value,
1616 * to avoid usage if context switching.
1617 */
1618 device_data->current_ctx++;
1619 }
1620 spin_unlock(&device_data->ctx_lock);
1621
1622 /* Remove the device from the list */
1623 if (klist_node_attached(&device_data->list_node))
1624 klist_remove(&device_data->list_node);
1625
1626 /* If this was the last device, remove the services */
1627 if (list_empty(&driver_data.device_list.k_list))
1628 cryp_algs_unregister_all();
1629
1630 if (cryp_disable_power(&pdev->dev, device_data, false))
1631 dev_err(&pdev->dev, "[%s]: cryp_disable_power() failed",
1632 __func__);
1633
1634 }
1635
1636 #ifdef CONFIG_PM_SLEEP
ux500_cryp_suspend(struct device * dev)1637 static int ux500_cryp_suspend(struct device *dev)
1638 {
1639 int ret;
1640 struct platform_device *pdev = to_platform_device(dev);
1641 struct cryp_device_data *device_data;
1642 struct resource *res_irq;
1643 struct cryp_ctx *temp_ctx = NULL;
1644
1645 dev_dbg(dev, "[%s]", __func__);
1646
1647 /* Handle state? */
1648 device_data = platform_get_drvdata(pdev);
1649 if (!device_data) {
1650 dev_err(dev, "[%s]: platform_get_drvdata() failed!", __func__);
1651 return -ENOMEM;
1652 }
1653
1654 res_irq = platform_get_resource(pdev, IORESOURCE_IRQ, 0);
1655 if (!res_irq)
1656 dev_err(dev, "[%s]: IORESOURCE_IRQ, unavailable", __func__);
1657 else
1658 disable_irq(res_irq->start);
1659
1660 spin_lock(&device_data->ctx_lock);
1661 if (!device_data->current_ctx)
1662 device_data->current_ctx++;
1663 spin_unlock(&device_data->ctx_lock);
1664
1665 if (device_data->current_ctx == ++temp_ctx) {
1666 if (down_interruptible(&driver_data.device_allocation))
1667 dev_dbg(dev, "[%s]: down_interruptible() failed",
1668 __func__);
1669 ret = cryp_disable_power(dev, device_data, false);
1670
1671 } else
1672 ret = cryp_disable_power(dev, device_data, true);
1673
1674 if (ret)
1675 dev_err(dev, "[%s]: cryp_disable_power()", __func__);
1676
1677 return ret;
1678 }
1679
ux500_cryp_resume(struct device * dev)1680 static int ux500_cryp_resume(struct device *dev)
1681 {
1682 int ret = 0;
1683 struct platform_device *pdev = to_platform_device(dev);
1684 struct cryp_device_data *device_data;
1685 struct resource *res_irq;
1686 struct cryp_ctx *temp_ctx = NULL;
1687
1688 dev_dbg(dev, "[%s]", __func__);
1689
1690 device_data = platform_get_drvdata(pdev);
1691 if (!device_data) {
1692 dev_err(dev, "[%s]: platform_get_drvdata() failed!", __func__);
1693 return -ENOMEM;
1694 }
1695
1696 spin_lock(&device_data->ctx_lock);
1697 if (device_data->current_ctx == ++temp_ctx)
1698 device_data->current_ctx = NULL;
1699 spin_unlock(&device_data->ctx_lock);
1700
1701
1702 if (!device_data->current_ctx)
1703 up(&driver_data.device_allocation);
1704 else
1705 ret = cryp_enable_power(dev, device_data, true);
1706
1707 if (ret)
1708 dev_err(dev, "[%s]: cryp_enable_power() failed!", __func__);
1709 else {
1710 res_irq = platform_get_resource(pdev, IORESOURCE_IRQ, 0);
1711 if (res_irq)
1712 enable_irq(res_irq->start);
1713 }
1714
1715 return ret;
1716 }
1717 #endif
1718
1719 static SIMPLE_DEV_PM_OPS(ux500_cryp_pm, ux500_cryp_suspend, ux500_cryp_resume);
1720
1721 static const struct of_device_id ux500_cryp_match[] = {
1722 { .compatible = "stericsson,ux500-cryp" },
1723 { },
1724 };
1725 MODULE_DEVICE_TABLE(of, ux500_cryp_match);
1726
1727 static struct platform_driver cryp_driver = {
1728 .probe = ux500_cryp_probe,
1729 .remove = ux500_cryp_remove,
1730 .shutdown = ux500_cryp_shutdown,
1731 .driver = {
1732 .name = "cryp1",
1733 .of_match_table = ux500_cryp_match,
1734 .pm = &ux500_cryp_pm,
1735 }
1736 };
1737
ux500_cryp_mod_init(void)1738 static int __init ux500_cryp_mod_init(void)
1739 {
1740 pr_debug("[%s] is called!", __func__);
1741 klist_init(&driver_data.device_list, NULL, NULL);
1742 /* Initialize the semaphore to 0 devices (locked state) */
1743 sema_init(&driver_data.device_allocation, 0);
1744 return platform_driver_register(&cryp_driver);
1745 }
1746
ux500_cryp_mod_fini(void)1747 static void __exit ux500_cryp_mod_fini(void)
1748 {
1749 pr_debug("[%s] is called!", __func__);
1750 platform_driver_unregister(&cryp_driver);
1751 }
1752
1753 module_init(ux500_cryp_mod_init);
1754 module_exit(ux500_cryp_mod_fini);
1755
1756 module_param(cryp_mode, int, 0);
1757
1758 MODULE_DESCRIPTION("Driver for ST-Ericsson UX500 CRYP crypto engine.");
1759 MODULE_ALIAS_CRYPTO("aes-all");
1760 MODULE_ALIAS_CRYPTO("des-all");
1761
1762 MODULE_LICENSE("GPL");
1763