1 /*
2 * Copyright 2017 Red Hat Inc.
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice shall be included in
12 * all copies or substantial portions of the Software.
13 *
14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
17 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20 * OTHER DEALINGS IN THE SOFTWARE.
21 */
22 #define NVKM_VMM_LEVELS_MAX 5
23 #include "vmm.h"
24
25 #include <subdev/fb.h>
26
27 static void
nvkm_vmm_pt_del(struct nvkm_vmm_pt ** ppgt)28 nvkm_vmm_pt_del(struct nvkm_vmm_pt **ppgt)
29 {
30 struct nvkm_vmm_pt *pgt = *ppgt;
31 if (pgt) {
32 kvfree(pgt->pde);
33 kfree(pgt);
34 *ppgt = NULL;
35 }
36 }
37
38
39 static struct nvkm_vmm_pt *
nvkm_vmm_pt_new(const struct nvkm_vmm_desc * desc,bool sparse,const struct nvkm_vmm_page * page)40 nvkm_vmm_pt_new(const struct nvkm_vmm_desc *desc, bool sparse,
41 const struct nvkm_vmm_page *page)
42 {
43 const u32 pten = 1 << desc->bits;
44 struct nvkm_vmm_pt *pgt;
45 u32 lpte = 0;
46
47 if (desc->type > PGT) {
48 if (desc->type == SPT) {
49 const struct nvkm_vmm_desc *pair = page[-1].desc;
50 lpte = pten >> (desc->bits - pair->bits);
51 } else {
52 lpte = pten;
53 }
54 }
55
56 if (!(pgt = kzalloc(sizeof(*pgt) + lpte, GFP_KERNEL)))
57 return NULL;
58 pgt->page = page ? page->shift : 0;
59 pgt->sparse = sparse;
60
61 if (desc->type == PGD) {
62 pgt->pde = kvcalloc(pten, sizeof(*pgt->pde), GFP_KERNEL);
63 if (!pgt->pde) {
64 kfree(pgt);
65 return NULL;
66 }
67 }
68
69 return pgt;
70 }
71
72 struct nvkm_vmm_iter {
73 const struct nvkm_vmm_page *page;
74 const struct nvkm_vmm_desc *desc;
75 struct nvkm_vmm *vmm;
76 u64 cnt;
77 u16 max, lvl;
78 u32 pte[NVKM_VMM_LEVELS_MAX];
79 struct nvkm_vmm_pt *pt[NVKM_VMM_LEVELS_MAX];
80 int flush;
81 };
82
83 #ifdef CONFIG_NOUVEAU_DEBUG_MMU
84 static const char *
nvkm_vmm_desc_type(const struct nvkm_vmm_desc * desc)85 nvkm_vmm_desc_type(const struct nvkm_vmm_desc *desc)
86 {
87 switch (desc->type) {
88 case PGD: return "PGD";
89 case PGT: return "PGT";
90 case SPT: return "SPT";
91 case LPT: return "LPT";
92 default:
93 return "UNKNOWN";
94 }
95 }
96
97 static void
nvkm_vmm_trace(struct nvkm_vmm_iter * it,char * buf)98 nvkm_vmm_trace(struct nvkm_vmm_iter *it, char *buf)
99 {
100 int lvl;
101 for (lvl = it->max; lvl >= 0; lvl--) {
102 if (lvl >= it->lvl)
103 buf += sprintf(buf, "%05x:", it->pte[lvl]);
104 else
105 buf += sprintf(buf, "xxxxx:");
106 }
107 }
108
109 #define TRA(i,f,a...) do { \
110 char _buf[NVKM_VMM_LEVELS_MAX * 7]; \
111 struct nvkm_vmm_iter *_it = (i); \
112 nvkm_vmm_trace(_it, _buf); \
113 VMM_TRACE(_it->vmm, "%s "f, _buf, ##a); \
114 } while(0)
115 #else
116 #define TRA(i,f,a...)
117 #endif
118
119 static inline void
nvkm_vmm_flush_mark(struct nvkm_vmm_iter * it)120 nvkm_vmm_flush_mark(struct nvkm_vmm_iter *it)
121 {
122 it->flush = min(it->flush, it->max - it->lvl);
123 }
124
125 static inline void
nvkm_vmm_flush(struct nvkm_vmm_iter * it)126 nvkm_vmm_flush(struct nvkm_vmm_iter *it)
127 {
128 if (it->flush != NVKM_VMM_LEVELS_MAX) {
129 if (it->vmm->func->flush) {
130 TRA(it, "flush: %d", it->flush);
131 it->vmm->func->flush(it->vmm, it->flush);
132 }
133 it->flush = NVKM_VMM_LEVELS_MAX;
134 }
135 }
136
137 static void
nvkm_vmm_unref_pdes(struct nvkm_vmm_iter * it)138 nvkm_vmm_unref_pdes(struct nvkm_vmm_iter *it)
139 {
140 const struct nvkm_vmm_desc *desc = it->desc;
141 const int type = desc[it->lvl].type == SPT;
142 struct nvkm_vmm_pt *pgd = it->pt[it->lvl + 1];
143 struct nvkm_vmm_pt *pgt = it->pt[it->lvl];
144 struct nvkm_mmu_pt *pt = pgt->pt[type];
145 struct nvkm_vmm *vmm = it->vmm;
146 u32 pdei = it->pte[it->lvl + 1];
147
148 /* Recurse up the tree, unreferencing/destroying unneeded PDs. */
149 it->lvl++;
150 if (--pgd->refs[0]) {
151 const struct nvkm_vmm_desc_func *func = desc[it->lvl].func;
152 /* PD has other valid PDEs, so we need a proper update. */
153 TRA(it, "PDE unmap %s", nvkm_vmm_desc_type(&desc[it->lvl - 1]));
154 pgt->pt[type] = NULL;
155 if (!pgt->refs[!type]) {
156 /* PDE no longer required. */
157 if (pgd->pt[0]) {
158 if (pgt->sparse) {
159 func->sparse(vmm, pgd->pt[0], pdei, 1);
160 pgd->pde[pdei] = NVKM_VMM_PDE_SPARSE;
161 } else {
162 func->unmap(vmm, pgd->pt[0], pdei, 1);
163 pgd->pde[pdei] = NULL;
164 }
165 } else {
166 /* Special handling for Tesla-class GPUs,
167 * where there's no central PD, but each
168 * instance has its own embedded PD.
169 */
170 func->pde(vmm, pgd, pdei);
171 pgd->pde[pdei] = NULL;
172 }
173 } else {
174 /* PDE was pointing at dual-PTs and we're removing
175 * one of them, leaving the other in place.
176 */
177 func->pde(vmm, pgd, pdei);
178 }
179
180 /* GPU may have cached the PTs, flush before freeing. */
181 nvkm_vmm_flush_mark(it);
182 nvkm_vmm_flush(it);
183 } else {
184 /* PD has no valid PDEs left, so we can just destroy it. */
185 nvkm_vmm_unref_pdes(it);
186 }
187
188 /* Destroy PD/PT. */
189 TRA(it, "PDE free %s", nvkm_vmm_desc_type(&desc[it->lvl - 1]));
190 nvkm_mmu_ptc_put(vmm->mmu, vmm->bootstrapped, &pt);
191 if (!pgt->refs[!type])
192 nvkm_vmm_pt_del(&pgt);
193 it->lvl--;
194 }
195
196 static void
nvkm_vmm_unref_sptes(struct nvkm_vmm_iter * it,struct nvkm_vmm_pt * pgt,const struct nvkm_vmm_desc * desc,u32 ptei,u32 ptes)197 nvkm_vmm_unref_sptes(struct nvkm_vmm_iter *it, struct nvkm_vmm_pt *pgt,
198 const struct nvkm_vmm_desc *desc, u32 ptei, u32 ptes)
199 {
200 const struct nvkm_vmm_desc *pair = it->page[-1].desc;
201 const u32 sptb = desc->bits - pair->bits;
202 const u32 sptn = 1 << sptb;
203 struct nvkm_vmm *vmm = it->vmm;
204 u32 spti = ptei & (sptn - 1), lpti, pteb;
205
206 /* Determine how many SPTEs are being touched under each LPTE,
207 * and drop reference counts.
208 */
209 for (lpti = ptei >> sptb; ptes; spti = 0, lpti++) {
210 const u32 pten = min(sptn - spti, ptes);
211 pgt->pte[lpti] -= pten;
212 ptes -= pten;
213 }
214
215 /* We're done here if there's no corresponding LPT. */
216 if (!pgt->refs[0])
217 return;
218
219 for (ptei = pteb = ptei >> sptb; ptei < lpti; pteb = ptei) {
220 /* Skip over any LPTEs that still have valid SPTEs. */
221 if (pgt->pte[pteb] & NVKM_VMM_PTE_SPTES) {
222 for (ptes = 1, ptei++; ptei < lpti; ptes++, ptei++) {
223 if (!(pgt->pte[ptei] & NVKM_VMM_PTE_SPTES))
224 break;
225 }
226 continue;
227 }
228
229 /* As there's no more non-UNMAPPED SPTEs left in the range
230 * covered by a number of LPTEs, the LPTEs once again take
231 * control over their address range.
232 *
233 * Determine how many LPTEs need to transition state.
234 */
235 pgt->pte[ptei] &= ~NVKM_VMM_PTE_VALID;
236 for (ptes = 1, ptei++; ptei < lpti; ptes++, ptei++) {
237 if (pgt->pte[ptei] & NVKM_VMM_PTE_SPTES)
238 break;
239 pgt->pte[ptei] &= ~NVKM_VMM_PTE_VALID;
240 }
241
242 if (pgt->pte[pteb] & NVKM_VMM_PTE_SPARSE) {
243 TRA(it, "LPTE %05x: U -> S %d PTEs", pteb, ptes);
244 pair->func->sparse(vmm, pgt->pt[0], pteb, ptes);
245 } else
246 if (pair->func->invalid) {
247 /* If the MMU supports it, restore the LPTE to the
248 * INVALID state to tell the MMU there is no point
249 * trying to fetch the corresponding SPTEs.
250 */
251 TRA(it, "LPTE %05x: U -> I %d PTEs", pteb, ptes);
252 pair->func->invalid(vmm, pgt->pt[0], pteb, ptes);
253 }
254 }
255 }
256
257 static bool
nvkm_vmm_unref_ptes(struct nvkm_vmm_iter * it,u32 ptei,u32 ptes)258 nvkm_vmm_unref_ptes(struct nvkm_vmm_iter *it, u32 ptei, u32 ptes)
259 {
260 const struct nvkm_vmm_desc *desc = it->desc;
261 const int type = desc->type == SPT;
262 struct nvkm_vmm_pt *pgt = it->pt[0];
263
264 /* Drop PTE references. */
265 pgt->refs[type] -= ptes;
266
267 /* Dual-PTs need special handling, unless PDE becoming invalid. */
268 if (desc->type == SPT && (pgt->refs[0] || pgt->refs[1]))
269 nvkm_vmm_unref_sptes(it, pgt, desc, ptei, ptes);
270
271 /* PT no longer neeed? Destroy it. */
272 if (!pgt->refs[type]) {
273 it->lvl++;
274 TRA(it, "%s empty", nvkm_vmm_desc_type(desc));
275 it->lvl--;
276 nvkm_vmm_unref_pdes(it);
277 return false; /* PTE writes for unmap() not necessary. */
278 }
279
280 return true;
281 }
282
283 static void
nvkm_vmm_ref_sptes(struct nvkm_vmm_iter * it,struct nvkm_vmm_pt * pgt,const struct nvkm_vmm_desc * desc,u32 ptei,u32 ptes)284 nvkm_vmm_ref_sptes(struct nvkm_vmm_iter *it, struct nvkm_vmm_pt *pgt,
285 const struct nvkm_vmm_desc *desc, u32 ptei, u32 ptes)
286 {
287 const struct nvkm_vmm_desc *pair = it->page[-1].desc;
288 const u32 sptb = desc->bits - pair->bits;
289 const u32 sptn = 1 << sptb;
290 struct nvkm_vmm *vmm = it->vmm;
291 u32 spti = ptei & (sptn - 1), lpti, pteb;
292
293 /* Determine how many SPTEs are being touched under each LPTE,
294 * and increase reference counts.
295 */
296 for (lpti = ptei >> sptb; ptes; spti = 0, lpti++) {
297 const u32 pten = min(sptn - spti, ptes);
298 pgt->pte[lpti] += pten;
299 ptes -= pten;
300 }
301
302 /* We're done here if there's no corresponding LPT. */
303 if (!pgt->refs[0])
304 return;
305
306 for (ptei = pteb = ptei >> sptb; ptei < lpti; pteb = ptei) {
307 /* Skip over any LPTEs that already have valid SPTEs. */
308 if (pgt->pte[pteb] & NVKM_VMM_PTE_VALID) {
309 for (ptes = 1, ptei++; ptei < lpti; ptes++, ptei++) {
310 if (!(pgt->pte[ptei] & NVKM_VMM_PTE_VALID))
311 break;
312 }
313 continue;
314 }
315
316 /* As there are now non-UNMAPPED SPTEs in the range covered
317 * by a number of LPTEs, we need to transfer control of the
318 * address range to the SPTEs.
319 *
320 * Determine how many LPTEs need to transition state.
321 */
322 pgt->pte[ptei] |= NVKM_VMM_PTE_VALID;
323 for (ptes = 1, ptei++; ptei < lpti; ptes++, ptei++) {
324 if (pgt->pte[ptei] & NVKM_VMM_PTE_VALID)
325 break;
326 pgt->pte[ptei] |= NVKM_VMM_PTE_VALID;
327 }
328
329 if (pgt->pte[pteb] & NVKM_VMM_PTE_SPARSE) {
330 const u32 spti = pteb * sptn;
331 const u32 sptc = ptes * sptn;
332 /* The entire LPTE is marked as sparse, we need
333 * to make sure that the SPTEs are too.
334 */
335 TRA(it, "SPTE %05x: U -> S %d PTEs", spti, sptc);
336 desc->func->sparse(vmm, pgt->pt[1], spti, sptc);
337 /* Sparse LPTEs prevent SPTEs from being accessed. */
338 TRA(it, "LPTE %05x: S -> U %d PTEs", pteb, ptes);
339 pair->func->unmap(vmm, pgt->pt[0], pteb, ptes);
340 } else
341 if (pair->func->invalid) {
342 /* MMU supports blocking SPTEs by marking an LPTE
343 * as INVALID. We need to reverse that here.
344 */
345 TRA(it, "LPTE %05x: I -> U %d PTEs", pteb, ptes);
346 pair->func->unmap(vmm, pgt->pt[0], pteb, ptes);
347 }
348 }
349 }
350
351 static bool
nvkm_vmm_ref_ptes(struct nvkm_vmm_iter * it,u32 ptei,u32 ptes)352 nvkm_vmm_ref_ptes(struct nvkm_vmm_iter *it, u32 ptei, u32 ptes)
353 {
354 const struct nvkm_vmm_desc *desc = it->desc;
355 const int type = desc->type == SPT;
356 struct nvkm_vmm_pt *pgt = it->pt[0];
357
358 /* Take PTE references. */
359 pgt->refs[type] += ptes;
360
361 /* Dual-PTs need special handling. */
362 if (desc->type == SPT)
363 nvkm_vmm_ref_sptes(it, pgt, desc, ptei, ptes);
364
365 return true;
366 }
367
368 static void
nvkm_vmm_sparse_ptes(const struct nvkm_vmm_desc * desc,struct nvkm_vmm_pt * pgt,u32 ptei,u32 ptes)369 nvkm_vmm_sparse_ptes(const struct nvkm_vmm_desc *desc,
370 struct nvkm_vmm_pt *pgt, u32 ptei, u32 ptes)
371 {
372 if (desc->type == PGD) {
373 while (ptes--)
374 pgt->pde[ptei++] = NVKM_VMM_PDE_SPARSE;
375 } else
376 if (desc->type == LPT) {
377 memset(&pgt->pte[ptei], NVKM_VMM_PTE_SPARSE, ptes);
378 }
379 }
380
381 static bool
nvkm_vmm_sparse_unref_ptes(struct nvkm_vmm_iter * it,u32 ptei,u32 ptes)382 nvkm_vmm_sparse_unref_ptes(struct nvkm_vmm_iter *it, u32 ptei, u32 ptes)
383 {
384 struct nvkm_vmm_pt *pt = it->pt[0];
385 if (it->desc->type == PGD)
386 memset(&pt->pde[ptei], 0x00, sizeof(pt->pde[0]) * ptes);
387 else
388 if (it->desc->type == LPT)
389 memset(&pt->pte[ptei], 0x00, sizeof(pt->pte[0]) * ptes);
390 return nvkm_vmm_unref_ptes(it, ptei, ptes);
391 }
392
393 static bool
nvkm_vmm_sparse_ref_ptes(struct nvkm_vmm_iter * it,u32 ptei,u32 ptes)394 nvkm_vmm_sparse_ref_ptes(struct nvkm_vmm_iter *it, u32 ptei, u32 ptes)
395 {
396 nvkm_vmm_sparse_ptes(it->desc, it->pt[0], ptei, ptes);
397 return nvkm_vmm_ref_ptes(it, ptei, ptes);
398 }
399
400 static bool
nvkm_vmm_ref_hwpt(struct nvkm_vmm_iter * it,struct nvkm_vmm_pt * pgd,u32 pdei)401 nvkm_vmm_ref_hwpt(struct nvkm_vmm_iter *it, struct nvkm_vmm_pt *pgd, u32 pdei)
402 {
403 const struct nvkm_vmm_desc *desc = &it->desc[it->lvl - 1];
404 const int type = desc->type == SPT;
405 struct nvkm_vmm_pt *pgt = pgd->pde[pdei];
406 const bool zero = !pgt->sparse && !desc->func->invalid;
407 struct nvkm_vmm *vmm = it->vmm;
408 struct nvkm_mmu *mmu = vmm->mmu;
409 struct nvkm_mmu_pt *pt;
410 u32 pten = 1 << desc->bits;
411 u32 pteb, ptei, ptes;
412 u32 size = desc->size * pten;
413
414 pgd->refs[0]++;
415
416 pgt->pt[type] = nvkm_mmu_ptc_get(mmu, size, desc->align, zero);
417 if (!pgt->pt[type]) {
418 it->lvl--;
419 nvkm_vmm_unref_pdes(it);
420 return false;
421 }
422
423 if (zero)
424 goto done;
425
426 pt = pgt->pt[type];
427
428 if (desc->type == LPT && pgt->refs[1]) {
429 /* SPT already exists covering the same range as this LPT,
430 * which means we need to be careful that any LPTEs which
431 * overlap valid SPTEs are unmapped as opposed to invalid
432 * or sparse, which would prevent the MMU from looking at
433 * the SPTEs on some GPUs.
434 */
435 for (ptei = pteb = 0; ptei < pten; pteb = ptei) {
436 bool spte = pgt->pte[ptei] & NVKM_VMM_PTE_SPTES;
437 for (ptes = 1, ptei++; ptei < pten; ptes++, ptei++) {
438 bool next = pgt->pte[ptei] & NVKM_VMM_PTE_SPTES;
439 if (spte != next)
440 break;
441 }
442
443 if (!spte) {
444 if (pgt->sparse)
445 desc->func->sparse(vmm, pt, pteb, ptes);
446 else
447 desc->func->invalid(vmm, pt, pteb, ptes);
448 memset(&pgt->pte[pteb], 0x00, ptes);
449 } else {
450 desc->func->unmap(vmm, pt, pteb, ptes);
451 while (ptes--)
452 pgt->pte[pteb++] |= NVKM_VMM_PTE_VALID;
453 }
454 }
455 } else {
456 if (pgt->sparse) {
457 nvkm_vmm_sparse_ptes(desc, pgt, 0, pten);
458 desc->func->sparse(vmm, pt, 0, pten);
459 } else {
460 desc->func->invalid(vmm, pt, 0, pten);
461 }
462 }
463
464 done:
465 TRA(it, "PDE write %s", nvkm_vmm_desc_type(desc));
466 it->desc[it->lvl].func->pde(it->vmm, pgd, pdei);
467 nvkm_vmm_flush_mark(it);
468 return true;
469 }
470
471 static bool
nvkm_vmm_ref_swpt(struct nvkm_vmm_iter * it,struct nvkm_vmm_pt * pgd,u32 pdei)472 nvkm_vmm_ref_swpt(struct nvkm_vmm_iter *it, struct nvkm_vmm_pt *pgd, u32 pdei)
473 {
474 const struct nvkm_vmm_desc *desc = &it->desc[it->lvl - 1];
475 struct nvkm_vmm_pt *pgt = pgd->pde[pdei];
476
477 pgt = nvkm_vmm_pt_new(desc, NVKM_VMM_PDE_SPARSED(pgt), it->page);
478 if (!pgt) {
479 if (!pgd->refs[0])
480 nvkm_vmm_unref_pdes(it);
481 return false;
482 }
483
484 pgd->pde[pdei] = pgt;
485 return true;
486 }
487
488 static inline u64
nvkm_vmm_iter(struct nvkm_vmm * vmm,const struct nvkm_vmm_page * page,u64 addr,u64 size,const char * name,bool ref,bool (* REF_PTES)(struct nvkm_vmm_iter *,u32,u32),nvkm_vmm_pte_func MAP_PTES,struct nvkm_vmm_map * map,nvkm_vmm_pxe_func CLR_PTES)489 nvkm_vmm_iter(struct nvkm_vmm *vmm, const struct nvkm_vmm_page *page,
490 u64 addr, u64 size, const char *name, bool ref,
491 bool (*REF_PTES)(struct nvkm_vmm_iter *, u32, u32),
492 nvkm_vmm_pte_func MAP_PTES, struct nvkm_vmm_map *map,
493 nvkm_vmm_pxe_func CLR_PTES)
494 {
495 const struct nvkm_vmm_desc *desc = page->desc;
496 struct nvkm_vmm_iter it;
497 u64 bits = addr >> page->shift;
498
499 it.page = page;
500 it.desc = desc;
501 it.vmm = vmm;
502 it.cnt = size >> page->shift;
503 it.flush = NVKM_VMM_LEVELS_MAX;
504
505 /* Deconstruct address into PTE indices for each mapping level. */
506 for (it.lvl = 0; desc[it.lvl].bits; it.lvl++) {
507 it.pte[it.lvl] = bits & ((1 << desc[it.lvl].bits) - 1);
508 bits >>= desc[it.lvl].bits;
509 }
510 it.max = --it.lvl;
511 it.pt[it.max] = vmm->pd;
512
513 it.lvl = 0;
514 TRA(&it, "%s: %016llx %016llx %d %lld PTEs", name,
515 addr, size, page->shift, it.cnt);
516 it.lvl = it.max;
517
518 /* Depth-first traversal of page tables. */
519 while (it.cnt) {
520 struct nvkm_vmm_pt *pgt = it.pt[it.lvl];
521 const int type = desc->type == SPT;
522 const u32 pten = 1 << desc->bits;
523 const u32 ptei = it.pte[0];
524 const u32 ptes = min_t(u64, it.cnt, pten - ptei);
525
526 /* Walk down the tree, finding page tables for each level. */
527 for (; it.lvl; it.lvl--) {
528 const u32 pdei = it.pte[it.lvl];
529 struct nvkm_vmm_pt *pgd = pgt;
530
531 /* Software PT. */
532 if (ref && NVKM_VMM_PDE_INVALID(pgd->pde[pdei])) {
533 if (!nvkm_vmm_ref_swpt(&it, pgd, pdei))
534 goto fail;
535 }
536 it.pt[it.lvl - 1] = pgt = pgd->pde[pdei];
537
538 /* Hardware PT.
539 *
540 * This is a separate step from above due to GF100 and
541 * newer having dual page tables at some levels, which
542 * are refcounted independently.
543 */
544 if (ref && !pgt->refs[desc[it.lvl - 1].type == SPT]) {
545 if (!nvkm_vmm_ref_hwpt(&it, pgd, pdei))
546 goto fail;
547 }
548 }
549
550 /* Handle PTE updates. */
551 if (!REF_PTES || REF_PTES(&it, ptei, ptes)) {
552 struct nvkm_mmu_pt *pt = pgt->pt[type];
553 if (MAP_PTES || CLR_PTES) {
554 if (MAP_PTES)
555 MAP_PTES(vmm, pt, ptei, ptes, map);
556 else
557 CLR_PTES(vmm, pt, ptei, ptes);
558 nvkm_vmm_flush_mark(&it);
559 }
560 }
561
562 /* Walk back up the tree to the next position. */
563 it.pte[it.lvl] += ptes;
564 it.cnt -= ptes;
565 if (it.cnt) {
566 while (it.pte[it.lvl] == (1 << desc[it.lvl].bits)) {
567 it.pte[it.lvl++] = 0;
568 it.pte[it.lvl]++;
569 }
570 }
571 };
572
573 nvkm_vmm_flush(&it);
574 return ~0ULL;
575
576 fail:
577 /* Reconstruct the failure address so the caller is able to
578 * reverse any partially completed operations.
579 */
580 addr = it.pte[it.max--];
581 do {
582 addr = addr << desc[it.max].bits;
583 addr |= it.pte[it.max];
584 } while (it.max--);
585
586 return addr << page->shift;
587 }
588
589 static void
nvkm_vmm_ptes_sparse_put(struct nvkm_vmm * vmm,const struct nvkm_vmm_page * page,u64 addr,u64 size)590 nvkm_vmm_ptes_sparse_put(struct nvkm_vmm *vmm, const struct nvkm_vmm_page *page,
591 u64 addr, u64 size)
592 {
593 nvkm_vmm_iter(vmm, page, addr, size, "sparse unref", false,
594 nvkm_vmm_sparse_unref_ptes, NULL, NULL,
595 page->desc->func->invalid ?
596 page->desc->func->invalid : page->desc->func->unmap);
597 }
598
599 static int
nvkm_vmm_ptes_sparse_get(struct nvkm_vmm * vmm,const struct nvkm_vmm_page * page,u64 addr,u64 size)600 nvkm_vmm_ptes_sparse_get(struct nvkm_vmm *vmm, const struct nvkm_vmm_page *page,
601 u64 addr, u64 size)
602 {
603 if ((page->type & NVKM_VMM_PAGE_SPARSE)) {
604 u64 fail = nvkm_vmm_iter(vmm, page, addr, size, "sparse ref",
605 true, nvkm_vmm_sparse_ref_ptes, NULL,
606 NULL, page->desc->func->sparse);
607 if (fail != ~0ULL) {
608 if ((size = fail - addr))
609 nvkm_vmm_ptes_sparse_put(vmm, page, addr, size);
610 return -ENOMEM;
611 }
612 return 0;
613 }
614 return -EINVAL;
615 }
616
617 static int
nvkm_vmm_ptes_sparse(struct nvkm_vmm * vmm,u64 addr,u64 size,bool ref)618 nvkm_vmm_ptes_sparse(struct nvkm_vmm *vmm, u64 addr, u64 size, bool ref)
619 {
620 const struct nvkm_vmm_page *page = vmm->func->page;
621 int m = 0, i;
622 u64 start = addr;
623 u64 block;
624
625 while (size) {
626 /* Limit maximum page size based on remaining size. */
627 while (size < (1ULL << page[m].shift))
628 m++;
629 i = m;
630
631 /* Find largest page size suitable for alignment. */
632 while (!IS_ALIGNED(addr, 1ULL << page[i].shift))
633 i++;
634
635 /* Determine number of PTEs at this page size. */
636 if (i != m) {
637 /* Limited to alignment boundary of next page size. */
638 u64 next = 1ULL << page[i - 1].shift;
639 u64 part = ALIGN(addr, next) - addr;
640 if (size - part >= next)
641 block = (part >> page[i].shift) << page[i].shift;
642 else
643 block = (size >> page[i].shift) << page[i].shift;
644 } else {
645 block = (size >> page[i].shift) << page[i].shift;
646 }
647
648 /* Perform operation. */
649 if (ref) {
650 int ret = nvkm_vmm_ptes_sparse_get(vmm, &page[i], addr, block);
651 if (ret) {
652 if ((size = addr - start))
653 nvkm_vmm_ptes_sparse(vmm, start, size, false);
654 return ret;
655 }
656 } else {
657 nvkm_vmm_ptes_sparse_put(vmm, &page[i], addr, block);
658 }
659
660 size -= block;
661 addr += block;
662 }
663
664 return 0;
665 }
666
667 static void
nvkm_vmm_ptes_unmap_put(struct nvkm_vmm * vmm,const struct nvkm_vmm_page * page,u64 addr,u64 size,bool sparse)668 nvkm_vmm_ptes_unmap_put(struct nvkm_vmm *vmm, const struct nvkm_vmm_page *page,
669 u64 addr, u64 size, bool sparse)
670 {
671 const struct nvkm_vmm_desc_func *func = page->desc->func;
672 nvkm_vmm_iter(vmm, page, addr, size, "unmap + unref",
673 false, nvkm_vmm_unref_ptes, NULL, NULL,
674 sparse ? func->sparse : func->invalid ? func->invalid :
675 func->unmap);
676 }
677
678 static int
nvkm_vmm_ptes_get_map(struct nvkm_vmm * vmm,const struct nvkm_vmm_page * page,u64 addr,u64 size,struct nvkm_vmm_map * map,nvkm_vmm_pte_func func)679 nvkm_vmm_ptes_get_map(struct nvkm_vmm *vmm, const struct nvkm_vmm_page *page,
680 u64 addr, u64 size, struct nvkm_vmm_map *map,
681 nvkm_vmm_pte_func func)
682 {
683 u64 fail = nvkm_vmm_iter(vmm, page, addr, size, "ref + map", true,
684 nvkm_vmm_ref_ptes, func, map, NULL);
685 if (fail != ~0ULL) {
686 if ((size = fail - addr))
687 nvkm_vmm_ptes_unmap_put(vmm, page, addr, size, false);
688 return -ENOMEM;
689 }
690 return 0;
691 }
692
693 static void
nvkm_vmm_ptes_unmap(struct nvkm_vmm * vmm,const struct nvkm_vmm_page * page,u64 addr,u64 size,bool sparse)694 nvkm_vmm_ptes_unmap(struct nvkm_vmm *vmm, const struct nvkm_vmm_page *page,
695 u64 addr, u64 size, bool sparse)
696 {
697 const struct nvkm_vmm_desc_func *func = page->desc->func;
698 nvkm_vmm_iter(vmm, page, addr, size, "unmap", false, NULL, NULL, NULL,
699 sparse ? func->sparse : func->invalid ? func->invalid :
700 func->unmap);
701 }
702
703 static void
nvkm_vmm_ptes_map(struct nvkm_vmm * vmm,const struct nvkm_vmm_page * page,u64 addr,u64 size,struct nvkm_vmm_map * map,nvkm_vmm_pte_func func)704 nvkm_vmm_ptes_map(struct nvkm_vmm *vmm, const struct nvkm_vmm_page *page,
705 u64 addr, u64 size, struct nvkm_vmm_map *map,
706 nvkm_vmm_pte_func func)
707 {
708 nvkm_vmm_iter(vmm, page, addr, size, "map", false,
709 NULL, func, map, NULL);
710 }
711
712 static void
nvkm_vmm_ptes_put(struct nvkm_vmm * vmm,const struct nvkm_vmm_page * page,u64 addr,u64 size)713 nvkm_vmm_ptes_put(struct nvkm_vmm *vmm, const struct nvkm_vmm_page *page,
714 u64 addr, u64 size)
715 {
716 nvkm_vmm_iter(vmm, page, addr, size, "unref", false,
717 nvkm_vmm_unref_ptes, NULL, NULL, NULL);
718 }
719
720 static int
nvkm_vmm_ptes_get(struct nvkm_vmm * vmm,const struct nvkm_vmm_page * page,u64 addr,u64 size)721 nvkm_vmm_ptes_get(struct nvkm_vmm *vmm, const struct nvkm_vmm_page *page,
722 u64 addr, u64 size)
723 {
724 u64 fail = nvkm_vmm_iter(vmm, page, addr, size, "ref", true,
725 nvkm_vmm_ref_ptes, NULL, NULL, NULL);
726 if (fail != ~0ULL) {
727 if (fail != addr)
728 nvkm_vmm_ptes_put(vmm, page, addr, fail - addr);
729 return -ENOMEM;
730 }
731 return 0;
732 }
733
734 static inline struct nvkm_vma *
nvkm_vma_new(u64 addr,u64 size)735 nvkm_vma_new(u64 addr, u64 size)
736 {
737 struct nvkm_vma *vma = kzalloc(sizeof(*vma), GFP_KERNEL);
738 if (vma) {
739 vma->addr = addr;
740 vma->size = size;
741 vma->page = NVKM_VMA_PAGE_NONE;
742 vma->refd = NVKM_VMA_PAGE_NONE;
743 }
744 return vma;
745 }
746
747 struct nvkm_vma *
nvkm_vma_tail(struct nvkm_vma * vma,u64 tail)748 nvkm_vma_tail(struct nvkm_vma *vma, u64 tail)
749 {
750 struct nvkm_vma *new;
751
752 BUG_ON(vma->size == tail);
753
754 if (!(new = nvkm_vma_new(vma->addr + (vma->size - tail), tail)))
755 return NULL;
756 vma->size -= tail;
757
758 new->mapref = vma->mapref;
759 new->sparse = vma->sparse;
760 new->page = vma->page;
761 new->refd = vma->refd;
762 new->used = vma->used;
763 new->part = vma->part;
764 new->user = vma->user;
765 new->busy = vma->busy;
766 list_add(&new->head, &vma->head);
767 return new;
768 }
769
770 static inline void
nvkm_vmm_free_remove(struct nvkm_vmm * vmm,struct nvkm_vma * vma)771 nvkm_vmm_free_remove(struct nvkm_vmm *vmm, struct nvkm_vma *vma)
772 {
773 rb_erase(&vma->tree, &vmm->free);
774 }
775
776 static inline void
nvkm_vmm_free_delete(struct nvkm_vmm * vmm,struct nvkm_vma * vma)777 nvkm_vmm_free_delete(struct nvkm_vmm *vmm, struct nvkm_vma *vma)
778 {
779 nvkm_vmm_free_remove(vmm, vma);
780 list_del(&vma->head);
781 kfree(vma);
782 }
783
784 static void
nvkm_vmm_free_insert(struct nvkm_vmm * vmm,struct nvkm_vma * vma)785 nvkm_vmm_free_insert(struct nvkm_vmm *vmm, struct nvkm_vma *vma)
786 {
787 struct rb_node **ptr = &vmm->free.rb_node;
788 struct rb_node *parent = NULL;
789
790 while (*ptr) {
791 struct nvkm_vma *this = rb_entry(*ptr, typeof(*this), tree);
792 parent = *ptr;
793 if (vma->size < this->size)
794 ptr = &parent->rb_left;
795 else
796 if (vma->size > this->size)
797 ptr = &parent->rb_right;
798 else
799 if (vma->addr < this->addr)
800 ptr = &parent->rb_left;
801 else
802 if (vma->addr > this->addr)
803 ptr = &parent->rb_right;
804 else
805 BUG();
806 }
807
808 rb_link_node(&vma->tree, parent, ptr);
809 rb_insert_color(&vma->tree, &vmm->free);
810 }
811
812 static inline void
nvkm_vmm_node_remove(struct nvkm_vmm * vmm,struct nvkm_vma * vma)813 nvkm_vmm_node_remove(struct nvkm_vmm *vmm, struct nvkm_vma *vma)
814 {
815 rb_erase(&vma->tree, &vmm->root);
816 }
817
818 static inline void
nvkm_vmm_node_delete(struct nvkm_vmm * vmm,struct nvkm_vma * vma)819 nvkm_vmm_node_delete(struct nvkm_vmm *vmm, struct nvkm_vma *vma)
820 {
821 nvkm_vmm_node_remove(vmm, vma);
822 list_del(&vma->head);
823 kfree(vma);
824 }
825
826 static void
nvkm_vmm_node_insert(struct nvkm_vmm * vmm,struct nvkm_vma * vma)827 nvkm_vmm_node_insert(struct nvkm_vmm *vmm, struct nvkm_vma *vma)
828 {
829 struct rb_node **ptr = &vmm->root.rb_node;
830 struct rb_node *parent = NULL;
831
832 while (*ptr) {
833 struct nvkm_vma *this = rb_entry(*ptr, typeof(*this), tree);
834 parent = *ptr;
835 if (vma->addr < this->addr)
836 ptr = &parent->rb_left;
837 else
838 if (vma->addr > this->addr)
839 ptr = &parent->rb_right;
840 else
841 BUG();
842 }
843
844 rb_link_node(&vma->tree, parent, ptr);
845 rb_insert_color(&vma->tree, &vmm->root);
846 }
847
848 struct nvkm_vma *
nvkm_vmm_node_search(struct nvkm_vmm * vmm,u64 addr)849 nvkm_vmm_node_search(struct nvkm_vmm *vmm, u64 addr)
850 {
851 struct rb_node *node = vmm->root.rb_node;
852 while (node) {
853 struct nvkm_vma *vma = rb_entry(node, typeof(*vma), tree);
854 if (addr < vma->addr)
855 node = node->rb_left;
856 else
857 if (addr >= vma->addr + vma->size)
858 node = node->rb_right;
859 else
860 return vma;
861 }
862 return NULL;
863 }
864
865 #define node(root, dir) (((root)->head.dir == &vmm->list) ? NULL : \
866 list_entry((root)->head.dir, struct nvkm_vma, head))
867
868 static struct nvkm_vma *
nvkm_vmm_node_merge(struct nvkm_vmm * vmm,struct nvkm_vma * prev,struct nvkm_vma * vma,struct nvkm_vma * next,u64 size)869 nvkm_vmm_node_merge(struct nvkm_vmm *vmm, struct nvkm_vma *prev,
870 struct nvkm_vma *vma, struct nvkm_vma *next, u64 size)
871 {
872 if (next) {
873 if (vma->size == size) {
874 vma->size += next->size;
875 nvkm_vmm_node_delete(vmm, next);
876 if (prev) {
877 prev->size += vma->size;
878 nvkm_vmm_node_delete(vmm, vma);
879 return prev;
880 }
881 return vma;
882 }
883 BUG_ON(prev);
884
885 nvkm_vmm_node_remove(vmm, next);
886 vma->size -= size;
887 next->addr -= size;
888 next->size += size;
889 nvkm_vmm_node_insert(vmm, next);
890 return next;
891 }
892
893 if (prev) {
894 if (vma->size != size) {
895 nvkm_vmm_node_remove(vmm, vma);
896 prev->size += size;
897 vma->addr += size;
898 vma->size -= size;
899 nvkm_vmm_node_insert(vmm, vma);
900 } else {
901 prev->size += vma->size;
902 nvkm_vmm_node_delete(vmm, vma);
903 }
904 return prev;
905 }
906
907 return vma;
908 }
909
910 struct nvkm_vma *
nvkm_vmm_node_split(struct nvkm_vmm * vmm,struct nvkm_vma * vma,u64 addr,u64 size)911 nvkm_vmm_node_split(struct nvkm_vmm *vmm,
912 struct nvkm_vma *vma, u64 addr, u64 size)
913 {
914 struct nvkm_vma *prev = NULL;
915
916 if (vma->addr != addr) {
917 prev = vma;
918 if (!(vma = nvkm_vma_tail(vma, vma->size + vma->addr - addr)))
919 return NULL;
920 vma->part = true;
921 nvkm_vmm_node_insert(vmm, vma);
922 }
923
924 if (vma->size != size) {
925 struct nvkm_vma *tmp;
926 if (!(tmp = nvkm_vma_tail(vma, vma->size - size))) {
927 nvkm_vmm_node_merge(vmm, prev, vma, NULL, vma->size);
928 return NULL;
929 }
930 tmp->part = true;
931 nvkm_vmm_node_insert(vmm, tmp);
932 }
933
934 return vma;
935 }
936
937 static void
nvkm_vmm_dtor(struct nvkm_vmm * vmm)938 nvkm_vmm_dtor(struct nvkm_vmm *vmm)
939 {
940 struct nvkm_vma *vma;
941 struct rb_node *node;
942
943 while ((node = rb_first(&vmm->root))) {
944 struct nvkm_vma *vma = rb_entry(node, typeof(*vma), tree);
945 nvkm_vmm_put(vmm, &vma);
946 }
947
948 if (vmm->bootstrapped) {
949 const struct nvkm_vmm_page *page = vmm->func->page;
950 const u64 limit = vmm->limit - vmm->start;
951
952 while (page[1].shift)
953 page++;
954
955 nvkm_mmu_ptc_dump(vmm->mmu);
956 nvkm_vmm_ptes_put(vmm, page, vmm->start, limit);
957 }
958
959 vma = list_first_entry(&vmm->list, typeof(*vma), head);
960 list_del(&vma->head);
961 kfree(vma);
962 WARN_ON(!list_empty(&vmm->list));
963
964 if (vmm->nullp) {
965 dma_free_coherent(vmm->mmu->subdev.device->dev, 16 * 1024,
966 vmm->nullp, vmm->null);
967 }
968
969 if (vmm->pd) {
970 nvkm_mmu_ptc_put(vmm->mmu, true, &vmm->pd->pt[0]);
971 nvkm_vmm_pt_del(&vmm->pd);
972 }
973 }
974
975 int
nvkm_vmm_ctor(const struct nvkm_vmm_func * func,struct nvkm_mmu * mmu,u32 pd_header,u64 addr,u64 size,struct lock_class_key * key,const char * name,struct nvkm_vmm * vmm)976 nvkm_vmm_ctor(const struct nvkm_vmm_func *func, struct nvkm_mmu *mmu,
977 u32 pd_header, u64 addr, u64 size, struct lock_class_key *key,
978 const char *name, struct nvkm_vmm *vmm)
979 {
980 static struct lock_class_key _key;
981 const struct nvkm_vmm_page *page = func->page;
982 const struct nvkm_vmm_desc *desc;
983 struct nvkm_vma *vma;
984 int levels, bits = 0;
985
986 vmm->func = func;
987 vmm->mmu = mmu;
988 vmm->name = name;
989 vmm->debug = mmu->subdev.debug;
990 kref_init(&vmm->kref);
991
992 __mutex_init(&vmm->mutex, "&vmm->mutex", key ? key : &_key);
993
994 /* Locate the smallest page size supported by the backend, it will
995 * have the the deepest nesting of page tables.
996 */
997 while (page[1].shift)
998 page++;
999
1000 /* Locate the structure that describes the layout of the top-level
1001 * page table, and determine the number of valid bits in a virtual
1002 * address.
1003 */
1004 for (levels = 0, desc = page->desc; desc->bits; desc++, levels++)
1005 bits += desc->bits;
1006 bits += page->shift;
1007 desc--;
1008
1009 if (WARN_ON(levels > NVKM_VMM_LEVELS_MAX))
1010 return -EINVAL;
1011
1012 vmm->start = addr;
1013 vmm->limit = size ? (addr + size) : (1ULL << bits);
1014 if (vmm->start > vmm->limit || vmm->limit > (1ULL << bits))
1015 return -EINVAL;
1016
1017 /* Allocate top-level page table. */
1018 vmm->pd = nvkm_vmm_pt_new(desc, false, NULL);
1019 if (!vmm->pd)
1020 return -ENOMEM;
1021 vmm->pd->refs[0] = 1;
1022 INIT_LIST_HEAD(&vmm->join);
1023
1024 /* ... and the GPU storage for it, except on Tesla-class GPUs that
1025 * have the PD embedded in the instance structure.
1026 */
1027 if (desc->size) {
1028 const u32 size = pd_header + desc->size * (1 << desc->bits);
1029 vmm->pd->pt[0] = nvkm_mmu_ptc_get(mmu, size, desc->align, true);
1030 if (!vmm->pd->pt[0])
1031 return -ENOMEM;
1032 }
1033
1034 /* Initialise address-space MM. */
1035 INIT_LIST_HEAD(&vmm->list);
1036 vmm->free = RB_ROOT;
1037 vmm->root = RB_ROOT;
1038
1039 if (!(vma = nvkm_vma_new(vmm->start, vmm->limit - vmm->start)))
1040 return -ENOMEM;
1041
1042 nvkm_vmm_free_insert(vmm, vma);
1043 list_add(&vma->head, &vmm->list);
1044 return 0;
1045 }
1046
1047 int
nvkm_vmm_new_(const struct nvkm_vmm_func * func,struct nvkm_mmu * mmu,u32 hdr,u64 addr,u64 size,struct lock_class_key * key,const char * name,struct nvkm_vmm ** pvmm)1048 nvkm_vmm_new_(const struct nvkm_vmm_func *func, struct nvkm_mmu *mmu,
1049 u32 hdr, u64 addr, u64 size, struct lock_class_key *key,
1050 const char *name, struct nvkm_vmm **pvmm)
1051 {
1052 if (!(*pvmm = kzalloc(sizeof(**pvmm), GFP_KERNEL)))
1053 return -ENOMEM;
1054 return nvkm_vmm_ctor(func, mmu, hdr, addr, size, key, name, *pvmm);
1055 }
1056
1057 void
nvkm_vmm_unmap_region(struct nvkm_vmm * vmm,struct nvkm_vma * vma)1058 nvkm_vmm_unmap_region(struct nvkm_vmm *vmm, struct nvkm_vma *vma)
1059 {
1060 struct nvkm_vma *next = node(vma, next);
1061 struct nvkm_vma *prev = NULL;
1062
1063 nvkm_memory_tags_put(vma->memory, vmm->mmu->subdev.device, &vma->tags);
1064 nvkm_memory_unref(&vma->memory);
1065
1066 if (!vma->part || ((prev = node(vma, prev)), prev->memory))
1067 prev = NULL;
1068 if (!next->part || next->memory)
1069 next = NULL;
1070 nvkm_vmm_node_merge(vmm, prev, vma, next, vma->size);
1071 }
1072
1073 void
nvkm_vmm_unmap_locked(struct nvkm_vmm * vmm,struct nvkm_vma * vma)1074 nvkm_vmm_unmap_locked(struct nvkm_vmm *vmm, struct nvkm_vma *vma)
1075 {
1076 const struct nvkm_vmm_page *page = &vmm->func->page[vma->refd];
1077
1078 if (vma->mapref) {
1079 nvkm_vmm_ptes_unmap_put(vmm, page, vma->addr, vma->size, vma->sparse);
1080 vma->refd = NVKM_VMA_PAGE_NONE;
1081 } else {
1082 nvkm_vmm_ptes_unmap(vmm, page, vma->addr, vma->size, vma->sparse);
1083 }
1084
1085 nvkm_vmm_unmap_region(vmm, vma);
1086 }
1087
1088 void
nvkm_vmm_unmap(struct nvkm_vmm * vmm,struct nvkm_vma * vma)1089 nvkm_vmm_unmap(struct nvkm_vmm *vmm, struct nvkm_vma *vma)
1090 {
1091 if (vma->memory) {
1092 mutex_lock(&vmm->mutex);
1093 nvkm_vmm_unmap_locked(vmm, vma);
1094 mutex_unlock(&vmm->mutex);
1095 }
1096 }
1097
1098 static int
nvkm_vmm_map_valid(struct nvkm_vmm * vmm,struct nvkm_vma * vma,void * argv,u32 argc,struct nvkm_vmm_map * map)1099 nvkm_vmm_map_valid(struct nvkm_vmm *vmm, struct nvkm_vma *vma,
1100 void *argv, u32 argc, struct nvkm_vmm_map *map)
1101 {
1102 switch (nvkm_memory_target(map->memory)) {
1103 case NVKM_MEM_TARGET_VRAM:
1104 if (!(map->page->type & NVKM_VMM_PAGE_VRAM)) {
1105 VMM_DEBUG(vmm, "%d !VRAM", map->page->shift);
1106 return -EINVAL;
1107 }
1108 break;
1109 case NVKM_MEM_TARGET_HOST:
1110 case NVKM_MEM_TARGET_NCOH:
1111 if (!(map->page->type & NVKM_VMM_PAGE_HOST)) {
1112 VMM_DEBUG(vmm, "%d !HOST", map->page->shift);
1113 return -EINVAL;
1114 }
1115 break;
1116 default:
1117 WARN_ON(1);
1118 return -ENOSYS;
1119 }
1120
1121 if (!IS_ALIGNED( vma->addr, 1ULL << map->page->shift) ||
1122 !IS_ALIGNED((u64)vma->size, 1ULL << map->page->shift) ||
1123 !IS_ALIGNED( map->offset, 1ULL << map->page->shift) ||
1124 nvkm_memory_page(map->memory) < map->page->shift) {
1125 VMM_DEBUG(vmm, "alignment %016llx %016llx %016llx %d %d",
1126 vma->addr, (u64)vma->size, map->offset, map->page->shift,
1127 nvkm_memory_page(map->memory));
1128 return -EINVAL;
1129 }
1130
1131 return vmm->func->valid(vmm, argv, argc, map);
1132 }
1133
1134 static int
nvkm_vmm_map_choose(struct nvkm_vmm * vmm,struct nvkm_vma * vma,void * argv,u32 argc,struct nvkm_vmm_map * map)1135 nvkm_vmm_map_choose(struct nvkm_vmm *vmm, struct nvkm_vma *vma,
1136 void *argv, u32 argc, struct nvkm_vmm_map *map)
1137 {
1138 for (map->page = vmm->func->page; map->page->shift; map->page++) {
1139 VMM_DEBUG(vmm, "trying %d", map->page->shift);
1140 if (!nvkm_vmm_map_valid(vmm, vma, argv, argc, map))
1141 return 0;
1142 }
1143 return -EINVAL;
1144 }
1145
1146 static int
nvkm_vmm_map_locked(struct nvkm_vmm * vmm,struct nvkm_vma * vma,void * argv,u32 argc,struct nvkm_vmm_map * map)1147 nvkm_vmm_map_locked(struct nvkm_vmm *vmm, struct nvkm_vma *vma,
1148 void *argv, u32 argc, struct nvkm_vmm_map *map)
1149 {
1150 nvkm_vmm_pte_func func;
1151 int ret;
1152
1153 /* Make sure we won't overrun the end of the memory object. */
1154 if (unlikely(nvkm_memory_size(map->memory) < map->offset + vma->size)) {
1155 VMM_DEBUG(vmm, "overrun %016llx %016llx %016llx",
1156 nvkm_memory_size(map->memory),
1157 map->offset, (u64)vma->size);
1158 return -EINVAL;
1159 }
1160
1161 /* Check remaining arguments for validity. */
1162 if (vma->page == NVKM_VMA_PAGE_NONE &&
1163 vma->refd == NVKM_VMA_PAGE_NONE) {
1164 /* Find the largest page size we can perform the mapping at. */
1165 const u32 debug = vmm->debug;
1166 vmm->debug = 0;
1167 ret = nvkm_vmm_map_choose(vmm, vma, argv, argc, map);
1168 vmm->debug = debug;
1169 if (ret) {
1170 VMM_DEBUG(vmm, "invalid at any page size");
1171 nvkm_vmm_map_choose(vmm, vma, argv, argc, map);
1172 return -EINVAL;
1173 }
1174 } else {
1175 /* Page size of the VMA is already pre-determined. */
1176 if (vma->refd != NVKM_VMA_PAGE_NONE)
1177 map->page = &vmm->func->page[vma->refd];
1178 else
1179 map->page = &vmm->func->page[vma->page];
1180
1181 ret = nvkm_vmm_map_valid(vmm, vma, argv, argc, map);
1182 if (ret) {
1183 VMM_DEBUG(vmm, "invalid %d\n", ret);
1184 return ret;
1185 }
1186 }
1187
1188 /* Deal with the 'offset' argument, and fetch the backend function. */
1189 map->off = map->offset;
1190 if (map->mem) {
1191 for (; map->off; map->mem = map->mem->next) {
1192 u64 size = (u64)map->mem->length << NVKM_RAM_MM_SHIFT;
1193 if (size > map->off)
1194 break;
1195 map->off -= size;
1196 }
1197 func = map->page->desc->func->mem;
1198 } else
1199 if (map->sgl) {
1200 for (; map->off; map->sgl = sg_next(map->sgl)) {
1201 u64 size = sg_dma_len(map->sgl);
1202 if (size > map->off)
1203 break;
1204 map->off -= size;
1205 }
1206 func = map->page->desc->func->sgl;
1207 } else {
1208 map->dma += map->offset >> PAGE_SHIFT;
1209 map->off = map->offset & PAGE_MASK;
1210 func = map->page->desc->func->dma;
1211 }
1212
1213 /* Perform the map. */
1214 if (vma->refd == NVKM_VMA_PAGE_NONE) {
1215 ret = nvkm_vmm_ptes_get_map(vmm, map->page, vma->addr, vma->size, map, func);
1216 if (ret)
1217 return ret;
1218
1219 vma->refd = map->page - vmm->func->page;
1220 } else {
1221 nvkm_vmm_ptes_map(vmm, map->page, vma->addr, vma->size, map, func);
1222 }
1223
1224 nvkm_memory_tags_put(vma->memory, vmm->mmu->subdev.device, &vma->tags);
1225 nvkm_memory_unref(&vma->memory);
1226 vma->memory = nvkm_memory_ref(map->memory);
1227 vma->tags = map->tags;
1228 return 0;
1229 }
1230
1231 int
nvkm_vmm_map(struct nvkm_vmm * vmm,struct nvkm_vma * vma,void * argv,u32 argc,struct nvkm_vmm_map * map)1232 nvkm_vmm_map(struct nvkm_vmm *vmm, struct nvkm_vma *vma, void *argv, u32 argc,
1233 struct nvkm_vmm_map *map)
1234 {
1235 int ret;
1236 mutex_lock(&vmm->mutex);
1237 ret = nvkm_vmm_map_locked(vmm, vma, argv, argc, map);
1238 vma->busy = false;
1239 mutex_unlock(&vmm->mutex);
1240 return ret;
1241 }
1242
1243 static void
nvkm_vmm_put_region(struct nvkm_vmm * vmm,struct nvkm_vma * vma)1244 nvkm_vmm_put_region(struct nvkm_vmm *vmm, struct nvkm_vma *vma)
1245 {
1246 struct nvkm_vma *prev, *next;
1247
1248 if ((prev = node(vma, prev)) && !prev->used) {
1249 vma->addr = prev->addr;
1250 vma->size += prev->size;
1251 nvkm_vmm_free_delete(vmm, prev);
1252 }
1253
1254 if ((next = node(vma, next)) && !next->used) {
1255 vma->size += next->size;
1256 nvkm_vmm_free_delete(vmm, next);
1257 }
1258
1259 nvkm_vmm_free_insert(vmm, vma);
1260 }
1261
1262 void
nvkm_vmm_put_locked(struct nvkm_vmm * vmm,struct nvkm_vma * vma)1263 nvkm_vmm_put_locked(struct nvkm_vmm *vmm, struct nvkm_vma *vma)
1264 {
1265 const struct nvkm_vmm_page *page = vmm->func->page;
1266 struct nvkm_vma *next = vma;
1267
1268 BUG_ON(vma->part);
1269
1270 if (vma->mapref || !vma->sparse) {
1271 do {
1272 const bool map = next->memory != NULL;
1273 const u8 refd = next->refd;
1274 const u64 addr = next->addr;
1275 u64 size = next->size;
1276
1277 /* Merge regions that are in the same state. */
1278 while ((next = node(next, next)) && next->part &&
1279 (next->memory != NULL) == map &&
1280 (next->refd == refd))
1281 size += next->size;
1282
1283 if (map) {
1284 /* Region(s) are mapped, merge the unmap
1285 * and dereference into a single walk of
1286 * the page tree.
1287 */
1288 nvkm_vmm_ptes_unmap_put(vmm, &page[refd], addr,
1289 size, vma->sparse);
1290 } else
1291 if (refd != NVKM_VMA_PAGE_NONE) {
1292 /* Drop allocation-time PTE references. */
1293 nvkm_vmm_ptes_put(vmm, &page[refd], addr, size);
1294 }
1295 } while (next && next->part);
1296 }
1297
1298 /* Merge any mapped regions that were split from the initial
1299 * address-space allocation back into the allocated VMA, and
1300 * release memory/compression resources.
1301 */
1302 next = vma;
1303 do {
1304 if (next->memory)
1305 nvkm_vmm_unmap_region(vmm, next);
1306 } while ((next = node(vma, next)) && next->part);
1307
1308 if (vma->sparse && !vma->mapref) {
1309 /* Sparse region that was allocated with a fixed page size,
1310 * meaning all relevant PTEs were referenced once when the
1311 * region was allocated, and remained that way, regardless
1312 * of whether memory was mapped into it afterwards.
1313 *
1314 * The process of unmapping, unsparsing, and dereferencing
1315 * PTEs can be done in a single page tree walk.
1316 */
1317 nvkm_vmm_ptes_sparse_put(vmm, &page[vma->refd], vma->addr, vma->size);
1318 } else
1319 if (vma->sparse) {
1320 /* Sparse region that wasn't allocated with a fixed page size,
1321 * PTE references were taken both at allocation time (to make
1322 * the GPU see the region as sparse), and when mapping memory
1323 * into the region.
1324 *
1325 * The latter was handled above, and the remaining references
1326 * are dealt with here.
1327 */
1328 nvkm_vmm_ptes_sparse(vmm, vma->addr, vma->size, false);
1329 }
1330
1331 /* Remove VMA from the list of allocated nodes. */
1332 nvkm_vmm_node_remove(vmm, vma);
1333
1334 /* Merge VMA back into the free list. */
1335 vma->page = NVKM_VMA_PAGE_NONE;
1336 vma->refd = NVKM_VMA_PAGE_NONE;
1337 vma->used = false;
1338 vma->user = false;
1339 nvkm_vmm_put_region(vmm, vma);
1340 }
1341
1342 void
nvkm_vmm_put(struct nvkm_vmm * vmm,struct nvkm_vma ** pvma)1343 nvkm_vmm_put(struct nvkm_vmm *vmm, struct nvkm_vma **pvma)
1344 {
1345 struct nvkm_vma *vma = *pvma;
1346 if (vma) {
1347 mutex_lock(&vmm->mutex);
1348 nvkm_vmm_put_locked(vmm, vma);
1349 mutex_unlock(&vmm->mutex);
1350 *pvma = NULL;
1351 }
1352 }
1353
1354 int
nvkm_vmm_get_locked(struct nvkm_vmm * vmm,bool getref,bool mapref,bool sparse,u8 shift,u8 align,u64 size,struct nvkm_vma ** pvma)1355 nvkm_vmm_get_locked(struct nvkm_vmm *vmm, bool getref, bool mapref, bool sparse,
1356 u8 shift, u8 align, u64 size, struct nvkm_vma **pvma)
1357 {
1358 const struct nvkm_vmm_page *page = &vmm->func->page[NVKM_VMA_PAGE_NONE];
1359 struct rb_node *node = NULL, *temp;
1360 struct nvkm_vma *vma = NULL, *tmp;
1361 u64 addr, tail;
1362 int ret;
1363
1364 VMM_TRACE(vmm, "getref %d mapref %d sparse %d "
1365 "shift: %d align: %d size: %016llx",
1366 getref, mapref, sparse, shift, align, size);
1367
1368 /* Zero-sized, or lazily-allocated sparse VMAs, make no sense. */
1369 if (unlikely(!size || (!getref && !mapref && sparse))) {
1370 VMM_DEBUG(vmm, "args %016llx %d %d %d",
1371 size, getref, mapref, sparse);
1372 return -EINVAL;
1373 }
1374
1375 /* Tesla-class GPUs can only select page size per-PDE, which means
1376 * we're required to know the mapping granularity up-front to find
1377 * a suitable region of address-space.
1378 *
1379 * The same goes if we're requesting up-front allocation of PTES.
1380 */
1381 if (unlikely((getref || vmm->func->page_block) && !shift)) {
1382 VMM_DEBUG(vmm, "page size required: %d %016llx",
1383 getref, vmm->func->page_block);
1384 return -EINVAL;
1385 }
1386
1387 /* If a specific page size was requested, determine its index and
1388 * make sure the requested size is a multiple of the page size.
1389 */
1390 if (shift) {
1391 for (page = vmm->func->page; page->shift; page++) {
1392 if (shift == page->shift)
1393 break;
1394 }
1395
1396 if (!page->shift || !IS_ALIGNED(size, 1ULL << page->shift)) {
1397 VMM_DEBUG(vmm, "page %d %016llx", shift, size);
1398 return -EINVAL;
1399 }
1400 align = max_t(u8, align, shift);
1401 } else {
1402 align = max_t(u8, align, 12);
1403 }
1404
1405 /* Locate smallest block that can possibly satisfy the allocation. */
1406 temp = vmm->free.rb_node;
1407 while (temp) {
1408 struct nvkm_vma *this = rb_entry(temp, typeof(*this), tree);
1409 if (this->size < size) {
1410 temp = temp->rb_right;
1411 } else {
1412 node = temp;
1413 temp = temp->rb_left;
1414 }
1415 }
1416
1417 if (unlikely(!node))
1418 return -ENOSPC;
1419
1420 /* Take into account alignment restrictions, trying larger blocks
1421 * in turn until we find a suitable free block.
1422 */
1423 do {
1424 struct nvkm_vma *this = rb_entry(node, typeof(*this), tree);
1425 struct nvkm_vma *prev = node(this, prev);
1426 struct nvkm_vma *next = node(this, next);
1427 const int p = page - vmm->func->page;
1428
1429 addr = this->addr;
1430 if (vmm->func->page_block && prev && prev->page != p)
1431 addr = ALIGN(addr, vmm->func->page_block);
1432 addr = ALIGN(addr, 1ULL << align);
1433
1434 tail = this->addr + this->size;
1435 if (vmm->func->page_block && next && next->page != p)
1436 tail = ALIGN_DOWN(tail, vmm->func->page_block);
1437
1438 if (addr <= tail && tail - addr >= size) {
1439 nvkm_vmm_free_remove(vmm, this);
1440 vma = this;
1441 break;
1442 }
1443 } while ((node = rb_next(node)));
1444
1445 if (unlikely(!vma))
1446 return -ENOSPC;
1447
1448 /* If the VMA we found isn't already exactly the requested size,
1449 * it needs to be split, and the remaining free blocks returned.
1450 */
1451 if (addr != vma->addr) {
1452 if (!(tmp = nvkm_vma_tail(vma, vma->size + vma->addr - addr))) {
1453 nvkm_vmm_put_region(vmm, vma);
1454 return -ENOMEM;
1455 }
1456 nvkm_vmm_free_insert(vmm, vma);
1457 vma = tmp;
1458 }
1459
1460 if (size != vma->size) {
1461 if (!(tmp = nvkm_vma_tail(vma, vma->size - size))) {
1462 nvkm_vmm_put_region(vmm, vma);
1463 return -ENOMEM;
1464 }
1465 nvkm_vmm_free_insert(vmm, tmp);
1466 }
1467
1468 /* Pre-allocate page tables and/or setup sparse mappings. */
1469 if (sparse && getref)
1470 ret = nvkm_vmm_ptes_sparse_get(vmm, page, vma->addr, vma->size);
1471 else if (sparse)
1472 ret = nvkm_vmm_ptes_sparse(vmm, vma->addr, vma->size, true);
1473 else if (getref)
1474 ret = nvkm_vmm_ptes_get(vmm, page, vma->addr, vma->size);
1475 else
1476 ret = 0;
1477 if (ret) {
1478 nvkm_vmm_put_region(vmm, vma);
1479 return ret;
1480 }
1481
1482 vma->mapref = mapref && !getref;
1483 vma->sparse = sparse;
1484 vma->page = page - vmm->func->page;
1485 vma->refd = getref ? vma->page : NVKM_VMA_PAGE_NONE;
1486 vma->used = true;
1487 nvkm_vmm_node_insert(vmm, vma);
1488 *pvma = vma;
1489 return 0;
1490 }
1491
1492 int
nvkm_vmm_get(struct nvkm_vmm * vmm,u8 page,u64 size,struct nvkm_vma ** pvma)1493 nvkm_vmm_get(struct nvkm_vmm *vmm, u8 page, u64 size, struct nvkm_vma **pvma)
1494 {
1495 int ret;
1496 mutex_lock(&vmm->mutex);
1497 ret = nvkm_vmm_get_locked(vmm, false, true, false, page, 0, size, pvma);
1498 mutex_unlock(&vmm->mutex);
1499 return ret;
1500 }
1501
1502 void
nvkm_vmm_part(struct nvkm_vmm * vmm,struct nvkm_memory * inst)1503 nvkm_vmm_part(struct nvkm_vmm *vmm, struct nvkm_memory *inst)
1504 {
1505 if (inst && vmm && vmm->func->part) {
1506 mutex_lock(&vmm->mutex);
1507 vmm->func->part(vmm, inst);
1508 mutex_unlock(&vmm->mutex);
1509 }
1510 }
1511
1512 int
nvkm_vmm_join(struct nvkm_vmm * vmm,struct nvkm_memory * inst)1513 nvkm_vmm_join(struct nvkm_vmm *vmm, struct nvkm_memory *inst)
1514 {
1515 int ret = 0;
1516 if (vmm->func->join) {
1517 mutex_lock(&vmm->mutex);
1518 ret = vmm->func->join(vmm, inst);
1519 mutex_unlock(&vmm->mutex);
1520 }
1521 return ret;
1522 }
1523
1524 static bool
nvkm_vmm_boot_ptes(struct nvkm_vmm_iter * it,u32 ptei,u32 ptes)1525 nvkm_vmm_boot_ptes(struct nvkm_vmm_iter *it, u32 ptei, u32 ptes)
1526 {
1527 const struct nvkm_vmm_desc *desc = it->desc;
1528 const int type = desc->type == SPT;
1529 nvkm_memory_boot(it->pt[0]->pt[type]->memory, it->vmm);
1530 return false;
1531 }
1532
1533 int
nvkm_vmm_boot(struct nvkm_vmm * vmm)1534 nvkm_vmm_boot(struct nvkm_vmm *vmm)
1535 {
1536 const struct nvkm_vmm_page *page = vmm->func->page;
1537 const u64 limit = vmm->limit - vmm->start;
1538 int ret;
1539
1540 while (page[1].shift)
1541 page++;
1542
1543 ret = nvkm_vmm_ptes_get(vmm, page, vmm->start, limit);
1544 if (ret)
1545 return ret;
1546
1547 nvkm_vmm_iter(vmm, page, vmm->start, limit, "bootstrap", false,
1548 nvkm_vmm_boot_ptes, NULL, NULL, NULL);
1549 vmm->bootstrapped = true;
1550 return 0;
1551 }
1552
1553 static void
nvkm_vmm_del(struct kref * kref)1554 nvkm_vmm_del(struct kref *kref)
1555 {
1556 struct nvkm_vmm *vmm = container_of(kref, typeof(*vmm), kref);
1557 nvkm_vmm_dtor(vmm);
1558 kfree(vmm);
1559 }
1560
1561 void
nvkm_vmm_unref(struct nvkm_vmm ** pvmm)1562 nvkm_vmm_unref(struct nvkm_vmm **pvmm)
1563 {
1564 struct nvkm_vmm *vmm = *pvmm;
1565 if (vmm) {
1566 kref_put(&vmm->kref, nvkm_vmm_del);
1567 *pvmm = NULL;
1568 }
1569 }
1570
1571 struct nvkm_vmm *
nvkm_vmm_ref(struct nvkm_vmm * vmm)1572 nvkm_vmm_ref(struct nvkm_vmm *vmm)
1573 {
1574 if (vmm)
1575 kref_get(&vmm->kref);
1576 return vmm;
1577 }
1578
1579 int
nvkm_vmm_new(struct nvkm_device * device,u64 addr,u64 size,void * argv,u32 argc,struct lock_class_key * key,const char * name,struct nvkm_vmm ** pvmm)1580 nvkm_vmm_new(struct nvkm_device *device, u64 addr, u64 size, void *argv,
1581 u32 argc, struct lock_class_key *key, const char *name,
1582 struct nvkm_vmm **pvmm)
1583 {
1584 struct nvkm_mmu *mmu = device->mmu;
1585 struct nvkm_vmm *vmm = NULL;
1586 int ret;
1587 ret = mmu->func->vmm.ctor(mmu, addr, size, argv, argc, key, name, &vmm);
1588 if (ret)
1589 nvkm_vmm_unref(&vmm);
1590 *pvmm = vmm;
1591 return ret;
1592 }
1593