• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * rcar_du_crtc.c  --  R-Car Display Unit CRTCs
3  *
4  * Copyright (C) 2013-2015 Renesas Electronics Corporation
5  *
6  * Contact: Laurent Pinchart (laurent.pinchart@ideasonboard.com)
7  *
8  * This program is free software; you can redistribute it and/or modify
9  * it under the terms of the GNU General Public License as published by
10  * the Free Software Foundation; either version 2 of the License, or
11  * (at your option) any later version.
12  */
13 
14 #include <linux/clk.h>
15 #include <linux/mutex.h>
16 #include <linux/sys_soc.h>
17 
18 #include <drm/drmP.h>
19 #include <drm/drm_atomic.h>
20 #include <drm/drm_atomic_helper.h>
21 #include <drm/drm_crtc.h>
22 #include <drm/drm_crtc_helper.h>
23 #include <drm/drm_fb_cma_helper.h>
24 #include <drm/drm_gem_cma_helper.h>
25 #include <drm/drm_plane_helper.h>
26 
27 #include "rcar_du_crtc.h"
28 #include "rcar_du_drv.h"
29 #include "rcar_du_kms.h"
30 #include "rcar_du_plane.h"
31 #include "rcar_du_regs.h"
32 #include "rcar_du_vsp.h"
33 
rcar_du_crtc_read(struct rcar_du_crtc * rcrtc,u32 reg)34 static u32 rcar_du_crtc_read(struct rcar_du_crtc *rcrtc, u32 reg)
35 {
36 	struct rcar_du_device *rcdu = rcrtc->group->dev;
37 
38 	return rcar_du_read(rcdu, rcrtc->mmio_offset + reg);
39 }
40 
rcar_du_crtc_write(struct rcar_du_crtc * rcrtc,u32 reg,u32 data)41 static void rcar_du_crtc_write(struct rcar_du_crtc *rcrtc, u32 reg, u32 data)
42 {
43 	struct rcar_du_device *rcdu = rcrtc->group->dev;
44 
45 	rcar_du_write(rcdu, rcrtc->mmio_offset + reg, data);
46 }
47 
rcar_du_crtc_clr(struct rcar_du_crtc * rcrtc,u32 reg,u32 clr)48 static void rcar_du_crtc_clr(struct rcar_du_crtc *rcrtc, u32 reg, u32 clr)
49 {
50 	struct rcar_du_device *rcdu = rcrtc->group->dev;
51 
52 	rcar_du_write(rcdu, rcrtc->mmio_offset + reg,
53 		      rcar_du_read(rcdu, rcrtc->mmio_offset + reg) & ~clr);
54 }
55 
rcar_du_crtc_set(struct rcar_du_crtc * rcrtc,u32 reg,u32 set)56 static void rcar_du_crtc_set(struct rcar_du_crtc *rcrtc, u32 reg, u32 set)
57 {
58 	struct rcar_du_device *rcdu = rcrtc->group->dev;
59 
60 	rcar_du_write(rcdu, rcrtc->mmio_offset + reg,
61 		      rcar_du_read(rcdu, rcrtc->mmio_offset + reg) | set);
62 }
63 
rcar_du_crtc_clr_set(struct rcar_du_crtc * rcrtc,u32 reg,u32 clr,u32 set)64 static void rcar_du_crtc_clr_set(struct rcar_du_crtc *rcrtc, u32 reg,
65 				 u32 clr, u32 set)
66 {
67 	struct rcar_du_device *rcdu = rcrtc->group->dev;
68 	u32 value = rcar_du_read(rcdu, rcrtc->mmio_offset + reg);
69 
70 	rcar_du_write(rcdu, rcrtc->mmio_offset + reg, (value & ~clr) | set);
71 }
72 
rcar_du_crtc_get(struct rcar_du_crtc * rcrtc)73 static int rcar_du_crtc_get(struct rcar_du_crtc *rcrtc)
74 {
75 	int ret;
76 
77 	ret = clk_prepare_enable(rcrtc->clock);
78 	if (ret < 0)
79 		return ret;
80 
81 	ret = clk_prepare_enable(rcrtc->extclock);
82 	if (ret < 0)
83 		goto error_clock;
84 
85 	ret = rcar_du_group_get(rcrtc->group);
86 	if (ret < 0)
87 		goto error_group;
88 
89 	return 0;
90 
91 error_group:
92 	clk_disable_unprepare(rcrtc->extclock);
93 error_clock:
94 	clk_disable_unprepare(rcrtc->clock);
95 	return ret;
96 }
97 
rcar_du_crtc_put(struct rcar_du_crtc * rcrtc)98 static void rcar_du_crtc_put(struct rcar_du_crtc *rcrtc)
99 {
100 	rcar_du_group_put(rcrtc->group);
101 
102 	clk_disable_unprepare(rcrtc->extclock);
103 	clk_disable_unprepare(rcrtc->clock);
104 }
105 
106 /* -----------------------------------------------------------------------------
107  * Hardware Setup
108  */
109 
110 struct dpll_info {
111 	unsigned int output;
112 	unsigned int fdpll;
113 	unsigned int n;
114 	unsigned int m;
115 };
116 
rcar_du_dpll_divider(struct rcar_du_crtc * rcrtc,struct dpll_info * dpll,unsigned long input,unsigned long target)117 static void rcar_du_dpll_divider(struct rcar_du_crtc *rcrtc,
118 				 struct dpll_info *dpll,
119 				 unsigned long input,
120 				 unsigned long target)
121 {
122 	unsigned long best_diff = (unsigned long)-1;
123 	unsigned long diff;
124 	unsigned int fdpll;
125 	unsigned int m;
126 	unsigned int n;
127 
128 	/*
129 	 *   fin                                 fvco        fout       fclkout
130 	 * in --> [1/M] --> |PD| -> [LPF] -> [VCO] -> [1/P] -+-> [1/FDPLL] -> out
131 	 *              +-> |  |                             |
132 	 *              |                                    |
133 	 *              +---------------- [1/N] <------------+
134 	 *
135 	 *	fclkout = fvco / P / FDPLL -- (1)
136 	 *
137 	 * fin/M = fvco/P/N
138 	 *
139 	 *	fvco = fin * P *  N / M -- (2)
140 	 *
141 	 * (1) + (2) indicates
142 	 *
143 	 *	fclkout = fin * N / M / FDPLL
144 	 *
145 	 * NOTES
146 	 *	N	: (n + 1)
147 	 *	M	: (m + 1)
148 	 *	FDPLL	: (fdpll + 1)
149 	 *	P	: 2
150 	 *	2kHz < fvco < 4096MHz
151 	 *
152 	 * To minimize the jitter,
153 	 * N : as large as possible
154 	 * M : as small as possible
155 	 */
156 	for (m = 0; m < 4; m++) {
157 		for (n = 119; n > 38; n--) {
158 			/*
159 			 * This code only runs on 64-bit architectures, the
160 			 * unsigned long type can thus be used for 64-bit
161 			 * computation. It will still compile without any
162 			 * warning on 32-bit architectures.
163 			 *
164 			 * To optimize calculations, use fout instead of fvco
165 			 * to verify the VCO frequency constraint.
166 			 */
167 			unsigned long fout = input * (n + 1) / (m + 1);
168 
169 			if (fout < 1000 || fout > 2048 * 1000 * 1000U)
170 				continue;
171 
172 			for (fdpll = 1; fdpll < 32; fdpll++) {
173 				unsigned long output;
174 
175 				output = fout / (fdpll + 1);
176 				if (output >= 400 * 1000 * 1000)
177 					continue;
178 
179 				diff = abs((long)output - (long)target);
180 				if (best_diff > diff) {
181 					best_diff = diff;
182 					dpll->n = n;
183 					dpll->m = m;
184 					dpll->fdpll = fdpll;
185 					dpll->output = output;
186 				}
187 
188 				if (diff == 0)
189 					goto done;
190 			}
191 		}
192 	}
193 
194 done:
195 	dev_dbg(rcrtc->group->dev->dev,
196 		"output:%u, fdpll:%u, n:%u, m:%u, diff:%lu\n",
197 		 dpll->output, dpll->fdpll, dpll->n, dpll->m,
198 		 best_diff);
199 }
200 
201 static const struct soc_device_attribute rcar_du_r8a7795_es1[] = {
202 	{ .soc_id = "r8a7795", .revision = "ES1.*" },
203 	{ /* sentinel */ }
204 };
205 
rcar_du_crtc_set_display_timing(struct rcar_du_crtc * rcrtc)206 static void rcar_du_crtc_set_display_timing(struct rcar_du_crtc *rcrtc)
207 {
208 	const struct drm_display_mode *mode = &rcrtc->crtc.state->adjusted_mode;
209 	struct rcar_du_device *rcdu = rcrtc->group->dev;
210 	unsigned long mode_clock = mode->clock * 1000;
211 	unsigned long clk;
212 	u32 value;
213 	u32 escr;
214 	u32 div;
215 
216 	/*
217 	 * Compute the clock divisor and select the internal or external dot
218 	 * clock based on the requested frequency.
219 	 */
220 	clk = clk_get_rate(rcrtc->clock);
221 	div = DIV_ROUND_CLOSEST(clk, mode_clock);
222 	div = clamp(div, 1U, 64U) - 1;
223 	escr = div | ESCR_DCLKSEL_CLKS;
224 
225 	if (rcrtc->extclock) {
226 		struct dpll_info dpll = { 0 };
227 		unsigned long extclk;
228 		unsigned long extrate;
229 		unsigned long rate;
230 		u32 extdiv;
231 
232 		extclk = clk_get_rate(rcrtc->extclock);
233 		if (rcdu->info->dpll_ch & (1 << rcrtc->index)) {
234 			unsigned long target = mode_clock;
235 
236 			/*
237 			 * The H3 ES1.x exhibits dot clock duty cycle stability
238 			 * issues. We can work around them by configuring the
239 			 * DPLL to twice the desired frequency, coupled with a
240 			 * /2 post-divider. This isn't needed on other SoCs and
241 			 * breaks HDMI output on M3-W for a currently unknown
242 			 * reason, so restrict the workaround to H3 ES1.x.
243 			 */
244 			if (soc_device_match(rcar_du_r8a7795_es1))
245 				target *= 2;
246 
247 			rcar_du_dpll_divider(rcrtc, &dpll, extclk, target);
248 			extclk = dpll.output;
249 		}
250 
251 		extdiv = DIV_ROUND_CLOSEST(extclk, mode_clock);
252 		extdiv = clamp(extdiv, 1U, 64U) - 1;
253 
254 		rate = clk / (div + 1);
255 		extrate = extclk / (extdiv + 1);
256 
257 		if (abs((long)extrate - (long)mode_clock) <
258 		    abs((long)rate - (long)mode_clock)) {
259 
260 			if (rcdu->info->dpll_ch & (1 << rcrtc->index)) {
261 				u32 dpllcr = DPLLCR_CODE | DPLLCR_CLKE
262 					   | DPLLCR_FDPLL(dpll.fdpll)
263 					   | DPLLCR_N(dpll.n) | DPLLCR_M(dpll.m)
264 					   | DPLLCR_STBY;
265 
266 				if (rcrtc->index == 1)
267 					dpllcr |= DPLLCR_PLCS1
268 					       |  DPLLCR_INCS_DOTCLKIN1;
269 				else
270 					dpllcr |= DPLLCR_PLCS0
271 					       |  DPLLCR_INCS_DOTCLKIN0;
272 
273 				rcar_du_group_write(rcrtc->group, DPLLCR,
274 						    dpllcr);
275 			}
276 
277 			escr = ESCR_DCLKSEL_DCLKIN | extdiv;
278 		}
279 
280 		dev_dbg(rcrtc->group->dev->dev,
281 			"mode clock %lu extrate %lu rate %lu ESCR 0x%08x\n",
282 			mode_clock, extrate, rate, escr);
283 	}
284 
285 	rcar_du_group_write(rcrtc->group, rcrtc->index % 2 ? ESCR2 : ESCR,
286 			    escr);
287 	rcar_du_group_write(rcrtc->group, rcrtc->index % 2 ? OTAR2 : OTAR, 0);
288 
289 	/* Signal polarities */
290 	value = ((mode->flags & DRM_MODE_FLAG_PVSYNC) ? DSMR_VSL : 0)
291 	      | ((mode->flags & DRM_MODE_FLAG_PHSYNC) ? DSMR_HSL : 0)
292 	      | DSMR_DIPM_DISP | DSMR_CSPM;
293 	rcar_du_crtc_write(rcrtc, DSMR, value);
294 
295 	/* Display timings */
296 	rcar_du_crtc_write(rcrtc, HDSR, mode->htotal - mode->hsync_start - 19);
297 	rcar_du_crtc_write(rcrtc, HDER, mode->htotal - mode->hsync_start +
298 					mode->hdisplay - 19);
299 	rcar_du_crtc_write(rcrtc, HSWR, mode->hsync_end -
300 					mode->hsync_start - 1);
301 	rcar_du_crtc_write(rcrtc, HCR,  mode->htotal - 1);
302 
303 	rcar_du_crtc_write(rcrtc, VDSR, mode->crtc_vtotal -
304 					mode->crtc_vsync_end - 2);
305 	rcar_du_crtc_write(rcrtc, VDER, mode->crtc_vtotal -
306 					mode->crtc_vsync_end +
307 					mode->crtc_vdisplay - 2);
308 	rcar_du_crtc_write(rcrtc, VSPR, mode->crtc_vtotal -
309 					mode->crtc_vsync_end +
310 					mode->crtc_vsync_start - 1);
311 	rcar_du_crtc_write(rcrtc, VCR,  mode->crtc_vtotal - 1);
312 
313 	rcar_du_crtc_write(rcrtc, DESR,  mode->htotal - mode->hsync_start - 1);
314 	rcar_du_crtc_write(rcrtc, DEWR,  mode->hdisplay);
315 }
316 
rcar_du_crtc_route_output(struct drm_crtc * crtc,enum rcar_du_output output)317 void rcar_du_crtc_route_output(struct drm_crtc *crtc,
318 			       enum rcar_du_output output)
319 {
320 	struct rcar_du_crtc *rcrtc = to_rcar_crtc(crtc);
321 	struct rcar_du_device *rcdu = rcrtc->group->dev;
322 
323 	/*
324 	 * Store the route from the CRTC output to the DU output. The DU will be
325 	 * configured when starting the CRTC.
326 	 */
327 	rcrtc->outputs |= BIT(output);
328 
329 	/*
330 	 * Store RGB routing to DPAD0, the hardware will be configured when
331 	 * starting the CRTC.
332 	 */
333 	if (output == RCAR_DU_OUTPUT_DPAD0)
334 		rcdu->dpad0_source = rcrtc->index;
335 }
336 
plane_zpos(struct rcar_du_plane * plane)337 static unsigned int plane_zpos(struct rcar_du_plane *plane)
338 {
339 	return plane->plane.state->normalized_zpos;
340 }
341 
342 static const struct rcar_du_format_info *
plane_format(struct rcar_du_plane * plane)343 plane_format(struct rcar_du_plane *plane)
344 {
345 	return to_rcar_plane_state(plane->plane.state)->format;
346 }
347 
rcar_du_crtc_update_planes(struct rcar_du_crtc * rcrtc)348 static void rcar_du_crtc_update_planes(struct rcar_du_crtc *rcrtc)
349 {
350 	struct rcar_du_plane *planes[RCAR_DU_NUM_HW_PLANES];
351 	struct rcar_du_device *rcdu = rcrtc->group->dev;
352 	unsigned int num_planes = 0;
353 	unsigned int dptsr_planes;
354 	unsigned int hwplanes = 0;
355 	unsigned int prio = 0;
356 	unsigned int i;
357 	u32 dspr = 0;
358 
359 	for (i = 0; i < rcrtc->group->num_planes; ++i) {
360 		struct rcar_du_plane *plane = &rcrtc->group->planes[i];
361 		unsigned int j;
362 
363 		if (plane->plane.state->crtc != &rcrtc->crtc ||
364 		    !plane->plane.state->visible)
365 			continue;
366 
367 		/* Insert the plane in the sorted planes array. */
368 		for (j = num_planes++; j > 0; --j) {
369 			if (plane_zpos(planes[j-1]) <= plane_zpos(plane))
370 				break;
371 			planes[j] = planes[j-1];
372 		}
373 
374 		planes[j] = plane;
375 		prio += plane_format(plane)->planes * 4;
376 	}
377 
378 	for (i = 0; i < num_planes; ++i) {
379 		struct rcar_du_plane *plane = planes[i];
380 		struct drm_plane_state *state = plane->plane.state;
381 		unsigned int index = to_rcar_plane_state(state)->hwindex;
382 
383 		prio -= 4;
384 		dspr |= (index + 1) << prio;
385 		hwplanes |= 1 << index;
386 
387 		if (plane_format(plane)->planes == 2) {
388 			index = (index + 1) % 8;
389 
390 			prio -= 4;
391 			dspr |= (index + 1) << prio;
392 			hwplanes |= 1 << index;
393 		}
394 	}
395 
396 	/* If VSP+DU integration is enabled the plane assignment is fixed. */
397 	if (rcar_du_has(rcdu, RCAR_DU_FEATURE_VSP1_SOURCE)) {
398 		if (rcdu->info->gen < 3) {
399 			dspr = (rcrtc->index % 2) + 1;
400 			hwplanes = 1 << (rcrtc->index % 2);
401 		} else {
402 			dspr = (rcrtc->index % 2) ? 3 : 1;
403 			hwplanes = 1 << ((rcrtc->index % 2) ? 2 : 0);
404 		}
405 	}
406 
407 	/*
408 	 * Update the planes to display timing and dot clock generator
409 	 * associations.
410 	 *
411 	 * Updating the DPTSR register requires restarting the CRTC group,
412 	 * resulting in visible flicker. To mitigate the issue only update the
413 	 * association if needed by enabled planes. Planes being disabled will
414 	 * keep their current association.
415 	 */
416 	mutex_lock(&rcrtc->group->lock);
417 
418 	dptsr_planes = rcrtc->index % 2 ? rcrtc->group->dptsr_planes | hwplanes
419 		     : rcrtc->group->dptsr_planes & ~hwplanes;
420 
421 	if (dptsr_planes != rcrtc->group->dptsr_planes) {
422 		rcar_du_group_write(rcrtc->group, DPTSR,
423 				    (dptsr_planes << 16) | dptsr_planes);
424 		rcrtc->group->dptsr_planes = dptsr_planes;
425 
426 		if (rcrtc->group->used_crtcs)
427 			rcar_du_group_restart(rcrtc->group);
428 	}
429 
430 	/* Restart the group if plane sources have changed. */
431 	if (rcrtc->group->need_restart)
432 		rcar_du_group_restart(rcrtc->group);
433 
434 	mutex_unlock(&rcrtc->group->lock);
435 
436 	rcar_du_group_write(rcrtc->group, rcrtc->index % 2 ? DS2PR : DS1PR,
437 			    dspr);
438 }
439 
440 /* -----------------------------------------------------------------------------
441  * Page Flip
442  */
443 
rcar_du_crtc_finish_page_flip(struct rcar_du_crtc * rcrtc)444 void rcar_du_crtc_finish_page_flip(struct rcar_du_crtc *rcrtc)
445 {
446 	struct drm_pending_vblank_event *event;
447 	struct drm_device *dev = rcrtc->crtc.dev;
448 	unsigned long flags;
449 
450 	spin_lock_irqsave(&dev->event_lock, flags);
451 	event = rcrtc->event;
452 	rcrtc->event = NULL;
453 	spin_unlock_irqrestore(&dev->event_lock, flags);
454 
455 	if (event == NULL)
456 		return;
457 
458 	spin_lock_irqsave(&dev->event_lock, flags);
459 	drm_crtc_send_vblank_event(&rcrtc->crtc, event);
460 	wake_up(&rcrtc->flip_wait);
461 	spin_unlock_irqrestore(&dev->event_lock, flags);
462 
463 	drm_crtc_vblank_put(&rcrtc->crtc);
464 }
465 
rcar_du_crtc_page_flip_pending(struct rcar_du_crtc * rcrtc)466 static bool rcar_du_crtc_page_flip_pending(struct rcar_du_crtc *rcrtc)
467 {
468 	struct drm_device *dev = rcrtc->crtc.dev;
469 	unsigned long flags;
470 	bool pending;
471 
472 	spin_lock_irqsave(&dev->event_lock, flags);
473 	pending = rcrtc->event != NULL;
474 	spin_unlock_irqrestore(&dev->event_lock, flags);
475 
476 	return pending;
477 }
478 
rcar_du_crtc_wait_page_flip(struct rcar_du_crtc * rcrtc)479 static void rcar_du_crtc_wait_page_flip(struct rcar_du_crtc *rcrtc)
480 {
481 	struct rcar_du_device *rcdu = rcrtc->group->dev;
482 
483 	if (wait_event_timeout(rcrtc->flip_wait,
484 			       !rcar_du_crtc_page_flip_pending(rcrtc),
485 			       msecs_to_jiffies(50)))
486 		return;
487 
488 	dev_warn(rcdu->dev, "page flip timeout\n");
489 
490 	rcar_du_crtc_finish_page_flip(rcrtc);
491 }
492 
493 /* -----------------------------------------------------------------------------
494  * Start/Stop and Suspend/Resume
495  */
496 
rcar_du_crtc_setup(struct rcar_du_crtc * rcrtc)497 static void rcar_du_crtc_setup(struct rcar_du_crtc *rcrtc)
498 {
499 	/* Set display off and background to black */
500 	rcar_du_crtc_write(rcrtc, DOOR, DOOR_RGB(0, 0, 0));
501 	rcar_du_crtc_write(rcrtc, BPOR, BPOR_RGB(0, 0, 0));
502 
503 	/* Configure display timings and output routing */
504 	rcar_du_crtc_set_display_timing(rcrtc);
505 	rcar_du_group_set_routing(rcrtc->group);
506 
507 	/* Start with all planes disabled. */
508 	rcar_du_group_write(rcrtc->group, rcrtc->index % 2 ? DS2PR : DS1PR, 0);
509 
510 	/* Enable the VSP compositor. */
511 	if (rcar_du_has(rcrtc->group->dev, RCAR_DU_FEATURE_VSP1_SOURCE))
512 		rcar_du_vsp_enable(rcrtc);
513 
514 	/* Turn vertical blanking interrupt reporting on. */
515 	drm_crtc_vblank_on(&rcrtc->crtc);
516 }
517 
rcar_du_crtc_start(struct rcar_du_crtc * rcrtc)518 static void rcar_du_crtc_start(struct rcar_du_crtc *rcrtc)
519 {
520 	bool interlaced;
521 
522 	/*
523 	 * Select master sync mode. This enables display operation in master
524 	 * sync mode (with the HSYNC and VSYNC signals configured as outputs and
525 	 * actively driven).
526 	 */
527 	interlaced = rcrtc->crtc.mode.flags & DRM_MODE_FLAG_INTERLACE;
528 	rcar_du_crtc_clr_set(rcrtc, DSYSR, DSYSR_TVM_MASK | DSYSR_SCM_MASK,
529 			     (interlaced ? DSYSR_SCM_INT_VIDEO : 0) |
530 			     DSYSR_TVM_MASTER);
531 
532 	rcar_du_group_start_stop(rcrtc->group, true);
533 }
534 
rcar_du_crtc_disable_planes(struct rcar_du_crtc * rcrtc)535 static void rcar_du_crtc_disable_planes(struct rcar_du_crtc *rcrtc)
536 {
537 	struct rcar_du_device *rcdu = rcrtc->group->dev;
538 	struct drm_crtc *crtc = &rcrtc->crtc;
539 	u32 status;
540 
541 	/* Make sure vblank interrupts are enabled. */
542 	drm_crtc_vblank_get(crtc);
543 
544 	/*
545 	 * Disable planes and calculate how many vertical blanking interrupts we
546 	 * have to wait for. If a vertical blanking interrupt has been triggered
547 	 * but not processed yet, we don't know whether it occurred before or
548 	 * after the planes got disabled. We thus have to wait for two vblank
549 	 * interrupts in that case.
550 	 */
551 	spin_lock_irq(&rcrtc->vblank_lock);
552 	rcar_du_group_write(rcrtc->group, rcrtc->index % 2 ? DS2PR : DS1PR, 0);
553 	status = rcar_du_crtc_read(rcrtc, DSSR);
554 	rcrtc->vblank_count = status & DSSR_VBK ? 2 : 1;
555 	spin_unlock_irq(&rcrtc->vblank_lock);
556 
557 	if (!wait_event_timeout(rcrtc->vblank_wait, rcrtc->vblank_count == 0,
558 				msecs_to_jiffies(100)))
559 		dev_warn(rcdu->dev, "vertical blanking timeout\n");
560 
561 	drm_crtc_vblank_put(crtc);
562 }
563 
rcar_du_crtc_stop(struct rcar_du_crtc * rcrtc)564 static void rcar_du_crtc_stop(struct rcar_du_crtc *rcrtc)
565 {
566 	struct drm_crtc *crtc = &rcrtc->crtc;
567 
568 	/*
569 	 * Disable all planes and wait for the change to take effect. This is
570 	 * required as the plane enable registers are updated on vblank, and no
571 	 * vblank will occur once the CRTC is stopped. Disabling planes when
572 	 * starting the CRTC thus wouldn't be enough as it would start scanning
573 	 * out immediately from old frame buffers until the next vblank.
574 	 *
575 	 * This increases the CRTC stop delay, especially when multiple CRTCs
576 	 * are stopped in one operation as we now wait for one vblank per CRTC.
577 	 * Whether this can be improved needs to be researched.
578 	 */
579 	rcar_du_crtc_disable_planes(rcrtc);
580 
581 	/*
582 	 * Disable vertical blanking interrupt reporting. We first need to wait
583 	 * for page flip completion before stopping the CRTC as userspace
584 	 * expects page flips to eventually complete.
585 	 */
586 	rcar_du_crtc_wait_page_flip(rcrtc);
587 	drm_crtc_vblank_off(crtc);
588 
589 	/* Disable the VSP compositor. */
590 	if (rcar_du_has(rcrtc->group->dev, RCAR_DU_FEATURE_VSP1_SOURCE))
591 		rcar_du_vsp_disable(rcrtc);
592 
593 	/*
594 	 * Select switch sync mode. This stops display operation and configures
595 	 * the HSYNC and VSYNC signals as inputs.
596 	 */
597 	rcar_du_crtc_clr_set(rcrtc, DSYSR, DSYSR_TVM_MASK, DSYSR_TVM_SWITCH);
598 
599 	rcar_du_group_start_stop(rcrtc->group, false);
600 }
601 
602 /* -----------------------------------------------------------------------------
603  * CRTC Functions
604  */
605 
rcar_du_crtc_atomic_enable(struct drm_crtc * crtc,struct drm_crtc_state * old_state)606 static void rcar_du_crtc_atomic_enable(struct drm_crtc *crtc,
607 				       struct drm_crtc_state *old_state)
608 {
609 	struct rcar_du_crtc *rcrtc = to_rcar_crtc(crtc);
610 
611 	/*
612 	 * If the CRTC has already been setup by the .atomic_begin() handler we
613 	 * can skip the setup stage.
614 	 */
615 	if (!rcrtc->initialized) {
616 		rcar_du_crtc_get(rcrtc);
617 		rcar_du_crtc_setup(rcrtc);
618 		rcrtc->initialized = true;
619 	}
620 
621 	rcar_du_crtc_start(rcrtc);
622 }
623 
rcar_du_crtc_atomic_disable(struct drm_crtc * crtc,struct drm_crtc_state * old_state)624 static void rcar_du_crtc_atomic_disable(struct drm_crtc *crtc,
625 					struct drm_crtc_state *old_state)
626 {
627 	struct rcar_du_crtc *rcrtc = to_rcar_crtc(crtc);
628 
629 	rcar_du_crtc_stop(rcrtc);
630 	rcar_du_crtc_put(rcrtc);
631 
632 	spin_lock_irq(&crtc->dev->event_lock);
633 	if (crtc->state->event) {
634 		drm_crtc_send_vblank_event(crtc, crtc->state->event);
635 		crtc->state->event = NULL;
636 	}
637 	spin_unlock_irq(&crtc->dev->event_lock);
638 
639 	rcrtc->initialized = false;
640 	rcrtc->outputs = 0;
641 }
642 
rcar_du_crtc_atomic_begin(struct drm_crtc * crtc,struct drm_crtc_state * old_crtc_state)643 static void rcar_du_crtc_atomic_begin(struct drm_crtc *crtc,
644 				      struct drm_crtc_state *old_crtc_state)
645 {
646 	struct rcar_du_crtc *rcrtc = to_rcar_crtc(crtc);
647 
648 	WARN_ON(!crtc->state->enable);
649 
650 	/*
651 	 * If a mode set is in progress we can be called with the CRTC disabled.
652 	 * We then need to first setup the CRTC in order to configure planes.
653 	 * The .atomic_enable() handler will notice and skip the CRTC setup.
654 	 */
655 	if (!rcrtc->initialized) {
656 		rcar_du_crtc_get(rcrtc);
657 		rcar_du_crtc_setup(rcrtc);
658 		rcrtc->initialized = true;
659 	}
660 
661 	if (rcar_du_has(rcrtc->group->dev, RCAR_DU_FEATURE_VSP1_SOURCE))
662 		rcar_du_vsp_atomic_begin(rcrtc);
663 }
664 
rcar_du_crtc_atomic_flush(struct drm_crtc * crtc,struct drm_crtc_state * old_crtc_state)665 static void rcar_du_crtc_atomic_flush(struct drm_crtc *crtc,
666 				      struct drm_crtc_state *old_crtc_state)
667 {
668 	struct rcar_du_crtc *rcrtc = to_rcar_crtc(crtc);
669 	struct drm_device *dev = rcrtc->crtc.dev;
670 	unsigned long flags;
671 
672 	rcar_du_crtc_update_planes(rcrtc);
673 
674 	if (crtc->state->event) {
675 		WARN_ON(drm_crtc_vblank_get(crtc) != 0);
676 
677 		spin_lock_irqsave(&dev->event_lock, flags);
678 		rcrtc->event = crtc->state->event;
679 		crtc->state->event = NULL;
680 		spin_unlock_irqrestore(&dev->event_lock, flags);
681 	}
682 
683 	if (rcar_du_has(rcrtc->group->dev, RCAR_DU_FEATURE_VSP1_SOURCE))
684 		rcar_du_vsp_atomic_flush(rcrtc);
685 }
686 
687 static const struct drm_crtc_helper_funcs crtc_helper_funcs = {
688 	.atomic_begin = rcar_du_crtc_atomic_begin,
689 	.atomic_flush = rcar_du_crtc_atomic_flush,
690 	.atomic_enable = rcar_du_crtc_atomic_enable,
691 	.atomic_disable = rcar_du_crtc_atomic_disable,
692 };
693 
694 static struct drm_crtc_state *
rcar_du_crtc_atomic_duplicate_state(struct drm_crtc * crtc)695 rcar_du_crtc_atomic_duplicate_state(struct drm_crtc *crtc)
696 {
697 	struct rcar_du_crtc_state *state;
698 	struct rcar_du_crtc_state *copy;
699 
700 	if (WARN_ON(!crtc->state))
701 		return NULL;
702 
703 	state = to_rcar_crtc_state(crtc->state);
704 	copy = kmemdup(state, sizeof(*state), GFP_KERNEL);
705 	if (copy == NULL)
706 		return NULL;
707 
708 	__drm_atomic_helper_crtc_duplicate_state(crtc, &copy->state);
709 
710 	return &copy->state;
711 }
712 
rcar_du_crtc_atomic_destroy_state(struct drm_crtc * crtc,struct drm_crtc_state * state)713 static void rcar_du_crtc_atomic_destroy_state(struct drm_crtc *crtc,
714 					      struct drm_crtc_state *state)
715 {
716 	__drm_atomic_helper_crtc_destroy_state(state);
717 	kfree(to_rcar_crtc_state(state));
718 }
719 
rcar_du_crtc_reset(struct drm_crtc * crtc)720 static void rcar_du_crtc_reset(struct drm_crtc *crtc)
721 {
722 	struct rcar_du_crtc_state *state;
723 
724 	if (crtc->state) {
725 		rcar_du_crtc_atomic_destroy_state(crtc, crtc->state);
726 		crtc->state = NULL;
727 	}
728 
729 	state = kzalloc(sizeof(*state), GFP_KERNEL);
730 	if (state == NULL)
731 		return;
732 
733 	state->crc.source = VSP1_DU_CRC_NONE;
734 	state->crc.index = 0;
735 
736 	crtc->state = &state->state;
737 	crtc->state->crtc = crtc;
738 }
739 
rcar_du_crtc_enable_vblank(struct drm_crtc * crtc)740 static int rcar_du_crtc_enable_vblank(struct drm_crtc *crtc)
741 {
742 	struct rcar_du_crtc *rcrtc = to_rcar_crtc(crtc);
743 
744 	rcar_du_crtc_write(rcrtc, DSRCR, DSRCR_VBCL);
745 	rcar_du_crtc_set(rcrtc, DIER, DIER_VBE);
746 	rcrtc->vblank_enable = true;
747 
748 	return 0;
749 }
750 
rcar_du_crtc_disable_vblank(struct drm_crtc * crtc)751 static void rcar_du_crtc_disable_vblank(struct drm_crtc *crtc)
752 {
753 	struct rcar_du_crtc *rcrtc = to_rcar_crtc(crtc);
754 
755 	rcar_du_crtc_clr(rcrtc, DIER, DIER_VBE);
756 	rcrtc->vblank_enable = false;
757 }
758 
rcar_du_crtc_set_crc_source(struct drm_crtc * crtc,const char * source_name,size_t * values_cnt)759 static int rcar_du_crtc_set_crc_source(struct drm_crtc *crtc,
760 				       const char *source_name,
761 				       size_t *values_cnt)
762 {
763 	struct rcar_du_crtc *rcrtc = to_rcar_crtc(crtc);
764 	struct drm_modeset_acquire_ctx ctx;
765 	struct drm_crtc_state *crtc_state;
766 	struct drm_atomic_state *state;
767 	enum vsp1_du_crc_source source;
768 	unsigned int index = 0;
769 	unsigned int i;
770 	int ret;
771 
772 	/*
773 	 * Parse the source name. Supported values are "plane%u" to compute the
774 	 * CRC on an input plane (%u is the plane ID), and "auto" to compute the
775 	 * CRC on the composer (VSP) output.
776 	 */
777 	if (!source_name) {
778 		source = VSP1_DU_CRC_NONE;
779 	} else if (!strcmp(source_name, "auto")) {
780 		source = VSP1_DU_CRC_OUTPUT;
781 	} else if (strstarts(source_name, "plane")) {
782 		source = VSP1_DU_CRC_PLANE;
783 
784 		ret = kstrtouint(source_name + strlen("plane"), 10, &index);
785 		if (ret < 0)
786 			return ret;
787 
788 		for (i = 0; i < rcrtc->vsp->num_planes; ++i) {
789 			if (index == rcrtc->vsp->planes[i].plane.base.id) {
790 				index = i;
791 				break;
792 			}
793 		}
794 
795 		if (i >= rcrtc->vsp->num_planes)
796 			return -EINVAL;
797 	} else {
798 		return -EINVAL;
799 	}
800 
801 	*values_cnt = 1;
802 
803 	/* Perform an atomic commit to set the CRC source. */
804 	drm_modeset_acquire_init(&ctx, 0);
805 
806 	state = drm_atomic_state_alloc(crtc->dev);
807 	if (!state) {
808 		ret = -ENOMEM;
809 		goto unlock;
810 	}
811 
812 	state->acquire_ctx = &ctx;
813 
814 retry:
815 	crtc_state = drm_atomic_get_crtc_state(state, crtc);
816 	if (!IS_ERR(crtc_state)) {
817 		struct rcar_du_crtc_state *rcrtc_state;
818 
819 		rcrtc_state = to_rcar_crtc_state(crtc_state);
820 		rcrtc_state->crc.source = source;
821 		rcrtc_state->crc.index = index;
822 
823 		ret = drm_atomic_commit(state);
824 	} else {
825 		ret = PTR_ERR(crtc_state);
826 	}
827 
828 	if (ret == -EDEADLK) {
829 		drm_atomic_state_clear(state);
830 		drm_modeset_backoff(&ctx);
831 		goto retry;
832 	}
833 
834 	drm_atomic_state_put(state);
835 
836 unlock:
837 	drm_modeset_drop_locks(&ctx);
838 	drm_modeset_acquire_fini(&ctx);
839 
840 	return ret;
841 }
842 
843 static const struct drm_crtc_funcs crtc_funcs_gen2 = {
844 	.reset = rcar_du_crtc_reset,
845 	.destroy = drm_crtc_cleanup,
846 	.set_config = drm_atomic_helper_set_config,
847 	.page_flip = drm_atomic_helper_page_flip,
848 	.atomic_duplicate_state = rcar_du_crtc_atomic_duplicate_state,
849 	.atomic_destroy_state = rcar_du_crtc_atomic_destroy_state,
850 	.enable_vblank = rcar_du_crtc_enable_vblank,
851 	.disable_vblank = rcar_du_crtc_disable_vblank,
852 };
853 
854 static const struct drm_crtc_funcs crtc_funcs_gen3 = {
855 	.reset = rcar_du_crtc_reset,
856 	.destroy = drm_crtc_cleanup,
857 	.set_config = drm_atomic_helper_set_config,
858 	.page_flip = drm_atomic_helper_page_flip,
859 	.atomic_duplicate_state = rcar_du_crtc_atomic_duplicate_state,
860 	.atomic_destroy_state = rcar_du_crtc_atomic_destroy_state,
861 	.enable_vblank = rcar_du_crtc_enable_vblank,
862 	.disable_vblank = rcar_du_crtc_disable_vblank,
863 	.set_crc_source = rcar_du_crtc_set_crc_source,
864 };
865 
866 /* -----------------------------------------------------------------------------
867  * Interrupt Handling
868  */
869 
rcar_du_crtc_irq(int irq,void * arg)870 static irqreturn_t rcar_du_crtc_irq(int irq, void *arg)
871 {
872 	struct rcar_du_crtc *rcrtc = arg;
873 	struct rcar_du_device *rcdu = rcrtc->group->dev;
874 	irqreturn_t ret = IRQ_NONE;
875 	u32 status;
876 
877 	spin_lock(&rcrtc->vblank_lock);
878 
879 	status = rcar_du_crtc_read(rcrtc, DSSR);
880 	rcar_du_crtc_write(rcrtc, DSRCR, status & DSRCR_MASK);
881 
882 	if (status & DSSR_VBK) {
883 		/*
884 		 * Wake up the vblank wait if the counter reaches 0. This must
885 		 * be protected by the vblank_lock to avoid races in
886 		 * rcar_du_crtc_disable_planes().
887 		 */
888 		if (rcrtc->vblank_count) {
889 			if (--rcrtc->vblank_count == 0)
890 				wake_up(&rcrtc->vblank_wait);
891 		}
892 	}
893 
894 	spin_unlock(&rcrtc->vblank_lock);
895 
896 	if (status & DSSR_VBK) {
897 		if (rcdu->info->gen < 3) {
898 			drm_crtc_handle_vblank(&rcrtc->crtc);
899 			rcar_du_crtc_finish_page_flip(rcrtc);
900 		}
901 
902 		ret = IRQ_HANDLED;
903 	}
904 
905 	return ret;
906 }
907 
908 /* -----------------------------------------------------------------------------
909  * Initialization
910  */
911 
rcar_du_crtc_create(struct rcar_du_group * rgrp,unsigned int swindex,unsigned int hwindex)912 int rcar_du_crtc_create(struct rcar_du_group *rgrp, unsigned int swindex,
913 			unsigned int hwindex)
914 {
915 	static const unsigned int mmio_offsets[] = {
916 		DU0_REG_OFFSET, DU1_REG_OFFSET, DU2_REG_OFFSET, DU3_REG_OFFSET
917 	};
918 
919 	struct rcar_du_device *rcdu = rgrp->dev;
920 	struct platform_device *pdev = to_platform_device(rcdu->dev);
921 	struct rcar_du_crtc *rcrtc = &rcdu->crtcs[swindex];
922 	struct drm_crtc *crtc = &rcrtc->crtc;
923 	struct drm_plane *primary;
924 	unsigned int irqflags;
925 	struct clk *clk;
926 	char clk_name[9];
927 	char *name;
928 	int irq;
929 	int ret;
930 
931 	/* Get the CRTC clock and the optional external clock. */
932 	if (rcar_du_has(rcdu, RCAR_DU_FEATURE_CRTC_IRQ_CLOCK)) {
933 		sprintf(clk_name, "du.%u", hwindex);
934 		name = clk_name;
935 	} else {
936 		name = NULL;
937 	}
938 
939 	rcrtc->clock = devm_clk_get(rcdu->dev, name);
940 	if (IS_ERR(rcrtc->clock)) {
941 		dev_err(rcdu->dev, "no clock for DU channel %u\n", hwindex);
942 		return PTR_ERR(rcrtc->clock);
943 	}
944 
945 	sprintf(clk_name, "dclkin.%u", hwindex);
946 	clk = devm_clk_get(rcdu->dev, clk_name);
947 	if (!IS_ERR(clk)) {
948 		rcrtc->extclock = clk;
949 	} else if (PTR_ERR(rcrtc->clock) == -EPROBE_DEFER) {
950 		dev_info(rcdu->dev, "can't get external clock %u\n", hwindex);
951 		return -EPROBE_DEFER;
952 	}
953 
954 	init_waitqueue_head(&rcrtc->flip_wait);
955 	init_waitqueue_head(&rcrtc->vblank_wait);
956 	spin_lock_init(&rcrtc->vblank_lock);
957 
958 	rcrtc->group = rgrp;
959 	rcrtc->mmio_offset = mmio_offsets[hwindex];
960 	rcrtc->index = hwindex;
961 
962 	if (rcar_du_has(rcdu, RCAR_DU_FEATURE_VSP1_SOURCE))
963 		primary = &rcrtc->vsp->planes[rcrtc->vsp_pipe].plane;
964 	else
965 		primary = &rgrp->planes[swindex % 2].plane;
966 
967 	ret = drm_crtc_init_with_planes(rcdu->ddev, crtc, primary, NULL,
968 					rcdu->info->gen <= 2 ?
969 					&crtc_funcs_gen2 : &crtc_funcs_gen3,
970 					NULL);
971 	if (ret < 0)
972 		return ret;
973 
974 	drm_crtc_helper_add(crtc, &crtc_helper_funcs);
975 
976 	/* Start with vertical blanking interrupt reporting disabled. */
977 	drm_crtc_vblank_off(crtc);
978 
979 	/* Register the interrupt handler. */
980 	if (rcar_du_has(rcdu, RCAR_DU_FEATURE_CRTC_IRQ_CLOCK)) {
981 		/* The IRQ's are associated with the CRTC (sw)index. */
982 		irq = platform_get_irq(pdev, swindex);
983 		irqflags = 0;
984 	} else {
985 		irq = platform_get_irq(pdev, 0);
986 		irqflags = IRQF_SHARED;
987 	}
988 
989 	if (irq < 0) {
990 		dev_err(rcdu->dev, "no IRQ for CRTC %u\n", swindex);
991 		return irq;
992 	}
993 
994 	ret = devm_request_irq(rcdu->dev, irq, rcar_du_crtc_irq, irqflags,
995 			       dev_name(rcdu->dev), rcrtc);
996 	if (ret < 0) {
997 		dev_err(rcdu->dev,
998 			"failed to register IRQ for CRTC %u\n", swindex);
999 		return ret;
1000 	}
1001 
1002 	return 0;
1003 }
1004