1 /*
2 * Hardware monitoring driver for PMBus devices
3 *
4 * Copyright (c) 2010, 2011 Ericsson AB.
5 * Copyright (c) 2012 Guenter Roeck
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation; either version 2 of the License, or
10 * (at your option) any later version.
11 *
12 * This program is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 * GNU General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License
18 * along with this program; if not, write to the Free Software
19 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
20 */
21
22 #include <linux/debugfs.h>
23 #include <linux/kernel.h>
24 #include <linux/math64.h>
25 #include <linux/module.h>
26 #include <linux/init.h>
27 #include <linux/err.h>
28 #include <linux/slab.h>
29 #include <linux/i2c.h>
30 #include <linux/hwmon.h>
31 #include <linux/hwmon-sysfs.h>
32 #include <linux/jiffies.h>
33 #include <linux/pmbus.h>
34 #include <linux/regulator/driver.h>
35 #include <linux/regulator/machine.h>
36 #include "pmbus.h"
37
38 /*
39 * Number of additional attribute pointers to allocate
40 * with each call to krealloc
41 */
42 #define PMBUS_ATTR_ALLOC_SIZE 32
43
44 /*
45 * Index into status register array, per status register group
46 */
47 #define PB_STATUS_BASE 0
48 #define PB_STATUS_VOUT_BASE (PB_STATUS_BASE + PMBUS_PAGES)
49 #define PB_STATUS_IOUT_BASE (PB_STATUS_VOUT_BASE + PMBUS_PAGES)
50 #define PB_STATUS_FAN_BASE (PB_STATUS_IOUT_BASE + PMBUS_PAGES)
51 #define PB_STATUS_FAN34_BASE (PB_STATUS_FAN_BASE + PMBUS_PAGES)
52 #define PB_STATUS_TEMP_BASE (PB_STATUS_FAN34_BASE + PMBUS_PAGES)
53 #define PB_STATUS_INPUT_BASE (PB_STATUS_TEMP_BASE + PMBUS_PAGES)
54 #define PB_STATUS_VMON_BASE (PB_STATUS_INPUT_BASE + 1)
55
56 #define PB_NUM_STATUS_REG (PB_STATUS_VMON_BASE + 1)
57
58 #define PMBUS_NAME_SIZE 24
59
60 struct pmbus_sensor {
61 struct pmbus_sensor *next;
62 char name[PMBUS_NAME_SIZE]; /* sysfs sensor name */
63 struct device_attribute attribute;
64 u8 page; /* page number */
65 u16 reg; /* register */
66 enum pmbus_sensor_classes class; /* sensor class */
67 bool update; /* runtime sensor update needed */
68 bool convert; /* Whether or not to apply linear/vid/direct */
69 int data; /* Sensor data.
70 Negative if there was a read error */
71 };
72 #define to_pmbus_sensor(_attr) \
73 container_of(_attr, struct pmbus_sensor, attribute)
74
75 struct pmbus_boolean {
76 char name[PMBUS_NAME_SIZE]; /* sysfs boolean name */
77 struct sensor_device_attribute attribute;
78 struct pmbus_sensor *s1;
79 struct pmbus_sensor *s2;
80 };
81 #define to_pmbus_boolean(_attr) \
82 container_of(_attr, struct pmbus_boolean, attribute)
83
84 struct pmbus_label {
85 char name[PMBUS_NAME_SIZE]; /* sysfs label name */
86 struct device_attribute attribute;
87 char label[PMBUS_NAME_SIZE]; /* label */
88 };
89 #define to_pmbus_label(_attr) \
90 container_of(_attr, struct pmbus_label, attribute)
91
92 struct pmbus_data {
93 struct device *dev;
94 struct device *hwmon_dev;
95
96 u32 flags; /* from platform data */
97
98 int exponent[PMBUS_PAGES];
99 /* linear mode: exponent for output voltages */
100
101 const struct pmbus_driver_info *info;
102
103 int max_attributes;
104 int num_attributes;
105 struct attribute_group group;
106 const struct attribute_group *groups[2];
107 struct dentry *debugfs; /* debugfs device directory */
108
109 struct pmbus_sensor *sensors;
110
111 struct mutex update_lock;
112 bool valid;
113 unsigned long last_updated; /* in jiffies */
114
115 /*
116 * A single status register covers multiple attributes,
117 * so we keep them all together.
118 */
119 u16 status[PB_NUM_STATUS_REG];
120
121 bool has_status_word; /* device uses STATUS_WORD register */
122 int (*read_status)(struct i2c_client *client, int page);
123
124 u8 currpage;
125 };
126
127 struct pmbus_debugfs_entry {
128 struct i2c_client *client;
129 u8 page;
130 u8 reg;
131 };
132
133 static const int pmbus_fan_rpm_mask[] = {
134 PB_FAN_1_RPM,
135 PB_FAN_2_RPM,
136 PB_FAN_1_RPM,
137 PB_FAN_2_RPM,
138 };
139
140 static const int pmbus_fan_config_registers[] = {
141 PMBUS_FAN_CONFIG_12,
142 PMBUS_FAN_CONFIG_12,
143 PMBUS_FAN_CONFIG_34,
144 PMBUS_FAN_CONFIG_34
145 };
146
147 static const int pmbus_fan_command_registers[] = {
148 PMBUS_FAN_COMMAND_1,
149 PMBUS_FAN_COMMAND_2,
150 PMBUS_FAN_COMMAND_3,
151 PMBUS_FAN_COMMAND_4,
152 };
153
pmbus_clear_cache(struct i2c_client * client)154 void pmbus_clear_cache(struct i2c_client *client)
155 {
156 struct pmbus_data *data = i2c_get_clientdata(client);
157
158 data->valid = false;
159 }
160 EXPORT_SYMBOL_GPL(pmbus_clear_cache);
161
pmbus_set_page(struct i2c_client * client,int page)162 int pmbus_set_page(struct i2c_client *client, int page)
163 {
164 struct pmbus_data *data = i2c_get_clientdata(client);
165 int rv;
166
167 if (page < 0 || page == data->currpage)
168 return 0;
169
170 if (!(data->info->func[page] & PMBUS_PAGE_VIRTUAL)) {
171 rv = i2c_smbus_write_byte_data(client, PMBUS_PAGE, page);
172 if (rv < 0)
173 return rv;
174
175 rv = i2c_smbus_read_byte_data(client, PMBUS_PAGE);
176 if (rv < 0)
177 return rv;
178
179 if (rv != page)
180 return -EIO;
181 }
182
183 data->currpage = page;
184
185 return 0;
186 }
187 EXPORT_SYMBOL_GPL(pmbus_set_page);
188
pmbus_write_byte(struct i2c_client * client,int page,u8 value)189 int pmbus_write_byte(struct i2c_client *client, int page, u8 value)
190 {
191 int rv;
192
193 rv = pmbus_set_page(client, page);
194 if (rv < 0)
195 return rv;
196
197 return i2c_smbus_write_byte(client, value);
198 }
199 EXPORT_SYMBOL_GPL(pmbus_write_byte);
200
201 /*
202 * _pmbus_write_byte() is similar to pmbus_write_byte(), but checks if
203 * a device specific mapping function exists and calls it if necessary.
204 */
_pmbus_write_byte(struct i2c_client * client,int page,u8 value)205 static int _pmbus_write_byte(struct i2c_client *client, int page, u8 value)
206 {
207 struct pmbus_data *data = i2c_get_clientdata(client);
208 const struct pmbus_driver_info *info = data->info;
209 int status;
210
211 if (info->write_byte) {
212 status = info->write_byte(client, page, value);
213 if (status != -ENODATA)
214 return status;
215 }
216 return pmbus_write_byte(client, page, value);
217 }
218
pmbus_write_word_data(struct i2c_client * client,int page,u8 reg,u16 word)219 int pmbus_write_word_data(struct i2c_client *client, int page, u8 reg,
220 u16 word)
221 {
222 int rv;
223
224 rv = pmbus_set_page(client, page);
225 if (rv < 0)
226 return rv;
227
228 return i2c_smbus_write_word_data(client, reg, word);
229 }
230 EXPORT_SYMBOL_GPL(pmbus_write_word_data);
231
232
pmbus_write_virt_reg(struct i2c_client * client,int page,int reg,u16 word)233 static int pmbus_write_virt_reg(struct i2c_client *client, int page, int reg,
234 u16 word)
235 {
236 int bit;
237 int id;
238 int rv;
239
240 switch (reg) {
241 case PMBUS_VIRT_FAN_TARGET_1 ... PMBUS_VIRT_FAN_TARGET_4:
242 id = reg - PMBUS_VIRT_FAN_TARGET_1;
243 bit = pmbus_fan_rpm_mask[id];
244 rv = pmbus_update_fan(client, page, id, bit, bit, word);
245 break;
246 default:
247 rv = -ENXIO;
248 break;
249 }
250
251 return rv;
252 }
253
254 /*
255 * _pmbus_write_word_data() is similar to pmbus_write_word_data(), but checks if
256 * a device specific mapping function exists and calls it if necessary.
257 */
_pmbus_write_word_data(struct i2c_client * client,int page,int reg,u16 word)258 static int _pmbus_write_word_data(struct i2c_client *client, int page, int reg,
259 u16 word)
260 {
261 struct pmbus_data *data = i2c_get_clientdata(client);
262 const struct pmbus_driver_info *info = data->info;
263 int status;
264
265 if (info->write_word_data) {
266 status = info->write_word_data(client, page, reg, word);
267 if (status != -ENODATA)
268 return status;
269 }
270
271 if (reg >= PMBUS_VIRT_BASE)
272 return pmbus_write_virt_reg(client, page, reg, word);
273
274 return pmbus_write_word_data(client, page, reg, word);
275 }
276
pmbus_update_fan(struct i2c_client * client,int page,int id,u8 config,u8 mask,u16 command)277 int pmbus_update_fan(struct i2c_client *client, int page, int id,
278 u8 config, u8 mask, u16 command)
279 {
280 int from;
281 int rv;
282 u8 to;
283
284 from = pmbus_read_byte_data(client, page,
285 pmbus_fan_config_registers[id]);
286 if (from < 0)
287 return from;
288
289 to = (from & ~mask) | (config & mask);
290 if (to != from) {
291 rv = pmbus_write_byte_data(client, page,
292 pmbus_fan_config_registers[id], to);
293 if (rv < 0)
294 return rv;
295 }
296
297 return _pmbus_write_word_data(client, page,
298 pmbus_fan_command_registers[id], command);
299 }
300 EXPORT_SYMBOL_GPL(pmbus_update_fan);
301
pmbus_read_word_data(struct i2c_client * client,int page,u8 reg)302 int pmbus_read_word_data(struct i2c_client *client, int page, u8 reg)
303 {
304 int rv;
305
306 rv = pmbus_set_page(client, page);
307 if (rv < 0)
308 return rv;
309
310 return i2c_smbus_read_word_data(client, reg);
311 }
312 EXPORT_SYMBOL_GPL(pmbus_read_word_data);
313
pmbus_read_virt_reg(struct i2c_client * client,int page,int reg)314 static int pmbus_read_virt_reg(struct i2c_client *client, int page, int reg)
315 {
316 int rv;
317 int id;
318
319 switch (reg) {
320 case PMBUS_VIRT_FAN_TARGET_1 ... PMBUS_VIRT_FAN_TARGET_4:
321 id = reg - PMBUS_VIRT_FAN_TARGET_1;
322 rv = pmbus_get_fan_rate_device(client, page, id, rpm);
323 break;
324 default:
325 rv = -ENXIO;
326 break;
327 }
328
329 return rv;
330 }
331
332 /*
333 * _pmbus_read_word_data() is similar to pmbus_read_word_data(), but checks if
334 * a device specific mapping function exists and calls it if necessary.
335 */
_pmbus_read_word_data(struct i2c_client * client,int page,int reg)336 static int _pmbus_read_word_data(struct i2c_client *client, int page, int reg)
337 {
338 struct pmbus_data *data = i2c_get_clientdata(client);
339 const struct pmbus_driver_info *info = data->info;
340 int status;
341
342 if (info->read_word_data) {
343 status = info->read_word_data(client, page, reg);
344 if (status != -ENODATA)
345 return status;
346 }
347
348 if (reg >= PMBUS_VIRT_BASE)
349 return pmbus_read_virt_reg(client, page, reg);
350
351 return pmbus_read_word_data(client, page, reg);
352 }
353
pmbus_read_byte_data(struct i2c_client * client,int page,u8 reg)354 int pmbus_read_byte_data(struct i2c_client *client, int page, u8 reg)
355 {
356 int rv;
357
358 rv = pmbus_set_page(client, page);
359 if (rv < 0)
360 return rv;
361
362 return i2c_smbus_read_byte_data(client, reg);
363 }
364 EXPORT_SYMBOL_GPL(pmbus_read_byte_data);
365
pmbus_write_byte_data(struct i2c_client * client,int page,u8 reg,u8 value)366 int pmbus_write_byte_data(struct i2c_client *client, int page, u8 reg, u8 value)
367 {
368 int rv;
369
370 rv = pmbus_set_page(client, page);
371 if (rv < 0)
372 return rv;
373
374 return i2c_smbus_write_byte_data(client, reg, value);
375 }
376 EXPORT_SYMBOL_GPL(pmbus_write_byte_data);
377
pmbus_update_byte_data(struct i2c_client * client,int page,u8 reg,u8 mask,u8 value)378 int pmbus_update_byte_data(struct i2c_client *client, int page, u8 reg,
379 u8 mask, u8 value)
380 {
381 unsigned int tmp;
382 int rv;
383
384 rv = pmbus_read_byte_data(client, page, reg);
385 if (rv < 0)
386 return rv;
387
388 tmp = (rv & ~mask) | (value & mask);
389
390 if (tmp != rv)
391 rv = pmbus_write_byte_data(client, page, reg, tmp);
392
393 return rv;
394 }
395 EXPORT_SYMBOL_GPL(pmbus_update_byte_data);
396
397 /*
398 * _pmbus_read_byte_data() is similar to pmbus_read_byte_data(), but checks if
399 * a device specific mapping function exists and calls it if necessary.
400 */
_pmbus_read_byte_data(struct i2c_client * client,int page,int reg)401 static int _pmbus_read_byte_data(struct i2c_client *client, int page, int reg)
402 {
403 struct pmbus_data *data = i2c_get_clientdata(client);
404 const struct pmbus_driver_info *info = data->info;
405 int status;
406
407 if (info->read_byte_data) {
408 status = info->read_byte_data(client, page, reg);
409 if (status != -ENODATA)
410 return status;
411 }
412 return pmbus_read_byte_data(client, page, reg);
413 }
414
pmbus_find_sensor(struct pmbus_data * data,int page,int reg)415 static struct pmbus_sensor *pmbus_find_sensor(struct pmbus_data *data, int page,
416 int reg)
417 {
418 struct pmbus_sensor *sensor;
419
420 for (sensor = data->sensors; sensor; sensor = sensor->next) {
421 if (sensor->page == page && sensor->reg == reg)
422 return sensor;
423 }
424
425 return ERR_PTR(-EINVAL);
426 }
427
pmbus_get_fan_rate(struct i2c_client * client,int page,int id,enum pmbus_fan_mode mode,bool from_cache)428 static int pmbus_get_fan_rate(struct i2c_client *client, int page, int id,
429 enum pmbus_fan_mode mode,
430 bool from_cache)
431 {
432 struct pmbus_data *data = i2c_get_clientdata(client);
433 bool want_rpm, have_rpm;
434 struct pmbus_sensor *s;
435 int config;
436 int reg;
437
438 want_rpm = (mode == rpm);
439
440 if (from_cache) {
441 reg = want_rpm ? PMBUS_VIRT_FAN_TARGET_1 : PMBUS_VIRT_PWM_1;
442 s = pmbus_find_sensor(data, page, reg + id);
443 if (IS_ERR(s))
444 return PTR_ERR(s);
445
446 return s->data;
447 }
448
449 config = pmbus_read_byte_data(client, page,
450 pmbus_fan_config_registers[id]);
451 if (config < 0)
452 return config;
453
454 have_rpm = !!(config & pmbus_fan_rpm_mask[id]);
455 if (want_rpm == have_rpm)
456 return pmbus_read_word_data(client, page,
457 pmbus_fan_command_registers[id]);
458
459 /* Can't sensibly map between RPM and PWM, just return zero */
460 return 0;
461 }
462
pmbus_get_fan_rate_device(struct i2c_client * client,int page,int id,enum pmbus_fan_mode mode)463 int pmbus_get_fan_rate_device(struct i2c_client *client, int page, int id,
464 enum pmbus_fan_mode mode)
465 {
466 return pmbus_get_fan_rate(client, page, id, mode, false);
467 }
468 EXPORT_SYMBOL_GPL(pmbus_get_fan_rate_device);
469
pmbus_get_fan_rate_cached(struct i2c_client * client,int page,int id,enum pmbus_fan_mode mode)470 int pmbus_get_fan_rate_cached(struct i2c_client *client, int page, int id,
471 enum pmbus_fan_mode mode)
472 {
473 return pmbus_get_fan_rate(client, page, id, mode, true);
474 }
475 EXPORT_SYMBOL_GPL(pmbus_get_fan_rate_cached);
476
pmbus_clear_fault_page(struct i2c_client * client,int page)477 static void pmbus_clear_fault_page(struct i2c_client *client, int page)
478 {
479 _pmbus_write_byte(client, page, PMBUS_CLEAR_FAULTS);
480 }
481
pmbus_clear_faults(struct i2c_client * client)482 void pmbus_clear_faults(struct i2c_client *client)
483 {
484 struct pmbus_data *data = i2c_get_clientdata(client);
485 int i;
486
487 for (i = 0; i < data->info->pages; i++)
488 pmbus_clear_fault_page(client, i);
489 }
490 EXPORT_SYMBOL_GPL(pmbus_clear_faults);
491
pmbus_check_status_cml(struct i2c_client * client)492 static int pmbus_check_status_cml(struct i2c_client *client)
493 {
494 struct pmbus_data *data = i2c_get_clientdata(client);
495 int status, status2;
496
497 status = data->read_status(client, -1);
498 if (status < 0 || (status & PB_STATUS_CML)) {
499 status2 = _pmbus_read_byte_data(client, -1, PMBUS_STATUS_CML);
500 if (status2 < 0 || (status2 & PB_CML_FAULT_INVALID_COMMAND))
501 return -EIO;
502 }
503 return 0;
504 }
505
pmbus_check_register(struct i2c_client * client,int (* func)(struct i2c_client * client,int page,int reg),int page,int reg)506 static bool pmbus_check_register(struct i2c_client *client,
507 int (*func)(struct i2c_client *client,
508 int page, int reg),
509 int page, int reg)
510 {
511 int rv;
512 struct pmbus_data *data = i2c_get_clientdata(client);
513
514 rv = func(client, page, reg);
515 if (rv >= 0 && !(data->flags & PMBUS_SKIP_STATUS_CHECK))
516 rv = pmbus_check_status_cml(client);
517 pmbus_clear_fault_page(client, -1);
518 return rv >= 0;
519 }
520
pmbus_check_status_register(struct i2c_client * client,int page)521 static bool pmbus_check_status_register(struct i2c_client *client, int page)
522 {
523 int status;
524 struct pmbus_data *data = i2c_get_clientdata(client);
525
526 status = data->read_status(client, page);
527 if (status >= 0 && !(data->flags & PMBUS_SKIP_STATUS_CHECK) &&
528 (status & PB_STATUS_CML)) {
529 status = _pmbus_read_byte_data(client, -1, PMBUS_STATUS_CML);
530 if (status < 0 || (status & PB_CML_FAULT_INVALID_COMMAND))
531 status = -EIO;
532 }
533
534 pmbus_clear_fault_page(client, -1);
535 return status >= 0;
536 }
537
pmbus_check_byte_register(struct i2c_client * client,int page,int reg)538 bool pmbus_check_byte_register(struct i2c_client *client, int page, int reg)
539 {
540 return pmbus_check_register(client, _pmbus_read_byte_data, page, reg);
541 }
542 EXPORT_SYMBOL_GPL(pmbus_check_byte_register);
543
pmbus_check_word_register(struct i2c_client * client,int page,int reg)544 bool pmbus_check_word_register(struct i2c_client *client, int page, int reg)
545 {
546 return pmbus_check_register(client, _pmbus_read_word_data, page, reg);
547 }
548 EXPORT_SYMBOL_GPL(pmbus_check_word_register);
549
pmbus_get_driver_info(struct i2c_client * client)550 const struct pmbus_driver_info *pmbus_get_driver_info(struct i2c_client *client)
551 {
552 struct pmbus_data *data = i2c_get_clientdata(client);
553
554 return data->info;
555 }
556 EXPORT_SYMBOL_GPL(pmbus_get_driver_info);
557
558 static struct _pmbus_status {
559 u32 func;
560 u16 base;
561 u16 reg;
562 } pmbus_status[] = {
563 { PMBUS_HAVE_STATUS_VOUT, PB_STATUS_VOUT_BASE, PMBUS_STATUS_VOUT },
564 { PMBUS_HAVE_STATUS_IOUT, PB_STATUS_IOUT_BASE, PMBUS_STATUS_IOUT },
565 { PMBUS_HAVE_STATUS_TEMP, PB_STATUS_TEMP_BASE,
566 PMBUS_STATUS_TEMPERATURE },
567 { PMBUS_HAVE_STATUS_FAN12, PB_STATUS_FAN_BASE, PMBUS_STATUS_FAN_12 },
568 { PMBUS_HAVE_STATUS_FAN34, PB_STATUS_FAN34_BASE, PMBUS_STATUS_FAN_34 },
569 };
570
pmbus_update_device(struct device * dev)571 static struct pmbus_data *pmbus_update_device(struct device *dev)
572 {
573 struct i2c_client *client = to_i2c_client(dev->parent);
574 struct pmbus_data *data = i2c_get_clientdata(client);
575 const struct pmbus_driver_info *info = data->info;
576 struct pmbus_sensor *sensor;
577
578 mutex_lock(&data->update_lock);
579 if (time_after(jiffies, data->last_updated + HZ) || !data->valid) {
580 int i, j;
581
582 for (i = 0; i < info->pages; i++) {
583 data->status[PB_STATUS_BASE + i]
584 = data->read_status(client, i);
585 for (j = 0; j < ARRAY_SIZE(pmbus_status); j++) {
586 struct _pmbus_status *s = &pmbus_status[j];
587
588 if (!(info->func[i] & s->func))
589 continue;
590 data->status[s->base + i]
591 = _pmbus_read_byte_data(client, i,
592 s->reg);
593 }
594 }
595
596 if (info->func[0] & PMBUS_HAVE_STATUS_INPUT)
597 data->status[PB_STATUS_INPUT_BASE]
598 = _pmbus_read_byte_data(client, 0,
599 PMBUS_STATUS_INPUT);
600
601 if (info->func[0] & PMBUS_HAVE_STATUS_VMON)
602 data->status[PB_STATUS_VMON_BASE]
603 = _pmbus_read_byte_data(client, 0,
604 PMBUS_VIRT_STATUS_VMON);
605
606 for (sensor = data->sensors; sensor; sensor = sensor->next) {
607 if (!data->valid || sensor->update)
608 sensor->data
609 = _pmbus_read_word_data(client,
610 sensor->page,
611 sensor->reg);
612 }
613 pmbus_clear_faults(client);
614 data->last_updated = jiffies;
615 data->valid = 1;
616 }
617 mutex_unlock(&data->update_lock);
618 return data;
619 }
620
621 /*
622 * Convert linear sensor values to milli- or micro-units
623 * depending on sensor type.
624 */
pmbus_reg2data_linear(struct pmbus_data * data,struct pmbus_sensor * sensor)625 static long pmbus_reg2data_linear(struct pmbus_data *data,
626 struct pmbus_sensor *sensor)
627 {
628 s16 exponent;
629 s32 mantissa;
630 long val;
631
632 if (sensor->class == PSC_VOLTAGE_OUT) { /* LINEAR16 */
633 exponent = data->exponent[sensor->page];
634 mantissa = (u16) sensor->data;
635 } else { /* LINEAR11 */
636 exponent = ((s16)sensor->data) >> 11;
637 mantissa = ((s16)((sensor->data & 0x7ff) << 5)) >> 5;
638 }
639
640 val = mantissa;
641
642 /* scale result to milli-units for all sensors except fans */
643 if (sensor->class != PSC_FAN)
644 val = val * 1000L;
645
646 /* scale result to micro-units for power sensors */
647 if (sensor->class == PSC_POWER)
648 val = val * 1000L;
649
650 if (exponent >= 0)
651 val <<= exponent;
652 else
653 val >>= -exponent;
654
655 return val;
656 }
657
658 /*
659 * Convert direct sensor values to milli- or micro-units
660 * depending on sensor type.
661 */
pmbus_reg2data_direct(struct pmbus_data * data,struct pmbus_sensor * sensor)662 static long pmbus_reg2data_direct(struct pmbus_data *data,
663 struct pmbus_sensor *sensor)
664 {
665 s64 b, val = (s16)sensor->data;
666 s32 m, R;
667
668 m = data->info->m[sensor->class];
669 b = data->info->b[sensor->class];
670 R = data->info->R[sensor->class];
671
672 if (m == 0)
673 return 0;
674
675 /* X = 1/m * (Y * 10^-R - b) */
676 R = -R;
677 /* scale result to milli-units for everything but fans */
678 if (!(sensor->class == PSC_FAN || sensor->class == PSC_PWM)) {
679 R += 3;
680 b *= 1000;
681 }
682
683 /* scale result to micro-units for power sensors */
684 if (sensor->class == PSC_POWER) {
685 R += 3;
686 b *= 1000;
687 }
688
689 while (R > 0) {
690 val *= 10;
691 R--;
692 }
693 while (R < 0) {
694 val = div_s64(val + 5LL, 10L); /* round closest */
695 R++;
696 }
697
698 val = div_s64(val - b, m);
699 return clamp_val(val, LONG_MIN, LONG_MAX);
700 }
701
702 /*
703 * Convert VID sensor values to milli- or micro-units
704 * depending on sensor type.
705 */
pmbus_reg2data_vid(struct pmbus_data * data,struct pmbus_sensor * sensor)706 static long pmbus_reg2data_vid(struct pmbus_data *data,
707 struct pmbus_sensor *sensor)
708 {
709 long val = sensor->data;
710 long rv = 0;
711
712 switch (data->info->vrm_version) {
713 case vr11:
714 if (val >= 0x02 && val <= 0xb2)
715 rv = DIV_ROUND_CLOSEST(160000 - (val - 2) * 625, 100);
716 break;
717 case vr12:
718 if (val >= 0x01)
719 rv = 250 + (val - 1) * 5;
720 break;
721 case vr13:
722 if (val >= 0x01)
723 rv = 500 + (val - 1) * 10;
724 break;
725 }
726 return rv;
727 }
728
pmbus_reg2data(struct pmbus_data * data,struct pmbus_sensor * sensor)729 static long pmbus_reg2data(struct pmbus_data *data, struct pmbus_sensor *sensor)
730 {
731 long val;
732
733 if (!sensor->convert)
734 return sensor->data;
735
736 switch (data->info->format[sensor->class]) {
737 case direct:
738 val = pmbus_reg2data_direct(data, sensor);
739 break;
740 case vid:
741 val = pmbus_reg2data_vid(data, sensor);
742 break;
743 case linear:
744 default:
745 val = pmbus_reg2data_linear(data, sensor);
746 break;
747 }
748 return val;
749 }
750
751 #define MAX_MANTISSA (1023 * 1000)
752 #define MIN_MANTISSA (511 * 1000)
753
pmbus_data2reg_linear(struct pmbus_data * data,struct pmbus_sensor * sensor,long val)754 static u16 pmbus_data2reg_linear(struct pmbus_data *data,
755 struct pmbus_sensor *sensor, long val)
756 {
757 s16 exponent = 0, mantissa;
758 bool negative = false;
759
760 /* simple case */
761 if (val == 0)
762 return 0;
763
764 if (sensor->class == PSC_VOLTAGE_OUT) {
765 /* LINEAR16 does not support negative voltages */
766 if (val < 0)
767 return 0;
768
769 /*
770 * For a static exponents, we don't have a choice
771 * but to adjust the value to it.
772 */
773 if (data->exponent[sensor->page] < 0)
774 val <<= -data->exponent[sensor->page];
775 else
776 val >>= data->exponent[sensor->page];
777 val = DIV_ROUND_CLOSEST(val, 1000);
778 return val & 0xffff;
779 }
780
781 if (val < 0) {
782 negative = true;
783 val = -val;
784 }
785
786 /* Power is in uW. Convert to mW before converting. */
787 if (sensor->class == PSC_POWER)
788 val = DIV_ROUND_CLOSEST(val, 1000L);
789
790 /*
791 * For simplicity, convert fan data to milli-units
792 * before calculating the exponent.
793 */
794 if (sensor->class == PSC_FAN)
795 val = val * 1000;
796
797 /* Reduce large mantissa until it fits into 10 bit */
798 while (val >= MAX_MANTISSA && exponent < 15) {
799 exponent++;
800 val >>= 1;
801 }
802 /* Increase small mantissa to improve precision */
803 while (val < MIN_MANTISSA && exponent > -15) {
804 exponent--;
805 val <<= 1;
806 }
807
808 /* Convert mantissa from milli-units to units */
809 mantissa = DIV_ROUND_CLOSEST(val, 1000);
810
811 /* Ensure that resulting number is within range */
812 if (mantissa > 0x3ff)
813 mantissa = 0x3ff;
814
815 /* restore sign */
816 if (negative)
817 mantissa = -mantissa;
818
819 /* Convert to 5 bit exponent, 11 bit mantissa */
820 return (mantissa & 0x7ff) | ((exponent << 11) & 0xf800);
821 }
822
pmbus_data2reg_direct(struct pmbus_data * data,struct pmbus_sensor * sensor,long val)823 static u16 pmbus_data2reg_direct(struct pmbus_data *data,
824 struct pmbus_sensor *sensor, long val)
825 {
826 s64 b, val64 = val;
827 s32 m, R;
828
829 m = data->info->m[sensor->class];
830 b = data->info->b[sensor->class];
831 R = data->info->R[sensor->class];
832
833 /* Power is in uW. Adjust R and b. */
834 if (sensor->class == PSC_POWER) {
835 R -= 3;
836 b *= 1000;
837 }
838
839 /* Calculate Y = (m * X + b) * 10^R */
840 if (!(sensor->class == PSC_FAN || sensor->class == PSC_PWM)) {
841 R -= 3; /* Adjust R and b for data in milli-units */
842 b *= 1000;
843 }
844 val64 = val64 * m + b;
845
846 while (R > 0) {
847 val64 *= 10;
848 R--;
849 }
850 while (R < 0) {
851 val64 = div_s64(val64 + 5LL, 10L); /* round closest */
852 R++;
853 }
854
855 return (u16)clamp_val(val64, S16_MIN, S16_MAX);
856 }
857
pmbus_data2reg_vid(struct pmbus_data * data,struct pmbus_sensor * sensor,long val)858 static u16 pmbus_data2reg_vid(struct pmbus_data *data,
859 struct pmbus_sensor *sensor, long val)
860 {
861 val = clamp_val(val, 500, 1600);
862
863 return 2 + DIV_ROUND_CLOSEST((1600 - val) * 100, 625);
864 }
865
pmbus_data2reg(struct pmbus_data * data,struct pmbus_sensor * sensor,long val)866 static u16 pmbus_data2reg(struct pmbus_data *data,
867 struct pmbus_sensor *sensor, long val)
868 {
869 u16 regval;
870
871 if (!sensor->convert)
872 return val;
873
874 switch (data->info->format[sensor->class]) {
875 case direct:
876 regval = pmbus_data2reg_direct(data, sensor, val);
877 break;
878 case vid:
879 regval = pmbus_data2reg_vid(data, sensor, val);
880 break;
881 case linear:
882 default:
883 regval = pmbus_data2reg_linear(data, sensor, val);
884 break;
885 }
886 return regval;
887 }
888
889 /*
890 * Return boolean calculated from converted data.
891 * <index> defines a status register index and mask.
892 * The mask is in the lower 8 bits, the register index is in bits 8..23.
893 *
894 * The associated pmbus_boolean structure contains optional pointers to two
895 * sensor attributes. If specified, those attributes are compared against each
896 * other to determine if a limit has been exceeded.
897 *
898 * If the sensor attribute pointers are NULL, the function returns true if
899 * (status[reg] & mask) is true.
900 *
901 * If sensor attribute pointers are provided, a comparison against a specified
902 * limit has to be performed to determine the boolean result.
903 * In this case, the function returns true if v1 >= v2 (where v1 and v2 are
904 * sensor values referenced by sensor attribute pointers s1 and s2).
905 *
906 * To determine if an object exceeds upper limits, specify <s1,s2> = <v,limit>.
907 * To determine if an object exceeds lower limits, specify <s1,s2> = <limit,v>.
908 *
909 * If a negative value is stored in any of the referenced registers, this value
910 * reflects an error code which will be returned.
911 */
pmbus_get_boolean(struct pmbus_data * data,struct pmbus_boolean * b,int index)912 static int pmbus_get_boolean(struct pmbus_data *data, struct pmbus_boolean *b,
913 int index)
914 {
915 struct pmbus_sensor *s1 = b->s1;
916 struct pmbus_sensor *s2 = b->s2;
917 u16 reg = (index >> 16) & 0xffff;
918 u16 mask = index & 0xffff;
919 int ret, status;
920 u16 regval;
921
922 status = data->status[reg];
923 if (status < 0)
924 return status;
925
926 regval = status & mask;
927 if (!s1 && !s2) {
928 ret = !!regval;
929 } else if (!s1 || !s2) {
930 WARN(1, "Bad boolean descriptor %p: s1=%p, s2=%p\n", b, s1, s2);
931 return 0;
932 } else {
933 long v1, v2;
934
935 if (s1->data < 0)
936 return s1->data;
937 if (s2->data < 0)
938 return s2->data;
939
940 v1 = pmbus_reg2data(data, s1);
941 v2 = pmbus_reg2data(data, s2);
942 ret = !!(regval && v1 >= v2);
943 }
944 return ret;
945 }
946
pmbus_show_boolean(struct device * dev,struct device_attribute * da,char * buf)947 static ssize_t pmbus_show_boolean(struct device *dev,
948 struct device_attribute *da, char *buf)
949 {
950 struct sensor_device_attribute *attr = to_sensor_dev_attr(da);
951 struct pmbus_boolean *boolean = to_pmbus_boolean(attr);
952 struct pmbus_data *data = pmbus_update_device(dev);
953 int val;
954
955 val = pmbus_get_boolean(data, boolean, attr->index);
956 if (val < 0)
957 return val;
958 return snprintf(buf, PAGE_SIZE, "%d\n", val);
959 }
960
pmbus_show_sensor(struct device * dev,struct device_attribute * devattr,char * buf)961 static ssize_t pmbus_show_sensor(struct device *dev,
962 struct device_attribute *devattr, char *buf)
963 {
964 struct pmbus_data *data = pmbus_update_device(dev);
965 struct pmbus_sensor *sensor = to_pmbus_sensor(devattr);
966
967 if (sensor->data < 0)
968 return sensor->data;
969
970 return snprintf(buf, PAGE_SIZE, "%ld\n", pmbus_reg2data(data, sensor));
971 }
972
pmbus_set_sensor(struct device * dev,struct device_attribute * devattr,const char * buf,size_t count)973 static ssize_t pmbus_set_sensor(struct device *dev,
974 struct device_attribute *devattr,
975 const char *buf, size_t count)
976 {
977 struct i2c_client *client = to_i2c_client(dev->parent);
978 struct pmbus_data *data = i2c_get_clientdata(client);
979 struct pmbus_sensor *sensor = to_pmbus_sensor(devattr);
980 ssize_t rv = count;
981 long val = 0;
982 int ret;
983 u16 regval;
984
985 if (kstrtol(buf, 10, &val) < 0)
986 return -EINVAL;
987
988 mutex_lock(&data->update_lock);
989 regval = pmbus_data2reg(data, sensor, val);
990 ret = _pmbus_write_word_data(client, sensor->page, sensor->reg, regval);
991 if (ret < 0)
992 rv = ret;
993 else
994 sensor->data = regval;
995 mutex_unlock(&data->update_lock);
996 return rv;
997 }
998
pmbus_show_label(struct device * dev,struct device_attribute * da,char * buf)999 static ssize_t pmbus_show_label(struct device *dev,
1000 struct device_attribute *da, char *buf)
1001 {
1002 struct pmbus_label *label = to_pmbus_label(da);
1003
1004 return snprintf(buf, PAGE_SIZE, "%s\n", label->label);
1005 }
1006
pmbus_add_attribute(struct pmbus_data * data,struct attribute * attr)1007 static int pmbus_add_attribute(struct pmbus_data *data, struct attribute *attr)
1008 {
1009 if (data->num_attributes >= data->max_attributes - 1) {
1010 int new_max_attrs = data->max_attributes + PMBUS_ATTR_ALLOC_SIZE;
1011 void *new_attrs = krealloc(data->group.attrs,
1012 new_max_attrs * sizeof(void *),
1013 GFP_KERNEL);
1014 if (!new_attrs)
1015 return -ENOMEM;
1016 data->group.attrs = new_attrs;
1017 data->max_attributes = new_max_attrs;
1018 }
1019
1020 data->group.attrs[data->num_attributes++] = attr;
1021 data->group.attrs[data->num_attributes] = NULL;
1022 return 0;
1023 }
1024
pmbus_dev_attr_init(struct device_attribute * dev_attr,const char * name,umode_t mode,ssize_t (* show)(struct device * dev,struct device_attribute * attr,char * buf),ssize_t (* store)(struct device * dev,struct device_attribute * attr,const char * buf,size_t count))1025 static void pmbus_dev_attr_init(struct device_attribute *dev_attr,
1026 const char *name,
1027 umode_t mode,
1028 ssize_t (*show)(struct device *dev,
1029 struct device_attribute *attr,
1030 char *buf),
1031 ssize_t (*store)(struct device *dev,
1032 struct device_attribute *attr,
1033 const char *buf, size_t count))
1034 {
1035 sysfs_attr_init(&dev_attr->attr);
1036 dev_attr->attr.name = name;
1037 dev_attr->attr.mode = mode;
1038 dev_attr->show = show;
1039 dev_attr->store = store;
1040 }
1041
pmbus_attr_init(struct sensor_device_attribute * a,const char * name,umode_t mode,ssize_t (* show)(struct device * dev,struct device_attribute * attr,char * buf),ssize_t (* store)(struct device * dev,struct device_attribute * attr,const char * buf,size_t count),int idx)1042 static void pmbus_attr_init(struct sensor_device_attribute *a,
1043 const char *name,
1044 umode_t mode,
1045 ssize_t (*show)(struct device *dev,
1046 struct device_attribute *attr,
1047 char *buf),
1048 ssize_t (*store)(struct device *dev,
1049 struct device_attribute *attr,
1050 const char *buf, size_t count),
1051 int idx)
1052 {
1053 pmbus_dev_attr_init(&a->dev_attr, name, mode, show, store);
1054 a->index = idx;
1055 }
1056
pmbus_add_boolean(struct pmbus_data * data,const char * name,const char * type,int seq,struct pmbus_sensor * s1,struct pmbus_sensor * s2,u16 reg,u16 mask)1057 static int pmbus_add_boolean(struct pmbus_data *data,
1058 const char *name, const char *type, int seq,
1059 struct pmbus_sensor *s1,
1060 struct pmbus_sensor *s2,
1061 u16 reg, u16 mask)
1062 {
1063 struct pmbus_boolean *boolean;
1064 struct sensor_device_attribute *a;
1065
1066 boolean = devm_kzalloc(data->dev, sizeof(*boolean), GFP_KERNEL);
1067 if (!boolean)
1068 return -ENOMEM;
1069
1070 a = &boolean->attribute;
1071
1072 snprintf(boolean->name, sizeof(boolean->name), "%s%d_%s",
1073 name, seq, type);
1074 boolean->s1 = s1;
1075 boolean->s2 = s2;
1076 pmbus_attr_init(a, boolean->name, S_IRUGO, pmbus_show_boolean, NULL,
1077 (reg << 16) | mask);
1078
1079 return pmbus_add_attribute(data, &a->dev_attr.attr);
1080 }
1081
pmbus_add_sensor(struct pmbus_data * data,const char * name,const char * type,int seq,int page,int reg,enum pmbus_sensor_classes class,bool update,bool readonly,bool convert)1082 static struct pmbus_sensor *pmbus_add_sensor(struct pmbus_data *data,
1083 const char *name, const char *type,
1084 int seq, int page, int reg,
1085 enum pmbus_sensor_classes class,
1086 bool update, bool readonly,
1087 bool convert)
1088 {
1089 struct pmbus_sensor *sensor;
1090 struct device_attribute *a;
1091
1092 sensor = devm_kzalloc(data->dev, sizeof(*sensor), GFP_KERNEL);
1093 if (!sensor)
1094 return NULL;
1095 a = &sensor->attribute;
1096
1097 if (type)
1098 snprintf(sensor->name, sizeof(sensor->name), "%s%d_%s",
1099 name, seq, type);
1100 else
1101 snprintf(sensor->name, sizeof(sensor->name), "%s%d",
1102 name, seq);
1103
1104 sensor->page = page;
1105 sensor->reg = reg;
1106 sensor->class = class;
1107 sensor->update = update;
1108 sensor->convert = convert;
1109 pmbus_dev_attr_init(a, sensor->name,
1110 readonly ? S_IRUGO : S_IRUGO | S_IWUSR,
1111 pmbus_show_sensor, pmbus_set_sensor);
1112
1113 if (pmbus_add_attribute(data, &a->attr))
1114 return NULL;
1115
1116 sensor->next = data->sensors;
1117 data->sensors = sensor;
1118
1119 return sensor;
1120 }
1121
pmbus_add_label(struct pmbus_data * data,const char * name,int seq,const char * lstring,int index)1122 static int pmbus_add_label(struct pmbus_data *data,
1123 const char *name, int seq,
1124 const char *lstring, int index)
1125 {
1126 struct pmbus_label *label;
1127 struct device_attribute *a;
1128
1129 label = devm_kzalloc(data->dev, sizeof(*label), GFP_KERNEL);
1130 if (!label)
1131 return -ENOMEM;
1132
1133 a = &label->attribute;
1134
1135 snprintf(label->name, sizeof(label->name), "%s%d_label", name, seq);
1136 if (!index)
1137 strncpy(label->label, lstring, sizeof(label->label) - 1);
1138 else
1139 snprintf(label->label, sizeof(label->label), "%s%d", lstring,
1140 index);
1141
1142 pmbus_dev_attr_init(a, label->name, S_IRUGO, pmbus_show_label, NULL);
1143 return pmbus_add_attribute(data, &a->attr);
1144 }
1145
1146 /*
1147 * Search for attributes. Allocate sensors, booleans, and labels as needed.
1148 */
1149
1150 /*
1151 * The pmbus_limit_attr structure describes a single limit attribute
1152 * and its associated alarm attribute.
1153 */
1154 struct pmbus_limit_attr {
1155 u16 reg; /* Limit register */
1156 u16 sbit; /* Alarm attribute status bit */
1157 bool update; /* True if register needs updates */
1158 bool low; /* True if low limit; for limits with compare
1159 functions only */
1160 const char *attr; /* Attribute name */
1161 const char *alarm; /* Alarm attribute name */
1162 };
1163
1164 /*
1165 * The pmbus_sensor_attr structure describes one sensor attribute. This
1166 * description includes a reference to the associated limit attributes.
1167 */
1168 struct pmbus_sensor_attr {
1169 u16 reg; /* sensor register */
1170 u16 gbit; /* generic status bit */
1171 u8 nlimit; /* # of limit registers */
1172 enum pmbus_sensor_classes class;/* sensor class */
1173 const char *label; /* sensor label */
1174 bool paged; /* true if paged sensor */
1175 bool update; /* true if update needed */
1176 bool compare; /* true if compare function needed */
1177 u32 func; /* sensor mask */
1178 u32 sfunc; /* sensor status mask */
1179 int sbase; /* status base register */
1180 const struct pmbus_limit_attr *limit;/* limit registers */
1181 };
1182
1183 /*
1184 * Add a set of limit attributes and, if supported, the associated
1185 * alarm attributes.
1186 * returns 0 if no alarm register found, 1 if an alarm register was found,
1187 * < 0 on errors.
1188 */
pmbus_add_limit_attrs(struct i2c_client * client,struct pmbus_data * data,const struct pmbus_driver_info * info,const char * name,int index,int page,struct pmbus_sensor * base,const struct pmbus_sensor_attr * attr)1189 static int pmbus_add_limit_attrs(struct i2c_client *client,
1190 struct pmbus_data *data,
1191 const struct pmbus_driver_info *info,
1192 const char *name, int index, int page,
1193 struct pmbus_sensor *base,
1194 const struct pmbus_sensor_attr *attr)
1195 {
1196 const struct pmbus_limit_attr *l = attr->limit;
1197 int nlimit = attr->nlimit;
1198 int have_alarm = 0;
1199 int i, ret;
1200 struct pmbus_sensor *curr;
1201
1202 for (i = 0; i < nlimit; i++) {
1203 if (pmbus_check_word_register(client, page, l->reg)) {
1204 curr = pmbus_add_sensor(data, name, l->attr, index,
1205 page, l->reg, attr->class,
1206 attr->update || l->update,
1207 false, true);
1208 if (!curr)
1209 return -ENOMEM;
1210 if (l->sbit && (info->func[page] & attr->sfunc)) {
1211 ret = pmbus_add_boolean(data, name,
1212 l->alarm, index,
1213 attr->compare ? l->low ? curr : base
1214 : NULL,
1215 attr->compare ? l->low ? base : curr
1216 : NULL,
1217 attr->sbase + page, l->sbit);
1218 if (ret)
1219 return ret;
1220 have_alarm = 1;
1221 }
1222 }
1223 l++;
1224 }
1225 return have_alarm;
1226 }
1227
pmbus_add_sensor_attrs_one(struct i2c_client * client,struct pmbus_data * data,const struct pmbus_driver_info * info,const char * name,int index,int page,const struct pmbus_sensor_attr * attr,bool paged)1228 static int pmbus_add_sensor_attrs_one(struct i2c_client *client,
1229 struct pmbus_data *data,
1230 const struct pmbus_driver_info *info,
1231 const char *name,
1232 int index, int page,
1233 const struct pmbus_sensor_attr *attr,
1234 bool paged)
1235 {
1236 struct pmbus_sensor *base;
1237 bool upper = !!(attr->gbit & 0xff00); /* need to check STATUS_WORD */
1238 int ret;
1239
1240 if (attr->label) {
1241 ret = pmbus_add_label(data, name, index, attr->label,
1242 paged ? page + 1 : 0);
1243 if (ret)
1244 return ret;
1245 }
1246 base = pmbus_add_sensor(data, name, "input", index, page, attr->reg,
1247 attr->class, true, true, true);
1248 if (!base)
1249 return -ENOMEM;
1250 if (attr->sfunc) {
1251 ret = pmbus_add_limit_attrs(client, data, info, name,
1252 index, page, base, attr);
1253 if (ret < 0)
1254 return ret;
1255 /*
1256 * Add generic alarm attribute only if there are no individual
1257 * alarm attributes, if there is a global alarm bit, and if
1258 * the generic status register (word or byte, depending on
1259 * which global bit is set) for this page is accessible.
1260 */
1261 if (!ret && attr->gbit &&
1262 (!upper || (upper && data->has_status_word)) &&
1263 pmbus_check_status_register(client, page)) {
1264 ret = pmbus_add_boolean(data, name, "alarm", index,
1265 NULL, NULL,
1266 PB_STATUS_BASE + page,
1267 attr->gbit);
1268 if (ret)
1269 return ret;
1270 }
1271 }
1272 return 0;
1273 }
1274
pmbus_sensor_is_paged(const struct pmbus_driver_info * info,const struct pmbus_sensor_attr * attr)1275 static bool pmbus_sensor_is_paged(const struct pmbus_driver_info *info,
1276 const struct pmbus_sensor_attr *attr)
1277 {
1278 int p;
1279
1280 if (attr->paged)
1281 return true;
1282
1283 /*
1284 * Some attributes may be present on more than one page despite
1285 * not being marked with the paged attribute. If that is the case,
1286 * then treat the sensor as being paged and add the page suffix to the
1287 * attribute name.
1288 * We don't just add the paged attribute to all such attributes, in
1289 * order to maintain the un-suffixed labels in the case where the
1290 * attribute is only on page 0.
1291 */
1292 for (p = 1; p < info->pages; p++) {
1293 if (info->func[p] & attr->func)
1294 return true;
1295 }
1296 return false;
1297 }
1298
pmbus_add_sensor_attrs(struct i2c_client * client,struct pmbus_data * data,const char * name,const struct pmbus_sensor_attr * attrs,int nattrs)1299 static int pmbus_add_sensor_attrs(struct i2c_client *client,
1300 struct pmbus_data *data,
1301 const char *name,
1302 const struct pmbus_sensor_attr *attrs,
1303 int nattrs)
1304 {
1305 const struct pmbus_driver_info *info = data->info;
1306 int index, i;
1307 int ret;
1308
1309 index = 1;
1310 for (i = 0; i < nattrs; i++) {
1311 int page, pages;
1312 bool paged = pmbus_sensor_is_paged(info, attrs);
1313
1314 pages = paged ? info->pages : 1;
1315 for (page = 0; page < pages; page++) {
1316 if (!(info->func[page] & attrs->func))
1317 continue;
1318 ret = pmbus_add_sensor_attrs_one(client, data, info,
1319 name, index, page,
1320 attrs, paged);
1321 if (ret)
1322 return ret;
1323 index++;
1324 }
1325 attrs++;
1326 }
1327 return 0;
1328 }
1329
1330 static const struct pmbus_limit_attr vin_limit_attrs[] = {
1331 {
1332 .reg = PMBUS_VIN_UV_WARN_LIMIT,
1333 .attr = "min",
1334 .alarm = "min_alarm",
1335 .sbit = PB_VOLTAGE_UV_WARNING,
1336 }, {
1337 .reg = PMBUS_VIN_UV_FAULT_LIMIT,
1338 .attr = "lcrit",
1339 .alarm = "lcrit_alarm",
1340 .sbit = PB_VOLTAGE_UV_FAULT,
1341 }, {
1342 .reg = PMBUS_VIN_OV_WARN_LIMIT,
1343 .attr = "max",
1344 .alarm = "max_alarm",
1345 .sbit = PB_VOLTAGE_OV_WARNING,
1346 }, {
1347 .reg = PMBUS_VIN_OV_FAULT_LIMIT,
1348 .attr = "crit",
1349 .alarm = "crit_alarm",
1350 .sbit = PB_VOLTAGE_OV_FAULT,
1351 }, {
1352 .reg = PMBUS_VIRT_READ_VIN_AVG,
1353 .update = true,
1354 .attr = "average",
1355 }, {
1356 .reg = PMBUS_VIRT_READ_VIN_MIN,
1357 .update = true,
1358 .attr = "lowest",
1359 }, {
1360 .reg = PMBUS_VIRT_READ_VIN_MAX,
1361 .update = true,
1362 .attr = "highest",
1363 }, {
1364 .reg = PMBUS_VIRT_RESET_VIN_HISTORY,
1365 .attr = "reset_history",
1366 },
1367 };
1368
1369 static const struct pmbus_limit_attr vmon_limit_attrs[] = {
1370 {
1371 .reg = PMBUS_VIRT_VMON_UV_WARN_LIMIT,
1372 .attr = "min",
1373 .alarm = "min_alarm",
1374 .sbit = PB_VOLTAGE_UV_WARNING,
1375 }, {
1376 .reg = PMBUS_VIRT_VMON_UV_FAULT_LIMIT,
1377 .attr = "lcrit",
1378 .alarm = "lcrit_alarm",
1379 .sbit = PB_VOLTAGE_UV_FAULT,
1380 }, {
1381 .reg = PMBUS_VIRT_VMON_OV_WARN_LIMIT,
1382 .attr = "max",
1383 .alarm = "max_alarm",
1384 .sbit = PB_VOLTAGE_OV_WARNING,
1385 }, {
1386 .reg = PMBUS_VIRT_VMON_OV_FAULT_LIMIT,
1387 .attr = "crit",
1388 .alarm = "crit_alarm",
1389 .sbit = PB_VOLTAGE_OV_FAULT,
1390 }
1391 };
1392
1393 static const struct pmbus_limit_attr vout_limit_attrs[] = {
1394 {
1395 .reg = PMBUS_VOUT_UV_WARN_LIMIT,
1396 .attr = "min",
1397 .alarm = "min_alarm",
1398 .sbit = PB_VOLTAGE_UV_WARNING,
1399 }, {
1400 .reg = PMBUS_VOUT_UV_FAULT_LIMIT,
1401 .attr = "lcrit",
1402 .alarm = "lcrit_alarm",
1403 .sbit = PB_VOLTAGE_UV_FAULT,
1404 }, {
1405 .reg = PMBUS_VOUT_OV_WARN_LIMIT,
1406 .attr = "max",
1407 .alarm = "max_alarm",
1408 .sbit = PB_VOLTAGE_OV_WARNING,
1409 }, {
1410 .reg = PMBUS_VOUT_OV_FAULT_LIMIT,
1411 .attr = "crit",
1412 .alarm = "crit_alarm",
1413 .sbit = PB_VOLTAGE_OV_FAULT,
1414 }, {
1415 .reg = PMBUS_VIRT_READ_VOUT_AVG,
1416 .update = true,
1417 .attr = "average",
1418 }, {
1419 .reg = PMBUS_VIRT_READ_VOUT_MIN,
1420 .update = true,
1421 .attr = "lowest",
1422 }, {
1423 .reg = PMBUS_VIRT_READ_VOUT_MAX,
1424 .update = true,
1425 .attr = "highest",
1426 }, {
1427 .reg = PMBUS_VIRT_RESET_VOUT_HISTORY,
1428 .attr = "reset_history",
1429 }
1430 };
1431
1432 static const struct pmbus_sensor_attr voltage_attributes[] = {
1433 {
1434 .reg = PMBUS_READ_VIN,
1435 .class = PSC_VOLTAGE_IN,
1436 .label = "vin",
1437 .func = PMBUS_HAVE_VIN,
1438 .sfunc = PMBUS_HAVE_STATUS_INPUT,
1439 .sbase = PB_STATUS_INPUT_BASE,
1440 .gbit = PB_STATUS_VIN_UV,
1441 .limit = vin_limit_attrs,
1442 .nlimit = ARRAY_SIZE(vin_limit_attrs),
1443 }, {
1444 .reg = PMBUS_VIRT_READ_VMON,
1445 .class = PSC_VOLTAGE_IN,
1446 .label = "vmon",
1447 .func = PMBUS_HAVE_VMON,
1448 .sfunc = PMBUS_HAVE_STATUS_VMON,
1449 .sbase = PB_STATUS_VMON_BASE,
1450 .limit = vmon_limit_attrs,
1451 .nlimit = ARRAY_SIZE(vmon_limit_attrs),
1452 }, {
1453 .reg = PMBUS_READ_VCAP,
1454 .class = PSC_VOLTAGE_IN,
1455 .label = "vcap",
1456 .func = PMBUS_HAVE_VCAP,
1457 }, {
1458 .reg = PMBUS_READ_VOUT,
1459 .class = PSC_VOLTAGE_OUT,
1460 .label = "vout",
1461 .paged = true,
1462 .func = PMBUS_HAVE_VOUT,
1463 .sfunc = PMBUS_HAVE_STATUS_VOUT,
1464 .sbase = PB_STATUS_VOUT_BASE,
1465 .gbit = PB_STATUS_VOUT_OV,
1466 .limit = vout_limit_attrs,
1467 .nlimit = ARRAY_SIZE(vout_limit_attrs),
1468 }
1469 };
1470
1471 /* Current attributes */
1472
1473 static const struct pmbus_limit_attr iin_limit_attrs[] = {
1474 {
1475 .reg = PMBUS_IIN_OC_WARN_LIMIT,
1476 .attr = "max",
1477 .alarm = "max_alarm",
1478 .sbit = PB_IIN_OC_WARNING,
1479 }, {
1480 .reg = PMBUS_IIN_OC_FAULT_LIMIT,
1481 .attr = "crit",
1482 .alarm = "crit_alarm",
1483 .sbit = PB_IIN_OC_FAULT,
1484 }, {
1485 .reg = PMBUS_VIRT_READ_IIN_AVG,
1486 .update = true,
1487 .attr = "average",
1488 }, {
1489 .reg = PMBUS_VIRT_READ_IIN_MIN,
1490 .update = true,
1491 .attr = "lowest",
1492 }, {
1493 .reg = PMBUS_VIRT_READ_IIN_MAX,
1494 .update = true,
1495 .attr = "highest",
1496 }, {
1497 .reg = PMBUS_VIRT_RESET_IIN_HISTORY,
1498 .attr = "reset_history",
1499 }
1500 };
1501
1502 static const struct pmbus_limit_attr iout_limit_attrs[] = {
1503 {
1504 .reg = PMBUS_IOUT_OC_WARN_LIMIT,
1505 .attr = "max",
1506 .alarm = "max_alarm",
1507 .sbit = PB_IOUT_OC_WARNING,
1508 }, {
1509 .reg = PMBUS_IOUT_UC_FAULT_LIMIT,
1510 .attr = "lcrit",
1511 .alarm = "lcrit_alarm",
1512 .sbit = PB_IOUT_UC_FAULT,
1513 }, {
1514 .reg = PMBUS_IOUT_OC_FAULT_LIMIT,
1515 .attr = "crit",
1516 .alarm = "crit_alarm",
1517 .sbit = PB_IOUT_OC_FAULT,
1518 }, {
1519 .reg = PMBUS_VIRT_READ_IOUT_AVG,
1520 .update = true,
1521 .attr = "average",
1522 }, {
1523 .reg = PMBUS_VIRT_READ_IOUT_MIN,
1524 .update = true,
1525 .attr = "lowest",
1526 }, {
1527 .reg = PMBUS_VIRT_READ_IOUT_MAX,
1528 .update = true,
1529 .attr = "highest",
1530 }, {
1531 .reg = PMBUS_VIRT_RESET_IOUT_HISTORY,
1532 .attr = "reset_history",
1533 }
1534 };
1535
1536 static const struct pmbus_sensor_attr current_attributes[] = {
1537 {
1538 .reg = PMBUS_READ_IIN,
1539 .class = PSC_CURRENT_IN,
1540 .label = "iin",
1541 .func = PMBUS_HAVE_IIN,
1542 .sfunc = PMBUS_HAVE_STATUS_INPUT,
1543 .sbase = PB_STATUS_INPUT_BASE,
1544 .gbit = PB_STATUS_INPUT,
1545 .limit = iin_limit_attrs,
1546 .nlimit = ARRAY_SIZE(iin_limit_attrs),
1547 }, {
1548 .reg = PMBUS_READ_IOUT,
1549 .class = PSC_CURRENT_OUT,
1550 .label = "iout",
1551 .paged = true,
1552 .func = PMBUS_HAVE_IOUT,
1553 .sfunc = PMBUS_HAVE_STATUS_IOUT,
1554 .sbase = PB_STATUS_IOUT_BASE,
1555 .gbit = PB_STATUS_IOUT_OC,
1556 .limit = iout_limit_attrs,
1557 .nlimit = ARRAY_SIZE(iout_limit_attrs),
1558 }
1559 };
1560
1561 /* Power attributes */
1562
1563 static const struct pmbus_limit_attr pin_limit_attrs[] = {
1564 {
1565 .reg = PMBUS_PIN_OP_WARN_LIMIT,
1566 .attr = "max",
1567 .alarm = "alarm",
1568 .sbit = PB_PIN_OP_WARNING,
1569 }, {
1570 .reg = PMBUS_VIRT_READ_PIN_AVG,
1571 .update = true,
1572 .attr = "average",
1573 }, {
1574 .reg = PMBUS_VIRT_READ_PIN_MIN,
1575 .update = true,
1576 .attr = "input_lowest",
1577 }, {
1578 .reg = PMBUS_VIRT_READ_PIN_MAX,
1579 .update = true,
1580 .attr = "input_highest",
1581 }, {
1582 .reg = PMBUS_VIRT_RESET_PIN_HISTORY,
1583 .attr = "reset_history",
1584 }
1585 };
1586
1587 static const struct pmbus_limit_attr pout_limit_attrs[] = {
1588 {
1589 .reg = PMBUS_POUT_MAX,
1590 .attr = "cap",
1591 .alarm = "cap_alarm",
1592 .sbit = PB_POWER_LIMITING,
1593 }, {
1594 .reg = PMBUS_POUT_OP_WARN_LIMIT,
1595 .attr = "max",
1596 .alarm = "max_alarm",
1597 .sbit = PB_POUT_OP_WARNING,
1598 }, {
1599 .reg = PMBUS_POUT_OP_FAULT_LIMIT,
1600 .attr = "crit",
1601 .alarm = "crit_alarm",
1602 .sbit = PB_POUT_OP_FAULT,
1603 }, {
1604 .reg = PMBUS_VIRT_READ_POUT_AVG,
1605 .update = true,
1606 .attr = "average",
1607 }, {
1608 .reg = PMBUS_VIRT_READ_POUT_MIN,
1609 .update = true,
1610 .attr = "input_lowest",
1611 }, {
1612 .reg = PMBUS_VIRT_READ_POUT_MAX,
1613 .update = true,
1614 .attr = "input_highest",
1615 }, {
1616 .reg = PMBUS_VIRT_RESET_POUT_HISTORY,
1617 .attr = "reset_history",
1618 }
1619 };
1620
1621 static const struct pmbus_sensor_attr power_attributes[] = {
1622 {
1623 .reg = PMBUS_READ_PIN,
1624 .class = PSC_POWER,
1625 .label = "pin",
1626 .func = PMBUS_HAVE_PIN,
1627 .sfunc = PMBUS_HAVE_STATUS_INPUT,
1628 .sbase = PB_STATUS_INPUT_BASE,
1629 .gbit = PB_STATUS_INPUT,
1630 .limit = pin_limit_attrs,
1631 .nlimit = ARRAY_SIZE(pin_limit_attrs),
1632 }, {
1633 .reg = PMBUS_READ_POUT,
1634 .class = PSC_POWER,
1635 .label = "pout",
1636 .paged = true,
1637 .func = PMBUS_HAVE_POUT,
1638 .sfunc = PMBUS_HAVE_STATUS_IOUT,
1639 .sbase = PB_STATUS_IOUT_BASE,
1640 .limit = pout_limit_attrs,
1641 .nlimit = ARRAY_SIZE(pout_limit_attrs),
1642 }
1643 };
1644
1645 /* Temperature atributes */
1646
1647 static const struct pmbus_limit_attr temp_limit_attrs[] = {
1648 {
1649 .reg = PMBUS_UT_WARN_LIMIT,
1650 .low = true,
1651 .attr = "min",
1652 .alarm = "min_alarm",
1653 .sbit = PB_TEMP_UT_WARNING,
1654 }, {
1655 .reg = PMBUS_UT_FAULT_LIMIT,
1656 .low = true,
1657 .attr = "lcrit",
1658 .alarm = "lcrit_alarm",
1659 .sbit = PB_TEMP_UT_FAULT,
1660 }, {
1661 .reg = PMBUS_OT_WARN_LIMIT,
1662 .attr = "max",
1663 .alarm = "max_alarm",
1664 .sbit = PB_TEMP_OT_WARNING,
1665 }, {
1666 .reg = PMBUS_OT_FAULT_LIMIT,
1667 .attr = "crit",
1668 .alarm = "crit_alarm",
1669 .sbit = PB_TEMP_OT_FAULT,
1670 }, {
1671 .reg = PMBUS_VIRT_READ_TEMP_MIN,
1672 .attr = "lowest",
1673 }, {
1674 .reg = PMBUS_VIRT_READ_TEMP_AVG,
1675 .attr = "average",
1676 }, {
1677 .reg = PMBUS_VIRT_READ_TEMP_MAX,
1678 .attr = "highest",
1679 }, {
1680 .reg = PMBUS_VIRT_RESET_TEMP_HISTORY,
1681 .attr = "reset_history",
1682 }
1683 };
1684
1685 static const struct pmbus_limit_attr temp_limit_attrs2[] = {
1686 {
1687 .reg = PMBUS_UT_WARN_LIMIT,
1688 .low = true,
1689 .attr = "min",
1690 .alarm = "min_alarm",
1691 .sbit = PB_TEMP_UT_WARNING,
1692 }, {
1693 .reg = PMBUS_UT_FAULT_LIMIT,
1694 .low = true,
1695 .attr = "lcrit",
1696 .alarm = "lcrit_alarm",
1697 .sbit = PB_TEMP_UT_FAULT,
1698 }, {
1699 .reg = PMBUS_OT_WARN_LIMIT,
1700 .attr = "max",
1701 .alarm = "max_alarm",
1702 .sbit = PB_TEMP_OT_WARNING,
1703 }, {
1704 .reg = PMBUS_OT_FAULT_LIMIT,
1705 .attr = "crit",
1706 .alarm = "crit_alarm",
1707 .sbit = PB_TEMP_OT_FAULT,
1708 }, {
1709 .reg = PMBUS_VIRT_READ_TEMP2_MIN,
1710 .attr = "lowest",
1711 }, {
1712 .reg = PMBUS_VIRT_READ_TEMP2_AVG,
1713 .attr = "average",
1714 }, {
1715 .reg = PMBUS_VIRT_READ_TEMP2_MAX,
1716 .attr = "highest",
1717 }, {
1718 .reg = PMBUS_VIRT_RESET_TEMP2_HISTORY,
1719 .attr = "reset_history",
1720 }
1721 };
1722
1723 static const struct pmbus_limit_attr temp_limit_attrs3[] = {
1724 {
1725 .reg = PMBUS_UT_WARN_LIMIT,
1726 .low = true,
1727 .attr = "min",
1728 .alarm = "min_alarm",
1729 .sbit = PB_TEMP_UT_WARNING,
1730 }, {
1731 .reg = PMBUS_UT_FAULT_LIMIT,
1732 .low = true,
1733 .attr = "lcrit",
1734 .alarm = "lcrit_alarm",
1735 .sbit = PB_TEMP_UT_FAULT,
1736 }, {
1737 .reg = PMBUS_OT_WARN_LIMIT,
1738 .attr = "max",
1739 .alarm = "max_alarm",
1740 .sbit = PB_TEMP_OT_WARNING,
1741 }, {
1742 .reg = PMBUS_OT_FAULT_LIMIT,
1743 .attr = "crit",
1744 .alarm = "crit_alarm",
1745 .sbit = PB_TEMP_OT_FAULT,
1746 }
1747 };
1748
1749 static const struct pmbus_sensor_attr temp_attributes[] = {
1750 {
1751 .reg = PMBUS_READ_TEMPERATURE_1,
1752 .class = PSC_TEMPERATURE,
1753 .paged = true,
1754 .update = true,
1755 .compare = true,
1756 .func = PMBUS_HAVE_TEMP,
1757 .sfunc = PMBUS_HAVE_STATUS_TEMP,
1758 .sbase = PB_STATUS_TEMP_BASE,
1759 .gbit = PB_STATUS_TEMPERATURE,
1760 .limit = temp_limit_attrs,
1761 .nlimit = ARRAY_SIZE(temp_limit_attrs),
1762 }, {
1763 .reg = PMBUS_READ_TEMPERATURE_2,
1764 .class = PSC_TEMPERATURE,
1765 .paged = true,
1766 .update = true,
1767 .compare = true,
1768 .func = PMBUS_HAVE_TEMP2,
1769 .sfunc = PMBUS_HAVE_STATUS_TEMP,
1770 .sbase = PB_STATUS_TEMP_BASE,
1771 .gbit = PB_STATUS_TEMPERATURE,
1772 .limit = temp_limit_attrs2,
1773 .nlimit = ARRAY_SIZE(temp_limit_attrs2),
1774 }, {
1775 .reg = PMBUS_READ_TEMPERATURE_3,
1776 .class = PSC_TEMPERATURE,
1777 .paged = true,
1778 .update = true,
1779 .compare = true,
1780 .func = PMBUS_HAVE_TEMP3,
1781 .sfunc = PMBUS_HAVE_STATUS_TEMP,
1782 .sbase = PB_STATUS_TEMP_BASE,
1783 .gbit = PB_STATUS_TEMPERATURE,
1784 .limit = temp_limit_attrs3,
1785 .nlimit = ARRAY_SIZE(temp_limit_attrs3),
1786 }
1787 };
1788
1789 static const int pmbus_fan_registers[] = {
1790 PMBUS_READ_FAN_SPEED_1,
1791 PMBUS_READ_FAN_SPEED_2,
1792 PMBUS_READ_FAN_SPEED_3,
1793 PMBUS_READ_FAN_SPEED_4
1794 };
1795
1796 static const int pmbus_fan_status_registers[] = {
1797 PMBUS_STATUS_FAN_12,
1798 PMBUS_STATUS_FAN_12,
1799 PMBUS_STATUS_FAN_34,
1800 PMBUS_STATUS_FAN_34
1801 };
1802
1803 static const u32 pmbus_fan_flags[] = {
1804 PMBUS_HAVE_FAN12,
1805 PMBUS_HAVE_FAN12,
1806 PMBUS_HAVE_FAN34,
1807 PMBUS_HAVE_FAN34
1808 };
1809
1810 static const u32 pmbus_fan_status_flags[] = {
1811 PMBUS_HAVE_STATUS_FAN12,
1812 PMBUS_HAVE_STATUS_FAN12,
1813 PMBUS_HAVE_STATUS_FAN34,
1814 PMBUS_HAVE_STATUS_FAN34
1815 };
1816
1817 /* Fans */
1818
1819 /* Precondition: FAN_CONFIG_x_y and FAN_COMMAND_x must exist for the fan ID */
pmbus_add_fan_ctrl(struct i2c_client * client,struct pmbus_data * data,int index,int page,int id,u8 config)1820 static int pmbus_add_fan_ctrl(struct i2c_client *client,
1821 struct pmbus_data *data, int index, int page, int id,
1822 u8 config)
1823 {
1824 struct pmbus_sensor *sensor;
1825
1826 sensor = pmbus_add_sensor(data, "fan", "target", index, page,
1827 PMBUS_VIRT_FAN_TARGET_1 + id, PSC_FAN,
1828 false, false, true);
1829
1830 if (!sensor)
1831 return -ENOMEM;
1832
1833 if (!((data->info->func[page] & PMBUS_HAVE_PWM12) ||
1834 (data->info->func[page] & PMBUS_HAVE_PWM34)))
1835 return 0;
1836
1837 sensor = pmbus_add_sensor(data, "pwm", NULL, index, page,
1838 PMBUS_VIRT_PWM_1 + id, PSC_PWM,
1839 false, false, true);
1840
1841 if (!sensor)
1842 return -ENOMEM;
1843
1844 sensor = pmbus_add_sensor(data, "pwm", "enable", index, page,
1845 PMBUS_VIRT_PWM_ENABLE_1 + id, PSC_PWM,
1846 true, false, false);
1847
1848 if (!sensor)
1849 return -ENOMEM;
1850
1851 return 0;
1852 }
1853
pmbus_add_fan_attributes(struct i2c_client * client,struct pmbus_data * data)1854 static int pmbus_add_fan_attributes(struct i2c_client *client,
1855 struct pmbus_data *data)
1856 {
1857 const struct pmbus_driver_info *info = data->info;
1858 int index = 1;
1859 int page;
1860 int ret;
1861
1862 for (page = 0; page < info->pages; page++) {
1863 int f;
1864
1865 for (f = 0; f < ARRAY_SIZE(pmbus_fan_registers); f++) {
1866 int regval;
1867
1868 if (!(info->func[page] & pmbus_fan_flags[f]))
1869 break;
1870
1871 if (!pmbus_check_word_register(client, page,
1872 pmbus_fan_registers[f]))
1873 break;
1874
1875 /*
1876 * Skip fan if not installed.
1877 * Each fan configuration register covers multiple fans,
1878 * so we have to do some magic.
1879 */
1880 regval = _pmbus_read_byte_data(client, page,
1881 pmbus_fan_config_registers[f]);
1882 if (regval < 0 ||
1883 (!(regval & (PB_FAN_1_INSTALLED >> ((f & 1) * 4)))))
1884 continue;
1885
1886 if (pmbus_add_sensor(data, "fan", "input", index,
1887 page, pmbus_fan_registers[f],
1888 PSC_FAN, true, true, true) == NULL)
1889 return -ENOMEM;
1890
1891 /* Fan control */
1892 if (pmbus_check_word_register(client, page,
1893 pmbus_fan_command_registers[f])) {
1894 ret = pmbus_add_fan_ctrl(client, data, index,
1895 page, f, regval);
1896 if (ret < 0)
1897 return ret;
1898 }
1899
1900 /*
1901 * Each fan status register covers multiple fans,
1902 * so we have to do some magic.
1903 */
1904 if ((info->func[page] & pmbus_fan_status_flags[f]) &&
1905 pmbus_check_byte_register(client,
1906 page, pmbus_fan_status_registers[f])) {
1907 int base;
1908
1909 if (f > 1) /* fan 3, 4 */
1910 base = PB_STATUS_FAN34_BASE + page;
1911 else
1912 base = PB_STATUS_FAN_BASE + page;
1913 ret = pmbus_add_boolean(data, "fan",
1914 "alarm", index, NULL, NULL, base,
1915 PB_FAN_FAN1_WARNING >> (f & 1));
1916 if (ret)
1917 return ret;
1918 ret = pmbus_add_boolean(data, "fan",
1919 "fault", index, NULL, NULL, base,
1920 PB_FAN_FAN1_FAULT >> (f & 1));
1921 if (ret)
1922 return ret;
1923 }
1924 index++;
1925 }
1926 }
1927 return 0;
1928 }
1929
pmbus_find_attributes(struct i2c_client * client,struct pmbus_data * data)1930 static int pmbus_find_attributes(struct i2c_client *client,
1931 struct pmbus_data *data)
1932 {
1933 int ret;
1934
1935 /* Voltage sensors */
1936 ret = pmbus_add_sensor_attrs(client, data, "in", voltage_attributes,
1937 ARRAY_SIZE(voltage_attributes));
1938 if (ret)
1939 return ret;
1940
1941 /* Current sensors */
1942 ret = pmbus_add_sensor_attrs(client, data, "curr", current_attributes,
1943 ARRAY_SIZE(current_attributes));
1944 if (ret)
1945 return ret;
1946
1947 /* Power sensors */
1948 ret = pmbus_add_sensor_attrs(client, data, "power", power_attributes,
1949 ARRAY_SIZE(power_attributes));
1950 if (ret)
1951 return ret;
1952
1953 /* Temperature sensors */
1954 ret = pmbus_add_sensor_attrs(client, data, "temp", temp_attributes,
1955 ARRAY_SIZE(temp_attributes));
1956 if (ret)
1957 return ret;
1958
1959 /* Fans */
1960 ret = pmbus_add_fan_attributes(client, data);
1961 return ret;
1962 }
1963
1964 /*
1965 * Identify chip parameters.
1966 * This function is called for all chips.
1967 */
pmbus_identify_common(struct i2c_client * client,struct pmbus_data * data,int page)1968 static int pmbus_identify_common(struct i2c_client *client,
1969 struct pmbus_data *data, int page)
1970 {
1971 int vout_mode = -1;
1972
1973 if (pmbus_check_byte_register(client, page, PMBUS_VOUT_MODE))
1974 vout_mode = _pmbus_read_byte_data(client, page,
1975 PMBUS_VOUT_MODE);
1976 if (vout_mode >= 0 && vout_mode != 0xff) {
1977 /*
1978 * Not all chips support the VOUT_MODE command,
1979 * so a failure to read it is not an error.
1980 */
1981 switch (vout_mode >> 5) {
1982 case 0: /* linear mode */
1983 if (data->info->format[PSC_VOLTAGE_OUT] != linear)
1984 return -ENODEV;
1985
1986 data->exponent[page] = ((s8)(vout_mode << 3)) >> 3;
1987 break;
1988 case 1: /* VID mode */
1989 if (data->info->format[PSC_VOLTAGE_OUT] != vid)
1990 return -ENODEV;
1991 break;
1992 case 2: /* direct mode */
1993 if (data->info->format[PSC_VOLTAGE_OUT] != direct)
1994 return -ENODEV;
1995 break;
1996 default:
1997 return -ENODEV;
1998 }
1999 }
2000
2001 pmbus_clear_fault_page(client, page);
2002 return 0;
2003 }
2004
pmbus_read_status_byte(struct i2c_client * client,int page)2005 static int pmbus_read_status_byte(struct i2c_client *client, int page)
2006 {
2007 return _pmbus_read_byte_data(client, page, PMBUS_STATUS_BYTE);
2008 }
2009
pmbus_read_status_word(struct i2c_client * client,int page)2010 static int pmbus_read_status_word(struct i2c_client *client, int page)
2011 {
2012 return _pmbus_read_word_data(client, page, PMBUS_STATUS_WORD);
2013 }
2014
pmbus_init_common(struct i2c_client * client,struct pmbus_data * data,struct pmbus_driver_info * info)2015 static int pmbus_init_common(struct i2c_client *client, struct pmbus_data *data,
2016 struct pmbus_driver_info *info)
2017 {
2018 struct device *dev = &client->dev;
2019 int page, ret;
2020
2021 /*
2022 * Some PMBus chips don't support PMBUS_STATUS_WORD, so try
2023 * to use PMBUS_STATUS_BYTE instead if that is the case.
2024 * Bail out if both registers are not supported.
2025 */
2026 data->read_status = pmbus_read_status_word;
2027 ret = i2c_smbus_read_word_data(client, PMBUS_STATUS_WORD);
2028 if (ret < 0 || ret == 0xffff) {
2029 data->read_status = pmbus_read_status_byte;
2030 ret = i2c_smbus_read_byte_data(client, PMBUS_STATUS_BYTE);
2031 if (ret < 0 || ret == 0xff) {
2032 dev_err(dev, "PMBus status register not found\n");
2033 return -ENODEV;
2034 }
2035 } else {
2036 data->has_status_word = true;
2037 }
2038
2039 /* Enable PEC if the controller supports it */
2040 ret = i2c_smbus_read_byte_data(client, PMBUS_CAPABILITY);
2041 if (ret >= 0 && (ret & PB_CAPABILITY_ERROR_CHECK))
2042 client->flags |= I2C_CLIENT_PEC;
2043
2044 if (data->info->pages)
2045 pmbus_clear_faults(client);
2046 else
2047 pmbus_clear_fault_page(client, -1);
2048
2049 if (info->identify) {
2050 ret = (*info->identify)(client, info);
2051 if (ret < 0) {
2052 dev_err(dev, "Chip identification failed\n");
2053 return ret;
2054 }
2055 }
2056
2057 if (info->pages <= 0 || info->pages > PMBUS_PAGES) {
2058 dev_err(dev, "Bad number of PMBus pages: %d\n", info->pages);
2059 return -ENODEV;
2060 }
2061
2062 for (page = 0; page < info->pages; page++) {
2063 ret = pmbus_identify_common(client, data, page);
2064 if (ret < 0) {
2065 dev_err(dev, "Failed to identify chip capabilities\n");
2066 return ret;
2067 }
2068 }
2069 return 0;
2070 }
2071
2072 #if IS_ENABLED(CONFIG_REGULATOR)
pmbus_regulator_is_enabled(struct regulator_dev * rdev)2073 static int pmbus_regulator_is_enabled(struct regulator_dev *rdev)
2074 {
2075 struct device *dev = rdev_get_dev(rdev);
2076 struct i2c_client *client = to_i2c_client(dev->parent);
2077 u8 page = rdev_get_id(rdev);
2078 int ret;
2079
2080 ret = pmbus_read_byte_data(client, page, PMBUS_OPERATION);
2081 if (ret < 0)
2082 return ret;
2083
2084 return !!(ret & PB_OPERATION_CONTROL_ON);
2085 }
2086
_pmbus_regulator_on_off(struct regulator_dev * rdev,bool enable)2087 static int _pmbus_regulator_on_off(struct regulator_dev *rdev, bool enable)
2088 {
2089 struct device *dev = rdev_get_dev(rdev);
2090 struct i2c_client *client = to_i2c_client(dev->parent);
2091 u8 page = rdev_get_id(rdev);
2092
2093 return pmbus_update_byte_data(client, page, PMBUS_OPERATION,
2094 PB_OPERATION_CONTROL_ON,
2095 enable ? PB_OPERATION_CONTROL_ON : 0);
2096 }
2097
pmbus_regulator_enable(struct regulator_dev * rdev)2098 static int pmbus_regulator_enable(struct regulator_dev *rdev)
2099 {
2100 return _pmbus_regulator_on_off(rdev, 1);
2101 }
2102
pmbus_regulator_disable(struct regulator_dev * rdev)2103 static int pmbus_regulator_disable(struct regulator_dev *rdev)
2104 {
2105 return _pmbus_regulator_on_off(rdev, 0);
2106 }
2107
2108 const struct regulator_ops pmbus_regulator_ops = {
2109 .enable = pmbus_regulator_enable,
2110 .disable = pmbus_regulator_disable,
2111 .is_enabled = pmbus_regulator_is_enabled,
2112 };
2113 EXPORT_SYMBOL_GPL(pmbus_regulator_ops);
2114
pmbus_regulator_register(struct pmbus_data * data)2115 static int pmbus_regulator_register(struct pmbus_data *data)
2116 {
2117 struct device *dev = data->dev;
2118 const struct pmbus_driver_info *info = data->info;
2119 const struct pmbus_platform_data *pdata = dev_get_platdata(dev);
2120 struct regulator_dev *rdev;
2121 int i;
2122
2123 for (i = 0; i < info->num_regulators; i++) {
2124 struct regulator_config config = { };
2125
2126 config.dev = dev;
2127 config.driver_data = data;
2128
2129 if (pdata && pdata->reg_init_data)
2130 config.init_data = &pdata->reg_init_data[i];
2131
2132 rdev = devm_regulator_register(dev, &info->reg_desc[i],
2133 &config);
2134 if (IS_ERR(rdev)) {
2135 dev_err(dev, "Failed to register %s regulator\n",
2136 info->reg_desc[i].name);
2137 return PTR_ERR(rdev);
2138 }
2139 }
2140
2141 return 0;
2142 }
2143 #else
pmbus_regulator_register(struct pmbus_data * data)2144 static int pmbus_regulator_register(struct pmbus_data *data)
2145 {
2146 return 0;
2147 }
2148 #endif
2149
2150 static struct dentry *pmbus_debugfs_dir; /* pmbus debugfs directory */
2151
2152 #if IS_ENABLED(CONFIG_DEBUG_FS)
pmbus_debugfs_get(void * data,u64 * val)2153 static int pmbus_debugfs_get(void *data, u64 *val)
2154 {
2155 int rc;
2156 struct pmbus_debugfs_entry *entry = data;
2157
2158 rc = _pmbus_read_byte_data(entry->client, entry->page, entry->reg);
2159 if (rc < 0)
2160 return rc;
2161
2162 *val = rc;
2163
2164 return 0;
2165 }
2166 DEFINE_DEBUGFS_ATTRIBUTE(pmbus_debugfs_ops, pmbus_debugfs_get, NULL,
2167 "0x%02llx\n");
2168
pmbus_debugfs_get_status(void * data,u64 * val)2169 static int pmbus_debugfs_get_status(void *data, u64 *val)
2170 {
2171 int rc;
2172 struct pmbus_debugfs_entry *entry = data;
2173 struct pmbus_data *pdata = i2c_get_clientdata(entry->client);
2174
2175 rc = pdata->read_status(entry->client, entry->page);
2176 if (rc < 0)
2177 return rc;
2178
2179 *val = rc;
2180
2181 return 0;
2182 }
2183 DEFINE_DEBUGFS_ATTRIBUTE(pmbus_debugfs_ops_status, pmbus_debugfs_get_status,
2184 NULL, "0x%04llx\n");
2185
pmbus_init_debugfs(struct i2c_client * client,struct pmbus_data * data)2186 static int pmbus_init_debugfs(struct i2c_client *client,
2187 struct pmbus_data *data)
2188 {
2189 int i, idx = 0;
2190 char name[PMBUS_NAME_SIZE];
2191 struct pmbus_debugfs_entry *entries;
2192
2193 if (!pmbus_debugfs_dir)
2194 return -ENODEV;
2195
2196 /*
2197 * Create the debugfs directory for this device. Use the hwmon device
2198 * name to avoid conflicts (hwmon numbers are globally unique).
2199 */
2200 data->debugfs = debugfs_create_dir(dev_name(data->hwmon_dev),
2201 pmbus_debugfs_dir);
2202 if (IS_ERR_OR_NULL(data->debugfs)) {
2203 data->debugfs = NULL;
2204 return -ENODEV;
2205 }
2206
2207 /* Allocate the max possible entries we need. */
2208 entries = devm_kcalloc(data->dev,
2209 data->info->pages * 10, sizeof(*entries),
2210 GFP_KERNEL);
2211 if (!entries)
2212 return -ENOMEM;
2213
2214 for (i = 0; i < data->info->pages; ++i) {
2215 /* Check accessibility of status register if it's not page 0 */
2216 if (!i || pmbus_check_status_register(client, i)) {
2217 /* No need to set reg as we have special read op. */
2218 entries[idx].client = client;
2219 entries[idx].page = i;
2220 scnprintf(name, PMBUS_NAME_SIZE, "status%d", i);
2221 debugfs_create_file(name, 0444, data->debugfs,
2222 &entries[idx++],
2223 &pmbus_debugfs_ops_status);
2224 }
2225
2226 if (data->info->func[i] & PMBUS_HAVE_STATUS_VOUT) {
2227 entries[idx].client = client;
2228 entries[idx].page = i;
2229 entries[idx].reg = PMBUS_STATUS_VOUT;
2230 scnprintf(name, PMBUS_NAME_SIZE, "status%d_vout", i);
2231 debugfs_create_file(name, 0444, data->debugfs,
2232 &entries[idx++],
2233 &pmbus_debugfs_ops);
2234 }
2235
2236 if (data->info->func[i] & PMBUS_HAVE_STATUS_IOUT) {
2237 entries[idx].client = client;
2238 entries[idx].page = i;
2239 entries[idx].reg = PMBUS_STATUS_IOUT;
2240 scnprintf(name, PMBUS_NAME_SIZE, "status%d_iout", i);
2241 debugfs_create_file(name, 0444, data->debugfs,
2242 &entries[idx++],
2243 &pmbus_debugfs_ops);
2244 }
2245
2246 if (data->info->func[i] & PMBUS_HAVE_STATUS_INPUT) {
2247 entries[idx].client = client;
2248 entries[idx].page = i;
2249 entries[idx].reg = PMBUS_STATUS_INPUT;
2250 scnprintf(name, PMBUS_NAME_SIZE, "status%d_input", i);
2251 debugfs_create_file(name, 0444, data->debugfs,
2252 &entries[idx++],
2253 &pmbus_debugfs_ops);
2254 }
2255
2256 if (data->info->func[i] & PMBUS_HAVE_STATUS_TEMP) {
2257 entries[idx].client = client;
2258 entries[idx].page = i;
2259 entries[idx].reg = PMBUS_STATUS_TEMPERATURE;
2260 scnprintf(name, PMBUS_NAME_SIZE, "status%d_temp", i);
2261 debugfs_create_file(name, 0444, data->debugfs,
2262 &entries[idx++],
2263 &pmbus_debugfs_ops);
2264 }
2265
2266 if (pmbus_check_byte_register(client, i, PMBUS_STATUS_CML)) {
2267 entries[idx].client = client;
2268 entries[idx].page = i;
2269 entries[idx].reg = PMBUS_STATUS_CML;
2270 scnprintf(name, PMBUS_NAME_SIZE, "status%d_cml", i);
2271 debugfs_create_file(name, 0444, data->debugfs,
2272 &entries[idx++],
2273 &pmbus_debugfs_ops);
2274 }
2275
2276 if (pmbus_check_byte_register(client, i, PMBUS_STATUS_OTHER)) {
2277 entries[idx].client = client;
2278 entries[idx].page = i;
2279 entries[idx].reg = PMBUS_STATUS_OTHER;
2280 scnprintf(name, PMBUS_NAME_SIZE, "status%d_other", i);
2281 debugfs_create_file(name, 0444, data->debugfs,
2282 &entries[idx++],
2283 &pmbus_debugfs_ops);
2284 }
2285
2286 if (pmbus_check_byte_register(client, i,
2287 PMBUS_STATUS_MFR_SPECIFIC)) {
2288 entries[idx].client = client;
2289 entries[idx].page = i;
2290 entries[idx].reg = PMBUS_STATUS_MFR_SPECIFIC;
2291 scnprintf(name, PMBUS_NAME_SIZE, "status%d_mfr", i);
2292 debugfs_create_file(name, 0444, data->debugfs,
2293 &entries[idx++],
2294 &pmbus_debugfs_ops);
2295 }
2296
2297 if (data->info->func[i] & PMBUS_HAVE_STATUS_FAN12) {
2298 entries[idx].client = client;
2299 entries[idx].page = i;
2300 entries[idx].reg = PMBUS_STATUS_FAN_12;
2301 scnprintf(name, PMBUS_NAME_SIZE, "status%d_fan12", i);
2302 debugfs_create_file(name, 0444, data->debugfs,
2303 &entries[idx++],
2304 &pmbus_debugfs_ops);
2305 }
2306
2307 if (data->info->func[i] & PMBUS_HAVE_STATUS_FAN34) {
2308 entries[idx].client = client;
2309 entries[idx].page = i;
2310 entries[idx].reg = PMBUS_STATUS_FAN_34;
2311 scnprintf(name, PMBUS_NAME_SIZE, "status%d_fan34", i);
2312 debugfs_create_file(name, 0444, data->debugfs,
2313 &entries[idx++],
2314 &pmbus_debugfs_ops);
2315 }
2316 }
2317
2318 return 0;
2319 }
2320 #else
pmbus_init_debugfs(struct i2c_client * client,struct pmbus_data * data)2321 static int pmbus_init_debugfs(struct i2c_client *client,
2322 struct pmbus_data *data)
2323 {
2324 return 0;
2325 }
2326 #endif /* IS_ENABLED(CONFIG_DEBUG_FS) */
2327
pmbus_do_probe(struct i2c_client * client,const struct i2c_device_id * id,struct pmbus_driver_info * info)2328 int pmbus_do_probe(struct i2c_client *client, const struct i2c_device_id *id,
2329 struct pmbus_driver_info *info)
2330 {
2331 struct device *dev = &client->dev;
2332 const struct pmbus_platform_data *pdata = dev_get_platdata(dev);
2333 struct pmbus_data *data;
2334 int ret;
2335
2336 if (!info)
2337 return -ENODEV;
2338
2339 if (!i2c_check_functionality(client->adapter, I2C_FUNC_SMBUS_WRITE_BYTE
2340 | I2C_FUNC_SMBUS_BYTE_DATA
2341 | I2C_FUNC_SMBUS_WORD_DATA))
2342 return -ENODEV;
2343
2344 data = devm_kzalloc(dev, sizeof(*data), GFP_KERNEL);
2345 if (!data)
2346 return -ENOMEM;
2347
2348 i2c_set_clientdata(client, data);
2349 mutex_init(&data->update_lock);
2350 data->dev = dev;
2351
2352 if (pdata)
2353 data->flags = pdata->flags;
2354 data->info = info;
2355
2356 ret = pmbus_init_common(client, data, info);
2357 if (ret < 0)
2358 return ret;
2359
2360 ret = pmbus_find_attributes(client, data);
2361 if (ret)
2362 goto out_kfree;
2363
2364 /*
2365 * If there are no attributes, something is wrong.
2366 * Bail out instead of trying to register nothing.
2367 */
2368 if (!data->num_attributes) {
2369 dev_err(dev, "No attributes found\n");
2370 ret = -ENODEV;
2371 goto out_kfree;
2372 }
2373
2374 data->groups[0] = &data->group;
2375 data->hwmon_dev = hwmon_device_register_with_groups(dev, client->name,
2376 data, data->groups);
2377 if (IS_ERR(data->hwmon_dev)) {
2378 ret = PTR_ERR(data->hwmon_dev);
2379 dev_err(dev, "Failed to register hwmon device\n");
2380 goto out_kfree;
2381 }
2382
2383 ret = pmbus_regulator_register(data);
2384 if (ret)
2385 goto out_unregister;
2386
2387 ret = pmbus_init_debugfs(client, data);
2388 if (ret)
2389 dev_warn(dev, "Failed to register debugfs\n");
2390
2391 return 0;
2392
2393 out_unregister:
2394 hwmon_device_unregister(data->hwmon_dev);
2395 out_kfree:
2396 kfree(data->group.attrs);
2397 return ret;
2398 }
2399 EXPORT_SYMBOL_GPL(pmbus_do_probe);
2400
pmbus_do_remove(struct i2c_client * client)2401 int pmbus_do_remove(struct i2c_client *client)
2402 {
2403 struct pmbus_data *data = i2c_get_clientdata(client);
2404
2405 debugfs_remove_recursive(data->debugfs);
2406
2407 hwmon_device_unregister(data->hwmon_dev);
2408 kfree(data->group.attrs);
2409 return 0;
2410 }
2411 EXPORT_SYMBOL_GPL(pmbus_do_remove);
2412
pmbus_get_debugfs_dir(struct i2c_client * client)2413 struct dentry *pmbus_get_debugfs_dir(struct i2c_client *client)
2414 {
2415 struct pmbus_data *data = i2c_get_clientdata(client);
2416
2417 return data->debugfs;
2418 }
2419 EXPORT_SYMBOL_GPL(pmbus_get_debugfs_dir);
2420
pmbus_core_init(void)2421 static int __init pmbus_core_init(void)
2422 {
2423 pmbus_debugfs_dir = debugfs_create_dir("pmbus", NULL);
2424 if (IS_ERR(pmbus_debugfs_dir))
2425 pmbus_debugfs_dir = NULL;
2426
2427 return 0;
2428 }
2429
pmbus_core_exit(void)2430 static void __exit pmbus_core_exit(void)
2431 {
2432 debugfs_remove_recursive(pmbus_debugfs_dir);
2433 }
2434
2435 module_init(pmbus_core_init);
2436 module_exit(pmbus_core_exit);
2437
2438 MODULE_AUTHOR("Guenter Roeck");
2439 MODULE_DESCRIPTION("PMBus core driver");
2440 MODULE_LICENSE("GPL");
2441