1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright(C) 2015 Linaro Limited. All rights reserved.
4 * Author: Mathieu Poirier <mathieu.poirier@linaro.org>
5 */
6
7 #include <linux/coresight.h>
8 #include <linux/coresight-pmu.h>
9 #include <linux/cpumask.h>
10 #include <linux/device.h>
11 #include <linux/list.h>
12 #include <linux/mm.h>
13 #include <linux/init.h>
14 #include <linux/perf_event.h>
15 #include <linux/percpu-defs.h>
16 #include <linux/slab.h>
17 #include <linux/types.h>
18 #include <linux/workqueue.h>
19
20 #include "coresight-etm-perf.h"
21 #include "coresight-priv.h"
22
23 static struct pmu etm_pmu;
24 static bool etm_perf_up;
25
26 /**
27 * struct etm_event_data - Coresight specifics associated to an event
28 * @work: Handle to free allocated memory outside IRQ context.
29 * @mask: Hold the CPU(s) this event was set for.
30 * @snk_config: The sink configuration.
31 * @path: An array of path, each slot for one CPU.
32 */
33 struct etm_event_data {
34 struct work_struct work;
35 cpumask_t mask;
36 void *snk_config;
37 struct list_head * __percpu *path;
38 };
39
40 static DEFINE_PER_CPU(struct perf_output_handle, ctx_handle);
41 static DEFINE_PER_CPU(struct coresight_device *, csdev_src);
42
43 /* ETMv3.5/PTM's ETMCR is 'config' */
44 PMU_FORMAT_ATTR(cycacc, "config:" __stringify(ETM_OPT_CYCACC));
45 PMU_FORMAT_ATTR(timestamp, "config:" __stringify(ETM_OPT_TS));
46 PMU_FORMAT_ATTR(retstack, "config:" __stringify(ETM_OPT_RETSTK));
47
48 static struct attribute *etm_config_formats_attr[] = {
49 &format_attr_cycacc.attr,
50 &format_attr_timestamp.attr,
51 &format_attr_retstack.attr,
52 NULL,
53 };
54
55 static const struct attribute_group etm_pmu_format_group = {
56 .name = "format",
57 .attrs = etm_config_formats_attr,
58 };
59
60 static const struct attribute_group *etm_pmu_attr_groups[] = {
61 &etm_pmu_format_group,
62 NULL,
63 };
64
65 static inline struct list_head **
etm_event_cpu_path_ptr(struct etm_event_data * data,int cpu)66 etm_event_cpu_path_ptr(struct etm_event_data *data, int cpu)
67 {
68 return per_cpu_ptr(data->path, cpu);
69 }
70
71 static inline struct list_head *
etm_event_cpu_path(struct etm_event_data * data,int cpu)72 etm_event_cpu_path(struct etm_event_data *data, int cpu)
73 {
74 return *etm_event_cpu_path_ptr(data, cpu);
75 }
76
etm_event_read(struct perf_event * event)77 static void etm_event_read(struct perf_event *event) {}
78
etm_addr_filters_alloc(struct perf_event * event)79 static int etm_addr_filters_alloc(struct perf_event *event)
80 {
81 struct etm_filters *filters;
82 int node = event->cpu == -1 ? -1 : cpu_to_node(event->cpu);
83
84 filters = kzalloc_node(sizeof(struct etm_filters), GFP_KERNEL, node);
85 if (!filters)
86 return -ENOMEM;
87
88 if (event->parent)
89 memcpy(filters, event->parent->hw.addr_filters,
90 sizeof(*filters));
91
92 event->hw.addr_filters = filters;
93
94 return 0;
95 }
96
etm_event_destroy(struct perf_event * event)97 static void etm_event_destroy(struct perf_event *event)
98 {
99 kfree(event->hw.addr_filters);
100 event->hw.addr_filters = NULL;
101 }
102
etm_event_init(struct perf_event * event)103 static int etm_event_init(struct perf_event *event)
104 {
105 int ret = 0;
106
107 if (event->attr.type != etm_pmu.type) {
108 ret = -ENOENT;
109 goto out;
110 }
111
112 ret = etm_addr_filters_alloc(event);
113 if (ret)
114 goto out;
115
116 event->destroy = etm_event_destroy;
117 out:
118 return ret;
119 }
120
free_event_data(struct work_struct * work)121 static void free_event_data(struct work_struct *work)
122 {
123 int cpu;
124 cpumask_t *mask;
125 struct etm_event_data *event_data;
126 struct coresight_device *sink;
127
128 event_data = container_of(work, struct etm_event_data, work);
129 mask = &event_data->mask;
130 /*
131 * First deal with the sink configuration. See comment in
132 * etm_setup_aux() about why we take the first available path.
133 */
134 if (event_data->snk_config) {
135 cpu = cpumask_first(mask);
136 sink = coresight_get_sink(etm_event_cpu_path(event_data, cpu));
137 if (sink_ops(sink)->free_buffer)
138 sink_ops(sink)->free_buffer(event_data->snk_config);
139 }
140
141 for_each_cpu(cpu, mask) {
142 struct list_head **ppath;
143
144 ppath = etm_event_cpu_path_ptr(event_data, cpu);
145 if (!(IS_ERR_OR_NULL(*ppath)))
146 coresight_release_path(*ppath);
147 *ppath = NULL;
148 }
149
150 free_percpu(event_data->path);
151 kfree(event_data);
152 }
153
alloc_event_data(int cpu)154 static void *alloc_event_data(int cpu)
155 {
156 cpumask_t *mask;
157 struct etm_event_data *event_data;
158
159 /* First get memory for the session's data */
160 event_data = kzalloc(sizeof(struct etm_event_data), GFP_KERNEL);
161 if (!event_data)
162 return NULL;
163
164 /* Make sure nothing disappears under us */
165 get_online_cpus();
166
167 mask = &event_data->mask;
168 if (cpu != -1)
169 cpumask_set_cpu(cpu, mask);
170 else
171 cpumask_copy(mask, cpu_online_mask);
172 put_online_cpus();
173
174 /*
175 * Each CPU has a single path between source and destination. As such
176 * allocate an array using CPU numbers as indexes. That way a path
177 * for any CPU can easily be accessed at any given time. We proceed
178 * the same way for sessions involving a single CPU. The cost of
179 * unused memory when dealing with single CPU trace scenarios is small
180 * compared to the cost of searching through an optimized array.
181 */
182 event_data->path = alloc_percpu(struct list_head *);
183
184 if (!event_data->path) {
185 kfree(event_data);
186 return NULL;
187 }
188
189 return event_data;
190 }
191
etm_free_aux(void * data)192 static void etm_free_aux(void *data)
193 {
194 struct etm_event_data *event_data = data;
195
196 schedule_work(&event_data->work);
197 }
198
etm_setup_aux(struct perf_event * event,void ** pages,int nr_pages,bool overwrite)199 static void *etm_setup_aux(struct perf_event *event, void **pages,
200 int nr_pages, bool overwrite)
201 {
202 int cpu = event->cpu;
203 cpumask_t *mask;
204 struct coresight_device *sink;
205 struct etm_event_data *event_data = NULL;
206
207 event_data = alloc_event_data(cpu);
208 if (!event_data)
209 return NULL;
210 INIT_WORK(&event_data->work, free_event_data);
211
212 /*
213 * In theory nothing prevent tracers in a trace session from being
214 * associated with different sinks, nor having a sink per tracer. But
215 * until we have HW with this kind of topology we need to assume tracers
216 * in a trace session are using the same sink. Therefore go through
217 * the coresight bus and pick the first enabled sink.
218 *
219 * When operated from sysFS users are responsible to enable the sink
220 * while from perf, the perf tools will do it based on the choice made
221 * on the cmd line. As such the "enable_sink" flag in sysFS is reset.
222 */
223 sink = coresight_get_enabled_sink(true);
224 if (!sink)
225 goto err;
226
227 mask = &event_data->mask;
228
229 /* Setup the path for each CPU in a trace session */
230 for_each_cpu(cpu, mask) {
231 struct list_head *path;
232 struct coresight_device *csdev;
233
234 csdev = per_cpu(csdev_src, cpu);
235 if (!csdev)
236 goto err;
237
238 /*
239 * Building a path doesn't enable it, it simply builds a
240 * list of devices from source to sink that can be
241 * referenced later when the path is actually needed.
242 */
243 path = coresight_build_path(csdev, sink);
244 if (IS_ERR(path))
245 goto err;
246
247 *etm_event_cpu_path_ptr(event_data, cpu) = path;
248 }
249
250 if (!sink_ops(sink)->alloc_buffer)
251 goto err;
252
253 cpu = cpumask_first(mask);
254 /* Get the AUX specific data from the sink buffer */
255 event_data->snk_config =
256 sink_ops(sink)->alloc_buffer(sink, cpu, pages,
257 nr_pages, overwrite);
258 if (!event_data->snk_config)
259 goto err;
260
261 out:
262 return event_data;
263
264 err:
265 etm_free_aux(event_data);
266 event_data = NULL;
267 goto out;
268 }
269
etm_event_start(struct perf_event * event,int flags)270 static void etm_event_start(struct perf_event *event, int flags)
271 {
272 int cpu = smp_processor_id();
273 struct etm_event_data *event_data;
274 struct perf_output_handle *handle = this_cpu_ptr(&ctx_handle);
275 struct coresight_device *sink, *csdev = per_cpu(csdev_src, cpu);
276 struct list_head *path;
277
278 if (!csdev)
279 goto fail;
280
281 /*
282 * Deal with the ring buffer API and get a handle on the
283 * session's information.
284 */
285 event_data = perf_aux_output_begin(handle, event);
286 if (!event_data)
287 goto fail;
288
289 path = etm_event_cpu_path(event_data, cpu);
290 /* We need a sink, no need to continue without one */
291 sink = coresight_get_sink(path);
292 if (WARN_ON_ONCE(!sink || !sink_ops(sink)->set_buffer))
293 goto fail_end_stop;
294
295 /* Configure the sink */
296 if (sink_ops(sink)->set_buffer(sink, handle,
297 event_data->snk_config))
298 goto fail_end_stop;
299
300 /* Nothing will happen without a path */
301 if (coresight_enable_path(path, CS_MODE_PERF))
302 goto fail_end_stop;
303
304 /* Tell the perf core the event is alive */
305 event->hw.state = 0;
306
307 /* Finally enable the tracer */
308 if (source_ops(csdev)->enable(csdev, event, CS_MODE_PERF))
309 goto fail_disable_path;
310
311 out:
312 return;
313
314 fail_disable_path:
315 coresight_disable_path(path);
316 fail_end_stop:
317 perf_aux_output_flag(handle, PERF_AUX_FLAG_TRUNCATED);
318 perf_aux_output_end(handle, 0);
319 fail:
320 event->hw.state = PERF_HES_STOPPED;
321 goto out;
322 }
323
etm_event_stop(struct perf_event * event,int mode)324 static void etm_event_stop(struct perf_event *event, int mode)
325 {
326 int cpu = smp_processor_id();
327 unsigned long size;
328 struct coresight_device *sink, *csdev = per_cpu(csdev_src, cpu);
329 struct perf_output_handle *handle = this_cpu_ptr(&ctx_handle);
330 struct etm_event_data *event_data = perf_get_aux(handle);
331 struct list_head *path;
332
333 if (event->hw.state == PERF_HES_STOPPED)
334 return;
335
336 if (!csdev)
337 return;
338
339 path = etm_event_cpu_path(event_data, cpu);
340 if (!path)
341 return;
342
343 sink = coresight_get_sink(path);
344 if (!sink)
345 return;
346
347 /* stop tracer */
348 source_ops(csdev)->disable(csdev, event);
349
350 /* tell the core */
351 event->hw.state = PERF_HES_STOPPED;
352
353 if (mode & PERF_EF_UPDATE) {
354 if (WARN_ON_ONCE(handle->event != event))
355 return;
356
357 /* update trace information */
358 if (!sink_ops(sink)->update_buffer)
359 return;
360
361 sink_ops(sink)->update_buffer(sink, handle,
362 event_data->snk_config);
363
364 if (!sink_ops(sink)->reset_buffer)
365 return;
366
367 size = sink_ops(sink)->reset_buffer(sink, handle,
368 event_data->snk_config);
369
370 perf_aux_output_end(handle, size);
371 }
372
373 /* Disabling the path make its elements available to other sessions */
374 coresight_disable_path(path);
375 }
376
etm_event_add(struct perf_event * event,int mode)377 static int etm_event_add(struct perf_event *event, int mode)
378 {
379 int ret = 0;
380 struct hw_perf_event *hwc = &event->hw;
381
382 if (mode & PERF_EF_START) {
383 etm_event_start(event, 0);
384 if (hwc->state & PERF_HES_STOPPED)
385 ret = -EINVAL;
386 } else {
387 hwc->state = PERF_HES_STOPPED;
388 }
389
390 return ret;
391 }
392
etm_event_del(struct perf_event * event,int mode)393 static void etm_event_del(struct perf_event *event, int mode)
394 {
395 etm_event_stop(event, PERF_EF_UPDATE);
396 }
397
etm_addr_filters_validate(struct list_head * filters)398 static int etm_addr_filters_validate(struct list_head *filters)
399 {
400 bool range = false, address = false;
401 int index = 0;
402 struct perf_addr_filter *filter;
403
404 list_for_each_entry(filter, filters, entry) {
405 /*
406 * No need to go further if there's no more
407 * room for filters.
408 */
409 if (++index > ETM_ADDR_CMP_MAX)
410 return -EOPNOTSUPP;
411
412 /* filter::size==0 means single address trigger */
413 if (filter->size) {
414 /*
415 * The existing code relies on START/STOP filters
416 * being address filters.
417 */
418 if (filter->action == PERF_ADDR_FILTER_ACTION_START ||
419 filter->action == PERF_ADDR_FILTER_ACTION_STOP)
420 return -EOPNOTSUPP;
421
422 range = true;
423 } else
424 address = true;
425
426 /*
427 * At this time we don't allow range and start/stop filtering
428 * to cohabitate, they have to be mutually exclusive.
429 */
430 if (range && address)
431 return -EOPNOTSUPP;
432 }
433
434 return 0;
435 }
436
etm_addr_filters_sync(struct perf_event * event)437 static void etm_addr_filters_sync(struct perf_event *event)
438 {
439 struct perf_addr_filters_head *head = perf_event_addr_filters(event);
440 unsigned long start, stop;
441 struct perf_addr_filter_range *fr = event->addr_filter_ranges;
442 struct etm_filters *filters = event->hw.addr_filters;
443 struct etm_filter *etm_filter;
444 struct perf_addr_filter *filter;
445 int i = 0;
446
447 list_for_each_entry(filter, &head->list, entry) {
448 start = fr[i].start;
449 stop = start + fr[i].size;
450 etm_filter = &filters->etm_filter[i];
451
452 switch (filter->action) {
453 case PERF_ADDR_FILTER_ACTION_FILTER:
454 etm_filter->start_addr = start;
455 etm_filter->stop_addr = stop;
456 etm_filter->type = ETM_ADDR_TYPE_RANGE;
457 break;
458 case PERF_ADDR_FILTER_ACTION_START:
459 etm_filter->start_addr = start;
460 etm_filter->type = ETM_ADDR_TYPE_START;
461 break;
462 case PERF_ADDR_FILTER_ACTION_STOP:
463 etm_filter->stop_addr = stop;
464 etm_filter->type = ETM_ADDR_TYPE_STOP;
465 break;
466 }
467 i++;
468 }
469
470 filters->nr_filters = i;
471 }
472
etm_perf_symlink(struct coresight_device * csdev,bool link)473 int etm_perf_symlink(struct coresight_device *csdev, bool link)
474 {
475 char entry[sizeof("cpu9999999")];
476 int ret = 0, cpu = source_ops(csdev)->cpu_id(csdev);
477 struct device *pmu_dev = etm_pmu.dev;
478 struct device *cs_dev = &csdev->dev;
479
480 sprintf(entry, "cpu%d", cpu);
481
482 if (!etm_perf_up)
483 return -EPROBE_DEFER;
484
485 if (link) {
486 ret = sysfs_create_link(&pmu_dev->kobj, &cs_dev->kobj, entry);
487 if (ret)
488 return ret;
489 per_cpu(csdev_src, cpu) = csdev;
490 } else {
491 sysfs_remove_link(&pmu_dev->kobj, entry);
492 per_cpu(csdev_src, cpu) = NULL;
493 }
494
495 return 0;
496 }
497
etm_perf_init(void)498 static int __init etm_perf_init(void)
499 {
500 int ret;
501
502 etm_pmu.capabilities = PERF_PMU_CAP_EXCLUSIVE;
503
504 etm_pmu.attr_groups = etm_pmu_attr_groups;
505 etm_pmu.task_ctx_nr = perf_sw_context;
506 etm_pmu.read = etm_event_read;
507 etm_pmu.event_init = etm_event_init;
508 etm_pmu.setup_aux = etm_setup_aux;
509 etm_pmu.free_aux = etm_free_aux;
510 etm_pmu.start = etm_event_start;
511 etm_pmu.stop = etm_event_stop;
512 etm_pmu.add = etm_event_add;
513 etm_pmu.del = etm_event_del;
514 etm_pmu.addr_filters_sync = etm_addr_filters_sync;
515 etm_pmu.addr_filters_validate = etm_addr_filters_validate;
516 etm_pmu.nr_addr_filters = ETM_ADDR_CMP_MAX;
517
518 ret = perf_pmu_register(&etm_pmu, CORESIGHT_ETM_PMU_NAME, -1);
519 if (ret == 0)
520 etm_perf_up = true;
521
522 return ret;
523 }
524 device_initcall(etm_perf_init);
525