• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright(C) 2015 Linaro Limited. All rights reserved.
4  * Author: Mathieu Poirier <mathieu.poirier@linaro.org>
5  */
6 
7 #include <linux/coresight.h>
8 #include <linux/coresight-pmu.h>
9 #include <linux/cpumask.h>
10 #include <linux/device.h>
11 #include <linux/list.h>
12 #include <linux/mm.h>
13 #include <linux/init.h>
14 #include <linux/perf_event.h>
15 #include <linux/percpu-defs.h>
16 #include <linux/slab.h>
17 #include <linux/types.h>
18 #include <linux/workqueue.h>
19 
20 #include "coresight-etm-perf.h"
21 #include "coresight-priv.h"
22 
23 static struct pmu etm_pmu;
24 static bool etm_perf_up;
25 
26 /**
27  * struct etm_event_data - Coresight specifics associated to an event
28  * @work:		Handle to free allocated memory outside IRQ context.
29  * @mask:		Hold the CPU(s) this event was set for.
30  * @snk_config:		The sink configuration.
31  * @path:		An array of path, each slot for one CPU.
32  */
33 struct etm_event_data {
34 	struct work_struct work;
35 	cpumask_t mask;
36 	void *snk_config;
37 	struct list_head * __percpu *path;
38 };
39 
40 static DEFINE_PER_CPU(struct perf_output_handle, ctx_handle);
41 static DEFINE_PER_CPU(struct coresight_device *, csdev_src);
42 
43 /* ETMv3.5/PTM's ETMCR is 'config' */
44 PMU_FORMAT_ATTR(cycacc,		"config:" __stringify(ETM_OPT_CYCACC));
45 PMU_FORMAT_ATTR(timestamp,	"config:" __stringify(ETM_OPT_TS));
46 PMU_FORMAT_ATTR(retstack,	"config:" __stringify(ETM_OPT_RETSTK));
47 
48 static struct attribute *etm_config_formats_attr[] = {
49 	&format_attr_cycacc.attr,
50 	&format_attr_timestamp.attr,
51 	&format_attr_retstack.attr,
52 	NULL,
53 };
54 
55 static const struct attribute_group etm_pmu_format_group = {
56 	.name   = "format",
57 	.attrs  = etm_config_formats_attr,
58 };
59 
60 static const struct attribute_group *etm_pmu_attr_groups[] = {
61 	&etm_pmu_format_group,
62 	NULL,
63 };
64 
65 static inline struct list_head **
etm_event_cpu_path_ptr(struct etm_event_data * data,int cpu)66 etm_event_cpu_path_ptr(struct etm_event_data *data, int cpu)
67 {
68 	return per_cpu_ptr(data->path, cpu);
69 }
70 
71 static inline struct list_head *
etm_event_cpu_path(struct etm_event_data * data,int cpu)72 etm_event_cpu_path(struct etm_event_data *data, int cpu)
73 {
74 	return *etm_event_cpu_path_ptr(data, cpu);
75 }
76 
etm_event_read(struct perf_event * event)77 static void etm_event_read(struct perf_event *event) {}
78 
etm_addr_filters_alloc(struct perf_event * event)79 static int etm_addr_filters_alloc(struct perf_event *event)
80 {
81 	struct etm_filters *filters;
82 	int node = event->cpu == -1 ? -1 : cpu_to_node(event->cpu);
83 
84 	filters = kzalloc_node(sizeof(struct etm_filters), GFP_KERNEL, node);
85 	if (!filters)
86 		return -ENOMEM;
87 
88 	if (event->parent)
89 		memcpy(filters, event->parent->hw.addr_filters,
90 		       sizeof(*filters));
91 
92 	event->hw.addr_filters = filters;
93 
94 	return 0;
95 }
96 
etm_event_destroy(struct perf_event * event)97 static void etm_event_destroy(struct perf_event *event)
98 {
99 	kfree(event->hw.addr_filters);
100 	event->hw.addr_filters = NULL;
101 }
102 
etm_event_init(struct perf_event * event)103 static int etm_event_init(struct perf_event *event)
104 {
105 	int ret = 0;
106 
107 	if (event->attr.type != etm_pmu.type) {
108 		ret = -ENOENT;
109 		goto out;
110 	}
111 
112 	ret = etm_addr_filters_alloc(event);
113 	if (ret)
114 		goto out;
115 
116 	event->destroy = etm_event_destroy;
117 out:
118 	return ret;
119 }
120 
free_event_data(struct work_struct * work)121 static void free_event_data(struct work_struct *work)
122 {
123 	int cpu;
124 	cpumask_t *mask;
125 	struct etm_event_data *event_data;
126 	struct coresight_device *sink;
127 
128 	event_data = container_of(work, struct etm_event_data, work);
129 	mask = &event_data->mask;
130 	/*
131 	 * First deal with the sink configuration.  See comment in
132 	 * etm_setup_aux() about why we take the first available path.
133 	 */
134 	if (event_data->snk_config) {
135 		cpu = cpumask_first(mask);
136 		sink = coresight_get_sink(etm_event_cpu_path(event_data, cpu));
137 		if (sink_ops(sink)->free_buffer)
138 			sink_ops(sink)->free_buffer(event_data->snk_config);
139 	}
140 
141 	for_each_cpu(cpu, mask) {
142 		struct list_head **ppath;
143 
144 		ppath = etm_event_cpu_path_ptr(event_data, cpu);
145 		if (!(IS_ERR_OR_NULL(*ppath)))
146 			coresight_release_path(*ppath);
147 		*ppath = NULL;
148 	}
149 
150 	free_percpu(event_data->path);
151 	kfree(event_data);
152 }
153 
alloc_event_data(int cpu)154 static void *alloc_event_data(int cpu)
155 {
156 	cpumask_t *mask;
157 	struct etm_event_data *event_data;
158 
159 	/* First get memory for the session's data */
160 	event_data = kzalloc(sizeof(struct etm_event_data), GFP_KERNEL);
161 	if (!event_data)
162 		return NULL;
163 
164 	/* Make sure nothing disappears under us */
165 	get_online_cpus();
166 
167 	mask = &event_data->mask;
168 	if (cpu != -1)
169 		cpumask_set_cpu(cpu, mask);
170 	else
171 		cpumask_copy(mask, cpu_online_mask);
172 	put_online_cpus();
173 
174 	/*
175 	 * Each CPU has a single path between source and destination.  As such
176 	 * allocate an array using CPU numbers as indexes.  That way a path
177 	 * for any CPU can easily be accessed at any given time.  We proceed
178 	 * the same way for sessions involving a single CPU.  The cost of
179 	 * unused memory when dealing with single CPU trace scenarios is small
180 	 * compared to the cost of searching through an optimized array.
181 	 */
182 	event_data->path = alloc_percpu(struct list_head *);
183 
184 	if (!event_data->path) {
185 		kfree(event_data);
186 		return NULL;
187 	}
188 
189 	return event_data;
190 }
191 
etm_free_aux(void * data)192 static void etm_free_aux(void *data)
193 {
194 	struct etm_event_data *event_data = data;
195 
196 	schedule_work(&event_data->work);
197 }
198 
etm_setup_aux(struct perf_event * event,void ** pages,int nr_pages,bool overwrite)199 static void *etm_setup_aux(struct perf_event *event, void **pages,
200 			   int nr_pages, bool overwrite)
201 {
202 	int cpu = event->cpu;
203 	cpumask_t *mask;
204 	struct coresight_device *sink;
205 	struct etm_event_data *event_data = NULL;
206 
207 	event_data = alloc_event_data(cpu);
208 	if (!event_data)
209 		return NULL;
210 	INIT_WORK(&event_data->work, free_event_data);
211 
212 	/*
213 	 * In theory nothing prevent tracers in a trace session from being
214 	 * associated with different sinks, nor having a sink per tracer.  But
215 	 * until we have HW with this kind of topology we need to assume tracers
216 	 * in a trace session are using the same sink.  Therefore go through
217 	 * the coresight bus and pick the first enabled sink.
218 	 *
219 	 * When operated from sysFS users are responsible to enable the sink
220 	 * while from perf, the perf tools will do it based on the choice made
221 	 * on the cmd line.  As such the "enable_sink" flag in sysFS is reset.
222 	 */
223 	sink = coresight_get_enabled_sink(true);
224 	if (!sink)
225 		goto err;
226 
227 	mask = &event_data->mask;
228 
229 	/* Setup the path for each CPU in a trace session */
230 	for_each_cpu(cpu, mask) {
231 		struct list_head *path;
232 		struct coresight_device *csdev;
233 
234 		csdev = per_cpu(csdev_src, cpu);
235 		if (!csdev)
236 			goto err;
237 
238 		/*
239 		 * Building a path doesn't enable it, it simply builds a
240 		 * list of devices from source to sink that can be
241 		 * referenced later when the path is actually needed.
242 		 */
243 		path = coresight_build_path(csdev, sink);
244 		if (IS_ERR(path))
245 			goto err;
246 
247 		*etm_event_cpu_path_ptr(event_data, cpu) = path;
248 	}
249 
250 	if (!sink_ops(sink)->alloc_buffer)
251 		goto err;
252 
253 	cpu = cpumask_first(mask);
254 	/* Get the AUX specific data from the sink buffer */
255 	event_data->snk_config =
256 			sink_ops(sink)->alloc_buffer(sink, cpu, pages,
257 						     nr_pages, overwrite);
258 	if (!event_data->snk_config)
259 		goto err;
260 
261 out:
262 	return event_data;
263 
264 err:
265 	etm_free_aux(event_data);
266 	event_data = NULL;
267 	goto out;
268 }
269 
etm_event_start(struct perf_event * event,int flags)270 static void etm_event_start(struct perf_event *event, int flags)
271 {
272 	int cpu = smp_processor_id();
273 	struct etm_event_data *event_data;
274 	struct perf_output_handle *handle = this_cpu_ptr(&ctx_handle);
275 	struct coresight_device *sink, *csdev = per_cpu(csdev_src, cpu);
276 	struct list_head *path;
277 
278 	if (!csdev)
279 		goto fail;
280 
281 	/*
282 	 * Deal with the ring buffer API and get a handle on the
283 	 * session's information.
284 	 */
285 	event_data = perf_aux_output_begin(handle, event);
286 	if (!event_data)
287 		goto fail;
288 
289 	path = etm_event_cpu_path(event_data, cpu);
290 	/* We need a sink, no need to continue without one */
291 	sink = coresight_get_sink(path);
292 	if (WARN_ON_ONCE(!sink || !sink_ops(sink)->set_buffer))
293 		goto fail_end_stop;
294 
295 	/* Configure the sink */
296 	if (sink_ops(sink)->set_buffer(sink, handle,
297 				       event_data->snk_config))
298 		goto fail_end_stop;
299 
300 	/* Nothing will happen without a path */
301 	if (coresight_enable_path(path, CS_MODE_PERF))
302 		goto fail_end_stop;
303 
304 	/* Tell the perf core the event is alive */
305 	event->hw.state = 0;
306 
307 	/* Finally enable the tracer */
308 	if (source_ops(csdev)->enable(csdev, event, CS_MODE_PERF))
309 		goto fail_disable_path;
310 
311 out:
312 	return;
313 
314 fail_disable_path:
315 	coresight_disable_path(path);
316 fail_end_stop:
317 	perf_aux_output_flag(handle, PERF_AUX_FLAG_TRUNCATED);
318 	perf_aux_output_end(handle, 0);
319 fail:
320 	event->hw.state = PERF_HES_STOPPED;
321 	goto out;
322 }
323 
etm_event_stop(struct perf_event * event,int mode)324 static void etm_event_stop(struct perf_event *event, int mode)
325 {
326 	int cpu = smp_processor_id();
327 	unsigned long size;
328 	struct coresight_device *sink, *csdev = per_cpu(csdev_src, cpu);
329 	struct perf_output_handle *handle = this_cpu_ptr(&ctx_handle);
330 	struct etm_event_data *event_data = perf_get_aux(handle);
331 	struct list_head *path;
332 
333 	if (event->hw.state == PERF_HES_STOPPED)
334 		return;
335 
336 	if (!csdev)
337 		return;
338 
339 	path = etm_event_cpu_path(event_data, cpu);
340 	if (!path)
341 		return;
342 
343 	sink = coresight_get_sink(path);
344 	if (!sink)
345 		return;
346 
347 	/* stop tracer */
348 	source_ops(csdev)->disable(csdev, event);
349 
350 	/* tell the core */
351 	event->hw.state = PERF_HES_STOPPED;
352 
353 	if (mode & PERF_EF_UPDATE) {
354 		if (WARN_ON_ONCE(handle->event != event))
355 			return;
356 
357 		/* update trace information */
358 		if (!sink_ops(sink)->update_buffer)
359 			return;
360 
361 		sink_ops(sink)->update_buffer(sink, handle,
362 					      event_data->snk_config);
363 
364 		if (!sink_ops(sink)->reset_buffer)
365 			return;
366 
367 		size = sink_ops(sink)->reset_buffer(sink, handle,
368 						    event_data->snk_config);
369 
370 		perf_aux_output_end(handle, size);
371 	}
372 
373 	/* Disabling the path make its elements available to other sessions */
374 	coresight_disable_path(path);
375 }
376 
etm_event_add(struct perf_event * event,int mode)377 static int etm_event_add(struct perf_event *event, int mode)
378 {
379 	int ret = 0;
380 	struct hw_perf_event *hwc = &event->hw;
381 
382 	if (mode & PERF_EF_START) {
383 		etm_event_start(event, 0);
384 		if (hwc->state & PERF_HES_STOPPED)
385 			ret = -EINVAL;
386 	} else {
387 		hwc->state = PERF_HES_STOPPED;
388 	}
389 
390 	return ret;
391 }
392 
etm_event_del(struct perf_event * event,int mode)393 static void etm_event_del(struct perf_event *event, int mode)
394 {
395 	etm_event_stop(event, PERF_EF_UPDATE);
396 }
397 
etm_addr_filters_validate(struct list_head * filters)398 static int etm_addr_filters_validate(struct list_head *filters)
399 {
400 	bool range = false, address = false;
401 	int index = 0;
402 	struct perf_addr_filter *filter;
403 
404 	list_for_each_entry(filter, filters, entry) {
405 		/*
406 		 * No need to go further if there's no more
407 		 * room for filters.
408 		 */
409 		if (++index > ETM_ADDR_CMP_MAX)
410 			return -EOPNOTSUPP;
411 
412 		/* filter::size==0 means single address trigger */
413 		if (filter->size) {
414 			/*
415 			 * The existing code relies on START/STOP filters
416 			 * being address filters.
417 			 */
418 			if (filter->action == PERF_ADDR_FILTER_ACTION_START ||
419 			    filter->action == PERF_ADDR_FILTER_ACTION_STOP)
420 				return -EOPNOTSUPP;
421 
422 			range = true;
423 		} else
424 			address = true;
425 
426 		/*
427 		 * At this time we don't allow range and start/stop filtering
428 		 * to cohabitate, they have to be mutually exclusive.
429 		 */
430 		if (range && address)
431 			return -EOPNOTSUPP;
432 	}
433 
434 	return 0;
435 }
436 
etm_addr_filters_sync(struct perf_event * event)437 static void etm_addr_filters_sync(struct perf_event *event)
438 {
439 	struct perf_addr_filters_head *head = perf_event_addr_filters(event);
440 	unsigned long start, stop;
441 	struct perf_addr_filter_range *fr = event->addr_filter_ranges;
442 	struct etm_filters *filters = event->hw.addr_filters;
443 	struct etm_filter *etm_filter;
444 	struct perf_addr_filter *filter;
445 	int i = 0;
446 
447 	list_for_each_entry(filter, &head->list, entry) {
448 		start = fr[i].start;
449 		stop = start + fr[i].size;
450 		etm_filter = &filters->etm_filter[i];
451 
452 		switch (filter->action) {
453 		case PERF_ADDR_FILTER_ACTION_FILTER:
454 			etm_filter->start_addr = start;
455 			etm_filter->stop_addr = stop;
456 			etm_filter->type = ETM_ADDR_TYPE_RANGE;
457 			break;
458 		case PERF_ADDR_FILTER_ACTION_START:
459 			etm_filter->start_addr = start;
460 			etm_filter->type = ETM_ADDR_TYPE_START;
461 			break;
462 		case PERF_ADDR_FILTER_ACTION_STOP:
463 			etm_filter->stop_addr = stop;
464 			etm_filter->type = ETM_ADDR_TYPE_STOP;
465 			break;
466 		}
467 		i++;
468 	}
469 
470 	filters->nr_filters = i;
471 }
472 
etm_perf_symlink(struct coresight_device * csdev,bool link)473 int etm_perf_symlink(struct coresight_device *csdev, bool link)
474 {
475 	char entry[sizeof("cpu9999999")];
476 	int ret = 0, cpu = source_ops(csdev)->cpu_id(csdev);
477 	struct device *pmu_dev = etm_pmu.dev;
478 	struct device *cs_dev = &csdev->dev;
479 
480 	sprintf(entry, "cpu%d", cpu);
481 
482 	if (!etm_perf_up)
483 		return -EPROBE_DEFER;
484 
485 	if (link) {
486 		ret = sysfs_create_link(&pmu_dev->kobj, &cs_dev->kobj, entry);
487 		if (ret)
488 			return ret;
489 		per_cpu(csdev_src, cpu) = csdev;
490 	} else {
491 		sysfs_remove_link(&pmu_dev->kobj, entry);
492 		per_cpu(csdev_src, cpu) = NULL;
493 	}
494 
495 	return 0;
496 }
497 
etm_perf_init(void)498 static int __init etm_perf_init(void)
499 {
500 	int ret;
501 
502 	etm_pmu.capabilities		= PERF_PMU_CAP_EXCLUSIVE;
503 
504 	etm_pmu.attr_groups		= etm_pmu_attr_groups;
505 	etm_pmu.task_ctx_nr		= perf_sw_context;
506 	etm_pmu.read			= etm_event_read;
507 	etm_pmu.event_init		= etm_event_init;
508 	etm_pmu.setup_aux		= etm_setup_aux;
509 	etm_pmu.free_aux		= etm_free_aux;
510 	etm_pmu.start			= etm_event_start;
511 	etm_pmu.stop			= etm_event_stop;
512 	etm_pmu.add			= etm_event_add;
513 	etm_pmu.del			= etm_event_del;
514 	etm_pmu.addr_filters_sync	= etm_addr_filters_sync;
515 	etm_pmu.addr_filters_validate	= etm_addr_filters_validate;
516 	etm_pmu.nr_addr_filters		= ETM_ADDR_CMP_MAX;
517 
518 	ret = perf_pmu_register(&etm_pmu, CORESIGHT_ETM_PMU_NAME, -1);
519 	if (ret == 0)
520 		etm_perf_up = true;
521 
522 	return ret;
523 }
524 device_initcall(etm_perf_init);
525