• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  *  i2c Support for Atmel's AT91 Two-Wire Interface (TWI)
3  *
4  *  Copyright (C) 2011 Weinmann Medical GmbH
5  *  Author: Nikolaus Voss <n.voss@weinmann.de>
6  *
7  *  Evolved from original work by:
8  *  Copyright (C) 2004 Rick Bronson
9  *  Converted to 2.6 by Andrew Victor <andrew@sanpeople.com>
10  *
11  *  Borrowed heavily from original work by:
12  *  Copyright (C) 2000 Philip Edelbrock <phil@stimpy.netroedge.com>
13  *
14  *  This program is free software; you can redistribute it and/or modify
15  *  it under the terms of the GNU General Public License as published by
16  *  the Free Software Foundation; either version 2 of the License, or
17  *  (at your option) any later version.
18  */
19 
20 #include <linux/clk.h>
21 #include <linux/completion.h>
22 #include <linux/dma-mapping.h>
23 #include <linux/dmaengine.h>
24 #include <linux/err.h>
25 #include <linux/i2c.h>
26 #include <linux/interrupt.h>
27 #include <linux/io.h>
28 #include <linux/module.h>
29 #include <linux/of.h>
30 #include <linux/of_device.h>
31 #include <linux/platform_device.h>
32 #include <linux/slab.h>
33 #include <linux/platform_data/dma-atmel.h>
34 #include <linux/pm_runtime.h>
35 #include <linux/pinctrl/consumer.h>
36 
37 #define DEFAULT_TWI_CLK_HZ		100000		/* max 400 Kbits/s */
38 #define AT91_I2C_TIMEOUT	msecs_to_jiffies(100)	/* transfer timeout */
39 #define AT91_I2C_DMA_THRESHOLD	8			/* enable DMA if transfer size is bigger than this threshold */
40 #define AUTOSUSPEND_TIMEOUT		2000
41 #define AT91_I2C_MAX_ALT_CMD_DATA_SIZE	256
42 
43 /* AT91 TWI register definitions */
44 #define	AT91_TWI_CR		0x0000	/* Control Register */
45 #define	AT91_TWI_START		BIT(0)	/* Send a Start Condition */
46 #define	AT91_TWI_STOP		BIT(1)	/* Send a Stop Condition */
47 #define	AT91_TWI_MSEN		BIT(2)	/* Master Transfer Enable */
48 #define	AT91_TWI_MSDIS		BIT(3)	/* Master Transfer Disable */
49 #define	AT91_TWI_SVEN		BIT(4)	/* Slave Transfer Enable */
50 #define	AT91_TWI_SVDIS		BIT(5)	/* Slave Transfer Disable */
51 #define	AT91_TWI_QUICK		BIT(6)	/* SMBus quick command */
52 #define	AT91_TWI_SWRST		BIT(7)	/* Software Reset */
53 #define	AT91_TWI_ACMEN		BIT(16) /* Alternative Command Mode Enable */
54 #define	AT91_TWI_ACMDIS		BIT(17) /* Alternative Command Mode Disable */
55 #define	AT91_TWI_THRCLR		BIT(24) /* Transmit Holding Register Clear */
56 #define	AT91_TWI_RHRCLR		BIT(25) /* Receive Holding Register Clear */
57 #define	AT91_TWI_LOCKCLR	BIT(26) /* Lock Clear */
58 #define	AT91_TWI_FIFOEN		BIT(28) /* FIFO Enable */
59 #define	AT91_TWI_FIFODIS	BIT(29) /* FIFO Disable */
60 
61 #define	AT91_TWI_MMR		0x0004	/* Master Mode Register */
62 #define	AT91_TWI_IADRSZ_1	0x0100	/* Internal Device Address Size */
63 #define	AT91_TWI_MREAD		BIT(12)	/* Master Read Direction */
64 
65 #define	AT91_TWI_IADR		0x000c	/* Internal Address Register */
66 
67 #define	AT91_TWI_CWGR		0x0010	/* Clock Waveform Generator Reg */
68 #define	AT91_TWI_CWGR_HOLD_MAX	0x1f
69 #define	AT91_TWI_CWGR_HOLD(x)	(((x) & AT91_TWI_CWGR_HOLD_MAX) << 24)
70 
71 #define	AT91_TWI_SR		0x0020	/* Status Register */
72 #define	AT91_TWI_TXCOMP		BIT(0)	/* Transmission Complete */
73 #define	AT91_TWI_RXRDY		BIT(1)	/* Receive Holding Register Ready */
74 #define	AT91_TWI_TXRDY		BIT(2)	/* Transmit Holding Register Ready */
75 #define	AT91_TWI_OVRE		BIT(6)	/* Overrun Error */
76 #define	AT91_TWI_UNRE		BIT(7)	/* Underrun Error */
77 #define	AT91_TWI_NACK		BIT(8)	/* Not Acknowledged */
78 #define	AT91_TWI_LOCK		BIT(23) /* TWI Lock due to Frame Errors */
79 
80 #define	AT91_TWI_INT_MASK \
81 	(AT91_TWI_TXCOMP | AT91_TWI_RXRDY | AT91_TWI_TXRDY | AT91_TWI_NACK)
82 
83 #define	AT91_TWI_IER		0x0024	/* Interrupt Enable Register */
84 #define	AT91_TWI_IDR		0x0028	/* Interrupt Disable Register */
85 #define	AT91_TWI_IMR		0x002c	/* Interrupt Mask Register */
86 #define	AT91_TWI_RHR		0x0030	/* Receive Holding Register */
87 #define	AT91_TWI_THR		0x0034	/* Transmit Holding Register */
88 
89 #define	AT91_TWI_ACR		0x0040	/* Alternative Command Register */
90 #define	AT91_TWI_ACR_DATAL(len)	((len) & 0xff)
91 #define	AT91_TWI_ACR_DIR	BIT(8)
92 
93 #define	AT91_TWI_FMR		0x0050	/* FIFO Mode Register */
94 #define	AT91_TWI_FMR_TXRDYM(mode)	(((mode) & 0x3) << 0)
95 #define	AT91_TWI_FMR_TXRDYM_MASK	(0x3 << 0)
96 #define	AT91_TWI_FMR_RXRDYM(mode)	(((mode) & 0x3) << 4)
97 #define	AT91_TWI_FMR_RXRDYM_MASK	(0x3 << 4)
98 #define	AT91_TWI_ONE_DATA	0x0
99 #define	AT91_TWI_TWO_DATA	0x1
100 #define	AT91_TWI_FOUR_DATA	0x2
101 
102 #define	AT91_TWI_FLR		0x0054	/* FIFO Level Register */
103 
104 #define	AT91_TWI_FSR		0x0060	/* FIFO Status Register */
105 #define	AT91_TWI_FIER		0x0064	/* FIFO Interrupt Enable Register */
106 #define	AT91_TWI_FIDR		0x0068	/* FIFO Interrupt Disable Register */
107 #define	AT91_TWI_FIMR		0x006c	/* FIFO Interrupt Mask Register */
108 
109 #define	AT91_TWI_VER		0x00fc	/* Version Register */
110 
111 struct at91_twi_pdata {
112 	unsigned clk_max_div;
113 	unsigned clk_offset;
114 	bool has_unre_flag;
115 	bool has_alt_cmd;
116 	bool has_hold_field;
117 	struct at_dma_slave dma_slave;
118 };
119 
120 struct at91_twi_dma {
121 	struct dma_chan *chan_rx;
122 	struct dma_chan *chan_tx;
123 	struct scatterlist sg[2];
124 	struct dma_async_tx_descriptor *data_desc;
125 	enum dma_data_direction direction;
126 	bool buf_mapped;
127 	bool xfer_in_progress;
128 };
129 
130 struct at91_twi_dev {
131 	struct device *dev;
132 	void __iomem *base;
133 	struct completion cmd_complete;
134 	struct clk *clk;
135 	u8 *buf;
136 	size_t buf_len;
137 	struct i2c_msg *msg;
138 	int irq;
139 	unsigned imr;
140 	unsigned transfer_status;
141 	struct i2c_adapter adapter;
142 	unsigned twi_cwgr_reg;
143 	struct at91_twi_pdata *pdata;
144 	bool use_dma;
145 	bool use_alt_cmd;
146 	bool recv_len_abort;
147 	u32 fifo_size;
148 	struct at91_twi_dma dma;
149 };
150 
at91_twi_read(struct at91_twi_dev * dev,unsigned reg)151 static unsigned at91_twi_read(struct at91_twi_dev *dev, unsigned reg)
152 {
153 	return readl_relaxed(dev->base + reg);
154 }
155 
at91_twi_write(struct at91_twi_dev * dev,unsigned reg,unsigned val)156 static void at91_twi_write(struct at91_twi_dev *dev, unsigned reg, unsigned val)
157 {
158 	writel_relaxed(val, dev->base + reg);
159 }
160 
at91_disable_twi_interrupts(struct at91_twi_dev * dev)161 static void at91_disable_twi_interrupts(struct at91_twi_dev *dev)
162 {
163 	at91_twi_write(dev, AT91_TWI_IDR, AT91_TWI_INT_MASK);
164 }
165 
at91_twi_irq_save(struct at91_twi_dev * dev)166 static void at91_twi_irq_save(struct at91_twi_dev *dev)
167 {
168 	dev->imr = at91_twi_read(dev, AT91_TWI_IMR) & AT91_TWI_INT_MASK;
169 	at91_disable_twi_interrupts(dev);
170 }
171 
at91_twi_irq_restore(struct at91_twi_dev * dev)172 static void at91_twi_irq_restore(struct at91_twi_dev *dev)
173 {
174 	at91_twi_write(dev, AT91_TWI_IER, dev->imr);
175 }
176 
at91_init_twi_bus(struct at91_twi_dev * dev)177 static void at91_init_twi_bus(struct at91_twi_dev *dev)
178 {
179 	at91_disable_twi_interrupts(dev);
180 	at91_twi_write(dev, AT91_TWI_CR, AT91_TWI_SWRST);
181 	/* FIFO should be enabled immediately after the software reset */
182 	if (dev->fifo_size)
183 		at91_twi_write(dev, AT91_TWI_CR, AT91_TWI_FIFOEN);
184 	at91_twi_write(dev, AT91_TWI_CR, AT91_TWI_MSEN);
185 	at91_twi_write(dev, AT91_TWI_CR, AT91_TWI_SVDIS);
186 	at91_twi_write(dev, AT91_TWI_CWGR, dev->twi_cwgr_reg);
187 }
188 
189 /*
190  * Calculate symmetric clock as stated in datasheet:
191  * twi_clk = F_MAIN / (2 * (cdiv * (1 << ckdiv) + offset))
192  */
at91_calc_twi_clock(struct at91_twi_dev * dev,int twi_clk)193 static void at91_calc_twi_clock(struct at91_twi_dev *dev, int twi_clk)
194 {
195 	int ckdiv, cdiv, div, hold = 0;
196 	struct at91_twi_pdata *pdata = dev->pdata;
197 	int offset = pdata->clk_offset;
198 	int max_ckdiv = pdata->clk_max_div;
199 	u32 twd_hold_time_ns = 0;
200 
201 	div = max(0, (int)DIV_ROUND_UP(clk_get_rate(dev->clk),
202 				       2 * twi_clk) - offset);
203 	ckdiv = fls(div >> 8);
204 	cdiv = div >> ckdiv;
205 
206 	if (ckdiv > max_ckdiv) {
207 		dev_warn(dev->dev, "%d exceeds ckdiv max value which is %d.\n",
208 			 ckdiv, max_ckdiv);
209 		ckdiv = max_ckdiv;
210 		cdiv = 255;
211 	}
212 
213 	if (pdata->has_hold_field) {
214 		of_property_read_u32(dev->dev->of_node, "i2c-sda-hold-time-ns",
215 				     &twd_hold_time_ns);
216 
217 		/*
218 		 * hold time = HOLD + 3 x T_peripheral_clock
219 		 * Use clk rate in kHz to prevent overflows when computing
220 		 * hold.
221 		 */
222 		hold = DIV_ROUND_UP(twd_hold_time_ns
223 				    * (clk_get_rate(dev->clk) / 1000), 1000000);
224 		hold -= 3;
225 		if (hold < 0)
226 			hold = 0;
227 		if (hold > AT91_TWI_CWGR_HOLD_MAX) {
228 			dev_warn(dev->dev,
229 				 "HOLD field set to its maximum value (%d instead of %d)\n",
230 				 AT91_TWI_CWGR_HOLD_MAX, hold);
231 			hold = AT91_TWI_CWGR_HOLD_MAX;
232 		}
233 	}
234 
235 	dev->twi_cwgr_reg = (ckdiv << 16) | (cdiv << 8) | cdiv
236 			    | AT91_TWI_CWGR_HOLD(hold);
237 
238 	dev_dbg(dev->dev, "cdiv %d ckdiv %d hold %d (%d ns)\n",
239 		cdiv, ckdiv, hold, twd_hold_time_ns);
240 }
241 
at91_twi_dma_cleanup(struct at91_twi_dev * dev)242 static void at91_twi_dma_cleanup(struct at91_twi_dev *dev)
243 {
244 	struct at91_twi_dma *dma = &dev->dma;
245 
246 	at91_twi_irq_save(dev);
247 
248 	if (dma->xfer_in_progress) {
249 		if (dma->direction == DMA_FROM_DEVICE)
250 			dmaengine_terminate_all(dma->chan_rx);
251 		else
252 			dmaengine_terminate_all(dma->chan_tx);
253 		dma->xfer_in_progress = false;
254 	}
255 	if (dma->buf_mapped) {
256 		dma_unmap_single(dev->dev, sg_dma_address(&dma->sg[0]),
257 				 dev->buf_len, dma->direction);
258 		dma->buf_mapped = false;
259 	}
260 
261 	at91_twi_irq_restore(dev);
262 }
263 
at91_twi_write_next_byte(struct at91_twi_dev * dev)264 static void at91_twi_write_next_byte(struct at91_twi_dev *dev)
265 {
266 	if (!dev->buf_len)
267 		return;
268 
269 	/* 8bit write works with and without FIFO */
270 	writeb_relaxed(*dev->buf, dev->base + AT91_TWI_THR);
271 
272 	/* send stop when last byte has been written */
273 	if (--dev->buf_len == 0) {
274 		if (!dev->use_alt_cmd)
275 			at91_twi_write(dev, AT91_TWI_CR, AT91_TWI_STOP);
276 		at91_twi_write(dev, AT91_TWI_IDR, AT91_TWI_TXRDY);
277 	}
278 
279 	dev_dbg(dev->dev, "wrote 0x%x, to go %zu\n", *dev->buf, dev->buf_len);
280 
281 	++dev->buf;
282 }
283 
at91_twi_write_data_dma_callback(void * data)284 static void at91_twi_write_data_dma_callback(void *data)
285 {
286 	struct at91_twi_dev *dev = (struct at91_twi_dev *)data;
287 
288 	dma_unmap_single(dev->dev, sg_dma_address(&dev->dma.sg[0]),
289 			 dev->buf_len, DMA_TO_DEVICE);
290 
291 	/*
292 	 * When this callback is called, THR/TX FIFO is likely not to be empty
293 	 * yet. So we have to wait for TXCOMP or NACK bits to be set into the
294 	 * Status Register to be sure that the STOP bit has been sent and the
295 	 * transfer is completed. The NACK interrupt has already been enabled,
296 	 * we just have to enable TXCOMP one.
297 	 */
298 	at91_twi_write(dev, AT91_TWI_IER, AT91_TWI_TXCOMP);
299 	if (!dev->use_alt_cmd)
300 		at91_twi_write(dev, AT91_TWI_CR, AT91_TWI_STOP);
301 }
302 
at91_twi_write_data_dma(struct at91_twi_dev * dev)303 static void at91_twi_write_data_dma(struct at91_twi_dev *dev)
304 {
305 	dma_addr_t dma_addr;
306 	struct dma_async_tx_descriptor *txdesc;
307 	struct at91_twi_dma *dma = &dev->dma;
308 	struct dma_chan *chan_tx = dma->chan_tx;
309 	unsigned int sg_len = 1;
310 
311 	if (!dev->buf_len)
312 		return;
313 
314 	dma->direction = DMA_TO_DEVICE;
315 
316 	at91_twi_irq_save(dev);
317 	dma_addr = dma_map_single(dev->dev, dev->buf, dev->buf_len,
318 				  DMA_TO_DEVICE);
319 	if (dma_mapping_error(dev->dev, dma_addr)) {
320 		dev_err(dev->dev, "dma map failed\n");
321 		return;
322 	}
323 	dma->buf_mapped = true;
324 	at91_twi_irq_restore(dev);
325 
326 	if (dev->fifo_size) {
327 		size_t part1_len, part2_len;
328 		struct scatterlist *sg;
329 		unsigned fifo_mr;
330 
331 		sg_len = 0;
332 
333 		part1_len = dev->buf_len & ~0x3;
334 		if (part1_len) {
335 			sg = &dma->sg[sg_len++];
336 			sg_dma_len(sg) = part1_len;
337 			sg_dma_address(sg) = dma_addr;
338 		}
339 
340 		part2_len = dev->buf_len & 0x3;
341 		if (part2_len) {
342 			sg = &dma->sg[sg_len++];
343 			sg_dma_len(sg) = part2_len;
344 			sg_dma_address(sg) = dma_addr + part1_len;
345 		}
346 
347 		/*
348 		 * DMA controller is triggered when at least 4 data can be
349 		 * written into the TX FIFO
350 		 */
351 		fifo_mr = at91_twi_read(dev, AT91_TWI_FMR);
352 		fifo_mr &= ~AT91_TWI_FMR_TXRDYM_MASK;
353 		fifo_mr |= AT91_TWI_FMR_TXRDYM(AT91_TWI_FOUR_DATA);
354 		at91_twi_write(dev, AT91_TWI_FMR, fifo_mr);
355 	} else {
356 		sg_dma_len(&dma->sg[0]) = dev->buf_len;
357 		sg_dma_address(&dma->sg[0]) = dma_addr;
358 	}
359 
360 	txdesc = dmaengine_prep_slave_sg(chan_tx, dma->sg, sg_len,
361 					 DMA_MEM_TO_DEV,
362 					 DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
363 	if (!txdesc) {
364 		dev_err(dev->dev, "dma prep slave sg failed\n");
365 		goto error;
366 	}
367 
368 	txdesc->callback = at91_twi_write_data_dma_callback;
369 	txdesc->callback_param = dev;
370 
371 	dma->xfer_in_progress = true;
372 	dmaengine_submit(txdesc);
373 	dma_async_issue_pending(chan_tx);
374 
375 	return;
376 
377 error:
378 	at91_twi_dma_cleanup(dev);
379 }
380 
at91_twi_read_next_byte(struct at91_twi_dev * dev)381 static void at91_twi_read_next_byte(struct at91_twi_dev *dev)
382 {
383 	/*
384 	 * If we are in this case, it means there is garbage data in RHR, so
385 	 * delete them.
386 	 */
387 	if (!dev->buf_len) {
388 		at91_twi_read(dev, AT91_TWI_RHR);
389 		return;
390 	}
391 
392 	/* 8bit read works with and without FIFO */
393 	*dev->buf = readb_relaxed(dev->base + AT91_TWI_RHR);
394 	--dev->buf_len;
395 
396 	/* return if aborting, we only needed to read RHR to clear RXRDY*/
397 	if (dev->recv_len_abort)
398 		return;
399 
400 	/* handle I2C_SMBUS_BLOCK_DATA */
401 	if (unlikely(dev->msg->flags & I2C_M_RECV_LEN)) {
402 		/* ensure length byte is a valid value */
403 		if (*dev->buf <= I2C_SMBUS_BLOCK_MAX && *dev->buf > 0) {
404 			dev->msg->flags &= ~I2C_M_RECV_LEN;
405 			dev->buf_len += *dev->buf;
406 			dev->msg->len = dev->buf_len + 1;
407 			dev_dbg(dev->dev, "received block length %zu\n",
408 					 dev->buf_len);
409 		} else {
410 			/* abort and send the stop by reading one more byte */
411 			dev->recv_len_abort = true;
412 			dev->buf_len = 1;
413 		}
414 	}
415 
416 	/* send stop if second but last byte has been read */
417 	if (!dev->use_alt_cmd && dev->buf_len == 1)
418 		at91_twi_write(dev, AT91_TWI_CR, AT91_TWI_STOP);
419 
420 	dev_dbg(dev->dev, "read 0x%x, to go %zu\n", *dev->buf, dev->buf_len);
421 
422 	++dev->buf;
423 }
424 
at91_twi_read_data_dma_callback(void * data)425 static void at91_twi_read_data_dma_callback(void *data)
426 {
427 	struct at91_twi_dev *dev = (struct at91_twi_dev *)data;
428 	unsigned ier = AT91_TWI_TXCOMP;
429 
430 	dma_unmap_single(dev->dev, sg_dma_address(&dev->dma.sg[0]),
431 			 dev->buf_len, DMA_FROM_DEVICE);
432 
433 	if (!dev->use_alt_cmd) {
434 		/* The last two bytes have to be read without using dma */
435 		dev->buf += dev->buf_len - 2;
436 		dev->buf_len = 2;
437 		ier |= AT91_TWI_RXRDY;
438 	}
439 	at91_twi_write(dev, AT91_TWI_IER, ier);
440 }
441 
at91_twi_read_data_dma(struct at91_twi_dev * dev)442 static void at91_twi_read_data_dma(struct at91_twi_dev *dev)
443 {
444 	dma_addr_t dma_addr;
445 	struct dma_async_tx_descriptor *rxdesc;
446 	struct at91_twi_dma *dma = &dev->dma;
447 	struct dma_chan *chan_rx = dma->chan_rx;
448 	size_t buf_len;
449 
450 	buf_len = (dev->use_alt_cmd) ? dev->buf_len : dev->buf_len - 2;
451 	dma->direction = DMA_FROM_DEVICE;
452 
453 	/* Keep in mind that we won't use dma to read the last two bytes */
454 	at91_twi_irq_save(dev);
455 	dma_addr = dma_map_single(dev->dev, dev->buf, buf_len, DMA_FROM_DEVICE);
456 	if (dma_mapping_error(dev->dev, dma_addr)) {
457 		dev_err(dev->dev, "dma map failed\n");
458 		return;
459 	}
460 	dma->buf_mapped = true;
461 	at91_twi_irq_restore(dev);
462 
463 	if (dev->fifo_size && IS_ALIGNED(buf_len, 4)) {
464 		unsigned fifo_mr;
465 
466 		/*
467 		 * DMA controller is triggered when at least 4 data can be
468 		 * read from the RX FIFO
469 		 */
470 		fifo_mr = at91_twi_read(dev, AT91_TWI_FMR);
471 		fifo_mr &= ~AT91_TWI_FMR_RXRDYM_MASK;
472 		fifo_mr |= AT91_TWI_FMR_RXRDYM(AT91_TWI_FOUR_DATA);
473 		at91_twi_write(dev, AT91_TWI_FMR, fifo_mr);
474 	}
475 
476 	sg_dma_len(&dma->sg[0]) = buf_len;
477 	sg_dma_address(&dma->sg[0]) = dma_addr;
478 
479 	rxdesc = dmaengine_prep_slave_sg(chan_rx, dma->sg, 1, DMA_DEV_TO_MEM,
480 					 DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
481 	if (!rxdesc) {
482 		dev_err(dev->dev, "dma prep slave sg failed\n");
483 		goto error;
484 	}
485 
486 	rxdesc->callback = at91_twi_read_data_dma_callback;
487 	rxdesc->callback_param = dev;
488 
489 	dma->xfer_in_progress = true;
490 	dmaengine_submit(rxdesc);
491 	dma_async_issue_pending(dma->chan_rx);
492 
493 	return;
494 
495 error:
496 	at91_twi_dma_cleanup(dev);
497 }
498 
atmel_twi_interrupt(int irq,void * dev_id)499 static irqreturn_t atmel_twi_interrupt(int irq, void *dev_id)
500 {
501 	struct at91_twi_dev *dev = dev_id;
502 	const unsigned status = at91_twi_read(dev, AT91_TWI_SR);
503 	const unsigned irqstatus = status & at91_twi_read(dev, AT91_TWI_IMR);
504 
505 	if (!irqstatus)
506 		return IRQ_NONE;
507 	/*
508 	 * In reception, the behavior of the twi device (before sama5d2) is
509 	 * weird. There is some magic about RXRDY flag! When a data has been
510 	 * almost received, the reception of a new one is anticipated if there
511 	 * is no stop command to send. That is the reason why ask for sending
512 	 * the stop command not on the last data but on the second last one.
513 	 *
514 	 * Unfortunately, we could still have the RXRDY flag set even if the
515 	 * transfer is done and we have read the last data. It might happen
516 	 * when the i2c slave device sends too quickly data after receiving the
517 	 * ack from the master. The data has been almost received before having
518 	 * the order to send stop. In this case, sending the stop command could
519 	 * cause a RXRDY interrupt with a TXCOMP one. It is better to manage
520 	 * the RXRDY interrupt first in order to not keep garbage data in the
521 	 * Receive Holding Register for the next transfer.
522 	 */
523 	if (irqstatus & AT91_TWI_RXRDY) {
524 		/*
525 		 * Read all available bytes at once by polling RXRDY usable w/
526 		 * and w/o FIFO. With FIFO enabled we could also read RXFL and
527 		 * avoid polling RXRDY.
528 		 */
529 		do {
530 			at91_twi_read_next_byte(dev);
531 		} while (at91_twi_read(dev, AT91_TWI_SR) & AT91_TWI_RXRDY);
532 	}
533 
534 	/*
535 	 * When a NACK condition is detected, the I2C controller sets the NACK,
536 	 * TXCOMP and TXRDY bits all together in the Status Register (SR).
537 	 *
538 	 * 1 - Handling NACK errors with CPU write transfer.
539 	 *
540 	 * In such case, we should not write the next byte into the Transmit
541 	 * Holding Register (THR) otherwise the I2C controller would start a new
542 	 * transfer and the I2C slave is likely to reply by another NACK.
543 	 *
544 	 * 2 - Handling NACK errors with DMA write transfer.
545 	 *
546 	 * By setting the TXRDY bit in the SR, the I2C controller also triggers
547 	 * the DMA controller to write the next data into the THR. Then the
548 	 * result depends on the hardware version of the I2C controller.
549 	 *
550 	 * 2a - Without support of the Alternative Command mode.
551 	 *
552 	 * This is the worst case: the DMA controller is triggered to write the
553 	 * next data into the THR, hence starting a new transfer: the I2C slave
554 	 * is likely to reply by another NACK.
555 	 * Concurrently, this interrupt handler is likely to be called to manage
556 	 * the first NACK before the I2C controller detects the second NACK and
557 	 * sets once again the NACK bit into the SR.
558 	 * When handling the first NACK, this interrupt handler disables the I2C
559 	 * controller interruptions, especially the NACK interrupt.
560 	 * Hence, the NACK bit is pending into the SR. This is why we should
561 	 * read the SR to clear all pending interrupts at the beginning of
562 	 * at91_do_twi_transfer() before actually starting a new transfer.
563 	 *
564 	 * 2b - With support of the Alternative Command mode.
565 	 *
566 	 * When a NACK condition is detected, the I2C controller also locks the
567 	 * THR (and sets the LOCK bit in the SR): even though the DMA controller
568 	 * is triggered by the TXRDY bit to write the next data into the THR,
569 	 * this data actually won't go on the I2C bus hence a second NACK is not
570 	 * generated.
571 	 */
572 	if (irqstatus & (AT91_TWI_TXCOMP | AT91_TWI_NACK)) {
573 		at91_disable_twi_interrupts(dev);
574 		complete(&dev->cmd_complete);
575 	} else if (irqstatus & AT91_TWI_TXRDY) {
576 		at91_twi_write_next_byte(dev);
577 	}
578 
579 	/* catch error flags */
580 	dev->transfer_status |= status;
581 
582 	return IRQ_HANDLED;
583 }
584 
at91_do_twi_transfer(struct at91_twi_dev * dev)585 static int at91_do_twi_transfer(struct at91_twi_dev *dev)
586 {
587 	int ret;
588 	unsigned long time_left;
589 	bool has_unre_flag = dev->pdata->has_unre_flag;
590 	bool has_alt_cmd = dev->pdata->has_alt_cmd;
591 
592 	/*
593 	 * WARNING: the TXCOMP bit in the Status Register is NOT a clear on
594 	 * read flag but shows the state of the transmission at the time the
595 	 * Status Register is read. According to the programmer datasheet,
596 	 * TXCOMP is set when both holding register and internal shifter are
597 	 * empty and STOP condition has been sent.
598 	 * Consequently, we should enable NACK interrupt rather than TXCOMP to
599 	 * detect transmission failure.
600 	 * Indeed let's take the case of an i2c write command using DMA.
601 	 * Whenever the slave doesn't acknowledge a byte, the LOCK, NACK and
602 	 * TXCOMP bits are set together into the Status Register.
603 	 * LOCK is a clear on write bit, which is set to prevent the DMA
604 	 * controller from sending new data on the i2c bus after a NACK
605 	 * condition has happened. Once locked, this i2c peripheral stops
606 	 * triggering the DMA controller for new data but it is more than
607 	 * likely that a new DMA transaction is already in progress, writing
608 	 * into the Transmit Holding Register. Since the peripheral is locked,
609 	 * these new data won't be sent to the i2c bus but they will remain
610 	 * into the Transmit Holding Register, so TXCOMP bit is cleared.
611 	 * Then when the interrupt handler is called, the Status Register is
612 	 * read: the TXCOMP bit is clear but NACK bit is still set. The driver
613 	 * manage the error properly, without waiting for timeout.
614 	 * This case can be reproduced easyly when writing into an at24 eeprom.
615 	 *
616 	 * Besides, the TXCOMP bit is already set before the i2c transaction
617 	 * has been started. For read transactions, this bit is cleared when
618 	 * writing the START bit into the Control Register. So the
619 	 * corresponding interrupt can safely be enabled just after.
620 	 * However for write transactions managed by the CPU, we first write
621 	 * into THR, so TXCOMP is cleared. Then we can safely enable TXCOMP
622 	 * interrupt. If TXCOMP interrupt were enabled before writing into THR,
623 	 * the interrupt handler would be called immediately and the i2c command
624 	 * would be reported as completed.
625 	 * Also when a write transaction is managed by the DMA controller,
626 	 * enabling the TXCOMP interrupt in this function may lead to a race
627 	 * condition since we don't know whether the TXCOMP interrupt is enabled
628 	 * before or after the DMA has started to write into THR. So the TXCOMP
629 	 * interrupt is enabled later by at91_twi_write_data_dma_callback().
630 	 * Immediately after in that DMA callback, if the alternative command
631 	 * mode is not used, we still need to send the STOP condition manually
632 	 * writing the corresponding bit into the Control Register.
633 	 */
634 
635 	dev_dbg(dev->dev, "transfer: %s %zu bytes.\n",
636 		(dev->msg->flags & I2C_M_RD) ? "read" : "write", dev->buf_len);
637 
638 	reinit_completion(&dev->cmd_complete);
639 	dev->transfer_status = 0;
640 
641 	/* Clear pending interrupts, such as NACK. */
642 	at91_twi_read(dev, AT91_TWI_SR);
643 
644 	if (dev->fifo_size) {
645 		unsigned fifo_mr = at91_twi_read(dev, AT91_TWI_FMR);
646 
647 		/* Reset FIFO mode register */
648 		fifo_mr &= ~(AT91_TWI_FMR_TXRDYM_MASK |
649 			     AT91_TWI_FMR_RXRDYM_MASK);
650 		fifo_mr |= AT91_TWI_FMR_TXRDYM(AT91_TWI_ONE_DATA);
651 		fifo_mr |= AT91_TWI_FMR_RXRDYM(AT91_TWI_ONE_DATA);
652 		at91_twi_write(dev, AT91_TWI_FMR, fifo_mr);
653 
654 		/* Flush FIFOs */
655 		at91_twi_write(dev, AT91_TWI_CR,
656 			       AT91_TWI_THRCLR | AT91_TWI_RHRCLR);
657 	}
658 
659 	if (!dev->buf_len) {
660 		at91_twi_write(dev, AT91_TWI_CR, AT91_TWI_QUICK);
661 		at91_twi_write(dev, AT91_TWI_IER, AT91_TWI_TXCOMP);
662 	} else if (dev->msg->flags & I2C_M_RD) {
663 		unsigned start_flags = AT91_TWI_START;
664 
665 		/* if only one byte is to be read, immediately stop transfer */
666 		if (!dev->use_alt_cmd && dev->buf_len <= 1 &&
667 		    !(dev->msg->flags & I2C_M_RECV_LEN))
668 			start_flags |= AT91_TWI_STOP;
669 		at91_twi_write(dev, AT91_TWI_CR, start_flags);
670 		/*
671 		 * When using dma without alternative command mode, the last
672 		 * byte has to be read manually in order to not send the stop
673 		 * command too late and then to receive extra data.
674 		 * In practice, there are some issues if you use the dma to
675 		 * read n-1 bytes because of latency.
676 		 * Reading n-2 bytes with dma and the two last ones manually
677 		 * seems to be the best solution.
678 		 */
679 		if (dev->use_dma && (dev->buf_len > AT91_I2C_DMA_THRESHOLD)) {
680 			at91_twi_write(dev, AT91_TWI_IER, AT91_TWI_NACK);
681 			at91_twi_read_data_dma(dev);
682 		} else {
683 			at91_twi_write(dev, AT91_TWI_IER,
684 				       AT91_TWI_TXCOMP |
685 				       AT91_TWI_NACK |
686 				       AT91_TWI_RXRDY);
687 		}
688 	} else {
689 		if (dev->use_dma && (dev->buf_len > AT91_I2C_DMA_THRESHOLD)) {
690 			at91_twi_write(dev, AT91_TWI_IER, AT91_TWI_NACK);
691 			at91_twi_write_data_dma(dev);
692 		} else {
693 			at91_twi_write_next_byte(dev);
694 			at91_twi_write(dev, AT91_TWI_IER,
695 				       AT91_TWI_TXCOMP | AT91_TWI_NACK |
696 				       (dev->buf_len ? AT91_TWI_TXRDY : 0));
697 		}
698 	}
699 
700 	time_left = wait_for_completion_timeout(&dev->cmd_complete,
701 					      dev->adapter.timeout);
702 	if (time_left == 0) {
703 		dev->transfer_status |= at91_twi_read(dev, AT91_TWI_SR);
704 		dev_err(dev->dev, "controller timed out\n");
705 		at91_init_twi_bus(dev);
706 		ret = -ETIMEDOUT;
707 		goto error;
708 	}
709 	if (dev->transfer_status & AT91_TWI_NACK) {
710 		dev_dbg(dev->dev, "received nack\n");
711 		ret = -EREMOTEIO;
712 		goto error;
713 	}
714 	if (dev->transfer_status & AT91_TWI_OVRE) {
715 		dev_err(dev->dev, "overrun while reading\n");
716 		ret = -EIO;
717 		goto error;
718 	}
719 	if (has_unre_flag && dev->transfer_status & AT91_TWI_UNRE) {
720 		dev_err(dev->dev, "underrun while writing\n");
721 		ret = -EIO;
722 		goto error;
723 	}
724 	if ((has_alt_cmd || dev->fifo_size) &&
725 	    (dev->transfer_status & AT91_TWI_LOCK)) {
726 		dev_err(dev->dev, "tx locked\n");
727 		ret = -EIO;
728 		goto error;
729 	}
730 	if (dev->recv_len_abort) {
731 		dev_err(dev->dev, "invalid smbus block length recvd\n");
732 		ret = -EPROTO;
733 		goto error;
734 	}
735 
736 	dev_dbg(dev->dev, "transfer complete\n");
737 
738 	return 0;
739 
740 error:
741 	/* first stop DMA transfer if still in progress */
742 	at91_twi_dma_cleanup(dev);
743 	/* then flush THR/FIFO and unlock TX if locked */
744 	if ((has_alt_cmd || dev->fifo_size) &&
745 	    (dev->transfer_status & AT91_TWI_LOCK)) {
746 		dev_dbg(dev->dev, "unlock tx\n");
747 		at91_twi_write(dev, AT91_TWI_CR,
748 			       AT91_TWI_THRCLR | AT91_TWI_LOCKCLR);
749 	}
750 	return ret;
751 }
752 
at91_twi_xfer(struct i2c_adapter * adap,struct i2c_msg * msg,int num)753 static int at91_twi_xfer(struct i2c_adapter *adap, struct i2c_msg *msg, int num)
754 {
755 	struct at91_twi_dev *dev = i2c_get_adapdata(adap);
756 	int ret;
757 	unsigned int_addr_flag = 0;
758 	struct i2c_msg *m_start = msg;
759 	bool is_read;
760 
761 	dev_dbg(&adap->dev, "at91_xfer: processing %d messages:\n", num);
762 
763 	ret = pm_runtime_get_sync(dev->dev);
764 	if (ret < 0)
765 		goto out;
766 
767 	if (num == 2) {
768 		int internal_address = 0;
769 		int i;
770 
771 		/* 1st msg is put into the internal address, start with 2nd */
772 		m_start = &msg[1];
773 		for (i = 0; i < msg->len; ++i) {
774 			const unsigned addr = msg->buf[msg->len - 1 - i];
775 
776 			internal_address |= addr << (8 * i);
777 			int_addr_flag += AT91_TWI_IADRSZ_1;
778 		}
779 		at91_twi_write(dev, AT91_TWI_IADR, internal_address);
780 	}
781 
782 	dev->use_alt_cmd = false;
783 	is_read = (m_start->flags & I2C_M_RD);
784 	if (dev->pdata->has_alt_cmd) {
785 		if (m_start->len > 0 &&
786 		    m_start->len < AT91_I2C_MAX_ALT_CMD_DATA_SIZE) {
787 			at91_twi_write(dev, AT91_TWI_CR, AT91_TWI_ACMEN);
788 			at91_twi_write(dev, AT91_TWI_ACR,
789 				       AT91_TWI_ACR_DATAL(m_start->len) |
790 				       ((is_read) ? AT91_TWI_ACR_DIR : 0));
791 			dev->use_alt_cmd = true;
792 		} else {
793 			at91_twi_write(dev, AT91_TWI_CR, AT91_TWI_ACMDIS);
794 		}
795 	}
796 
797 	at91_twi_write(dev, AT91_TWI_MMR,
798 		       (m_start->addr << 16) |
799 		       int_addr_flag |
800 		       ((!dev->use_alt_cmd && is_read) ? AT91_TWI_MREAD : 0));
801 
802 	dev->buf_len = m_start->len;
803 	dev->buf = m_start->buf;
804 	dev->msg = m_start;
805 	dev->recv_len_abort = false;
806 
807 	ret = at91_do_twi_transfer(dev);
808 
809 	ret = (ret < 0) ? ret : num;
810 out:
811 	pm_runtime_mark_last_busy(dev->dev);
812 	pm_runtime_put_autosuspend(dev->dev);
813 
814 	return ret;
815 }
816 
817 /*
818  * The hardware can handle at most two messages concatenated by a
819  * repeated start via it's internal address feature.
820  */
821 static const struct i2c_adapter_quirks at91_twi_quirks = {
822 	.flags = I2C_AQ_COMB | I2C_AQ_COMB_WRITE_FIRST | I2C_AQ_COMB_SAME_ADDR,
823 	.max_comb_1st_msg_len = 3,
824 };
825 
at91_twi_func(struct i2c_adapter * adapter)826 static u32 at91_twi_func(struct i2c_adapter *adapter)
827 {
828 	return I2C_FUNC_I2C | I2C_FUNC_SMBUS_EMUL
829 		| I2C_FUNC_SMBUS_READ_BLOCK_DATA;
830 }
831 
832 static const struct i2c_algorithm at91_twi_algorithm = {
833 	.master_xfer	= at91_twi_xfer,
834 	.functionality	= at91_twi_func,
835 };
836 
837 static struct at91_twi_pdata at91rm9200_config = {
838 	.clk_max_div = 5,
839 	.clk_offset = 3,
840 	.has_unre_flag = true,
841 	.has_alt_cmd = false,
842 	.has_hold_field = false,
843 };
844 
845 static struct at91_twi_pdata at91sam9261_config = {
846 	.clk_max_div = 5,
847 	.clk_offset = 4,
848 	.has_unre_flag = false,
849 	.has_alt_cmd = false,
850 	.has_hold_field = false,
851 };
852 
853 static struct at91_twi_pdata at91sam9260_config = {
854 	.clk_max_div = 7,
855 	.clk_offset = 4,
856 	.has_unre_flag = false,
857 	.has_alt_cmd = false,
858 	.has_hold_field = false,
859 };
860 
861 static struct at91_twi_pdata at91sam9g20_config = {
862 	.clk_max_div = 7,
863 	.clk_offset = 4,
864 	.has_unre_flag = false,
865 	.has_alt_cmd = false,
866 	.has_hold_field = false,
867 };
868 
869 static struct at91_twi_pdata at91sam9g10_config = {
870 	.clk_max_div = 7,
871 	.clk_offset = 4,
872 	.has_unre_flag = false,
873 	.has_alt_cmd = false,
874 	.has_hold_field = false,
875 };
876 
877 static const struct platform_device_id at91_twi_devtypes[] = {
878 	{
879 		.name = "i2c-at91rm9200",
880 		.driver_data = (unsigned long) &at91rm9200_config,
881 	}, {
882 		.name = "i2c-at91sam9261",
883 		.driver_data = (unsigned long) &at91sam9261_config,
884 	}, {
885 		.name = "i2c-at91sam9260",
886 		.driver_data = (unsigned long) &at91sam9260_config,
887 	}, {
888 		.name = "i2c-at91sam9g20",
889 		.driver_data = (unsigned long) &at91sam9g20_config,
890 	}, {
891 		.name = "i2c-at91sam9g10",
892 		.driver_data = (unsigned long) &at91sam9g10_config,
893 	}, {
894 		/* sentinel */
895 	}
896 };
897 
898 #if defined(CONFIG_OF)
899 static struct at91_twi_pdata at91sam9x5_config = {
900 	.clk_max_div = 7,
901 	.clk_offset = 4,
902 	.has_unre_flag = false,
903 	.has_alt_cmd = false,
904 	.has_hold_field = false,
905 };
906 
907 static struct at91_twi_pdata sama5d4_config = {
908 	.clk_max_div = 7,
909 	.clk_offset = 4,
910 	.has_unre_flag = false,
911 	.has_alt_cmd = false,
912 	.has_hold_field = true,
913 };
914 
915 static struct at91_twi_pdata sama5d2_config = {
916 	.clk_max_div = 7,
917 	.clk_offset = 3,
918 	.has_unre_flag = true,
919 	.has_alt_cmd = true,
920 	.has_hold_field = true,
921 };
922 
923 static const struct of_device_id atmel_twi_dt_ids[] = {
924 	{
925 		.compatible = "atmel,at91rm9200-i2c",
926 		.data = &at91rm9200_config,
927 	} , {
928 		.compatible = "atmel,at91sam9260-i2c",
929 		.data = &at91sam9260_config,
930 	} , {
931 		.compatible = "atmel,at91sam9261-i2c",
932 		.data = &at91sam9261_config,
933 	} , {
934 		.compatible = "atmel,at91sam9g20-i2c",
935 		.data = &at91sam9g20_config,
936 	} , {
937 		.compatible = "atmel,at91sam9g10-i2c",
938 		.data = &at91sam9g10_config,
939 	}, {
940 		.compatible = "atmel,at91sam9x5-i2c",
941 		.data = &at91sam9x5_config,
942 	}, {
943 		.compatible = "atmel,sama5d4-i2c",
944 		.data = &sama5d4_config,
945 	}, {
946 		.compatible = "atmel,sama5d2-i2c",
947 		.data = &sama5d2_config,
948 	}, {
949 		/* sentinel */
950 	}
951 };
952 MODULE_DEVICE_TABLE(of, atmel_twi_dt_ids);
953 #endif
954 
at91_twi_configure_dma(struct at91_twi_dev * dev,u32 phy_addr)955 static int at91_twi_configure_dma(struct at91_twi_dev *dev, u32 phy_addr)
956 {
957 	int ret = 0;
958 	struct dma_slave_config slave_config;
959 	struct at91_twi_dma *dma = &dev->dma;
960 	enum dma_slave_buswidth addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
961 
962 	/*
963 	 * The actual width of the access will be chosen in
964 	 * dmaengine_prep_slave_sg():
965 	 * for each buffer in the scatter-gather list, if its size is aligned
966 	 * to addr_width then addr_width accesses will be performed to transfer
967 	 * the buffer. On the other hand, if the buffer size is not aligned to
968 	 * addr_width then the buffer is transferred using single byte accesses.
969 	 * Please refer to the Atmel eXtended DMA controller driver.
970 	 * When FIFOs are used, the TXRDYM threshold can always be set to
971 	 * trigger the XDMAC when at least 4 data can be written into the TX
972 	 * FIFO, even if single byte accesses are performed.
973 	 * However the RXRDYM threshold must be set to fit the access width,
974 	 * deduced from buffer length, so the XDMAC is triggered properly to
975 	 * read data from the RX FIFO.
976 	 */
977 	if (dev->fifo_size)
978 		addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
979 
980 	memset(&slave_config, 0, sizeof(slave_config));
981 	slave_config.src_addr = (dma_addr_t)phy_addr + AT91_TWI_RHR;
982 	slave_config.src_addr_width = addr_width;
983 	slave_config.src_maxburst = 1;
984 	slave_config.dst_addr = (dma_addr_t)phy_addr + AT91_TWI_THR;
985 	slave_config.dst_addr_width = addr_width;
986 	slave_config.dst_maxburst = 1;
987 	slave_config.device_fc = false;
988 
989 	dma->chan_tx = dma_request_slave_channel_reason(dev->dev, "tx");
990 	if (IS_ERR(dma->chan_tx)) {
991 		ret = PTR_ERR(dma->chan_tx);
992 		dma->chan_tx = NULL;
993 		goto error;
994 	}
995 
996 	dma->chan_rx = dma_request_slave_channel_reason(dev->dev, "rx");
997 	if (IS_ERR(dma->chan_rx)) {
998 		ret = PTR_ERR(dma->chan_rx);
999 		dma->chan_rx = NULL;
1000 		goto error;
1001 	}
1002 
1003 	slave_config.direction = DMA_MEM_TO_DEV;
1004 	if (dmaengine_slave_config(dma->chan_tx, &slave_config)) {
1005 		dev_err(dev->dev, "failed to configure tx channel\n");
1006 		ret = -EINVAL;
1007 		goto error;
1008 	}
1009 
1010 	slave_config.direction = DMA_DEV_TO_MEM;
1011 	if (dmaengine_slave_config(dma->chan_rx, &slave_config)) {
1012 		dev_err(dev->dev, "failed to configure rx channel\n");
1013 		ret = -EINVAL;
1014 		goto error;
1015 	}
1016 
1017 	sg_init_table(dma->sg, 2);
1018 	dma->buf_mapped = false;
1019 	dma->xfer_in_progress = false;
1020 	dev->use_dma = true;
1021 
1022 	dev_info(dev->dev, "using %s (tx) and %s (rx) for DMA transfers\n",
1023 		 dma_chan_name(dma->chan_tx), dma_chan_name(dma->chan_rx));
1024 
1025 	return ret;
1026 
1027 error:
1028 	if (ret != -EPROBE_DEFER)
1029 		dev_info(dev->dev, "can't get DMA channel, continue without DMA support\n");
1030 	if (dma->chan_rx)
1031 		dma_release_channel(dma->chan_rx);
1032 	if (dma->chan_tx)
1033 		dma_release_channel(dma->chan_tx);
1034 	return ret;
1035 }
1036 
at91_twi_get_driver_data(struct platform_device * pdev)1037 static struct at91_twi_pdata *at91_twi_get_driver_data(
1038 					struct platform_device *pdev)
1039 {
1040 	if (pdev->dev.of_node) {
1041 		const struct of_device_id *match;
1042 		match = of_match_node(atmel_twi_dt_ids, pdev->dev.of_node);
1043 		if (!match)
1044 			return NULL;
1045 		return (struct at91_twi_pdata *)match->data;
1046 	}
1047 	return (struct at91_twi_pdata *) platform_get_device_id(pdev)->driver_data;
1048 }
1049 
at91_twi_probe(struct platform_device * pdev)1050 static int at91_twi_probe(struct platform_device *pdev)
1051 {
1052 	struct at91_twi_dev *dev;
1053 	struct resource *mem;
1054 	int rc;
1055 	u32 phy_addr;
1056 	u32 bus_clk_rate;
1057 
1058 	dev = devm_kzalloc(&pdev->dev, sizeof(*dev), GFP_KERNEL);
1059 	if (!dev)
1060 		return -ENOMEM;
1061 	init_completion(&dev->cmd_complete);
1062 	dev->dev = &pdev->dev;
1063 
1064 	mem = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1065 	if (!mem)
1066 		return -ENODEV;
1067 	phy_addr = mem->start;
1068 
1069 	dev->pdata = at91_twi_get_driver_data(pdev);
1070 	if (!dev->pdata)
1071 		return -ENODEV;
1072 
1073 	dev->base = devm_ioremap_resource(&pdev->dev, mem);
1074 	if (IS_ERR(dev->base))
1075 		return PTR_ERR(dev->base);
1076 
1077 	dev->irq = platform_get_irq(pdev, 0);
1078 	if (dev->irq < 0)
1079 		return dev->irq;
1080 
1081 	rc = devm_request_irq(&pdev->dev, dev->irq, atmel_twi_interrupt, 0,
1082 			 dev_name(dev->dev), dev);
1083 	if (rc) {
1084 		dev_err(dev->dev, "Cannot get irq %d: %d\n", dev->irq, rc);
1085 		return rc;
1086 	}
1087 
1088 	platform_set_drvdata(pdev, dev);
1089 
1090 	dev->clk = devm_clk_get(dev->dev, NULL);
1091 	if (IS_ERR(dev->clk)) {
1092 		dev_err(dev->dev, "no clock defined\n");
1093 		return -ENODEV;
1094 	}
1095 	rc = clk_prepare_enable(dev->clk);
1096 	if (rc)
1097 		return rc;
1098 
1099 	if (dev->dev->of_node) {
1100 		rc = at91_twi_configure_dma(dev, phy_addr);
1101 		if (rc == -EPROBE_DEFER) {
1102 			clk_disable_unprepare(dev->clk);
1103 			return rc;
1104 		}
1105 	}
1106 
1107 	if (!of_property_read_u32(pdev->dev.of_node, "atmel,fifo-size",
1108 				  &dev->fifo_size)) {
1109 		dev_info(dev->dev, "Using FIFO (%u data)\n", dev->fifo_size);
1110 	}
1111 
1112 	rc = of_property_read_u32(dev->dev->of_node, "clock-frequency",
1113 			&bus_clk_rate);
1114 	if (rc)
1115 		bus_clk_rate = DEFAULT_TWI_CLK_HZ;
1116 
1117 	at91_calc_twi_clock(dev, bus_clk_rate);
1118 	at91_init_twi_bus(dev);
1119 
1120 	snprintf(dev->adapter.name, sizeof(dev->adapter.name), "AT91");
1121 	i2c_set_adapdata(&dev->adapter, dev);
1122 	dev->adapter.owner = THIS_MODULE;
1123 	dev->adapter.class = I2C_CLASS_DEPRECATED;
1124 	dev->adapter.algo = &at91_twi_algorithm;
1125 	dev->adapter.quirks = &at91_twi_quirks;
1126 	dev->adapter.dev.parent = dev->dev;
1127 	dev->adapter.nr = pdev->id;
1128 	dev->adapter.timeout = AT91_I2C_TIMEOUT;
1129 	dev->adapter.dev.of_node = pdev->dev.of_node;
1130 
1131 	pm_runtime_set_autosuspend_delay(dev->dev, AUTOSUSPEND_TIMEOUT);
1132 	pm_runtime_use_autosuspend(dev->dev);
1133 	pm_runtime_set_active(dev->dev);
1134 	pm_runtime_enable(dev->dev);
1135 
1136 	rc = i2c_add_numbered_adapter(&dev->adapter);
1137 	if (rc) {
1138 		clk_disable_unprepare(dev->clk);
1139 
1140 		pm_runtime_disable(dev->dev);
1141 		pm_runtime_set_suspended(dev->dev);
1142 
1143 		return rc;
1144 	}
1145 
1146 	dev_info(dev->dev, "AT91 i2c bus driver (hw version: %#x).\n",
1147 		 at91_twi_read(dev, AT91_TWI_VER));
1148 	return 0;
1149 }
1150 
at91_twi_remove(struct platform_device * pdev)1151 static int at91_twi_remove(struct platform_device *pdev)
1152 {
1153 	struct at91_twi_dev *dev = platform_get_drvdata(pdev);
1154 
1155 	i2c_del_adapter(&dev->adapter);
1156 	clk_disable_unprepare(dev->clk);
1157 
1158 	pm_runtime_disable(dev->dev);
1159 	pm_runtime_set_suspended(dev->dev);
1160 
1161 	return 0;
1162 }
1163 
1164 #ifdef CONFIG_PM
1165 
at91_twi_runtime_suspend(struct device * dev)1166 static int at91_twi_runtime_suspend(struct device *dev)
1167 {
1168 	struct at91_twi_dev *twi_dev = dev_get_drvdata(dev);
1169 
1170 	clk_disable_unprepare(twi_dev->clk);
1171 
1172 	pinctrl_pm_select_sleep_state(dev);
1173 
1174 	return 0;
1175 }
1176 
at91_twi_runtime_resume(struct device * dev)1177 static int at91_twi_runtime_resume(struct device *dev)
1178 {
1179 	struct at91_twi_dev *twi_dev = dev_get_drvdata(dev);
1180 
1181 	pinctrl_pm_select_default_state(dev);
1182 
1183 	return clk_prepare_enable(twi_dev->clk);
1184 }
1185 
at91_twi_suspend_noirq(struct device * dev)1186 static int at91_twi_suspend_noirq(struct device *dev)
1187 {
1188 	if (!pm_runtime_status_suspended(dev))
1189 		at91_twi_runtime_suspend(dev);
1190 
1191 	return 0;
1192 }
1193 
at91_twi_resume_noirq(struct device * dev)1194 static int at91_twi_resume_noirq(struct device *dev)
1195 {
1196 	struct at91_twi_dev *twi_dev = dev_get_drvdata(dev);
1197 	int ret;
1198 
1199 	if (!pm_runtime_status_suspended(dev)) {
1200 		ret = at91_twi_runtime_resume(dev);
1201 		if (ret)
1202 			return ret;
1203 	}
1204 
1205 	pm_runtime_mark_last_busy(dev);
1206 	pm_request_autosuspend(dev);
1207 
1208 	at91_init_twi_bus(twi_dev);
1209 
1210 	return 0;
1211 }
1212 
1213 static const struct dev_pm_ops at91_twi_pm = {
1214 	.suspend_noirq	= at91_twi_suspend_noirq,
1215 	.resume_noirq	= at91_twi_resume_noirq,
1216 	.runtime_suspend	= at91_twi_runtime_suspend,
1217 	.runtime_resume		= at91_twi_runtime_resume,
1218 };
1219 
1220 #define at91_twi_pm_ops (&at91_twi_pm)
1221 #else
1222 #define at91_twi_pm_ops NULL
1223 #endif
1224 
1225 static struct platform_driver at91_twi_driver = {
1226 	.probe		= at91_twi_probe,
1227 	.remove		= at91_twi_remove,
1228 	.id_table	= at91_twi_devtypes,
1229 	.driver		= {
1230 		.name	= "at91_i2c",
1231 		.of_match_table = of_match_ptr(atmel_twi_dt_ids),
1232 		.pm	= at91_twi_pm_ops,
1233 	},
1234 };
1235 
at91_twi_init(void)1236 static int __init at91_twi_init(void)
1237 {
1238 	return platform_driver_register(&at91_twi_driver);
1239 }
1240 
at91_twi_exit(void)1241 static void __exit at91_twi_exit(void)
1242 {
1243 	platform_driver_unregister(&at91_twi_driver);
1244 }
1245 
1246 subsys_initcall(at91_twi_init);
1247 module_exit(at91_twi_exit);
1248 
1249 MODULE_AUTHOR("Nikolaus Voss <n.voss@weinmann.de>");
1250 MODULE_DESCRIPTION("I2C (TWI) driver for Atmel AT91");
1251 MODULE_LICENSE("GPL");
1252 MODULE_ALIAS("platform:at91_i2c");
1253