• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * 3-axis accelerometer driver supporting following Bosch-Sensortec chips:
3  *  - BMC150
4  *  - BMI055
5  *  - BMA255
6  *  - BMA250E
7  *  - BMA222E
8  *  - BMA280
9  *
10  * Copyright (c) 2014, Intel Corporation.
11  *
12  * This program is free software; you can redistribute it and/or modify it
13  * under the terms and conditions of the GNU General Public License,
14  * version 2, as published by the Free Software Foundation.
15  *
16  * This program is distributed in the hope it will be useful, but WITHOUT
17  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
18  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
19  * more details.
20  */
21 
22 #include <linux/module.h>
23 #include <linux/i2c.h>
24 #include <linux/interrupt.h>
25 #include <linux/delay.h>
26 #include <linux/slab.h>
27 #include <linux/acpi.h>
28 #include <linux/pm.h>
29 #include <linux/pm_runtime.h>
30 #include <linux/iio/iio.h>
31 #include <linux/iio/sysfs.h>
32 #include <linux/iio/buffer.h>
33 #include <linux/iio/events.h>
34 #include <linux/iio/trigger.h>
35 #include <linux/iio/trigger_consumer.h>
36 #include <linux/iio/triggered_buffer.h>
37 #include <linux/regmap.h>
38 
39 #include "bmc150-accel.h"
40 
41 #define BMC150_ACCEL_DRV_NAME			"bmc150_accel"
42 #define BMC150_ACCEL_IRQ_NAME			"bmc150_accel_event"
43 
44 #define BMC150_ACCEL_REG_CHIP_ID		0x00
45 
46 #define BMC150_ACCEL_REG_INT_STATUS_2		0x0B
47 #define BMC150_ACCEL_ANY_MOTION_MASK		0x07
48 #define BMC150_ACCEL_ANY_MOTION_BIT_X		BIT(0)
49 #define BMC150_ACCEL_ANY_MOTION_BIT_Y		BIT(1)
50 #define BMC150_ACCEL_ANY_MOTION_BIT_Z		BIT(2)
51 #define BMC150_ACCEL_ANY_MOTION_BIT_SIGN	BIT(3)
52 
53 #define BMC150_ACCEL_REG_PMU_LPW		0x11
54 #define BMC150_ACCEL_PMU_MODE_MASK		0xE0
55 #define BMC150_ACCEL_PMU_MODE_SHIFT		5
56 #define BMC150_ACCEL_PMU_BIT_SLEEP_DUR_MASK	0x17
57 #define BMC150_ACCEL_PMU_BIT_SLEEP_DUR_SHIFT	1
58 
59 #define BMC150_ACCEL_REG_PMU_RANGE		0x0F
60 
61 #define BMC150_ACCEL_DEF_RANGE_2G		0x03
62 #define BMC150_ACCEL_DEF_RANGE_4G		0x05
63 #define BMC150_ACCEL_DEF_RANGE_8G		0x08
64 #define BMC150_ACCEL_DEF_RANGE_16G		0x0C
65 
66 /* Default BW: 125Hz */
67 #define BMC150_ACCEL_REG_PMU_BW		0x10
68 #define BMC150_ACCEL_DEF_BW			125
69 
70 #define BMC150_ACCEL_REG_RESET			0x14
71 #define BMC150_ACCEL_RESET_VAL			0xB6
72 
73 #define BMC150_ACCEL_REG_INT_MAP_0		0x19
74 #define BMC150_ACCEL_INT_MAP_0_BIT_SLOPE	BIT(2)
75 
76 #define BMC150_ACCEL_REG_INT_MAP_1		0x1A
77 #define BMC150_ACCEL_INT_MAP_1_BIT_DATA		BIT(0)
78 #define BMC150_ACCEL_INT_MAP_1_BIT_FWM		BIT(1)
79 #define BMC150_ACCEL_INT_MAP_1_BIT_FFULL	BIT(2)
80 
81 #define BMC150_ACCEL_REG_INT_RST_LATCH		0x21
82 #define BMC150_ACCEL_INT_MODE_LATCH_RESET	0x80
83 #define BMC150_ACCEL_INT_MODE_LATCH_INT	0x0F
84 #define BMC150_ACCEL_INT_MODE_NON_LATCH_INT	0x00
85 
86 #define BMC150_ACCEL_REG_INT_EN_0		0x16
87 #define BMC150_ACCEL_INT_EN_BIT_SLP_X		BIT(0)
88 #define BMC150_ACCEL_INT_EN_BIT_SLP_Y		BIT(1)
89 #define BMC150_ACCEL_INT_EN_BIT_SLP_Z		BIT(2)
90 
91 #define BMC150_ACCEL_REG_INT_EN_1		0x17
92 #define BMC150_ACCEL_INT_EN_BIT_DATA_EN		BIT(4)
93 #define BMC150_ACCEL_INT_EN_BIT_FFULL_EN	BIT(5)
94 #define BMC150_ACCEL_INT_EN_BIT_FWM_EN		BIT(6)
95 
96 #define BMC150_ACCEL_REG_INT_OUT_CTRL		0x20
97 #define BMC150_ACCEL_INT_OUT_CTRL_INT1_LVL	BIT(0)
98 
99 #define BMC150_ACCEL_REG_INT_5			0x27
100 #define BMC150_ACCEL_SLOPE_DUR_MASK		0x03
101 
102 #define BMC150_ACCEL_REG_INT_6			0x28
103 #define BMC150_ACCEL_SLOPE_THRES_MASK		0xFF
104 
105 /* Slope duration in terms of number of samples */
106 #define BMC150_ACCEL_DEF_SLOPE_DURATION		1
107 /* in terms of multiples of g's/LSB, based on range */
108 #define BMC150_ACCEL_DEF_SLOPE_THRESHOLD	1
109 
110 #define BMC150_ACCEL_REG_XOUT_L		0x02
111 
112 #define BMC150_ACCEL_MAX_STARTUP_TIME_MS	100
113 
114 /* Sleep Duration values */
115 #define BMC150_ACCEL_SLEEP_500_MICRO		0x05
116 #define BMC150_ACCEL_SLEEP_1_MS		0x06
117 #define BMC150_ACCEL_SLEEP_2_MS		0x07
118 #define BMC150_ACCEL_SLEEP_4_MS		0x08
119 #define BMC150_ACCEL_SLEEP_6_MS		0x09
120 #define BMC150_ACCEL_SLEEP_10_MS		0x0A
121 #define BMC150_ACCEL_SLEEP_25_MS		0x0B
122 #define BMC150_ACCEL_SLEEP_50_MS		0x0C
123 #define BMC150_ACCEL_SLEEP_100_MS		0x0D
124 #define BMC150_ACCEL_SLEEP_500_MS		0x0E
125 #define BMC150_ACCEL_SLEEP_1_SEC		0x0F
126 
127 #define BMC150_ACCEL_REG_TEMP			0x08
128 #define BMC150_ACCEL_TEMP_CENTER_VAL		23
129 
130 #define BMC150_ACCEL_AXIS_TO_REG(axis)	(BMC150_ACCEL_REG_XOUT_L + (axis * 2))
131 #define BMC150_AUTO_SUSPEND_DELAY_MS		2000
132 
133 #define BMC150_ACCEL_REG_FIFO_STATUS		0x0E
134 #define BMC150_ACCEL_REG_FIFO_CONFIG0		0x30
135 #define BMC150_ACCEL_REG_FIFO_CONFIG1		0x3E
136 #define BMC150_ACCEL_REG_FIFO_DATA		0x3F
137 #define BMC150_ACCEL_FIFO_LENGTH		32
138 
139 enum bmc150_accel_axis {
140 	AXIS_X,
141 	AXIS_Y,
142 	AXIS_Z,
143 	AXIS_MAX,
144 };
145 
146 enum bmc150_power_modes {
147 	BMC150_ACCEL_SLEEP_MODE_NORMAL,
148 	BMC150_ACCEL_SLEEP_MODE_DEEP_SUSPEND,
149 	BMC150_ACCEL_SLEEP_MODE_LPM,
150 	BMC150_ACCEL_SLEEP_MODE_SUSPEND = 0x04,
151 };
152 
153 struct bmc150_scale_info {
154 	int scale;
155 	u8 reg_range;
156 };
157 
158 struct bmc150_accel_chip_info {
159 	const char *name;
160 	u8 chip_id;
161 	const struct iio_chan_spec *channels;
162 	int num_channels;
163 	const struct bmc150_scale_info scale_table[4];
164 };
165 
166 struct bmc150_accel_interrupt {
167 	const struct bmc150_accel_interrupt_info *info;
168 	atomic_t users;
169 };
170 
171 struct bmc150_accel_trigger {
172 	struct bmc150_accel_data *data;
173 	struct iio_trigger *indio_trig;
174 	int (*setup)(struct bmc150_accel_trigger *t, bool state);
175 	int intr;
176 	bool enabled;
177 };
178 
179 enum bmc150_accel_interrupt_id {
180 	BMC150_ACCEL_INT_DATA_READY,
181 	BMC150_ACCEL_INT_ANY_MOTION,
182 	BMC150_ACCEL_INT_WATERMARK,
183 	BMC150_ACCEL_INTERRUPTS,
184 };
185 
186 enum bmc150_accel_trigger_id {
187 	BMC150_ACCEL_TRIGGER_DATA_READY,
188 	BMC150_ACCEL_TRIGGER_ANY_MOTION,
189 	BMC150_ACCEL_TRIGGERS,
190 };
191 
192 struct bmc150_accel_data {
193 	struct regmap *regmap;
194 	int irq;
195 	struct bmc150_accel_interrupt interrupts[BMC150_ACCEL_INTERRUPTS];
196 	struct bmc150_accel_trigger triggers[BMC150_ACCEL_TRIGGERS];
197 	struct mutex mutex;
198 	u8 fifo_mode, watermark;
199 	s16 buffer[8];
200 	/*
201 	 * Ensure there is sufficient space and correct alignment for
202 	 * the timestamp if enabled
203 	 */
204 	struct {
205 		__le16 channels[3];
206 		s64 ts __aligned(8);
207 	} scan;
208 	u8 bw_bits;
209 	u32 slope_dur;
210 	u32 slope_thres;
211 	u32 range;
212 	int ev_enable_state;
213 	int64_t timestamp, old_timestamp; /* Only used in hw fifo mode. */
214 	const struct bmc150_accel_chip_info *chip_info;
215 };
216 
217 static const struct {
218 	int val;
219 	int val2;
220 	u8 bw_bits;
221 } bmc150_accel_samp_freq_table[] = { {15, 620000, 0x08},
222 				     {31, 260000, 0x09},
223 				     {62, 500000, 0x0A},
224 				     {125, 0, 0x0B},
225 				     {250, 0, 0x0C},
226 				     {500, 0, 0x0D},
227 				     {1000, 0, 0x0E},
228 				     {2000, 0, 0x0F} };
229 
230 static const struct {
231 	int bw_bits;
232 	int msec;
233 } bmc150_accel_sample_upd_time[] = { {0x08, 64},
234 				     {0x09, 32},
235 				     {0x0A, 16},
236 				     {0x0B, 8},
237 				     {0x0C, 4},
238 				     {0x0D, 2},
239 				     {0x0E, 1},
240 				     {0x0F, 1} };
241 
242 static const struct {
243 	int sleep_dur;
244 	u8 reg_value;
245 } bmc150_accel_sleep_value_table[] = { {0, 0},
246 				       {500, BMC150_ACCEL_SLEEP_500_MICRO},
247 				       {1000, BMC150_ACCEL_SLEEP_1_MS},
248 				       {2000, BMC150_ACCEL_SLEEP_2_MS},
249 				       {4000, BMC150_ACCEL_SLEEP_4_MS},
250 				       {6000, BMC150_ACCEL_SLEEP_6_MS},
251 				       {10000, BMC150_ACCEL_SLEEP_10_MS},
252 				       {25000, BMC150_ACCEL_SLEEP_25_MS},
253 				       {50000, BMC150_ACCEL_SLEEP_50_MS},
254 				       {100000, BMC150_ACCEL_SLEEP_100_MS},
255 				       {500000, BMC150_ACCEL_SLEEP_500_MS},
256 				       {1000000, BMC150_ACCEL_SLEEP_1_SEC} };
257 
258 const struct regmap_config bmc150_regmap_conf = {
259 	.reg_bits = 8,
260 	.val_bits = 8,
261 	.max_register = 0x3f,
262 };
263 EXPORT_SYMBOL_GPL(bmc150_regmap_conf);
264 
bmc150_accel_set_mode(struct bmc150_accel_data * data,enum bmc150_power_modes mode,int dur_us)265 static int bmc150_accel_set_mode(struct bmc150_accel_data *data,
266 				 enum bmc150_power_modes mode,
267 				 int dur_us)
268 {
269 	struct device *dev = regmap_get_device(data->regmap);
270 	int i;
271 	int ret;
272 	u8 lpw_bits;
273 	int dur_val = -1;
274 
275 	if (dur_us > 0) {
276 		for (i = 0; i < ARRAY_SIZE(bmc150_accel_sleep_value_table);
277 									 ++i) {
278 			if (bmc150_accel_sleep_value_table[i].sleep_dur ==
279 									dur_us)
280 				dur_val =
281 				bmc150_accel_sleep_value_table[i].reg_value;
282 		}
283 	} else {
284 		dur_val = 0;
285 	}
286 
287 	if (dur_val < 0)
288 		return -EINVAL;
289 
290 	lpw_bits = mode << BMC150_ACCEL_PMU_MODE_SHIFT;
291 	lpw_bits |= (dur_val << BMC150_ACCEL_PMU_BIT_SLEEP_DUR_SHIFT);
292 
293 	dev_dbg(dev, "Set Mode bits %x\n", lpw_bits);
294 
295 	ret = regmap_write(data->regmap, BMC150_ACCEL_REG_PMU_LPW, lpw_bits);
296 	if (ret < 0) {
297 		dev_err(dev, "Error writing reg_pmu_lpw\n");
298 		return ret;
299 	}
300 
301 	return 0;
302 }
303 
bmc150_accel_set_bw(struct bmc150_accel_data * data,int val,int val2)304 static int bmc150_accel_set_bw(struct bmc150_accel_data *data, int val,
305 			       int val2)
306 {
307 	int i;
308 	int ret;
309 
310 	for (i = 0; i < ARRAY_SIZE(bmc150_accel_samp_freq_table); ++i) {
311 		if (bmc150_accel_samp_freq_table[i].val == val &&
312 		    bmc150_accel_samp_freq_table[i].val2 == val2) {
313 			ret = regmap_write(data->regmap,
314 				BMC150_ACCEL_REG_PMU_BW,
315 				bmc150_accel_samp_freq_table[i].bw_bits);
316 			if (ret < 0)
317 				return ret;
318 
319 			data->bw_bits =
320 				bmc150_accel_samp_freq_table[i].bw_bits;
321 			return 0;
322 		}
323 	}
324 
325 	return -EINVAL;
326 }
327 
bmc150_accel_update_slope(struct bmc150_accel_data * data)328 static int bmc150_accel_update_slope(struct bmc150_accel_data *data)
329 {
330 	struct device *dev = regmap_get_device(data->regmap);
331 	int ret;
332 
333 	ret = regmap_write(data->regmap, BMC150_ACCEL_REG_INT_6,
334 					data->slope_thres);
335 	if (ret < 0) {
336 		dev_err(dev, "Error writing reg_int_6\n");
337 		return ret;
338 	}
339 
340 	ret = regmap_update_bits(data->regmap, BMC150_ACCEL_REG_INT_5,
341 				 BMC150_ACCEL_SLOPE_DUR_MASK, data->slope_dur);
342 	if (ret < 0) {
343 		dev_err(dev, "Error updating reg_int_5\n");
344 		return ret;
345 	}
346 
347 	dev_dbg(dev, "%x %x\n", data->slope_thres, data->slope_dur);
348 
349 	return ret;
350 }
351 
bmc150_accel_any_motion_setup(struct bmc150_accel_trigger * t,bool state)352 static int bmc150_accel_any_motion_setup(struct bmc150_accel_trigger *t,
353 					 bool state)
354 {
355 	if (state)
356 		return bmc150_accel_update_slope(t->data);
357 
358 	return 0;
359 }
360 
bmc150_accel_get_bw(struct bmc150_accel_data * data,int * val,int * val2)361 static int bmc150_accel_get_bw(struct bmc150_accel_data *data, int *val,
362 			       int *val2)
363 {
364 	int i;
365 
366 	for (i = 0; i < ARRAY_SIZE(bmc150_accel_samp_freq_table); ++i) {
367 		if (bmc150_accel_samp_freq_table[i].bw_bits == data->bw_bits) {
368 			*val = bmc150_accel_samp_freq_table[i].val;
369 			*val2 = bmc150_accel_samp_freq_table[i].val2;
370 			return IIO_VAL_INT_PLUS_MICRO;
371 		}
372 	}
373 
374 	return -EINVAL;
375 }
376 
377 #ifdef CONFIG_PM
bmc150_accel_get_startup_times(struct bmc150_accel_data * data)378 static int bmc150_accel_get_startup_times(struct bmc150_accel_data *data)
379 {
380 	int i;
381 
382 	for (i = 0; i < ARRAY_SIZE(bmc150_accel_sample_upd_time); ++i) {
383 		if (bmc150_accel_sample_upd_time[i].bw_bits == data->bw_bits)
384 			return bmc150_accel_sample_upd_time[i].msec;
385 	}
386 
387 	return BMC150_ACCEL_MAX_STARTUP_TIME_MS;
388 }
389 
bmc150_accel_set_power_state(struct bmc150_accel_data * data,bool on)390 static int bmc150_accel_set_power_state(struct bmc150_accel_data *data, bool on)
391 {
392 	struct device *dev = regmap_get_device(data->regmap);
393 	int ret;
394 
395 	if (on) {
396 		ret = pm_runtime_get_sync(dev);
397 	} else {
398 		pm_runtime_mark_last_busy(dev);
399 		ret = pm_runtime_put_autosuspend(dev);
400 	}
401 
402 	if (ret < 0) {
403 		dev_err(dev,
404 			"Failed: bmc150_accel_set_power_state for %d\n", on);
405 		if (on)
406 			pm_runtime_put_noidle(dev);
407 
408 		return ret;
409 	}
410 
411 	return 0;
412 }
413 #else
bmc150_accel_set_power_state(struct bmc150_accel_data * data,bool on)414 static int bmc150_accel_set_power_state(struct bmc150_accel_data *data, bool on)
415 {
416 	return 0;
417 }
418 #endif
419 
420 static const struct bmc150_accel_interrupt_info {
421 	u8 map_reg;
422 	u8 map_bitmask;
423 	u8 en_reg;
424 	u8 en_bitmask;
425 } bmc150_accel_interrupts[BMC150_ACCEL_INTERRUPTS] = {
426 	{ /* data ready interrupt */
427 		.map_reg = BMC150_ACCEL_REG_INT_MAP_1,
428 		.map_bitmask = BMC150_ACCEL_INT_MAP_1_BIT_DATA,
429 		.en_reg = BMC150_ACCEL_REG_INT_EN_1,
430 		.en_bitmask = BMC150_ACCEL_INT_EN_BIT_DATA_EN,
431 	},
432 	{  /* motion interrupt */
433 		.map_reg = BMC150_ACCEL_REG_INT_MAP_0,
434 		.map_bitmask = BMC150_ACCEL_INT_MAP_0_BIT_SLOPE,
435 		.en_reg = BMC150_ACCEL_REG_INT_EN_0,
436 		.en_bitmask =  BMC150_ACCEL_INT_EN_BIT_SLP_X |
437 			BMC150_ACCEL_INT_EN_BIT_SLP_Y |
438 			BMC150_ACCEL_INT_EN_BIT_SLP_Z
439 	},
440 	{ /* fifo watermark interrupt */
441 		.map_reg = BMC150_ACCEL_REG_INT_MAP_1,
442 		.map_bitmask = BMC150_ACCEL_INT_MAP_1_BIT_FWM,
443 		.en_reg = BMC150_ACCEL_REG_INT_EN_1,
444 		.en_bitmask = BMC150_ACCEL_INT_EN_BIT_FWM_EN,
445 	},
446 };
447 
bmc150_accel_interrupts_setup(struct iio_dev * indio_dev,struct bmc150_accel_data * data)448 static void bmc150_accel_interrupts_setup(struct iio_dev *indio_dev,
449 					  struct bmc150_accel_data *data)
450 {
451 	int i;
452 
453 	for (i = 0; i < BMC150_ACCEL_INTERRUPTS; i++)
454 		data->interrupts[i].info = &bmc150_accel_interrupts[i];
455 }
456 
bmc150_accel_set_interrupt(struct bmc150_accel_data * data,int i,bool state)457 static int bmc150_accel_set_interrupt(struct bmc150_accel_data *data, int i,
458 				      bool state)
459 {
460 	struct device *dev = regmap_get_device(data->regmap);
461 	struct bmc150_accel_interrupt *intr = &data->interrupts[i];
462 	const struct bmc150_accel_interrupt_info *info = intr->info;
463 	int ret;
464 
465 	if (state) {
466 		if (atomic_inc_return(&intr->users) > 1)
467 			return 0;
468 	} else {
469 		if (atomic_dec_return(&intr->users) > 0)
470 			return 0;
471 	}
472 
473 	/*
474 	 * We will expect the enable and disable to do operation in reverse
475 	 * order. This will happen here anyway, as our resume operation uses
476 	 * sync mode runtime pm calls. The suspend operation will be delayed
477 	 * by autosuspend delay.
478 	 * So the disable operation will still happen in reverse order of
479 	 * enable operation. When runtime pm is disabled the mode is always on,
480 	 * so sequence doesn't matter.
481 	 */
482 	ret = bmc150_accel_set_power_state(data, state);
483 	if (ret < 0)
484 		return ret;
485 
486 	/* map the interrupt to the appropriate pins */
487 	ret = regmap_update_bits(data->regmap, info->map_reg, info->map_bitmask,
488 				 (state ? info->map_bitmask : 0));
489 	if (ret < 0) {
490 		dev_err(dev, "Error updating reg_int_map\n");
491 		goto out_fix_power_state;
492 	}
493 
494 	/* enable/disable the interrupt */
495 	ret = regmap_update_bits(data->regmap, info->en_reg, info->en_bitmask,
496 				 (state ? info->en_bitmask : 0));
497 	if (ret < 0) {
498 		dev_err(dev, "Error updating reg_int_en\n");
499 		goto out_fix_power_state;
500 	}
501 
502 	return 0;
503 
504 out_fix_power_state:
505 	bmc150_accel_set_power_state(data, false);
506 	return ret;
507 }
508 
bmc150_accel_set_scale(struct bmc150_accel_data * data,int val)509 static int bmc150_accel_set_scale(struct bmc150_accel_data *data, int val)
510 {
511 	struct device *dev = regmap_get_device(data->regmap);
512 	int ret, i;
513 
514 	for (i = 0; i < ARRAY_SIZE(data->chip_info->scale_table); ++i) {
515 		if (data->chip_info->scale_table[i].scale == val) {
516 			ret = regmap_write(data->regmap,
517 				     BMC150_ACCEL_REG_PMU_RANGE,
518 				     data->chip_info->scale_table[i].reg_range);
519 			if (ret < 0) {
520 				dev_err(dev, "Error writing pmu_range\n");
521 				return ret;
522 			}
523 
524 			data->range = data->chip_info->scale_table[i].reg_range;
525 			return 0;
526 		}
527 	}
528 
529 	return -EINVAL;
530 }
531 
bmc150_accel_get_temp(struct bmc150_accel_data * data,int * val)532 static int bmc150_accel_get_temp(struct bmc150_accel_data *data, int *val)
533 {
534 	struct device *dev = regmap_get_device(data->regmap);
535 	int ret;
536 	unsigned int value;
537 
538 	mutex_lock(&data->mutex);
539 
540 	ret = regmap_read(data->regmap, BMC150_ACCEL_REG_TEMP, &value);
541 	if (ret < 0) {
542 		dev_err(dev, "Error reading reg_temp\n");
543 		mutex_unlock(&data->mutex);
544 		return ret;
545 	}
546 	*val = sign_extend32(value, 7);
547 
548 	mutex_unlock(&data->mutex);
549 
550 	return IIO_VAL_INT;
551 }
552 
bmc150_accel_get_axis(struct bmc150_accel_data * data,struct iio_chan_spec const * chan,int * val)553 static int bmc150_accel_get_axis(struct bmc150_accel_data *data,
554 				 struct iio_chan_spec const *chan,
555 				 int *val)
556 {
557 	struct device *dev = regmap_get_device(data->regmap);
558 	int ret;
559 	int axis = chan->scan_index;
560 	__le16 raw_val;
561 
562 	mutex_lock(&data->mutex);
563 	ret = bmc150_accel_set_power_state(data, true);
564 	if (ret < 0) {
565 		mutex_unlock(&data->mutex);
566 		return ret;
567 	}
568 
569 	ret = regmap_bulk_read(data->regmap, BMC150_ACCEL_AXIS_TO_REG(axis),
570 			       &raw_val, sizeof(raw_val));
571 	if (ret < 0) {
572 		dev_err(dev, "Error reading axis %d\n", axis);
573 		bmc150_accel_set_power_state(data, false);
574 		mutex_unlock(&data->mutex);
575 		return ret;
576 	}
577 	*val = sign_extend32(le16_to_cpu(raw_val) >> chan->scan_type.shift,
578 			     chan->scan_type.realbits - 1);
579 	ret = bmc150_accel_set_power_state(data, false);
580 	mutex_unlock(&data->mutex);
581 	if (ret < 0)
582 		return ret;
583 
584 	return IIO_VAL_INT;
585 }
586 
bmc150_accel_read_raw(struct iio_dev * indio_dev,struct iio_chan_spec const * chan,int * val,int * val2,long mask)587 static int bmc150_accel_read_raw(struct iio_dev *indio_dev,
588 				 struct iio_chan_spec const *chan,
589 				 int *val, int *val2, long mask)
590 {
591 	struct bmc150_accel_data *data = iio_priv(indio_dev);
592 	int ret;
593 
594 	switch (mask) {
595 	case IIO_CHAN_INFO_RAW:
596 		switch (chan->type) {
597 		case IIO_TEMP:
598 			return bmc150_accel_get_temp(data, val);
599 		case IIO_ACCEL:
600 			if (iio_buffer_enabled(indio_dev))
601 				return -EBUSY;
602 			else
603 				return bmc150_accel_get_axis(data, chan, val);
604 		default:
605 			return -EINVAL;
606 		}
607 	case IIO_CHAN_INFO_OFFSET:
608 		if (chan->type == IIO_TEMP) {
609 			*val = BMC150_ACCEL_TEMP_CENTER_VAL;
610 			return IIO_VAL_INT;
611 		} else {
612 			return -EINVAL;
613 		}
614 	case IIO_CHAN_INFO_SCALE:
615 		*val = 0;
616 		switch (chan->type) {
617 		case IIO_TEMP:
618 			*val2 = 500000;
619 			return IIO_VAL_INT_PLUS_MICRO;
620 		case IIO_ACCEL:
621 		{
622 			int i;
623 			const struct bmc150_scale_info *si;
624 			int st_size = ARRAY_SIZE(data->chip_info->scale_table);
625 
626 			for (i = 0; i < st_size; ++i) {
627 				si = &data->chip_info->scale_table[i];
628 				if (si->reg_range == data->range) {
629 					*val2 = si->scale;
630 					return IIO_VAL_INT_PLUS_MICRO;
631 				}
632 			}
633 			return -EINVAL;
634 		}
635 		default:
636 			return -EINVAL;
637 		}
638 	case IIO_CHAN_INFO_SAMP_FREQ:
639 		mutex_lock(&data->mutex);
640 		ret = bmc150_accel_get_bw(data, val, val2);
641 		mutex_unlock(&data->mutex);
642 		return ret;
643 	default:
644 		return -EINVAL;
645 	}
646 }
647 
bmc150_accel_write_raw(struct iio_dev * indio_dev,struct iio_chan_spec const * chan,int val,int val2,long mask)648 static int bmc150_accel_write_raw(struct iio_dev *indio_dev,
649 				  struct iio_chan_spec const *chan,
650 				  int val, int val2, long mask)
651 {
652 	struct bmc150_accel_data *data = iio_priv(indio_dev);
653 	int ret;
654 
655 	switch (mask) {
656 	case IIO_CHAN_INFO_SAMP_FREQ:
657 		mutex_lock(&data->mutex);
658 		ret = bmc150_accel_set_bw(data, val, val2);
659 		mutex_unlock(&data->mutex);
660 		break;
661 	case IIO_CHAN_INFO_SCALE:
662 		if (val)
663 			return -EINVAL;
664 
665 		mutex_lock(&data->mutex);
666 		ret = bmc150_accel_set_scale(data, val2);
667 		mutex_unlock(&data->mutex);
668 		return ret;
669 	default:
670 		ret = -EINVAL;
671 	}
672 
673 	return ret;
674 }
675 
bmc150_accel_read_event(struct iio_dev * indio_dev,const struct iio_chan_spec * chan,enum iio_event_type type,enum iio_event_direction dir,enum iio_event_info info,int * val,int * val2)676 static int bmc150_accel_read_event(struct iio_dev *indio_dev,
677 				   const struct iio_chan_spec *chan,
678 				   enum iio_event_type type,
679 				   enum iio_event_direction dir,
680 				   enum iio_event_info info,
681 				   int *val, int *val2)
682 {
683 	struct bmc150_accel_data *data = iio_priv(indio_dev);
684 
685 	*val2 = 0;
686 	switch (info) {
687 	case IIO_EV_INFO_VALUE:
688 		*val = data->slope_thres;
689 		break;
690 	case IIO_EV_INFO_PERIOD:
691 		*val = data->slope_dur;
692 		break;
693 	default:
694 		return -EINVAL;
695 	}
696 
697 	return IIO_VAL_INT;
698 }
699 
bmc150_accel_write_event(struct iio_dev * indio_dev,const struct iio_chan_spec * chan,enum iio_event_type type,enum iio_event_direction dir,enum iio_event_info info,int val,int val2)700 static int bmc150_accel_write_event(struct iio_dev *indio_dev,
701 				    const struct iio_chan_spec *chan,
702 				    enum iio_event_type type,
703 				    enum iio_event_direction dir,
704 				    enum iio_event_info info,
705 				    int val, int val2)
706 {
707 	struct bmc150_accel_data *data = iio_priv(indio_dev);
708 
709 	if (data->ev_enable_state)
710 		return -EBUSY;
711 
712 	switch (info) {
713 	case IIO_EV_INFO_VALUE:
714 		data->slope_thres = val & BMC150_ACCEL_SLOPE_THRES_MASK;
715 		break;
716 	case IIO_EV_INFO_PERIOD:
717 		data->slope_dur = val & BMC150_ACCEL_SLOPE_DUR_MASK;
718 		break;
719 	default:
720 		return -EINVAL;
721 	}
722 
723 	return 0;
724 }
725 
bmc150_accel_read_event_config(struct iio_dev * indio_dev,const struct iio_chan_spec * chan,enum iio_event_type type,enum iio_event_direction dir)726 static int bmc150_accel_read_event_config(struct iio_dev *indio_dev,
727 					  const struct iio_chan_spec *chan,
728 					  enum iio_event_type type,
729 					  enum iio_event_direction dir)
730 {
731 	struct bmc150_accel_data *data = iio_priv(indio_dev);
732 
733 	return data->ev_enable_state;
734 }
735 
bmc150_accel_write_event_config(struct iio_dev * indio_dev,const struct iio_chan_spec * chan,enum iio_event_type type,enum iio_event_direction dir,int state)736 static int bmc150_accel_write_event_config(struct iio_dev *indio_dev,
737 					   const struct iio_chan_spec *chan,
738 					   enum iio_event_type type,
739 					   enum iio_event_direction dir,
740 					   int state)
741 {
742 	struct bmc150_accel_data *data = iio_priv(indio_dev);
743 	int ret;
744 
745 	if (state == data->ev_enable_state)
746 		return 0;
747 
748 	mutex_lock(&data->mutex);
749 
750 	ret = bmc150_accel_set_interrupt(data, BMC150_ACCEL_INT_ANY_MOTION,
751 					 state);
752 	if (ret < 0) {
753 		mutex_unlock(&data->mutex);
754 		return ret;
755 	}
756 
757 	data->ev_enable_state = state;
758 	mutex_unlock(&data->mutex);
759 
760 	return 0;
761 }
762 
bmc150_accel_validate_trigger(struct iio_dev * indio_dev,struct iio_trigger * trig)763 static int bmc150_accel_validate_trigger(struct iio_dev *indio_dev,
764 					 struct iio_trigger *trig)
765 {
766 	struct bmc150_accel_data *data = iio_priv(indio_dev);
767 	int i;
768 
769 	for (i = 0; i < BMC150_ACCEL_TRIGGERS; i++) {
770 		if (data->triggers[i].indio_trig == trig)
771 			return 0;
772 	}
773 
774 	return -EINVAL;
775 }
776 
bmc150_accel_get_fifo_watermark(struct device * dev,struct device_attribute * attr,char * buf)777 static ssize_t bmc150_accel_get_fifo_watermark(struct device *dev,
778 					       struct device_attribute *attr,
779 					       char *buf)
780 {
781 	struct iio_dev *indio_dev = dev_to_iio_dev(dev);
782 	struct bmc150_accel_data *data = iio_priv(indio_dev);
783 	int wm;
784 
785 	mutex_lock(&data->mutex);
786 	wm = data->watermark;
787 	mutex_unlock(&data->mutex);
788 
789 	return sprintf(buf, "%d\n", wm);
790 }
791 
bmc150_accel_get_fifo_state(struct device * dev,struct device_attribute * attr,char * buf)792 static ssize_t bmc150_accel_get_fifo_state(struct device *dev,
793 					   struct device_attribute *attr,
794 					   char *buf)
795 {
796 	struct iio_dev *indio_dev = dev_to_iio_dev(dev);
797 	struct bmc150_accel_data *data = iio_priv(indio_dev);
798 	bool state;
799 
800 	mutex_lock(&data->mutex);
801 	state = data->fifo_mode;
802 	mutex_unlock(&data->mutex);
803 
804 	return sprintf(buf, "%d\n", state);
805 }
806 
807 static IIO_CONST_ATTR(hwfifo_watermark_min, "1");
808 static IIO_CONST_ATTR(hwfifo_watermark_max,
809 		      __stringify(BMC150_ACCEL_FIFO_LENGTH));
810 static IIO_DEVICE_ATTR(hwfifo_enabled, S_IRUGO,
811 		       bmc150_accel_get_fifo_state, NULL, 0);
812 static IIO_DEVICE_ATTR(hwfifo_watermark, S_IRUGO,
813 		       bmc150_accel_get_fifo_watermark, NULL, 0);
814 
815 static const struct attribute *bmc150_accel_fifo_attributes[] = {
816 	&iio_const_attr_hwfifo_watermark_min.dev_attr.attr,
817 	&iio_const_attr_hwfifo_watermark_max.dev_attr.attr,
818 	&iio_dev_attr_hwfifo_watermark.dev_attr.attr,
819 	&iio_dev_attr_hwfifo_enabled.dev_attr.attr,
820 	NULL,
821 };
822 
bmc150_accel_set_watermark(struct iio_dev * indio_dev,unsigned val)823 static int bmc150_accel_set_watermark(struct iio_dev *indio_dev, unsigned val)
824 {
825 	struct bmc150_accel_data *data = iio_priv(indio_dev);
826 
827 	if (val > BMC150_ACCEL_FIFO_LENGTH)
828 		val = BMC150_ACCEL_FIFO_LENGTH;
829 
830 	mutex_lock(&data->mutex);
831 	data->watermark = val;
832 	mutex_unlock(&data->mutex);
833 
834 	return 0;
835 }
836 
837 /*
838  * We must read at least one full frame in one burst, otherwise the rest of the
839  * frame data is discarded.
840  */
bmc150_accel_fifo_transfer(struct bmc150_accel_data * data,char * buffer,int samples)841 static int bmc150_accel_fifo_transfer(struct bmc150_accel_data *data,
842 				      char *buffer, int samples)
843 {
844 	struct device *dev = regmap_get_device(data->regmap);
845 	int sample_length = 3 * 2;
846 	int ret;
847 	int total_length = samples * sample_length;
848 
849 	ret = regmap_raw_read(data->regmap, BMC150_ACCEL_REG_FIFO_DATA,
850 			      buffer, total_length);
851 	if (ret)
852 		dev_err(dev,
853 			"Error transferring data from fifo: %d\n", ret);
854 
855 	return ret;
856 }
857 
__bmc150_accel_fifo_flush(struct iio_dev * indio_dev,unsigned samples,bool irq)858 static int __bmc150_accel_fifo_flush(struct iio_dev *indio_dev,
859 				     unsigned samples, bool irq)
860 {
861 	struct bmc150_accel_data *data = iio_priv(indio_dev);
862 	struct device *dev = regmap_get_device(data->regmap);
863 	int ret, i;
864 	u8 count;
865 	u16 buffer[BMC150_ACCEL_FIFO_LENGTH * 3];
866 	int64_t tstamp;
867 	uint64_t sample_period;
868 	unsigned int val;
869 
870 	ret = regmap_read(data->regmap, BMC150_ACCEL_REG_FIFO_STATUS, &val);
871 	if (ret < 0) {
872 		dev_err(dev, "Error reading reg_fifo_status\n");
873 		return ret;
874 	}
875 
876 	count = val & 0x7F;
877 
878 	if (!count)
879 		return 0;
880 
881 	/*
882 	 * If we getting called from IRQ handler we know the stored timestamp is
883 	 * fairly accurate for the last stored sample. Otherwise, if we are
884 	 * called as a result of a read operation from userspace and hence
885 	 * before the watermark interrupt was triggered, take a timestamp
886 	 * now. We can fall anywhere in between two samples so the error in this
887 	 * case is at most one sample period.
888 	 */
889 	if (!irq) {
890 		data->old_timestamp = data->timestamp;
891 		data->timestamp = iio_get_time_ns(indio_dev);
892 	}
893 
894 	/*
895 	 * Approximate timestamps for each of the sample based on the sampling
896 	 * frequency, timestamp for last sample and number of samples.
897 	 *
898 	 * Note that we can't use the current bandwidth settings to compute the
899 	 * sample period because the sample rate varies with the device
900 	 * (e.g. between 31.70ms to 32.20ms for a bandwidth of 15.63HZ). That
901 	 * small variation adds when we store a large number of samples and
902 	 * creates significant jitter between the last and first samples in
903 	 * different batches (e.g. 32ms vs 21ms).
904 	 *
905 	 * To avoid this issue we compute the actual sample period ourselves
906 	 * based on the timestamp delta between the last two flush operations.
907 	 */
908 	sample_period = (data->timestamp - data->old_timestamp);
909 	do_div(sample_period, count);
910 	tstamp = data->timestamp - (count - 1) * sample_period;
911 
912 	if (samples && count > samples)
913 		count = samples;
914 
915 	ret = bmc150_accel_fifo_transfer(data, (u8 *)buffer, count);
916 	if (ret)
917 		return ret;
918 
919 	/*
920 	 * Ideally we want the IIO core to handle the demux when running in fifo
921 	 * mode but not when running in triggered buffer mode. Unfortunately
922 	 * this does not seem to be possible, so stick with driver demux for
923 	 * now.
924 	 */
925 	for (i = 0; i < count; i++) {
926 		int j, bit;
927 
928 		j = 0;
929 		for_each_set_bit(bit, indio_dev->active_scan_mask,
930 				 indio_dev->masklength)
931 			memcpy(&data->scan.channels[j++], &buffer[i * 3 + bit],
932 			       sizeof(data->scan.channels[0]));
933 
934 		iio_push_to_buffers_with_timestamp(indio_dev, &data->scan,
935 						   tstamp);
936 
937 		tstamp += sample_period;
938 	}
939 
940 	return count;
941 }
942 
bmc150_accel_fifo_flush(struct iio_dev * indio_dev,unsigned samples)943 static int bmc150_accel_fifo_flush(struct iio_dev *indio_dev, unsigned samples)
944 {
945 	struct bmc150_accel_data *data = iio_priv(indio_dev);
946 	int ret;
947 
948 	mutex_lock(&data->mutex);
949 	ret = __bmc150_accel_fifo_flush(indio_dev, samples, false);
950 	mutex_unlock(&data->mutex);
951 
952 	return ret;
953 }
954 
955 static IIO_CONST_ATTR_SAMP_FREQ_AVAIL(
956 		"15.620000 31.260000 62.50000 125 250 500 1000 2000");
957 
958 static struct attribute *bmc150_accel_attributes[] = {
959 	&iio_const_attr_sampling_frequency_available.dev_attr.attr,
960 	NULL,
961 };
962 
963 static const struct attribute_group bmc150_accel_attrs_group = {
964 	.attrs = bmc150_accel_attributes,
965 };
966 
967 static const struct iio_event_spec bmc150_accel_event = {
968 		.type = IIO_EV_TYPE_ROC,
969 		.dir = IIO_EV_DIR_EITHER,
970 		.mask_separate = BIT(IIO_EV_INFO_VALUE) |
971 				 BIT(IIO_EV_INFO_ENABLE) |
972 				 BIT(IIO_EV_INFO_PERIOD)
973 };
974 
975 #define BMC150_ACCEL_CHANNEL(_axis, bits) {				\
976 	.type = IIO_ACCEL,						\
977 	.modified = 1,							\
978 	.channel2 = IIO_MOD_##_axis,					\
979 	.info_mask_separate = BIT(IIO_CHAN_INFO_RAW),			\
980 	.info_mask_shared_by_type = BIT(IIO_CHAN_INFO_SCALE) |		\
981 				BIT(IIO_CHAN_INFO_SAMP_FREQ),		\
982 	.scan_index = AXIS_##_axis,					\
983 	.scan_type = {							\
984 		.sign = 's',						\
985 		.realbits = (bits),					\
986 		.storagebits = 16,					\
987 		.shift = 16 - (bits),					\
988 		.endianness = IIO_LE,					\
989 	},								\
990 	.event_spec = &bmc150_accel_event,				\
991 	.num_event_specs = 1						\
992 }
993 
994 #define BMC150_ACCEL_CHANNELS(bits) {					\
995 	{								\
996 		.type = IIO_TEMP,					\
997 		.info_mask_separate = BIT(IIO_CHAN_INFO_RAW) |		\
998 				      BIT(IIO_CHAN_INFO_SCALE) |	\
999 				      BIT(IIO_CHAN_INFO_OFFSET),	\
1000 		.scan_index = -1,					\
1001 	},								\
1002 	BMC150_ACCEL_CHANNEL(X, bits),					\
1003 	BMC150_ACCEL_CHANNEL(Y, bits),					\
1004 	BMC150_ACCEL_CHANNEL(Z, bits),					\
1005 	IIO_CHAN_SOFT_TIMESTAMP(3),					\
1006 }
1007 
1008 static const struct iio_chan_spec bma222e_accel_channels[] =
1009 	BMC150_ACCEL_CHANNELS(8);
1010 static const struct iio_chan_spec bma250e_accel_channels[] =
1011 	BMC150_ACCEL_CHANNELS(10);
1012 static const struct iio_chan_spec bmc150_accel_channels[] =
1013 	BMC150_ACCEL_CHANNELS(12);
1014 static const struct iio_chan_spec bma280_accel_channels[] =
1015 	BMC150_ACCEL_CHANNELS(14);
1016 
1017 static const struct bmc150_accel_chip_info bmc150_accel_chip_info_tbl[] = {
1018 	[bmc150] = {
1019 		.name = "BMC150A",
1020 		.chip_id = 0xFA,
1021 		.channels = bmc150_accel_channels,
1022 		.num_channels = ARRAY_SIZE(bmc150_accel_channels),
1023 		.scale_table = { {9610, BMC150_ACCEL_DEF_RANGE_2G},
1024 				 {19122, BMC150_ACCEL_DEF_RANGE_4G},
1025 				 {38344, BMC150_ACCEL_DEF_RANGE_8G},
1026 				 {76590, BMC150_ACCEL_DEF_RANGE_16G} },
1027 	},
1028 	[bmi055] = {
1029 		.name = "BMI055A",
1030 		.chip_id = 0xFA,
1031 		.channels = bmc150_accel_channels,
1032 		.num_channels = ARRAY_SIZE(bmc150_accel_channels),
1033 		.scale_table = { {9610, BMC150_ACCEL_DEF_RANGE_2G},
1034 				 {19122, BMC150_ACCEL_DEF_RANGE_4G},
1035 				 {38344, BMC150_ACCEL_DEF_RANGE_8G},
1036 				 {76590, BMC150_ACCEL_DEF_RANGE_16G} },
1037 	},
1038 	[bma255] = {
1039 		.name = "BMA0255",
1040 		.chip_id = 0xFA,
1041 		.channels = bmc150_accel_channels,
1042 		.num_channels = ARRAY_SIZE(bmc150_accel_channels),
1043 		.scale_table = { {9610, BMC150_ACCEL_DEF_RANGE_2G},
1044 				 {19122, BMC150_ACCEL_DEF_RANGE_4G},
1045 				 {38344, BMC150_ACCEL_DEF_RANGE_8G},
1046 				 {76590, BMC150_ACCEL_DEF_RANGE_16G} },
1047 	},
1048 	[bma250e] = {
1049 		.name = "BMA250E",
1050 		.chip_id = 0xF9,
1051 		.channels = bma250e_accel_channels,
1052 		.num_channels = ARRAY_SIZE(bma250e_accel_channels),
1053 		.scale_table = { {38344, BMC150_ACCEL_DEF_RANGE_2G},
1054 				 {76590, BMC150_ACCEL_DEF_RANGE_4G},
1055 				 {153277, BMC150_ACCEL_DEF_RANGE_8G},
1056 				 {306457, BMC150_ACCEL_DEF_RANGE_16G} },
1057 	},
1058 	[bma222e] = {
1059 		.name = "BMA222E",
1060 		.chip_id = 0xF8,
1061 		.channels = bma222e_accel_channels,
1062 		.num_channels = ARRAY_SIZE(bma222e_accel_channels),
1063 		.scale_table = { {153277, BMC150_ACCEL_DEF_RANGE_2G},
1064 				 {306457, BMC150_ACCEL_DEF_RANGE_4G},
1065 				 {612915, BMC150_ACCEL_DEF_RANGE_8G},
1066 				 {1225831, BMC150_ACCEL_DEF_RANGE_16G} },
1067 	},
1068 	[bma280] = {
1069 		.name = "BMA0280",
1070 		.chip_id = 0xFB,
1071 		.channels = bma280_accel_channels,
1072 		.num_channels = ARRAY_SIZE(bma280_accel_channels),
1073 		.scale_table = { {2392, BMC150_ACCEL_DEF_RANGE_2G},
1074 				 {4785, BMC150_ACCEL_DEF_RANGE_4G},
1075 				 {9581, BMC150_ACCEL_DEF_RANGE_8G},
1076 				 {19152, BMC150_ACCEL_DEF_RANGE_16G} },
1077 	},
1078 };
1079 
1080 static const struct iio_info bmc150_accel_info = {
1081 	.attrs			= &bmc150_accel_attrs_group,
1082 	.read_raw		= bmc150_accel_read_raw,
1083 	.write_raw		= bmc150_accel_write_raw,
1084 	.read_event_value	= bmc150_accel_read_event,
1085 	.write_event_value	= bmc150_accel_write_event,
1086 	.write_event_config	= bmc150_accel_write_event_config,
1087 	.read_event_config	= bmc150_accel_read_event_config,
1088 };
1089 
1090 static const struct iio_info bmc150_accel_info_fifo = {
1091 	.attrs			= &bmc150_accel_attrs_group,
1092 	.read_raw		= bmc150_accel_read_raw,
1093 	.write_raw		= bmc150_accel_write_raw,
1094 	.read_event_value	= bmc150_accel_read_event,
1095 	.write_event_value	= bmc150_accel_write_event,
1096 	.write_event_config	= bmc150_accel_write_event_config,
1097 	.read_event_config	= bmc150_accel_read_event_config,
1098 	.validate_trigger	= bmc150_accel_validate_trigger,
1099 	.hwfifo_set_watermark	= bmc150_accel_set_watermark,
1100 	.hwfifo_flush_to_buffer	= bmc150_accel_fifo_flush,
1101 };
1102 
1103 static const unsigned long bmc150_accel_scan_masks[] = {
1104 					BIT(AXIS_X) | BIT(AXIS_Y) | BIT(AXIS_Z),
1105 					0};
1106 
bmc150_accel_trigger_handler(int irq,void * p)1107 static irqreturn_t bmc150_accel_trigger_handler(int irq, void *p)
1108 {
1109 	struct iio_poll_func *pf = p;
1110 	struct iio_dev *indio_dev = pf->indio_dev;
1111 	struct bmc150_accel_data *data = iio_priv(indio_dev);
1112 	int ret;
1113 
1114 	mutex_lock(&data->mutex);
1115 	ret = regmap_bulk_read(data->regmap, BMC150_ACCEL_REG_XOUT_L,
1116 			       data->buffer, AXIS_MAX * 2);
1117 	mutex_unlock(&data->mutex);
1118 	if (ret < 0)
1119 		goto err_read;
1120 
1121 	iio_push_to_buffers_with_timestamp(indio_dev, data->buffer,
1122 					   pf->timestamp);
1123 err_read:
1124 	iio_trigger_notify_done(indio_dev->trig);
1125 
1126 	return IRQ_HANDLED;
1127 }
1128 
bmc150_accel_trig_try_reen(struct iio_trigger * trig)1129 static int bmc150_accel_trig_try_reen(struct iio_trigger *trig)
1130 {
1131 	struct bmc150_accel_trigger *t = iio_trigger_get_drvdata(trig);
1132 	struct bmc150_accel_data *data = t->data;
1133 	struct device *dev = regmap_get_device(data->regmap);
1134 	int ret;
1135 
1136 	/* new data interrupts don't need ack */
1137 	if (t == &t->data->triggers[BMC150_ACCEL_TRIGGER_DATA_READY])
1138 		return 0;
1139 
1140 	mutex_lock(&data->mutex);
1141 	/* clear any latched interrupt */
1142 	ret = regmap_write(data->regmap, BMC150_ACCEL_REG_INT_RST_LATCH,
1143 			   BMC150_ACCEL_INT_MODE_LATCH_INT |
1144 			   BMC150_ACCEL_INT_MODE_LATCH_RESET);
1145 	mutex_unlock(&data->mutex);
1146 	if (ret < 0) {
1147 		dev_err(dev, "Error writing reg_int_rst_latch\n");
1148 		return ret;
1149 	}
1150 
1151 	return 0;
1152 }
1153 
bmc150_accel_trigger_set_state(struct iio_trigger * trig,bool state)1154 static int bmc150_accel_trigger_set_state(struct iio_trigger *trig,
1155 					  bool state)
1156 {
1157 	struct bmc150_accel_trigger *t = iio_trigger_get_drvdata(trig);
1158 	struct bmc150_accel_data *data = t->data;
1159 	int ret;
1160 
1161 	mutex_lock(&data->mutex);
1162 
1163 	if (t->enabled == state) {
1164 		mutex_unlock(&data->mutex);
1165 		return 0;
1166 	}
1167 
1168 	if (t->setup) {
1169 		ret = t->setup(t, state);
1170 		if (ret < 0) {
1171 			mutex_unlock(&data->mutex);
1172 			return ret;
1173 		}
1174 	}
1175 
1176 	ret = bmc150_accel_set_interrupt(data, t->intr, state);
1177 	if (ret < 0) {
1178 		mutex_unlock(&data->mutex);
1179 		return ret;
1180 	}
1181 
1182 	t->enabled = state;
1183 
1184 	mutex_unlock(&data->mutex);
1185 
1186 	return ret;
1187 }
1188 
1189 static const struct iio_trigger_ops bmc150_accel_trigger_ops = {
1190 	.set_trigger_state = bmc150_accel_trigger_set_state,
1191 	.try_reenable = bmc150_accel_trig_try_reen,
1192 };
1193 
bmc150_accel_handle_roc_event(struct iio_dev * indio_dev)1194 static int bmc150_accel_handle_roc_event(struct iio_dev *indio_dev)
1195 {
1196 	struct bmc150_accel_data *data = iio_priv(indio_dev);
1197 	struct device *dev = regmap_get_device(data->regmap);
1198 	int dir;
1199 	int ret;
1200 	unsigned int val;
1201 
1202 	ret = regmap_read(data->regmap, BMC150_ACCEL_REG_INT_STATUS_2, &val);
1203 	if (ret < 0) {
1204 		dev_err(dev, "Error reading reg_int_status_2\n");
1205 		return ret;
1206 	}
1207 
1208 	if (val & BMC150_ACCEL_ANY_MOTION_BIT_SIGN)
1209 		dir = IIO_EV_DIR_FALLING;
1210 	else
1211 		dir = IIO_EV_DIR_RISING;
1212 
1213 	if (val & BMC150_ACCEL_ANY_MOTION_BIT_X)
1214 		iio_push_event(indio_dev,
1215 			       IIO_MOD_EVENT_CODE(IIO_ACCEL,
1216 						  0,
1217 						  IIO_MOD_X,
1218 						  IIO_EV_TYPE_ROC,
1219 						  dir),
1220 			       data->timestamp);
1221 
1222 	if (val & BMC150_ACCEL_ANY_MOTION_BIT_Y)
1223 		iio_push_event(indio_dev,
1224 			       IIO_MOD_EVENT_CODE(IIO_ACCEL,
1225 						  0,
1226 						  IIO_MOD_Y,
1227 						  IIO_EV_TYPE_ROC,
1228 						  dir),
1229 			       data->timestamp);
1230 
1231 	if (val & BMC150_ACCEL_ANY_MOTION_BIT_Z)
1232 		iio_push_event(indio_dev,
1233 			       IIO_MOD_EVENT_CODE(IIO_ACCEL,
1234 						  0,
1235 						  IIO_MOD_Z,
1236 						  IIO_EV_TYPE_ROC,
1237 						  dir),
1238 			       data->timestamp);
1239 
1240 	return ret;
1241 }
1242 
bmc150_accel_irq_thread_handler(int irq,void * private)1243 static irqreturn_t bmc150_accel_irq_thread_handler(int irq, void *private)
1244 {
1245 	struct iio_dev *indio_dev = private;
1246 	struct bmc150_accel_data *data = iio_priv(indio_dev);
1247 	struct device *dev = regmap_get_device(data->regmap);
1248 	bool ack = false;
1249 	int ret;
1250 
1251 	mutex_lock(&data->mutex);
1252 
1253 	if (data->fifo_mode) {
1254 		ret = __bmc150_accel_fifo_flush(indio_dev,
1255 						BMC150_ACCEL_FIFO_LENGTH, true);
1256 		if (ret > 0)
1257 			ack = true;
1258 	}
1259 
1260 	if (data->ev_enable_state) {
1261 		ret = bmc150_accel_handle_roc_event(indio_dev);
1262 		if (ret > 0)
1263 			ack = true;
1264 	}
1265 
1266 	if (ack) {
1267 		ret = regmap_write(data->regmap, BMC150_ACCEL_REG_INT_RST_LATCH,
1268 				   BMC150_ACCEL_INT_MODE_LATCH_INT |
1269 				   BMC150_ACCEL_INT_MODE_LATCH_RESET);
1270 		if (ret)
1271 			dev_err(dev, "Error writing reg_int_rst_latch\n");
1272 
1273 		ret = IRQ_HANDLED;
1274 	} else {
1275 		ret = IRQ_NONE;
1276 	}
1277 
1278 	mutex_unlock(&data->mutex);
1279 
1280 	return ret;
1281 }
1282 
bmc150_accel_irq_handler(int irq,void * private)1283 static irqreturn_t bmc150_accel_irq_handler(int irq, void *private)
1284 {
1285 	struct iio_dev *indio_dev = private;
1286 	struct bmc150_accel_data *data = iio_priv(indio_dev);
1287 	bool ack = false;
1288 	int i;
1289 
1290 	data->old_timestamp = data->timestamp;
1291 	data->timestamp = iio_get_time_ns(indio_dev);
1292 
1293 	for (i = 0; i < BMC150_ACCEL_TRIGGERS; i++) {
1294 		if (data->triggers[i].enabled) {
1295 			iio_trigger_poll(data->triggers[i].indio_trig);
1296 			ack = true;
1297 			break;
1298 		}
1299 	}
1300 
1301 	if (data->ev_enable_state || data->fifo_mode)
1302 		return IRQ_WAKE_THREAD;
1303 
1304 	if (ack)
1305 		return IRQ_HANDLED;
1306 
1307 	return IRQ_NONE;
1308 }
1309 
1310 static const struct {
1311 	int intr;
1312 	const char *name;
1313 	int (*setup)(struct bmc150_accel_trigger *t, bool state);
1314 } bmc150_accel_triggers[BMC150_ACCEL_TRIGGERS] = {
1315 	{
1316 		.intr = 0,
1317 		.name = "%s-dev%d",
1318 	},
1319 	{
1320 		.intr = 1,
1321 		.name = "%s-any-motion-dev%d",
1322 		.setup = bmc150_accel_any_motion_setup,
1323 	},
1324 };
1325 
bmc150_accel_unregister_triggers(struct bmc150_accel_data * data,int from)1326 static void bmc150_accel_unregister_triggers(struct bmc150_accel_data *data,
1327 					     int from)
1328 {
1329 	int i;
1330 
1331 	for (i = from; i >= 0; i--) {
1332 		if (data->triggers[i].indio_trig) {
1333 			iio_trigger_unregister(data->triggers[i].indio_trig);
1334 			data->triggers[i].indio_trig = NULL;
1335 		}
1336 	}
1337 }
1338 
bmc150_accel_triggers_setup(struct iio_dev * indio_dev,struct bmc150_accel_data * data)1339 static int bmc150_accel_triggers_setup(struct iio_dev *indio_dev,
1340 				       struct bmc150_accel_data *data)
1341 {
1342 	struct device *dev = regmap_get_device(data->regmap);
1343 	int i, ret;
1344 
1345 	for (i = 0; i < BMC150_ACCEL_TRIGGERS; i++) {
1346 		struct bmc150_accel_trigger *t = &data->triggers[i];
1347 
1348 		t->indio_trig = devm_iio_trigger_alloc(dev,
1349 					bmc150_accel_triggers[i].name,
1350 						       indio_dev->name,
1351 						       indio_dev->id);
1352 		if (!t->indio_trig) {
1353 			ret = -ENOMEM;
1354 			break;
1355 		}
1356 
1357 		t->indio_trig->dev.parent = dev;
1358 		t->indio_trig->ops = &bmc150_accel_trigger_ops;
1359 		t->intr = bmc150_accel_triggers[i].intr;
1360 		t->data = data;
1361 		t->setup = bmc150_accel_triggers[i].setup;
1362 		iio_trigger_set_drvdata(t->indio_trig, t);
1363 
1364 		ret = iio_trigger_register(t->indio_trig);
1365 		if (ret)
1366 			break;
1367 	}
1368 
1369 	if (ret)
1370 		bmc150_accel_unregister_triggers(data, i - 1);
1371 
1372 	return ret;
1373 }
1374 
1375 #define BMC150_ACCEL_FIFO_MODE_STREAM          0x80
1376 #define BMC150_ACCEL_FIFO_MODE_FIFO            0x40
1377 #define BMC150_ACCEL_FIFO_MODE_BYPASS          0x00
1378 
bmc150_accel_fifo_set_mode(struct bmc150_accel_data * data)1379 static int bmc150_accel_fifo_set_mode(struct bmc150_accel_data *data)
1380 {
1381 	struct device *dev = regmap_get_device(data->regmap);
1382 	u8 reg = BMC150_ACCEL_REG_FIFO_CONFIG1;
1383 	int ret;
1384 
1385 	ret = regmap_write(data->regmap, reg, data->fifo_mode);
1386 	if (ret < 0) {
1387 		dev_err(dev, "Error writing reg_fifo_config1\n");
1388 		return ret;
1389 	}
1390 
1391 	if (!data->fifo_mode)
1392 		return 0;
1393 
1394 	ret = regmap_write(data->regmap, BMC150_ACCEL_REG_FIFO_CONFIG0,
1395 			   data->watermark);
1396 	if (ret < 0)
1397 		dev_err(dev, "Error writing reg_fifo_config0\n");
1398 
1399 	return ret;
1400 }
1401 
bmc150_accel_buffer_preenable(struct iio_dev * indio_dev)1402 static int bmc150_accel_buffer_preenable(struct iio_dev *indio_dev)
1403 {
1404 	struct bmc150_accel_data *data = iio_priv(indio_dev);
1405 
1406 	return bmc150_accel_set_power_state(data, true);
1407 }
1408 
bmc150_accel_buffer_postenable(struct iio_dev * indio_dev)1409 static int bmc150_accel_buffer_postenable(struct iio_dev *indio_dev)
1410 {
1411 	struct bmc150_accel_data *data = iio_priv(indio_dev);
1412 	int ret = 0;
1413 
1414 	if (indio_dev->currentmode == INDIO_BUFFER_TRIGGERED)
1415 		return iio_triggered_buffer_postenable(indio_dev);
1416 
1417 	mutex_lock(&data->mutex);
1418 
1419 	if (!data->watermark)
1420 		goto out;
1421 
1422 	ret = bmc150_accel_set_interrupt(data, BMC150_ACCEL_INT_WATERMARK,
1423 					 true);
1424 	if (ret)
1425 		goto out;
1426 
1427 	data->fifo_mode = BMC150_ACCEL_FIFO_MODE_FIFO;
1428 
1429 	ret = bmc150_accel_fifo_set_mode(data);
1430 	if (ret) {
1431 		data->fifo_mode = 0;
1432 		bmc150_accel_set_interrupt(data, BMC150_ACCEL_INT_WATERMARK,
1433 					   false);
1434 	}
1435 
1436 out:
1437 	mutex_unlock(&data->mutex);
1438 
1439 	return ret;
1440 }
1441 
bmc150_accel_buffer_predisable(struct iio_dev * indio_dev)1442 static int bmc150_accel_buffer_predisable(struct iio_dev *indio_dev)
1443 {
1444 	struct bmc150_accel_data *data = iio_priv(indio_dev);
1445 
1446 	if (indio_dev->currentmode == INDIO_BUFFER_TRIGGERED)
1447 		return iio_triggered_buffer_predisable(indio_dev);
1448 
1449 	mutex_lock(&data->mutex);
1450 
1451 	if (!data->fifo_mode)
1452 		goto out;
1453 
1454 	bmc150_accel_set_interrupt(data, BMC150_ACCEL_INT_WATERMARK, false);
1455 	__bmc150_accel_fifo_flush(indio_dev, BMC150_ACCEL_FIFO_LENGTH, false);
1456 	data->fifo_mode = 0;
1457 	bmc150_accel_fifo_set_mode(data);
1458 
1459 out:
1460 	mutex_unlock(&data->mutex);
1461 
1462 	return 0;
1463 }
1464 
bmc150_accel_buffer_postdisable(struct iio_dev * indio_dev)1465 static int bmc150_accel_buffer_postdisable(struct iio_dev *indio_dev)
1466 {
1467 	struct bmc150_accel_data *data = iio_priv(indio_dev);
1468 
1469 	return bmc150_accel_set_power_state(data, false);
1470 }
1471 
1472 static const struct iio_buffer_setup_ops bmc150_accel_buffer_ops = {
1473 	.preenable = bmc150_accel_buffer_preenable,
1474 	.postenable = bmc150_accel_buffer_postenable,
1475 	.predisable = bmc150_accel_buffer_predisable,
1476 	.postdisable = bmc150_accel_buffer_postdisable,
1477 };
1478 
bmc150_accel_chip_init(struct bmc150_accel_data * data)1479 static int bmc150_accel_chip_init(struct bmc150_accel_data *data)
1480 {
1481 	struct device *dev = regmap_get_device(data->regmap);
1482 	int ret, i;
1483 	unsigned int val;
1484 
1485 	/*
1486 	 * Reset chip to get it in a known good state. A delay of 1.8ms after
1487 	 * reset is required according to the data sheets of supported chips.
1488 	 */
1489 	regmap_write(data->regmap, BMC150_ACCEL_REG_RESET,
1490 		     BMC150_ACCEL_RESET_VAL);
1491 	usleep_range(1800, 2500);
1492 
1493 	ret = regmap_read(data->regmap, BMC150_ACCEL_REG_CHIP_ID, &val);
1494 	if (ret < 0) {
1495 		dev_err(dev, "Error: Reading chip id\n");
1496 		return ret;
1497 	}
1498 
1499 	dev_dbg(dev, "Chip Id %x\n", val);
1500 	for (i = 0; i < ARRAY_SIZE(bmc150_accel_chip_info_tbl); i++) {
1501 		if (bmc150_accel_chip_info_tbl[i].chip_id == val) {
1502 			data->chip_info = &bmc150_accel_chip_info_tbl[i];
1503 			break;
1504 		}
1505 	}
1506 
1507 	if (!data->chip_info) {
1508 		dev_err(dev, "Invalid chip %x\n", val);
1509 		return -ENODEV;
1510 	}
1511 
1512 	ret = bmc150_accel_set_mode(data, BMC150_ACCEL_SLEEP_MODE_NORMAL, 0);
1513 	if (ret < 0)
1514 		return ret;
1515 
1516 	/* Set Bandwidth */
1517 	ret = bmc150_accel_set_bw(data, BMC150_ACCEL_DEF_BW, 0);
1518 	if (ret < 0)
1519 		return ret;
1520 
1521 	/* Set Default Range */
1522 	ret = regmap_write(data->regmap, BMC150_ACCEL_REG_PMU_RANGE,
1523 			   BMC150_ACCEL_DEF_RANGE_4G);
1524 	if (ret < 0) {
1525 		dev_err(dev, "Error writing reg_pmu_range\n");
1526 		return ret;
1527 	}
1528 
1529 	data->range = BMC150_ACCEL_DEF_RANGE_4G;
1530 
1531 	/* Set default slope duration and thresholds */
1532 	data->slope_thres = BMC150_ACCEL_DEF_SLOPE_THRESHOLD;
1533 	data->slope_dur = BMC150_ACCEL_DEF_SLOPE_DURATION;
1534 	ret = bmc150_accel_update_slope(data);
1535 	if (ret < 0)
1536 		return ret;
1537 
1538 	/* Set default as latched interrupts */
1539 	ret = regmap_write(data->regmap, BMC150_ACCEL_REG_INT_RST_LATCH,
1540 			   BMC150_ACCEL_INT_MODE_LATCH_INT |
1541 			   BMC150_ACCEL_INT_MODE_LATCH_RESET);
1542 	if (ret < 0) {
1543 		dev_err(dev, "Error writing reg_int_rst_latch\n");
1544 		return ret;
1545 	}
1546 
1547 	return 0;
1548 }
1549 
bmc150_accel_core_probe(struct device * dev,struct regmap * regmap,int irq,const char * name,bool block_supported)1550 int bmc150_accel_core_probe(struct device *dev, struct regmap *regmap, int irq,
1551 			    const char *name, bool block_supported)
1552 {
1553 	struct bmc150_accel_data *data;
1554 	struct iio_dev *indio_dev;
1555 	int ret;
1556 
1557 	indio_dev = devm_iio_device_alloc(dev, sizeof(*data));
1558 	if (!indio_dev)
1559 		return -ENOMEM;
1560 
1561 	data = iio_priv(indio_dev);
1562 	dev_set_drvdata(dev, indio_dev);
1563 	data->irq = irq;
1564 
1565 	data->regmap = regmap;
1566 
1567 	ret = bmc150_accel_chip_init(data);
1568 	if (ret < 0)
1569 		return ret;
1570 
1571 	mutex_init(&data->mutex);
1572 
1573 	indio_dev->dev.parent = dev;
1574 	indio_dev->channels = data->chip_info->channels;
1575 	indio_dev->num_channels = data->chip_info->num_channels;
1576 	indio_dev->name = name ? name : data->chip_info->name;
1577 	indio_dev->available_scan_masks = bmc150_accel_scan_masks;
1578 	indio_dev->modes = INDIO_DIRECT_MODE;
1579 	indio_dev->info = &bmc150_accel_info;
1580 
1581 	ret = iio_triggered_buffer_setup(indio_dev,
1582 					 &iio_pollfunc_store_time,
1583 					 bmc150_accel_trigger_handler,
1584 					 &bmc150_accel_buffer_ops);
1585 	if (ret < 0) {
1586 		dev_err(dev, "Failed: iio triggered buffer setup\n");
1587 		return ret;
1588 	}
1589 
1590 	if (data->irq > 0) {
1591 		ret = devm_request_threaded_irq(
1592 						dev, data->irq,
1593 						bmc150_accel_irq_handler,
1594 						bmc150_accel_irq_thread_handler,
1595 						IRQF_TRIGGER_RISING,
1596 						BMC150_ACCEL_IRQ_NAME,
1597 						indio_dev);
1598 		if (ret)
1599 			goto err_buffer_cleanup;
1600 
1601 		/*
1602 		 * Set latched mode interrupt. While certain interrupts are
1603 		 * non-latched regardless of this settings (e.g. new data) we
1604 		 * want to use latch mode when we can to prevent interrupt
1605 		 * flooding.
1606 		 */
1607 		ret = regmap_write(data->regmap, BMC150_ACCEL_REG_INT_RST_LATCH,
1608 				   BMC150_ACCEL_INT_MODE_LATCH_RESET);
1609 		if (ret < 0) {
1610 			dev_err(dev, "Error writing reg_int_rst_latch\n");
1611 			goto err_buffer_cleanup;
1612 		}
1613 
1614 		bmc150_accel_interrupts_setup(indio_dev, data);
1615 
1616 		ret = bmc150_accel_triggers_setup(indio_dev, data);
1617 		if (ret)
1618 			goto err_buffer_cleanup;
1619 
1620 		if (block_supported) {
1621 			indio_dev->modes |= INDIO_BUFFER_SOFTWARE;
1622 			indio_dev->info = &bmc150_accel_info_fifo;
1623 			iio_buffer_set_attrs(indio_dev->buffer,
1624 					     bmc150_accel_fifo_attributes);
1625 		}
1626 	}
1627 
1628 	ret = pm_runtime_set_active(dev);
1629 	if (ret)
1630 		goto err_trigger_unregister;
1631 
1632 	pm_runtime_enable(dev);
1633 	pm_runtime_set_autosuspend_delay(dev, BMC150_AUTO_SUSPEND_DELAY_MS);
1634 	pm_runtime_use_autosuspend(dev);
1635 
1636 	ret = iio_device_register(indio_dev);
1637 	if (ret < 0) {
1638 		dev_err(dev, "Unable to register iio device\n");
1639 		goto err_trigger_unregister;
1640 	}
1641 
1642 	return 0;
1643 
1644 err_trigger_unregister:
1645 	bmc150_accel_unregister_triggers(data, BMC150_ACCEL_TRIGGERS - 1);
1646 err_buffer_cleanup:
1647 	iio_triggered_buffer_cleanup(indio_dev);
1648 
1649 	return ret;
1650 }
1651 EXPORT_SYMBOL_GPL(bmc150_accel_core_probe);
1652 
bmc150_accel_core_remove(struct device * dev)1653 int bmc150_accel_core_remove(struct device *dev)
1654 {
1655 	struct iio_dev *indio_dev = dev_get_drvdata(dev);
1656 	struct bmc150_accel_data *data = iio_priv(indio_dev);
1657 
1658 	iio_device_unregister(indio_dev);
1659 
1660 	pm_runtime_disable(dev);
1661 	pm_runtime_set_suspended(dev);
1662 	pm_runtime_put_noidle(dev);
1663 
1664 	bmc150_accel_unregister_triggers(data, BMC150_ACCEL_TRIGGERS - 1);
1665 
1666 	iio_triggered_buffer_cleanup(indio_dev);
1667 
1668 	mutex_lock(&data->mutex);
1669 	bmc150_accel_set_mode(data, BMC150_ACCEL_SLEEP_MODE_DEEP_SUSPEND, 0);
1670 	mutex_unlock(&data->mutex);
1671 
1672 	return 0;
1673 }
1674 EXPORT_SYMBOL_GPL(bmc150_accel_core_remove);
1675 
1676 #ifdef CONFIG_PM_SLEEP
bmc150_accel_suspend(struct device * dev)1677 static int bmc150_accel_suspend(struct device *dev)
1678 {
1679 	struct iio_dev *indio_dev = dev_get_drvdata(dev);
1680 	struct bmc150_accel_data *data = iio_priv(indio_dev);
1681 
1682 	mutex_lock(&data->mutex);
1683 	bmc150_accel_set_mode(data, BMC150_ACCEL_SLEEP_MODE_SUSPEND, 0);
1684 	mutex_unlock(&data->mutex);
1685 
1686 	return 0;
1687 }
1688 
bmc150_accel_resume(struct device * dev)1689 static int bmc150_accel_resume(struct device *dev)
1690 {
1691 	struct iio_dev *indio_dev = dev_get_drvdata(dev);
1692 	struct bmc150_accel_data *data = iio_priv(indio_dev);
1693 
1694 	mutex_lock(&data->mutex);
1695 	bmc150_accel_set_mode(data, BMC150_ACCEL_SLEEP_MODE_NORMAL, 0);
1696 	bmc150_accel_fifo_set_mode(data);
1697 	mutex_unlock(&data->mutex);
1698 
1699 	return 0;
1700 }
1701 #endif
1702 
1703 #ifdef CONFIG_PM
bmc150_accel_runtime_suspend(struct device * dev)1704 static int bmc150_accel_runtime_suspend(struct device *dev)
1705 {
1706 	struct iio_dev *indio_dev = dev_get_drvdata(dev);
1707 	struct bmc150_accel_data *data = iio_priv(indio_dev);
1708 	int ret;
1709 
1710 	ret = bmc150_accel_set_mode(data, BMC150_ACCEL_SLEEP_MODE_SUSPEND, 0);
1711 	if (ret < 0)
1712 		return -EAGAIN;
1713 
1714 	return 0;
1715 }
1716 
bmc150_accel_runtime_resume(struct device * dev)1717 static int bmc150_accel_runtime_resume(struct device *dev)
1718 {
1719 	struct iio_dev *indio_dev = dev_get_drvdata(dev);
1720 	struct bmc150_accel_data *data = iio_priv(indio_dev);
1721 	int ret;
1722 	int sleep_val;
1723 
1724 	ret = bmc150_accel_set_mode(data, BMC150_ACCEL_SLEEP_MODE_NORMAL, 0);
1725 	if (ret < 0)
1726 		return ret;
1727 	ret = bmc150_accel_fifo_set_mode(data);
1728 	if (ret < 0)
1729 		return ret;
1730 
1731 	sleep_val = bmc150_accel_get_startup_times(data);
1732 	if (sleep_val < 20)
1733 		usleep_range(sleep_val * 1000, 20000);
1734 	else
1735 		msleep_interruptible(sleep_val);
1736 
1737 	return 0;
1738 }
1739 #endif
1740 
1741 const struct dev_pm_ops bmc150_accel_pm_ops = {
1742 	SET_SYSTEM_SLEEP_PM_OPS(bmc150_accel_suspend, bmc150_accel_resume)
1743 	SET_RUNTIME_PM_OPS(bmc150_accel_runtime_suspend,
1744 			   bmc150_accel_runtime_resume, NULL)
1745 };
1746 EXPORT_SYMBOL_GPL(bmc150_accel_pm_ops);
1747 
1748 MODULE_AUTHOR("Srinivas Pandruvada <srinivas.pandruvada@linux.intel.com>");
1749 MODULE_LICENSE("GPL v2");
1750 MODULE_DESCRIPTION("BMC150 accelerometer driver");
1751