1 /*
2 * 3-axis accelerometer driver supporting following Bosch-Sensortec chips:
3 * - BMC150
4 * - BMI055
5 * - BMA255
6 * - BMA250E
7 * - BMA222E
8 * - BMA280
9 *
10 * Copyright (c) 2014, Intel Corporation.
11 *
12 * This program is free software; you can redistribute it and/or modify it
13 * under the terms and conditions of the GNU General Public License,
14 * version 2, as published by the Free Software Foundation.
15 *
16 * This program is distributed in the hope it will be useful, but WITHOUT
17 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
18 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
19 * more details.
20 */
21
22 #include <linux/module.h>
23 #include <linux/i2c.h>
24 #include <linux/interrupt.h>
25 #include <linux/delay.h>
26 #include <linux/slab.h>
27 #include <linux/acpi.h>
28 #include <linux/pm.h>
29 #include <linux/pm_runtime.h>
30 #include <linux/iio/iio.h>
31 #include <linux/iio/sysfs.h>
32 #include <linux/iio/buffer.h>
33 #include <linux/iio/events.h>
34 #include <linux/iio/trigger.h>
35 #include <linux/iio/trigger_consumer.h>
36 #include <linux/iio/triggered_buffer.h>
37 #include <linux/regmap.h>
38
39 #include "bmc150-accel.h"
40
41 #define BMC150_ACCEL_DRV_NAME "bmc150_accel"
42 #define BMC150_ACCEL_IRQ_NAME "bmc150_accel_event"
43
44 #define BMC150_ACCEL_REG_CHIP_ID 0x00
45
46 #define BMC150_ACCEL_REG_INT_STATUS_2 0x0B
47 #define BMC150_ACCEL_ANY_MOTION_MASK 0x07
48 #define BMC150_ACCEL_ANY_MOTION_BIT_X BIT(0)
49 #define BMC150_ACCEL_ANY_MOTION_BIT_Y BIT(1)
50 #define BMC150_ACCEL_ANY_MOTION_BIT_Z BIT(2)
51 #define BMC150_ACCEL_ANY_MOTION_BIT_SIGN BIT(3)
52
53 #define BMC150_ACCEL_REG_PMU_LPW 0x11
54 #define BMC150_ACCEL_PMU_MODE_MASK 0xE0
55 #define BMC150_ACCEL_PMU_MODE_SHIFT 5
56 #define BMC150_ACCEL_PMU_BIT_SLEEP_DUR_MASK 0x17
57 #define BMC150_ACCEL_PMU_BIT_SLEEP_DUR_SHIFT 1
58
59 #define BMC150_ACCEL_REG_PMU_RANGE 0x0F
60
61 #define BMC150_ACCEL_DEF_RANGE_2G 0x03
62 #define BMC150_ACCEL_DEF_RANGE_4G 0x05
63 #define BMC150_ACCEL_DEF_RANGE_8G 0x08
64 #define BMC150_ACCEL_DEF_RANGE_16G 0x0C
65
66 /* Default BW: 125Hz */
67 #define BMC150_ACCEL_REG_PMU_BW 0x10
68 #define BMC150_ACCEL_DEF_BW 125
69
70 #define BMC150_ACCEL_REG_RESET 0x14
71 #define BMC150_ACCEL_RESET_VAL 0xB6
72
73 #define BMC150_ACCEL_REG_INT_MAP_0 0x19
74 #define BMC150_ACCEL_INT_MAP_0_BIT_SLOPE BIT(2)
75
76 #define BMC150_ACCEL_REG_INT_MAP_1 0x1A
77 #define BMC150_ACCEL_INT_MAP_1_BIT_DATA BIT(0)
78 #define BMC150_ACCEL_INT_MAP_1_BIT_FWM BIT(1)
79 #define BMC150_ACCEL_INT_MAP_1_BIT_FFULL BIT(2)
80
81 #define BMC150_ACCEL_REG_INT_RST_LATCH 0x21
82 #define BMC150_ACCEL_INT_MODE_LATCH_RESET 0x80
83 #define BMC150_ACCEL_INT_MODE_LATCH_INT 0x0F
84 #define BMC150_ACCEL_INT_MODE_NON_LATCH_INT 0x00
85
86 #define BMC150_ACCEL_REG_INT_EN_0 0x16
87 #define BMC150_ACCEL_INT_EN_BIT_SLP_X BIT(0)
88 #define BMC150_ACCEL_INT_EN_BIT_SLP_Y BIT(1)
89 #define BMC150_ACCEL_INT_EN_BIT_SLP_Z BIT(2)
90
91 #define BMC150_ACCEL_REG_INT_EN_1 0x17
92 #define BMC150_ACCEL_INT_EN_BIT_DATA_EN BIT(4)
93 #define BMC150_ACCEL_INT_EN_BIT_FFULL_EN BIT(5)
94 #define BMC150_ACCEL_INT_EN_BIT_FWM_EN BIT(6)
95
96 #define BMC150_ACCEL_REG_INT_OUT_CTRL 0x20
97 #define BMC150_ACCEL_INT_OUT_CTRL_INT1_LVL BIT(0)
98
99 #define BMC150_ACCEL_REG_INT_5 0x27
100 #define BMC150_ACCEL_SLOPE_DUR_MASK 0x03
101
102 #define BMC150_ACCEL_REG_INT_6 0x28
103 #define BMC150_ACCEL_SLOPE_THRES_MASK 0xFF
104
105 /* Slope duration in terms of number of samples */
106 #define BMC150_ACCEL_DEF_SLOPE_DURATION 1
107 /* in terms of multiples of g's/LSB, based on range */
108 #define BMC150_ACCEL_DEF_SLOPE_THRESHOLD 1
109
110 #define BMC150_ACCEL_REG_XOUT_L 0x02
111
112 #define BMC150_ACCEL_MAX_STARTUP_TIME_MS 100
113
114 /* Sleep Duration values */
115 #define BMC150_ACCEL_SLEEP_500_MICRO 0x05
116 #define BMC150_ACCEL_SLEEP_1_MS 0x06
117 #define BMC150_ACCEL_SLEEP_2_MS 0x07
118 #define BMC150_ACCEL_SLEEP_4_MS 0x08
119 #define BMC150_ACCEL_SLEEP_6_MS 0x09
120 #define BMC150_ACCEL_SLEEP_10_MS 0x0A
121 #define BMC150_ACCEL_SLEEP_25_MS 0x0B
122 #define BMC150_ACCEL_SLEEP_50_MS 0x0C
123 #define BMC150_ACCEL_SLEEP_100_MS 0x0D
124 #define BMC150_ACCEL_SLEEP_500_MS 0x0E
125 #define BMC150_ACCEL_SLEEP_1_SEC 0x0F
126
127 #define BMC150_ACCEL_REG_TEMP 0x08
128 #define BMC150_ACCEL_TEMP_CENTER_VAL 23
129
130 #define BMC150_ACCEL_AXIS_TO_REG(axis) (BMC150_ACCEL_REG_XOUT_L + (axis * 2))
131 #define BMC150_AUTO_SUSPEND_DELAY_MS 2000
132
133 #define BMC150_ACCEL_REG_FIFO_STATUS 0x0E
134 #define BMC150_ACCEL_REG_FIFO_CONFIG0 0x30
135 #define BMC150_ACCEL_REG_FIFO_CONFIG1 0x3E
136 #define BMC150_ACCEL_REG_FIFO_DATA 0x3F
137 #define BMC150_ACCEL_FIFO_LENGTH 32
138
139 enum bmc150_accel_axis {
140 AXIS_X,
141 AXIS_Y,
142 AXIS_Z,
143 AXIS_MAX,
144 };
145
146 enum bmc150_power_modes {
147 BMC150_ACCEL_SLEEP_MODE_NORMAL,
148 BMC150_ACCEL_SLEEP_MODE_DEEP_SUSPEND,
149 BMC150_ACCEL_SLEEP_MODE_LPM,
150 BMC150_ACCEL_SLEEP_MODE_SUSPEND = 0x04,
151 };
152
153 struct bmc150_scale_info {
154 int scale;
155 u8 reg_range;
156 };
157
158 struct bmc150_accel_chip_info {
159 const char *name;
160 u8 chip_id;
161 const struct iio_chan_spec *channels;
162 int num_channels;
163 const struct bmc150_scale_info scale_table[4];
164 };
165
166 struct bmc150_accel_interrupt {
167 const struct bmc150_accel_interrupt_info *info;
168 atomic_t users;
169 };
170
171 struct bmc150_accel_trigger {
172 struct bmc150_accel_data *data;
173 struct iio_trigger *indio_trig;
174 int (*setup)(struct bmc150_accel_trigger *t, bool state);
175 int intr;
176 bool enabled;
177 };
178
179 enum bmc150_accel_interrupt_id {
180 BMC150_ACCEL_INT_DATA_READY,
181 BMC150_ACCEL_INT_ANY_MOTION,
182 BMC150_ACCEL_INT_WATERMARK,
183 BMC150_ACCEL_INTERRUPTS,
184 };
185
186 enum bmc150_accel_trigger_id {
187 BMC150_ACCEL_TRIGGER_DATA_READY,
188 BMC150_ACCEL_TRIGGER_ANY_MOTION,
189 BMC150_ACCEL_TRIGGERS,
190 };
191
192 struct bmc150_accel_data {
193 struct regmap *regmap;
194 int irq;
195 struct bmc150_accel_interrupt interrupts[BMC150_ACCEL_INTERRUPTS];
196 struct bmc150_accel_trigger triggers[BMC150_ACCEL_TRIGGERS];
197 struct mutex mutex;
198 u8 fifo_mode, watermark;
199 s16 buffer[8];
200 /*
201 * Ensure there is sufficient space and correct alignment for
202 * the timestamp if enabled
203 */
204 struct {
205 __le16 channels[3];
206 s64 ts __aligned(8);
207 } scan;
208 u8 bw_bits;
209 u32 slope_dur;
210 u32 slope_thres;
211 u32 range;
212 int ev_enable_state;
213 int64_t timestamp, old_timestamp; /* Only used in hw fifo mode. */
214 const struct bmc150_accel_chip_info *chip_info;
215 };
216
217 static const struct {
218 int val;
219 int val2;
220 u8 bw_bits;
221 } bmc150_accel_samp_freq_table[] = { {15, 620000, 0x08},
222 {31, 260000, 0x09},
223 {62, 500000, 0x0A},
224 {125, 0, 0x0B},
225 {250, 0, 0x0C},
226 {500, 0, 0x0D},
227 {1000, 0, 0x0E},
228 {2000, 0, 0x0F} };
229
230 static const struct {
231 int bw_bits;
232 int msec;
233 } bmc150_accel_sample_upd_time[] = { {0x08, 64},
234 {0x09, 32},
235 {0x0A, 16},
236 {0x0B, 8},
237 {0x0C, 4},
238 {0x0D, 2},
239 {0x0E, 1},
240 {0x0F, 1} };
241
242 static const struct {
243 int sleep_dur;
244 u8 reg_value;
245 } bmc150_accel_sleep_value_table[] = { {0, 0},
246 {500, BMC150_ACCEL_SLEEP_500_MICRO},
247 {1000, BMC150_ACCEL_SLEEP_1_MS},
248 {2000, BMC150_ACCEL_SLEEP_2_MS},
249 {4000, BMC150_ACCEL_SLEEP_4_MS},
250 {6000, BMC150_ACCEL_SLEEP_6_MS},
251 {10000, BMC150_ACCEL_SLEEP_10_MS},
252 {25000, BMC150_ACCEL_SLEEP_25_MS},
253 {50000, BMC150_ACCEL_SLEEP_50_MS},
254 {100000, BMC150_ACCEL_SLEEP_100_MS},
255 {500000, BMC150_ACCEL_SLEEP_500_MS},
256 {1000000, BMC150_ACCEL_SLEEP_1_SEC} };
257
258 const struct regmap_config bmc150_regmap_conf = {
259 .reg_bits = 8,
260 .val_bits = 8,
261 .max_register = 0x3f,
262 };
263 EXPORT_SYMBOL_GPL(bmc150_regmap_conf);
264
bmc150_accel_set_mode(struct bmc150_accel_data * data,enum bmc150_power_modes mode,int dur_us)265 static int bmc150_accel_set_mode(struct bmc150_accel_data *data,
266 enum bmc150_power_modes mode,
267 int dur_us)
268 {
269 struct device *dev = regmap_get_device(data->regmap);
270 int i;
271 int ret;
272 u8 lpw_bits;
273 int dur_val = -1;
274
275 if (dur_us > 0) {
276 for (i = 0; i < ARRAY_SIZE(bmc150_accel_sleep_value_table);
277 ++i) {
278 if (bmc150_accel_sleep_value_table[i].sleep_dur ==
279 dur_us)
280 dur_val =
281 bmc150_accel_sleep_value_table[i].reg_value;
282 }
283 } else {
284 dur_val = 0;
285 }
286
287 if (dur_val < 0)
288 return -EINVAL;
289
290 lpw_bits = mode << BMC150_ACCEL_PMU_MODE_SHIFT;
291 lpw_bits |= (dur_val << BMC150_ACCEL_PMU_BIT_SLEEP_DUR_SHIFT);
292
293 dev_dbg(dev, "Set Mode bits %x\n", lpw_bits);
294
295 ret = regmap_write(data->regmap, BMC150_ACCEL_REG_PMU_LPW, lpw_bits);
296 if (ret < 0) {
297 dev_err(dev, "Error writing reg_pmu_lpw\n");
298 return ret;
299 }
300
301 return 0;
302 }
303
bmc150_accel_set_bw(struct bmc150_accel_data * data,int val,int val2)304 static int bmc150_accel_set_bw(struct bmc150_accel_data *data, int val,
305 int val2)
306 {
307 int i;
308 int ret;
309
310 for (i = 0; i < ARRAY_SIZE(bmc150_accel_samp_freq_table); ++i) {
311 if (bmc150_accel_samp_freq_table[i].val == val &&
312 bmc150_accel_samp_freq_table[i].val2 == val2) {
313 ret = regmap_write(data->regmap,
314 BMC150_ACCEL_REG_PMU_BW,
315 bmc150_accel_samp_freq_table[i].bw_bits);
316 if (ret < 0)
317 return ret;
318
319 data->bw_bits =
320 bmc150_accel_samp_freq_table[i].bw_bits;
321 return 0;
322 }
323 }
324
325 return -EINVAL;
326 }
327
bmc150_accel_update_slope(struct bmc150_accel_data * data)328 static int bmc150_accel_update_slope(struct bmc150_accel_data *data)
329 {
330 struct device *dev = regmap_get_device(data->regmap);
331 int ret;
332
333 ret = regmap_write(data->regmap, BMC150_ACCEL_REG_INT_6,
334 data->slope_thres);
335 if (ret < 0) {
336 dev_err(dev, "Error writing reg_int_6\n");
337 return ret;
338 }
339
340 ret = regmap_update_bits(data->regmap, BMC150_ACCEL_REG_INT_5,
341 BMC150_ACCEL_SLOPE_DUR_MASK, data->slope_dur);
342 if (ret < 0) {
343 dev_err(dev, "Error updating reg_int_5\n");
344 return ret;
345 }
346
347 dev_dbg(dev, "%x %x\n", data->slope_thres, data->slope_dur);
348
349 return ret;
350 }
351
bmc150_accel_any_motion_setup(struct bmc150_accel_trigger * t,bool state)352 static int bmc150_accel_any_motion_setup(struct bmc150_accel_trigger *t,
353 bool state)
354 {
355 if (state)
356 return bmc150_accel_update_slope(t->data);
357
358 return 0;
359 }
360
bmc150_accel_get_bw(struct bmc150_accel_data * data,int * val,int * val2)361 static int bmc150_accel_get_bw(struct bmc150_accel_data *data, int *val,
362 int *val2)
363 {
364 int i;
365
366 for (i = 0; i < ARRAY_SIZE(bmc150_accel_samp_freq_table); ++i) {
367 if (bmc150_accel_samp_freq_table[i].bw_bits == data->bw_bits) {
368 *val = bmc150_accel_samp_freq_table[i].val;
369 *val2 = bmc150_accel_samp_freq_table[i].val2;
370 return IIO_VAL_INT_PLUS_MICRO;
371 }
372 }
373
374 return -EINVAL;
375 }
376
377 #ifdef CONFIG_PM
bmc150_accel_get_startup_times(struct bmc150_accel_data * data)378 static int bmc150_accel_get_startup_times(struct bmc150_accel_data *data)
379 {
380 int i;
381
382 for (i = 0; i < ARRAY_SIZE(bmc150_accel_sample_upd_time); ++i) {
383 if (bmc150_accel_sample_upd_time[i].bw_bits == data->bw_bits)
384 return bmc150_accel_sample_upd_time[i].msec;
385 }
386
387 return BMC150_ACCEL_MAX_STARTUP_TIME_MS;
388 }
389
bmc150_accel_set_power_state(struct bmc150_accel_data * data,bool on)390 static int bmc150_accel_set_power_state(struct bmc150_accel_data *data, bool on)
391 {
392 struct device *dev = regmap_get_device(data->regmap);
393 int ret;
394
395 if (on) {
396 ret = pm_runtime_get_sync(dev);
397 } else {
398 pm_runtime_mark_last_busy(dev);
399 ret = pm_runtime_put_autosuspend(dev);
400 }
401
402 if (ret < 0) {
403 dev_err(dev,
404 "Failed: bmc150_accel_set_power_state for %d\n", on);
405 if (on)
406 pm_runtime_put_noidle(dev);
407
408 return ret;
409 }
410
411 return 0;
412 }
413 #else
bmc150_accel_set_power_state(struct bmc150_accel_data * data,bool on)414 static int bmc150_accel_set_power_state(struct bmc150_accel_data *data, bool on)
415 {
416 return 0;
417 }
418 #endif
419
420 static const struct bmc150_accel_interrupt_info {
421 u8 map_reg;
422 u8 map_bitmask;
423 u8 en_reg;
424 u8 en_bitmask;
425 } bmc150_accel_interrupts[BMC150_ACCEL_INTERRUPTS] = {
426 { /* data ready interrupt */
427 .map_reg = BMC150_ACCEL_REG_INT_MAP_1,
428 .map_bitmask = BMC150_ACCEL_INT_MAP_1_BIT_DATA,
429 .en_reg = BMC150_ACCEL_REG_INT_EN_1,
430 .en_bitmask = BMC150_ACCEL_INT_EN_BIT_DATA_EN,
431 },
432 { /* motion interrupt */
433 .map_reg = BMC150_ACCEL_REG_INT_MAP_0,
434 .map_bitmask = BMC150_ACCEL_INT_MAP_0_BIT_SLOPE,
435 .en_reg = BMC150_ACCEL_REG_INT_EN_0,
436 .en_bitmask = BMC150_ACCEL_INT_EN_BIT_SLP_X |
437 BMC150_ACCEL_INT_EN_BIT_SLP_Y |
438 BMC150_ACCEL_INT_EN_BIT_SLP_Z
439 },
440 { /* fifo watermark interrupt */
441 .map_reg = BMC150_ACCEL_REG_INT_MAP_1,
442 .map_bitmask = BMC150_ACCEL_INT_MAP_1_BIT_FWM,
443 .en_reg = BMC150_ACCEL_REG_INT_EN_1,
444 .en_bitmask = BMC150_ACCEL_INT_EN_BIT_FWM_EN,
445 },
446 };
447
bmc150_accel_interrupts_setup(struct iio_dev * indio_dev,struct bmc150_accel_data * data)448 static void bmc150_accel_interrupts_setup(struct iio_dev *indio_dev,
449 struct bmc150_accel_data *data)
450 {
451 int i;
452
453 for (i = 0; i < BMC150_ACCEL_INTERRUPTS; i++)
454 data->interrupts[i].info = &bmc150_accel_interrupts[i];
455 }
456
bmc150_accel_set_interrupt(struct bmc150_accel_data * data,int i,bool state)457 static int bmc150_accel_set_interrupt(struct bmc150_accel_data *data, int i,
458 bool state)
459 {
460 struct device *dev = regmap_get_device(data->regmap);
461 struct bmc150_accel_interrupt *intr = &data->interrupts[i];
462 const struct bmc150_accel_interrupt_info *info = intr->info;
463 int ret;
464
465 if (state) {
466 if (atomic_inc_return(&intr->users) > 1)
467 return 0;
468 } else {
469 if (atomic_dec_return(&intr->users) > 0)
470 return 0;
471 }
472
473 /*
474 * We will expect the enable and disable to do operation in reverse
475 * order. This will happen here anyway, as our resume operation uses
476 * sync mode runtime pm calls. The suspend operation will be delayed
477 * by autosuspend delay.
478 * So the disable operation will still happen in reverse order of
479 * enable operation. When runtime pm is disabled the mode is always on,
480 * so sequence doesn't matter.
481 */
482 ret = bmc150_accel_set_power_state(data, state);
483 if (ret < 0)
484 return ret;
485
486 /* map the interrupt to the appropriate pins */
487 ret = regmap_update_bits(data->regmap, info->map_reg, info->map_bitmask,
488 (state ? info->map_bitmask : 0));
489 if (ret < 0) {
490 dev_err(dev, "Error updating reg_int_map\n");
491 goto out_fix_power_state;
492 }
493
494 /* enable/disable the interrupt */
495 ret = regmap_update_bits(data->regmap, info->en_reg, info->en_bitmask,
496 (state ? info->en_bitmask : 0));
497 if (ret < 0) {
498 dev_err(dev, "Error updating reg_int_en\n");
499 goto out_fix_power_state;
500 }
501
502 return 0;
503
504 out_fix_power_state:
505 bmc150_accel_set_power_state(data, false);
506 return ret;
507 }
508
bmc150_accel_set_scale(struct bmc150_accel_data * data,int val)509 static int bmc150_accel_set_scale(struct bmc150_accel_data *data, int val)
510 {
511 struct device *dev = regmap_get_device(data->regmap);
512 int ret, i;
513
514 for (i = 0; i < ARRAY_SIZE(data->chip_info->scale_table); ++i) {
515 if (data->chip_info->scale_table[i].scale == val) {
516 ret = regmap_write(data->regmap,
517 BMC150_ACCEL_REG_PMU_RANGE,
518 data->chip_info->scale_table[i].reg_range);
519 if (ret < 0) {
520 dev_err(dev, "Error writing pmu_range\n");
521 return ret;
522 }
523
524 data->range = data->chip_info->scale_table[i].reg_range;
525 return 0;
526 }
527 }
528
529 return -EINVAL;
530 }
531
bmc150_accel_get_temp(struct bmc150_accel_data * data,int * val)532 static int bmc150_accel_get_temp(struct bmc150_accel_data *data, int *val)
533 {
534 struct device *dev = regmap_get_device(data->regmap);
535 int ret;
536 unsigned int value;
537
538 mutex_lock(&data->mutex);
539
540 ret = regmap_read(data->regmap, BMC150_ACCEL_REG_TEMP, &value);
541 if (ret < 0) {
542 dev_err(dev, "Error reading reg_temp\n");
543 mutex_unlock(&data->mutex);
544 return ret;
545 }
546 *val = sign_extend32(value, 7);
547
548 mutex_unlock(&data->mutex);
549
550 return IIO_VAL_INT;
551 }
552
bmc150_accel_get_axis(struct bmc150_accel_data * data,struct iio_chan_spec const * chan,int * val)553 static int bmc150_accel_get_axis(struct bmc150_accel_data *data,
554 struct iio_chan_spec const *chan,
555 int *val)
556 {
557 struct device *dev = regmap_get_device(data->regmap);
558 int ret;
559 int axis = chan->scan_index;
560 __le16 raw_val;
561
562 mutex_lock(&data->mutex);
563 ret = bmc150_accel_set_power_state(data, true);
564 if (ret < 0) {
565 mutex_unlock(&data->mutex);
566 return ret;
567 }
568
569 ret = regmap_bulk_read(data->regmap, BMC150_ACCEL_AXIS_TO_REG(axis),
570 &raw_val, sizeof(raw_val));
571 if (ret < 0) {
572 dev_err(dev, "Error reading axis %d\n", axis);
573 bmc150_accel_set_power_state(data, false);
574 mutex_unlock(&data->mutex);
575 return ret;
576 }
577 *val = sign_extend32(le16_to_cpu(raw_val) >> chan->scan_type.shift,
578 chan->scan_type.realbits - 1);
579 ret = bmc150_accel_set_power_state(data, false);
580 mutex_unlock(&data->mutex);
581 if (ret < 0)
582 return ret;
583
584 return IIO_VAL_INT;
585 }
586
bmc150_accel_read_raw(struct iio_dev * indio_dev,struct iio_chan_spec const * chan,int * val,int * val2,long mask)587 static int bmc150_accel_read_raw(struct iio_dev *indio_dev,
588 struct iio_chan_spec const *chan,
589 int *val, int *val2, long mask)
590 {
591 struct bmc150_accel_data *data = iio_priv(indio_dev);
592 int ret;
593
594 switch (mask) {
595 case IIO_CHAN_INFO_RAW:
596 switch (chan->type) {
597 case IIO_TEMP:
598 return bmc150_accel_get_temp(data, val);
599 case IIO_ACCEL:
600 if (iio_buffer_enabled(indio_dev))
601 return -EBUSY;
602 else
603 return bmc150_accel_get_axis(data, chan, val);
604 default:
605 return -EINVAL;
606 }
607 case IIO_CHAN_INFO_OFFSET:
608 if (chan->type == IIO_TEMP) {
609 *val = BMC150_ACCEL_TEMP_CENTER_VAL;
610 return IIO_VAL_INT;
611 } else {
612 return -EINVAL;
613 }
614 case IIO_CHAN_INFO_SCALE:
615 *val = 0;
616 switch (chan->type) {
617 case IIO_TEMP:
618 *val2 = 500000;
619 return IIO_VAL_INT_PLUS_MICRO;
620 case IIO_ACCEL:
621 {
622 int i;
623 const struct bmc150_scale_info *si;
624 int st_size = ARRAY_SIZE(data->chip_info->scale_table);
625
626 for (i = 0; i < st_size; ++i) {
627 si = &data->chip_info->scale_table[i];
628 if (si->reg_range == data->range) {
629 *val2 = si->scale;
630 return IIO_VAL_INT_PLUS_MICRO;
631 }
632 }
633 return -EINVAL;
634 }
635 default:
636 return -EINVAL;
637 }
638 case IIO_CHAN_INFO_SAMP_FREQ:
639 mutex_lock(&data->mutex);
640 ret = bmc150_accel_get_bw(data, val, val2);
641 mutex_unlock(&data->mutex);
642 return ret;
643 default:
644 return -EINVAL;
645 }
646 }
647
bmc150_accel_write_raw(struct iio_dev * indio_dev,struct iio_chan_spec const * chan,int val,int val2,long mask)648 static int bmc150_accel_write_raw(struct iio_dev *indio_dev,
649 struct iio_chan_spec const *chan,
650 int val, int val2, long mask)
651 {
652 struct bmc150_accel_data *data = iio_priv(indio_dev);
653 int ret;
654
655 switch (mask) {
656 case IIO_CHAN_INFO_SAMP_FREQ:
657 mutex_lock(&data->mutex);
658 ret = bmc150_accel_set_bw(data, val, val2);
659 mutex_unlock(&data->mutex);
660 break;
661 case IIO_CHAN_INFO_SCALE:
662 if (val)
663 return -EINVAL;
664
665 mutex_lock(&data->mutex);
666 ret = bmc150_accel_set_scale(data, val2);
667 mutex_unlock(&data->mutex);
668 return ret;
669 default:
670 ret = -EINVAL;
671 }
672
673 return ret;
674 }
675
bmc150_accel_read_event(struct iio_dev * indio_dev,const struct iio_chan_spec * chan,enum iio_event_type type,enum iio_event_direction dir,enum iio_event_info info,int * val,int * val2)676 static int bmc150_accel_read_event(struct iio_dev *indio_dev,
677 const struct iio_chan_spec *chan,
678 enum iio_event_type type,
679 enum iio_event_direction dir,
680 enum iio_event_info info,
681 int *val, int *val2)
682 {
683 struct bmc150_accel_data *data = iio_priv(indio_dev);
684
685 *val2 = 0;
686 switch (info) {
687 case IIO_EV_INFO_VALUE:
688 *val = data->slope_thres;
689 break;
690 case IIO_EV_INFO_PERIOD:
691 *val = data->slope_dur;
692 break;
693 default:
694 return -EINVAL;
695 }
696
697 return IIO_VAL_INT;
698 }
699
bmc150_accel_write_event(struct iio_dev * indio_dev,const struct iio_chan_spec * chan,enum iio_event_type type,enum iio_event_direction dir,enum iio_event_info info,int val,int val2)700 static int bmc150_accel_write_event(struct iio_dev *indio_dev,
701 const struct iio_chan_spec *chan,
702 enum iio_event_type type,
703 enum iio_event_direction dir,
704 enum iio_event_info info,
705 int val, int val2)
706 {
707 struct bmc150_accel_data *data = iio_priv(indio_dev);
708
709 if (data->ev_enable_state)
710 return -EBUSY;
711
712 switch (info) {
713 case IIO_EV_INFO_VALUE:
714 data->slope_thres = val & BMC150_ACCEL_SLOPE_THRES_MASK;
715 break;
716 case IIO_EV_INFO_PERIOD:
717 data->slope_dur = val & BMC150_ACCEL_SLOPE_DUR_MASK;
718 break;
719 default:
720 return -EINVAL;
721 }
722
723 return 0;
724 }
725
bmc150_accel_read_event_config(struct iio_dev * indio_dev,const struct iio_chan_spec * chan,enum iio_event_type type,enum iio_event_direction dir)726 static int bmc150_accel_read_event_config(struct iio_dev *indio_dev,
727 const struct iio_chan_spec *chan,
728 enum iio_event_type type,
729 enum iio_event_direction dir)
730 {
731 struct bmc150_accel_data *data = iio_priv(indio_dev);
732
733 return data->ev_enable_state;
734 }
735
bmc150_accel_write_event_config(struct iio_dev * indio_dev,const struct iio_chan_spec * chan,enum iio_event_type type,enum iio_event_direction dir,int state)736 static int bmc150_accel_write_event_config(struct iio_dev *indio_dev,
737 const struct iio_chan_spec *chan,
738 enum iio_event_type type,
739 enum iio_event_direction dir,
740 int state)
741 {
742 struct bmc150_accel_data *data = iio_priv(indio_dev);
743 int ret;
744
745 if (state == data->ev_enable_state)
746 return 0;
747
748 mutex_lock(&data->mutex);
749
750 ret = bmc150_accel_set_interrupt(data, BMC150_ACCEL_INT_ANY_MOTION,
751 state);
752 if (ret < 0) {
753 mutex_unlock(&data->mutex);
754 return ret;
755 }
756
757 data->ev_enable_state = state;
758 mutex_unlock(&data->mutex);
759
760 return 0;
761 }
762
bmc150_accel_validate_trigger(struct iio_dev * indio_dev,struct iio_trigger * trig)763 static int bmc150_accel_validate_trigger(struct iio_dev *indio_dev,
764 struct iio_trigger *trig)
765 {
766 struct bmc150_accel_data *data = iio_priv(indio_dev);
767 int i;
768
769 for (i = 0; i < BMC150_ACCEL_TRIGGERS; i++) {
770 if (data->triggers[i].indio_trig == trig)
771 return 0;
772 }
773
774 return -EINVAL;
775 }
776
bmc150_accel_get_fifo_watermark(struct device * dev,struct device_attribute * attr,char * buf)777 static ssize_t bmc150_accel_get_fifo_watermark(struct device *dev,
778 struct device_attribute *attr,
779 char *buf)
780 {
781 struct iio_dev *indio_dev = dev_to_iio_dev(dev);
782 struct bmc150_accel_data *data = iio_priv(indio_dev);
783 int wm;
784
785 mutex_lock(&data->mutex);
786 wm = data->watermark;
787 mutex_unlock(&data->mutex);
788
789 return sprintf(buf, "%d\n", wm);
790 }
791
bmc150_accel_get_fifo_state(struct device * dev,struct device_attribute * attr,char * buf)792 static ssize_t bmc150_accel_get_fifo_state(struct device *dev,
793 struct device_attribute *attr,
794 char *buf)
795 {
796 struct iio_dev *indio_dev = dev_to_iio_dev(dev);
797 struct bmc150_accel_data *data = iio_priv(indio_dev);
798 bool state;
799
800 mutex_lock(&data->mutex);
801 state = data->fifo_mode;
802 mutex_unlock(&data->mutex);
803
804 return sprintf(buf, "%d\n", state);
805 }
806
807 static IIO_CONST_ATTR(hwfifo_watermark_min, "1");
808 static IIO_CONST_ATTR(hwfifo_watermark_max,
809 __stringify(BMC150_ACCEL_FIFO_LENGTH));
810 static IIO_DEVICE_ATTR(hwfifo_enabled, S_IRUGO,
811 bmc150_accel_get_fifo_state, NULL, 0);
812 static IIO_DEVICE_ATTR(hwfifo_watermark, S_IRUGO,
813 bmc150_accel_get_fifo_watermark, NULL, 0);
814
815 static const struct attribute *bmc150_accel_fifo_attributes[] = {
816 &iio_const_attr_hwfifo_watermark_min.dev_attr.attr,
817 &iio_const_attr_hwfifo_watermark_max.dev_attr.attr,
818 &iio_dev_attr_hwfifo_watermark.dev_attr.attr,
819 &iio_dev_attr_hwfifo_enabled.dev_attr.attr,
820 NULL,
821 };
822
bmc150_accel_set_watermark(struct iio_dev * indio_dev,unsigned val)823 static int bmc150_accel_set_watermark(struct iio_dev *indio_dev, unsigned val)
824 {
825 struct bmc150_accel_data *data = iio_priv(indio_dev);
826
827 if (val > BMC150_ACCEL_FIFO_LENGTH)
828 val = BMC150_ACCEL_FIFO_LENGTH;
829
830 mutex_lock(&data->mutex);
831 data->watermark = val;
832 mutex_unlock(&data->mutex);
833
834 return 0;
835 }
836
837 /*
838 * We must read at least one full frame in one burst, otherwise the rest of the
839 * frame data is discarded.
840 */
bmc150_accel_fifo_transfer(struct bmc150_accel_data * data,char * buffer,int samples)841 static int bmc150_accel_fifo_transfer(struct bmc150_accel_data *data,
842 char *buffer, int samples)
843 {
844 struct device *dev = regmap_get_device(data->regmap);
845 int sample_length = 3 * 2;
846 int ret;
847 int total_length = samples * sample_length;
848
849 ret = regmap_raw_read(data->regmap, BMC150_ACCEL_REG_FIFO_DATA,
850 buffer, total_length);
851 if (ret)
852 dev_err(dev,
853 "Error transferring data from fifo: %d\n", ret);
854
855 return ret;
856 }
857
__bmc150_accel_fifo_flush(struct iio_dev * indio_dev,unsigned samples,bool irq)858 static int __bmc150_accel_fifo_flush(struct iio_dev *indio_dev,
859 unsigned samples, bool irq)
860 {
861 struct bmc150_accel_data *data = iio_priv(indio_dev);
862 struct device *dev = regmap_get_device(data->regmap);
863 int ret, i;
864 u8 count;
865 u16 buffer[BMC150_ACCEL_FIFO_LENGTH * 3];
866 int64_t tstamp;
867 uint64_t sample_period;
868 unsigned int val;
869
870 ret = regmap_read(data->regmap, BMC150_ACCEL_REG_FIFO_STATUS, &val);
871 if (ret < 0) {
872 dev_err(dev, "Error reading reg_fifo_status\n");
873 return ret;
874 }
875
876 count = val & 0x7F;
877
878 if (!count)
879 return 0;
880
881 /*
882 * If we getting called from IRQ handler we know the stored timestamp is
883 * fairly accurate for the last stored sample. Otherwise, if we are
884 * called as a result of a read operation from userspace and hence
885 * before the watermark interrupt was triggered, take a timestamp
886 * now. We can fall anywhere in between two samples so the error in this
887 * case is at most one sample period.
888 */
889 if (!irq) {
890 data->old_timestamp = data->timestamp;
891 data->timestamp = iio_get_time_ns(indio_dev);
892 }
893
894 /*
895 * Approximate timestamps for each of the sample based on the sampling
896 * frequency, timestamp for last sample and number of samples.
897 *
898 * Note that we can't use the current bandwidth settings to compute the
899 * sample period because the sample rate varies with the device
900 * (e.g. between 31.70ms to 32.20ms for a bandwidth of 15.63HZ). That
901 * small variation adds when we store a large number of samples and
902 * creates significant jitter between the last and first samples in
903 * different batches (e.g. 32ms vs 21ms).
904 *
905 * To avoid this issue we compute the actual sample period ourselves
906 * based on the timestamp delta between the last two flush operations.
907 */
908 sample_period = (data->timestamp - data->old_timestamp);
909 do_div(sample_period, count);
910 tstamp = data->timestamp - (count - 1) * sample_period;
911
912 if (samples && count > samples)
913 count = samples;
914
915 ret = bmc150_accel_fifo_transfer(data, (u8 *)buffer, count);
916 if (ret)
917 return ret;
918
919 /*
920 * Ideally we want the IIO core to handle the demux when running in fifo
921 * mode but not when running in triggered buffer mode. Unfortunately
922 * this does not seem to be possible, so stick with driver demux for
923 * now.
924 */
925 for (i = 0; i < count; i++) {
926 int j, bit;
927
928 j = 0;
929 for_each_set_bit(bit, indio_dev->active_scan_mask,
930 indio_dev->masklength)
931 memcpy(&data->scan.channels[j++], &buffer[i * 3 + bit],
932 sizeof(data->scan.channels[0]));
933
934 iio_push_to_buffers_with_timestamp(indio_dev, &data->scan,
935 tstamp);
936
937 tstamp += sample_period;
938 }
939
940 return count;
941 }
942
bmc150_accel_fifo_flush(struct iio_dev * indio_dev,unsigned samples)943 static int bmc150_accel_fifo_flush(struct iio_dev *indio_dev, unsigned samples)
944 {
945 struct bmc150_accel_data *data = iio_priv(indio_dev);
946 int ret;
947
948 mutex_lock(&data->mutex);
949 ret = __bmc150_accel_fifo_flush(indio_dev, samples, false);
950 mutex_unlock(&data->mutex);
951
952 return ret;
953 }
954
955 static IIO_CONST_ATTR_SAMP_FREQ_AVAIL(
956 "15.620000 31.260000 62.50000 125 250 500 1000 2000");
957
958 static struct attribute *bmc150_accel_attributes[] = {
959 &iio_const_attr_sampling_frequency_available.dev_attr.attr,
960 NULL,
961 };
962
963 static const struct attribute_group bmc150_accel_attrs_group = {
964 .attrs = bmc150_accel_attributes,
965 };
966
967 static const struct iio_event_spec bmc150_accel_event = {
968 .type = IIO_EV_TYPE_ROC,
969 .dir = IIO_EV_DIR_EITHER,
970 .mask_separate = BIT(IIO_EV_INFO_VALUE) |
971 BIT(IIO_EV_INFO_ENABLE) |
972 BIT(IIO_EV_INFO_PERIOD)
973 };
974
975 #define BMC150_ACCEL_CHANNEL(_axis, bits) { \
976 .type = IIO_ACCEL, \
977 .modified = 1, \
978 .channel2 = IIO_MOD_##_axis, \
979 .info_mask_separate = BIT(IIO_CHAN_INFO_RAW), \
980 .info_mask_shared_by_type = BIT(IIO_CHAN_INFO_SCALE) | \
981 BIT(IIO_CHAN_INFO_SAMP_FREQ), \
982 .scan_index = AXIS_##_axis, \
983 .scan_type = { \
984 .sign = 's', \
985 .realbits = (bits), \
986 .storagebits = 16, \
987 .shift = 16 - (bits), \
988 .endianness = IIO_LE, \
989 }, \
990 .event_spec = &bmc150_accel_event, \
991 .num_event_specs = 1 \
992 }
993
994 #define BMC150_ACCEL_CHANNELS(bits) { \
995 { \
996 .type = IIO_TEMP, \
997 .info_mask_separate = BIT(IIO_CHAN_INFO_RAW) | \
998 BIT(IIO_CHAN_INFO_SCALE) | \
999 BIT(IIO_CHAN_INFO_OFFSET), \
1000 .scan_index = -1, \
1001 }, \
1002 BMC150_ACCEL_CHANNEL(X, bits), \
1003 BMC150_ACCEL_CHANNEL(Y, bits), \
1004 BMC150_ACCEL_CHANNEL(Z, bits), \
1005 IIO_CHAN_SOFT_TIMESTAMP(3), \
1006 }
1007
1008 static const struct iio_chan_spec bma222e_accel_channels[] =
1009 BMC150_ACCEL_CHANNELS(8);
1010 static const struct iio_chan_spec bma250e_accel_channels[] =
1011 BMC150_ACCEL_CHANNELS(10);
1012 static const struct iio_chan_spec bmc150_accel_channels[] =
1013 BMC150_ACCEL_CHANNELS(12);
1014 static const struct iio_chan_spec bma280_accel_channels[] =
1015 BMC150_ACCEL_CHANNELS(14);
1016
1017 static const struct bmc150_accel_chip_info bmc150_accel_chip_info_tbl[] = {
1018 [bmc150] = {
1019 .name = "BMC150A",
1020 .chip_id = 0xFA,
1021 .channels = bmc150_accel_channels,
1022 .num_channels = ARRAY_SIZE(bmc150_accel_channels),
1023 .scale_table = { {9610, BMC150_ACCEL_DEF_RANGE_2G},
1024 {19122, BMC150_ACCEL_DEF_RANGE_4G},
1025 {38344, BMC150_ACCEL_DEF_RANGE_8G},
1026 {76590, BMC150_ACCEL_DEF_RANGE_16G} },
1027 },
1028 [bmi055] = {
1029 .name = "BMI055A",
1030 .chip_id = 0xFA,
1031 .channels = bmc150_accel_channels,
1032 .num_channels = ARRAY_SIZE(bmc150_accel_channels),
1033 .scale_table = { {9610, BMC150_ACCEL_DEF_RANGE_2G},
1034 {19122, BMC150_ACCEL_DEF_RANGE_4G},
1035 {38344, BMC150_ACCEL_DEF_RANGE_8G},
1036 {76590, BMC150_ACCEL_DEF_RANGE_16G} },
1037 },
1038 [bma255] = {
1039 .name = "BMA0255",
1040 .chip_id = 0xFA,
1041 .channels = bmc150_accel_channels,
1042 .num_channels = ARRAY_SIZE(bmc150_accel_channels),
1043 .scale_table = { {9610, BMC150_ACCEL_DEF_RANGE_2G},
1044 {19122, BMC150_ACCEL_DEF_RANGE_4G},
1045 {38344, BMC150_ACCEL_DEF_RANGE_8G},
1046 {76590, BMC150_ACCEL_DEF_RANGE_16G} },
1047 },
1048 [bma250e] = {
1049 .name = "BMA250E",
1050 .chip_id = 0xF9,
1051 .channels = bma250e_accel_channels,
1052 .num_channels = ARRAY_SIZE(bma250e_accel_channels),
1053 .scale_table = { {38344, BMC150_ACCEL_DEF_RANGE_2G},
1054 {76590, BMC150_ACCEL_DEF_RANGE_4G},
1055 {153277, BMC150_ACCEL_DEF_RANGE_8G},
1056 {306457, BMC150_ACCEL_DEF_RANGE_16G} },
1057 },
1058 [bma222e] = {
1059 .name = "BMA222E",
1060 .chip_id = 0xF8,
1061 .channels = bma222e_accel_channels,
1062 .num_channels = ARRAY_SIZE(bma222e_accel_channels),
1063 .scale_table = { {153277, BMC150_ACCEL_DEF_RANGE_2G},
1064 {306457, BMC150_ACCEL_DEF_RANGE_4G},
1065 {612915, BMC150_ACCEL_DEF_RANGE_8G},
1066 {1225831, BMC150_ACCEL_DEF_RANGE_16G} },
1067 },
1068 [bma280] = {
1069 .name = "BMA0280",
1070 .chip_id = 0xFB,
1071 .channels = bma280_accel_channels,
1072 .num_channels = ARRAY_SIZE(bma280_accel_channels),
1073 .scale_table = { {2392, BMC150_ACCEL_DEF_RANGE_2G},
1074 {4785, BMC150_ACCEL_DEF_RANGE_4G},
1075 {9581, BMC150_ACCEL_DEF_RANGE_8G},
1076 {19152, BMC150_ACCEL_DEF_RANGE_16G} },
1077 },
1078 };
1079
1080 static const struct iio_info bmc150_accel_info = {
1081 .attrs = &bmc150_accel_attrs_group,
1082 .read_raw = bmc150_accel_read_raw,
1083 .write_raw = bmc150_accel_write_raw,
1084 .read_event_value = bmc150_accel_read_event,
1085 .write_event_value = bmc150_accel_write_event,
1086 .write_event_config = bmc150_accel_write_event_config,
1087 .read_event_config = bmc150_accel_read_event_config,
1088 };
1089
1090 static const struct iio_info bmc150_accel_info_fifo = {
1091 .attrs = &bmc150_accel_attrs_group,
1092 .read_raw = bmc150_accel_read_raw,
1093 .write_raw = bmc150_accel_write_raw,
1094 .read_event_value = bmc150_accel_read_event,
1095 .write_event_value = bmc150_accel_write_event,
1096 .write_event_config = bmc150_accel_write_event_config,
1097 .read_event_config = bmc150_accel_read_event_config,
1098 .validate_trigger = bmc150_accel_validate_trigger,
1099 .hwfifo_set_watermark = bmc150_accel_set_watermark,
1100 .hwfifo_flush_to_buffer = bmc150_accel_fifo_flush,
1101 };
1102
1103 static const unsigned long bmc150_accel_scan_masks[] = {
1104 BIT(AXIS_X) | BIT(AXIS_Y) | BIT(AXIS_Z),
1105 0};
1106
bmc150_accel_trigger_handler(int irq,void * p)1107 static irqreturn_t bmc150_accel_trigger_handler(int irq, void *p)
1108 {
1109 struct iio_poll_func *pf = p;
1110 struct iio_dev *indio_dev = pf->indio_dev;
1111 struct bmc150_accel_data *data = iio_priv(indio_dev);
1112 int ret;
1113
1114 mutex_lock(&data->mutex);
1115 ret = regmap_bulk_read(data->regmap, BMC150_ACCEL_REG_XOUT_L,
1116 data->buffer, AXIS_MAX * 2);
1117 mutex_unlock(&data->mutex);
1118 if (ret < 0)
1119 goto err_read;
1120
1121 iio_push_to_buffers_with_timestamp(indio_dev, data->buffer,
1122 pf->timestamp);
1123 err_read:
1124 iio_trigger_notify_done(indio_dev->trig);
1125
1126 return IRQ_HANDLED;
1127 }
1128
bmc150_accel_trig_try_reen(struct iio_trigger * trig)1129 static int bmc150_accel_trig_try_reen(struct iio_trigger *trig)
1130 {
1131 struct bmc150_accel_trigger *t = iio_trigger_get_drvdata(trig);
1132 struct bmc150_accel_data *data = t->data;
1133 struct device *dev = regmap_get_device(data->regmap);
1134 int ret;
1135
1136 /* new data interrupts don't need ack */
1137 if (t == &t->data->triggers[BMC150_ACCEL_TRIGGER_DATA_READY])
1138 return 0;
1139
1140 mutex_lock(&data->mutex);
1141 /* clear any latched interrupt */
1142 ret = regmap_write(data->regmap, BMC150_ACCEL_REG_INT_RST_LATCH,
1143 BMC150_ACCEL_INT_MODE_LATCH_INT |
1144 BMC150_ACCEL_INT_MODE_LATCH_RESET);
1145 mutex_unlock(&data->mutex);
1146 if (ret < 0) {
1147 dev_err(dev, "Error writing reg_int_rst_latch\n");
1148 return ret;
1149 }
1150
1151 return 0;
1152 }
1153
bmc150_accel_trigger_set_state(struct iio_trigger * trig,bool state)1154 static int bmc150_accel_trigger_set_state(struct iio_trigger *trig,
1155 bool state)
1156 {
1157 struct bmc150_accel_trigger *t = iio_trigger_get_drvdata(trig);
1158 struct bmc150_accel_data *data = t->data;
1159 int ret;
1160
1161 mutex_lock(&data->mutex);
1162
1163 if (t->enabled == state) {
1164 mutex_unlock(&data->mutex);
1165 return 0;
1166 }
1167
1168 if (t->setup) {
1169 ret = t->setup(t, state);
1170 if (ret < 0) {
1171 mutex_unlock(&data->mutex);
1172 return ret;
1173 }
1174 }
1175
1176 ret = bmc150_accel_set_interrupt(data, t->intr, state);
1177 if (ret < 0) {
1178 mutex_unlock(&data->mutex);
1179 return ret;
1180 }
1181
1182 t->enabled = state;
1183
1184 mutex_unlock(&data->mutex);
1185
1186 return ret;
1187 }
1188
1189 static const struct iio_trigger_ops bmc150_accel_trigger_ops = {
1190 .set_trigger_state = bmc150_accel_trigger_set_state,
1191 .try_reenable = bmc150_accel_trig_try_reen,
1192 };
1193
bmc150_accel_handle_roc_event(struct iio_dev * indio_dev)1194 static int bmc150_accel_handle_roc_event(struct iio_dev *indio_dev)
1195 {
1196 struct bmc150_accel_data *data = iio_priv(indio_dev);
1197 struct device *dev = regmap_get_device(data->regmap);
1198 int dir;
1199 int ret;
1200 unsigned int val;
1201
1202 ret = regmap_read(data->regmap, BMC150_ACCEL_REG_INT_STATUS_2, &val);
1203 if (ret < 0) {
1204 dev_err(dev, "Error reading reg_int_status_2\n");
1205 return ret;
1206 }
1207
1208 if (val & BMC150_ACCEL_ANY_MOTION_BIT_SIGN)
1209 dir = IIO_EV_DIR_FALLING;
1210 else
1211 dir = IIO_EV_DIR_RISING;
1212
1213 if (val & BMC150_ACCEL_ANY_MOTION_BIT_X)
1214 iio_push_event(indio_dev,
1215 IIO_MOD_EVENT_CODE(IIO_ACCEL,
1216 0,
1217 IIO_MOD_X,
1218 IIO_EV_TYPE_ROC,
1219 dir),
1220 data->timestamp);
1221
1222 if (val & BMC150_ACCEL_ANY_MOTION_BIT_Y)
1223 iio_push_event(indio_dev,
1224 IIO_MOD_EVENT_CODE(IIO_ACCEL,
1225 0,
1226 IIO_MOD_Y,
1227 IIO_EV_TYPE_ROC,
1228 dir),
1229 data->timestamp);
1230
1231 if (val & BMC150_ACCEL_ANY_MOTION_BIT_Z)
1232 iio_push_event(indio_dev,
1233 IIO_MOD_EVENT_CODE(IIO_ACCEL,
1234 0,
1235 IIO_MOD_Z,
1236 IIO_EV_TYPE_ROC,
1237 dir),
1238 data->timestamp);
1239
1240 return ret;
1241 }
1242
bmc150_accel_irq_thread_handler(int irq,void * private)1243 static irqreturn_t bmc150_accel_irq_thread_handler(int irq, void *private)
1244 {
1245 struct iio_dev *indio_dev = private;
1246 struct bmc150_accel_data *data = iio_priv(indio_dev);
1247 struct device *dev = regmap_get_device(data->regmap);
1248 bool ack = false;
1249 int ret;
1250
1251 mutex_lock(&data->mutex);
1252
1253 if (data->fifo_mode) {
1254 ret = __bmc150_accel_fifo_flush(indio_dev,
1255 BMC150_ACCEL_FIFO_LENGTH, true);
1256 if (ret > 0)
1257 ack = true;
1258 }
1259
1260 if (data->ev_enable_state) {
1261 ret = bmc150_accel_handle_roc_event(indio_dev);
1262 if (ret > 0)
1263 ack = true;
1264 }
1265
1266 if (ack) {
1267 ret = regmap_write(data->regmap, BMC150_ACCEL_REG_INT_RST_LATCH,
1268 BMC150_ACCEL_INT_MODE_LATCH_INT |
1269 BMC150_ACCEL_INT_MODE_LATCH_RESET);
1270 if (ret)
1271 dev_err(dev, "Error writing reg_int_rst_latch\n");
1272
1273 ret = IRQ_HANDLED;
1274 } else {
1275 ret = IRQ_NONE;
1276 }
1277
1278 mutex_unlock(&data->mutex);
1279
1280 return ret;
1281 }
1282
bmc150_accel_irq_handler(int irq,void * private)1283 static irqreturn_t bmc150_accel_irq_handler(int irq, void *private)
1284 {
1285 struct iio_dev *indio_dev = private;
1286 struct bmc150_accel_data *data = iio_priv(indio_dev);
1287 bool ack = false;
1288 int i;
1289
1290 data->old_timestamp = data->timestamp;
1291 data->timestamp = iio_get_time_ns(indio_dev);
1292
1293 for (i = 0; i < BMC150_ACCEL_TRIGGERS; i++) {
1294 if (data->triggers[i].enabled) {
1295 iio_trigger_poll(data->triggers[i].indio_trig);
1296 ack = true;
1297 break;
1298 }
1299 }
1300
1301 if (data->ev_enable_state || data->fifo_mode)
1302 return IRQ_WAKE_THREAD;
1303
1304 if (ack)
1305 return IRQ_HANDLED;
1306
1307 return IRQ_NONE;
1308 }
1309
1310 static const struct {
1311 int intr;
1312 const char *name;
1313 int (*setup)(struct bmc150_accel_trigger *t, bool state);
1314 } bmc150_accel_triggers[BMC150_ACCEL_TRIGGERS] = {
1315 {
1316 .intr = 0,
1317 .name = "%s-dev%d",
1318 },
1319 {
1320 .intr = 1,
1321 .name = "%s-any-motion-dev%d",
1322 .setup = bmc150_accel_any_motion_setup,
1323 },
1324 };
1325
bmc150_accel_unregister_triggers(struct bmc150_accel_data * data,int from)1326 static void bmc150_accel_unregister_triggers(struct bmc150_accel_data *data,
1327 int from)
1328 {
1329 int i;
1330
1331 for (i = from; i >= 0; i--) {
1332 if (data->triggers[i].indio_trig) {
1333 iio_trigger_unregister(data->triggers[i].indio_trig);
1334 data->triggers[i].indio_trig = NULL;
1335 }
1336 }
1337 }
1338
bmc150_accel_triggers_setup(struct iio_dev * indio_dev,struct bmc150_accel_data * data)1339 static int bmc150_accel_triggers_setup(struct iio_dev *indio_dev,
1340 struct bmc150_accel_data *data)
1341 {
1342 struct device *dev = regmap_get_device(data->regmap);
1343 int i, ret;
1344
1345 for (i = 0; i < BMC150_ACCEL_TRIGGERS; i++) {
1346 struct bmc150_accel_trigger *t = &data->triggers[i];
1347
1348 t->indio_trig = devm_iio_trigger_alloc(dev,
1349 bmc150_accel_triggers[i].name,
1350 indio_dev->name,
1351 indio_dev->id);
1352 if (!t->indio_trig) {
1353 ret = -ENOMEM;
1354 break;
1355 }
1356
1357 t->indio_trig->dev.parent = dev;
1358 t->indio_trig->ops = &bmc150_accel_trigger_ops;
1359 t->intr = bmc150_accel_triggers[i].intr;
1360 t->data = data;
1361 t->setup = bmc150_accel_triggers[i].setup;
1362 iio_trigger_set_drvdata(t->indio_trig, t);
1363
1364 ret = iio_trigger_register(t->indio_trig);
1365 if (ret)
1366 break;
1367 }
1368
1369 if (ret)
1370 bmc150_accel_unregister_triggers(data, i - 1);
1371
1372 return ret;
1373 }
1374
1375 #define BMC150_ACCEL_FIFO_MODE_STREAM 0x80
1376 #define BMC150_ACCEL_FIFO_MODE_FIFO 0x40
1377 #define BMC150_ACCEL_FIFO_MODE_BYPASS 0x00
1378
bmc150_accel_fifo_set_mode(struct bmc150_accel_data * data)1379 static int bmc150_accel_fifo_set_mode(struct bmc150_accel_data *data)
1380 {
1381 struct device *dev = regmap_get_device(data->regmap);
1382 u8 reg = BMC150_ACCEL_REG_FIFO_CONFIG1;
1383 int ret;
1384
1385 ret = regmap_write(data->regmap, reg, data->fifo_mode);
1386 if (ret < 0) {
1387 dev_err(dev, "Error writing reg_fifo_config1\n");
1388 return ret;
1389 }
1390
1391 if (!data->fifo_mode)
1392 return 0;
1393
1394 ret = regmap_write(data->regmap, BMC150_ACCEL_REG_FIFO_CONFIG0,
1395 data->watermark);
1396 if (ret < 0)
1397 dev_err(dev, "Error writing reg_fifo_config0\n");
1398
1399 return ret;
1400 }
1401
bmc150_accel_buffer_preenable(struct iio_dev * indio_dev)1402 static int bmc150_accel_buffer_preenable(struct iio_dev *indio_dev)
1403 {
1404 struct bmc150_accel_data *data = iio_priv(indio_dev);
1405
1406 return bmc150_accel_set_power_state(data, true);
1407 }
1408
bmc150_accel_buffer_postenable(struct iio_dev * indio_dev)1409 static int bmc150_accel_buffer_postenable(struct iio_dev *indio_dev)
1410 {
1411 struct bmc150_accel_data *data = iio_priv(indio_dev);
1412 int ret = 0;
1413
1414 if (indio_dev->currentmode == INDIO_BUFFER_TRIGGERED)
1415 return iio_triggered_buffer_postenable(indio_dev);
1416
1417 mutex_lock(&data->mutex);
1418
1419 if (!data->watermark)
1420 goto out;
1421
1422 ret = bmc150_accel_set_interrupt(data, BMC150_ACCEL_INT_WATERMARK,
1423 true);
1424 if (ret)
1425 goto out;
1426
1427 data->fifo_mode = BMC150_ACCEL_FIFO_MODE_FIFO;
1428
1429 ret = bmc150_accel_fifo_set_mode(data);
1430 if (ret) {
1431 data->fifo_mode = 0;
1432 bmc150_accel_set_interrupt(data, BMC150_ACCEL_INT_WATERMARK,
1433 false);
1434 }
1435
1436 out:
1437 mutex_unlock(&data->mutex);
1438
1439 return ret;
1440 }
1441
bmc150_accel_buffer_predisable(struct iio_dev * indio_dev)1442 static int bmc150_accel_buffer_predisable(struct iio_dev *indio_dev)
1443 {
1444 struct bmc150_accel_data *data = iio_priv(indio_dev);
1445
1446 if (indio_dev->currentmode == INDIO_BUFFER_TRIGGERED)
1447 return iio_triggered_buffer_predisable(indio_dev);
1448
1449 mutex_lock(&data->mutex);
1450
1451 if (!data->fifo_mode)
1452 goto out;
1453
1454 bmc150_accel_set_interrupt(data, BMC150_ACCEL_INT_WATERMARK, false);
1455 __bmc150_accel_fifo_flush(indio_dev, BMC150_ACCEL_FIFO_LENGTH, false);
1456 data->fifo_mode = 0;
1457 bmc150_accel_fifo_set_mode(data);
1458
1459 out:
1460 mutex_unlock(&data->mutex);
1461
1462 return 0;
1463 }
1464
bmc150_accel_buffer_postdisable(struct iio_dev * indio_dev)1465 static int bmc150_accel_buffer_postdisable(struct iio_dev *indio_dev)
1466 {
1467 struct bmc150_accel_data *data = iio_priv(indio_dev);
1468
1469 return bmc150_accel_set_power_state(data, false);
1470 }
1471
1472 static const struct iio_buffer_setup_ops bmc150_accel_buffer_ops = {
1473 .preenable = bmc150_accel_buffer_preenable,
1474 .postenable = bmc150_accel_buffer_postenable,
1475 .predisable = bmc150_accel_buffer_predisable,
1476 .postdisable = bmc150_accel_buffer_postdisable,
1477 };
1478
bmc150_accel_chip_init(struct bmc150_accel_data * data)1479 static int bmc150_accel_chip_init(struct bmc150_accel_data *data)
1480 {
1481 struct device *dev = regmap_get_device(data->regmap);
1482 int ret, i;
1483 unsigned int val;
1484
1485 /*
1486 * Reset chip to get it in a known good state. A delay of 1.8ms after
1487 * reset is required according to the data sheets of supported chips.
1488 */
1489 regmap_write(data->regmap, BMC150_ACCEL_REG_RESET,
1490 BMC150_ACCEL_RESET_VAL);
1491 usleep_range(1800, 2500);
1492
1493 ret = regmap_read(data->regmap, BMC150_ACCEL_REG_CHIP_ID, &val);
1494 if (ret < 0) {
1495 dev_err(dev, "Error: Reading chip id\n");
1496 return ret;
1497 }
1498
1499 dev_dbg(dev, "Chip Id %x\n", val);
1500 for (i = 0; i < ARRAY_SIZE(bmc150_accel_chip_info_tbl); i++) {
1501 if (bmc150_accel_chip_info_tbl[i].chip_id == val) {
1502 data->chip_info = &bmc150_accel_chip_info_tbl[i];
1503 break;
1504 }
1505 }
1506
1507 if (!data->chip_info) {
1508 dev_err(dev, "Invalid chip %x\n", val);
1509 return -ENODEV;
1510 }
1511
1512 ret = bmc150_accel_set_mode(data, BMC150_ACCEL_SLEEP_MODE_NORMAL, 0);
1513 if (ret < 0)
1514 return ret;
1515
1516 /* Set Bandwidth */
1517 ret = bmc150_accel_set_bw(data, BMC150_ACCEL_DEF_BW, 0);
1518 if (ret < 0)
1519 return ret;
1520
1521 /* Set Default Range */
1522 ret = regmap_write(data->regmap, BMC150_ACCEL_REG_PMU_RANGE,
1523 BMC150_ACCEL_DEF_RANGE_4G);
1524 if (ret < 0) {
1525 dev_err(dev, "Error writing reg_pmu_range\n");
1526 return ret;
1527 }
1528
1529 data->range = BMC150_ACCEL_DEF_RANGE_4G;
1530
1531 /* Set default slope duration and thresholds */
1532 data->slope_thres = BMC150_ACCEL_DEF_SLOPE_THRESHOLD;
1533 data->slope_dur = BMC150_ACCEL_DEF_SLOPE_DURATION;
1534 ret = bmc150_accel_update_slope(data);
1535 if (ret < 0)
1536 return ret;
1537
1538 /* Set default as latched interrupts */
1539 ret = regmap_write(data->regmap, BMC150_ACCEL_REG_INT_RST_LATCH,
1540 BMC150_ACCEL_INT_MODE_LATCH_INT |
1541 BMC150_ACCEL_INT_MODE_LATCH_RESET);
1542 if (ret < 0) {
1543 dev_err(dev, "Error writing reg_int_rst_latch\n");
1544 return ret;
1545 }
1546
1547 return 0;
1548 }
1549
bmc150_accel_core_probe(struct device * dev,struct regmap * regmap,int irq,const char * name,bool block_supported)1550 int bmc150_accel_core_probe(struct device *dev, struct regmap *regmap, int irq,
1551 const char *name, bool block_supported)
1552 {
1553 struct bmc150_accel_data *data;
1554 struct iio_dev *indio_dev;
1555 int ret;
1556
1557 indio_dev = devm_iio_device_alloc(dev, sizeof(*data));
1558 if (!indio_dev)
1559 return -ENOMEM;
1560
1561 data = iio_priv(indio_dev);
1562 dev_set_drvdata(dev, indio_dev);
1563 data->irq = irq;
1564
1565 data->regmap = regmap;
1566
1567 ret = bmc150_accel_chip_init(data);
1568 if (ret < 0)
1569 return ret;
1570
1571 mutex_init(&data->mutex);
1572
1573 indio_dev->dev.parent = dev;
1574 indio_dev->channels = data->chip_info->channels;
1575 indio_dev->num_channels = data->chip_info->num_channels;
1576 indio_dev->name = name ? name : data->chip_info->name;
1577 indio_dev->available_scan_masks = bmc150_accel_scan_masks;
1578 indio_dev->modes = INDIO_DIRECT_MODE;
1579 indio_dev->info = &bmc150_accel_info;
1580
1581 ret = iio_triggered_buffer_setup(indio_dev,
1582 &iio_pollfunc_store_time,
1583 bmc150_accel_trigger_handler,
1584 &bmc150_accel_buffer_ops);
1585 if (ret < 0) {
1586 dev_err(dev, "Failed: iio triggered buffer setup\n");
1587 return ret;
1588 }
1589
1590 if (data->irq > 0) {
1591 ret = devm_request_threaded_irq(
1592 dev, data->irq,
1593 bmc150_accel_irq_handler,
1594 bmc150_accel_irq_thread_handler,
1595 IRQF_TRIGGER_RISING,
1596 BMC150_ACCEL_IRQ_NAME,
1597 indio_dev);
1598 if (ret)
1599 goto err_buffer_cleanup;
1600
1601 /*
1602 * Set latched mode interrupt. While certain interrupts are
1603 * non-latched regardless of this settings (e.g. new data) we
1604 * want to use latch mode when we can to prevent interrupt
1605 * flooding.
1606 */
1607 ret = regmap_write(data->regmap, BMC150_ACCEL_REG_INT_RST_LATCH,
1608 BMC150_ACCEL_INT_MODE_LATCH_RESET);
1609 if (ret < 0) {
1610 dev_err(dev, "Error writing reg_int_rst_latch\n");
1611 goto err_buffer_cleanup;
1612 }
1613
1614 bmc150_accel_interrupts_setup(indio_dev, data);
1615
1616 ret = bmc150_accel_triggers_setup(indio_dev, data);
1617 if (ret)
1618 goto err_buffer_cleanup;
1619
1620 if (block_supported) {
1621 indio_dev->modes |= INDIO_BUFFER_SOFTWARE;
1622 indio_dev->info = &bmc150_accel_info_fifo;
1623 iio_buffer_set_attrs(indio_dev->buffer,
1624 bmc150_accel_fifo_attributes);
1625 }
1626 }
1627
1628 ret = pm_runtime_set_active(dev);
1629 if (ret)
1630 goto err_trigger_unregister;
1631
1632 pm_runtime_enable(dev);
1633 pm_runtime_set_autosuspend_delay(dev, BMC150_AUTO_SUSPEND_DELAY_MS);
1634 pm_runtime_use_autosuspend(dev);
1635
1636 ret = iio_device_register(indio_dev);
1637 if (ret < 0) {
1638 dev_err(dev, "Unable to register iio device\n");
1639 goto err_trigger_unregister;
1640 }
1641
1642 return 0;
1643
1644 err_trigger_unregister:
1645 bmc150_accel_unregister_triggers(data, BMC150_ACCEL_TRIGGERS - 1);
1646 err_buffer_cleanup:
1647 iio_triggered_buffer_cleanup(indio_dev);
1648
1649 return ret;
1650 }
1651 EXPORT_SYMBOL_GPL(bmc150_accel_core_probe);
1652
bmc150_accel_core_remove(struct device * dev)1653 int bmc150_accel_core_remove(struct device *dev)
1654 {
1655 struct iio_dev *indio_dev = dev_get_drvdata(dev);
1656 struct bmc150_accel_data *data = iio_priv(indio_dev);
1657
1658 iio_device_unregister(indio_dev);
1659
1660 pm_runtime_disable(dev);
1661 pm_runtime_set_suspended(dev);
1662 pm_runtime_put_noidle(dev);
1663
1664 bmc150_accel_unregister_triggers(data, BMC150_ACCEL_TRIGGERS - 1);
1665
1666 iio_triggered_buffer_cleanup(indio_dev);
1667
1668 mutex_lock(&data->mutex);
1669 bmc150_accel_set_mode(data, BMC150_ACCEL_SLEEP_MODE_DEEP_SUSPEND, 0);
1670 mutex_unlock(&data->mutex);
1671
1672 return 0;
1673 }
1674 EXPORT_SYMBOL_GPL(bmc150_accel_core_remove);
1675
1676 #ifdef CONFIG_PM_SLEEP
bmc150_accel_suspend(struct device * dev)1677 static int bmc150_accel_suspend(struct device *dev)
1678 {
1679 struct iio_dev *indio_dev = dev_get_drvdata(dev);
1680 struct bmc150_accel_data *data = iio_priv(indio_dev);
1681
1682 mutex_lock(&data->mutex);
1683 bmc150_accel_set_mode(data, BMC150_ACCEL_SLEEP_MODE_SUSPEND, 0);
1684 mutex_unlock(&data->mutex);
1685
1686 return 0;
1687 }
1688
bmc150_accel_resume(struct device * dev)1689 static int bmc150_accel_resume(struct device *dev)
1690 {
1691 struct iio_dev *indio_dev = dev_get_drvdata(dev);
1692 struct bmc150_accel_data *data = iio_priv(indio_dev);
1693
1694 mutex_lock(&data->mutex);
1695 bmc150_accel_set_mode(data, BMC150_ACCEL_SLEEP_MODE_NORMAL, 0);
1696 bmc150_accel_fifo_set_mode(data);
1697 mutex_unlock(&data->mutex);
1698
1699 return 0;
1700 }
1701 #endif
1702
1703 #ifdef CONFIG_PM
bmc150_accel_runtime_suspend(struct device * dev)1704 static int bmc150_accel_runtime_suspend(struct device *dev)
1705 {
1706 struct iio_dev *indio_dev = dev_get_drvdata(dev);
1707 struct bmc150_accel_data *data = iio_priv(indio_dev);
1708 int ret;
1709
1710 ret = bmc150_accel_set_mode(data, BMC150_ACCEL_SLEEP_MODE_SUSPEND, 0);
1711 if (ret < 0)
1712 return -EAGAIN;
1713
1714 return 0;
1715 }
1716
bmc150_accel_runtime_resume(struct device * dev)1717 static int bmc150_accel_runtime_resume(struct device *dev)
1718 {
1719 struct iio_dev *indio_dev = dev_get_drvdata(dev);
1720 struct bmc150_accel_data *data = iio_priv(indio_dev);
1721 int ret;
1722 int sleep_val;
1723
1724 ret = bmc150_accel_set_mode(data, BMC150_ACCEL_SLEEP_MODE_NORMAL, 0);
1725 if (ret < 0)
1726 return ret;
1727 ret = bmc150_accel_fifo_set_mode(data);
1728 if (ret < 0)
1729 return ret;
1730
1731 sleep_val = bmc150_accel_get_startup_times(data);
1732 if (sleep_val < 20)
1733 usleep_range(sleep_val * 1000, 20000);
1734 else
1735 msleep_interruptible(sleep_val);
1736
1737 return 0;
1738 }
1739 #endif
1740
1741 const struct dev_pm_ops bmc150_accel_pm_ops = {
1742 SET_SYSTEM_SLEEP_PM_OPS(bmc150_accel_suspend, bmc150_accel_resume)
1743 SET_RUNTIME_PM_OPS(bmc150_accel_runtime_suspend,
1744 bmc150_accel_runtime_resume, NULL)
1745 };
1746 EXPORT_SYMBOL_GPL(bmc150_accel_pm_ops);
1747
1748 MODULE_AUTHOR("Srinivas Pandruvada <srinivas.pandruvada@linux.intel.com>");
1749 MODULE_LICENSE("GPL v2");
1750 MODULE_DESCRIPTION("BMC150 accelerometer driver");
1751