• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * AFE4403 Heart Rate Monitors and Low-Cost Pulse Oximeters
3  *
4  * Copyright (C) 2015-2016 Texas Instruments Incorporated - http://www.ti.com/
5  *	Andrew F. Davis <afd@ti.com>
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  *
11  * This program is distributed in the hope that it will be useful, but
12  * WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14  * General Public License for more details.
15  */
16 
17 #include <linux/device.h>
18 #include <linux/err.h>
19 #include <linux/interrupt.h>
20 #include <linux/kernel.h>
21 #include <linux/module.h>
22 #include <linux/regmap.h>
23 #include <linux/spi/spi.h>
24 #include <linux/sysfs.h>
25 #include <linux/regulator/consumer.h>
26 
27 #include <linux/iio/iio.h>
28 #include <linux/iio/sysfs.h>
29 #include <linux/iio/buffer.h>
30 #include <linux/iio/trigger.h>
31 #include <linux/iio/triggered_buffer.h>
32 #include <linux/iio/trigger_consumer.h>
33 
34 #include "afe440x.h"
35 
36 #define AFE4403_DRIVER_NAME		"afe4403"
37 
38 /* AFE4403 Registers */
39 #define AFE4403_TIAGAIN			0x20
40 #define AFE4403_TIA_AMB_GAIN		0x21
41 
42 enum afe4403_fields {
43 	/* Gains */
44 	F_RF_LED1, F_CF_LED1,
45 	F_RF_LED, F_CF_LED,
46 
47 	/* LED Current */
48 	F_ILED1, F_ILED2,
49 
50 	/* sentinel */
51 	F_MAX_FIELDS
52 };
53 
54 static const struct reg_field afe4403_reg_fields[] = {
55 	/* Gains */
56 	[F_RF_LED1]	= REG_FIELD(AFE4403_TIAGAIN, 0, 2),
57 	[F_CF_LED1]	= REG_FIELD(AFE4403_TIAGAIN, 3, 7),
58 	[F_RF_LED]	= REG_FIELD(AFE4403_TIA_AMB_GAIN, 0, 2),
59 	[F_CF_LED]	= REG_FIELD(AFE4403_TIA_AMB_GAIN, 3, 7),
60 	/* LED Current */
61 	[F_ILED1]	= REG_FIELD(AFE440X_LEDCNTRL, 0, 7),
62 	[F_ILED2]	= REG_FIELD(AFE440X_LEDCNTRL, 8, 15),
63 };
64 
65 /**
66  * struct afe4403_data - AFE4403 device instance data
67  * @dev: Device structure
68  * @spi: SPI device handle
69  * @regmap: Register map of the device
70  * @fields: Register fields of the device
71  * @regulator: Pointer to the regulator for the IC
72  * @trig: IIO trigger for this device
73  * @irq: ADC_RDY line interrupt number
74  * @buffer: Used to construct data layout to push into IIO buffer.
75  */
76 struct afe4403_data {
77 	struct device *dev;
78 	struct spi_device *spi;
79 	struct regmap *regmap;
80 	struct regmap_field *fields[F_MAX_FIELDS];
81 	struct regulator *regulator;
82 	struct iio_trigger *trig;
83 	int irq;
84 	/* Ensure suitable alignment for timestamp */
85 	s32 buffer[8] __aligned(8);
86 };
87 
88 enum afe4403_chan_id {
89 	LED2 = 1,
90 	ALED2,
91 	LED1,
92 	ALED1,
93 	LED2_ALED2,
94 	LED1_ALED1,
95 };
96 
97 static const unsigned int afe4403_channel_values[] = {
98 	[LED2] = AFE440X_LED2VAL,
99 	[ALED2] = AFE440X_ALED2VAL,
100 	[LED1] = AFE440X_LED1VAL,
101 	[ALED1] = AFE440X_ALED1VAL,
102 	[LED2_ALED2] = AFE440X_LED2_ALED2VAL,
103 	[LED1_ALED1] = AFE440X_LED1_ALED1VAL,
104 };
105 
106 static const unsigned int afe4403_channel_leds[] = {
107 	[LED2] = F_ILED2,
108 	[LED1] = F_ILED1,
109 };
110 
111 static const struct iio_chan_spec afe4403_channels[] = {
112 	/* ADC values */
113 	AFE440X_INTENSITY_CHAN(LED2, 0),
114 	AFE440X_INTENSITY_CHAN(ALED2, 0),
115 	AFE440X_INTENSITY_CHAN(LED1, 0),
116 	AFE440X_INTENSITY_CHAN(ALED1, 0),
117 	AFE440X_INTENSITY_CHAN(LED2_ALED2, 0),
118 	AFE440X_INTENSITY_CHAN(LED1_ALED1, 0),
119 	/* LED current */
120 	AFE440X_CURRENT_CHAN(LED2),
121 	AFE440X_CURRENT_CHAN(LED1),
122 };
123 
124 static const struct afe440x_val_table afe4403_res_table[] = {
125 	{ 500000 }, { 250000 }, { 100000 }, { 50000 },
126 	{ 25000 }, { 10000 }, { 1000000 }, { 0 },
127 };
128 AFE440X_TABLE_ATTR(in_intensity_resistance_available, afe4403_res_table);
129 
130 static const struct afe440x_val_table afe4403_cap_table[] = {
131 	{ 0, 5000 }, { 0, 10000 }, { 0, 20000 }, { 0, 25000 },
132 	{ 0, 30000 }, { 0, 35000 }, { 0, 45000 }, { 0, 50000 },
133 	{ 0, 55000 }, { 0, 60000 }, { 0, 70000 }, { 0, 75000 },
134 	{ 0, 80000 }, { 0, 85000 }, { 0, 95000 }, { 0, 100000 },
135 	{ 0, 155000 }, { 0, 160000 }, { 0, 170000 }, { 0, 175000 },
136 	{ 0, 180000 }, { 0, 185000 }, { 0, 195000 }, { 0, 200000 },
137 	{ 0, 205000 }, { 0, 210000 }, { 0, 220000 }, { 0, 225000 },
138 	{ 0, 230000 }, { 0, 235000 }, { 0, 245000 }, { 0, 250000 },
139 };
140 AFE440X_TABLE_ATTR(in_intensity_capacitance_available, afe4403_cap_table);
141 
afe440x_show_register(struct device * dev,struct device_attribute * attr,char * buf)142 static ssize_t afe440x_show_register(struct device *dev,
143 				     struct device_attribute *attr,
144 				     char *buf)
145 {
146 	struct iio_dev *indio_dev = dev_to_iio_dev(dev);
147 	struct afe4403_data *afe = iio_priv(indio_dev);
148 	struct afe440x_attr *afe440x_attr = to_afe440x_attr(attr);
149 	unsigned int reg_val;
150 	int vals[2];
151 	int ret;
152 
153 	ret = regmap_field_read(afe->fields[afe440x_attr->field], &reg_val);
154 	if (ret)
155 		return ret;
156 
157 	if (reg_val >= afe440x_attr->table_size)
158 		return -EINVAL;
159 
160 	vals[0] = afe440x_attr->val_table[reg_val].integer;
161 	vals[1] = afe440x_attr->val_table[reg_val].fract;
162 
163 	return iio_format_value(buf, IIO_VAL_INT_PLUS_MICRO, 2, vals);
164 }
165 
afe440x_store_register(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)166 static ssize_t afe440x_store_register(struct device *dev,
167 				      struct device_attribute *attr,
168 				      const char *buf, size_t count)
169 {
170 	struct iio_dev *indio_dev = dev_to_iio_dev(dev);
171 	struct afe4403_data *afe = iio_priv(indio_dev);
172 	struct afe440x_attr *afe440x_attr = to_afe440x_attr(attr);
173 	int val, integer, fract, ret;
174 
175 	ret = iio_str_to_fixpoint(buf, 100000, &integer, &fract);
176 	if (ret)
177 		return ret;
178 
179 	for (val = 0; val < afe440x_attr->table_size; val++)
180 		if (afe440x_attr->val_table[val].integer == integer &&
181 		    afe440x_attr->val_table[val].fract == fract)
182 			break;
183 	if (val == afe440x_attr->table_size)
184 		return -EINVAL;
185 
186 	ret = regmap_field_write(afe->fields[afe440x_attr->field], val);
187 	if (ret)
188 		return ret;
189 
190 	return count;
191 }
192 
193 static AFE440X_ATTR(in_intensity1_resistance, F_RF_LED, afe4403_res_table);
194 static AFE440X_ATTR(in_intensity1_capacitance, F_CF_LED, afe4403_cap_table);
195 
196 static AFE440X_ATTR(in_intensity2_resistance, F_RF_LED, afe4403_res_table);
197 static AFE440X_ATTR(in_intensity2_capacitance, F_CF_LED, afe4403_cap_table);
198 
199 static AFE440X_ATTR(in_intensity3_resistance, F_RF_LED1, afe4403_res_table);
200 static AFE440X_ATTR(in_intensity3_capacitance, F_CF_LED1, afe4403_cap_table);
201 
202 static AFE440X_ATTR(in_intensity4_resistance, F_RF_LED1, afe4403_res_table);
203 static AFE440X_ATTR(in_intensity4_capacitance, F_CF_LED1, afe4403_cap_table);
204 
205 static struct attribute *afe440x_attributes[] = {
206 	&dev_attr_in_intensity_resistance_available.attr,
207 	&dev_attr_in_intensity_capacitance_available.attr,
208 	&afe440x_attr_in_intensity1_resistance.dev_attr.attr,
209 	&afe440x_attr_in_intensity1_capacitance.dev_attr.attr,
210 	&afe440x_attr_in_intensity2_resistance.dev_attr.attr,
211 	&afe440x_attr_in_intensity2_capacitance.dev_attr.attr,
212 	&afe440x_attr_in_intensity3_resistance.dev_attr.attr,
213 	&afe440x_attr_in_intensity3_capacitance.dev_attr.attr,
214 	&afe440x_attr_in_intensity4_resistance.dev_attr.attr,
215 	&afe440x_attr_in_intensity4_capacitance.dev_attr.attr,
216 	NULL
217 };
218 
219 static const struct attribute_group afe440x_attribute_group = {
220 	.attrs = afe440x_attributes
221 };
222 
afe4403_read(struct afe4403_data * afe,unsigned int reg,u32 * val)223 static int afe4403_read(struct afe4403_data *afe, unsigned int reg, u32 *val)
224 {
225 	u8 tx[4] = {AFE440X_CONTROL0, 0x0, 0x0, AFE440X_CONTROL0_READ};
226 	u8 rx[3];
227 	int ret;
228 
229 	/* Enable reading from the device */
230 	ret = spi_write_then_read(afe->spi, tx, 4, NULL, 0);
231 	if (ret)
232 		return ret;
233 
234 	ret = spi_write_then_read(afe->spi, &reg, 1, rx, 3);
235 	if (ret)
236 		return ret;
237 
238 	*val = (rx[0] << 16) |
239 		(rx[1] << 8) |
240 		(rx[2]);
241 
242 	/* Disable reading from the device */
243 	tx[3] = AFE440X_CONTROL0_WRITE;
244 	ret = spi_write_then_read(afe->spi, tx, 4, NULL, 0);
245 	if (ret)
246 		return ret;
247 
248 	return 0;
249 }
250 
afe4403_read_raw(struct iio_dev * indio_dev,struct iio_chan_spec const * chan,int * val,int * val2,long mask)251 static int afe4403_read_raw(struct iio_dev *indio_dev,
252 			    struct iio_chan_spec const *chan,
253 			    int *val, int *val2, long mask)
254 {
255 	struct afe4403_data *afe = iio_priv(indio_dev);
256 	unsigned int reg = afe4403_channel_values[chan->address];
257 	unsigned int field = afe4403_channel_leds[chan->address];
258 	int ret;
259 
260 	switch (chan->type) {
261 	case IIO_INTENSITY:
262 		switch (mask) {
263 		case IIO_CHAN_INFO_RAW:
264 			ret = afe4403_read(afe, reg, val);
265 			if (ret)
266 				return ret;
267 			return IIO_VAL_INT;
268 		}
269 		break;
270 	case IIO_CURRENT:
271 		switch (mask) {
272 		case IIO_CHAN_INFO_RAW:
273 			ret = regmap_field_read(afe->fields[field], val);
274 			if (ret)
275 				return ret;
276 			return IIO_VAL_INT;
277 		case IIO_CHAN_INFO_SCALE:
278 			*val = 0;
279 			*val2 = 800000;
280 			return IIO_VAL_INT_PLUS_MICRO;
281 		}
282 		break;
283 	default:
284 		break;
285 	}
286 
287 	return -EINVAL;
288 }
289 
afe4403_write_raw(struct iio_dev * indio_dev,struct iio_chan_spec const * chan,int val,int val2,long mask)290 static int afe4403_write_raw(struct iio_dev *indio_dev,
291 			     struct iio_chan_spec const *chan,
292 			     int val, int val2, long mask)
293 {
294 	struct afe4403_data *afe = iio_priv(indio_dev);
295 	unsigned int field = afe4403_channel_leds[chan->address];
296 
297 	switch (chan->type) {
298 	case IIO_CURRENT:
299 		switch (mask) {
300 		case IIO_CHAN_INFO_RAW:
301 			return regmap_field_write(afe->fields[field], val);
302 		}
303 		break;
304 	default:
305 		break;
306 	}
307 
308 	return -EINVAL;
309 }
310 
311 static const struct iio_info afe4403_iio_info = {
312 	.attrs = &afe440x_attribute_group,
313 	.read_raw = afe4403_read_raw,
314 	.write_raw = afe4403_write_raw,
315 };
316 
afe4403_trigger_handler(int irq,void * private)317 static irqreturn_t afe4403_trigger_handler(int irq, void *private)
318 {
319 	struct iio_poll_func *pf = private;
320 	struct iio_dev *indio_dev = pf->indio_dev;
321 	struct afe4403_data *afe = iio_priv(indio_dev);
322 	int ret, bit, i = 0;
323 	u8 tx[4] = {AFE440X_CONTROL0, 0x0, 0x0, AFE440X_CONTROL0_READ};
324 	u8 rx[3];
325 
326 	/* Enable reading from the device */
327 	ret = spi_write_then_read(afe->spi, tx, 4, NULL, 0);
328 	if (ret)
329 		goto err;
330 
331 	for_each_set_bit(bit, indio_dev->active_scan_mask,
332 			 indio_dev->masklength) {
333 		ret = spi_write_then_read(afe->spi,
334 					  &afe4403_channel_values[bit], 1,
335 					  rx, 3);
336 		if (ret)
337 			goto err;
338 
339 		afe->buffer[i++] = (rx[0] << 16) |
340 				   (rx[1] << 8) |
341 				   (rx[2]);
342 	}
343 
344 	/* Disable reading from the device */
345 	tx[3] = AFE440X_CONTROL0_WRITE;
346 	ret = spi_write_then_read(afe->spi, tx, 4, NULL, 0);
347 	if (ret)
348 		goto err;
349 
350 	iio_push_to_buffers_with_timestamp(indio_dev, afe->buffer,
351 					   pf->timestamp);
352 err:
353 	iio_trigger_notify_done(indio_dev->trig);
354 
355 	return IRQ_HANDLED;
356 }
357 
358 static const struct iio_trigger_ops afe4403_trigger_ops = {
359 };
360 
361 #define AFE4403_TIMING_PAIRS			\
362 	{ AFE440X_LED2STC,	0x000050 },	\
363 	{ AFE440X_LED2ENDC,	0x0003e7 },	\
364 	{ AFE440X_LED1LEDSTC,	0x0007d0 },	\
365 	{ AFE440X_LED1LEDENDC,	0x000bb7 },	\
366 	{ AFE440X_ALED2STC,	0x000438 },	\
367 	{ AFE440X_ALED2ENDC,	0x0007cf },	\
368 	{ AFE440X_LED1STC,	0x000820 },	\
369 	{ AFE440X_LED1ENDC,	0x000bb7 },	\
370 	{ AFE440X_LED2LEDSTC,	0x000000 },	\
371 	{ AFE440X_LED2LEDENDC,	0x0003e7 },	\
372 	{ AFE440X_ALED1STC,	0x000c08 },	\
373 	{ AFE440X_ALED1ENDC,	0x000f9f },	\
374 	{ AFE440X_LED2CONVST,	0x0003ef },	\
375 	{ AFE440X_LED2CONVEND,	0x0007cf },	\
376 	{ AFE440X_ALED2CONVST,	0x0007d7 },	\
377 	{ AFE440X_ALED2CONVEND,	0x000bb7 },	\
378 	{ AFE440X_LED1CONVST,	0x000bbf },	\
379 	{ AFE440X_LED1CONVEND,	0x009c3f },	\
380 	{ AFE440X_ALED1CONVST,	0x000fa7 },	\
381 	{ AFE440X_ALED1CONVEND,	0x001387 },	\
382 	{ AFE440X_ADCRSTSTCT0,	0x0003e8 },	\
383 	{ AFE440X_ADCRSTENDCT0,	0x0003eb },	\
384 	{ AFE440X_ADCRSTSTCT1,	0x0007d0 },	\
385 	{ AFE440X_ADCRSTENDCT1,	0x0007d3 },	\
386 	{ AFE440X_ADCRSTSTCT2,	0x000bb8 },	\
387 	{ AFE440X_ADCRSTENDCT2,	0x000bbb },	\
388 	{ AFE440X_ADCRSTSTCT3,	0x000fa0 },	\
389 	{ AFE440X_ADCRSTENDCT3,	0x000fa3 },	\
390 	{ AFE440X_PRPCOUNT,	0x009c3f },	\
391 	{ AFE440X_PDNCYCLESTC,	0x001518 },	\
392 	{ AFE440X_PDNCYCLEENDC,	0x00991f }
393 
394 static const struct reg_sequence afe4403_reg_sequences[] = {
395 	AFE4403_TIMING_PAIRS,
396 	{ AFE440X_CONTROL1, AFE440X_CONTROL1_TIMEREN },
397 	{ AFE4403_TIAGAIN, AFE440X_TIAGAIN_ENSEPGAIN },
398 };
399 
400 static const struct regmap_range afe4403_yes_ranges[] = {
401 	regmap_reg_range(AFE440X_LED2VAL, AFE440X_LED1_ALED1VAL),
402 };
403 
404 static const struct regmap_access_table afe4403_volatile_table = {
405 	.yes_ranges = afe4403_yes_ranges,
406 	.n_yes_ranges = ARRAY_SIZE(afe4403_yes_ranges),
407 };
408 
409 static const struct regmap_config afe4403_regmap_config = {
410 	.reg_bits = 8,
411 	.val_bits = 24,
412 
413 	.max_register = AFE440X_PDNCYCLEENDC,
414 	.cache_type = REGCACHE_RBTREE,
415 	.volatile_table = &afe4403_volatile_table,
416 };
417 
418 static const struct of_device_id afe4403_of_match[] = {
419 	{ .compatible = "ti,afe4403", },
420 	{ /* sentinel */ }
421 };
422 MODULE_DEVICE_TABLE(of, afe4403_of_match);
423 
afe4403_suspend(struct device * dev)424 static int __maybe_unused afe4403_suspend(struct device *dev)
425 {
426 	struct iio_dev *indio_dev = spi_get_drvdata(to_spi_device(dev));
427 	struct afe4403_data *afe = iio_priv(indio_dev);
428 	int ret;
429 
430 	ret = regmap_update_bits(afe->regmap, AFE440X_CONTROL2,
431 				 AFE440X_CONTROL2_PDN_AFE,
432 				 AFE440X_CONTROL2_PDN_AFE);
433 	if (ret)
434 		return ret;
435 
436 	ret = regulator_disable(afe->regulator);
437 	if (ret) {
438 		dev_err(dev, "Unable to disable regulator\n");
439 		return ret;
440 	}
441 
442 	return 0;
443 }
444 
afe4403_resume(struct device * dev)445 static int __maybe_unused afe4403_resume(struct device *dev)
446 {
447 	struct iio_dev *indio_dev = spi_get_drvdata(to_spi_device(dev));
448 	struct afe4403_data *afe = iio_priv(indio_dev);
449 	int ret;
450 
451 	ret = regulator_enable(afe->regulator);
452 	if (ret) {
453 		dev_err(dev, "Unable to enable regulator\n");
454 		return ret;
455 	}
456 
457 	ret = regmap_update_bits(afe->regmap, AFE440X_CONTROL2,
458 				 AFE440X_CONTROL2_PDN_AFE, 0);
459 	if (ret)
460 		return ret;
461 
462 	return 0;
463 }
464 
465 static SIMPLE_DEV_PM_OPS(afe4403_pm_ops, afe4403_suspend, afe4403_resume);
466 
afe4403_probe(struct spi_device * spi)467 static int afe4403_probe(struct spi_device *spi)
468 {
469 	struct iio_dev *indio_dev;
470 	struct afe4403_data *afe;
471 	int i, ret;
472 
473 	indio_dev = devm_iio_device_alloc(&spi->dev, sizeof(*afe));
474 	if (!indio_dev)
475 		return -ENOMEM;
476 
477 	afe = iio_priv(indio_dev);
478 	spi_set_drvdata(spi, indio_dev);
479 
480 	afe->dev = &spi->dev;
481 	afe->spi = spi;
482 	afe->irq = spi->irq;
483 
484 	afe->regmap = devm_regmap_init_spi(spi, &afe4403_regmap_config);
485 	if (IS_ERR(afe->regmap)) {
486 		dev_err(afe->dev, "Unable to allocate register map\n");
487 		return PTR_ERR(afe->regmap);
488 	}
489 
490 	for (i = 0; i < F_MAX_FIELDS; i++) {
491 		afe->fields[i] = devm_regmap_field_alloc(afe->dev, afe->regmap,
492 							 afe4403_reg_fields[i]);
493 		if (IS_ERR(afe->fields[i])) {
494 			dev_err(afe->dev, "Unable to allocate regmap fields\n");
495 			return PTR_ERR(afe->fields[i]);
496 		}
497 	}
498 
499 	afe->regulator = devm_regulator_get(afe->dev, "tx_sup");
500 	if (IS_ERR(afe->regulator)) {
501 		dev_err(afe->dev, "Unable to get regulator\n");
502 		return PTR_ERR(afe->regulator);
503 	}
504 	ret = regulator_enable(afe->regulator);
505 	if (ret) {
506 		dev_err(afe->dev, "Unable to enable regulator\n");
507 		return ret;
508 	}
509 
510 	ret = regmap_write(afe->regmap, AFE440X_CONTROL0,
511 			   AFE440X_CONTROL0_SW_RESET);
512 	if (ret) {
513 		dev_err(afe->dev, "Unable to reset device\n");
514 		goto err_disable_reg;
515 	}
516 
517 	ret = regmap_multi_reg_write(afe->regmap, afe4403_reg_sequences,
518 				     ARRAY_SIZE(afe4403_reg_sequences));
519 	if (ret) {
520 		dev_err(afe->dev, "Unable to set register defaults\n");
521 		goto err_disable_reg;
522 	}
523 
524 	indio_dev->modes = INDIO_DIRECT_MODE;
525 	indio_dev->dev.parent = afe->dev;
526 	indio_dev->channels = afe4403_channels;
527 	indio_dev->num_channels = ARRAY_SIZE(afe4403_channels);
528 	indio_dev->name = AFE4403_DRIVER_NAME;
529 	indio_dev->info = &afe4403_iio_info;
530 
531 	if (afe->irq > 0) {
532 		afe->trig = devm_iio_trigger_alloc(afe->dev,
533 						   "%s-dev%d",
534 						   indio_dev->name,
535 						   indio_dev->id);
536 		if (!afe->trig) {
537 			dev_err(afe->dev, "Unable to allocate IIO trigger\n");
538 			ret = -ENOMEM;
539 			goto err_disable_reg;
540 		}
541 
542 		iio_trigger_set_drvdata(afe->trig, indio_dev);
543 
544 		afe->trig->ops = &afe4403_trigger_ops;
545 		afe->trig->dev.parent = afe->dev;
546 
547 		ret = iio_trigger_register(afe->trig);
548 		if (ret) {
549 			dev_err(afe->dev, "Unable to register IIO trigger\n");
550 			goto err_disable_reg;
551 		}
552 
553 		ret = devm_request_threaded_irq(afe->dev, afe->irq,
554 						iio_trigger_generic_data_rdy_poll,
555 						NULL, IRQF_ONESHOT,
556 						AFE4403_DRIVER_NAME,
557 						afe->trig);
558 		if (ret) {
559 			dev_err(afe->dev, "Unable to request IRQ\n");
560 			goto err_trig;
561 		}
562 	}
563 
564 	ret = iio_triggered_buffer_setup(indio_dev, &iio_pollfunc_store_time,
565 					 afe4403_trigger_handler, NULL);
566 	if (ret) {
567 		dev_err(afe->dev, "Unable to setup buffer\n");
568 		goto err_trig;
569 	}
570 
571 	ret = iio_device_register(indio_dev);
572 	if (ret) {
573 		dev_err(afe->dev, "Unable to register IIO device\n");
574 		goto err_buff;
575 	}
576 
577 	return 0;
578 
579 err_buff:
580 	iio_triggered_buffer_cleanup(indio_dev);
581 err_trig:
582 	if (afe->irq > 0)
583 		iio_trigger_unregister(afe->trig);
584 err_disable_reg:
585 	regulator_disable(afe->regulator);
586 
587 	return ret;
588 }
589 
afe4403_remove(struct spi_device * spi)590 static int afe4403_remove(struct spi_device *spi)
591 {
592 	struct iio_dev *indio_dev = spi_get_drvdata(spi);
593 	struct afe4403_data *afe = iio_priv(indio_dev);
594 	int ret;
595 
596 	iio_device_unregister(indio_dev);
597 
598 	iio_triggered_buffer_cleanup(indio_dev);
599 
600 	if (afe->irq > 0)
601 		iio_trigger_unregister(afe->trig);
602 
603 	ret = regulator_disable(afe->regulator);
604 	if (ret) {
605 		dev_err(afe->dev, "Unable to disable regulator\n");
606 		return ret;
607 	}
608 
609 	return 0;
610 }
611 
612 static const struct spi_device_id afe4403_ids[] = {
613 	{ "afe4403", 0 },
614 	{ /* sentinel */ }
615 };
616 MODULE_DEVICE_TABLE(spi, afe4403_ids);
617 
618 static struct spi_driver afe4403_spi_driver = {
619 	.driver = {
620 		.name = AFE4403_DRIVER_NAME,
621 		.of_match_table = afe4403_of_match,
622 		.pm = &afe4403_pm_ops,
623 	},
624 	.probe = afe4403_probe,
625 	.remove = afe4403_remove,
626 	.id_table = afe4403_ids,
627 };
628 module_spi_driver(afe4403_spi_driver);
629 
630 MODULE_AUTHOR("Andrew F. Davis <afd@ti.com>");
631 MODULE_DESCRIPTION("TI AFE4403 Heart Rate Monitor and Pulse Oximeter AFE");
632 MODULE_LICENSE("GPL v2");
633