• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * A sensor driver for the magnetometer AK8975.
3  *
4  * Magnetic compass sensor driver for monitoring magnetic flux information.
5  *
6  * Copyright (c) 2010, NVIDIA Corporation.
7  *
8  * This program is free software; you can redistribute it and/or modify
9  * it under the terms of the GNU General Public License as published by
10  * the Free Software Foundation; either version 2 of the License, or
11  * (at your option) any later version.
12  *
13  * This program is distributed in the hope that it will be useful, but WITHOUT
14  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
15  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
16  * more details.
17  *
18  * You should have received a copy of the GNU General Public License along
19  * with this program; if not, write to the Free Software Foundation, Inc.,
20  * 51 Franklin Street, Fifth Floor, Boston, MA	02110-1301, USA.
21  */
22 
23 #include <linux/module.h>
24 #include <linux/kernel.h>
25 #include <linux/slab.h>
26 #include <linux/i2c.h>
27 #include <linux/interrupt.h>
28 #include <linux/err.h>
29 #include <linux/mutex.h>
30 #include <linux/delay.h>
31 #include <linux/bitops.h>
32 #include <linux/gpio.h>
33 #include <linux/of_gpio.h>
34 #include <linux/acpi.h>
35 #include <linux/regulator/consumer.h>
36 #include <linux/pm_runtime.h>
37 
38 #include <linux/iio/iio.h>
39 #include <linux/iio/sysfs.h>
40 #include <linux/iio/buffer.h>
41 #include <linux/iio/trigger.h>
42 #include <linux/iio/trigger_consumer.h>
43 #include <linux/iio/triggered_buffer.h>
44 
45 #include <linux/iio/magnetometer/ak8975.h>
46 
47 /*
48  * Register definitions, as well as various shifts and masks to get at the
49  * individual fields of the registers.
50  */
51 #define AK8975_REG_WIA			0x00
52 #define AK8975_DEVICE_ID		0x48
53 
54 #define AK8975_REG_INFO			0x01
55 
56 #define AK8975_REG_ST1			0x02
57 #define AK8975_REG_ST1_DRDY_SHIFT	0
58 #define AK8975_REG_ST1_DRDY_MASK	(1 << AK8975_REG_ST1_DRDY_SHIFT)
59 
60 #define AK8975_REG_HXL			0x03
61 #define AK8975_REG_HXH			0x04
62 #define AK8975_REG_HYL			0x05
63 #define AK8975_REG_HYH			0x06
64 #define AK8975_REG_HZL			0x07
65 #define AK8975_REG_HZH			0x08
66 #define AK8975_REG_ST2			0x09
67 #define AK8975_REG_ST2_DERR_SHIFT	2
68 #define AK8975_REG_ST2_DERR_MASK	(1 << AK8975_REG_ST2_DERR_SHIFT)
69 
70 #define AK8975_REG_ST2_HOFL_SHIFT	3
71 #define AK8975_REG_ST2_HOFL_MASK	(1 << AK8975_REG_ST2_HOFL_SHIFT)
72 
73 #define AK8975_REG_CNTL			0x0A
74 #define AK8975_REG_CNTL_MODE_SHIFT	0
75 #define AK8975_REG_CNTL_MODE_MASK	(0xF << AK8975_REG_CNTL_MODE_SHIFT)
76 #define AK8975_REG_CNTL_MODE_POWER_DOWN	0x00
77 #define AK8975_REG_CNTL_MODE_ONCE	0x01
78 #define AK8975_REG_CNTL_MODE_SELF_TEST	0x08
79 #define AK8975_REG_CNTL_MODE_FUSE_ROM	0x0F
80 
81 #define AK8975_REG_RSVC			0x0B
82 #define AK8975_REG_ASTC			0x0C
83 #define AK8975_REG_TS1			0x0D
84 #define AK8975_REG_TS2			0x0E
85 #define AK8975_REG_I2CDIS		0x0F
86 #define AK8975_REG_ASAX			0x10
87 #define AK8975_REG_ASAY			0x11
88 #define AK8975_REG_ASAZ			0x12
89 
90 #define AK8975_MAX_REGS			AK8975_REG_ASAZ
91 
92 /*
93  * AK09912 Register definitions
94  */
95 #define AK09912_REG_WIA1		0x00
96 #define AK09912_REG_WIA2		0x01
97 #define AK09912_DEVICE_ID		0x04
98 #define AK09911_DEVICE_ID		0x05
99 
100 #define AK09911_REG_INFO1		0x02
101 #define AK09911_REG_INFO2		0x03
102 
103 #define AK09912_REG_ST1			0x10
104 
105 #define AK09912_REG_ST1_DRDY_SHIFT	0
106 #define AK09912_REG_ST1_DRDY_MASK	(1 << AK09912_REG_ST1_DRDY_SHIFT)
107 
108 #define AK09912_REG_HXL			0x11
109 #define AK09912_REG_HXH			0x12
110 #define AK09912_REG_HYL			0x13
111 #define AK09912_REG_HYH			0x14
112 #define AK09912_REG_HZL			0x15
113 #define AK09912_REG_HZH			0x16
114 #define AK09912_REG_TMPS		0x17
115 
116 #define AK09912_REG_ST2			0x18
117 #define AK09912_REG_ST2_HOFL_SHIFT	3
118 #define AK09912_REG_ST2_HOFL_MASK	(1 << AK09912_REG_ST2_HOFL_SHIFT)
119 
120 #define AK09912_REG_CNTL1		0x30
121 
122 #define AK09912_REG_CNTL2		0x31
123 #define AK09912_REG_CNTL_MODE_POWER_DOWN	0x00
124 #define AK09912_REG_CNTL_MODE_ONCE	0x01
125 #define AK09912_REG_CNTL_MODE_SELF_TEST	0x10
126 #define AK09912_REG_CNTL_MODE_FUSE_ROM	0x1F
127 #define AK09912_REG_CNTL2_MODE_SHIFT	0
128 #define AK09912_REG_CNTL2_MODE_MASK	(0x1F << AK09912_REG_CNTL2_MODE_SHIFT)
129 
130 #define AK09912_REG_CNTL3		0x32
131 
132 #define AK09912_REG_TS1			0x33
133 #define AK09912_REG_TS2			0x34
134 #define AK09912_REG_TS3			0x35
135 #define AK09912_REG_I2CDIS		0x36
136 #define AK09912_REG_TS4			0x37
137 
138 #define AK09912_REG_ASAX		0x60
139 #define AK09912_REG_ASAY		0x61
140 #define AK09912_REG_ASAZ		0x62
141 
142 #define AK09912_MAX_REGS		AK09912_REG_ASAZ
143 
144 /*
145  * Miscellaneous values.
146  */
147 #define AK8975_MAX_CONVERSION_TIMEOUT	500
148 #define AK8975_CONVERSION_DONE_POLL_TIME 10
149 #define AK8975_DATA_READY_TIMEOUT	((100*HZ)/1000)
150 
151 /*
152  * Precalculate scale factor (in Gauss units) for each axis and
153  * store in the device data.
154  *
155  * This scale factor is axis-dependent, and is derived from 3 calibration
156  * factors ASA(x), ASA(y), and ASA(z).
157  *
158  * These ASA values are read from the sensor device at start of day, and
159  * cached in the device context struct.
160  *
161  * Adjusting the flux value with the sensitivity adjustment value should be
162  * done via the following formula:
163  *
164  * Hadj = H * ( ( ( (ASA-128)*0.5 ) / 128 ) + 1 )
165  * where H is the raw value, ASA is the sensitivity adjustment, and Hadj
166  * is the resultant adjusted value.
167  *
168  * We reduce the formula to:
169  *
170  * Hadj = H * (ASA + 128) / 256
171  *
172  * H is in the range of -4096 to 4095.  The magnetometer has a range of
173  * +-1229uT.  To go from the raw value to uT is:
174  *
175  * HuT = H * 1229/4096, or roughly, 3/10.
176  *
177  * Since 1uT = 0.01 gauss, our final scale factor becomes:
178  *
179  * Hadj = H * ((ASA + 128) / 256) * 3/10 * 1/100
180  * Hadj = H * ((ASA + 128) * 0.003) / 256
181  *
182  * Since ASA doesn't change, we cache the resultant scale factor into the
183  * device context in ak8975_setup().
184  *
185  * Given we use IIO_VAL_INT_PLUS_MICRO bit when displaying the scale, we
186  * multiply the stored scale value by 1e6.
187  */
ak8975_raw_to_gauss(u16 data)188 static long ak8975_raw_to_gauss(u16 data)
189 {
190 	return (((long)data + 128) * 3000) / 256;
191 }
192 
193 /*
194  * For AK8963 and AK09911, same calculation, but the device is less sensitive:
195  *
196  * H is in the range of +-8190.  The magnetometer has a range of
197  * +-4912uT.  To go from the raw value to uT is:
198  *
199  * HuT = H * 4912/8190, or roughly, 6/10, instead of 3/10.
200  */
201 
ak8963_09911_raw_to_gauss(u16 data)202 static long ak8963_09911_raw_to_gauss(u16 data)
203 {
204 	return (((long)data + 128) * 6000) / 256;
205 }
206 
207 /*
208  * For AK09912, same calculation, except the device is more sensitive:
209  *
210  * H is in the range of -32752 to 32752.  The magnetometer has a range of
211  * +-4912uT.  To go from the raw value to uT is:
212  *
213  * HuT = H * 4912/32752, or roughly, 3/20, instead of 3/10.
214  */
ak09912_raw_to_gauss(u16 data)215 static long ak09912_raw_to_gauss(u16 data)
216 {
217 	return (((long)data + 128) * 1500) / 256;
218 }
219 
220 /* Compatible Asahi Kasei Compass parts */
221 enum asahi_compass_chipset {
222 	AK8975,
223 	AK8963,
224 	AK09911,
225 	AK09912,
226 	AK_MAX_TYPE
227 };
228 
229 enum ak_ctrl_reg_addr {
230 	ST1,
231 	ST2,
232 	CNTL,
233 	ASA_BASE,
234 	MAX_REGS,
235 	REGS_END,
236 };
237 
238 enum ak_ctrl_reg_mask {
239 	ST1_DRDY,
240 	ST2_HOFL,
241 	ST2_DERR,
242 	CNTL_MODE,
243 	MASK_END,
244 };
245 
246 enum ak_ctrl_mode {
247 	POWER_DOWN,
248 	MODE_ONCE,
249 	SELF_TEST,
250 	FUSE_ROM,
251 	MODE_END,
252 };
253 
254 struct ak_def {
255 	enum asahi_compass_chipset type;
256 	long (*raw_to_gauss)(u16 data);
257 	u16 range;
258 	u8 ctrl_regs[REGS_END];
259 	u8 ctrl_masks[MASK_END];
260 	u8 ctrl_modes[MODE_END];
261 	u8 data_regs[3];
262 };
263 
264 static const struct ak_def ak_def_array[AK_MAX_TYPE] = {
265 	{
266 		.type = AK8975,
267 		.raw_to_gauss = ak8975_raw_to_gauss,
268 		.range = 4096,
269 		.ctrl_regs = {
270 			AK8975_REG_ST1,
271 			AK8975_REG_ST2,
272 			AK8975_REG_CNTL,
273 			AK8975_REG_ASAX,
274 			AK8975_MAX_REGS},
275 		.ctrl_masks = {
276 			AK8975_REG_ST1_DRDY_MASK,
277 			AK8975_REG_ST2_HOFL_MASK,
278 			AK8975_REG_ST2_DERR_MASK,
279 			AK8975_REG_CNTL_MODE_MASK},
280 		.ctrl_modes = {
281 			AK8975_REG_CNTL_MODE_POWER_DOWN,
282 			AK8975_REG_CNTL_MODE_ONCE,
283 			AK8975_REG_CNTL_MODE_SELF_TEST,
284 			AK8975_REG_CNTL_MODE_FUSE_ROM},
285 		.data_regs = {
286 			AK8975_REG_HXL,
287 			AK8975_REG_HYL,
288 			AK8975_REG_HZL},
289 	},
290 	{
291 		.type = AK8963,
292 		.raw_to_gauss = ak8963_09911_raw_to_gauss,
293 		.range = 8190,
294 		.ctrl_regs = {
295 			AK8975_REG_ST1,
296 			AK8975_REG_ST2,
297 			AK8975_REG_CNTL,
298 			AK8975_REG_ASAX,
299 			AK8975_MAX_REGS},
300 		.ctrl_masks = {
301 			AK8975_REG_ST1_DRDY_MASK,
302 			AK8975_REG_ST2_HOFL_MASK,
303 			0,
304 			AK8975_REG_CNTL_MODE_MASK},
305 		.ctrl_modes = {
306 			AK8975_REG_CNTL_MODE_POWER_DOWN,
307 			AK8975_REG_CNTL_MODE_ONCE,
308 			AK8975_REG_CNTL_MODE_SELF_TEST,
309 			AK8975_REG_CNTL_MODE_FUSE_ROM},
310 		.data_regs = {
311 			AK8975_REG_HXL,
312 			AK8975_REG_HYL,
313 			AK8975_REG_HZL},
314 	},
315 	{
316 		.type = AK09911,
317 		.raw_to_gauss = ak8963_09911_raw_to_gauss,
318 		.range = 8192,
319 		.ctrl_regs = {
320 			AK09912_REG_ST1,
321 			AK09912_REG_ST2,
322 			AK09912_REG_CNTL2,
323 			AK09912_REG_ASAX,
324 			AK09912_MAX_REGS},
325 		.ctrl_masks = {
326 			AK09912_REG_ST1_DRDY_MASK,
327 			AK09912_REG_ST2_HOFL_MASK,
328 			0,
329 			AK09912_REG_CNTL2_MODE_MASK},
330 		.ctrl_modes = {
331 			AK09912_REG_CNTL_MODE_POWER_DOWN,
332 			AK09912_REG_CNTL_MODE_ONCE,
333 			AK09912_REG_CNTL_MODE_SELF_TEST,
334 			AK09912_REG_CNTL_MODE_FUSE_ROM},
335 		.data_regs = {
336 			AK09912_REG_HXL,
337 			AK09912_REG_HYL,
338 			AK09912_REG_HZL},
339 	},
340 	{
341 		.type = AK09912,
342 		.raw_to_gauss = ak09912_raw_to_gauss,
343 		.range = 32752,
344 		.ctrl_regs = {
345 			AK09912_REG_ST1,
346 			AK09912_REG_ST2,
347 			AK09912_REG_CNTL2,
348 			AK09912_REG_ASAX,
349 			AK09912_MAX_REGS},
350 		.ctrl_masks = {
351 			AK09912_REG_ST1_DRDY_MASK,
352 			AK09912_REG_ST2_HOFL_MASK,
353 			0,
354 			AK09912_REG_CNTL2_MODE_MASK},
355 		.ctrl_modes = {
356 			AK09912_REG_CNTL_MODE_POWER_DOWN,
357 			AK09912_REG_CNTL_MODE_ONCE,
358 			AK09912_REG_CNTL_MODE_SELF_TEST,
359 			AK09912_REG_CNTL_MODE_FUSE_ROM},
360 		.data_regs = {
361 			AK09912_REG_HXL,
362 			AK09912_REG_HYL,
363 			AK09912_REG_HZL},
364 	}
365 };
366 
367 /*
368  * Per-instance context data for the device.
369  */
370 struct ak8975_data {
371 	struct i2c_client	*client;
372 	const struct ak_def	*def;
373 	struct mutex		lock;
374 	u8			asa[3];
375 	long			raw_to_gauss[3];
376 	int			eoc_gpio;
377 	int			eoc_irq;
378 	wait_queue_head_t	data_ready_queue;
379 	unsigned long		flags;
380 	u8			cntl_cache;
381 	struct iio_mount_matrix orientation;
382 	struct regulator	*vdd;
383 	struct regulator	*vid;
384 
385 	/* Ensure natural alignment of timestamp */
386 	struct {
387 		s16 channels[3];
388 		s64 ts __aligned(8);
389 	} scan;
390 };
391 
392 /* Enable attached power regulator if any. */
ak8975_power_on(const struct ak8975_data * data)393 static int ak8975_power_on(const struct ak8975_data *data)
394 {
395 	int ret;
396 
397 	ret = regulator_enable(data->vdd);
398 	if (ret) {
399 		dev_warn(&data->client->dev,
400 			 "Failed to enable specified Vdd supply\n");
401 		return ret;
402 	}
403 	ret = regulator_enable(data->vid);
404 	if (ret) {
405 		dev_warn(&data->client->dev,
406 			 "Failed to enable specified Vid supply\n");
407 		return ret;
408 	}
409 	/*
410 	 * According to the datasheet the power supply rise time i 200us
411 	 * and the minimum wait time before mode setting is 100us, in
412 	 * total 300 us. Add some margin and say minimum 500us here.
413 	 */
414 	usleep_range(500, 1000);
415 	return 0;
416 }
417 
418 /* Disable attached power regulator if any. */
ak8975_power_off(const struct ak8975_data * data)419 static void ak8975_power_off(const struct ak8975_data *data)
420 {
421 	regulator_disable(data->vid);
422 	regulator_disable(data->vdd);
423 }
424 
425 /*
426  * Return 0 if the i2c device is the one we expect.
427  * return a negative error number otherwise
428  */
ak8975_who_i_am(struct i2c_client * client,enum asahi_compass_chipset type)429 static int ak8975_who_i_am(struct i2c_client *client,
430 			   enum asahi_compass_chipset type)
431 {
432 	u8 wia_val[2];
433 	int ret;
434 
435 	/*
436 	 * Signature for each device:
437 	 * Device   |  WIA1      |  WIA2
438 	 * AK09912  |  DEVICE_ID |  AK09912_DEVICE_ID
439 	 * AK09911  |  DEVICE_ID |  AK09911_DEVICE_ID
440 	 * AK8975   |  DEVICE_ID |  NA
441 	 * AK8963   |  DEVICE_ID |  NA
442 	 */
443 	ret = i2c_smbus_read_i2c_block_data_or_emulated(
444 			client, AK09912_REG_WIA1, 2, wia_val);
445 	if (ret < 0) {
446 		dev_err(&client->dev, "Error reading WIA\n");
447 		return ret;
448 	}
449 
450 	if (wia_val[0] != AK8975_DEVICE_ID)
451 		return -ENODEV;
452 
453 	switch (type) {
454 	case AK8975:
455 	case AK8963:
456 		return 0;
457 	case AK09911:
458 		if (wia_val[1] == AK09911_DEVICE_ID)
459 			return 0;
460 		break;
461 	case AK09912:
462 		if (wia_val[1] == AK09912_DEVICE_ID)
463 			return 0;
464 		break;
465 	default:
466 		dev_err(&client->dev, "Type %d unknown\n", type);
467 	}
468 	return -ENODEV;
469 }
470 
471 /*
472  * Helper function to write to CNTL register.
473  */
ak8975_set_mode(struct ak8975_data * data,enum ak_ctrl_mode mode)474 static int ak8975_set_mode(struct ak8975_data *data, enum ak_ctrl_mode mode)
475 {
476 	u8 regval;
477 	int ret;
478 
479 	regval = (data->cntl_cache & ~data->def->ctrl_masks[CNTL_MODE]) |
480 		 data->def->ctrl_modes[mode];
481 	ret = i2c_smbus_write_byte_data(data->client,
482 					data->def->ctrl_regs[CNTL], regval);
483 	if (ret < 0) {
484 		return ret;
485 	}
486 	data->cntl_cache = regval;
487 	/* After mode change wait atleast 100us */
488 	usleep_range(100, 500);
489 
490 	return 0;
491 }
492 
493 /*
494  * Handle data ready irq
495  */
ak8975_irq_handler(int irq,void * data)496 static irqreturn_t ak8975_irq_handler(int irq, void *data)
497 {
498 	struct ak8975_data *ak8975 = data;
499 
500 	set_bit(0, &ak8975->flags);
501 	wake_up(&ak8975->data_ready_queue);
502 
503 	return IRQ_HANDLED;
504 }
505 
506 /*
507  * Install data ready interrupt handler
508  */
ak8975_setup_irq(struct ak8975_data * data)509 static int ak8975_setup_irq(struct ak8975_data *data)
510 {
511 	struct i2c_client *client = data->client;
512 	int rc;
513 	int irq;
514 
515 	init_waitqueue_head(&data->data_ready_queue);
516 	clear_bit(0, &data->flags);
517 	if (client->irq)
518 		irq = client->irq;
519 	else
520 		irq = gpio_to_irq(data->eoc_gpio);
521 
522 	rc = devm_request_irq(&client->dev, irq, ak8975_irq_handler,
523 			      IRQF_TRIGGER_RISING | IRQF_ONESHOT,
524 			      dev_name(&client->dev), data);
525 	if (rc < 0) {
526 		dev_err(&client->dev,
527 			"irq %d request failed, (gpio %d): %d\n",
528 			irq, data->eoc_gpio, rc);
529 		return rc;
530 	}
531 
532 	data->eoc_irq = irq;
533 
534 	return rc;
535 }
536 
537 
538 /*
539  * Perform some start-of-day setup, including reading the asa calibration
540  * values and caching them.
541  */
ak8975_setup(struct i2c_client * client)542 static int ak8975_setup(struct i2c_client *client)
543 {
544 	struct iio_dev *indio_dev = i2c_get_clientdata(client);
545 	struct ak8975_data *data = iio_priv(indio_dev);
546 	int ret;
547 
548 	/* Write the fused rom access mode. */
549 	ret = ak8975_set_mode(data, FUSE_ROM);
550 	if (ret < 0) {
551 		dev_err(&client->dev, "Error in setting fuse access mode\n");
552 		return ret;
553 	}
554 
555 	/* Get asa data and store in the device data. */
556 	ret = i2c_smbus_read_i2c_block_data_or_emulated(
557 			client, data->def->ctrl_regs[ASA_BASE],
558 			3, data->asa);
559 	if (ret < 0) {
560 		dev_err(&client->dev, "Not able to read asa data\n");
561 		return ret;
562 	}
563 
564 	/* After reading fuse ROM data set power-down mode */
565 	ret = ak8975_set_mode(data, POWER_DOWN);
566 	if (ret < 0) {
567 		dev_err(&client->dev, "Error in setting power-down mode\n");
568 		return ret;
569 	}
570 
571 	if (data->eoc_gpio > 0 || client->irq > 0) {
572 		ret = ak8975_setup_irq(data);
573 		if (ret < 0) {
574 			dev_err(&client->dev,
575 				"Error setting data ready interrupt\n");
576 			return ret;
577 		}
578 	}
579 
580 	data->raw_to_gauss[0] = data->def->raw_to_gauss(data->asa[0]);
581 	data->raw_to_gauss[1] = data->def->raw_to_gauss(data->asa[1]);
582 	data->raw_to_gauss[2] = data->def->raw_to_gauss(data->asa[2]);
583 
584 	return 0;
585 }
586 
wait_conversion_complete_gpio(struct ak8975_data * data)587 static int wait_conversion_complete_gpio(struct ak8975_data *data)
588 {
589 	struct i2c_client *client = data->client;
590 	u32 timeout_ms = AK8975_MAX_CONVERSION_TIMEOUT;
591 	int ret;
592 
593 	/* Wait for the conversion to complete. */
594 	while (timeout_ms) {
595 		msleep(AK8975_CONVERSION_DONE_POLL_TIME);
596 		if (gpio_get_value(data->eoc_gpio))
597 			break;
598 		timeout_ms -= AK8975_CONVERSION_DONE_POLL_TIME;
599 	}
600 	if (!timeout_ms) {
601 		dev_err(&client->dev, "Conversion timeout happened\n");
602 		return -EINVAL;
603 	}
604 
605 	ret = i2c_smbus_read_byte_data(client, data->def->ctrl_regs[ST1]);
606 	if (ret < 0)
607 		dev_err(&client->dev, "Error in reading ST1\n");
608 
609 	return ret;
610 }
611 
wait_conversion_complete_polled(struct ak8975_data * data)612 static int wait_conversion_complete_polled(struct ak8975_data *data)
613 {
614 	struct i2c_client *client = data->client;
615 	u8 read_status;
616 	u32 timeout_ms = AK8975_MAX_CONVERSION_TIMEOUT;
617 	int ret;
618 
619 	/* Wait for the conversion to complete. */
620 	while (timeout_ms) {
621 		msleep(AK8975_CONVERSION_DONE_POLL_TIME);
622 		ret = i2c_smbus_read_byte_data(client,
623 					       data->def->ctrl_regs[ST1]);
624 		if (ret < 0) {
625 			dev_err(&client->dev, "Error in reading ST1\n");
626 			return ret;
627 		}
628 		read_status = ret;
629 		if (read_status)
630 			break;
631 		timeout_ms -= AK8975_CONVERSION_DONE_POLL_TIME;
632 	}
633 	if (!timeout_ms) {
634 		dev_err(&client->dev, "Conversion timeout happened\n");
635 		return -EINVAL;
636 	}
637 
638 	return read_status;
639 }
640 
641 /* Returns 0 if the end of conversion interrupt occured or -ETIME otherwise */
wait_conversion_complete_interrupt(struct ak8975_data * data)642 static int wait_conversion_complete_interrupt(struct ak8975_data *data)
643 {
644 	int ret;
645 
646 	ret = wait_event_timeout(data->data_ready_queue,
647 				 test_bit(0, &data->flags),
648 				 AK8975_DATA_READY_TIMEOUT);
649 	clear_bit(0, &data->flags);
650 
651 	return ret > 0 ? 0 : -ETIME;
652 }
653 
ak8975_start_read_axis(struct ak8975_data * data,const struct i2c_client * client)654 static int ak8975_start_read_axis(struct ak8975_data *data,
655 				  const struct i2c_client *client)
656 {
657 	/* Set up the device for taking a sample. */
658 	int ret = ak8975_set_mode(data, MODE_ONCE);
659 
660 	if (ret < 0) {
661 		dev_err(&client->dev, "Error in setting operating mode\n");
662 		return ret;
663 	}
664 
665 	/* Wait for the conversion to complete. */
666 	if (data->eoc_irq)
667 		ret = wait_conversion_complete_interrupt(data);
668 	else if (gpio_is_valid(data->eoc_gpio))
669 		ret = wait_conversion_complete_gpio(data);
670 	else
671 		ret = wait_conversion_complete_polled(data);
672 	if (ret < 0)
673 		return ret;
674 
675 	/* This will be executed only for non-interrupt based waiting case */
676 	if (ret & data->def->ctrl_masks[ST1_DRDY]) {
677 		ret = i2c_smbus_read_byte_data(client,
678 					       data->def->ctrl_regs[ST2]);
679 		if (ret < 0) {
680 			dev_err(&client->dev, "Error in reading ST2\n");
681 			return ret;
682 		}
683 		if (ret & (data->def->ctrl_masks[ST2_DERR] |
684 			   data->def->ctrl_masks[ST2_HOFL])) {
685 			dev_err(&client->dev, "ST2 status error 0x%x\n", ret);
686 			return -EINVAL;
687 		}
688 	}
689 
690 	return 0;
691 }
692 
693 /* Retrieve raw flux value for one of the x, y, or z axis.  */
ak8975_read_axis(struct iio_dev * indio_dev,int index,int * val)694 static int ak8975_read_axis(struct iio_dev *indio_dev, int index, int *val)
695 {
696 	struct ak8975_data *data = iio_priv(indio_dev);
697 	const struct i2c_client *client = data->client;
698 	const struct ak_def *def = data->def;
699 	__le16 rval;
700 	u16 buff;
701 	int ret;
702 
703 	pm_runtime_get_sync(&data->client->dev);
704 
705 	mutex_lock(&data->lock);
706 
707 	ret = ak8975_start_read_axis(data, client);
708 	if (ret)
709 		goto exit;
710 
711 	ret = i2c_smbus_read_i2c_block_data_or_emulated(
712 			client, def->data_regs[index],
713 			sizeof(rval), (u8*)&rval);
714 	if (ret < 0)
715 		goto exit;
716 
717 	mutex_unlock(&data->lock);
718 
719 	pm_runtime_mark_last_busy(&data->client->dev);
720 	pm_runtime_put_autosuspend(&data->client->dev);
721 
722 	/* Swap bytes and convert to valid range. */
723 	buff = le16_to_cpu(rval);
724 	*val = clamp_t(s16, buff, -def->range, def->range);
725 	return IIO_VAL_INT;
726 
727 exit:
728 	mutex_unlock(&data->lock);
729 	dev_err(&client->dev, "Error in reading axis\n");
730 	return ret;
731 }
732 
ak8975_read_raw(struct iio_dev * indio_dev,struct iio_chan_spec const * chan,int * val,int * val2,long mask)733 static int ak8975_read_raw(struct iio_dev *indio_dev,
734 			   struct iio_chan_spec const *chan,
735 			   int *val, int *val2,
736 			   long mask)
737 {
738 	struct ak8975_data *data = iio_priv(indio_dev);
739 
740 	switch (mask) {
741 	case IIO_CHAN_INFO_RAW:
742 		return ak8975_read_axis(indio_dev, chan->address, val);
743 	case IIO_CHAN_INFO_SCALE:
744 		*val = 0;
745 		*val2 = data->raw_to_gauss[chan->address];
746 		return IIO_VAL_INT_PLUS_MICRO;
747 	}
748 	return -EINVAL;
749 }
750 
751 static const struct iio_mount_matrix *
ak8975_get_mount_matrix(const struct iio_dev * indio_dev,const struct iio_chan_spec * chan)752 ak8975_get_mount_matrix(const struct iio_dev *indio_dev,
753 			const struct iio_chan_spec *chan)
754 {
755 	return &((struct ak8975_data *)iio_priv(indio_dev))->orientation;
756 }
757 
758 static const struct iio_chan_spec_ext_info ak8975_ext_info[] = {
759 	IIO_MOUNT_MATRIX(IIO_SHARED_BY_DIR, ak8975_get_mount_matrix),
760 	{ },
761 };
762 
763 #define AK8975_CHANNEL(axis, index)					\
764 	{								\
765 		.type = IIO_MAGN,					\
766 		.modified = 1,						\
767 		.channel2 = IIO_MOD_##axis,				\
768 		.info_mask_separate = BIT(IIO_CHAN_INFO_RAW) |		\
769 			     BIT(IIO_CHAN_INFO_SCALE),			\
770 		.address = index,					\
771 		.scan_index = index,					\
772 		.scan_type = {						\
773 			.sign = 's',					\
774 			.realbits = 16,					\
775 			.storagebits = 16,				\
776 			.endianness = IIO_CPU				\
777 		},							\
778 		.ext_info = ak8975_ext_info,				\
779 	}
780 
781 static const struct iio_chan_spec ak8975_channels[] = {
782 	AK8975_CHANNEL(X, 0), AK8975_CHANNEL(Y, 1), AK8975_CHANNEL(Z, 2),
783 	IIO_CHAN_SOFT_TIMESTAMP(3),
784 };
785 
786 static const unsigned long ak8975_scan_masks[] = { 0x7, 0 };
787 
788 static const struct iio_info ak8975_info = {
789 	.read_raw = &ak8975_read_raw,
790 };
791 
792 #ifdef CONFIG_ACPI
793 static const struct acpi_device_id ak_acpi_match[] = {
794 	{"AK8975", AK8975},
795 	{"AK8963", AK8963},
796 	{"INVN6500", AK8963},
797 	{"AK009911", AK09911},
798 	{"AK09911", AK09911},
799 	{"AK09912", AK09912},
800 	{ },
801 };
802 MODULE_DEVICE_TABLE(acpi, ak_acpi_match);
803 #endif
804 
ak8975_match_acpi_device(struct device * dev,enum asahi_compass_chipset * chipset)805 static const char *ak8975_match_acpi_device(struct device *dev,
806 					    enum asahi_compass_chipset *chipset)
807 {
808 	const struct acpi_device_id *id;
809 
810 	id = acpi_match_device(dev->driver->acpi_match_table, dev);
811 	if (!id)
812 		return NULL;
813 	*chipset = (int)id->driver_data;
814 
815 	return dev_name(dev);
816 }
817 
ak8975_fill_buffer(struct iio_dev * indio_dev)818 static void ak8975_fill_buffer(struct iio_dev *indio_dev)
819 {
820 	struct ak8975_data *data = iio_priv(indio_dev);
821 	const struct i2c_client *client = data->client;
822 	const struct ak_def *def = data->def;
823 	int ret;
824 	__le16 fval[3];
825 
826 	mutex_lock(&data->lock);
827 
828 	ret = ak8975_start_read_axis(data, client);
829 	if (ret)
830 		goto unlock;
831 
832 	/*
833 	 * For each axis, read the flux value from the appropriate register
834 	 * (the register is specified in the iio device attributes).
835 	 */
836 	ret = i2c_smbus_read_i2c_block_data_or_emulated(client,
837 							def->data_regs[0],
838 							3 * sizeof(fval[0]),
839 							(u8 *)fval);
840 	if (ret < 0)
841 		goto unlock;
842 
843 	mutex_unlock(&data->lock);
844 
845 	/* Clamp to valid range. */
846 	data->scan.channels[0] = clamp_t(s16, le16_to_cpu(fval[0]), -def->range, def->range);
847 	data->scan.channels[1] = clamp_t(s16, le16_to_cpu(fval[1]), -def->range, def->range);
848 	data->scan.channels[2] = clamp_t(s16, le16_to_cpu(fval[2]), -def->range, def->range);
849 
850 	iio_push_to_buffers_with_timestamp(indio_dev, &data->scan,
851 					   iio_get_time_ns(indio_dev));
852 
853 	return;
854 
855 unlock:
856 	mutex_unlock(&data->lock);
857 	dev_err(&client->dev, "Error in reading axes block\n");
858 }
859 
ak8975_handle_trigger(int irq,void * p)860 static irqreturn_t ak8975_handle_trigger(int irq, void *p)
861 {
862 	const struct iio_poll_func *pf = p;
863 	struct iio_dev *indio_dev = pf->indio_dev;
864 
865 	ak8975_fill_buffer(indio_dev);
866 	iio_trigger_notify_done(indio_dev->trig);
867 	return IRQ_HANDLED;
868 }
869 
ak8975_probe(struct i2c_client * client,const struct i2c_device_id * id)870 static int ak8975_probe(struct i2c_client *client,
871 			const struct i2c_device_id *id)
872 {
873 	struct ak8975_data *data;
874 	struct iio_dev *indio_dev;
875 	int eoc_gpio;
876 	int err;
877 	const char *name = NULL;
878 	enum asahi_compass_chipset chipset = AK_MAX_TYPE;
879 	const struct ak8975_platform_data *pdata =
880 		dev_get_platdata(&client->dev);
881 
882 	/* Grab and set up the supplied GPIO. */
883 	if (pdata)
884 		eoc_gpio = pdata->eoc_gpio;
885 	else if (client->dev.of_node)
886 		eoc_gpio = of_get_gpio(client->dev.of_node, 0);
887 	else
888 		eoc_gpio = -1;
889 
890 	if (eoc_gpio == -EPROBE_DEFER)
891 		return -EPROBE_DEFER;
892 
893 	/* We may not have a GPIO based IRQ to scan, that is fine, we will
894 	   poll if so */
895 	if (gpio_is_valid(eoc_gpio)) {
896 		err = devm_gpio_request_one(&client->dev, eoc_gpio,
897 							GPIOF_IN, "ak_8975");
898 		if (err < 0) {
899 			dev_err(&client->dev,
900 				"failed to request GPIO %d, error %d\n",
901 							eoc_gpio, err);
902 			return err;
903 		}
904 	}
905 
906 	/* Register with IIO */
907 	indio_dev = devm_iio_device_alloc(&client->dev, sizeof(*data));
908 	if (indio_dev == NULL)
909 		return -ENOMEM;
910 
911 	data = iio_priv(indio_dev);
912 	i2c_set_clientdata(client, indio_dev);
913 
914 	data->client = client;
915 	data->eoc_gpio = eoc_gpio;
916 	data->eoc_irq = 0;
917 
918 	if (!pdata) {
919 		err = of_iio_read_mount_matrix(&client->dev,
920 					       "mount-matrix",
921 					       &data->orientation);
922 		if (err)
923 			return err;
924 	} else
925 		data->orientation = pdata->orientation;
926 
927 	/* id will be NULL when enumerated via ACPI */
928 	if (id) {
929 		chipset = (enum asahi_compass_chipset)(id->driver_data);
930 		name = id->name;
931 	} else if (ACPI_HANDLE(&client->dev)) {
932 		name = ak8975_match_acpi_device(&client->dev, &chipset);
933 		if (!name)
934 			return -ENODEV;
935 	} else
936 		return -ENOSYS;
937 
938 	if (chipset >= AK_MAX_TYPE) {
939 		dev_err(&client->dev, "AKM device type unsupported: %d\n",
940 			chipset);
941 		return -ENODEV;
942 	}
943 
944 	data->def = &ak_def_array[chipset];
945 
946 	/* Fetch the regulators */
947 	data->vdd = devm_regulator_get(&client->dev, "vdd");
948 	if (IS_ERR(data->vdd))
949 		return PTR_ERR(data->vdd);
950 	data->vid = devm_regulator_get(&client->dev, "vid");
951 	if (IS_ERR(data->vid))
952 		return PTR_ERR(data->vid);
953 
954 	err = ak8975_power_on(data);
955 	if (err)
956 		return err;
957 
958 	err = ak8975_who_i_am(client, data->def->type);
959 	if (err < 0) {
960 		dev_err(&client->dev, "Unexpected device\n");
961 		goto power_off;
962 	}
963 	dev_dbg(&client->dev, "Asahi compass chip %s\n", name);
964 
965 	/* Perform some basic start-of-day setup of the device. */
966 	err = ak8975_setup(client);
967 	if (err < 0) {
968 		dev_err(&client->dev, "%s initialization fails\n", name);
969 		goto power_off;
970 	}
971 
972 	mutex_init(&data->lock);
973 	indio_dev->dev.parent = &client->dev;
974 	indio_dev->channels = ak8975_channels;
975 	indio_dev->num_channels = ARRAY_SIZE(ak8975_channels);
976 	indio_dev->info = &ak8975_info;
977 	indio_dev->available_scan_masks = ak8975_scan_masks;
978 	indio_dev->modes = INDIO_DIRECT_MODE;
979 	indio_dev->name = name;
980 
981 	err = iio_triggered_buffer_setup(indio_dev, NULL, ak8975_handle_trigger,
982 					 NULL);
983 	if (err) {
984 		dev_err(&client->dev, "triggered buffer setup failed\n");
985 		goto power_off;
986 	}
987 
988 	err = iio_device_register(indio_dev);
989 	if (err) {
990 		dev_err(&client->dev, "device register failed\n");
991 		goto cleanup_buffer;
992 	}
993 
994 	/* Enable runtime PM */
995 	pm_runtime_get_noresume(&client->dev);
996 	pm_runtime_set_active(&client->dev);
997 	pm_runtime_enable(&client->dev);
998 	/*
999 	 * The device comes online in 500us, so add two orders of magnitude
1000 	 * of delay before autosuspending: 50 ms.
1001 	 */
1002 	pm_runtime_set_autosuspend_delay(&client->dev, 50);
1003 	pm_runtime_use_autosuspend(&client->dev);
1004 	pm_runtime_put(&client->dev);
1005 
1006 	return 0;
1007 
1008 cleanup_buffer:
1009 	iio_triggered_buffer_cleanup(indio_dev);
1010 power_off:
1011 	ak8975_power_off(data);
1012 	return err;
1013 }
1014 
ak8975_remove(struct i2c_client * client)1015 static int ak8975_remove(struct i2c_client *client)
1016 {
1017 	struct iio_dev *indio_dev = i2c_get_clientdata(client);
1018 	struct ak8975_data *data = iio_priv(indio_dev);
1019 
1020 	pm_runtime_get_sync(&client->dev);
1021 	pm_runtime_put_noidle(&client->dev);
1022 	pm_runtime_disable(&client->dev);
1023 	iio_device_unregister(indio_dev);
1024 	iio_triggered_buffer_cleanup(indio_dev);
1025 	ak8975_set_mode(data, POWER_DOWN);
1026 	ak8975_power_off(data);
1027 
1028 	return 0;
1029 }
1030 
1031 #ifdef CONFIG_PM
ak8975_runtime_suspend(struct device * dev)1032 static int ak8975_runtime_suspend(struct device *dev)
1033 {
1034 	struct i2c_client *client = to_i2c_client(dev);
1035 	struct iio_dev *indio_dev = i2c_get_clientdata(client);
1036 	struct ak8975_data *data = iio_priv(indio_dev);
1037 	int ret;
1038 
1039 	/* Set the device in power down if it wasn't already */
1040 	ret = ak8975_set_mode(data, POWER_DOWN);
1041 	if (ret < 0) {
1042 		dev_err(&client->dev, "Error in setting power-down mode\n");
1043 		return ret;
1044 	}
1045 	/* Next cut the regulators */
1046 	ak8975_power_off(data);
1047 
1048 	return 0;
1049 }
1050 
ak8975_runtime_resume(struct device * dev)1051 static int ak8975_runtime_resume(struct device *dev)
1052 {
1053 	struct i2c_client *client = to_i2c_client(dev);
1054 	struct iio_dev *indio_dev = i2c_get_clientdata(client);
1055 	struct ak8975_data *data = iio_priv(indio_dev);
1056 	int ret;
1057 
1058 	/* Take up the regulators */
1059 	ak8975_power_on(data);
1060 	/*
1061 	 * We come up in powered down mode, the reading routines will
1062 	 * put us in the mode to read values later.
1063 	 */
1064 	ret = ak8975_set_mode(data, POWER_DOWN);
1065 	if (ret < 0) {
1066 		dev_err(&client->dev, "Error in setting power-down mode\n");
1067 		return ret;
1068 	}
1069 
1070 	return 0;
1071 }
1072 #endif /* CONFIG_PM */
1073 
1074 static const struct dev_pm_ops ak8975_dev_pm_ops = {
1075 	SET_SYSTEM_SLEEP_PM_OPS(pm_runtime_force_suspend,
1076 				pm_runtime_force_resume)
1077 	SET_RUNTIME_PM_OPS(ak8975_runtime_suspend,
1078 			   ak8975_runtime_resume, NULL)
1079 };
1080 
1081 static const struct i2c_device_id ak8975_id[] = {
1082 	{"ak8975", AK8975},
1083 	{"ak8963", AK8963},
1084 	{"AK8963", AK8963},
1085 	{"ak09911", AK09911},
1086 	{"ak09912", AK09912},
1087 	{}
1088 };
1089 
1090 MODULE_DEVICE_TABLE(i2c, ak8975_id);
1091 
1092 static const struct of_device_id ak8975_of_match[] = {
1093 	{ .compatible = "asahi-kasei,ak8975", },
1094 	{ .compatible = "ak8975", },
1095 	{ .compatible = "asahi-kasei,ak8963", },
1096 	{ .compatible = "ak8963", },
1097 	{ .compatible = "asahi-kasei,ak09911", },
1098 	{ .compatible = "ak09911", },
1099 	{ .compatible = "asahi-kasei,ak09912", },
1100 	{ .compatible = "ak09912", },
1101 	{}
1102 };
1103 MODULE_DEVICE_TABLE(of, ak8975_of_match);
1104 
1105 static struct i2c_driver ak8975_driver = {
1106 	.driver = {
1107 		.name	= "ak8975",
1108 		.pm = &ak8975_dev_pm_ops,
1109 		.of_match_table = of_match_ptr(ak8975_of_match),
1110 		.acpi_match_table = ACPI_PTR(ak_acpi_match),
1111 	},
1112 	.probe		= ak8975_probe,
1113 	.remove		= ak8975_remove,
1114 	.id_table	= ak8975_id,
1115 };
1116 module_i2c_driver(ak8975_driver);
1117 
1118 MODULE_AUTHOR("Laxman Dewangan <ldewangan@nvidia.com>");
1119 MODULE_DESCRIPTION("AK8975 magnetometer driver");
1120 MODULE_LICENSE("GPL");
1121