• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (C) 2013-2017 ARM Limited, All Rights Reserved.
3  * Author: Marc Zyngier <marc.zyngier@arm.com>
4  *
5  * This program is free software; you can redistribute it and/or modify
6  * it under the terms of the GNU General Public License version 2 as
7  * published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program.  If not, see <http://www.gnu.org/licenses/>.
16  */
17 
18 #include <linux/acpi.h>
19 #include <linux/acpi_iort.h>
20 #include <linux/bitmap.h>
21 #include <linux/cpu.h>
22 #include <linux/delay.h>
23 #include <linux/dma-iommu.h>
24 #include <linux/interrupt.h>
25 #include <linux/irqdomain.h>
26 #include <linux/list.h>
27 #include <linux/list_sort.h>
28 #include <linux/log2.h>
29 #include <linux/mm.h>
30 #include <linux/msi.h>
31 #include <linux/of.h>
32 #include <linux/of_address.h>
33 #include <linux/of_irq.h>
34 #include <linux/of_pci.h>
35 #include <linux/of_platform.h>
36 #include <linux/percpu.h>
37 #include <linux/slab.h>
38 #include <linux/syscore_ops.h>
39 
40 #include <linux/irqchip.h>
41 #include <linux/irqchip/arm-gic-v3.h>
42 #include <linux/irqchip/arm-gic-v4.h>
43 
44 #include <asm/cputype.h>
45 #include <asm/exception.h>
46 
47 #include "irq-gic-common.h"
48 
49 #define ITS_FLAGS_CMDQ_NEEDS_FLUSHING		(1ULL << 0)
50 #define ITS_FLAGS_WORKAROUND_CAVIUM_22375	(1ULL << 1)
51 #define ITS_FLAGS_WORKAROUND_CAVIUM_23144	(1ULL << 2)
52 #define ITS_FLAGS_SAVE_SUSPEND_STATE		(1ULL << 3)
53 
54 #define RDIST_FLAGS_PROPBASE_NEEDS_FLUSHING	(1 << 0)
55 
56 static u32 lpi_id_bits;
57 
58 /*
59  * We allocate memory for PROPBASE to cover 2 ^ lpi_id_bits LPIs to
60  * deal with (one configuration byte per interrupt). PENDBASE has to
61  * be 64kB aligned (one bit per LPI, plus 8192 bits for SPI/PPI/SGI).
62  */
63 #define LPI_NRBITS		lpi_id_bits
64 #define LPI_PROPBASE_SZ		ALIGN(BIT(LPI_NRBITS), SZ_64K)
65 #define LPI_PENDBASE_SZ		ALIGN(BIT(LPI_NRBITS) / 8, SZ_64K)
66 
67 #define LPI_PROP_DEFAULT_PRIO	0xa0
68 
69 /*
70  * Collection structure - just an ID, and a redistributor address to
71  * ping. We use one per CPU as a bag of interrupts assigned to this
72  * CPU.
73  */
74 struct its_collection {
75 	u64			target_address;
76 	u16			col_id;
77 };
78 
79 /*
80  * The ITS_BASER structure - contains memory information, cached
81  * value of BASER register configuration and ITS page size.
82  */
83 struct its_baser {
84 	void		*base;
85 	u64		val;
86 	u32		order;
87 	u32		psz;
88 };
89 
90 struct its_device;
91 
92 /*
93  * The ITS structure - contains most of the infrastructure, with the
94  * top-level MSI domain, the command queue, the collections, and the
95  * list of devices writing to it.
96  *
97  * dev_alloc_lock has to be taken for device allocations, while the
98  * spinlock must be taken to parse data structures such as the device
99  * list.
100  */
101 struct its_node {
102 	raw_spinlock_t		lock;
103 	struct mutex		dev_alloc_lock;
104 	struct list_head	entry;
105 	void __iomem		*base;
106 	phys_addr_t		phys_base;
107 	struct its_cmd_block	*cmd_base;
108 	struct its_cmd_block	*cmd_write;
109 	struct its_baser	tables[GITS_BASER_NR_REGS];
110 	struct its_collection	*collections;
111 	struct fwnode_handle	*fwnode_handle;
112 	u64			(*get_msi_base)(struct its_device *its_dev);
113 	u64			cbaser_save;
114 	u32			ctlr_save;
115 	struct list_head	its_device_list;
116 	u64			flags;
117 	unsigned long		list_nr;
118 	u32			ite_size;
119 	u32			device_ids;
120 	int			numa_node;
121 	unsigned int		msi_domain_flags;
122 	u32			pre_its_base; /* for Socionext Synquacer */
123 	bool			is_v4;
124 	int			vlpi_redist_offset;
125 };
126 
127 #define ITS_ITT_ALIGN		SZ_256
128 
129 /* The maximum number of VPEID bits supported by VLPI commands */
130 #define ITS_MAX_VPEID_BITS	(16)
131 #define ITS_MAX_VPEID		(1 << (ITS_MAX_VPEID_BITS))
132 
133 /* Convert page order to size in bytes */
134 #define PAGE_ORDER_TO_SIZE(o)	(PAGE_SIZE << (o))
135 
136 struct event_lpi_map {
137 	unsigned long		*lpi_map;
138 	u16			*col_map;
139 	irq_hw_number_t		lpi_base;
140 	int			nr_lpis;
141 	struct mutex		vlpi_lock;
142 	struct its_vm		*vm;
143 	struct its_vlpi_map	*vlpi_maps;
144 	int			nr_vlpis;
145 };
146 
147 /*
148  * The ITS view of a device - belongs to an ITS, owns an interrupt
149  * translation table, and a list of interrupts.  If it some of its
150  * LPIs are injected into a guest (GICv4), the event_map.vm field
151  * indicates which one.
152  */
153 struct its_device {
154 	struct list_head	entry;
155 	struct its_node		*its;
156 	struct event_lpi_map	event_map;
157 	void			*itt;
158 	u32			nr_ites;
159 	u32			device_id;
160 	bool			shared;
161 };
162 
163 static struct {
164 	raw_spinlock_t		lock;
165 	struct its_device	*dev;
166 	struct its_vpe		**vpes;
167 	int			next_victim;
168 } vpe_proxy;
169 
170 static LIST_HEAD(its_nodes);
171 static DEFINE_RAW_SPINLOCK(its_lock);
172 static struct rdists *gic_rdists;
173 static struct irq_domain *its_parent;
174 
175 static unsigned long its_list_map;
176 static u16 vmovp_seq_num;
177 static DEFINE_RAW_SPINLOCK(vmovp_lock);
178 
179 static DEFINE_IDA(its_vpeid_ida);
180 
181 #define gic_data_rdist()		(raw_cpu_ptr(gic_rdists->rdist))
182 #define gic_data_rdist_rd_base()	(gic_data_rdist()->rd_base)
183 #define gic_data_rdist_vlpi_base()	(gic_data_rdist_rd_base() + SZ_128K)
184 
get_its_list(struct its_vm * vm)185 static u16 get_its_list(struct its_vm *vm)
186 {
187 	struct its_node *its;
188 	unsigned long its_list = 0;
189 
190 	list_for_each_entry(its, &its_nodes, entry) {
191 		if (!its->is_v4)
192 			continue;
193 
194 		if (vm->vlpi_count[its->list_nr])
195 			__set_bit(its->list_nr, &its_list);
196 	}
197 
198 	return (u16)its_list;
199 }
200 
dev_event_to_col(struct its_device * its_dev,u32 event)201 static struct its_collection *dev_event_to_col(struct its_device *its_dev,
202 					       u32 event)
203 {
204 	struct its_node *its = its_dev->its;
205 
206 	return its->collections + its_dev->event_map.col_map[event];
207 }
208 
valid_col(struct its_collection * col)209 static struct its_collection *valid_col(struct its_collection *col)
210 {
211 	if (WARN_ON_ONCE(col->target_address & GENMASK_ULL(15, 0)))
212 		return NULL;
213 
214 	return col;
215 }
216 
valid_vpe(struct its_node * its,struct its_vpe * vpe)217 static struct its_vpe *valid_vpe(struct its_node *its, struct its_vpe *vpe)
218 {
219 	if (valid_col(its->collections + vpe->col_idx))
220 		return vpe;
221 
222 	return NULL;
223 }
224 
225 /*
226  * ITS command descriptors - parameters to be encoded in a command
227  * block.
228  */
229 struct its_cmd_desc {
230 	union {
231 		struct {
232 			struct its_device *dev;
233 			u32 event_id;
234 		} its_inv_cmd;
235 
236 		struct {
237 			struct its_device *dev;
238 			u32 event_id;
239 		} its_clear_cmd;
240 
241 		struct {
242 			struct its_device *dev;
243 			u32 event_id;
244 		} its_int_cmd;
245 
246 		struct {
247 			struct its_device *dev;
248 			int valid;
249 		} its_mapd_cmd;
250 
251 		struct {
252 			struct its_collection *col;
253 			int valid;
254 		} its_mapc_cmd;
255 
256 		struct {
257 			struct its_device *dev;
258 			u32 phys_id;
259 			u32 event_id;
260 		} its_mapti_cmd;
261 
262 		struct {
263 			struct its_device *dev;
264 			struct its_collection *col;
265 			u32 event_id;
266 		} its_movi_cmd;
267 
268 		struct {
269 			struct its_device *dev;
270 			u32 event_id;
271 		} its_discard_cmd;
272 
273 		struct {
274 			struct its_collection *col;
275 		} its_invall_cmd;
276 
277 		struct {
278 			struct its_vpe *vpe;
279 		} its_vinvall_cmd;
280 
281 		struct {
282 			struct its_vpe *vpe;
283 			struct its_collection *col;
284 			bool valid;
285 		} its_vmapp_cmd;
286 
287 		struct {
288 			struct its_vpe *vpe;
289 			struct its_device *dev;
290 			u32 virt_id;
291 			u32 event_id;
292 			bool db_enabled;
293 		} its_vmapti_cmd;
294 
295 		struct {
296 			struct its_vpe *vpe;
297 			struct its_device *dev;
298 			u32 event_id;
299 			bool db_enabled;
300 		} its_vmovi_cmd;
301 
302 		struct {
303 			struct its_vpe *vpe;
304 			struct its_collection *col;
305 			u16 seq_num;
306 			u16 its_list;
307 		} its_vmovp_cmd;
308 	};
309 };
310 
311 /*
312  * The ITS command block, which is what the ITS actually parses.
313  */
314 struct its_cmd_block {
315 	u64	raw_cmd[4];
316 };
317 
318 #define ITS_CMD_QUEUE_SZ		SZ_64K
319 #define ITS_CMD_QUEUE_NR_ENTRIES	(ITS_CMD_QUEUE_SZ / sizeof(struct its_cmd_block))
320 
321 typedef struct its_collection *(*its_cmd_builder_t)(struct its_node *,
322 						    struct its_cmd_block *,
323 						    struct its_cmd_desc *);
324 
325 typedef struct its_vpe *(*its_cmd_vbuilder_t)(struct its_node *,
326 					      struct its_cmd_block *,
327 					      struct its_cmd_desc *);
328 
its_mask_encode(u64 * raw_cmd,u64 val,int h,int l)329 static void its_mask_encode(u64 *raw_cmd, u64 val, int h, int l)
330 {
331 	u64 mask = GENMASK_ULL(h, l);
332 	*raw_cmd &= ~mask;
333 	*raw_cmd |= (val << l) & mask;
334 }
335 
its_encode_cmd(struct its_cmd_block * cmd,u8 cmd_nr)336 static void its_encode_cmd(struct its_cmd_block *cmd, u8 cmd_nr)
337 {
338 	its_mask_encode(&cmd->raw_cmd[0], cmd_nr, 7, 0);
339 }
340 
its_encode_devid(struct its_cmd_block * cmd,u32 devid)341 static void its_encode_devid(struct its_cmd_block *cmd, u32 devid)
342 {
343 	its_mask_encode(&cmd->raw_cmd[0], devid, 63, 32);
344 }
345 
its_encode_event_id(struct its_cmd_block * cmd,u32 id)346 static void its_encode_event_id(struct its_cmd_block *cmd, u32 id)
347 {
348 	its_mask_encode(&cmd->raw_cmd[1], id, 31, 0);
349 }
350 
its_encode_phys_id(struct its_cmd_block * cmd,u32 phys_id)351 static void its_encode_phys_id(struct its_cmd_block *cmd, u32 phys_id)
352 {
353 	its_mask_encode(&cmd->raw_cmd[1], phys_id, 63, 32);
354 }
355 
its_encode_size(struct its_cmd_block * cmd,u8 size)356 static void its_encode_size(struct its_cmd_block *cmd, u8 size)
357 {
358 	its_mask_encode(&cmd->raw_cmd[1], size, 4, 0);
359 }
360 
its_encode_itt(struct its_cmd_block * cmd,u64 itt_addr)361 static void its_encode_itt(struct its_cmd_block *cmd, u64 itt_addr)
362 {
363 	its_mask_encode(&cmd->raw_cmd[2], itt_addr >> 8, 51, 8);
364 }
365 
its_encode_valid(struct its_cmd_block * cmd,int valid)366 static void its_encode_valid(struct its_cmd_block *cmd, int valid)
367 {
368 	its_mask_encode(&cmd->raw_cmd[2], !!valid, 63, 63);
369 }
370 
its_encode_target(struct its_cmd_block * cmd,u64 target_addr)371 static void its_encode_target(struct its_cmd_block *cmd, u64 target_addr)
372 {
373 	its_mask_encode(&cmd->raw_cmd[2], target_addr >> 16, 51, 16);
374 }
375 
its_encode_collection(struct its_cmd_block * cmd,u16 col)376 static void its_encode_collection(struct its_cmd_block *cmd, u16 col)
377 {
378 	its_mask_encode(&cmd->raw_cmd[2], col, 15, 0);
379 }
380 
its_encode_vpeid(struct its_cmd_block * cmd,u16 vpeid)381 static void its_encode_vpeid(struct its_cmd_block *cmd, u16 vpeid)
382 {
383 	its_mask_encode(&cmd->raw_cmd[1], vpeid, 47, 32);
384 }
385 
its_encode_virt_id(struct its_cmd_block * cmd,u32 virt_id)386 static void its_encode_virt_id(struct its_cmd_block *cmd, u32 virt_id)
387 {
388 	its_mask_encode(&cmd->raw_cmd[2], virt_id, 31, 0);
389 }
390 
its_encode_db_phys_id(struct its_cmd_block * cmd,u32 db_phys_id)391 static void its_encode_db_phys_id(struct its_cmd_block *cmd, u32 db_phys_id)
392 {
393 	its_mask_encode(&cmd->raw_cmd[2], db_phys_id, 63, 32);
394 }
395 
its_encode_db_valid(struct its_cmd_block * cmd,bool db_valid)396 static void its_encode_db_valid(struct its_cmd_block *cmd, bool db_valid)
397 {
398 	its_mask_encode(&cmd->raw_cmd[2], db_valid, 0, 0);
399 }
400 
its_encode_seq_num(struct its_cmd_block * cmd,u16 seq_num)401 static void its_encode_seq_num(struct its_cmd_block *cmd, u16 seq_num)
402 {
403 	its_mask_encode(&cmd->raw_cmd[0], seq_num, 47, 32);
404 }
405 
its_encode_its_list(struct its_cmd_block * cmd,u16 its_list)406 static void its_encode_its_list(struct its_cmd_block *cmd, u16 its_list)
407 {
408 	its_mask_encode(&cmd->raw_cmd[1], its_list, 15, 0);
409 }
410 
its_encode_vpt_addr(struct its_cmd_block * cmd,u64 vpt_pa)411 static void its_encode_vpt_addr(struct its_cmd_block *cmd, u64 vpt_pa)
412 {
413 	its_mask_encode(&cmd->raw_cmd[3], vpt_pa >> 16, 51, 16);
414 }
415 
its_encode_vpt_size(struct its_cmd_block * cmd,u8 vpt_size)416 static void its_encode_vpt_size(struct its_cmd_block *cmd, u8 vpt_size)
417 {
418 	its_mask_encode(&cmd->raw_cmd[3], vpt_size, 4, 0);
419 }
420 
its_fixup_cmd(struct its_cmd_block * cmd)421 static inline void its_fixup_cmd(struct its_cmd_block *cmd)
422 {
423 	/* Let's fixup BE commands */
424 	cmd->raw_cmd[0] = cpu_to_le64(cmd->raw_cmd[0]);
425 	cmd->raw_cmd[1] = cpu_to_le64(cmd->raw_cmd[1]);
426 	cmd->raw_cmd[2] = cpu_to_le64(cmd->raw_cmd[2]);
427 	cmd->raw_cmd[3] = cpu_to_le64(cmd->raw_cmd[3]);
428 }
429 
its_build_mapd_cmd(struct its_node * its,struct its_cmd_block * cmd,struct its_cmd_desc * desc)430 static struct its_collection *its_build_mapd_cmd(struct its_node *its,
431 						 struct its_cmd_block *cmd,
432 						 struct its_cmd_desc *desc)
433 {
434 	unsigned long itt_addr;
435 	u8 size = ilog2(desc->its_mapd_cmd.dev->nr_ites);
436 
437 	itt_addr = virt_to_phys(desc->its_mapd_cmd.dev->itt);
438 	itt_addr = ALIGN(itt_addr, ITS_ITT_ALIGN);
439 
440 	its_encode_cmd(cmd, GITS_CMD_MAPD);
441 	its_encode_devid(cmd, desc->its_mapd_cmd.dev->device_id);
442 	its_encode_size(cmd, size - 1);
443 	its_encode_itt(cmd, itt_addr);
444 	its_encode_valid(cmd, desc->its_mapd_cmd.valid);
445 
446 	its_fixup_cmd(cmd);
447 
448 	return NULL;
449 }
450 
its_build_mapc_cmd(struct its_node * its,struct its_cmd_block * cmd,struct its_cmd_desc * desc)451 static struct its_collection *its_build_mapc_cmd(struct its_node *its,
452 						 struct its_cmd_block *cmd,
453 						 struct its_cmd_desc *desc)
454 {
455 	its_encode_cmd(cmd, GITS_CMD_MAPC);
456 	its_encode_collection(cmd, desc->its_mapc_cmd.col->col_id);
457 	its_encode_target(cmd, desc->its_mapc_cmd.col->target_address);
458 	its_encode_valid(cmd, desc->its_mapc_cmd.valid);
459 
460 	its_fixup_cmd(cmd);
461 
462 	return desc->its_mapc_cmd.col;
463 }
464 
its_build_mapti_cmd(struct its_node * its,struct its_cmd_block * cmd,struct its_cmd_desc * desc)465 static struct its_collection *its_build_mapti_cmd(struct its_node *its,
466 						  struct its_cmd_block *cmd,
467 						  struct its_cmd_desc *desc)
468 {
469 	struct its_collection *col;
470 
471 	col = dev_event_to_col(desc->its_mapti_cmd.dev,
472 			       desc->its_mapti_cmd.event_id);
473 
474 	its_encode_cmd(cmd, GITS_CMD_MAPTI);
475 	its_encode_devid(cmd, desc->its_mapti_cmd.dev->device_id);
476 	its_encode_event_id(cmd, desc->its_mapti_cmd.event_id);
477 	its_encode_phys_id(cmd, desc->its_mapti_cmd.phys_id);
478 	its_encode_collection(cmd, col->col_id);
479 
480 	its_fixup_cmd(cmd);
481 
482 	return valid_col(col);
483 }
484 
its_build_movi_cmd(struct its_node * its,struct its_cmd_block * cmd,struct its_cmd_desc * desc)485 static struct its_collection *its_build_movi_cmd(struct its_node *its,
486 						 struct its_cmd_block *cmd,
487 						 struct its_cmd_desc *desc)
488 {
489 	struct its_collection *col;
490 
491 	col = dev_event_to_col(desc->its_movi_cmd.dev,
492 			       desc->its_movi_cmd.event_id);
493 
494 	its_encode_cmd(cmd, GITS_CMD_MOVI);
495 	its_encode_devid(cmd, desc->its_movi_cmd.dev->device_id);
496 	its_encode_event_id(cmd, desc->its_movi_cmd.event_id);
497 	its_encode_collection(cmd, desc->its_movi_cmd.col->col_id);
498 
499 	its_fixup_cmd(cmd);
500 
501 	return valid_col(col);
502 }
503 
its_build_discard_cmd(struct its_node * its,struct its_cmd_block * cmd,struct its_cmd_desc * desc)504 static struct its_collection *its_build_discard_cmd(struct its_node *its,
505 						    struct its_cmd_block *cmd,
506 						    struct its_cmd_desc *desc)
507 {
508 	struct its_collection *col;
509 
510 	col = dev_event_to_col(desc->its_discard_cmd.dev,
511 			       desc->its_discard_cmd.event_id);
512 
513 	its_encode_cmd(cmd, GITS_CMD_DISCARD);
514 	its_encode_devid(cmd, desc->its_discard_cmd.dev->device_id);
515 	its_encode_event_id(cmd, desc->its_discard_cmd.event_id);
516 
517 	its_fixup_cmd(cmd);
518 
519 	return valid_col(col);
520 }
521 
its_build_inv_cmd(struct its_node * its,struct its_cmd_block * cmd,struct its_cmd_desc * desc)522 static struct its_collection *its_build_inv_cmd(struct its_node *its,
523 						struct its_cmd_block *cmd,
524 						struct its_cmd_desc *desc)
525 {
526 	struct its_collection *col;
527 
528 	col = dev_event_to_col(desc->its_inv_cmd.dev,
529 			       desc->its_inv_cmd.event_id);
530 
531 	its_encode_cmd(cmd, GITS_CMD_INV);
532 	its_encode_devid(cmd, desc->its_inv_cmd.dev->device_id);
533 	its_encode_event_id(cmd, desc->its_inv_cmd.event_id);
534 
535 	its_fixup_cmd(cmd);
536 
537 	return valid_col(col);
538 }
539 
its_build_int_cmd(struct its_node * its,struct its_cmd_block * cmd,struct its_cmd_desc * desc)540 static struct its_collection *its_build_int_cmd(struct its_node *its,
541 						struct its_cmd_block *cmd,
542 						struct its_cmd_desc *desc)
543 {
544 	struct its_collection *col;
545 
546 	col = dev_event_to_col(desc->its_int_cmd.dev,
547 			       desc->its_int_cmd.event_id);
548 
549 	its_encode_cmd(cmd, GITS_CMD_INT);
550 	its_encode_devid(cmd, desc->its_int_cmd.dev->device_id);
551 	its_encode_event_id(cmd, desc->its_int_cmd.event_id);
552 
553 	its_fixup_cmd(cmd);
554 
555 	return valid_col(col);
556 }
557 
its_build_clear_cmd(struct its_node * its,struct its_cmd_block * cmd,struct its_cmd_desc * desc)558 static struct its_collection *its_build_clear_cmd(struct its_node *its,
559 						  struct its_cmd_block *cmd,
560 						  struct its_cmd_desc *desc)
561 {
562 	struct its_collection *col;
563 
564 	col = dev_event_to_col(desc->its_clear_cmd.dev,
565 			       desc->its_clear_cmd.event_id);
566 
567 	its_encode_cmd(cmd, GITS_CMD_CLEAR);
568 	its_encode_devid(cmd, desc->its_clear_cmd.dev->device_id);
569 	its_encode_event_id(cmd, desc->its_clear_cmd.event_id);
570 
571 	its_fixup_cmd(cmd);
572 
573 	return valid_col(col);
574 }
575 
its_build_invall_cmd(struct its_node * its,struct its_cmd_block * cmd,struct its_cmd_desc * desc)576 static struct its_collection *its_build_invall_cmd(struct its_node *its,
577 						   struct its_cmd_block *cmd,
578 						   struct its_cmd_desc *desc)
579 {
580 	its_encode_cmd(cmd, GITS_CMD_INVALL);
581 	its_encode_collection(cmd, desc->its_invall_cmd.col->col_id);
582 
583 	its_fixup_cmd(cmd);
584 
585 	return NULL;
586 }
587 
its_build_vinvall_cmd(struct its_node * its,struct its_cmd_block * cmd,struct its_cmd_desc * desc)588 static struct its_vpe *its_build_vinvall_cmd(struct its_node *its,
589 					     struct its_cmd_block *cmd,
590 					     struct its_cmd_desc *desc)
591 {
592 	its_encode_cmd(cmd, GITS_CMD_VINVALL);
593 	its_encode_vpeid(cmd, desc->its_vinvall_cmd.vpe->vpe_id);
594 
595 	its_fixup_cmd(cmd);
596 
597 	return valid_vpe(its, desc->its_vinvall_cmd.vpe);
598 }
599 
its_build_vmapp_cmd(struct its_node * its,struct its_cmd_block * cmd,struct its_cmd_desc * desc)600 static struct its_vpe *its_build_vmapp_cmd(struct its_node *its,
601 					   struct its_cmd_block *cmd,
602 					   struct its_cmd_desc *desc)
603 {
604 	unsigned long vpt_addr;
605 	u64 target;
606 
607 	vpt_addr = virt_to_phys(page_address(desc->its_vmapp_cmd.vpe->vpt_page));
608 	target = desc->its_vmapp_cmd.col->target_address + its->vlpi_redist_offset;
609 
610 	its_encode_cmd(cmd, GITS_CMD_VMAPP);
611 	its_encode_vpeid(cmd, desc->its_vmapp_cmd.vpe->vpe_id);
612 	its_encode_valid(cmd, desc->its_vmapp_cmd.valid);
613 	its_encode_target(cmd, target);
614 	its_encode_vpt_addr(cmd, vpt_addr);
615 	its_encode_vpt_size(cmd, LPI_NRBITS - 1);
616 
617 	its_fixup_cmd(cmd);
618 
619 	return valid_vpe(its, desc->its_vmapp_cmd.vpe);
620 }
621 
its_build_vmapti_cmd(struct its_node * its,struct its_cmd_block * cmd,struct its_cmd_desc * desc)622 static struct its_vpe *its_build_vmapti_cmd(struct its_node *its,
623 					    struct its_cmd_block *cmd,
624 					    struct its_cmd_desc *desc)
625 {
626 	u32 db;
627 
628 	if (desc->its_vmapti_cmd.db_enabled)
629 		db = desc->its_vmapti_cmd.vpe->vpe_db_lpi;
630 	else
631 		db = 1023;
632 
633 	its_encode_cmd(cmd, GITS_CMD_VMAPTI);
634 	its_encode_devid(cmd, desc->its_vmapti_cmd.dev->device_id);
635 	its_encode_vpeid(cmd, desc->its_vmapti_cmd.vpe->vpe_id);
636 	its_encode_event_id(cmd, desc->its_vmapti_cmd.event_id);
637 	its_encode_db_phys_id(cmd, db);
638 	its_encode_virt_id(cmd, desc->its_vmapti_cmd.virt_id);
639 
640 	its_fixup_cmd(cmd);
641 
642 	return valid_vpe(its, desc->its_vmapti_cmd.vpe);
643 }
644 
its_build_vmovi_cmd(struct its_node * its,struct its_cmd_block * cmd,struct its_cmd_desc * desc)645 static struct its_vpe *its_build_vmovi_cmd(struct its_node *its,
646 					   struct its_cmd_block *cmd,
647 					   struct its_cmd_desc *desc)
648 {
649 	u32 db;
650 
651 	if (desc->its_vmovi_cmd.db_enabled)
652 		db = desc->its_vmovi_cmd.vpe->vpe_db_lpi;
653 	else
654 		db = 1023;
655 
656 	its_encode_cmd(cmd, GITS_CMD_VMOVI);
657 	its_encode_devid(cmd, desc->its_vmovi_cmd.dev->device_id);
658 	its_encode_vpeid(cmd, desc->its_vmovi_cmd.vpe->vpe_id);
659 	its_encode_event_id(cmd, desc->its_vmovi_cmd.event_id);
660 	its_encode_db_phys_id(cmd, db);
661 	its_encode_db_valid(cmd, true);
662 
663 	its_fixup_cmd(cmd);
664 
665 	return valid_vpe(its, desc->its_vmovi_cmd.vpe);
666 }
667 
its_build_vmovp_cmd(struct its_node * its,struct its_cmd_block * cmd,struct its_cmd_desc * desc)668 static struct its_vpe *its_build_vmovp_cmd(struct its_node *its,
669 					   struct its_cmd_block *cmd,
670 					   struct its_cmd_desc *desc)
671 {
672 	u64 target;
673 
674 	target = desc->its_vmovp_cmd.col->target_address + its->vlpi_redist_offset;
675 	its_encode_cmd(cmd, GITS_CMD_VMOVP);
676 	its_encode_seq_num(cmd, desc->its_vmovp_cmd.seq_num);
677 	its_encode_its_list(cmd, desc->its_vmovp_cmd.its_list);
678 	its_encode_vpeid(cmd, desc->its_vmovp_cmd.vpe->vpe_id);
679 	its_encode_target(cmd, target);
680 
681 	its_fixup_cmd(cmd);
682 
683 	return valid_vpe(its, desc->its_vmovp_cmd.vpe);
684 }
685 
its_cmd_ptr_to_offset(struct its_node * its,struct its_cmd_block * ptr)686 static u64 its_cmd_ptr_to_offset(struct its_node *its,
687 				 struct its_cmd_block *ptr)
688 {
689 	return (ptr - its->cmd_base) * sizeof(*ptr);
690 }
691 
its_queue_full(struct its_node * its)692 static int its_queue_full(struct its_node *its)
693 {
694 	int widx;
695 	int ridx;
696 
697 	widx = its->cmd_write - its->cmd_base;
698 	ridx = readl_relaxed(its->base + GITS_CREADR) / sizeof(struct its_cmd_block);
699 
700 	/* This is incredibly unlikely to happen, unless the ITS locks up. */
701 	if (((widx + 1) % ITS_CMD_QUEUE_NR_ENTRIES) == ridx)
702 		return 1;
703 
704 	return 0;
705 }
706 
its_allocate_entry(struct its_node * its)707 static struct its_cmd_block *its_allocate_entry(struct its_node *its)
708 {
709 	struct its_cmd_block *cmd;
710 	u32 count = 1000000;	/* 1s! */
711 
712 	while (its_queue_full(its)) {
713 		count--;
714 		if (!count) {
715 			pr_err_ratelimited("ITS queue not draining\n");
716 			return NULL;
717 		}
718 		cpu_relax();
719 		udelay(1);
720 	}
721 
722 	cmd = its->cmd_write++;
723 
724 	/* Handle queue wrapping */
725 	if (its->cmd_write == (its->cmd_base + ITS_CMD_QUEUE_NR_ENTRIES))
726 		its->cmd_write = its->cmd_base;
727 
728 	/* Clear command  */
729 	cmd->raw_cmd[0] = 0;
730 	cmd->raw_cmd[1] = 0;
731 	cmd->raw_cmd[2] = 0;
732 	cmd->raw_cmd[3] = 0;
733 
734 	return cmd;
735 }
736 
its_post_commands(struct its_node * its)737 static struct its_cmd_block *its_post_commands(struct its_node *its)
738 {
739 	u64 wr = its_cmd_ptr_to_offset(its, its->cmd_write);
740 
741 	writel_relaxed(wr, its->base + GITS_CWRITER);
742 
743 	return its->cmd_write;
744 }
745 
its_flush_cmd(struct its_node * its,struct its_cmd_block * cmd)746 static void its_flush_cmd(struct its_node *its, struct its_cmd_block *cmd)
747 {
748 	/*
749 	 * Make sure the commands written to memory are observable by
750 	 * the ITS.
751 	 */
752 	if (its->flags & ITS_FLAGS_CMDQ_NEEDS_FLUSHING)
753 		gic_flush_dcache_to_poc(cmd, sizeof(*cmd));
754 	else
755 		dsb(ishst);
756 }
757 
its_wait_for_range_completion(struct its_node * its,u64 prev_idx,struct its_cmd_block * to)758 static int its_wait_for_range_completion(struct its_node *its,
759 					 u64	prev_idx,
760 					 struct its_cmd_block *to)
761 {
762 	u64 rd_idx, to_idx, linear_idx;
763 	u32 count = 1000000;	/* 1s! */
764 
765 	/* Linearize to_idx if the command set has wrapped around */
766 	to_idx = its_cmd_ptr_to_offset(its, to);
767 	if (to_idx < prev_idx)
768 		to_idx += ITS_CMD_QUEUE_SZ;
769 
770 	linear_idx = prev_idx;
771 
772 	while (1) {
773 		s64 delta;
774 
775 		rd_idx = readl_relaxed(its->base + GITS_CREADR);
776 
777 		/*
778 		 * Compute the read pointer progress, taking the
779 		 * potential wrap-around into account.
780 		 */
781 		delta = rd_idx - prev_idx;
782 		if (rd_idx < prev_idx)
783 			delta += ITS_CMD_QUEUE_SZ;
784 
785 		linear_idx += delta;
786 		if (linear_idx >= to_idx)
787 			break;
788 
789 		count--;
790 		if (!count) {
791 			pr_err_ratelimited("ITS queue timeout (%llu %llu)\n",
792 					   to_idx, linear_idx);
793 			return -1;
794 		}
795 		prev_idx = rd_idx;
796 		cpu_relax();
797 		udelay(1);
798 	}
799 
800 	return 0;
801 }
802 
803 /* Warning, macro hell follows */
804 #define BUILD_SINGLE_CMD_FUNC(name, buildtype, synctype, buildfn)	\
805 void name(struct its_node *its,						\
806 	  buildtype builder,						\
807 	  struct its_cmd_desc *desc)					\
808 {									\
809 	struct its_cmd_block *cmd, *sync_cmd, *next_cmd;		\
810 	synctype *sync_obj;						\
811 	unsigned long flags;						\
812 	u64 rd_idx;							\
813 									\
814 	raw_spin_lock_irqsave(&its->lock, flags);			\
815 									\
816 	cmd = its_allocate_entry(its);					\
817 	if (!cmd) {		/* We're soooooo screewed... */		\
818 		raw_spin_unlock_irqrestore(&its->lock, flags);		\
819 		return;							\
820 	}								\
821 	sync_obj = builder(its, cmd, desc);				\
822 	its_flush_cmd(its, cmd);					\
823 									\
824 	if (sync_obj) {							\
825 		sync_cmd = its_allocate_entry(its);			\
826 		if (!sync_cmd)						\
827 			goto post;					\
828 									\
829 		buildfn(its, sync_cmd, sync_obj);			\
830 		its_flush_cmd(its, sync_cmd);				\
831 	}								\
832 									\
833 post:									\
834 	rd_idx = readl_relaxed(its->base + GITS_CREADR);		\
835 	next_cmd = its_post_commands(its);				\
836 	raw_spin_unlock_irqrestore(&its->lock, flags);			\
837 									\
838 	if (its_wait_for_range_completion(its, rd_idx, next_cmd))	\
839 		pr_err_ratelimited("ITS cmd %ps failed\n", builder);	\
840 }
841 
its_build_sync_cmd(struct its_node * its,struct its_cmd_block * sync_cmd,struct its_collection * sync_col)842 static void its_build_sync_cmd(struct its_node *its,
843 			       struct its_cmd_block *sync_cmd,
844 			       struct its_collection *sync_col)
845 {
846 	its_encode_cmd(sync_cmd, GITS_CMD_SYNC);
847 	its_encode_target(sync_cmd, sync_col->target_address);
848 
849 	its_fixup_cmd(sync_cmd);
850 }
851 
BUILD_SINGLE_CMD_FUNC(its_send_single_command,its_cmd_builder_t,struct its_collection,its_build_sync_cmd)852 static BUILD_SINGLE_CMD_FUNC(its_send_single_command, its_cmd_builder_t,
853 			     struct its_collection, its_build_sync_cmd)
854 
855 static void its_build_vsync_cmd(struct its_node *its,
856 				struct its_cmd_block *sync_cmd,
857 				struct its_vpe *sync_vpe)
858 {
859 	its_encode_cmd(sync_cmd, GITS_CMD_VSYNC);
860 	its_encode_vpeid(sync_cmd, sync_vpe->vpe_id);
861 
862 	its_fixup_cmd(sync_cmd);
863 }
864 
BUILD_SINGLE_CMD_FUNC(its_send_single_vcommand,its_cmd_vbuilder_t,struct its_vpe,its_build_vsync_cmd)865 static BUILD_SINGLE_CMD_FUNC(its_send_single_vcommand, its_cmd_vbuilder_t,
866 			     struct its_vpe, its_build_vsync_cmd)
867 
868 static void its_send_int(struct its_device *dev, u32 event_id)
869 {
870 	struct its_cmd_desc desc;
871 
872 	desc.its_int_cmd.dev = dev;
873 	desc.its_int_cmd.event_id = event_id;
874 
875 	its_send_single_command(dev->its, its_build_int_cmd, &desc);
876 }
877 
its_send_clear(struct its_device * dev,u32 event_id)878 static void its_send_clear(struct its_device *dev, u32 event_id)
879 {
880 	struct its_cmd_desc desc;
881 
882 	desc.its_clear_cmd.dev = dev;
883 	desc.its_clear_cmd.event_id = event_id;
884 
885 	its_send_single_command(dev->its, its_build_clear_cmd, &desc);
886 }
887 
its_send_inv(struct its_device * dev,u32 event_id)888 static void its_send_inv(struct its_device *dev, u32 event_id)
889 {
890 	struct its_cmd_desc desc;
891 
892 	desc.its_inv_cmd.dev = dev;
893 	desc.its_inv_cmd.event_id = event_id;
894 
895 	its_send_single_command(dev->its, its_build_inv_cmd, &desc);
896 }
897 
its_send_mapd(struct its_device * dev,int valid)898 static void its_send_mapd(struct its_device *dev, int valid)
899 {
900 	struct its_cmd_desc desc;
901 
902 	desc.its_mapd_cmd.dev = dev;
903 	desc.its_mapd_cmd.valid = !!valid;
904 
905 	its_send_single_command(dev->its, its_build_mapd_cmd, &desc);
906 }
907 
its_send_mapc(struct its_node * its,struct its_collection * col,int valid)908 static void its_send_mapc(struct its_node *its, struct its_collection *col,
909 			  int valid)
910 {
911 	struct its_cmd_desc desc;
912 
913 	desc.its_mapc_cmd.col = col;
914 	desc.its_mapc_cmd.valid = !!valid;
915 
916 	its_send_single_command(its, its_build_mapc_cmd, &desc);
917 }
918 
its_send_mapti(struct its_device * dev,u32 irq_id,u32 id)919 static void its_send_mapti(struct its_device *dev, u32 irq_id, u32 id)
920 {
921 	struct its_cmd_desc desc;
922 
923 	desc.its_mapti_cmd.dev = dev;
924 	desc.its_mapti_cmd.phys_id = irq_id;
925 	desc.its_mapti_cmd.event_id = id;
926 
927 	its_send_single_command(dev->its, its_build_mapti_cmd, &desc);
928 }
929 
its_send_movi(struct its_device * dev,struct its_collection * col,u32 id)930 static void its_send_movi(struct its_device *dev,
931 			  struct its_collection *col, u32 id)
932 {
933 	struct its_cmd_desc desc;
934 
935 	desc.its_movi_cmd.dev = dev;
936 	desc.its_movi_cmd.col = col;
937 	desc.its_movi_cmd.event_id = id;
938 
939 	its_send_single_command(dev->its, its_build_movi_cmd, &desc);
940 }
941 
its_send_discard(struct its_device * dev,u32 id)942 static void its_send_discard(struct its_device *dev, u32 id)
943 {
944 	struct its_cmd_desc desc;
945 
946 	desc.its_discard_cmd.dev = dev;
947 	desc.its_discard_cmd.event_id = id;
948 
949 	its_send_single_command(dev->its, its_build_discard_cmd, &desc);
950 }
951 
its_send_invall(struct its_node * its,struct its_collection * col)952 static void its_send_invall(struct its_node *its, struct its_collection *col)
953 {
954 	struct its_cmd_desc desc;
955 
956 	desc.its_invall_cmd.col = col;
957 
958 	its_send_single_command(its, its_build_invall_cmd, &desc);
959 }
960 
its_send_vmapti(struct its_device * dev,u32 id)961 static void its_send_vmapti(struct its_device *dev, u32 id)
962 {
963 	struct its_vlpi_map *map = &dev->event_map.vlpi_maps[id];
964 	struct its_cmd_desc desc;
965 
966 	desc.its_vmapti_cmd.vpe = map->vpe;
967 	desc.its_vmapti_cmd.dev = dev;
968 	desc.its_vmapti_cmd.virt_id = map->vintid;
969 	desc.its_vmapti_cmd.event_id = id;
970 	desc.its_vmapti_cmd.db_enabled = map->db_enabled;
971 
972 	its_send_single_vcommand(dev->its, its_build_vmapti_cmd, &desc);
973 }
974 
its_send_vmovi(struct its_device * dev,u32 id)975 static void its_send_vmovi(struct its_device *dev, u32 id)
976 {
977 	struct its_vlpi_map *map = &dev->event_map.vlpi_maps[id];
978 	struct its_cmd_desc desc;
979 
980 	desc.its_vmovi_cmd.vpe = map->vpe;
981 	desc.its_vmovi_cmd.dev = dev;
982 	desc.its_vmovi_cmd.event_id = id;
983 	desc.its_vmovi_cmd.db_enabled = map->db_enabled;
984 
985 	its_send_single_vcommand(dev->its, its_build_vmovi_cmd, &desc);
986 }
987 
its_send_vmapp(struct its_node * its,struct its_vpe * vpe,bool valid)988 static void its_send_vmapp(struct its_node *its,
989 			   struct its_vpe *vpe, bool valid)
990 {
991 	struct its_cmd_desc desc;
992 
993 	desc.its_vmapp_cmd.vpe = vpe;
994 	desc.its_vmapp_cmd.valid = valid;
995 	desc.its_vmapp_cmd.col = &its->collections[vpe->col_idx];
996 
997 	its_send_single_vcommand(its, its_build_vmapp_cmd, &desc);
998 }
999 
its_send_vmovp(struct its_vpe * vpe)1000 static void its_send_vmovp(struct its_vpe *vpe)
1001 {
1002 	struct its_cmd_desc desc = {};
1003 	struct its_node *its;
1004 	unsigned long flags;
1005 	int col_id = vpe->col_idx;
1006 
1007 	desc.its_vmovp_cmd.vpe = vpe;
1008 
1009 	if (!its_list_map) {
1010 		its = list_first_entry(&its_nodes, struct its_node, entry);
1011 		desc.its_vmovp_cmd.col = &its->collections[col_id];
1012 		its_send_single_vcommand(its, its_build_vmovp_cmd, &desc);
1013 		return;
1014 	}
1015 
1016 	/*
1017 	 * Yet another marvel of the architecture. If using the
1018 	 * its_list "feature", we need to make sure that all ITSs
1019 	 * receive all VMOVP commands in the same order. The only way
1020 	 * to guarantee this is to make vmovp a serialization point.
1021 	 *
1022 	 * Wall <-- Head.
1023 	 */
1024 	raw_spin_lock_irqsave(&vmovp_lock, flags);
1025 
1026 	desc.its_vmovp_cmd.seq_num = vmovp_seq_num++;
1027 	desc.its_vmovp_cmd.its_list = get_its_list(vpe->its_vm);
1028 
1029 	/* Emit VMOVPs */
1030 	list_for_each_entry(its, &its_nodes, entry) {
1031 		if (!its->is_v4)
1032 			continue;
1033 
1034 		if (!vpe->its_vm->vlpi_count[its->list_nr])
1035 			continue;
1036 
1037 		desc.its_vmovp_cmd.col = &its->collections[col_id];
1038 		its_send_single_vcommand(its, its_build_vmovp_cmd, &desc);
1039 	}
1040 
1041 	raw_spin_unlock_irqrestore(&vmovp_lock, flags);
1042 }
1043 
its_send_vinvall(struct its_node * its,struct its_vpe * vpe)1044 static void its_send_vinvall(struct its_node *its, struct its_vpe *vpe)
1045 {
1046 	struct its_cmd_desc desc;
1047 
1048 	desc.its_vinvall_cmd.vpe = vpe;
1049 	its_send_single_vcommand(its, its_build_vinvall_cmd, &desc);
1050 }
1051 
1052 /*
1053  * irqchip functions - assumes MSI, mostly.
1054  */
1055 
its_get_event_id(struct irq_data * d)1056 static inline u32 its_get_event_id(struct irq_data *d)
1057 {
1058 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1059 	return d->hwirq - its_dev->event_map.lpi_base;
1060 }
1061 
lpi_write_config(struct irq_data * d,u8 clr,u8 set)1062 static void lpi_write_config(struct irq_data *d, u8 clr, u8 set)
1063 {
1064 	irq_hw_number_t hwirq;
1065 	struct page *prop_page;
1066 	u8 *cfg;
1067 
1068 	if (irqd_is_forwarded_to_vcpu(d)) {
1069 		struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1070 		u32 event = its_get_event_id(d);
1071 		struct its_vlpi_map *map;
1072 
1073 		prop_page = its_dev->event_map.vm->vprop_page;
1074 		map = &its_dev->event_map.vlpi_maps[event];
1075 		hwirq = map->vintid;
1076 
1077 		/* Remember the updated property */
1078 		map->properties &= ~clr;
1079 		map->properties |= set | LPI_PROP_GROUP1;
1080 	} else {
1081 		prop_page = gic_rdists->prop_page;
1082 		hwirq = d->hwirq;
1083 	}
1084 
1085 	cfg = page_address(prop_page) + hwirq - 8192;
1086 	*cfg &= ~clr;
1087 	*cfg |= set | LPI_PROP_GROUP1;
1088 
1089 	/*
1090 	 * Make the above write visible to the redistributors.
1091 	 * And yes, we're flushing exactly: One. Single. Byte.
1092 	 * Humpf...
1093 	 */
1094 	if (gic_rdists->flags & RDIST_FLAGS_PROPBASE_NEEDS_FLUSHING)
1095 		gic_flush_dcache_to_poc(cfg, sizeof(*cfg));
1096 	else
1097 		dsb(ishst);
1098 }
1099 
lpi_update_config(struct irq_data * d,u8 clr,u8 set)1100 static void lpi_update_config(struct irq_data *d, u8 clr, u8 set)
1101 {
1102 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1103 
1104 	lpi_write_config(d, clr, set);
1105 	its_send_inv(its_dev, its_get_event_id(d));
1106 }
1107 
its_vlpi_set_doorbell(struct irq_data * d,bool enable)1108 static void its_vlpi_set_doorbell(struct irq_data *d, bool enable)
1109 {
1110 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1111 	u32 event = its_get_event_id(d);
1112 
1113 	if (its_dev->event_map.vlpi_maps[event].db_enabled == enable)
1114 		return;
1115 
1116 	its_dev->event_map.vlpi_maps[event].db_enabled = enable;
1117 
1118 	/*
1119 	 * More fun with the architecture:
1120 	 *
1121 	 * Ideally, we'd issue a VMAPTI to set the doorbell to its LPI
1122 	 * value or to 1023, depending on the enable bit. But that
1123 	 * would be issueing a mapping for an /existing/ DevID+EventID
1124 	 * pair, which is UNPREDICTABLE. Instead, let's issue a VMOVI
1125 	 * to the /same/ vPE, using this opportunity to adjust the
1126 	 * doorbell. Mouahahahaha. We loves it, Precious.
1127 	 */
1128 	its_send_vmovi(its_dev, event);
1129 }
1130 
its_mask_irq(struct irq_data * d)1131 static void its_mask_irq(struct irq_data *d)
1132 {
1133 	if (irqd_is_forwarded_to_vcpu(d))
1134 		its_vlpi_set_doorbell(d, false);
1135 
1136 	lpi_update_config(d, LPI_PROP_ENABLED, 0);
1137 }
1138 
its_unmask_irq(struct irq_data * d)1139 static void its_unmask_irq(struct irq_data *d)
1140 {
1141 	if (irqd_is_forwarded_to_vcpu(d))
1142 		its_vlpi_set_doorbell(d, true);
1143 
1144 	lpi_update_config(d, 0, LPI_PROP_ENABLED);
1145 }
1146 
its_set_affinity(struct irq_data * d,const struct cpumask * mask_val,bool force)1147 static int its_set_affinity(struct irq_data *d, const struct cpumask *mask_val,
1148 			    bool force)
1149 {
1150 	unsigned int cpu;
1151 	const struct cpumask *cpu_mask = cpu_online_mask;
1152 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1153 	struct its_collection *target_col;
1154 	u32 id = its_get_event_id(d);
1155 
1156 	/* A forwarded interrupt should use irq_set_vcpu_affinity */
1157 	if (irqd_is_forwarded_to_vcpu(d))
1158 		return -EINVAL;
1159 
1160        /* lpi cannot be routed to a redistributor that is on a foreign node */
1161 	if (its_dev->its->flags & ITS_FLAGS_WORKAROUND_CAVIUM_23144) {
1162 		if (its_dev->its->numa_node >= 0) {
1163 			cpu_mask = cpumask_of_node(its_dev->its->numa_node);
1164 			if (!cpumask_intersects(mask_val, cpu_mask))
1165 				return -EINVAL;
1166 		}
1167 	}
1168 
1169 	cpu = cpumask_any_and(mask_val, cpu_mask);
1170 
1171 	if (cpu >= nr_cpu_ids)
1172 		return -EINVAL;
1173 
1174 	/* don't set the affinity when the target cpu is same as current one */
1175 	if (cpu != its_dev->event_map.col_map[id]) {
1176 		target_col = &its_dev->its->collections[cpu];
1177 		its_send_movi(its_dev, target_col, id);
1178 		its_dev->event_map.col_map[id] = cpu;
1179 		irq_data_update_effective_affinity(d, cpumask_of(cpu));
1180 	}
1181 
1182 	return IRQ_SET_MASK_OK_DONE;
1183 }
1184 
its_irq_get_msi_base(struct its_device * its_dev)1185 static u64 its_irq_get_msi_base(struct its_device *its_dev)
1186 {
1187 	struct its_node *its = its_dev->its;
1188 
1189 	return its->phys_base + GITS_TRANSLATER;
1190 }
1191 
its_irq_compose_msi_msg(struct irq_data * d,struct msi_msg * msg)1192 static void its_irq_compose_msi_msg(struct irq_data *d, struct msi_msg *msg)
1193 {
1194 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1195 	struct its_node *its;
1196 	u64 addr;
1197 
1198 	its = its_dev->its;
1199 	addr = its->get_msi_base(its_dev);
1200 
1201 	msg->address_lo		= lower_32_bits(addr);
1202 	msg->address_hi		= upper_32_bits(addr);
1203 	msg->data		= its_get_event_id(d);
1204 
1205 	iommu_dma_map_msi_msg(d->irq, msg);
1206 }
1207 
its_irq_set_irqchip_state(struct irq_data * d,enum irqchip_irq_state which,bool state)1208 static int its_irq_set_irqchip_state(struct irq_data *d,
1209 				     enum irqchip_irq_state which,
1210 				     bool state)
1211 {
1212 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1213 	u32 event = its_get_event_id(d);
1214 
1215 	if (which != IRQCHIP_STATE_PENDING)
1216 		return -EINVAL;
1217 
1218 	if (state)
1219 		its_send_int(its_dev, event);
1220 	else
1221 		its_send_clear(its_dev, event);
1222 
1223 	return 0;
1224 }
1225 
its_map_vm(struct its_node * its,struct its_vm * vm)1226 static void its_map_vm(struct its_node *its, struct its_vm *vm)
1227 {
1228 	unsigned long flags;
1229 
1230 	/* Not using the ITS list? Everything is always mapped. */
1231 	if (!its_list_map)
1232 		return;
1233 
1234 	raw_spin_lock_irqsave(&vmovp_lock, flags);
1235 
1236 	/*
1237 	 * If the VM wasn't mapped yet, iterate over the vpes and get
1238 	 * them mapped now.
1239 	 */
1240 	vm->vlpi_count[its->list_nr]++;
1241 
1242 	if (vm->vlpi_count[its->list_nr] == 1) {
1243 		int i;
1244 
1245 		for (i = 0; i < vm->nr_vpes; i++) {
1246 			struct its_vpe *vpe = vm->vpes[i];
1247 			struct irq_data *d = irq_get_irq_data(vpe->irq);
1248 
1249 			/* Map the VPE to the first possible CPU */
1250 			vpe->col_idx = cpumask_first(cpu_online_mask);
1251 			its_send_vmapp(its, vpe, true);
1252 			its_send_vinvall(its, vpe);
1253 			irq_data_update_effective_affinity(d, cpumask_of(vpe->col_idx));
1254 		}
1255 	}
1256 
1257 	raw_spin_unlock_irqrestore(&vmovp_lock, flags);
1258 }
1259 
its_unmap_vm(struct its_node * its,struct its_vm * vm)1260 static void its_unmap_vm(struct its_node *its, struct its_vm *vm)
1261 {
1262 	unsigned long flags;
1263 
1264 	/* Not using the ITS list? Everything is always mapped. */
1265 	if (!its_list_map)
1266 		return;
1267 
1268 	raw_spin_lock_irqsave(&vmovp_lock, flags);
1269 
1270 	if (!--vm->vlpi_count[its->list_nr]) {
1271 		int i;
1272 
1273 		for (i = 0; i < vm->nr_vpes; i++)
1274 			its_send_vmapp(its, vm->vpes[i], false);
1275 	}
1276 
1277 	raw_spin_unlock_irqrestore(&vmovp_lock, flags);
1278 }
1279 
its_vlpi_map(struct irq_data * d,struct its_cmd_info * info)1280 static int its_vlpi_map(struct irq_data *d, struct its_cmd_info *info)
1281 {
1282 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1283 	u32 event = its_get_event_id(d);
1284 	int ret = 0;
1285 
1286 	if (!info->map)
1287 		return -EINVAL;
1288 
1289 	mutex_lock(&its_dev->event_map.vlpi_lock);
1290 
1291 	if (!its_dev->event_map.vm) {
1292 		struct its_vlpi_map *maps;
1293 
1294 		maps = kcalloc(its_dev->event_map.nr_lpis, sizeof(*maps),
1295 			       GFP_KERNEL);
1296 		if (!maps) {
1297 			ret = -ENOMEM;
1298 			goto out;
1299 		}
1300 
1301 		its_dev->event_map.vm = info->map->vm;
1302 		its_dev->event_map.vlpi_maps = maps;
1303 	} else if (its_dev->event_map.vm != info->map->vm) {
1304 		ret = -EINVAL;
1305 		goto out;
1306 	}
1307 
1308 	/* Get our private copy of the mapping information */
1309 	its_dev->event_map.vlpi_maps[event] = *info->map;
1310 
1311 	if (irqd_is_forwarded_to_vcpu(d)) {
1312 		/* Already mapped, move it around */
1313 		its_send_vmovi(its_dev, event);
1314 	} else {
1315 		/* Ensure all the VPEs are mapped on this ITS */
1316 		its_map_vm(its_dev->its, info->map->vm);
1317 
1318 		/*
1319 		 * Flag the interrupt as forwarded so that we can
1320 		 * start poking the virtual property table.
1321 		 */
1322 		irqd_set_forwarded_to_vcpu(d);
1323 
1324 		/* Write out the property to the prop table */
1325 		lpi_write_config(d, 0xff, info->map->properties);
1326 
1327 		/* Drop the physical mapping */
1328 		its_send_discard(its_dev, event);
1329 
1330 		/* and install the virtual one */
1331 		its_send_vmapti(its_dev, event);
1332 
1333 		/* Increment the number of VLPIs */
1334 		its_dev->event_map.nr_vlpis++;
1335 	}
1336 
1337 out:
1338 	mutex_unlock(&its_dev->event_map.vlpi_lock);
1339 	return ret;
1340 }
1341 
its_vlpi_get(struct irq_data * d,struct its_cmd_info * info)1342 static int its_vlpi_get(struct irq_data *d, struct its_cmd_info *info)
1343 {
1344 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1345 	u32 event = its_get_event_id(d);
1346 	int ret = 0;
1347 
1348 	mutex_lock(&its_dev->event_map.vlpi_lock);
1349 
1350 	if (!its_dev->event_map.vm ||
1351 	    !its_dev->event_map.vlpi_maps[event].vm) {
1352 		ret = -EINVAL;
1353 		goto out;
1354 	}
1355 
1356 	/* Copy our mapping information to the incoming request */
1357 	*info->map = its_dev->event_map.vlpi_maps[event];
1358 
1359 out:
1360 	mutex_unlock(&its_dev->event_map.vlpi_lock);
1361 	return ret;
1362 }
1363 
its_vlpi_unmap(struct irq_data * d)1364 static int its_vlpi_unmap(struct irq_data *d)
1365 {
1366 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1367 	u32 event = its_get_event_id(d);
1368 	int ret = 0;
1369 
1370 	mutex_lock(&its_dev->event_map.vlpi_lock);
1371 
1372 	if (!its_dev->event_map.vm || !irqd_is_forwarded_to_vcpu(d)) {
1373 		ret = -EINVAL;
1374 		goto out;
1375 	}
1376 
1377 	/* Drop the virtual mapping */
1378 	its_send_discard(its_dev, event);
1379 
1380 	/* and restore the physical one */
1381 	irqd_clr_forwarded_to_vcpu(d);
1382 	its_send_mapti(its_dev, d->hwirq, event);
1383 	lpi_update_config(d, 0xff, (LPI_PROP_DEFAULT_PRIO |
1384 				    LPI_PROP_ENABLED |
1385 				    LPI_PROP_GROUP1));
1386 
1387 	/* Potentially unmap the VM from this ITS */
1388 	its_unmap_vm(its_dev->its, its_dev->event_map.vm);
1389 
1390 	/*
1391 	 * Drop the refcount and make the device available again if
1392 	 * this was the last VLPI.
1393 	 */
1394 	if (!--its_dev->event_map.nr_vlpis) {
1395 		its_dev->event_map.vm = NULL;
1396 		kfree(its_dev->event_map.vlpi_maps);
1397 	}
1398 
1399 out:
1400 	mutex_unlock(&its_dev->event_map.vlpi_lock);
1401 	return ret;
1402 }
1403 
its_vlpi_prop_update(struct irq_data * d,struct its_cmd_info * info)1404 static int its_vlpi_prop_update(struct irq_data *d, struct its_cmd_info *info)
1405 {
1406 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1407 
1408 	if (!its_dev->event_map.vm || !irqd_is_forwarded_to_vcpu(d))
1409 		return -EINVAL;
1410 
1411 	if (info->cmd_type == PROP_UPDATE_AND_INV_VLPI)
1412 		lpi_update_config(d, 0xff, info->config);
1413 	else
1414 		lpi_write_config(d, 0xff, info->config);
1415 	its_vlpi_set_doorbell(d, !!(info->config & LPI_PROP_ENABLED));
1416 
1417 	return 0;
1418 }
1419 
its_irq_set_vcpu_affinity(struct irq_data * d,void * vcpu_info)1420 static int its_irq_set_vcpu_affinity(struct irq_data *d, void *vcpu_info)
1421 {
1422 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1423 	struct its_cmd_info *info = vcpu_info;
1424 
1425 	/* Need a v4 ITS */
1426 	if (!its_dev->its->is_v4)
1427 		return -EINVAL;
1428 
1429 	/* Unmap request? */
1430 	if (!info)
1431 		return its_vlpi_unmap(d);
1432 
1433 	switch (info->cmd_type) {
1434 	case MAP_VLPI:
1435 		return its_vlpi_map(d, info);
1436 
1437 	case GET_VLPI:
1438 		return its_vlpi_get(d, info);
1439 
1440 	case PROP_UPDATE_VLPI:
1441 	case PROP_UPDATE_AND_INV_VLPI:
1442 		return its_vlpi_prop_update(d, info);
1443 
1444 	default:
1445 		return -EINVAL;
1446 	}
1447 }
1448 
1449 static struct irq_chip its_irq_chip = {
1450 	.name			= "ITS",
1451 	.irq_mask		= its_mask_irq,
1452 	.irq_unmask		= its_unmask_irq,
1453 	.irq_eoi		= irq_chip_eoi_parent,
1454 	.irq_set_affinity	= its_set_affinity,
1455 	.irq_compose_msi_msg	= its_irq_compose_msi_msg,
1456 	.irq_set_irqchip_state	= its_irq_set_irqchip_state,
1457 	.irq_set_vcpu_affinity	= its_irq_set_vcpu_affinity,
1458 };
1459 
1460 
1461 /*
1462  * How we allocate LPIs:
1463  *
1464  * lpi_range_list contains ranges of LPIs that are to available to
1465  * allocate from. To allocate LPIs, just pick the first range that
1466  * fits the required allocation, and reduce it by the required
1467  * amount. Once empty, remove the range from the list.
1468  *
1469  * To free a range of LPIs, add a free range to the list, sort it and
1470  * merge the result if the new range happens to be adjacent to an
1471  * already free block.
1472  *
1473  * The consequence of the above is that allocation is cost is low, but
1474  * freeing is expensive. We assumes that freeing rarely occurs.
1475  */
1476 #define ITS_MAX_LPI_NRBITS	16 /* 64K LPIs */
1477 
1478 static DEFINE_MUTEX(lpi_range_lock);
1479 static LIST_HEAD(lpi_range_list);
1480 
1481 struct lpi_range {
1482 	struct list_head	entry;
1483 	u32			base_id;
1484 	u32			span;
1485 };
1486 
mk_lpi_range(u32 base,u32 span)1487 static struct lpi_range *mk_lpi_range(u32 base, u32 span)
1488 {
1489 	struct lpi_range *range;
1490 
1491 	range = kzalloc(sizeof(*range), GFP_KERNEL);
1492 	if (range) {
1493 		INIT_LIST_HEAD(&range->entry);
1494 		range->base_id = base;
1495 		range->span = span;
1496 	}
1497 
1498 	return range;
1499 }
1500 
lpi_range_cmp(void * priv,struct list_head * a,struct list_head * b)1501 static int lpi_range_cmp(void *priv, struct list_head *a, struct list_head *b)
1502 {
1503 	struct lpi_range *ra, *rb;
1504 
1505 	ra = container_of(a, struct lpi_range, entry);
1506 	rb = container_of(b, struct lpi_range, entry);
1507 
1508 	return ra->base_id - rb->base_id;
1509 }
1510 
merge_lpi_ranges(void)1511 static void merge_lpi_ranges(void)
1512 {
1513 	struct lpi_range *range, *tmp;
1514 
1515 	list_for_each_entry_safe(range, tmp, &lpi_range_list, entry) {
1516 		if (!list_is_last(&range->entry, &lpi_range_list) &&
1517 		    (tmp->base_id == (range->base_id + range->span))) {
1518 			tmp->base_id = range->base_id;
1519 			tmp->span += range->span;
1520 			list_del(&range->entry);
1521 			kfree(range);
1522 		}
1523 	}
1524 }
1525 
alloc_lpi_range(u32 nr_lpis,u32 * base)1526 static int alloc_lpi_range(u32 nr_lpis, u32 *base)
1527 {
1528 	struct lpi_range *range, *tmp;
1529 	int err = -ENOSPC;
1530 
1531 	mutex_lock(&lpi_range_lock);
1532 
1533 	list_for_each_entry_safe(range, tmp, &lpi_range_list, entry) {
1534 		if (range->span >= nr_lpis) {
1535 			*base = range->base_id;
1536 			range->base_id += nr_lpis;
1537 			range->span -= nr_lpis;
1538 
1539 			if (range->span == 0) {
1540 				list_del(&range->entry);
1541 				kfree(range);
1542 			}
1543 
1544 			err = 0;
1545 			break;
1546 		}
1547 	}
1548 
1549 	mutex_unlock(&lpi_range_lock);
1550 
1551 	pr_debug("ITS: alloc %u:%u\n", *base, nr_lpis);
1552 	return err;
1553 }
1554 
free_lpi_range(u32 base,u32 nr_lpis)1555 static int free_lpi_range(u32 base, u32 nr_lpis)
1556 {
1557 	struct lpi_range *new;
1558 	int err = 0;
1559 
1560 	mutex_lock(&lpi_range_lock);
1561 
1562 	new = mk_lpi_range(base, nr_lpis);
1563 	if (!new) {
1564 		err = -ENOMEM;
1565 		goto out;
1566 	}
1567 
1568 	list_add(&new->entry, &lpi_range_list);
1569 	list_sort(NULL, &lpi_range_list, lpi_range_cmp);
1570 	merge_lpi_ranges();
1571 out:
1572 	mutex_unlock(&lpi_range_lock);
1573 	return err;
1574 }
1575 
its_lpi_init(u32 id_bits)1576 static int __init its_lpi_init(u32 id_bits)
1577 {
1578 	u32 lpis = (1UL << id_bits) - 8192;
1579 	u32 numlpis;
1580 	int err;
1581 
1582 	numlpis = 1UL << GICD_TYPER_NUM_LPIS(gic_rdists->gicd_typer);
1583 
1584 	if (numlpis > 2 && !WARN_ON(numlpis > lpis)) {
1585 		lpis = numlpis;
1586 		pr_info("ITS: Using hypervisor restricted LPI range [%u]\n",
1587 			lpis);
1588 	}
1589 
1590 	/*
1591 	 * Initializing the allocator is just the same as freeing the
1592 	 * full range of LPIs.
1593 	 */
1594 	err = free_lpi_range(8192, lpis);
1595 	pr_debug("ITS: Allocator initialized for %u LPIs\n", lpis);
1596 	return err;
1597 }
1598 
its_lpi_alloc(int nr_irqs,u32 * base,int * nr_ids)1599 static unsigned long *its_lpi_alloc(int nr_irqs, u32 *base, int *nr_ids)
1600 {
1601 	unsigned long *bitmap = NULL;
1602 	int err = 0;
1603 
1604 	do {
1605 		err = alloc_lpi_range(nr_irqs, base);
1606 		if (!err)
1607 			break;
1608 
1609 		nr_irqs /= 2;
1610 	} while (nr_irqs > 0);
1611 
1612 	if (!nr_irqs)
1613 		err = -ENOSPC;
1614 
1615 	if (err)
1616 		goto out;
1617 
1618 	bitmap = kcalloc(BITS_TO_LONGS(nr_irqs), sizeof (long), GFP_ATOMIC);
1619 	if (!bitmap)
1620 		goto out;
1621 
1622 	*nr_ids = nr_irqs;
1623 
1624 out:
1625 	if (!bitmap)
1626 		*base = *nr_ids = 0;
1627 
1628 	return bitmap;
1629 }
1630 
its_lpi_free(unsigned long * bitmap,u32 base,u32 nr_ids)1631 static void its_lpi_free(unsigned long *bitmap, u32 base, u32 nr_ids)
1632 {
1633 	WARN_ON(free_lpi_range(base, nr_ids));
1634 	kfree(bitmap);
1635 }
1636 
its_allocate_prop_table(gfp_t gfp_flags)1637 static struct page *its_allocate_prop_table(gfp_t gfp_flags)
1638 {
1639 	struct page *prop_page;
1640 
1641 	prop_page = alloc_pages(gfp_flags, get_order(LPI_PROPBASE_SZ));
1642 	if (!prop_page)
1643 		return NULL;
1644 
1645 	/* Priority 0xa0, Group-1, disabled */
1646 	memset(page_address(prop_page),
1647 	       LPI_PROP_DEFAULT_PRIO | LPI_PROP_GROUP1,
1648 	       LPI_PROPBASE_SZ);
1649 
1650 	/* Make sure the GIC will observe the written configuration */
1651 	gic_flush_dcache_to_poc(page_address(prop_page), LPI_PROPBASE_SZ);
1652 
1653 	return prop_page;
1654 }
1655 
its_free_prop_table(struct page * prop_page)1656 static void its_free_prop_table(struct page *prop_page)
1657 {
1658 	free_pages((unsigned long)page_address(prop_page),
1659 		   get_order(LPI_PROPBASE_SZ));
1660 }
1661 
its_alloc_lpi_tables(void)1662 static int __init its_alloc_lpi_tables(void)
1663 {
1664 	phys_addr_t paddr;
1665 
1666 	lpi_id_bits = min_t(u32, GICD_TYPER_ID_BITS(gic_rdists->gicd_typer),
1667 				ITS_MAX_LPI_NRBITS);
1668 	gic_rdists->prop_page = its_allocate_prop_table(GFP_NOWAIT);
1669 	if (!gic_rdists->prop_page) {
1670 		pr_err("Failed to allocate PROPBASE\n");
1671 		return -ENOMEM;
1672 	}
1673 
1674 	paddr = page_to_phys(gic_rdists->prop_page);
1675 	pr_info("GIC: using LPI property table @%pa\n", &paddr);
1676 
1677 	return its_lpi_init(lpi_id_bits);
1678 }
1679 
1680 static const char *its_base_type_string[] = {
1681 	[GITS_BASER_TYPE_DEVICE]	= "Devices",
1682 	[GITS_BASER_TYPE_VCPU]		= "Virtual CPUs",
1683 	[GITS_BASER_TYPE_RESERVED3]	= "Reserved (3)",
1684 	[GITS_BASER_TYPE_COLLECTION]	= "Interrupt Collections",
1685 	[GITS_BASER_TYPE_RESERVED5] 	= "Reserved (5)",
1686 	[GITS_BASER_TYPE_RESERVED6] 	= "Reserved (6)",
1687 	[GITS_BASER_TYPE_RESERVED7] 	= "Reserved (7)",
1688 };
1689 
its_read_baser(struct its_node * its,struct its_baser * baser)1690 static u64 its_read_baser(struct its_node *its, struct its_baser *baser)
1691 {
1692 	u32 idx = baser - its->tables;
1693 
1694 	return gits_read_baser(its->base + GITS_BASER + (idx << 3));
1695 }
1696 
its_write_baser(struct its_node * its,struct its_baser * baser,u64 val)1697 static void its_write_baser(struct its_node *its, struct its_baser *baser,
1698 			    u64 val)
1699 {
1700 	u32 idx = baser - its->tables;
1701 
1702 	gits_write_baser(val, its->base + GITS_BASER + (idx << 3));
1703 	baser->val = its_read_baser(its, baser);
1704 }
1705 
its_setup_baser(struct its_node * its,struct its_baser * baser,u64 cache,u64 shr,u32 psz,u32 order,bool indirect)1706 static int its_setup_baser(struct its_node *its, struct its_baser *baser,
1707 			   u64 cache, u64 shr, u32 psz, u32 order,
1708 			   bool indirect)
1709 {
1710 	u64 val = its_read_baser(its, baser);
1711 	u64 esz = GITS_BASER_ENTRY_SIZE(val);
1712 	u64 type = GITS_BASER_TYPE(val);
1713 	u64 baser_phys, tmp;
1714 	u32 alloc_pages;
1715 	void *base;
1716 
1717 retry_alloc_baser:
1718 	alloc_pages = (PAGE_ORDER_TO_SIZE(order) / psz);
1719 	if (alloc_pages > GITS_BASER_PAGES_MAX) {
1720 		pr_warn("ITS@%pa: %s too large, reduce ITS pages %u->%u\n",
1721 			&its->phys_base, its_base_type_string[type],
1722 			alloc_pages, GITS_BASER_PAGES_MAX);
1723 		alloc_pages = GITS_BASER_PAGES_MAX;
1724 		order = get_order(GITS_BASER_PAGES_MAX * psz);
1725 	}
1726 
1727 	base = (void *)__get_free_pages(GFP_KERNEL | __GFP_ZERO, order);
1728 	if (!base)
1729 		return -ENOMEM;
1730 
1731 	baser_phys = virt_to_phys(base);
1732 
1733 	/* Check if the physical address of the memory is above 48bits */
1734 	if (IS_ENABLED(CONFIG_ARM64_64K_PAGES) && (baser_phys >> 48)) {
1735 
1736 		/* 52bit PA is supported only when PageSize=64K */
1737 		if (psz != SZ_64K) {
1738 			pr_err("ITS: no 52bit PA support when psz=%d\n", psz);
1739 			free_pages((unsigned long)base, order);
1740 			return -ENXIO;
1741 		}
1742 
1743 		/* Convert 52bit PA to 48bit field */
1744 		baser_phys = GITS_BASER_PHYS_52_to_48(baser_phys);
1745 	}
1746 
1747 retry_baser:
1748 	val = (baser_phys					 |
1749 		(type << GITS_BASER_TYPE_SHIFT)			 |
1750 		((esz - 1) << GITS_BASER_ENTRY_SIZE_SHIFT)	 |
1751 		((alloc_pages - 1) << GITS_BASER_PAGES_SHIFT)	 |
1752 		cache						 |
1753 		shr						 |
1754 		GITS_BASER_VALID);
1755 
1756 	val |=	indirect ? GITS_BASER_INDIRECT : 0x0;
1757 
1758 	switch (psz) {
1759 	case SZ_4K:
1760 		val |= GITS_BASER_PAGE_SIZE_4K;
1761 		break;
1762 	case SZ_16K:
1763 		val |= GITS_BASER_PAGE_SIZE_16K;
1764 		break;
1765 	case SZ_64K:
1766 		val |= GITS_BASER_PAGE_SIZE_64K;
1767 		break;
1768 	}
1769 
1770 	its_write_baser(its, baser, val);
1771 	tmp = baser->val;
1772 
1773 	if ((val ^ tmp) & GITS_BASER_SHAREABILITY_MASK) {
1774 		/*
1775 		 * Shareability didn't stick. Just use
1776 		 * whatever the read reported, which is likely
1777 		 * to be the only thing this redistributor
1778 		 * supports. If that's zero, make it
1779 		 * non-cacheable as well.
1780 		 */
1781 		shr = tmp & GITS_BASER_SHAREABILITY_MASK;
1782 		if (!shr) {
1783 			cache = GITS_BASER_nC;
1784 			gic_flush_dcache_to_poc(base, PAGE_ORDER_TO_SIZE(order));
1785 		}
1786 		goto retry_baser;
1787 	}
1788 
1789 	if ((val ^ tmp) & GITS_BASER_PAGE_SIZE_MASK) {
1790 		/*
1791 		 * Page size didn't stick. Let's try a smaller
1792 		 * size and retry. If we reach 4K, then
1793 		 * something is horribly wrong...
1794 		 */
1795 		free_pages((unsigned long)base, order);
1796 		baser->base = NULL;
1797 
1798 		switch (psz) {
1799 		case SZ_16K:
1800 			psz = SZ_4K;
1801 			goto retry_alloc_baser;
1802 		case SZ_64K:
1803 			psz = SZ_16K;
1804 			goto retry_alloc_baser;
1805 		}
1806 	}
1807 
1808 	if (val != tmp) {
1809 		pr_err("ITS@%pa: %s doesn't stick: %llx %llx\n",
1810 		       &its->phys_base, its_base_type_string[type],
1811 		       val, tmp);
1812 		free_pages((unsigned long)base, order);
1813 		return -ENXIO;
1814 	}
1815 
1816 	baser->order = order;
1817 	baser->base = base;
1818 	baser->psz = psz;
1819 	tmp = indirect ? GITS_LVL1_ENTRY_SIZE : esz;
1820 
1821 	pr_info("ITS@%pa: allocated %d %s @%lx (%s, esz %d, psz %dK, shr %d)\n",
1822 		&its->phys_base, (int)(PAGE_ORDER_TO_SIZE(order) / (int)tmp),
1823 		its_base_type_string[type],
1824 		(unsigned long)virt_to_phys(base),
1825 		indirect ? "indirect" : "flat", (int)esz,
1826 		psz / SZ_1K, (int)shr >> GITS_BASER_SHAREABILITY_SHIFT);
1827 
1828 	return 0;
1829 }
1830 
its_parse_indirect_baser(struct its_node * its,struct its_baser * baser,u32 psz,u32 * order,u32 ids)1831 static bool its_parse_indirect_baser(struct its_node *its,
1832 				     struct its_baser *baser,
1833 				     u32 psz, u32 *order, u32 ids)
1834 {
1835 	u64 tmp = its_read_baser(its, baser);
1836 	u64 type = GITS_BASER_TYPE(tmp);
1837 	u64 esz = GITS_BASER_ENTRY_SIZE(tmp);
1838 	u64 val = GITS_BASER_InnerShareable | GITS_BASER_RaWaWb;
1839 	u32 new_order = *order;
1840 	bool indirect = false;
1841 
1842 	/* No need to enable Indirection if memory requirement < (psz*2)bytes */
1843 	if ((esz << ids) > (psz * 2)) {
1844 		/*
1845 		 * Find out whether hw supports a single or two-level table by
1846 		 * table by reading bit at offset '62' after writing '1' to it.
1847 		 */
1848 		its_write_baser(its, baser, val | GITS_BASER_INDIRECT);
1849 		indirect = !!(baser->val & GITS_BASER_INDIRECT);
1850 
1851 		if (indirect) {
1852 			/*
1853 			 * The size of the lvl2 table is equal to ITS page size
1854 			 * which is 'psz'. For computing lvl1 table size,
1855 			 * subtract ID bits that sparse lvl2 table from 'ids'
1856 			 * which is reported by ITS hardware times lvl1 table
1857 			 * entry size.
1858 			 */
1859 			ids -= ilog2(psz / (int)esz);
1860 			esz = GITS_LVL1_ENTRY_SIZE;
1861 		}
1862 	}
1863 
1864 	/*
1865 	 * Allocate as many entries as required to fit the
1866 	 * range of device IDs that the ITS can grok... The ID
1867 	 * space being incredibly sparse, this results in a
1868 	 * massive waste of memory if two-level device table
1869 	 * feature is not supported by hardware.
1870 	 */
1871 	new_order = max_t(u32, get_order(esz << ids), new_order);
1872 	if (new_order >= MAX_ORDER) {
1873 		new_order = MAX_ORDER - 1;
1874 		ids = ilog2(PAGE_ORDER_TO_SIZE(new_order) / (int)esz);
1875 		pr_warn("ITS@%pa: %s Table too large, reduce ids %u->%u\n",
1876 			&its->phys_base, its_base_type_string[type],
1877 			its->device_ids, ids);
1878 	}
1879 
1880 	*order = new_order;
1881 
1882 	return indirect;
1883 }
1884 
its_free_tables(struct its_node * its)1885 static void its_free_tables(struct its_node *its)
1886 {
1887 	int i;
1888 
1889 	for (i = 0; i < GITS_BASER_NR_REGS; i++) {
1890 		if (its->tables[i].base) {
1891 			free_pages((unsigned long)its->tables[i].base,
1892 				   its->tables[i].order);
1893 			its->tables[i].base = NULL;
1894 		}
1895 	}
1896 }
1897 
its_alloc_tables(struct its_node * its)1898 static int its_alloc_tables(struct its_node *its)
1899 {
1900 	u64 shr = GITS_BASER_InnerShareable;
1901 	u64 cache = GITS_BASER_RaWaWb;
1902 	u32 psz = SZ_64K;
1903 	int err, i;
1904 
1905 	if (its->flags & ITS_FLAGS_WORKAROUND_CAVIUM_22375)
1906 		/* erratum 24313: ignore memory access type */
1907 		cache = GITS_BASER_nCnB;
1908 
1909 	for (i = 0; i < GITS_BASER_NR_REGS; i++) {
1910 		struct its_baser *baser = its->tables + i;
1911 		u64 val = its_read_baser(its, baser);
1912 		u64 type = GITS_BASER_TYPE(val);
1913 		u32 order = get_order(psz);
1914 		bool indirect = false;
1915 
1916 		switch (type) {
1917 		case GITS_BASER_TYPE_NONE:
1918 			continue;
1919 
1920 		case GITS_BASER_TYPE_DEVICE:
1921 			indirect = its_parse_indirect_baser(its, baser,
1922 							    psz, &order,
1923 							    its->device_ids);
1924 			break;
1925 
1926 		case GITS_BASER_TYPE_VCPU:
1927 			indirect = its_parse_indirect_baser(its, baser,
1928 							    psz, &order,
1929 							    ITS_MAX_VPEID_BITS);
1930 			break;
1931 		}
1932 
1933 		err = its_setup_baser(its, baser, cache, shr, psz, order, indirect);
1934 		if (err < 0) {
1935 			its_free_tables(its);
1936 			return err;
1937 		}
1938 
1939 		/* Update settings which will be used for next BASERn */
1940 		psz = baser->psz;
1941 		cache = baser->val & GITS_BASER_CACHEABILITY_MASK;
1942 		shr = baser->val & GITS_BASER_SHAREABILITY_MASK;
1943 	}
1944 
1945 	return 0;
1946 }
1947 
its_alloc_collections(struct its_node * its)1948 static int its_alloc_collections(struct its_node *its)
1949 {
1950 	int i;
1951 
1952 	its->collections = kcalloc(nr_cpu_ids, sizeof(*its->collections),
1953 				   GFP_KERNEL);
1954 	if (!its->collections)
1955 		return -ENOMEM;
1956 
1957 	for (i = 0; i < nr_cpu_ids; i++)
1958 		its->collections[i].target_address = ~0ULL;
1959 
1960 	return 0;
1961 }
1962 
its_allocate_pending_table(gfp_t gfp_flags)1963 static struct page *its_allocate_pending_table(gfp_t gfp_flags)
1964 {
1965 	struct page *pend_page;
1966 	/*
1967 	 * The pending pages have to be at least 64kB aligned,
1968 	 * hence the 'max(LPI_PENDBASE_SZ, SZ_64K)' below.
1969 	 */
1970 	pend_page = alloc_pages(gfp_flags | __GFP_ZERO,
1971 				get_order(max_t(u32, LPI_PENDBASE_SZ, SZ_64K)));
1972 	if (!pend_page)
1973 		return NULL;
1974 
1975 	/* Make sure the GIC will observe the zero-ed page */
1976 	gic_flush_dcache_to_poc(page_address(pend_page), LPI_PENDBASE_SZ);
1977 
1978 	return pend_page;
1979 }
1980 
its_free_pending_table(struct page * pt)1981 static void its_free_pending_table(struct page *pt)
1982 {
1983 	free_pages((unsigned long)page_address(pt),
1984 		   get_order(max_t(u32, LPI_PENDBASE_SZ, SZ_64K)));
1985 }
1986 
its_clear_vpend_valid(void __iomem * vlpi_base)1987 static u64 its_clear_vpend_valid(void __iomem *vlpi_base)
1988 {
1989 	u32 count = 1000000;	/* 1s! */
1990 	bool clean;
1991 	u64 val;
1992 
1993 	val = gits_read_vpendbaser(vlpi_base + GICR_VPENDBASER);
1994 	val &= ~GICR_VPENDBASER_Valid;
1995 	gits_write_vpendbaser(val, vlpi_base + GICR_VPENDBASER);
1996 
1997 	do {
1998 		val = gits_read_vpendbaser(vlpi_base + GICR_VPENDBASER);
1999 		clean = !(val & GICR_VPENDBASER_Dirty);
2000 		if (!clean) {
2001 			count--;
2002 			cpu_relax();
2003 			udelay(1);
2004 		}
2005 	} while (!clean && count);
2006 
2007 	return val;
2008 }
2009 
its_cpu_init_lpis(void)2010 static void its_cpu_init_lpis(void)
2011 {
2012 	void __iomem *rbase = gic_data_rdist_rd_base();
2013 	struct page *pend_page;
2014 	u64 val, tmp;
2015 
2016 	/* If we didn't allocate the pending table yet, do it now */
2017 	pend_page = gic_data_rdist()->pend_page;
2018 	if (!pend_page) {
2019 		phys_addr_t paddr;
2020 
2021 		pend_page = its_allocate_pending_table(GFP_NOWAIT);
2022 		if (!pend_page) {
2023 			pr_err("Failed to allocate PENDBASE for CPU%d\n",
2024 			       smp_processor_id());
2025 			return;
2026 		}
2027 
2028 		paddr = page_to_phys(pend_page);
2029 		pr_info("CPU%d: using LPI pending table @%pa\n",
2030 			smp_processor_id(), &paddr);
2031 		gic_data_rdist()->pend_page = pend_page;
2032 	}
2033 
2034 	/* set PROPBASE */
2035 	val = (page_to_phys(gic_rdists->prop_page) |
2036 	       GICR_PROPBASER_InnerShareable |
2037 	       GICR_PROPBASER_RaWaWb |
2038 	       ((LPI_NRBITS - 1) & GICR_PROPBASER_IDBITS_MASK));
2039 
2040 	gicr_write_propbaser(val, rbase + GICR_PROPBASER);
2041 	tmp = gicr_read_propbaser(rbase + GICR_PROPBASER);
2042 
2043 	if ((tmp ^ val) & GICR_PROPBASER_SHAREABILITY_MASK) {
2044 		if (!(tmp & GICR_PROPBASER_SHAREABILITY_MASK)) {
2045 			/*
2046 			 * The HW reports non-shareable, we must
2047 			 * remove the cacheability attributes as
2048 			 * well.
2049 			 */
2050 			val &= ~(GICR_PROPBASER_SHAREABILITY_MASK |
2051 				 GICR_PROPBASER_CACHEABILITY_MASK);
2052 			val |= GICR_PROPBASER_nC;
2053 			gicr_write_propbaser(val, rbase + GICR_PROPBASER);
2054 		}
2055 		pr_info_once("GIC: using cache flushing for LPI property table\n");
2056 		gic_rdists->flags |= RDIST_FLAGS_PROPBASE_NEEDS_FLUSHING;
2057 	}
2058 
2059 	/* set PENDBASE */
2060 	val = (page_to_phys(pend_page) |
2061 	       GICR_PENDBASER_InnerShareable |
2062 	       GICR_PENDBASER_RaWaWb);
2063 
2064 	gicr_write_pendbaser(val, rbase + GICR_PENDBASER);
2065 	tmp = gicr_read_pendbaser(rbase + GICR_PENDBASER);
2066 
2067 	if (!(tmp & GICR_PENDBASER_SHAREABILITY_MASK)) {
2068 		/*
2069 		 * The HW reports non-shareable, we must remove the
2070 		 * cacheability attributes as well.
2071 		 */
2072 		val &= ~(GICR_PENDBASER_SHAREABILITY_MASK |
2073 			 GICR_PENDBASER_CACHEABILITY_MASK);
2074 		val |= GICR_PENDBASER_nC;
2075 		gicr_write_pendbaser(val, rbase + GICR_PENDBASER);
2076 	}
2077 
2078 	/* Enable LPIs */
2079 	val = readl_relaxed(rbase + GICR_CTLR);
2080 	val |= GICR_CTLR_ENABLE_LPIS;
2081 	writel_relaxed(val, rbase + GICR_CTLR);
2082 
2083 	if (gic_rdists->has_vlpis) {
2084 		void __iomem *vlpi_base = gic_data_rdist_vlpi_base();
2085 
2086 		/*
2087 		 * It's possible for CPU to receive VLPIs before it is
2088 		 * sheduled as a vPE, especially for the first CPU, and the
2089 		 * VLPI with INTID larger than 2^(IDbits+1) will be considered
2090 		 * as out of range and dropped by GIC.
2091 		 * So we initialize IDbits to known value to avoid VLPI drop.
2092 		 */
2093 		val = (LPI_NRBITS - 1) & GICR_VPROPBASER_IDBITS_MASK;
2094 		pr_debug("GICv4: CPU%d: Init IDbits to 0x%llx for GICR_VPROPBASER\n",
2095 			smp_processor_id(), val);
2096 		gits_write_vpropbaser(val, vlpi_base + GICR_VPROPBASER);
2097 
2098 		/*
2099 		 * Also clear Valid bit of GICR_VPENDBASER, in case some
2100 		 * ancient programming gets left in and has possibility of
2101 		 * corrupting memory.
2102 		 */
2103 		val = its_clear_vpend_valid(vlpi_base);
2104 		WARN_ON(val & GICR_VPENDBASER_Dirty);
2105 	}
2106 
2107 	/* Make sure the GIC has seen the above */
2108 	dsb(sy);
2109 }
2110 
its_cpu_init_collection(struct its_node * its)2111 static void its_cpu_init_collection(struct its_node *its)
2112 {
2113 	int cpu = smp_processor_id();
2114 	u64 target;
2115 
2116 	/* avoid cross node collections and its mapping */
2117 	if (its->flags & ITS_FLAGS_WORKAROUND_CAVIUM_23144) {
2118 		struct device_node *cpu_node;
2119 
2120 		cpu_node = of_get_cpu_node(cpu, NULL);
2121 		if (its->numa_node != NUMA_NO_NODE &&
2122 			its->numa_node != of_node_to_nid(cpu_node))
2123 			return;
2124 	}
2125 
2126 	/*
2127 	 * We now have to bind each collection to its target
2128 	 * redistributor.
2129 	 */
2130 	if (gic_read_typer(its->base + GITS_TYPER) & GITS_TYPER_PTA) {
2131 		/*
2132 		 * This ITS wants the physical address of the
2133 		 * redistributor.
2134 		 */
2135 		target = gic_data_rdist()->phys_base;
2136 	} else {
2137 		/* This ITS wants a linear CPU number. */
2138 		target = gic_read_typer(gic_data_rdist_rd_base() + GICR_TYPER);
2139 		target = GICR_TYPER_CPU_NUMBER(target) << 16;
2140 	}
2141 
2142 	/* Perform collection mapping */
2143 	its->collections[cpu].target_address = target;
2144 	its->collections[cpu].col_id = cpu;
2145 
2146 	its_send_mapc(its, &its->collections[cpu], 1);
2147 	its_send_invall(its, &its->collections[cpu]);
2148 }
2149 
its_cpu_init_collections(void)2150 static void its_cpu_init_collections(void)
2151 {
2152 	struct its_node *its;
2153 
2154 	raw_spin_lock(&its_lock);
2155 
2156 	list_for_each_entry(its, &its_nodes, entry)
2157 		its_cpu_init_collection(its);
2158 
2159 	raw_spin_unlock(&its_lock);
2160 }
2161 
its_find_device(struct its_node * its,u32 dev_id)2162 static struct its_device *its_find_device(struct its_node *its, u32 dev_id)
2163 {
2164 	struct its_device *its_dev = NULL, *tmp;
2165 	unsigned long flags;
2166 
2167 	raw_spin_lock_irqsave(&its->lock, flags);
2168 
2169 	list_for_each_entry(tmp, &its->its_device_list, entry) {
2170 		if (tmp->device_id == dev_id) {
2171 			its_dev = tmp;
2172 			break;
2173 		}
2174 	}
2175 
2176 	raw_spin_unlock_irqrestore(&its->lock, flags);
2177 
2178 	return its_dev;
2179 }
2180 
its_get_baser(struct its_node * its,u32 type)2181 static struct its_baser *its_get_baser(struct its_node *its, u32 type)
2182 {
2183 	int i;
2184 
2185 	for (i = 0; i < GITS_BASER_NR_REGS; i++) {
2186 		if (GITS_BASER_TYPE(its->tables[i].val) == type)
2187 			return &its->tables[i];
2188 	}
2189 
2190 	return NULL;
2191 }
2192 
its_alloc_table_entry(struct its_baser * baser,u32 id)2193 static bool its_alloc_table_entry(struct its_baser *baser, u32 id)
2194 {
2195 	struct page *page;
2196 	u32 esz, idx;
2197 	__le64 *table;
2198 
2199 	/* Don't allow device id that exceeds single, flat table limit */
2200 	esz = GITS_BASER_ENTRY_SIZE(baser->val);
2201 	if (!(baser->val & GITS_BASER_INDIRECT))
2202 		return (id < (PAGE_ORDER_TO_SIZE(baser->order) / esz));
2203 
2204 	/* Compute 1st level table index & check if that exceeds table limit */
2205 	idx = id >> ilog2(baser->psz / esz);
2206 	if (idx >= (PAGE_ORDER_TO_SIZE(baser->order) / GITS_LVL1_ENTRY_SIZE))
2207 		return false;
2208 
2209 	table = baser->base;
2210 
2211 	/* Allocate memory for 2nd level table */
2212 	if (!table[idx]) {
2213 		page = alloc_pages(GFP_KERNEL | __GFP_ZERO, get_order(baser->psz));
2214 		if (!page)
2215 			return false;
2216 
2217 		/* Flush Lvl2 table to PoC if hw doesn't support coherency */
2218 		if (!(baser->val & GITS_BASER_SHAREABILITY_MASK))
2219 			gic_flush_dcache_to_poc(page_address(page), baser->psz);
2220 
2221 		table[idx] = cpu_to_le64(page_to_phys(page) | GITS_BASER_VALID);
2222 
2223 		/* Flush Lvl1 entry to PoC if hw doesn't support coherency */
2224 		if (!(baser->val & GITS_BASER_SHAREABILITY_MASK))
2225 			gic_flush_dcache_to_poc(table + idx, GITS_LVL1_ENTRY_SIZE);
2226 
2227 		/* Ensure updated table contents are visible to ITS hardware */
2228 		dsb(sy);
2229 	}
2230 
2231 	return true;
2232 }
2233 
its_alloc_device_table(struct its_node * its,u32 dev_id)2234 static bool its_alloc_device_table(struct its_node *its, u32 dev_id)
2235 {
2236 	struct its_baser *baser;
2237 
2238 	baser = its_get_baser(its, GITS_BASER_TYPE_DEVICE);
2239 
2240 	/* Don't allow device id that exceeds ITS hardware limit */
2241 	if (!baser)
2242 		return (ilog2(dev_id) < its->device_ids);
2243 
2244 	return its_alloc_table_entry(baser, dev_id);
2245 }
2246 
its_alloc_vpe_table(u32 vpe_id)2247 static bool its_alloc_vpe_table(u32 vpe_id)
2248 {
2249 	struct its_node *its;
2250 
2251 	/*
2252 	 * Make sure the L2 tables are allocated on *all* v4 ITSs. We
2253 	 * could try and only do it on ITSs corresponding to devices
2254 	 * that have interrupts targeted at this VPE, but the
2255 	 * complexity becomes crazy (and you have tons of memory
2256 	 * anyway, right?).
2257 	 */
2258 	list_for_each_entry(its, &its_nodes, entry) {
2259 		struct its_baser *baser;
2260 
2261 		if (!its->is_v4)
2262 			continue;
2263 
2264 		baser = its_get_baser(its, GITS_BASER_TYPE_VCPU);
2265 		if (!baser)
2266 			return false;
2267 
2268 		if (!its_alloc_table_entry(baser, vpe_id))
2269 			return false;
2270 	}
2271 
2272 	return true;
2273 }
2274 
its_create_device(struct its_node * its,u32 dev_id,int nvecs,bool alloc_lpis)2275 static struct its_device *its_create_device(struct its_node *its, u32 dev_id,
2276 					    int nvecs, bool alloc_lpis)
2277 {
2278 	struct its_device *dev;
2279 	unsigned long *lpi_map = NULL;
2280 	unsigned long flags;
2281 	u16 *col_map = NULL;
2282 	void *itt;
2283 	int lpi_base;
2284 	int nr_lpis;
2285 	int nr_ites;
2286 	int sz;
2287 
2288 	if (!its_alloc_device_table(its, dev_id))
2289 		return NULL;
2290 
2291 	if (WARN_ON(!is_power_of_2(nvecs)))
2292 		nvecs = roundup_pow_of_two(nvecs);
2293 
2294 	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
2295 	/*
2296 	 * Even if the device wants a single LPI, the ITT must be
2297 	 * sized as a power of two (and you need at least one bit...).
2298 	 */
2299 	nr_ites = max(2, nvecs);
2300 	sz = nr_ites * its->ite_size;
2301 	sz = max(sz, ITS_ITT_ALIGN) + ITS_ITT_ALIGN - 1;
2302 	itt = kzalloc(sz, GFP_KERNEL);
2303 	if (alloc_lpis) {
2304 		lpi_map = its_lpi_alloc(nvecs, &lpi_base, &nr_lpis);
2305 		if (lpi_map)
2306 			col_map = kcalloc(nr_lpis, sizeof(*col_map),
2307 					  GFP_KERNEL);
2308 	} else {
2309 		col_map = kcalloc(nr_ites, sizeof(*col_map), GFP_KERNEL);
2310 		nr_lpis = 0;
2311 		lpi_base = 0;
2312 	}
2313 
2314 	if (!dev || !itt ||  !col_map || (!lpi_map && alloc_lpis)) {
2315 		kfree(dev);
2316 		kfree(itt);
2317 		kfree(lpi_map);
2318 		kfree(col_map);
2319 		return NULL;
2320 	}
2321 
2322 	gic_flush_dcache_to_poc(itt, sz);
2323 
2324 	dev->its = its;
2325 	dev->itt = itt;
2326 	dev->nr_ites = nr_ites;
2327 	dev->event_map.lpi_map = lpi_map;
2328 	dev->event_map.col_map = col_map;
2329 	dev->event_map.lpi_base = lpi_base;
2330 	dev->event_map.nr_lpis = nr_lpis;
2331 	mutex_init(&dev->event_map.vlpi_lock);
2332 	dev->device_id = dev_id;
2333 	INIT_LIST_HEAD(&dev->entry);
2334 
2335 	raw_spin_lock_irqsave(&its->lock, flags);
2336 	list_add(&dev->entry, &its->its_device_list);
2337 	raw_spin_unlock_irqrestore(&its->lock, flags);
2338 
2339 	/* Map device to its ITT */
2340 	its_send_mapd(dev, 1);
2341 
2342 	return dev;
2343 }
2344 
its_free_device(struct its_device * its_dev)2345 static void its_free_device(struct its_device *its_dev)
2346 {
2347 	unsigned long flags;
2348 
2349 	raw_spin_lock_irqsave(&its_dev->its->lock, flags);
2350 	list_del(&its_dev->entry);
2351 	raw_spin_unlock_irqrestore(&its_dev->its->lock, flags);
2352 	kfree(its_dev->itt);
2353 	kfree(its_dev);
2354 }
2355 
its_alloc_device_irq(struct its_device * dev,int nvecs,irq_hw_number_t * hwirq)2356 static int its_alloc_device_irq(struct its_device *dev, int nvecs, irq_hw_number_t *hwirq)
2357 {
2358 	int idx;
2359 
2360 	idx = bitmap_find_free_region(dev->event_map.lpi_map,
2361 				      dev->event_map.nr_lpis,
2362 				      get_count_order(nvecs));
2363 	if (idx < 0)
2364 		return -ENOSPC;
2365 
2366 	*hwirq = dev->event_map.lpi_base + idx;
2367 	set_bit(idx, dev->event_map.lpi_map);
2368 
2369 	return 0;
2370 }
2371 
its_msi_prepare(struct irq_domain * domain,struct device * dev,int nvec,msi_alloc_info_t * info)2372 static int its_msi_prepare(struct irq_domain *domain, struct device *dev,
2373 			   int nvec, msi_alloc_info_t *info)
2374 {
2375 	struct its_node *its;
2376 	struct its_device *its_dev;
2377 	struct msi_domain_info *msi_info;
2378 	u32 dev_id;
2379 	int err = 0;
2380 
2381 	/*
2382 	 * We ignore "dev" entierely, and rely on the dev_id that has
2383 	 * been passed via the scratchpad. This limits this domain's
2384 	 * usefulness to upper layers that definitely know that they
2385 	 * are built on top of the ITS.
2386 	 */
2387 	dev_id = info->scratchpad[0].ul;
2388 
2389 	msi_info = msi_get_domain_info(domain);
2390 	its = msi_info->data;
2391 
2392 	if (!gic_rdists->has_direct_lpi &&
2393 	    vpe_proxy.dev &&
2394 	    vpe_proxy.dev->its == its &&
2395 	    dev_id == vpe_proxy.dev->device_id) {
2396 		/* Bad luck. Get yourself a better implementation */
2397 		WARN_ONCE(1, "DevId %x clashes with GICv4 VPE proxy device\n",
2398 			  dev_id);
2399 		return -EINVAL;
2400 	}
2401 
2402 	mutex_lock(&its->dev_alloc_lock);
2403 	its_dev = its_find_device(its, dev_id);
2404 	if (its_dev) {
2405 		/*
2406 		 * We already have seen this ID, probably through
2407 		 * another alias (PCI bridge of some sort). No need to
2408 		 * create the device.
2409 		 */
2410 		its_dev->shared = true;
2411 		pr_debug("Reusing ITT for devID %x\n", dev_id);
2412 		goto out;
2413 	}
2414 
2415 	its_dev = its_create_device(its, dev_id, nvec, true);
2416 	if (!its_dev) {
2417 		err = -ENOMEM;
2418 		goto out;
2419 	}
2420 
2421 	pr_debug("ITT %d entries, %d bits\n", nvec, ilog2(nvec));
2422 out:
2423 	mutex_unlock(&its->dev_alloc_lock);
2424 	info->scratchpad[0].ptr = its_dev;
2425 	return err;
2426 }
2427 
2428 static struct msi_domain_ops its_msi_domain_ops = {
2429 	.msi_prepare	= its_msi_prepare,
2430 };
2431 
its_irq_gic_domain_alloc(struct irq_domain * domain,unsigned int virq,irq_hw_number_t hwirq)2432 static int its_irq_gic_domain_alloc(struct irq_domain *domain,
2433 				    unsigned int virq,
2434 				    irq_hw_number_t hwirq)
2435 {
2436 	struct irq_fwspec fwspec;
2437 
2438 	if (irq_domain_get_of_node(domain->parent)) {
2439 		fwspec.fwnode = domain->parent->fwnode;
2440 		fwspec.param_count = 3;
2441 		fwspec.param[0] = GIC_IRQ_TYPE_LPI;
2442 		fwspec.param[1] = hwirq;
2443 		fwspec.param[2] = IRQ_TYPE_EDGE_RISING;
2444 	} else if (is_fwnode_irqchip(domain->parent->fwnode)) {
2445 		fwspec.fwnode = domain->parent->fwnode;
2446 		fwspec.param_count = 2;
2447 		fwspec.param[0] = hwirq;
2448 		fwspec.param[1] = IRQ_TYPE_EDGE_RISING;
2449 	} else {
2450 		return -EINVAL;
2451 	}
2452 
2453 	return irq_domain_alloc_irqs_parent(domain, virq, 1, &fwspec);
2454 }
2455 
its_irq_domain_alloc(struct irq_domain * domain,unsigned int virq,unsigned int nr_irqs,void * args)2456 static int its_irq_domain_alloc(struct irq_domain *domain, unsigned int virq,
2457 				unsigned int nr_irqs, void *args)
2458 {
2459 	msi_alloc_info_t *info = args;
2460 	struct its_device *its_dev = info->scratchpad[0].ptr;
2461 	struct irq_data *irqd;
2462 	irq_hw_number_t hwirq;
2463 	int err;
2464 	int i;
2465 
2466 	err = its_alloc_device_irq(its_dev, nr_irqs, &hwirq);
2467 	if (err)
2468 		return err;
2469 
2470 	for (i = 0; i < nr_irqs; i++) {
2471 		err = its_irq_gic_domain_alloc(domain, virq + i, hwirq + i);
2472 		if (err)
2473 			return err;
2474 
2475 		irq_domain_set_hwirq_and_chip(domain, virq + i,
2476 					      hwirq + i, &its_irq_chip, its_dev);
2477 		irqd = irq_get_irq_data(virq + i);
2478 		irqd_set_single_target(irqd);
2479 		irqd_set_affinity_on_activate(irqd);
2480 		pr_debug("ID:%d pID:%d vID:%d\n",
2481 			 (int)(hwirq + i - its_dev->event_map.lpi_base),
2482 			 (int)(hwirq + i), virq + i);
2483 	}
2484 
2485 	return 0;
2486 }
2487 
its_irq_domain_activate(struct irq_domain * domain,struct irq_data * d,bool reserve)2488 static int its_irq_domain_activate(struct irq_domain *domain,
2489 				   struct irq_data *d, bool reserve)
2490 {
2491 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
2492 	u32 event = its_get_event_id(d);
2493 	const struct cpumask *cpu_mask = cpu_online_mask;
2494 	int cpu;
2495 
2496 	/* get the cpu_mask of local node */
2497 	if (its_dev->its->numa_node >= 0)
2498 		cpu_mask = cpumask_of_node(its_dev->its->numa_node);
2499 
2500 	/* Bind the LPI to the first possible CPU */
2501 	cpu = cpumask_first_and(cpu_mask, cpu_online_mask);
2502 	if (cpu >= nr_cpu_ids) {
2503 		if (its_dev->its->flags & ITS_FLAGS_WORKAROUND_CAVIUM_23144)
2504 			return -EINVAL;
2505 
2506 		cpu = cpumask_first(cpu_online_mask);
2507 	}
2508 
2509 	its_dev->event_map.col_map[event] = cpu;
2510 	irq_data_update_effective_affinity(d, cpumask_of(cpu));
2511 
2512 	/* Map the GIC IRQ and event to the device */
2513 	its_send_mapti(its_dev, d->hwirq, event);
2514 	return 0;
2515 }
2516 
its_irq_domain_deactivate(struct irq_domain * domain,struct irq_data * d)2517 static void its_irq_domain_deactivate(struct irq_domain *domain,
2518 				      struct irq_data *d)
2519 {
2520 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
2521 	u32 event = its_get_event_id(d);
2522 
2523 	/* Stop the delivery of interrupts */
2524 	its_send_discard(its_dev, event);
2525 }
2526 
its_irq_domain_free(struct irq_domain * domain,unsigned int virq,unsigned int nr_irqs)2527 static void its_irq_domain_free(struct irq_domain *domain, unsigned int virq,
2528 				unsigned int nr_irqs)
2529 {
2530 	struct irq_data *d = irq_domain_get_irq_data(domain, virq);
2531 	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
2532 	struct its_node *its = its_dev->its;
2533 	int i;
2534 
2535 	bitmap_release_region(its_dev->event_map.lpi_map,
2536 			      its_get_event_id(irq_domain_get_irq_data(domain, virq)),
2537 			      get_count_order(nr_irqs));
2538 
2539 	for (i = 0; i < nr_irqs; i++) {
2540 		struct irq_data *data = irq_domain_get_irq_data(domain,
2541 								virq + i);
2542 		/* Nuke the entry in the domain */
2543 		irq_domain_reset_irq_data(data);
2544 	}
2545 
2546 	mutex_lock(&its->dev_alloc_lock);
2547 
2548 	/*
2549 	 * If all interrupts have been freed, start mopping the
2550 	 * floor. This is conditionned on the device not being shared.
2551 	 */
2552 	if (!its_dev->shared &&
2553 	    bitmap_empty(its_dev->event_map.lpi_map,
2554 			 its_dev->event_map.nr_lpis)) {
2555 		its_lpi_free(its_dev->event_map.lpi_map,
2556 			     its_dev->event_map.lpi_base,
2557 			     its_dev->event_map.nr_lpis);
2558 		kfree(its_dev->event_map.col_map);
2559 
2560 		/* Unmap device/itt */
2561 		its_send_mapd(its_dev, 0);
2562 		its_free_device(its_dev);
2563 	}
2564 
2565 	mutex_unlock(&its->dev_alloc_lock);
2566 
2567 	irq_domain_free_irqs_parent(domain, virq, nr_irqs);
2568 }
2569 
2570 static const struct irq_domain_ops its_domain_ops = {
2571 	.alloc			= its_irq_domain_alloc,
2572 	.free			= its_irq_domain_free,
2573 	.activate		= its_irq_domain_activate,
2574 	.deactivate		= its_irq_domain_deactivate,
2575 };
2576 
2577 /*
2578  * This is insane.
2579  *
2580  * If a GICv4 doesn't implement Direct LPIs (which is extremely
2581  * likely), the only way to perform an invalidate is to use a fake
2582  * device to issue an INV command, implying that the LPI has first
2583  * been mapped to some event on that device. Since this is not exactly
2584  * cheap, we try to keep that mapping around as long as possible, and
2585  * only issue an UNMAP if we're short on available slots.
2586  *
2587  * Broken by design(tm).
2588  */
its_vpe_db_proxy_unmap_locked(struct its_vpe * vpe)2589 static void its_vpe_db_proxy_unmap_locked(struct its_vpe *vpe)
2590 {
2591 	/* Already unmapped? */
2592 	if (vpe->vpe_proxy_event == -1)
2593 		return;
2594 
2595 	its_send_discard(vpe_proxy.dev, vpe->vpe_proxy_event);
2596 	vpe_proxy.vpes[vpe->vpe_proxy_event] = NULL;
2597 
2598 	/*
2599 	 * We don't track empty slots at all, so let's move the
2600 	 * next_victim pointer if we can quickly reuse that slot
2601 	 * instead of nuking an existing entry. Not clear that this is
2602 	 * always a win though, and this might just generate a ripple
2603 	 * effect... Let's just hope VPEs don't migrate too often.
2604 	 */
2605 	if (vpe_proxy.vpes[vpe_proxy.next_victim])
2606 		vpe_proxy.next_victim = vpe->vpe_proxy_event;
2607 
2608 	vpe->vpe_proxy_event = -1;
2609 }
2610 
its_vpe_db_proxy_unmap(struct its_vpe * vpe)2611 static void its_vpe_db_proxy_unmap(struct its_vpe *vpe)
2612 {
2613 	if (!gic_rdists->has_direct_lpi) {
2614 		unsigned long flags;
2615 
2616 		raw_spin_lock_irqsave(&vpe_proxy.lock, flags);
2617 		its_vpe_db_proxy_unmap_locked(vpe);
2618 		raw_spin_unlock_irqrestore(&vpe_proxy.lock, flags);
2619 	}
2620 }
2621 
its_vpe_db_proxy_map_locked(struct its_vpe * vpe)2622 static void its_vpe_db_proxy_map_locked(struct its_vpe *vpe)
2623 {
2624 	/* Already mapped? */
2625 	if (vpe->vpe_proxy_event != -1)
2626 		return;
2627 
2628 	/* This slot was already allocated. Kick the other VPE out. */
2629 	if (vpe_proxy.vpes[vpe_proxy.next_victim])
2630 		its_vpe_db_proxy_unmap_locked(vpe_proxy.vpes[vpe_proxy.next_victim]);
2631 
2632 	/* Map the new VPE instead */
2633 	vpe_proxy.vpes[vpe_proxy.next_victim] = vpe;
2634 	vpe->vpe_proxy_event = vpe_proxy.next_victim;
2635 	vpe_proxy.next_victim = (vpe_proxy.next_victim + 1) % vpe_proxy.dev->nr_ites;
2636 
2637 	vpe_proxy.dev->event_map.col_map[vpe->vpe_proxy_event] = vpe->col_idx;
2638 	its_send_mapti(vpe_proxy.dev, vpe->vpe_db_lpi, vpe->vpe_proxy_event);
2639 }
2640 
its_vpe_db_proxy_move(struct its_vpe * vpe,int from,int to)2641 static void its_vpe_db_proxy_move(struct its_vpe *vpe, int from, int to)
2642 {
2643 	unsigned long flags;
2644 	struct its_collection *target_col;
2645 
2646 	if (gic_rdists->has_direct_lpi) {
2647 		void __iomem *rdbase;
2648 
2649 		rdbase = per_cpu_ptr(gic_rdists->rdist, from)->rd_base;
2650 		gic_write_lpir(vpe->vpe_db_lpi, rdbase + GICR_CLRLPIR);
2651 		while (gic_read_lpir(rdbase + GICR_SYNCR) & 1)
2652 			cpu_relax();
2653 
2654 		return;
2655 	}
2656 
2657 	raw_spin_lock_irqsave(&vpe_proxy.lock, flags);
2658 
2659 	its_vpe_db_proxy_map_locked(vpe);
2660 
2661 	target_col = &vpe_proxy.dev->its->collections[to];
2662 	its_send_movi(vpe_proxy.dev, target_col, vpe->vpe_proxy_event);
2663 	vpe_proxy.dev->event_map.col_map[vpe->vpe_proxy_event] = to;
2664 
2665 	raw_spin_unlock_irqrestore(&vpe_proxy.lock, flags);
2666 }
2667 
its_vpe_set_affinity(struct irq_data * d,const struct cpumask * mask_val,bool force)2668 static int its_vpe_set_affinity(struct irq_data *d,
2669 				const struct cpumask *mask_val,
2670 				bool force)
2671 {
2672 	struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
2673 	int cpu = cpumask_first(mask_val);
2674 
2675 	/*
2676 	 * Changing affinity is mega expensive, so let's be as lazy as
2677 	 * we can and only do it if we really have to. Also, if mapped
2678 	 * into the proxy device, we need to move the doorbell
2679 	 * interrupt to its new location.
2680 	 */
2681 	if (vpe->col_idx != cpu) {
2682 		int from = vpe->col_idx;
2683 
2684 		vpe->col_idx = cpu;
2685 		its_send_vmovp(vpe);
2686 		its_vpe_db_proxy_move(vpe, from, cpu);
2687 	}
2688 
2689 	irq_data_update_effective_affinity(d, cpumask_of(cpu));
2690 
2691 	return IRQ_SET_MASK_OK_DONE;
2692 }
2693 
its_vpe_schedule(struct its_vpe * vpe)2694 static void its_vpe_schedule(struct its_vpe *vpe)
2695 {
2696 	void __iomem *vlpi_base = gic_data_rdist_vlpi_base();
2697 	u64 val;
2698 
2699 	/* Schedule the VPE */
2700 	val  = virt_to_phys(page_address(vpe->its_vm->vprop_page)) &
2701 		GENMASK_ULL(51, 12);
2702 	val |= (LPI_NRBITS - 1) & GICR_VPROPBASER_IDBITS_MASK;
2703 	val |= GICR_VPROPBASER_RaWb;
2704 	val |= GICR_VPROPBASER_InnerShareable;
2705 	gits_write_vpropbaser(val, vlpi_base + GICR_VPROPBASER);
2706 
2707 	val  = virt_to_phys(page_address(vpe->vpt_page)) &
2708 		GENMASK_ULL(51, 16);
2709 	val |= GICR_VPENDBASER_RaWaWb;
2710 	val |= GICR_VPENDBASER_NonShareable;
2711 	/*
2712 	 * There is no good way of finding out if the pending table is
2713 	 * empty as we can race against the doorbell interrupt very
2714 	 * easily. So in the end, vpe->pending_last is only an
2715 	 * indication that the vcpu has something pending, not one
2716 	 * that the pending table is empty. A good implementation
2717 	 * would be able to read its coarse map pretty quickly anyway,
2718 	 * making this a tolerable issue.
2719 	 */
2720 	val |= GICR_VPENDBASER_PendingLast;
2721 	val |= vpe->idai ? GICR_VPENDBASER_IDAI : 0;
2722 	val |= GICR_VPENDBASER_Valid;
2723 	gits_write_vpendbaser(val, vlpi_base + GICR_VPENDBASER);
2724 }
2725 
its_vpe_deschedule(struct its_vpe * vpe)2726 static void its_vpe_deschedule(struct its_vpe *vpe)
2727 {
2728 	void __iomem *vlpi_base = gic_data_rdist_vlpi_base();
2729 	u64 val;
2730 
2731 	val = its_clear_vpend_valid(vlpi_base);
2732 
2733 	if (unlikely(val & GICR_VPENDBASER_Dirty)) {
2734 		pr_err_ratelimited("ITS virtual pending table not cleaning\n");
2735 		vpe->idai = false;
2736 		vpe->pending_last = true;
2737 	} else {
2738 		vpe->idai = !!(val & GICR_VPENDBASER_IDAI);
2739 		vpe->pending_last = !!(val & GICR_VPENDBASER_PendingLast);
2740 	}
2741 }
2742 
its_vpe_invall(struct its_vpe * vpe)2743 static void its_vpe_invall(struct its_vpe *vpe)
2744 {
2745 	struct its_node *its;
2746 
2747 	list_for_each_entry(its, &its_nodes, entry) {
2748 		if (!its->is_v4)
2749 			continue;
2750 
2751 		if (its_list_map && !vpe->its_vm->vlpi_count[its->list_nr])
2752 			continue;
2753 
2754 		/*
2755 		 * Sending a VINVALL to a single ITS is enough, as all
2756 		 * we need is to reach the redistributors.
2757 		 */
2758 		its_send_vinvall(its, vpe);
2759 		return;
2760 	}
2761 }
2762 
its_vpe_set_vcpu_affinity(struct irq_data * d,void * vcpu_info)2763 static int its_vpe_set_vcpu_affinity(struct irq_data *d, void *vcpu_info)
2764 {
2765 	struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
2766 	struct its_cmd_info *info = vcpu_info;
2767 
2768 	switch (info->cmd_type) {
2769 	case SCHEDULE_VPE:
2770 		its_vpe_schedule(vpe);
2771 		return 0;
2772 
2773 	case DESCHEDULE_VPE:
2774 		its_vpe_deschedule(vpe);
2775 		return 0;
2776 
2777 	case INVALL_VPE:
2778 		its_vpe_invall(vpe);
2779 		return 0;
2780 
2781 	default:
2782 		return -EINVAL;
2783 	}
2784 }
2785 
its_vpe_send_cmd(struct its_vpe * vpe,void (* cmd)(struct its_device *,u32))2786 static void its_vpe_send_cmd(struct its_vpe *vpe,
2787 			     void (*cmd)(struct its_device *, u32))
2788 {
2789 	unsigned long flags;
2790 
2791 	raw_spin_lock_irqsave(&vpe_proxy.lock, flags);
2792 
2793 	its_vpe_db_proxy_map_locked(vpe);
2794 	cmd(vpe_proxy.dev, vpe->vpe_proxy_event);
2795 
2796 	raw_spin_unlock_irqrestore(&vpe_proxy.lock, flags);
2797 }
2798 
its_vpe_send_inv(struct irq_data * d)2799 static void its_vpe_send_inv(struct irq_data *d)
2800 {
2801 	struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
2802 
2803 	if (gic_rdists->has_direct_lpi) {
2804 		void __iomem *rdbase;
2805 
2806 		rdbase = per_cpu_ptr(gic_rdists->rdist, vpe->col_idx)->rd_base;
2807 		gic_write_lpir(vpe->vpe_db_lpi, rdbase + GICR_INVLPIR);
2808 		while (gic_read_lpir(rdbase + GICR_SYNCR) & 1)
2809 			cpu_relax();
2810 	} else {
2811 		its_vpe_send_cmd(vpe, its_send_inv);
2812 	}
2813 }
2814 
its_vpe_mask_irq(struct irq_data * d)2815 static void its_vpe_mask_irq(struct irq_data *d)
2816 {
2817 	/*
2818 	 * We need to unmask the LPI, which is described by the parent
2819 	 * irq_data. Instead of calling into the parent (which won't
2820 	 * exactly do the right thing, let's simply use the
2821 	 * parent_data pointer. Yes, I'm naughty.
2822 	 */
2823 	lpi_write_config(d->parent_data, LPI_PROP_ENABLED, 0);
2824 	its_vpe_send_inv(d);
2825 }
2826 
its_vpe_unmask_irq(struct irq_data * d)2827 static void its_vpe_unmask_irq(struct irq_data *d)
2828 {
2829 	/* Same hack as above... */
2830 	lpi_write_config(d->parent_data, 0, LPI_PROP_ENABLED);
2831 	its_vpe_send_inv(d);
2832 }
2833 
its_vpe_set_irqchip_state(struct irq_data * d,enum irqchip_irq_state which,bool state)2834 static int its_vpe_set_irqchip_state(struct irq_data *d,
2835 				     enum irqchip_irq_state which,
2836 				     bool state)
2837 {
2838 	struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
2839 
2840 	if (which != IRQCHIP_STATE_PENDING)
2841 		return -EINVAL;
2842 
2843 	if (gic_rdists->has_direct_lpi) {
2844 		void __iomem *rdbase;
2845 
2846 		rdbase = per_cpu_ptr(gic_rdists->rdist, vpe->col_idx)->rd_base;
2847 		if (state) {
2848 			gic_write_lpir(vpe->vpe_db_lpi, rdbase + GICR_SETLPIR);
2849 		} else {
2850 			gic_write_lpir(vpe->vpe_db_lpi, rdbase + GICR_CLRLPIR);
2851 			while (gic_read_lpir(rdbase + GICR_SYNCR) & 1)
2852 				cpu_relax();
2853 		}
2854 	} else {
2855 		if (state)
2856 			its_vpe_send_cmd(vpe, its_send_int);
2857 		else
2858 			its_vpe_send_cmd(vpe, its_send_clear);
2859 	}
2860 
2861 	return 0;
2862 }
2863 
its_vpe_retrigger(struct irq_data * d)2864 static int its_vpe_retrigger(struct irq_data *d)
2865 {
2866 	return !its_vpe_set_irqchip_state(d, IRQCHIP_STATE_PENDING, true);
2867 }
2868 
2869 static struct irq_chip its_vpe_irq_chip = {
2870 	.name			= "GICv4-vpe",
2871 	.irq_mask		= its_vpe_mask_irq,
2872 	.irq_unmask		= its_vpe_unmask_irq,
2873 	.irq_eoi		= irq_chip_eoi_parent,
2874 	.irq_set_affinity	= its_vpe_set_affinity,
2875 	.irq_retrigger		= its_vpe_retrigger,
2876 	.irq_set_irqchip_state	= its_vpe_set_irqchip_state,
2877 	.irq_set_vcpu_affinity	= its_vpe_set_vcpu_affinity,
2878 };
2879 
its_vpe_id_alloc(void)2880 static int its_vpe_id_alloc(void)
2881 {
2882 	return ida_simple_get(&its_vpeid_ida, 0, ITS_MAX_VPEID, GFP_KERNEL);
2883 }
2884 
its_vpe_id_free(u16 id)2885 static void its_vpe_id_free(u16 id)
2886 {
2887 	ida_simple_remove(&its_vpeid_ida, id);
2888 }
2889 
its_vpe_init(struct its_vpe * vpe)2890 static int its_vpe_init(struct its_vpe *vpe)
2891 {
2892 	struct page *vpt_page;
2893 	int vpe_id;
2894 
2895 	/* Allocate vpe_id */
2896 	vpe_id = its_vpe_id_alloc();
2897 	if (vpe_id < 0)
2898 		return vpe_id;
2899 
2900 	/* Allocate VPT */
2901 	vpt_page = its_allocate_pending_table(GFP_KERNEL);
2902 	if (!vpt_page) {
2903 		its_vpe_id_free(vpe_id);
2904 		return -ENOMEM;
2905 	}
2906 
2907 	if (!its_alloc_vpe_table(vpe_id)) {
2908 		its_vpe_id_free(vpe_id);
2909 		its_free_pending_table(vpt_page);
2910 		return -ENOMEM;
2911 	}
2912 
2913 	vpe->vpe_id = vpe_id;
2914 	vpe->vpt_page = vpt_page;
2915 	vpe->vpe_proxy_event = -1;
2916 
2917 	return 0;
2918 }
2919 
its_vpe_teardown(struct its_vpe * vpe)2920 static void its_vpe_teardown(struct its_vpe *vpe)
2921 {
2922 	its_vpe_db_proxy_unmap(vpe);
2923 	its_vpe_id_free(vpe->vpe_id);
2924 	its_free_pending_table(vpe->vpt_page);
2925 }
2926 
its_vpe_irq_domain_free(struct irq_domain * domain,unsigned int virq,unsigned int nr_irqs)2927 static void its_vpe_irq_domain_free(struct irq_domain *domain,
2928 				    unsigned int virq,
2929 				    unsigned int nr_irqs)
2930 {
2931 	struct its_vm *vm = domain->host_data;
2932 	int i;
2933 
2934 	irq_domain_free_irqs_parent(domain, virq, nr_irqs);
2935 
2936 	for (i = 0; i < nr_irqs; i++) {
2937 		struct irq_data *data = irq_domain_get_irq_data(domain,
2938 								virq + i);
2939 		struct its_vpe *vpe = irq_data_get_irq_chip_data(data);
2940 
2941 		BUG_ON(vm != vpe->its_vm);
2942 
2943 		clear_bit(data->hwirq, vm->db_bitmap);
2944 		its_vpe_teardown(vpe);
2945 		irq_domain_reset_irq_data(data);
2946 	}
2947 
2948 	if (bitmap_empty(vm->db_bitmap, vm->nr_db_lpis)) {
2949 		its_lpi_free(vm->db_bitmap, vm->db_lpi_base, vm->nr_db_lpis);
2950 		its_free_prop_table(vm->vprop_page);
2951 	}
2952 }
2953 
its_vpe_irq_domain_alloc(struct irq_domain * domain,unsigned int virq,unsigned int nr_irqs,void * args)2954 static int its_vpe_irq_domain_alloc(struct irq_domain *domain, unsigned int virq,
2955 				    unsigned int nr_irqs, void *args)
2956 {
2957 	struct its_vm *vm = args;
2958 	unsigned long *bitmap;
2959 	struct page *vprop_page;
2960 	int base, nr_ids, i, err = 0;
2961 
2962 	BUG_ON(!vm);
2963 
2964 	bitmap = its_lpi_alloc(roundup_pow_of_two(nr_irqs), &base, &nr_ids);
2965 	if (!bitmap)
2966 		return -ENOMEM;
2967 
2968 	if (nr_ids < nr_irqs) {
2969 		its_lpi_free(bitmap, base, nr_ids);
2970 		return -ENOMEM;
2971 	}
2972 
2973 	vprop_page = its_allocate_prop_table(GFP_KERNEL);
2974 	if (!vprop_page) {
2975 		its_lpi_free(bitmap, base, nr_ids);
2976 		return -ENOMEM;
2977 	}
2978 
2979 	vm->db_bitmap = bitmap;
2980 	vm->db_lpi_base = base;
2981 	vm->nr_db_lpis = nr_ids;
2982 	vm->vprop_page = vprop_page;
2983 
2984 	for (i = 0; i < nr_irqs; i++) {
2985 		vm->vpes[i]->vpe_db_lpi = base + i;
2986 		err = its_vpe_init(vm->vpes[i]);
2987 		if (err)
2988 			break;
2989 		err = its_irq_gic_domain_alloc(domain, virq + i,
2990 					       vm->vpes[i]->vpe_db_lpi);
2991 		if (err)
2992 			break;
2993 		irq_domain_set_hwirq_and_chip(domain, virq + i, i,
2994 					      &its_vpe_irq_chip, vm->vpes[i]);
2995 		set_bit(i, bitmap);
2996 	}
2997 
2998 	if (err) {
2999 		if (i > 0)
3000 			its_vpe_irq_domain_free(domain, virq, i - 1);
3001 
3002 		its_lpi_free(bitmap, base, nr_ids);
3003 		its_free_prop_table(vprop_page);
3004 	}
3005 
3006 	return err;
3007 }
3008 
its_vpe_irq_domain_activate(struct irq_domain * domain,struct irq_data * d,bool reserve)3009 static int its_vpe_irq_domain_activate(struct irq_domain *domain,
3010 				       struct irq_data *d, bool reserve)
3011 {
3012 	struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
3013 	struct its_node *its;
3014 
3015 	/* If we use the list map, we issue VMAPP on demand... */
3016 	if (its_list_map)
3017 		return 0;
3018 
3019 	/* Map the VPE to the first possible CPU */
3020 	vpe->col_idx = cpumask_first(cpu_online_mask);
3021 
3022 	list_for_each_entry(its, &its_nodes, entry) {
3023 		if (!its->is_v4)
3024 			continue;
3025 
3026 		its_send_vmapp(its, vpe, true);
3027 		its_send_vinvall(its, vpe);
3028 	}
3029 
3030 	irq_data_update_effective_affinity(d, cpumask_of(vpe->col_idx));
3031 
3032 	return 0;
3033 }
3034 
its_vpe_irq_domain_deactivate(struct irq_domain * domain,struct irq_data * d)3035 static void its_vpe_irq_domain_deactivate(struct irq_domain *domain,
3036 					  struct irq_data *d)
3037 {
3038 	struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
3039 	struct its_node *its;
3040 
3041 	/*
3042 	 * If we use the list map, we unmap the VPE once no VLPIs are
3043 	 * associated with the VM.
3044 	 */
3045 	if (its_list_map)
3046 		return;
3047 
3048 	list_for_each_entry(its, &its_nodes, entry) {
3049 		if (!its->is_v4)
3050 			continue;
3051 
3052 		its_send_vmapp(its, vpe, false);
3053 	}
3054 }
3055 
3056 static const struct irq_domain_ops its_vpe_domain_ops = {
3057 	.alloc			= its_vpe_irq_domain_alloc,
3058 	.free			= its_vpe_irq_domain_free,
3059 	.activate		= its_vpe_irq_domain_activate,
3060 	.deactivate		= its_vpe_irq_domain_deactivate,
3061 };
3062 
its_force_quiescent(void __iomem * base)3063 static int its_force_quiescent(void __iomem *base)
3064 {
3065 	u32 count = 1000000;	/* 1s */
3066 	u32 val;
3067 
3068 	val = readl_relaxed(base + GITS_CTLR);
3069 	/*
3070 	 * GIC architecture specification requires the ITS to be both
3071 	 * disabled and quiescent for writes to GITS_BASER<n> or
3072 	 * GITS_CBASER to not have UNPREDICTABLE results.
3073 	 */
3074 	if ((val & GITS_CTLR_QUIESCENT) && !(val & GITS_CTLR_ENABLE))
3075 		return 0;
3076 
3077 	/* Disable the generation of all interrupts to this ITS */
3078 	val &= ~(GITS_CTLR_ENABLE | GITS_CTLR_ImDe);
3079 	writel_relaxed(val, base + GITS_CTLR);
3080 
3081 	/* Poll GITS_CTLR and wait until ITS becomes quiescent */
3082 	while (1) {
3083 		val = readl_relaxed(base + GITS_CTLR);
3084 		if (val & GITS_CTLR_QUIESCENT)
3085 			return 0;
3086 
3087 		count--;
3088 		if (!count)
3089 			return -EBUSY;
3090 
3091 		cpu_relax();
3092 		udelay(1);
3093 	}
3094 }
3095 
its_enable_quirk_cavium_22375(void * data)3096 static bool __maybe_unused its_enable_quirk_cavium_22375(void *data)
3097 {
3098 	struct its_node *its = data;
3099 
3100 	/* erratum 22375: only alloc 8MB table size */
3101 	its->device_ids = 0x14;		/* 20 bits, 8MB */
3102 	its->flags |= ITS_FLAGS_WORKAROUND_CAVIUM_22375;
3103 
3104 	return true;
3105 }
3106 
its_enable_quirk_cavium_23144(void * data)3107 static bool __maybe_unused its_enable_quirk_cavium_23144(void *data)
3108 {
3109 	struct its_node *its = data;
3110 
3111 	its->flags |= ITS_FLAGS_WORKAROUND_CAVIUM_23144;
3112 
3113 	return true;
3114 }
3115 
its_enable_quirk_qdf2400_e0065(void * data)3116 static bool __maybe_unused its_enable_quirk_qdf2400_e0065(void *data)
3117 {
3118 	struct its_node *its = data;
3119 
3120 	/* On QDF2400, the size of the ITE is 16Bytes */
3121 	its->ite_size = 16;
3122 
3123 	return true;
3124 }
3125 
its_irq_get_msi_base_pre_its(struct its_device * its_dev)3126 static u64 its_irq_get_msi_base_pre_its(struct its_device *its_dev)
3127 {
3128 	struct its_node *its = its_dev->its;
3129 
3130 	/*
3131 	 * The Socionext Synquacer SoC has a so-called 'pre-ITS',
3132 	 * which maps 32-bit writes targeted at a separate window of
3133 	 * size '4 << device_id_bits' onto writes to GITS_TRANSLATER
3134 	 * with device ID taken from bits [device_id_bits + 1:2] of
3135 	 * the window offset.
3136 	 */
3137 	return its->pre_its_base + (its_dev->device_id << 2);
3138 }
3139 
its_enable_quirk_socionext_synquacer(void * data)3140 static bool __maybe_unused its_enable_quirk_socionext_synquacer(void *data)
3141 {
3142 	struct its_node *its = data;
3143 	u32 pre_its_window[2];
3144 	u32 ids;
3145 
3146 	if (!fwnode_property_read_u32_array(its->fwnode_handle,
3147 					   "socionext,synquacer-pre-its",
3148 					   pre_its_window,
3149 					   ARRAY_SIZE(pre_its_window))) {
3150 
3151 		its->pre_its_base = pre_its_window[0];
3152 		its->get_msi_base = its_irq_get_msi_base_pre_its;
3153 
3154 		ids = ilog2(pre_its_window[1]) - 2;
3155 		if (its->device_ids > ids)
3156 			its->device_ids = ids;
3157 
3158 		/* the pre-ITS breaks isolation, so disable MSI remapping */
3159 		its->msi_domain_flags &= ~IRQ_DOMAIN_FLAG_MSI_REMAP;
3160 		return true;
3161 	}
3162 	return false;
3163 }
3164 
its_enable_quirk_hip07_161600802(void * data)3165 static bool __maybe_unused its_enable_quirk_hip07_161600802(void *data)
3166 {
3167 	struct its_node *its = data;
3168 
3169 	/*
3170 	 * Hip07 insists on using the wrong address for the VLPI
3171 	 * page. Trick it into doing the right thing...
3172 	 */
3173 	its->vlpi_redist_offset = SZ_128K;
3174 	return true;
3175 }
3176 
3177 static const struct gic_quirk its_quirks[] = {
3178 #ifdef CONFIG_CAVIUM_ERRATUM_22375
3179 	{
3180 		.desc	= "ITS: Cavium errata 22375, 24313",
3181 		.iidr	= 0xa100034c,	/* ThunderX pass 1.x */
3182 		.mask	= 0xffff0fff,
3183 		.init	= its_enable_quirk_cavium_22375,
3184 	},
3185 #endif
3186 #ifdef CONFIG_CAVIUM_ERRATUM_23144
3187 	{
3188 		.desc	= "ITS: Cavium erratum 23144",
3189 		.iidr	= 0xa100034c,	/* ThunderX pass 1.x */
3190 		.mask	= 0xffff0fff,
3191 		.init	= its_enable_quirk_cavium_23144,
3192 	},
3193 #endif
3194 #ifdef CONFIG_QCOM_QDF2400_ERRATUM_0065
3195 	{
3196 		.desc	= "ITS: QDF2400 erratum 0065",
3197 		.iidr	= 0x00001070, /* QDF2400 ITS rev 1.x */
3198 		.mask	= 0xffffffff,
3199 		.init	= its_enable_quirk_qdf2400_e0065,
3200 	},
3201 #endif
3202 #ifdef CONFIG_SOCIONEXT_SYNQUACER_PREITS
3203 	{
3204 		/*
3205 		 * The Socionext Synquacer SoC incorporates ARM's own GIC-500
3206 		 * implementation, but with a 'pre-ITS' added that requires
3207 		 * special handling in software.
3208 		 */
3209 		.desc	= "ITS: Socionext Synquacer pre-ITS",
3210 		.iidr	= 0x0001143b,
3211 		.mask	= 0xffffffff,
3212 		.init	= its_enable_quirk_socionext_synquacer,
3213 	},
3214 #endif
3215 #ifdef CONFIG_HISILICON_ERRATUM_161600802
3216 	{
3217 		.desc	= "ITS: Hip07 erratum 161600802",
3218 		.iidr	= 0x00000004,
3219 		.mask	= 0xffffffff,
3220 		.init	= its_enable_quirk_hip07_161600802,
3221 	},
3222 #endif
3223 	{
3224 	}
3225 };
3226 
its_enable_quirks(struct its_node * its)3227 static void its_enable_quirks(struct its_node *its)
3228 {
3229 	u32 iidr = readl_relaxed(its->base + GITS_IIDR);
3230 
3231 	gic_enable_quirks(iidr, its_quirks, its);
3232 }
3233 
its_save_disable(void)3234 static int its_save_disable(void)
3235 {
3236 	struct its_node *its;
3237 	int err = 0;
3238 
3239 	raw_spin_lock(&its_lock);
3240 	list_for_each_entry(its, &its_nodes, entry) {
3241 		void __iomem *base;
3242 
3243 		if (!(its->flags & ITS_FLAGS_SAVE_SUSPEND_STATE))
3244 			continue;
3245 
3246 		base = its->base;
3247 		its->ctlr_save = readl_relaxed(base + GITS_CTLR);
3248 		err = its_force_quiescent(base);
3249 		if (err) {
3250 			pr_err("ITS@%pa: failed to quiesce: %d\n",
3251 			       &its->phys_base, err);
3252 			writel_relaxed(its->ctlr_save, base + GITS_CTLR);
3253 			goto err;
3254 		}
3255 
3256 		its->cbaser_save = gits_read_cbaser(base + GITS_CBASER);
3257 	}
3258 
3259 err:
3260 	if (err) {
3261 		list_for_each_entry_continue_reverse(its, &its_nodes, entry) {
3262 			void __iomem *base;
3263 
3264 			if (!(its->flags & ITS_FLAGS_SAVE_SUSPEND_STATE))
3265 				continue;
3266 
3267 			base = its->base;
3268 			writel_relaxed(its->ctlr_save, base + GITS_CTLR);
3269 		}
3270 	}
3271 	raw_spin_unlock(&its_lock);
3272 
3273 	return err;
3274 }
3275 
its_restore_enable(void)3276 static void its_restore_enable(void)
3277 {
3278 	struct its_node *its;
3279 	int ret;
3280 
3281 	raw_spin_lock(&its_lock);
3282 	list_for_each_entry(its, &its_nodes, entry) {
3283 		void __iomem *base;
3284 		int i;
3285 
3286 		if (!(its->flags & ITS_FLAGS_SAVE_SUSPEND_STATE))
3287 			continue;
3288 
3289 		base = its->base;
3290 
3291 		/*
3292 		 * Make sure that the ITS is disabled. If it fails to quiesce,
3293 		 * don't restore it since writing to CBASER or BASER<n>
3294 		 * registers is undefined according to the GIC v3 ITS
3295 		 * Specification.
3296 		 */
3297 		ret = its_force_quiescent(base);
3298 		if (ret) {
3299 			pr_err("ITS@%pa: failed to quiesce on resume: %d\n",
3300 			       &its->phys_base, ret);
3301 			continue;
3302 		}
3303 
3304 		gits_write_cbaser(its->cbaser_save, base + GITS_CBASER);
3305 
3306 		/*
3307 		 * Writing CBASER resets CREADR to 0, so make CWRITER and
3308 		 * cmd_write line up with it.
3309 		 */
3310 		its->cmd_write = its->cmd_base;
3311 		gits_write_cwriter(0, base + GITS_CWRITER);
3312 
3313 		/* Restore GITS_BASER from the value cache. */
3314 		for (i = 0; i < GITS_BASER_NR_REGS; i++) {
3315 			struct its_baser *baser = &its->tables[i];
3316 
3317 			if (!(baser->val & GITS_BASER_VALID))
3318 				continue;
3319 
3320 			its_write_baser(its, baser, baser->val);
3321 		}
3322 		writel_relaxed(its->ctlr_save, base + GITS_CTLR);
3323 
3324 		/*
3325 		 * Reinit the collection if it's stored in the ITS. This is
3326 		 * indicated by the col_id being less than the HCC field.
3327 		 * CID < HCC as specified in the GIC v3 Documentation.
3328 		 */
3329 		if (its->collections[smp_processor_id()].col_id <
3330 		    GITS_TYPER_HCC(gic_read_typer(base + GITS_TYPER)))
3331 			its_cpu_init_collection(its);
3332 	}
3333 	raw_spin_unlock(&its_lock);
3334 }
3335 
3336 static struct syscore_ops its_syscore_ops = {
3337 	.suspend = its_save_disable,
3338 	.resume = its_restore_enable,
3339 };
3340 
its_init_domain(struct fwnode_handle * handle,struct its_node * its)3341 static int its_init_domain(struct fwnode_handle *handle, struct its_node *its)
3342 {
3343 	struct irq_domain *inner_domain;
3344 	struct msi_domain_info *info;
3345 
3346 	info = kzalloc(sizeof(*info), GFP_KERNEL);
3347 	if (!info)
3348 		return -ENOMEM;
3349 
3350 	inner_domain = irq_domain_create_tree(handle, &its_domain_ops, its);
3351 	if (!inner_domain) {
3352 		kfree(info);
3353 		return -ENOMEM;
3354 	}
3355 
3356 	inner_domain->parent = its_parent;
3357 	irq_domain_update_bus_token(inner_domain, DOMAIN_BUS_NEXUS);
3358 	inner_domain->flags |= its->msi_domain_flags;
3359 	info->ops = &its_msi_domain_ops;
3360 	info->data = its;
3361 	inner_domain->host_data = info;
3362 
3363 	return 0;
3364 }
3365 
its_init_vpe_domain(void)3366 static int its_init_vpe_domain(void)
3367 {
3368 	struct its_node *its;
3369 	u32 devid;
3370 	int entries;
3371 
3372 	if (gic_rdists->has_direct_lpi) {
3373 		pr_info("ITS: Using DirectLPI for VPE invalidation\n");
3374 		return 0;
3375 	}
3376 
3377 	/* Any ITS will do, even if not v4 */
3378 	its = list_first_entry(&its_nodes, struct its_node, entry);
3379 
3380 	entries = roundup_pow_of_two(nr_cpu_ids);
3381 	vpe_proxy.vpes = kcalloc(entries, sizeof(*vpe_proxy.vpes),
3382 				 GFP_KERNEL);
3383 	if (!vpe_proxy.vpes) {
3384 		pr_err("ITS: Can't allocate GICv4 proxy device array\n");
3385 		return -ENOMEM;
3386 	}
3387 
3388 	/* Use the last possible DevID */
3389 	devid = GENMASK(its->device_ids - 1, 0);
3390 	vpe_proxy.dev = its_create_device(its, devid, entries, false);
3391 	if (!vpe_proxy.dev) {
3392 		kfree(vpe_proxy.vpes);
3393 		pr_err("ITS: Can't allocate GICv4 proxy device\n");
3394 		return -ENOMEM;
3395 	}
3396 
3397 	BUG_ON(entries > vpe_proxy.dev->nr_ites);
3398 
3399 	raw_spin_lock_init(&vpe_proxy.lock);
3400 	vpe_proxy.next_victim = 0;
3401 	pr_info("ITS: Allocated DevID %x as GICv4 proxy device (%d slots)\n",
3402 		devid, vpe_proxy.dev->nr_ites);
3403 
3404 	return 0;
3405 }
3406 
its_compute_its_list_map(struct resource * res,void __iomem * its_base)3407 static int __init its_compute_its_list_map(struct resource *res,
3408 					   void __iomem *its_base)
3409 {
3410 	int its_number;
3411 	u32 ctlr;
3412 
3413 	/*
3414 	 * This is assumed to be done early enough that we're
3415 	 * guaranteed to be single-threaded, hence no
3416 	 * locking. Should this change, we should address
3417 	 * this.
3418 	 */
3419 	its_number = find_first_zero_bit(&its_list_map, GICv4_ITS_LIST_MAX);
3420 	if (its_number >= GICv4_ITS_LIST_MAX) {
3421 		pr_err("ITS@%pa: No ITSList entry available!\n",
3422 		       &res->start);
3423 		return -EINVAL;
3424 	}
3425 
3426 	ctlr = readl_relaxed(its_base + GITS_CTLR);
3427 	ctlr &= ~GITS_CTLR_ITS_NUMBER;
3428 	ctlr |= its_number << GITS_CTLR_ITS_NUMBER_SHIFT;
3429 	writel_relaxed(ctlr, its_base + GITS_CTLR);
3430 	ctlr = readl_relaxed(its_base + GITS_CTLR);
3431 	if ((ctlr & GITS_CTLR_ITS_NUMBER) != (its_number << GITS_CTLR_ITS_NUMBER_SHIFT)) {
3432 		its_number = ctlr & GITS_CTLR_ITS_NUMBER;
3433 		its_number >>= GITS_CTLR_ITS_NUMBER_SHIFT;
3434 	}
3435 
3436 	if (test_and_set_bit(its_number, &its_list_map)) {
3437 		pr_err("ITS@%pa: Duplicate ITSList entry %d\n",
3438 		       &res->start, its_number);
3439 		return -EINVAL;
3440 	}
3441 
3442 	return its_number;
3443 }
3444 
its_probe_one(struct resource * res,struct fwnode_handle * handle,int numa_node)3445 static int __init its_probe_one(struct resource *res,
3446 				struct fwnode_handle *handle, int numa_node)
3447 {
3448 	struct its_node *its;
3449 	void __iomem *its_base;
3450 	u32 val, ctlr;
3451 	u64 baser, tmp, typer;
3452 	int err;
3453 
3454 	its_base = ioremap(res->start, resource_size(res));
3455 	if (!its_base) {
3456 		pr_warn("ITS@%pa: Unable to map ITS registers\n", &res->start);
3457 		return -ENOMEM;
3458 	}
3459 
3460 	val = readl_relaxed(its_base + GITS_PIDR2) & GIC_PIDR2_ARCH_MASK;
3461 	if (val != 0x30 && val != 0x40) {
3462 		pr_warn("ITS@%pa: No ITS detected, giving up\n", &res->start);
3463 		err = -ENODEV;
3464 		goto out_unmap;
3465 	}
3466 
3467 	err = its_force_quiescent(its_base);
3468 	if (err) {
3469 		pr_warn("ITS@%pa: Failed to quiesce, giving up\n", &res->start);
3470 		goto out_unmap;
3471 	}
3472 
3473 	pr_info("ITS %pR\n", res);
3474 
3475 	its = kzalloc(sizeof(*its), GFP_KERNEL);
3476 	if (!its) {
3477 		err = -ENOMEM;
3478 		goto out_unmap;
3479 	}
3480 
3481 	raw_spin_lock_init(&its->lock);
3482 	mutex_init(&its->dev_alloc_lock);
3483 	INIT_LIST_HEAD(&its->entry);
3484 	INIT_LIST_HEAD(&its->its_device_list);
3485 	typer = gic_read_typer(its_base + GITS_TYPER);
3486 	its->base = its_base;
3487 	its->phys_base = res->start;
3488 	its->ite_size = GITS_TYPER_ITT_ENTRY_SIZE(typer);
3489 	its->device_ids = GITS_TYPER_DEVBITS(typer);
3490 	its->is_v4 = !!(typer & GITS_TYPER_VLPIS);
3491 	if (its->is_v4) {
3492 		if (!(typer & GITS_TYPER_VMOVP)) {
3493 			err = its_compute_its_list_map(res, its_base);
3494 			if (err < 0)
3495 				goto out_free_its;
3496 
3497 			its->list_nr = err;
3498 
3499 			pr_info("ITS@%pa: Using ITS number %d\n",
3500 				&res->start, err);
3501 		} else {
3502 			pr_info("ITS@%pa: Single VMOVP capable\n", &res->start);
3503 		}
3504 	}
3505 
3506 	its->numa_node = numa_node;
3507 
3508 	its->cmd_base = (void *)__get_free_pages(GFP_KERNEL | __GFP_ZERO,
3509 						get_order(ITS_CMD_QUEUE_SZ));
3510 	if (!its->cmd_base) {
3511 		err = -ENOMEM;
3512 		goto out_free_its;
3513 	}
3514 	its->cmd_write = its->cmd_base;
3515 	its->fwnode_handle = handle;
3516 	its->get_msi_base = its_irq_get_msi_base;
3517 	its->msi_domain_flags = IRQ_DOMAIN_FLAG_MSI_REMAP;
3518 
3519 	its_enable_quirks(its);
3520 
3521 	err = its_alloc_tables(its);
3522 	if (err)
3523 		goto out_free_cmd;
3524 
3525 	err = its_alloc_collections(its);
3526 	if (err)
3527 		goto out_free_tables;
3528 
3529 	baser = (virt_to_phys(its->cmd_base)	|
3530 		 GITS_CBASER_RaWaWb		|
3531 		 GITS_CBASER_InnerShareable	|
3532 		 (ITS_CMD_QUEUE_SZ / SZ_4K - 1)	|
3533 		 GITS_CBASER_VALID);
3534 
3535 	gits_write_cbaser(baser, its->base + GITS_CBASER);
3536 	tmp = gits_read_cbaser(its->base + GITS_CBASER);
3537 
3538 	if ((tmp ^ baser) & GITS_CBASER_SHAREABILITY_MASK) {
3539 		if (!(tmp & GITS_CBASER_SHAREABILITY_MASK)) {
3540 			/*
3541 			 * The HW reports non-shareable, we must
3542 			 * remove the cacheability attributes as
3543 			 * well.
3544 			 */
3545 			baser &= ~(GITS_CBASER_SHAREABILITY_MASK |
3546 				   GITS_CBASER_CACHEABILITY_MASK);
3547 			baser |= GITS_CBASER_nC;
3548 			gits_write_cbaser(baser, its->base + GITS_CBASER);
3549 		}
3550 		pr_info("ITS: using cache flushing for cmd queue\n");
3551 		its->flags |= ITS_FLAGS_CMDQ_NEEDS_FLUSHING;
3552 	}
3553 
3554 	gits_write_cwriter(0, its->base + GITS_CWRITER);
3555 	ctlr = readl_relaxed(its->base + GITS_CTLR);
3556 	ctlr |= GITS_CTLR_ENABLE;
3557 	if (its->is_v4)
3558 		ctlr |= GITS_CTLR_ImDe;
3559 	writel_relaxed(ctlr, its->base + GITS_CTLR);
3560 
3561 	if (GITS_TYPER_HCC(typer))
3562 		its->flags |= ITS_FLAGS_SAVE_SUSPEND_STATE;
3563 
3564 	err = its_init_domain(handle, its);
3565 	if (err)
3566 		goto out_free_tables;
3567 
3568 	raw_spin_lock(&its_lock);
3569 	list_add(&its->entry, &its_nodes);
3570 	raw_spin_unlock(&its_lock);
3571 
3572 	return 0;
3573 
3574 out_free_tables:
3575 	its_free_tables(its);
3576 out_free_cmd:
3577 	free_pages((unsigned long)its->cmd_base, get_order(ITS_CMD_QUEUE_SZ));
3578 out_free_its:
3579 	kfree(its);
3580 out_unmap:
3581 	iounmap(its_base);
3582 	pr_err("ITS@%pa: failed probing (%d)\n", &res->start, err);
3583 	return err;
3584 }
3585 
gic_rdists_supports_plpis(void)3586 static bool gic_rdists_supports_plpis(void)
3587 {
3588 	return !!(gic_read_typer(gic_data_rdist_rd_base() + GICR_TYPER) & GICR_TYPER_PLPIS);
3589 }
3590 
redist_disable_lpis(void)3591 static int redist_disable_lpis(void)
3592 {
3593 	void __iomem *rbase = gic_data_rdist_rd_base();
3594 	u64 timeout = USEC_PER_SEC;
3595 	u64 val;
3596 
3597 	/*
3598 	 * If coming via a CPU hotplug event, we don't need to disable
3599 	 * LPIs before trying to re-enable them. They are already
3600 	 * configured and all is well in the world. Detect this case
3601 	 * by checking the allocation of the pending table for the
3602 	 * current CPU.
3603 	 */
3604 	if (gic_data_rdist()->pend_page)
3605 		return 0;
3606 
3607 	if (!gic_rdists_supports_plpis()) {
3608 		pr_info("CPU%d: LPIs not supported\n", smp_processor_id());
3609 		return -ENXIO;
3610 	}
3611 
3612 	val = readl_relaxed(rbase + GICR_CTLR);
3613 	if (!(val & GICR_CTLR_ENABLE_LPIS))
3614 		return 0;
3615 
3616 	pr_warn("CPU%d: Booted with LPIs enabled, memory probably corrupted\n",
3617 		smp_processor_id());
3618 	add_taint(TAINT_CRAP, LOCKDEP_STILL_OK);
3619 
3620 	/* Disable LPIs */
3621 	val &= ~GICR_CTLR_ENABLE_LPIS;
3622 	writel_relaxed(val, rbase + GICR_CTLR);
3623 
3624 	/* Make sure any change to GICR_CTLR is observable by the GIC */
3625 	dsb(sy);
3626 
3627 	/*
3628 	 * Software must observe RWP==0 after clearing GICR_CTLR.EnableLPIs
3629 	 * from 1 to 0 before programming GICR_PEND{PROP}BASER registers.
3630 	 * Error out if we time out waiting for RWP to clear.
3631 	 */
3632 	while (readl_relaxed(rbase + GICR_CTLR) & GICR_CTLR_RWP) {
3633 		if (!timeout) {
3634 			pr_err("CPU%d: Timeout while disabling LPIs\n",
3635 			       smp_processor_id());
3636 			return -ETIMEDOUT;
3637 		}
3638 		udelay(1);
3639 		timeout--;
3640 	}
3641 
3642 	/*
3643 	 * After it has been written to 1, it is IMPLEMENTATION
3644 	 * DEFINED whether GICR_CTLR.EnableLPI becomes RES1 or can be
3645 	 * cleared to 0. Error out if clearing the bit failed.
3646 	 */
3647 	if (readl_relaxed(rbase + GICR_CTLR) & GICR_CTLR_ENABLE_LPIS) {
3648 		pr_err("CPU%d: Failed to disable LPIs\n", smp_processor_id());
3649 		return -EBUSY;
3650 	}
3651 
3652 	return 0;
3653 }
3654 
its_cpu_init(void)3655 int its_cpu_init(void)
3656 {
3657 	if (!list_empty(&its_nodes)) {
3658 		int ret;
3659 
3660 		ret = redist_disable_lpis();
3661 		if (ret)
3662 			return ret;
3663 
3664 		its_cpu_init_lpis();
3665 		its_cpu_init_collections();
3666 	}
3667 
3668 	return 0;
3669 }
3670 
3671 static const struct of_device_id its_device_id[] = {
3672 	{	.compatible	= "arm,gic-v3-its",	},
3673 	{},
3674 };
3675 
its_of_probe(struct device_node * node)3676 static int __init its_of_probe(struct device_node *node)
3677 {
3678 	struct device_node *np;
3679 	struct resource res;
3680 
3681 	for (np = of_find_matching_node(node, its_device_id); np;
3682 	     np = of_find_matching_node(np, its_device_id)) {
3683 		if (!of_device_is_available(np))
3684 			continue;
3685 		if (!of_property_read_bool(np, "msi-controller")) {
3686 			pr_warn("%pOF: no msi-controller property, ITS ignored\n",
3687 				np);
3688 			continue;
3689 		}
3690 
3691 		if (of_address_to_resource(np, 0, &res)) {
3692 			pr_warn("%pOF: no regs?\n", np);
3693 			continue;
3694 		}
3695 
3696 		its_probe_one(&res, &np->fwnode, of_node_to_nid(np));
3697 	}
3698 	return 0;
3699 }
3700 
3701 #ifdef CONFIG_ACPI
3702 
3703 #define ACPI_GICV3_ITS_MEM_SIZE (SZ_128K)
3704 
3705 #ifdef CONFIG_ACPI_NUMA
3706 struct its_srat_map {
3707 	/* numa node id */
3708 	u32	numa_node;
3709 	/* GIC ITS ID */
3710 	u32	its_id;
3711 };
3712 
3713 static struct its_srat_map *its_srat_maps __initdata;
3714 static int its_in_srat __initdata;
3715 
acpi_get_its_numa_node(u32 its_id)3716 static int __init acpi_get_its_numa_node(u32 its_id)
3717 {
3718 	int i;
3719 
3720 	for (i = 0; i < its_in_srat; i++) {
3721 		if (its_id == its_srat_maps[i].its_id)
3722 			return its_srat_maps[i].numa_node;
3723 	}
3724 	return NUMA_NO_NODE;
3725 }
3726 
gic_acpi_match_srat_its(struct acpi_subtable_header * header,const unsigned long end)3727 static int __init gic_acpi_match_srat_its(struct acpi_subtable_header *header,
3728 					  const unsigned long end)
3729 {
3730 	return 0;
3731 }
3732 
gic_acpi_parse_srat_its(struct acpi_subtable_header * header,const unsigned long end)3733 static int __init gic_acpi_parse_srat_its(struct acpi_subtable_header *header,
3734 			 const unsigned long end)
3735 {
3736 	int node;
3737 	struct acpi_srat_gic_its_affinity *its_affinity;
3738 
3739 	its_affinity = (struct acpi_srat_gic_its_affinity *)header;
3740 	if (!its_affinity)
3741 		return -EINVAL;
3742 
3743 	if (its_affinity->header.length < sizeof(*its_affinity)) {
3744 		pr_err("SRAT: Invalid header length %d in ITS affinity\n",
3745 			its_affinity->header.length);
3746 		return -EINVAL;
3747 	}
3748 
3749 	node = acpi_map_pxm_to_node(its_affinity->proximity_domain);
3750 
3751 	if (node == NUMA_NO_NODE || node >= MAX_NUMNODES) {
3752 		pr_err("SRAT: Invalid NUMA node %d in ITS affinity\n", node);
3753 		return 0;
3754 	}
3755 
3756 	its_srat_maps[its_in_srat].numa_node = node;
3757 	its_srat_maps[its_in_srat].its_id = its_affinity->its_id;
3758 	its_in_srat++;
3759 	pr_info("SRAT: PXM %d -> ITS %d -> Node %d\n",
3760 		its_affinity->proximity_domain, its_affinity->its_id, node);
3761 
3762 	return 0;
3763 }
3764 
acpi_table_parse_srat_its(void)3765 static void __init acpi_table_parse_srat_its(void)
3766 {
3767 	int count;
3768 
3769 	count = acpi_table_parse_entries(ACPI_SIG_SRAT,
3770 			sizeof(struct acpi_table_srat),
3771 			ACPI_SRAT_TYPE_GIC_ITS_AFFINITY,
3772 			gic_acpi_match_srat_its, 0);
3773 	if (count <= 0)
3774 		return;
3775 
3776 	its_srat_maps = kmalloc_array(count, sizeof(struct its_srat_map),
3777 				      GFP_KERNEL);
3778 	if (!its_srat_maps) {
3779 		pr_warn("SRAT: Failed to allocate memory for its_srat_maps!\n");
3780 		return;
3781 	}
3782 
3783 	acpi_table_parse_entries(ACPI_SIG_SRAT,
3784 			sizeof(struct acpi_table_srat),
3785 			ACPI_SRAT_TYPE_GIC_ITS_AFFINITY,
3786 			gic_acpi_parse_srat_its, 0);
3787 }
3788 
3789 /* free the its_srat_maps after ITS probing */
acpi_its_srat_maps_free(void)3790 static void __init acpi_its_srat_maps_free(void)
3791 {
3792 	kfree(its_srat_maps);
3793 }
3794 #else
acpi_table_parse_srat_its(void)3795 static void __init acpi_table_parse_srat_its(void)	{ }
acpi_get_its_numa_node(u32 its_id)3796 static int __init acpi_get_its_numa_node(u32 its_id) { return NUMA_NO_NODE; }
acpi_its_srat_maps_free(void)3797 static void __init acpi_its_srat_maps_free(void) { }
3798 #endif
3799 
gic_acpi_parse_madt_its(struct acpi_subtable_header * header,const unsigned long end)3800 static int __init gic_acpi_parse_madt_its(struct acpi_subtable_header *header,
3801 					  const unsigned long end)
3802 {
3803 	struct acpi_madt_generic_translator *its_entry;
3804 	struct fwnode_handle *dom_handle;
3805 	struct resource res;
3806 	int err;
3807 
3808 	its_entry = (struct acpi_madt_generic_translator *)header;
3809 	memset(&res, 0, sizeof(res));
3810 	res.start = its_entry->base_address;
3811 	res.end = its_entry->base_address + ACPI_GICV3_ITS_MEM_SIZE - 1;
3812 	res.flags = IORESOURCE_MEM;
3813 
3814 	dom_handle = irq_domain_alloc_fwnode((void *)its_entry->base_address);
3815 	if (!dom_handle) {
3816 		pr_err("ITS@%pa: Unable to allocate GICv3 ITS domain token\n",
3817 		       &res.start);
3818 		return -ENOMEM;
3819 	}
3820 
3821 	err = iort_register_domain_token(its_entry->translation_id, res.start,
3822 					 dom_handle);
3823 	if (err) {
3824 		pr_err("ITS@%pa: Unable to register GICv3 ITS domain token (ITS ID %d) to IORT\n",
3825 		       &res.start, its_entry->translation_id);
3826 		goto dom_err;
3827 	}
3828 
3829 	err = its_probe_one(&res, dom_handle,
3830 			acpi_get_its_numa_node(its_entry->translation_id));
3831 	if (!err)
3832 		return 0;
3833 
3834 	iort_deregister_domain_token(its_entry->translation_id);
3835 dom_err:
3836 	irq_domain_free_fwnode(dom_handle);
3837 	return err;
3838 }
3839 
its_acpi_probe(void)3840 static void __init its_acpi_probe(void)
3841 {
3842 	acpi_table_parse_srat_its();
3843 	acpi_table_parse_madt(ACPI_MADT_TYPE_GENERIC_TRANSLATOR,
3844 			      gic_acpi_parse_madt_its, 0);
3845 	acpi_its_srat_maps_free();
3846 }
3847 #else
its_acpi_probe(void)3848 static void __init its_acpi_probe(void) { }
3849 #endif
3850 
its_init(struct fwnode_handle * handle,struct rdists * rdists,struct irq_domain * parent_domain)3851 int __init its_init(struct fwnode_handle *handle, struct rdists *rdists,
3852 		    struct irq_domain *parent_domain)
3853 {
3854 	struct device_node *of_node;
3855 	struct its_node *its;
3856 	bool has_v4 = false;
3857 	int err;
3858 
3859 	its_parent = parent_domain;
3860 	of_node = to_of_node(handle);
3861 	if (of_node)
3862 		its_of_probe(of_node);
3863 	else
3864 		its_acpi_probe();
3865 
3866 	if (list_empty(&its_nodes)) {
3867 		pr_warn("ITS: No ITS available, not enabling LPIs\n");
3868 		return -ENXIO;
3869 	}
3870 
3871 	gic_rdists = rdists;
3872 	err = its_alloc_lpi_tables();
3873 	if (err)
3874 		return err;
3875 
3876 	list_for_each_entry(its, &its_nodes, entry)
3877 		has_v4 |= its->is_v4;
3878 
3879 	if (has_v4 & rdists->has_vlpis) {
3880 		if (its_init_vpe_domain() ||
3881 		    its_init_v4(parent_domain, &its_vpe_domain_ops)) {
3882 			rdists->has_vlpis = false;
3883 			pr_err("ITS: Disabling GICv4 support\n");
3884 		}
3885 	}
3886 
3887 	register_syscore_ops(&its_syscore_ops);
3888 
3889 	return 0;
3890 }
3891