• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Windfarm PowerMac thermal control.
3  * Control loops for machines with SMU and PPC970MP processors.
4  *
5  * Copyright (C) 2005 Paul Mackerras, IBM Corp. <paulus@samba.org>
6  * Copyright (C) 2006 Benjamin Herrenschmidt, IBM Corp.
7  *
8  * Use and redistribute under the terms of the GNU GPL v2.
9  */
10 #include <linux/types.h>
11 #include <linux/errno.h>
12 #include <linux/kernel.h>
13 #include <linux/device.h>
14 #include <linux/platform_device.h>
15 #include <linux/reboot.h>
16 #include <asm/prom.h>
17 #include <asm/smu.h>
18 
19 #include "windfarm.h"
20 #include "windfarm_pid.h"
21 
22 #define VERSION "0.2"
23 
24 #define DEBUG
25 #undef LOTSA_DEBUG
26 
27 #ifdef DEBUG
28 #define DBG(args...)	printk(args)
29 #else
30 #define DBG(args...)	do { } while(0)
31 #endif
32 
33 #ifdef LOTSA_DEBUG
34 #define DBG_LOTS(args...)	printk(args)
35 #else
36 #define DBG_LOTS(args...)	do { } while(0)
37 #endif
38 
39 /* define this to force CPU overtemp to 60 degree, useful for testing
40  * the overtemp code
41  */
42 #undef HACKED_OVERTEMP
43 
44 /* We currently only handle 2 chips, 4 cores... */
45 #define NR_CHIPS	2
46 #define NR_CORES	4
47 #define NR_CPU_FANS	3 * NR_CHIPS
48 
49 /* Controls and sensors */
50 static struct wf_sensor *sens_cpu_temp[NR_CORES];
51 static struct wf_sensor *sens_cpu_power[NR_CORES];
52 static struct wf_sensor *hd_temp;
53 static struct wf_sensor *slots_power;
54 static struct wf_sensor *u4_temp;
55 
56 static struct wf_control *cpu_fans[NR_CPU_FANS];
57 static char *cpu_fan_names[NR_CPU_FANS] = {
58 	"cpu-rear-fan-0",
59 	"cpu-rear-fan-1",
60 	"cpu-front-fan-0",
61 	"cpu-front-fan-1",
62 	"cpu-pump-0",
63 	"cpu-pump-1",
64 };
65 static struct wf_control *cpufreq_clamp;
66 
67 /* Second pump isn't required (and isn't actually present) */
68 #define CPU_FANS_REQD		(NR_CPU_FANS - 2)
69 #define FIRST_PUMP		4
70 #define LAST_PUMP		5
71 
72 /* We keep a temperature history for average calculation of 180s */
73 #define CPU_TEMP_HIST_SIZE	180
74 
75 /* Scale factor for fan speed, *100 */
76 static int cpu_fan_scale[NR_CPU_FANS] = {
77 	100,
78 	100,
79 	97,		/* inlet fans run at 97% of exhaust fan */
80 	97,
81 	100,		/* updated later */
82 	100,		/* updated later */
83 };
84 
85 static struct wf_control *backside_fan;
86 static struct wf_control *slots_fan;
87 static struct wf_control *drive_bay_fan;
88 
89 /* PID loop state */
90 static struct wf_cpu_pid_state cpu_pid[NR_CORES];
91 static u32 cpu_thist[CPU_TEMP_HIST_SIZE];
92 static int cpu_thist_pt;
93 static s64 cpu_thist_total;
94 static s32 cpu_all_tmax = 100 << 16;
95 static int cpu_last_target;
96 static struct wf_pid_state backside_pid;
97 static int backside_tick;
98 static struct wf_pid_state slots_pid;
99 static bool slots_started;
100 static struct wf_pid_state drive_bay_pid;
101 static int drive_bay_tick;
102 
103 static int nr_cores;
104 static int have_all_controls;
105 static int have_all_sensors;
106 static bool started;
107 
108 static int failure_state;
109 #define FAILURE_SENSOR		1
110 #define FAILURE_FAN		2
111 #define FAILURE_PERM		4
112 #define FAILURE_LOW_OVERTEMP	8
113 #define FAILURE_HIGH_OVERTEMP	16
114 
115 /* Overtemp values */
116 #define LOW_OVER_AVERAGE	0
117 #define LOW_OVER_IMMEDIATE	(10 << 16)
118 #define LOW_OVER_CLEAR		((-10) << 16)
119 #define HIGH_OVER_IMMEDIATE	(14 << 16)
120 #define HIGH_OVER_AVERAGE	(10 << 16)
121 #define HIGH_OVER_IMMEDIATE	(14 << 16)
122 
123 
124 /* Implementation... */
create_cpu_loop(int cpu)125 static int create_cpu_loop(int cpu)
126 {
127 	int chip = cpu / 2;
128 	int core = cpu & 1;
129 	struct smu_sdbp_header *hdr;
130 	struct smu_sdbp_cpupiddata *piddata;
131 	struct wf_cpu_pid_param pid;
132 	struct wf_control *main_fan = cpu_fans[0];
133 	s32 tmax;
134 	int fmin;
135 
136 	/* Get FVT params to get Tmax; if not found, assume default */
137 	hdr = smu_sat_get_sdb_partition(chip, 0xC4 + core, NULL);
138 	if (hdr) {
139 		struct smu_sdbp_fvt *fvt = (struct smu_sdbp_fvt *)&hdr[1];
140 		tmax = fvt->maxtemp << 16;
141 	} else
142 		tmax = 95 << 16;	/* default to 95 degrees C */
143 
144 	/* We keep a global tmax for overtemp calculations */
145 	if (tmax < cpu_all_tmax)
146 		cpu_all_tmax = tmax;
147 
148 	kfree(hdr);
149 
150 	/* Get PID params from the appropriate SAT */
151 	hdr = smu_sat_get_sdb_partition(chip, 0xC8 + core, NULL);
152 	if (hdr == NULL) {
153 		printk(KERN_WARNING"windfarm: can't get CPU PID fan config\n");
154 		return -EINVAL;
155 	}
156 	piddata = (struct smu_sdbp_cpupiddata *)&hdr[1];
157 
158 	/*
159 	 * Darwin has a minimum fan speed of 1000 rpm for the 4-way and
160 	 * 515 for the 2-way.  That appears to be overkill, so for now,
161 	 * impose a minimum of 750 or 515.
162 	 */
163 	fmin = (nr_cores > 2) ? 750 : 515;
164 
165 	/* Initialize PID loop */
166 	pid.interval = 1;	/* seconds */
167 	pid.history_len = piddata->history_len;
168 	pid.gd = piddata->gd;
169 	pid.gp = piddata->gp;
170 	pid.gr = piddata->gr / piddata->history_len;
171 	pid.pmaxadj = (piddata->max_power << 16) - (piddata->power_adj << 8);
172 	pid.ttarget = tmax - (piddata->target_temp_delta << 16);
173 	pid.tmax = tmax;
174 	pid.min = main_fan->ops->get_min(main_fan);
175 	pid.max = main_fan->ops->get_max(main_fan);
176 	if (pid.min < fmin)
177 		pid.min = fmin;
178 
179 	wf_cpu_pid_init(&cpu_pid[cpu], &pid);
180 
181 	kfree(hdr);
182 
183 	return 0;
184 }
185 
cpu_max_all_fans(void)186 static void cpu_max_all_fans(void)
187 {
188 	int i;
189 
190 	/* We max all CPU fans in case of a sensor error. We also do the
191 	 * cpufreq clamping now, even if it's supposedly done later by the
192 	 * generic code anyway, we do it earlier here to react faster
193 	 */
194 	if (cpufreq_clamp)
195 		wf_control_set_max(cpufreq_clamp);
196 	for (i = 0; i < NR_CPU_FANS; ++i)
197 		if (cpu_fans[i])
198 			wf_control_set_max(cpu_fans[i]);
199 }
200 
cpu_check_overtemp(s32 temp)201 static int cpu_check_overtemp(s32 temp)
202 {
203 	int new_state = 0;
204 	s32 t_avg, t_old;
205 
206 	/* First check for immediate overtemps */
207 	if (temp >= (cpu_all_tmax + LOW_OVER_IMMEDIATE)) {
208 		new_state |= FAILURE_LOW_OVERTEMP;
209 		if ((failure_state & FAILURE_LOW_OVERTEMP) == 0)
210 			printk(KERN_ERR "windfarm: Overtemp due to immediate CPU"
211 			       " temperature !\n");
212 	}
213 	if (temp >= (cpu_all_tmax + HIGH_OVER_IMMEDIATE)) {
214 		new_state |= FAILURE_HIGH_OVERTEMP;
215 		if ((failure_state & FAILURE_HIGH_OVERTEMP) == 0)
216 			printk(KERN_ERR "windfarm: Critical overtemp due to"
217 			       " immediate CPU temperature !\n");
218 	}
219 
220 	/* We calculate a history of max temperatures and use that for the
221 	 * overtemp management
222 	 */
223 	t_old = cpu_thist[cpu_thist_pt];
224 	cpu_thist[cpu_thist_pt] = temp;
225 	cpu_thist_pt = (cpu_thist_pt + 1) % CPU_TEMP_HIST_SIZE;
226 	cpu_thist_total -= t_old;
227 	cpu_thist_total += temp;
228 	t_avg = cpu_thist_total / CPU_TEMP_HIST_SIZE;
229 
230 	DBG_LOTS("t_avg = %d.%03d (out: %d.%03d, in: %d.%03d)\n",
231 		 FIX32TOPRINT(t_avg), FIX32TOPRINT(t_old), FIX32TOPRINT(temp));
232 
233 	/* Now check for average overtemps */
234 	if (t_avg >= (cpu_all_tmax + LOW_OVER_AVERAGE)) {
235 		new_state |= FAILURE_LOW_OVERTEMP;
236 		if ((failure_state & FAILURE_LOW_OVERTEMP) == 0)
237 			printk(KERN_ERR "windfarm: Overtemp due to average CPU"
238 			       " temperature !\n");
239 	}
240 	if (t_avg >= (cpu_all_tmax + HIGH_OVER_AVERAGE)) {
241 		new_state |= FAILURE_HIGH_OVERTEMP;
242 		if ((failure_state & FAILURE_HIGH_OVERTEMP) == 0)
243 			printk(KERN_ERR "windfarm: Critical overtemp due to"
244 			       " average CPU temperature !\n");
245 	}
246 
247 	/* Now handle overtemp conditions. We don't currently use the windfarm
248 	 * overtemp handling core as it's not fully suited to the needs of those
249 	 * new machine. This will be fixed later.
250 	 */
251 	if (new_state) {
252 		/* High overtemp -> immediate shutdown */
253 		if (new_state & FAILURE_HIGH_OVERTEMP)
254 			machine_power_off();
255 		if ((failure_state & new_state) != new_state)
256 			cpu_max_all_fans();
257 		failure_state |= new_state;
258 	} else if ((failure_state & FAILURE_LOW_OVERTEMP) &&
259 		   (temp < (cpu_all_tmax + LOW_OVER_CLEAR))) {
260 		printk(KERN_ERR "windfarm: Overtemp condition cleared !\n");
261 		failure_state &= ~FAILURE_LOW_OVERTEMP;
262 	}
263 
264 	return failure_state & (FAILURE_LOW_OVERTEMP | FAILURE_HIGH_OVERTEMP);
265 }
266 
cpu_fans_tick(void)267 static void cpu_fans_tick(void)
268 {
269 	int err, cpu;
270 	s32 greatest_delta = 0;
271 	s32 temp, power, t_max = 0;
272 	int i, t, target = 0;
273 	struct wf_sensor *sr;
274 	struct wf_control *ct;
275 	struct wf_cpu_pid_state *sp;
276 
277 	DBG_LOTS(KERN_DEBUG);
278 	for (cpu = 0; cpu < nr_cores; ++cpu) {
279 		/* Get CPU core temperature */
280 		sr = sens_cpu_temp[cpu];
281 		err = sr->ops->get_value(sr, &temp);
282 		if (err) {
283 			DBG("\n");
284 			printk(KERN_WARNING "windfarm: CPU %d temperature "
285 			       "sensor error %d\n", cpu, err);
286 			failure_state |= FAILURE_SENSOR;
287 			cpu_max_all_fans();
288 			return;
289 		}
290 
291 		/* Keep track of highest temp */
292 		t_max = max(t_max, temp);
293 
294 		/* Get CPU power */
295 		sr = sens_cpu_power[cpu];
296 		err = sr->ops->get_value(sr, &power);
297 		if (err) {
298 			DBG("\n");
299 			printk(KERN_WARNING "windfarm: CPU %d power "
300 			       "sensor error %d\n", cpu, err);
301 			failure_state |= FAILURE_SENSOR;
302 			cpu_max_all_fans();
303 			return;
304 		}
305 
306 		/* Run PID */
307 		sp = &cpu_pid[cpu];
308 		t = wf_cpu_pid_run(sp, power, temp);
309 
310 		if (cpu == 0 || sp->last_delta > greatest_delta) {
311 			greatest_delta = sp->last_delta;
312 			target = t;
313 		}
314 		DBG_LOTS("[%d] P=%d.%.3d T=%d.%.3d ",
315 		    cpu, FIX32TOPRINT(power), FIX32TOPRINT(temp));
316 	}
317 	DBG_LOTS("fans = %d, t_max = %d.%03d\n", target, FIX32TOPRINT(t_max));
318 
319 	/* Darwin limits decrease to 20 per iteration */
320 	if (target < (cpu_last_target - 20))
321 		target = cpu_last_target - 20;
322 	cpu_last_target = target;
323 	for (cpu = 0; cpu < nr_cores; ++cpu)
324 		cpu_pid[cpu].target = target;
325 
326 	/* Handle possible overtemps */
327 	if (cpu_check_overtemp(t_max))
328 		return;
329 
330 	/* Set fans */
331 	for (i = 0; i < NR_CPU_FANS; ++i) {
332 		ct = cpu_fans[i];
333 		if (ct == NULL)
334 			continue;
335 		err = ct->ops->set_value(ct, target * cpu_fan_scale[i] / 100);
336 		if (err) {
337 			printk(KERN_WARNING "windfarm: fan %s reports "
338 			       "error %d\n", ct->name, err);
339 			failure_state |= FAILURE_FAN;
340 			break;
341 		}
342 	}
343 }
344 
345 /* Backside/U4 fan */
346 static struct wf_pid_param backside_param = {
347 	.interval	= 5,
348 	.history_len	= 2,
349 	.gd		= 48 << 20,
350 	.gp		= 5 << 20,
351 	.gr		= 0,
352 	.itarget	= 64 << 16,
353 	.additive	= 1,
354 };
355 
backside_fan_tick(void)356 static void backside_fan_tick(void)
357 {
358 	s32 temp;
359 	int speed;
360 	int err;
361 
362 	if (!backside_fan || !u4_temp)
363 		return;
364 	if (!backside_tick) {
365 		/* first time; initialize things */
366 		printk(KERN_INFO "windfarm: Backside control loop started.\n");
367 		backside_param.min = backside_fan->ops->get_min(backside_fan);
368 		backside_param.max = backside_fan->ops->get_max(backside_fan);
369 		wf_pid_init(&backside_pid, &backside_param);
370 		backside_tick = 1;
371 	}
372 	if (--backside_tick > 0)
373 		return;
374 	backside_tick = backside_pid.param.interval;
375 
376 	err = u4_temp->ops->get_value(u4_temp, &temp);
377 	if (err) {
378 		printk(KERN_WARNING "windfarm: U4 temp sensor error %d\n",
379 		       err);
380 		failure_state |= FAILURE_SENSOR;
381 		wf_control_set_max(backside_fan);
382 		return;
383 	}
384 	speed = wf_pid_run(&backside_pid, temp);
385 	DBG_LOTS("backside PID temp=%d.%.3d speed=%d\n",
386 		 FIX32TOPRINT(temp), speed);
387 
388 	err = backside_fan->ops->set_value(backside_fan, speed);
389 	if (err) {
390 		printk(KERN_WARNING "windfarm: backside fan error %d\n", err);
391 		failure_state |= FAILURE_FAN;
392 	}
393 }
394 
395 /* Drive bay fan */
396 static struct wf_pid_param drive_bay_prm = {
397 	.interval	= 5,
398 	.history_len	= 2,
399 	.gd		= 30 << 20,
400 	.gp		= 5 << 20,
401 	.gr		= 0,
402 	.itarget	= 40 << 16,
403 	.additive	= 1,
404 };
405 
drive_bay_fan_tick(void)406 static void drive_bay_fan_tick(void)
407 {
408 	s32 temp;
409 	int speed;
410 	int err;
411 
412 	if (!drive_bay_fan || !hd_temp)
413 		return;
414 	if (!drive_bay_tick) {
415 		/* first time; initialize things */
416 		printk(KERN_INFO "windfarm: Drive bay control loop started.\n");
417 		drive_bay_prm.min = drive_bay_fan->ops->get_min(drive_bay_fan);
418 		drive_bay_prm.max = drive_bay_fan->ops->get_max(drive_bay_fan);
419 		wf_pid_init(&drive_bay_pid, &drive_bay_prm);
420 		drive_bay_tick = 1;
421 	}
422 	if (--drive_bay_tick > 0)
423 		return;
424 	drive_bay_tick = drive_bay_pid.param.interval;
425 
426 	err = hd_temp->ops->get_value(hd_temp, &temp);
427 	if (err) {
428 		printk(KERN_WARNING "windfarm: drive bay temp sensor "
429 		       "error %d\n", err);
430 		failure_state |= FAILURE_SENSOR;
431 		wf_control_set_max(drive_bay_fan);
432 		return;
433 	}
434 	speed = wf_pid_run(&drive_bay_pid, temp);
435 	DBG_LOTS("drive_bay PID temp=%d.%.3d speed=%d\n",
436 		 FIX32TOPRINT(temp), speed);
437 
438 	err = drive_bay_fan->ops->set_value(drive_bay_fan, speed);
439 	if (err) {
440 		printk(KERN_WARNING "windfarm: drive bay fan error %d\n", err);
441 		failure_state |= FAILURE_FAN;
442 	}
443 }
444 
445 /* PCI slots area fan */
446 /* This makes the fan speed proportional to the power consumed */
447 static struct wf_pid_param slots_param = {
448 	.interval	= 1,
449 	.history_len	= 2,
450 	.gd		= 0,
451 	.gp		= 0,
452 	.gr		= 0x1277952,
453 	.itarget	= 0,
454 	.min		= 1560,
455 	.max		= 3510,
456 };
457 
slots_fan_tick(void)458 static void slots_fan_tick(void)
459 {
460 	s32 power;
461 	int speed;
462 	int err;
463 
464 	if (!slots_fan || !slots_power)
465 		return;
466 	if (!slots_started) {
467 		/* first time; initialize things */
468 		printk(KERN_INFO "windfarm: Slots control loop started.\n");
469 		wf_pid_init(&slots_pid, &slots_param);
470 		slots_started = true;
471 	}
472 
473 	err = slots_power->ops->get_value(slots_power, &power);
474 	if (err) {
475 		printk(KERN_WARNING "windfarm: slots power sensor error %d\n",
476 		       err);
477 		failure_state |= FAILURE_SENSOR;
478 		wf_control_set_max(slots_fan);
479 		return;
480 	}
481 	speed = wf_pid_run(&slots_pid, power);
482 	DBG_LOTS("slots PID power=%d.%.3d speed=%d\n",
483 		 FIX32TOPRINT(power), speed);
484 
485 	err = slots_fan->ops->set_value(slots_fan, speed);
486 	if (err) {
487 		printk(KERN_WARNING "windfarm: slots fan error %d\n", err);
488 		failure_state |= FAILURE_FAN;
489 	}
490 }
491 
set_fail_state(void)492 static void set_fail_state(void)
493 {
494 	int i;
495 
496 	if (cpufreq_clamp)
497 		wf_control_set_max(cpufreq_clamp);
498 	for (i = 0; i < NR_CPU_FANS; ++i)
499 		if (cpu_fans[i])
500 			wf_control_set_max(cpu_fans[i]);
501 	if (backside_fan)
502 		wf_control_set_max(backside_fan);
503 	if (slots_fan)
504 		wf_control_set_max(slots_fan);
505 	if (drive_bay_fan)
506 		wf_control_set_max(drive_bay_fan);
507 }
508 
pm112_tick(void)509 static void pm112_tick(void)
510 {
511 	int i, last_failure;
512 
513 	if (!started) {
514 		started = true;
515 		printk(KERN_INFO "windfarm: CPUs control loops started.\n");
516 		for (i = 0; i < nr_cores; ++i) {
517 			if (create_cpu_loop(i) < 0) {
518 				failure_state = FAILURE_PERM;
519 				set_fail_state();
520 				break;
521 			}
522 		}
523 		DBG_LOTS("cpu_all_tmax=%d.%03d\n", FIX32TOPRINT(cpu_all_tmax));
524 
525 #ifdef HACKED_OVERTEMP
526 		cpu_all_tmax = 60 << 16;
527 #endif
528 	}
529 
530 	/* Permanent failure, bail out */
531 	if (failure_state & FAILURE_PERM)
532 		return;
533 	/* Clear all failure bits except low overtemp which will be eventually
534 	 * cleared by the control loop itself
535 	 */
536 	last_failure = failure_state;
537 	failure_state &= FAILURE_LOW_OVERTEMP;
538 	cpu_fans_tick();
539 	backside_fan_tick();
540 	slots_fan_tick();
541 	drive_bay_fan_tick();
542 
543 	DBG_LOTS("last_failure: 0x%x, failure_state: %x\n",
544 		 last_failure, failure_state);
545 
546 	/* Check for failures. Any failure causes cpufreq clamping */
547 	if (failure_state && last_failure == 0 && cpufreq_clamp)
548 		wf_control_set_max(cpufreq_clamp);
549 	if (failure_state == 0 && last_failure && cpufreq_clamp)
550 		wf_control_set_min(cpufreq_clamp);
551 
552 	/* That's it for now, we might want to deal with other failures
553 	 * differently in the future though
554 	 */
555 }
556 
pm112_new_control(struct wf_control * ct)557 static void pm112_new_control(struct wf_control *ct)
558 {
559 	int i, max_exhaust;
560 
561 	if (cpufreq_clamp == NULL && !strcmp(ct->name, "cpufreq-clamp")) {
562 		if (wf_get_control(ct) == 0)
563 			cpufreq_clamp = ct;
564 	}
565 
566 	for (i = 0; i < NR_CPU_FANS; ++i) {
567 		if (!strcmp(ct->name, cpu_fan_names[i])) {
568 			if (cpu_fans[i] == NULL && wf_get_control(ct) == 0)
569 				cpu_fans[i] = ct;
570 			break;
571 		}
572 	}
573 	if (i >= NR_CPU_FANS) {
574 		/* not a CPU fan, try the others */
575 		if (!strcmp(ct->name, "backside-fan")) {
576 			if (backside_fan == NULL && wf_get_control(ct) == 0)
577 				backside_fan = ct;
578 		} else if (!strcmp(ct->name, "slots-fan")) {
579 			if (slots_fan == NULL && wf_get_control(ct) == 0)
580 				slots_fan = ct;
581 		} else if (!strcmp(ct->name, "drive-bay-fan")) {
582 			if (drive_bay_fan == NULL && wf_get_control(ct) == 0)
583 				drive_bay_fan = ct;
584 		}
585 		return;
586 	}
587 
588 	for (i = 0; i < CPU_FANS_REQD; ++i)
589 		if (cpu_fans[i] == NULL)
590 			return;
591 
592 	/* work out pump scaling factors */
593 	max_exhaust = cpu_fans[0]->ops->get_max(cpu_fans[0]);
594 	for (i = FIRST_PUMP; i <= LAST_PUMP; ++i)
595 		if ((ct = cpu_fans[i]) != NULL)
596 			cpu_fan_scale[i] =
597 				ct->ops->get_max(ct) * 100 / max_exhaust;
598 
599 	have_all_controls = 1;
600 }
601 
pm112_new_sensor(struct wf_sensor * sr)602 static void pm112_new_sensor(struct wf_sensor *sr)
603 {
604 	unsigned int i;
605 
606 	if (!strncmp(sr->name, "cpu-temp-", 9)) {
607 		i = sr->name[9] - '0';
608 		if (sr->name[10] == 0 && i < NR_CORES &&
609 		    sens_cpu_temp[i] == NULL && wf_get_sensor(sr) == 0)
610 			sens_cpu_temp[i] = sr;
611 
612 	} else if (!strncmp(sr->name, "cpu-power-", 10)) {
613 		i = sr->name[10] - '0';
614 		if (sr->name[11] == 0 && i < NR_CORES &&
615 		    sens_cpu_power[i] == NULL && wf_get_sensor(sr) == 0)
616 			sens_cpu_power[i] = sr;
617 	} else if (!strcmp(sr->name, "hd-temp")) {
618 		if (hd_temp == NULL && wf_get_sensor(sr) == 0)
619 			hd_temp = sr;
620 	} else if (!strcmp(sr->name, "slots-power")) {
621 		if (slots_power == NULL && wf_get_sensor(sr) == 0)
622 			slots_power = sr;
623 	} else if (!strcmp(sr->name, "backside-temp")) {
624 		if (u4_temp == NULL && wf_get_sensor(sr) == 0)
625 			u4_temp = sr;
626 	} else
627 		return;
628 
629 	/* check if we have all the sensors we need */
630 	for (i = 0; i < nr_cores; ++i)
631 		if (sens_cpu_temp[i] == NULL || sens_cpu_power[i] == NULL)
632 			return;
633 
634 	have_all_sensors = 1;
635 }
636 
pm112_wf_notify(struct notifier_block * self,unsigned long event,void * data)637 static int pm112_wf_notify(struct notifier_block *self,
638 			   unsigned long event, void *data)
639 {
640 	switch (event) {
641 	case WF_EVENT_NEW_SENSOR:
642 		pm112_new_sensor(data);
643 		break;
644 	case WF_EVENT_NEW_CONTROL:
645 		pm112_new_control(data);
646 		break;
647 	case WF_EVENT_TICK:
648 		if (have_all_controls && have_all_sensors)
649 			pm112_tick();
650 	}
651 	return 0;
652 }
653 
654 static struct notifier_block pm112_events = {
655 	.notifier_call = pm112_wf_notify,
656 };
657 
wf_pm112_probe(struct platform_device * dev)658 static int wf_pm112_probe(struct platform_device *dev)
659 {
660 	wf_register_client(&pm112_events);
661 	return 0;
662 }
663 
wf_pm112_remove(struct platform_device * dev)664 static int wf_pm112_remove(struct platform_device *dev)
665 {
666 	wf_unregister_client(&pm112_events);
667 	/* should release all sensors and controls */
668 	return 0;
669 }
670 
671 static struct platform_driver wf_pm112_driver = {
672 	.probe = wf_pm112_probe,
673 	.remove = wf_pm112_remove,
674 	.driver = {
675 		.name = "windfarm",
676 	},
677 };
678 
wf_pm112_init(void)679 static int __init wf_pm112_init(void)
680 {
681 	struct device_node *cpu;
682 
683 	if (!of_machine_is_compatible("PowerMac11,2"))
684 		return -ENODEV;
685 
686 	/* Count the number of CPU cores */
687 	nr_cores = 0;
688 	for_each_node_by_type(cpu, "cpu")
689 		++nr_cores;
690 
691 	printk(KERN_INFO "windfarm: initializing for dual-core desktop G5\n");
692 
693 #ifdef MODULE
694 	request_module("windfarm_smu_controls");
695 	request_module("windfarm_smu_sensors");
696 	request_module("windfarm_smu_sat");
697 	request_module("windfarm_lm75_sensor");
698 	request_module("windfarm_max6690_sensor");
699 	request_module("windfarm_cpufreq_clamp");
700 
701 #endif /* MODULE */
702 
703 	platform_driver_register(&wf_pm112_driver);
704 	return 0;
705 }
706 
wf_pm112_exit(void)707 static void __exit wf_pm112_exit(void)
708 {
709 	platform_driver_unregister(&wf_pm112_driver);
710 }
711 
712 module_init(wf_pm112_init);
713 module_exit(wf_pm112_exit);
714 
715 MODULE_AUTHOR("Paul Mackerras <paulus@samba.org>");
716 MODULE_DESCRIPTION("Thermal control for PowerMac11,2");
717 MODULE_LICENSE("GPL");
718 MODULE_ALIAS("platform:windfarm");
719