• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * background writeback - scan btree for dirty data and write it to the backing
4  * device
5  *
6  * Copyright 2010, 2011 Kent Overstreet <kent.overstreet@gmail.com>
7  * Copyright 2012 Google, Inc.
8  */
9 
10 #include "bcache.h"
11 #include "btree.h"
12 #include "debug.h"
13 #include "writeback.h"
14 
15 #include <linux/delay.h>
16 #include <linux/kthread.h>
17 #include <linux/sched/clock.h>
18 #include <trace/events/bcache.h>
19 
20 /* Rate limiting */
__calc_target_rate(struct cached_dev * dc)21 static uint64_t __calc_target_rate(struct cached_dev *dc)
22 {
23 	struct cache_set *c = dc->disk.c;
24 
25 	/*
26 	 * This is the size of the cache, minus the amount used for
27 	 * flash-only devices
28 	 */
29 	uint64_t cache_sectors = c->nbuckets * c->sb.bucket_size -
30 				atomic_long_read(&c->flash_dev_dirty_sectors);
31 
32 	/*
33 	 * Unfortunately there is no control of global dirty data.  If the
34 	 * user states that they want 10% dirty data in the cache, and has,
35 	 * e.g., 5 backing volumes of equal size, we try and ensure each
36 	 * backing volume uses about 2% of the cache for dirty data.
37 	 */
38 	uint32_t bdev_share =
39 		div64_u64(bdev_sectors(dc->bdev) << WRITEBACK_SHARE_SHIFT,
40 				c->cached_dev_sectors);
41 
42 	uint64_t cache_dirty_target =
43 		div_u64(cache_sectors * dc->writeback_percent, 100);
44 
45 	/* Ensure each backing dev gets at least one dirty share */
46 	if (bdev_share < 1)
47 		bdev_share = 1;
48 
49 	return (cache_dirty_target * bdev_share) >> WRITEBACK_SHARE_SHIFT;
50 }
51 
__update_writeback_rate(struct cached_dev * dc)52 static void __update_writeback_rate(struct cached_dev *dc)
53 {
54 	/*
55 	 * PI controller:
56 	 * Figures out the amount that should be written per second.
57 	 *
58 	 * First, the error (number of sectors that are dirty beyond our
59 	 * target) is calculated.  The error is accumulated (numerically
60 	 * integrated).
61 	 *
62 	 * Then, the proportional value and integral value are scaled
63 	 * based on configured values.  These are stored as inverses to
64 	 * avoid fixed point math and to make configuration easy-- e.g.
65 	 * the default value of 40 for writeback_rate_p_term_inverse
66 	 * attempts to write at a rate that would retire all the dirty
67 	 * blocks in 40 seconds.
68 	 *
69 	 * The writeback_rate_i_inverse value of 10000 means that 1/10000th
70 	 * of the error is accumulated in the integral term per second.
71 	 * This acts as a slow, long-term average that is not subject to
72 	 * variations in usage like the p term.
73 	 */
74 	int64_t target = __calc_target_rate(dc);
75 	int64_t dirty = bcache_dev_sectors_dirty(&dc->disk);
76 	int64_t error = dirty - target;
77 	int64_t proportional_scaled =
78 		div_s64(error, dc->writeback_rate_p_term_inverse);
79 	int64_t integral_scaled;
80 	uint32_t new_rate;
81 
82 	if ((error < 0 && dc->writeback_rate_integral > 0) ||
83 	    (error > 0 && time_before64(local_clock(),
84 			 dc->writeback_rate.next + NSEC_PER_MSEC))) {
85 		/*
86 		 * Only decrease the integral term if it's more than
87 		 * zero.  Only increase the integral term if the device
88 		 * is keeping up.  (Don't wind up the integral
89 		 * ineffectively in either case).
90 		 *
91 		 * It's necessary to scale this by
92 		 * writeback_rate_update_seconds to keep the integral
93 		 * term dimensioned properly.
94 		 */
95 		dc->writeback_rate_integral += error *
96 			dc->writeback_rate_update_seconds;
97 	}
98 
99 	integral_scaled = div_s64(dc->writeback_rate_integral,
100 			dc->writeback_rate_i_term_inverse);
101 
102 	new_rate = clamp_t(int32_t, (proportional_scaled + integral_scaled),
103 			dc->writeback_rate_minimum, NSEC_PER_SEC);
104 
105 	dc->writeback_rate_proportional = proportional_scaled;
106 	dc->writeback_rate_integral_scaled = integral_scaled;
107 	dc->writeback_rate_change = new_rate -
108 			atomic_long_read(&dc->writeback_rate.rate);
109 	atomic_long_set(&dc->writeback_rate.rate, new_rate);
110 	dc->writeback_rate_target = target;
111 }
112 
set_at_max_writeback_rate(struct cache_set * c,struct cached_dev * dc)113 static bool set_at_max_writeback_rate(struct cache_set *c,
114 				       struct cached_dev *dc)
115 {
116 	/*
117 	 * Idle_counter is increased everytime when update_writeback_rate() is
118 	 * called. If all backing devices attached to the same cache set have
119 	 * identical dc->writeback_rate_update_seconds values, it is about 6
120 	 * rounds of update_writeback_rate() on each backing device before
121 	 * c->at_max_writeback_rate is set to 1, and then max wrteback rate set
122 	 * to each dc->writeback_rate.rate.
123 	 * In order to avoid extra locking cost for counting exact dirty cached
124 	 * devices number, c->attached_dev_nr is used to calculate the idle
125 	 * throushold. It might be bigger if not all cached device are in write-
126 	 * back mode, but it still works well with limited extra rounds of
127 	 * update_writeback_rate().
128 	 */
129 	if (atomic_inc_return(&c->idle_counter) <
130 	    atomic_read(&c->attached_dev_nr) * 6)
131 		return false;
132 
133 	if (atomic_read(&c->at_max_writeback_rate) != 1)
134 		atomic_set(&c->at_max_writeback_rate, 1);
135 
136 	atomic_long_set(&dc->writeback_rate.rate, INT_MAX);
137 
138 	/* keep writeback_rate_target as existing value */
139 	dc->writeback_rate_proportional = 0;
140 	dc->writeback_rate_integral_scaled = 0;
141 	dc->writeback_rate_change = 0;
142 
143 	/*
144 	 * Check c->idle_counter and c->at_max_writeback_rate agagain in case
145 	 * new I/O arrives during before set_at_max_writeback_rate() returns.
146 	 * Then the writeback rate is set to 1, and its new value should be
147 	 * decided via __update_writeback_rate().
148 	 */
149 	if ((atomic_read(&c->idle_counter) <
150 	     atomic_read(&c->attached_dev_nr) * 6) ||
151 	    !atomic_read(&c->at_max_writeback_rate))
152 		return false;
153 
154 	return true;
155 }
156 
update_writeback_rate(struct work_struct * work)157 static void update_writeback_rate(struct work_struct *work)
158 {
159 	struct cached_dev *dc = container_of(to_delayed_work(work),
160 					     struct cached_dev,
161 					     writeback_rate_update);
162 	struct cache_set *c = dc->disk.c;
163 
164 	/*
165 	 * should check BCACHE_DEV_RATE_DW_RUNNING before calling
166 	 * cancel_delayed_work_sync().
167 	 */
168 	set_bit(BCACHE_DEV_RATE_DW_RUNNING, &dc->disk.flags);
169 	/* paired with where BCACHE_DEV_RATE_DW_RUNNING is tested */
170 	smp_mb();
171 
172 	/*
173 	 * CACHE_SET_IO_DISABLE might be set via sysfs interface,
174 	 * check it here too.
175 	 */
176 	if (!test_bit(BCACHE_DEV_WB_RUNNING, &dc->disk.flags) ||
177 	    test_bit(CACHE_SET_IO_DISABLE, &c->flags)) {
178 		clear_bit(BCACHE_DEV_RATE_DW_RUNNING, &dc->disk.flags);
179 		/* paired with where BCACHE_DEV_RATE_DW_RUNNING is tested */
180 		smp_mb();
181 		return;
182 	}
183 
184 	if (atomic_read(&dc->has_dirty) && dc->writeback_percent) {
185 		/*
186 		 * If the whole cache set is idle, set_at_max_writeback_rate()
187 		 * will set writeback rate to a max number. Then it is
188 		 * unncessary to update writeback rate for an idle cache set
189 		 * in maximum writeback rate number(s).
190 		 */
191 		if (!set_at_max_writeback_rate(c, dc)) {
192 			down_read(&dc->writeback_lock);
193 			__update_writeback_rate(dc);
194 			up_read(&dc->writeback_lock);
195 		}
196 	}
197 
198 
199 	/*
200 	 * CACHE_SET_IO_DISABLE might be set via sysfs interface,
201 	 * check it here too.
202 	 */
203 	if (test_bit(BCACHE_DEV_WB_RUNNING, &dc->disk.flags) &&
204 	    !test_bit(CACHE_SET_IO_DISABLE, &c->flags)) {
205 		schedule_delayed_work(&dc->writeback_rate_update,
206 			      dc->writeback_rate_update_seconds * HZ);
207 	}
208 
209 	/*
210 	 * should check BCACHE_DEV_RATE_DW_RUNNING before calling
211 	 * cancel_delayed_work_sync().
212 	 */
213 	clear_bit(BCACHE_DEV_RATE_DW_RUNNING, &dc->disk.flags);
214 	/* paired with where BCACHE_DEV_RATE_DW_RUNNING is tested */
215 	smp_mb();
216 }
217 
writeback_delay(struct cached_dev * dc,unsigned int sectors)218 static unsigned int writeback_delay(struct cached_dev *dc,
219 				    unsigned int sectors)
220 {
221 	if (test_bit(BCACHE_DEV_DETACHING, &dc->disk.flags) ||
222 	    !dc->writeback_percent)
223 		return 0;
224 
225 	return bch_next_delay(&dc->writeback_rate, sectors);
226 }
227 
228 struct dirty_io {
229 	struct closure		cl;
230 	struct cached_dev	*dc;
231 	uint16_t		sequence;
232 	struct bio		bio;
233 };
234 
dirty_init(struct keybuf_key * w)235 static void dirty_init(struct keybuf_key *w)
236 {
237 	struct dirty_io *io = w->private;
238 	struct bio *bio = &io->bio;
239 
240 	bio_init(bio, bio->bi_inline_vecs,
241 		 DIV_ROUND_UP(KEY_SIZE(&w->key), PAGE_SECTORS));
242 	if (!io->dc->writeback_percent)
243 		bio_set_prio(bio, IOPRIO_PRIO_VALUE(IOPRIO_CLASS_IDLE, 0));
244 
245 	bio->bi_iter.bi_size	= KEY_SIZE(&w->key) << 9;
246 	bio->bi_private		= w;
247 	bch_bio_map(bio, NULL);
248 }
249 
dirty_io_destructor(struct closure * cl)250 static void dirty_io_destructor(struct closure *cl)
251 {
252 	struct dirty_io *io = container_of(cl, struct dirty_io, cl);
253 
254 	kfree(io);
255 }
256 
write_dirty_finish(struct closure * cl)257 static void write_dirty_finish(struct closure *cl)
258 {
259 	struct dirty_io *io = container_of(cl, struct dirty_io, cl);
260 	struct keybuf_key *w = io->bio.bi_private;
261 	struct cached_dev *dc = io->dc;
262 
263 	bio_free_pages(&io->bio);
264 
265 	/* This is kind of a dumb way of signalling errors. */
266 	if (KEY_DIRTY(&w->key)) {
267 		int ret;
268 		unsigned int i;
269 		struct keylist keys;
270 
271 		bch_keylist_init(&keys);
272 
273 		bkey_copy(keys.top, &w->key);
274 		SET_KEY_DIRTY(keys.top, false);
275 		bch_keylist_push(&keys);
276 
277 		for (i = 0; i < KEY_PTRS(&w->key); i++)
278 			atomic_inc(&PTR_BUCKET(dc->disk.c, &w->key, i)->pin);
279 
280 		ret = bch_btree_insert(dc->disk.c, &keys, NULL, &w->key);
281 
282 		if (ret)
283 			trace_bcache_writeback_collision(&w->key);
284 
285 		atomic_long_inc(ret
286 				? &dc->disk.c->writeback_keys_failed
287 				: &dc->disk.c->writeback_keys_done);
288 	}
289 
290 	bch_keybuf_del(&dc->writeback_keys, w);
291 	up(&dc->in_flight);
292 
293 	closure_return_with_destructor(cl, dirty_io_destructor);
294 }
295 
dirty_endio(struct bio * bio)296 static void dirty_endio(struct bio *bio)
297 {
298 	struct keybuf_key *w = bio->bi_private;
299 	struct dirty_io *io = w->private;
300 
301 	if (bio->bi_status) {
302 		SET_KEY_DIRTY(&w->key, false);
303 		bch_count_backing_io_errors(io->dc, bio);
304 	}
305 
306 	closure_put(&io->cl);
307 }
308 
write_dirty(struct closure * cl)309 static void write_dirty(struct closure *cl)
310 {
311 	struct dirty_io *io = container_of(cl, struct dirty_io, cl);
312 	struct keybuf_key *w = io->bio.bi_private;
313 	struct cached_dev *dc = io->dc;
314 
315 	uint16_t next_sequence;
316 
317 	if (atomic_read(&dc->writeback_sequence_next) != io->sequence) {
318 		/* Not our turn to write; wait for a write to complete */
319 		closure_wait(&dc->writeback_ordering_wait, cl);
320 
321 		if (atomic_read(&dc->writeback_sequence_next) == io->sequence) {
322 			/*
323 			 * Edge case-- it happened in indeterminate order
324 			 * relative to when we were added to wait list..
325 			 */
326 			closure_wake_up(&dc->writeback_ordering_wait);
327 		}
328 
329 		continue_at(cl, write_dirty, io->dc->writeback_write_wq);
330 		return;
331 	}
332 
333 	next_sequence = io->sequence + 1;
334 
335 	/*
336 	 * IO errors are signalled using the dirty bit on the key.
337 	 * If we failed to read, we should not attempt to write to the
338 	 * backing device.  Instead, immediately go to write_dirty_finish
339 	 * to clean up.
340 	 */
341 	if (KEY_DIRTY(&w->key)) {
342 		dirty_init(w);
343 		bio_set_op_attrs(&io->bio, REQ_OP_WRITE, 0);
344 		io->bio.bi_iter.bi_sector = KEY_START(&w->key);
345 		bio_set_dev(&io->bio, io->dc->bdev);
346 		io->bio.bi_end_io	= dirty_endio;
347 
348 		/* I/O request sent to backing device */
349 		closure_bio_submit(io->dc->disk.c, &io->bio, cl);
350 	}
351 
352 	atomic_set(&dc->writeback_sequence_next, next_sequence);
353 	closure_wake_up(&dc->writeback_ordering_wait);
354 
355 	continue_at(cl, write_dirty_finish, io->dc->writeback_write_wq);
356 }
357 
read_dirty_endio(struct bio * bio)358 static void read_dirty_endio(struct bio *bio)
359 {
360 	struct keybuf_key *w = bio->bi_private;
361 	struct dirty_io *io = w->private;
362 
363 	/* is_read = 1 */
364 	bch_count_io_errors(PTR_CACHE(io->dc->disk.c, &w->key, 0),
365 			    bio->bi_status, 1,
366 			    "reading dirty data from cache");
367 
368 	dirty_endio(bio);
369 }
370 
read_dirty_submit(struct closure * cl)371 static void read_dirty_submit(struct closure *cl)
372 {
373 	struct dirty_io *io = container_of(cl, struct dirty_io, cl);
374 
375 	closure_bio_submit(io->dc->disk.c, &io->bio, cl);
376 
377 	continue_at(cl, write_dirty, io->dc->writeback_write_wq);
378 }
379 
read_dirty(struct cached_dev * dc)380 static void read_dirty(struct cached_dev *dc)
381 {
382 	unsigned int delay = 0;
383 	struct keybuf_key *next, *keys[MAX_WRITEBACKS_IN_PASS], *w;
384 	size_t size;
385 	int nk, i;
386 	struct dirty_io *io;
387 	struct closure cl;
388 	uint16_t sequence = 0;
389 
390 	BUG_ON(!llist_empty(&dc->writeback_ordering_wait.list));
391 	atomic_set(&dc->writeback_sequence_next, sequence);
392 	closure_init_stack(&cl);
393 
394 	/*
395 	 * XXX: if we error, background writeback just spins. Should use some
396 	 * mempools.
397 	 */
398 
399 	next = bch_keybuf_next(&dc->writeback_keys);
400 
401 	while (!kthread_should_stop() &&
402 	       !test_bit(CACHE_SET_IO_DISABLE, &dc->disk.c->flags) &&
403 	       next) {
404 		size = 0;
405 		nk = 0;
406 
407 		do {
408 			BUG_ON(ptr_stale(dc->disk.c, &next->key, 0));
409 
410 			/*
411 			 * Don't combine too many operations, even if they
412 			 * are all small.
413 			 */
414 			if (nk >= MAX_WRITEBACKS_IN_PASS)
415 				break;
416 
417 			/*
418 			 * If the current operation is very large, don't
419 			 * further combine operations.
420 			 */
421 			if (size >= MAX_WRITESIZE_IN_PASS)
422 				break;
423 
424 			/*
425 			 * Operations are only eligible to be combined
426 			 * if they are contiguous.
427 			 *
428 			 * TODO: add a heuristic willing to fire a
429 			 * certain amount of non-contiguous IO per pass,
430 			 * so that we can benefit from backing device
431 			 * command queueing.
432 			 */
433 			if ((nk != 0) && bkey_cmp(&keys[nk-1]->key,
434 						&START_KEY(&next->key)))
435 				break;
436 
437 			size += KEY_SIZE(&next->key);
438 			keys[nk++] = next;
439 		} while ((next = bch_keybuf_next(&dc->writeback_keys)));
440 
441 		/* Now we have gathered a set of 1..5 keys to write back. */
442 		for (i = 0; i < nk; i++) {
443 			w = keys[i];
444 
445 			io = kzalloc(sizeof(struct dirty_io) +
446 				     sizeof(struct bio_vec) *
447 				     DIV_ROUND_UP(KEY_SIZE(&w->key),
448 						  PAGE_SECTORS),
449 				     GFP_KERNEL);
450 			if (!io)
451 				goto err;
452 
453 			w->private	= io;
454 			io->dc		= dc;
455 			io->sequence    = sequence++;
456 
457 			dirty_init(w);
458 			bio_set_op_attrs(&io->bio, REQ_OP_READ, 0);
459 			io->bio.bi_iter.bi_sector = PTR_OFFSET(&w->key, 0);
460 			bio_set_dev(&io->bio,
461 				    PTR_CACHE(dc->disk.c, &w->key, 0)->bdev);
462 			io->bio.bi_end_io	= read_dirty_endio;
463 
464 			if (bch_bio_alloc_pages(&io->bio, GFP_KERNEL))
465 				goto err_free;
466 
467 			trace_bcache_writeback(&w->key);
468 
469 			down(&dc->in_flight);
470 
471 			/*
472 			 * We've acquired a semaphore for the maximum
473 			 * simultaneous number of writebacks; from here
474 			 * everything happens asynchronously.
475 			 */
476 			closure_call(&io->cl, read_dirty_submit, NULL, &cl);
477 		}
478 
479 		delay = writeback_delay(dc, size);
480 
481 		while (!kthread_should_stop() &&
482 		       !test_bit(CACHE_SET_IO_DISABLE, &dc->disk.c->flags) &&
483 		       delay) {
484 			schedule_timeout_interruptible(delay);
485 			delay = writeback_delay(dc, 0);
486 		}
487 	}
488 
489 	if (0) {
490 err_free:
491 		kfree(w->private);
492 err:
493 		bch_keybuf_del(&dc->writeback_keys, w);
494 	}
495 
496 	/*
497 	 * Wait for outstanding writeback IOs to finish (and keybuf slots to be
498 	 * freed) before refilling again
499 	 */
500 	closure_sync(&cl);
501 }
502 
503 /* Scan for dirty data */
504 
bcache_dev_sectors_dirty_add(struct cache_set * c,unsigned int inode,uint64_t offset,int nr_sectors)505 void bcache_dev_sectors_dirty_add(struct cache_set *c, unsigned int inode,
506 				  uint64_t offset, int nr_sectors)
507 {
508 	struct bcache_device *d = c->devices[inode];
509 	unsigned int stripe_offset, sectors_dirty;
510 	int stripe;
511 
512 	if (!d)
513 		return;
514 
515 	stripe = offset_to_stripe(d, offset);
516 	if (stripe < 0)
517 		return;
518 
519 	if (UUID_FLASH_ONLY(&c->uuids[inode]))
520 		atomic_long_add(nr_sectors, &c->flash_dev_dirty_sectors);
521 
522 	stripe_offset = offset & (d->stripe_size - 1);
523 
524 	while (nr_sectors) {
525 		int s = min_t(unsigned int, abs(nr_sectors),
526 			      d->stripe_size - stripe_offset);
527 
528 		if (nr_sectors < 0)
529 			s = -s;
530 
531 		if (stripe >= d->nr_stripes)
532 			return;
533 
534 		sectors_dirty = atomic_add_return(s,
535 					d->stripe_sectors_dirty + stripe);
536 		if (sectors_dirty == d->stripe_size)
537 			set_bit(stripe, d->full_dirty_stripes);
538 		else
539 			clear_bit(stripe, d->full_dirty_stripes);
540 
541 		nr_sectors -= s;
542 		stripe_offset = 0;
543 		stripe++;
544 	}
545 }
546 
dirty_pred(struct keybuf * buf,struct bkey * k)547 static bool dirty_pred(struct keybuf *buf, struct bkey *k)
548 {
549 	struct cached_dev *dc = container_of(buf,
550 					     struct cached_dev,
551 					     writeback_keys);
552 
553 	BUG_ON(KEY_INODE(k) != dc->disk.id);
554 
555 	return KEY_DIRTY(k);
556 }
557 
refill_full_stripes(struct cached_dev * dc)558 static void refill_full_stripes(struct cached_dev *dc)
559 {
560 	struct keybuf *buf = &dc->writeback_keys;
561 	unsigned int start_stripe, next_stripe;
562 	int stripe;
563 	bool wrapped = false;
564 
565 	stripe = offset_to_stripe(&dc->disk, KEY_OFFSET(&buf->last_scanned));
566 	if (stripe < 0)
567 		stripe = 0;
568 
569 	start_stripe = stripe;
570 
571 	while (1) {
572 		stripe = find_next_bit(dc->disk.full_dirty_stripes,
573 				       dc->disk.nr_stripes, stripe);
574 
575 		if (stripe == dc->disk.nr_stripes)
576 			goto next;
577 
578 		next_stripe = find_next_zero_bit(dc->disk.full_dirty_stripes,
579 						 dc->disk.nr_stripes, stripe);
580 
581 		buf->last_scanned = KEY(dc->disk.id,
582 					stripe * dc->disk.stripe_size, 0);
583 
584 		bch_refill_keybuf(dc->disk.c, buf,
585 				  &KEY(dc->disk.id,
586 				       next_stripe * dc->disk.stripe_size, 0),
587 				  dirty_pred);
588 
589 		if (array_freelist_empty(&buf->freelist))
590 			return;
591 
592 		stripe = next_stripe;
593 next:
594 		if (wrapped && stripe > start_stripe)
595 			return;
596 
597 		if (stripe == dc->disk.nr_stripes) {
598 			stripe = 0;
599 			wrapped = true;
600 		}
601 	}
602 }
603 
604 /*
605  * Returns true if we scanned the entire disk
606  */
refill_dirty(struct cached_dev * dc)607 static bool refill_dirty(struct cached_dev *dc)
608 {
609 	struct keybuf *buf = &dc->writeback_keys;
610 	struct bkey start = KEY(dc->disk.id, 0, 0);
611 	struct bkey end = KEY(dc->disk.id, MAX_KEY_OFFSET, 0);
612 	struct bkey start_pos;
613 
614 	/*
615 	 * make sure keybuf pos is inside the range for this disk - at bringup
616 	 * we might not be attached yet so this disk's inode nr isn't
617 	 * initialized then
618 	 */
619 	if (bkey_cmp(&buf->last_scanned, &start) < 0 ||
620 	    bkey_cmp(&buf->last_scanned, &end) > 0)
621 		buf->last_scanned = start;
622 
623 	if (dc->partial_stripes_expensive) {
624 		refill_full_stripes(dc);
625 		if (array_freelist_empty(&buf->freelist))
626 			return false;
627 	}
628 
629 	start_pos = buf->last_scanned;
630 	bch_refill_keybuf(dc->disk.c, buf, &end, dirty_pred);
631 
632 	if (bkey_cmp(&buf->last_scanned, &end) < 0)
633 		return false;
634 
635 	/*
636 	 * If we get to the end start scanning again from the beginning, and
637 	 * only scan up to where we initially started scanning from:
638 	 */
639 	buf->last_scanned = start;
640 	bch_refill_keybuf(dc->disk.c, buf, &start_pos, dirty_pred);
641 
642 	return bkey_cmp(&buf->last_scanned, &start_pos) >= 0;
643 }
644 
bch_writeback_thread(void * arg)645 static int bch_writeback_thread(void *arg)
646 {
647 	struct cached_dev *dc = arg;
648 	struct cache_set *c = dc->disk.c;
649 	bool searched_full_index;
650 
651 	bch_ratelimit_reset(&dc->writeback_rate);
652 
653 	while (!kthread_should_stop() &&
654 	       !test_bit(CACHE_SET_IO_DISABLE, &c->flags)) {
655 		down_write(&dc->writeback_lock);
656 		set_current_state(TASK_INTERRUPTIBLE);
657 		/*
658 		 * If the bache device is detaching, skip here and continue
659 		 * to perform writeback. Otherwise, if no dirty data on cache,
660 		 * or there is dirty data on cache but writeback is disabled,
661 		 * the writeback thread should sleep here and wait for others
662 		 * to wake up it.
663 		 */
664 		if (!test_bit(BCACHE_DEV_DETACHING, &dc->disk.flags) &&
665 		    (!atomic_read(&dc->has_dirty) || !dc->writeback_running)) {
666 			up_write(&dc->writeback_lock);
667 
668 			if (kthread_should_stop() ||
669 			    test_bit(CACHE_SET_IO_DISABLE, &c->flags)) {
670 				set_current_state(TASK_RUNNING);
671 				break;
672 			}
673 
674 			schedule();
675 			continue;
676 		}
677 		set_current_state(TASK_RUNNING);
678 
679 		searched_full_index = refill_dirty(dc);
680 
681 		if (searched_full_index &&
682 		    RB_EMPTY_ROOT(&dc->writeback_keys.keys)) {
683 			atomic_set(&dc->has_dirty, 0);
684 			SET_BDEV_STATE(&dc->sb, BDEV_STATE_CLEAN);
685 			bch_write_bdev_super(dc, NULL);
686 			/*
687 			 * If bcache device is detaching via sysfs interface,
688 			 * writeback thread should stop after there is no dirty
689 			 * data on cache. BCACHE_DEV_DETACHING flag is set in
690 			 * bch_cached_dev_detach().
691 			 */
692 			if (test_bit(BCACHE_DEV_DETACHING, &dc->disk.flags)) {
693 				up_write(&dc->writeback_lock);
694 				break;
695 			}
696 		}
697 
698 		up_write(&dc->writeback_lock);
699 
700 		read_dirty(dc);
701 
702 		if (searched_full_index) {
703 			unsigned int delay = dc->writeback_delay * HZ;
704 
705 			while (delay &&
706 			       !kthread_should_stop() &&
707 			       !test_bit(CACHE_SET_IO_DISABLE, &c->flags) &&
708 			       !test_bit(BCACHE_DEV_DETACHING, &dc->disk.flags))
709 				delay = schedule_timeout_interruptible(delay);
710 
711 			bch_ratelimit_reset(&dc->writeback_rate);
712 		}
713 	}
714 
715 	if (dc->writeback_write_wq) {
716 		flush_workqueue(dc->writeback_write_wq);
717 		destroy_workqueue(dc->writeback_write_wq);
718 	}
719 	cached_dev_put(dc);
720 	wait_for_kthread_stop();
721 
722 	return 0;
723 }
724 
725 /* Init */
726 #define INIT_KEYS_EACH_TIME	500000
727 #define INIT_KEYS_SLEEP_MS	100
728 
729 struct sectors_dirty_init {
730 	struct btree_op	op;
731 	unsigned int	inode;
732 	size_t		count;
733 	struct bkey	start;
734 };
735 
sectors_dirty_init_fn(struct btree_op * _op,struct btree * b,struct bkey * k)736 static int sectors_dirty_init_fn(struct btree_op *_op, struct btree *b,
737 				 struct bkey *k)
738 {
739 	struct sectors_dirty_init *op = container_of(_op,
740 						struct sectors_dirty_init, op);
741 	if (KEY_INODE(k) > op->inode)
742 		return MAP_DONE;
743 
744 	if (KEY_DIRTY(k))
745 		bcache_dev_sectors_dirty_add(b->c, KEY_INODE(k),
746 					     KEY_START(k), KEY_SIZE(k));
747 
748 	op->count++;
749 	if (atomic_read(&b->c->search_inflight) &&
750 	    !(op->count % INIT_KEYS_EACH_TIME)) {
751 		bkey_copy_key(&op->start, k);
752 		return -EAGAIN;
753 	}
754 
755 	return MAP_CONTINUE;
756 }
757 
bch_sectors_dirty_init(struct bcache_device * d)758 void bch_sectors_dirty_init(struct bcache_device *d)
759 {
760 	struct sectors_dirty_init op;
761 	int ret;
762 
763 	bch_btree_op_init(&op.op, -1);
764 	op.inode = d->id;
765 	op.count = 0;
766 	op.start = KEY(op.inode, 0, 0);
767 
768 	do {
769 		ret = bch_btree_map_keys(&op.op, d->c, &op.start,
770 					 sectors_dirty_init_fn, 0);
771 		if (ret == -EAGAIN)
772 			schedule_timeout_interruptible(
773 				msecs_to_jiffies(INIT_KEYS_SLEEP_MS));
774 		else if (ret < 0) {
775 			pr_warn("sectors dirty init failed, ret=%d!", ret);
776 			break;
777 		}
778 	} while (ret == -EAGAIN);
779 }
780 
bch_cached_dev_writeback_init(struct cached_dev * dc)781 void bch_cached_dev_writeback_init(struct cached_dev *dc)
782 {
783 	sema_init(&dc->in_flight, 64);
784 	init_rwsem(&dc->writeback_lock);
785 	bch_keybuf_init(&dc->writeback_keys);
786 
787 	dc->writeback_metadata		= true;
788 	dc->writeback_running		= false;
789 	dc->writeback_percent		= 10;
790 	dc->writeback_delay		= 30;
791 	atomic_long_set(&dc->writeback_rate.rate, 1024);
792 	dc->writeback_rate_minimum	= 8;
793 
794 	dc->writeback_rate_update_seconds = WRITEBACK_RATE_UPDATE_SECS_DEFAULT;
795 	dc->writeback_rate_p_term_inverse = 40;
796 	dc->writeback_rate_i_term_inverse = 10000;
797 
798 	WARN_ON(test_and_clear_bit(BCACHE_DEV_WB_RUNNING, &dc->disk.flags));
799 	INIT_DELAYED_WORK(&dc->writeback_rate_update, update_writeback_rate);
800 }
801 
bch_cached_dev_writeback_start(struct cached_dev * dc)802 int bch_cached_dev_writeback_start(struct cached_dev *dc)
803 {
804 	dc->writeback_write_wq = alloc_workqueue("bcache_writeback_wq",
805 						WQ_MEM_RECLAIM, 0);
806 	if (!dc->writeback_write_wq)
807 		return -ENOMEM;
808 
809 	cached_dev_get(dc);
810 	dc->writeback_thread = kthread_create(bch_writeback_thread, dc,
811 					      "bcache_writeback");
812 	if (IS_ERR(dc->writeback_thread)) {
813 		cached_dev_put(dc);
814 		destroy_workqueue(dc->writeback_write_wq);
815 		return PTR_ERR(dc->writeback_thread);
816 	}
817 	dc->writeback_running = true;
818 
819 	WARN_ON(test_and_set_bit(BCACHE_DEV_WB_RUNNING, &dc->disk.flags));
820 	schedule_delayed_work(&dc->writeback_rate_update,
821 			      dc->writeback_rate_update_seconds * HZ);
822 
823 	bch_writeback_queue(dc);
824 
825 	return 0;
826 }
827