• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (C) 2003 Sistina Software Limited.
3  * Copyright (C) 2004-2005 Red Hat, Inc. All rights reserved.
4  *
5  * This file is released under the GPL.
6  */
7 
8 #include <linux/device-mapper.h>
9 
10 #include "dm-rq.h"
11 #include "dm-bio-record.h"
12 #include "dm-path-selector.h"
13 #include "dm-uevent.h"
14 
15 #include <linux/blkdev.h>
16 #include <linux/ctype.h>
17 #include <linux/init.h>
18 #include <linux/mempool.h>
19 #include <linux/module.h>
20 #include <linux/pagemap.h>
21 #include <linux/slab.h>
22 #include <linux/time.h>
23 #include <linux/workqueue.h>
24 #include <linux/delay.h>
25 #include <scsi/scsi_dh.h>
26 #include <linux/atomic.h>
27 #include <linux/blk-mq.h>
28 
29 #define DM_MSG_PREFIX "multipath"
30 #define DM_PG_INIT_DELAY_MSECS 2000
31 #define DM_PG_INIT_DELAY_DEFAULT ((unsigned) -1)
32 
33 /* Path properties */
34 struct pgpath {
35 	struct list_head list;
36 
37 	struct priority_group *pg;	/* Owning PG */
38 	unsigned fail_count;		/* Cumulative failure count */
39 
40 	struct dm_path path;
41 	struct delayed_work activate_path;
42 
43 	bool is_active:1;		/* Path status */
44 };
45 
46 #define path_to_pgpath(__pgp) container_of((__pgp), struct pgpath, path)
47 
48 /*
49  * Paths are grouped into Priority Groups and numbered from 1 upwards.
50  * Each has a path selector which controls which path gets used.
51  */
52 struct priority_group {
53 	struct list_head list;
54 
55 	struct multipath *m;		/* Owning multipath instance */
56 	struct path_selector ps;
57 
58 	unsigned pg_num;		/* Reference number */
59 	unsigned nr_pgpaths;		/* Number of paths in PG */
60 	struct list_head pgpaths;
61 
62 	bool bypassed:1;		/* Temporarily bypass this PG? */
63 };
64 
65 /* Multipath context */
66 struct multipath {
67 	unsigned long flags;		/* Multipath state flags */
68 
69 	spinlock_t lock;
70 	enum dm_queue_mode queue_mode;
71 
72 	struct pgpath *current_pgpath;
73 	struct priority_group *current_pg;
74 	struct priority_group *next_pg;	/* Switch to this PG if set */
75 
76 	atomic_t nr_valid_paths;	/* Total number of usable paths */
77 	unsigned nr_priority_groups;
78 	struct list_head priority_groups;
79 
80 	const char *hw_handler_name;
81 	char *hw_handler_params;
82 	wait_queue_head_t pg_init_wait;	/* Wait for pg_init completion */
83 	unsigned pg_init_retries;	/* Number of times to retry pg_init */
84 	unsigned pg_init_delay_msecs;	/* Number of msecs before pg_init retry */
85 	atomic_t pg_init_in_progress;	/* Only one pg_init allowed at once */
86 	atomic_t pg_init_count;		/* Number of times pg_init called */
87 
88 	struct mutex work_mutex;
89 	struct work_struct trigger_event;
90 	struct dm_target *ti;
91 
92 	struct work_struct process_queued_bios;
93 	struct bio_list queued_bios;
94 };
95 
96 /*
97  * Context information attached to each io we process.
98  */
99 struct dm_mpath_io {
100 	struct pgpath *pgpath;
101 	size_t nr_bytes;
102 };
103 
104 typedef int (*action_fn) (struct pgpath *pgpath);
105 
106 static struct workqueue_struct *kmultipathd, *kmpath_handlerd;
107 static void trigger_event(struct work_struct *work);
108 static void activate_or_offline_path(struct pgpath *pgpath);
109 static void activate_path_work(struct work_struct *work);
110 static void process_queued_bios(struct work_struct *work);
111 
112 /*-----------------------------------------------
113  * Multipath state flags.
114  *-----------------------------------------------*/
115 
116 #define MPATHF_QUEUE_IO 0			/* Must we queue all I/O? */
117 #define MPATHF_QUEUE_IF_NO_PATH 1		/* Queue I/O if last path fails? */
118 #define MPATHF_SAVED_QUEUE_IF_NO_PATH 2		/* Saved state during suspension */
119 #define MPATHF_RETAIN_ATTACHED_HW_HANDLER 3	/* If there's already a hw_handler present, don't change it. */
120 #define MPATHF_PG_INIT_DISABLED 4		/* pg_init is not currently allowed */
121 #define MPATHF_PG_INIT_REQUIRED 5		/* pg_init needs calling? */
122 #define MPATHF_PG_INIT_DELAY_RETRY 6		/* Delay pg_init retry? */
123 
124 /*-----------------------------------------------
125  * Allocation routines
126  *-----------------------------------------------*/
127 
alloc_pgpath(void)128 static struct pgpath *alloc_pgpath(void)
129 {
130 	struct pgpath *pgpath = kzalloc(sizeof(*pgpath), GFP_KERNEL);
131 
132 	if (!pgpath)
133 		return NULL;
134 
135 	pgpath->is_active = true;
136 
137 	return pgpath;
138 }
139 
free_pgpath(struct pgpath * pgpath)140 static void free_pgpath(struct pgpath *pgpath)
141 {
142 	kfree(pgpath);
143 }
144 
alloc_priority_group(void)145 static struct priority_group *alloc_priority_group(void)
146 {
147 	struct priority_group *pg;
148 
149 	pg = kzalloc(sizeof(*pg), GFP_KERNEL);
150 
151 	if (pg)
152 		INIT_LIST_HEAD(&pg->pgpaths);
153 
154 	return pg;
155 }
156 
free_pgpaths(struct list_head * pgpaths,struct dm_target * ti)157 static void free_pgpaths(struct list_head *pgpaths, struct dm_target *ti)
158 {
159 	struct pgpath *pgpath, *tmp;
160 
161 	list_for_each_entry_safe(pgpath, tmp, pgpaths, list) {
162 		list_del(&pgpath->list);
163 		dm_put_device(ti, pgpath->path.dev);
164 		free_pgpath(pgpath);
165 	}
166 }
167 
free_priority_group(struct priority_group * pg,struct dm_target * ti)168 static void free_priority_group(struct priority_group *pg,
169 				struct dm_target *ti)
170 {
171 	struct path_selector *ps = &pg->ps;
172 
173 	if (ps->type) {
174 		ps->type->destroy(ps);
175 		dm_put_path_selector(ps->type);
176 	}
177 
178 	free_pgpaths(&pg->pgpaths, ti);
179 	kfree(pg);
180 }
181 
alloc_multipath(struct dm_target * ti)182 static struct multipath *alloc_multipath(struct dm_target *ti)
183 {
184 	struct multipath *m;
185 
186 	m = kzalloc(sizeof(*m), GFP_KERNEL);
187 	if (m) {
188 		INIT_LIST_HEAD(&m->priority_groups);
189 		spin_lock_init(&m->lock);
190 		atomic_set(&m->nr_valid_paths, 0);
191 		INIT_WORK(&m->trigger_event, trigger_event);
192 		mutex_init(&m->work_mutex);
193 
194 		m->queue_mode = DM_TYPE_NONE;
195 
196 		m->ti = ti;
197 		ti->private = m;
198 	}
199 
200 	return m;
201 }
202 
alloc_multipath_stage2(struct dm_target * ti,struct multipath * m)203 static int alloc_multipath_stage2(struct dm_target *ti, struct multipath *m)
204 {
205 	if (m->queue_mode == DM_TYPE_NONE) {
206 		/*
207 		 * Default to request-based.
208 		 */
209 		if (dm_use_blk_mq(dm_table_get_md(ti->table)))
210 			m->queue_mode = DM_TYPE_MQ_REQUEST_BASED;
211 		else
212 			m->queue_mode = DM_TYPE_REQUEST_BASED;
213 
214 	} else if (m->queue_mode == DM_TYPE_BIO_BASED) {
215 		INIT_WORK(&m->process_queued_bios, process_queued_bios);
216 		/*
217 		 * bio-based doesn't support any direct scsi_dh management;
218 		 * it just discovers if a scsi_dh is attached.
219 		 */
220 		set_bit(MPATHF_RETAIN_ATTACHED_HW_HANDLER, &m->flags);
221 	}
222 
223 	dm_table_set_type(ti->table, m->queue_mode);
224 
225 	/*
226 	 * Init fields that are only used when a scsi_dh is attached
227 	 * - must do this unconditionally (really doesn't hurt non-SCSI uses)
228 	 */
229 	set_bit(MPATHF_QUEUE_IO, &m->flags);
230 	atomic_set(&m->pg_init_in_progress, 0);
231 	atomic_set(&m->pg_init_count, 0);
232 	m->pg_init_delay_msecs = DM_PG_INIT_DELAY_DEFAULT;
233 	init_waitqueue_head(&m->pg_init_wait);
234 
235 	return 0;
236 }
237 
free_multipath(struct multipath * m)238 static void free_multipath(struct multipath *m)
239 {
240 	struct priority_group *pg, *tmp;
241 
242 	list_for_each_entry_safe(pg, tmp, &m->priority_groups, list) {
243 		list_del(&pg->list);
244 		free_priority_group(pg, m->ti);
245 	}
246 
247 	kfree(m->hw_handler_name);
248 	kfree(m->hw_handler_params);
249 	mutex_destroy(&m->work_mutex);
250 	kfree(m);
251 }
252 
get_mpio(union map_info * info)253 static struct dm_mpath_io *get_mpio(union map_info *info)
254 {
255 	return info->ptr;
256 }
257 
multipath_per_bio_data_size(void)258 static size_t multipath_per_bio_data_size(void)
259 {
260 	return sizeof(struct dm_mpath_io) + sizeof(struct dm_bio_details);
261 }
262 
get_mpio_from_bio(struct bio * bio)263 static struct dm_mpath_io *get_mpio_from_bio(struct bio *bio)
264 {
265 	return dm_per_bio_data(bio, multipath_per_bio_data_size());
266 }
267 
get_bio_details_from_mpio(struct dm_mpath_io * mpio)268 static struct dm_bio_details *get_bio_details_from_mpio(struct dm_mpath_io *mpio)
269 {
270 	/* dm_bio_details is immediately after the dm_mpath_io in bio's per-bio-data */
271 	void *bio_details = mpio + 1;
272 	return bio_details;
273 }
274 
multipath_init_per_bio_data(struct bio * bio,struct dm_mpath_io ** mpio_p)275 static void multipath_init_per_bio_data(struct bio *bio, struct dm_mpath_io **mpio_p)
276 {
277 	struct dm_mpath_io *mpio = get_mpio_from_bio(bio);
278 	struct dm_bio_details *bio_details = get_bio_details_from_mpio(mpio);
279 
280 	mpio->nr_bytes = bio->bi_iter.bi_size;
281 	mpio->pgpath = NULL;
282 	*mpio_p = mpio;
283 
284 	dm_bio_record(bio_details, bio);
285 }
286 
287 /*-----------------------------------------------
288  * Path selection
289  *-----------------------------------------------*/
290 
__pg_init_all_paths(struct multipath * m)291 static int __pg_init_all_paths(struct multipath *m)
292 {
293 	struct pgpath *pgpath;
294 	unsigned long pg_init_delay = 0;
295 
296 	lockdep_assert_held(&m->lock);
297 
298 	if (atomic_read(&m->pg_init_in_progress) || test_bit(MPATHF_PG_INIT_DISABLED, &m->flags))
299 		return 0;
300 
301 	atomic_inc(&m->pg_init_count);
302 	clear_bit(MPATHF_PG_INIT_REQUIRED, &m->flags);
303 
304 	/* Check here to reset pg_init_required */
305 	if (!m->current_pg)
306 		return 0;
307 
308 	if (test_bit(MPATHF_PG_INIT_DELAY_RETRY, &m->flags))
309 		pg_init_delay = msecs_to_jiffies(m->pg_init_delay_msecs != DM_PG_INIT_DELAY_DEFAULT ?
310 						 m->pg_init_delay_msecs : DM_PG_INIT_DELAY_MSECS);
311 	list_for_each_entry(pgpath, &m->current_pg->pgpaths, list) {
312 		/* Skip failed paths */
313 		if (!pgpath->is_active)
314 			continue;
315 		if (queue_delayed_work(kmpath_handlerd, &pgpath->activate_path,
316 				       pg_init_delay))
317 			atomic_inc(&m->pg_init_in_progress);
318 	}
319 	return atomic_read(&m->pg_init_in_progress);
320 }
321 
pg_init_all_paths(struct multipath * m)322 static int pg_init_all_paths(struct multipath *m)
323 {
324 	int ret;
325 	unsigned long flags;
326 
327 	spin_lock_irqsave(&m->lock, flags);
328 	ret = __pg_init_all_paths(m);
329 	spin_unlock_irqrestore(&m->lock, flags);
330 
331 	return ret;
332 }
333 
__switch_pg(struct multipath * m,struct priority_group * pg)334 static void __switch_pg(struct multipath *m, struct priority_group *pg)
335 {
336 	m->current_pg = pg;
337 
338 	/* Must we initialise the PG first, and queue I/O till it's ready? */
339 	if (m->hw_handler_name) {
340 		set_bit(MPATHF_PG_INIT_REQUIRED, &m->flags);
341 		set_bit(MPATHF_QUEUE_IO, &m->flags);
342 	} else {
343 		clear_bit(MPATHF_PG_INIT_REQUIRED, &m->flags);
344 		clear_bit(MPATHF_QUEUE_IO, &m->flags);
345 	}
346 
347 	atomic_set(&m->pg_init_count, 0);
348 }
349 
choose_path_in_pg(struct multipath * m,struct priority_group * pg,size_t nr_bytes)350 static struct pgpath *choose_path_in_pg(struct multipath *m,
351 					struct priority_group *pg,
352 					size_t nr_bytes)
353 {
354 	unsigned long flags;
355 	struct dm_path *path;
356 	struct pgpath *pgpath;
357 
358 	path = pg->ps.type->select_path(&pg->ps, nr_bytes);
359 	if (!path)
360 		return ERR_PTR(-ENXIO);
361 
362 	pgpath = path_to_pgpath(path);
363 
364 	if (unlikely(READ_ONCE(m->current_pg) != pg)) {
365 		/* Only update current_pgpath if pg changed */
366 		spin_lock_irqsave(&m->lock, flags);
367 		m->current_pgpath = pgpath;
368 		__switch_pg(m, pg);
369 		spin_unlock_irqrestore(&m->lock, flags);
370 	}
371 
372 	return pgpath;
373 }
374 
choose_pgpath(struct multipath * m,size_t nr_bytes)375 static struct pgpath *choose_pgpath(struct multipath *m, size_t nr_bytes)
376 {
377 	unsigned long flags;
378 	struct priority_group *pg;
379 	struct pgpath *pgpath;
380 	unsigned bypassed = 1;
381 
382 	if (!atomic_read(&m->nr_valid_paths)) {
383 		clear_bit(MPATHF_QUEUE_IO, &m->flags);
384 		goto failed;
385 	}
386 
387 	/* Were we instructed to switch PG? */
388 	if (READ_ONCE(m->next_pg)) {
389 		spin_lock_irqsave(&m->lock, flags);
390 		pg = m->next_pg;
391 		if (!pg) {
392 			spin_unlock_irqrestore(&m->lock, flags);
393 			goto check_current_pg;
394 		}
395 		m->next_pg = NULL;
396 		spin_unlock_irqrestore(&m->lock, flags);
397 		pgpath = choose_path_in_pg(m, pg, nr_bytes);
398 		if (!IS_ERR_OR_NULL(pgpath))
399 			return pgpath;
400 	}
401 
402 	/* Don't change PG until it has no remaining paths */
403 check_current_pg:
404 	pg = READ_ONCE(m->current_pg);
405 	if (pg) {
406 		pgpath = choose_path_in_pg(m, pg, nr_bytes);
407 		if (!IS_ERR_OR_NULL(pgpath))
408 			return pgpath;
409 	}
410 
411 	/*
412 	 * Loop through priority groups until we find a valid path.
413 	 * First time we skip PGs marked 'bypassed'.
414 	 * Second time we only try the ones we skipped, but set
415 	 * pg_init_delay_retry so we do not hammer controllers.
416 	 */
417 	do {
418 		list_for_each_entry(pg, &m->priority_groups, list) {
419 			if (pg->bypassed == !!bypassed)
420 				continue;
421 			pgpath = choose_path_in_pg(m, pg, nr_bytes);
422 			if (!IS_ERR_OR_NULL(pgpath)) {
423 				if (!bypassed)
424 					set_bit(MPATHF_PG_INIT_DELAY_RETRY, &m->flags);
425 				return pgpath;
426 			}
427 		}
428 	} while (bypassed--);
429 
430 failed:
431 	spin_lock_irqsave(&m->lock, flags);
432 	m->current_pgpath = NULL;
433 	m->current_pg = NULL;
434 	spin_unlock_irqrestore(&m->lock, flags);
435 
436 	return NULL;
437 }
438 
439 /*
440  * dm_report_EIO() is a macro instead of a function to make pr_debug()
441  * report the function name and line number of the function from which
442  * it has been invoked.
443  */
444 #define dm_report_EIO(m)						\
445 do {									\
446 	struct mapped_device *md = dm_table_get_md((m)->ti->table);	\
447 									\
448 	pr_debug("%s: returning EIO; QIFNP = %d; SQIFNP = %d; DNFS = %d\n", \
449 		 dm_device_name(md),					\
450 		 test_bit(MPATHF_QUEUE_IF_NO_PATH, &(m)->flags),	\
451 		 test_bit(MPATHF_SAVED_QUEUE_IF_NO_PATH, &(m)->flags),	\
452 		 dm_noflush_suspending((m)->ti));			\
453 } while (0)
454 
455 /*
456  * Check whether bios must be queued in the device-mapper core rather
457  * than here in the target.
458  *
459  * If MPATHF_QUEUE_IF_NO_PATH and MPATHF_SAVED_QUEUE_IF_NO_PATH hold
460  * the same value then we are not between multipath_presuspend()
461  * and multipath_resume() calls and we have no need to check
462  * for the DMF_NOFLUSH_SUSPENDING flag.
463  */
__must_push_back(struct multipath * m,unsigned long flags)464 static bool __must_push_back(struct multipath *m, unsigned long flags)
465 {
466 	return ((test_bit(MPATHF_QUEUE_IF_NO_PATH, &flags) !=
467 		 test_bit(MPATHF_SAVED_QUEUE_IF_NO_PATH, &flags)) &&
468 		dm_noflush_suspending(m->ti));
469 }
470 
471 /*
472  * Following functions use READ_ONCE to get atomic access to
473  * all m->flags to avoid taking spinlock
474  */
must_push_back_rq(struct multipath * m)475 static bool must_push_back_rq(struct multipath *m)
476 {
477 	unsigned long flags = READ_ONCE(m->flags);
478 	return test_bit(MPATHF_QUEUE_IF_NO_PATH, &flags) || __must_push_back(m, flags);
479 }
480 
must_push_back_bio(struct multipath * m)481 static bool must_push_back_bio(struct multipath *m)
482 {
483 	unsigned long flags = READ_ONCE(m->flags);
484 	return __must_push_back(m, flags);
485 }
486 
487 /*
488  * Map cloned requests (request-based multipath)
489  */
multipath_clone_and_map(struct dm_target * ti,struct request * rq,union map_info * map_context,struct request ** __clone)490 static int multipath_clone_and_map(struct dm_target *ti, struct request *rq,
491 				   union map_info *map_context,
492 				   struct request **__clone)
493 {
494 	struct multipath *m = ti->private;
495 	size_t nr_bytes = blk_rq_bytes(rq);
496 	struct pgpath *pgpath;
497 	struct block_device *bdev;
498 	struct dm_mpath_io *mpio = get_mpio(map_context);
499 	struct request_queue *q;
500 	struct request *clone;
501 
502 	/* Do we need to select a new pgpath? */
503 	pgpath = READ_ONCE(m->current_pgpath);
504 	if (!pgpath || !test_bit(MPATHF_QUEUE_IO, &m->flags))
505 		pgpath = choose_pgpath(m, nr_bytes);
506 
507 	if (!pgpath) {
508 		if (must_push_back_rq(m))
509 			return DM_MAPIO_DELAY_REQUEUE;
510 		dm_report_EIO(m);	/* Failed */
511 		return DM_MAPIO_KILL;
512 	} else if (test_bit(MPATHF_QUEUE_IO, &m->flags) ||
513 		   test_bit(MPATHF_PG_INIT_REQUIRED, &m->flags)) {
514 		pg_init_all_paths(m);
515 		return DM_MAPIO_DELAY_REQUEUE;
516 	}
517 
518 	mpio->pgpath = pgpath;
519 	mpio->nr_bytes = nr_bytes;
520 
521 	bdev = pgpath->path.dev->bdev;
522 	q = bdev_get_queue(bdev);
523 	clone = blk_get_request(q, rq->cmd_flags | REQ_NOMERGE,
524 			BLK_MQ_REQ_NOWAIT);
525 	if (IS_ERR(clone)) {
526 		/* EBUSY, ENODEV or EWOULDBLOCK: requeue */
527 		if (blk_queue_dying(q)) {
528 			atomic_inc(&m->pg_init_in_progress);
529 			activate_or_offline_path(pgpath);
530 			return DM_MAPIO_DELAY_REQUEUE;
531 		}
532 
533 		/*
534 		 * blk-mq's SCHED_RESTART can cover this requeue, so we
535 		 * needn't deal with it by DELAY_REQUEUE. More importantly,
536 		 * we have to return DM_MAPIO_REQUEUE so that blk-mq can
537 		 * get the queue busy feedback (via BLK_STS_RESOURCE),
538 		 * otherwise I/O merging can suffer.
539 		 */
540 		if (q->mq_ops)
541 			return DM_MAPIO_REQUEUE;
542 		else
543 			return DM_MAPIO_DELAY_REQUEUE;
544 	}
545 	clone->bio = clone->biotail = NULL;
546 	clone->rq_disk = bdev->bd_disk;
547 	clone->cmd_flags |= REQ_FAILFAST_TRANSPORT;
548 	*__clone = clone;
549 
550 	if (pgpath->pg->ps.type->start_io)
551 		pgpath->pg->ps.type->start_io(&pgpath->pg->ps,
552 					      &pgpath->path,
553 					      nr_bytes);
554 	return DM_MAPIO_REMAPPED;
555 }
556 
multipath_release_clone(struct request * clone,union map_info * map_context)557 static void multipath_release_clone(struct request *clone,
558 				    union map_info *map_context)
559 {
560 	if (unlikely(map_context)) {
561 		/*
562 		 * non-NULL map_context means caller is still map
563 		 * method; must undo multipath_clone_and_map()
564 		 */
565 		struct dm_mpath_io *mpio = get_mpio(map_context);
566 		struct pgpath *pgpath = mpio->pgpath;
567 
568 		if (pgpath && pgpath->pg->ps.type->end_io)
569 			pgpath->pg->ps.type->end_io(&pgpath->pg->ps,
570 						    &pgpath->path,
571 						    mpio->nr_bytes);
572 	}
573 
574 	blk_put_request(clone);
575 }
576 
577 /*
578  * Map cloned bios (bio-based multipath)
579  */
580 
__map_bio(struct multipath * m,struct bio * bio)581 static struct pgpath *__map_bio(struct multipath *m, struct bio *bio)
582 {
583 	struct pgpath *pgpath;
584 	unsigned long flags;
585 	bool queue_io;
586 
587 	/* Do we need to select a new pgpath? */
588 	pgpath = READ_ONCE(m->current_pgpath);
589 	if (!pgpath || !test_bit(MPATHF_QUEUE_IO, &m->flags))
590 		pgpath = choose_pgpath(m, bio->bi_iter.bi_size);
591 
592 	/* MPATHF_QUEUE_IO might have been cleared by choose_pgpath. */
593 	queue_io = test_bit(MPATHF_QUEUE_IO, &m->flags);
594 
595 	if ((pgpath && queue_io) ||
596 	    (!pgpath && test_bit(MPATHF_QUEUE_IF_NO_PATH, &m->flags))) {
597 		/* Queue for the daemon to resubmit */
598 		spin_lock_irqsave(&m->lock, flags);
599 		bio_list_add(&m->queued_bios, bio);
600 		spin_unlock_irqrestore(&m->lock, flags);
601 
602 		/* PG_INIT_REQUIRED cannot be set without QUEUE_IO */
603 		if (queue_io || test_bit(MPATHF_PG_INIT_REQUIRED, &m->flags))
604 			pg_init_all_paths(m);
605 		else if (!queue_io)
606 			queue_work(kmultipathd, &m->process_queued_bios);
607 
608 		return ERR_PTR(-EAGAIN);
609 	}
610 
611 	return pgpath;
612 }
613 
__multipath_map_bio(struct multipath * m,struct bio * bio,struct dm_mpath_io * mpio)614 static int __multipath_map_bio(struct multipath *m, struct bio *bio,
615 			       struct dm_mpath_io *mpio)
616 {
617 	struct pgpath *pgpath = __map_bio(m, bio);
618 
619 	if (IS_ERR(pgpath))
620 		return DM_MAPIO_SUBMITTED;
621 
622 	if (!pgpath) {
623 		if (must_push_back_bio(m))
624 			return DM_MAPIO_REQUEUE;
625 		dm_report_EIO(m);
626 		return DM_MAPIO_KILL;
627 	}
628 
629 	mpio->pgpath = pgpath;
630 
631 	bio->bi_status = 0;
632 	bio_set_dev(bio, pgpath->path.dev->bdev);
633 	bio->bi_opf |= REQ_FAILFAST_TRANSPORT;
634 
635 	if (pgpath->pg->ps.type->start_io)
636 		pgpath->pg->ps.type->start_io(&pgpath->pg->ps,
637 					      &pgpath->path,
638 					      mpio->nr_bytes);
639 	return DM_MAPIO_REMAPPED;
640 }
641 
multipath_map_bio(struct dm_target * ti,struct bio * bio)642 static int multipath_map_bio(struct dm_target *ti, struct bio *bio)
643 {
644 	struct multipath *m = ti->private;
645 	struct dm_mpath_io *mpio = NULL;
646 
647 	multipath_init_per_bio_data(bio, &mpio);
648 	return __multipath_map_bio(m, bio, mpio);
649 }
650 
process_queued_io_list(struct multipath * m)651 static void process_queued_io_list(struct multipath *m)
652 {
653 	if (m->queue_mode == DM_TYPE_MQ_REQUEST_BASED)
654 		dm_mq_kick_requeue_list(dm_table_get_md(m->ti->table));
655 	else if (m->queue_mode == DM_TYPE_BIO_BASED)
656 		queue_work(kmultipathd, &m->process_queued_bios);
657 }
658 
process_queued_bios(struct work_struct * work)659 static void process_queued_bios(struct work_struct *work)
660 {
661 	int r;
662 	unsigned long flags;
663 	struct bio *bio;
664 	struct bio_list bios;
665 	struct blk_plug plug;
666 	struct multipath *m =
667 		container_of(work, struct multipath, process_queued_bios);
668 
669 	bio_list_init(&bios);
670 
671 	spin_lock_irqsave(&m->lock, flags);
672 
673 	if (bio_list_empty(&m->queued_bios)) {
674 		spin_unlock_irqrestore(&m->lock, flags);
675 		return;
676 	}
677 
678 	bio_list_merge(&bios, &m->queued_bios);
679 	bio_list_init(&m->queued_bios);
680 
681 	spin_unlock_irqrestore(&m->lock, flags);
682 
683 	blk_start_plug(&plug);
684 	while ((bio = bio_list_pop(&bios))) {
685 		struct dm_mpath_io *mpio = get_mpio_from_bio(bio);
686 		dm_bio_restore(get_bio_details_from_mpio(mpio), bio);
687 		r = __multipath_map_bio(m, bio, mpio);
688 		switch (r) {
689 		case DM_MAPIO_KILL:
690 			bio->bi_status = BLK_STS_IOERR;
691 			bio_endio(bio);
692 			break;
693 		case DM_MAPIO_REQUEUE:
694 			bio->bi_status = BLK_STS_DM_REQUEUE;
695 			bio_endio(bio);
696 			break;
697 		case DM_MAPIO_REMAPPED:
698 			generic_make_request(bio);
699 			break;
700 		case DM_MAPIO_SUBMITTED:
701 			break;
702 		default:
703 			WARN_ONCE(true, "__multipath_map_bio() returned %d\n", r);
704 		}
705 	}
706 	blk_finish_plug(&plug);
707 }
708 
709 /*
710  * If we run out of usable paths, should we queue I/O or error it?
711  */
queue_if_no_path(struct multipath * m,bool queue_if_no_path,bool save_old_value)712 static int queue_if_no_path(struct multipath *m, bool queue_if_no_path,
713 			    bool save_old_value)
714 {
715 	unsigned long flags;
716 
717 	spin_lock_irqsave(&m->lock, flags);
718 	assign_bit(MPATHF_SAVED_QUEUE_IF_NO_PATH, &m->flags,
719 		   (save_old_value && test_bit(MPATHF_QUEUE_IF_NO_PATH, &m->flags)) ||
720 		   (!save_old_value && queue_if_no_path));
721 	assign_bit(MPATHF_QUEUE_IF_NO_PATH, &m->flags, queue_if_no_path);
722 	spin_unlock_irqrestore(&m->lock, flags);
723 
724 	if (!queue_if_no_path) {
725 		dm_table_run_md_queue_async(m->ti->table);
726 		process_queued_io_list(m);
727 	}
728 
729 	return 0;
730 }
731 
732 /*
733  * An event is triggered whenever a path is taken out of use.
734  * Includes path failure and PG bypass.
735  */
trigger_event(struct work_struct * work)736 static void trigger_event(struct work_struct *work)
737 {
738 	struct multipath *m =
739 		container_of(work, struct multipath, trigger_event);
740 
741 	dm_table_event(m->ti->table);
742 }
743 
744 /*-----------------------------------------------------------------
745  * Constructor/argument parsing:
746  * <#multipath feature args> [<arg>]*
747  * <#hw_handler args> [hw_handler [<arg>]*]
748  * <#priority groups>
749  * <initial priority group>
750  *     [<selector> <#selector args> [<arg>]*
751  *      <#paths> <#per-path selector args>
752  *         [<path> [<arg>]* ]+ ]+
753  *---------------------------------------------------------------*/
parse_path_selector(struct dm_arg_set * as,struct priority_group * pg,struct dm_target * ti)754 static int parse_path_selector(struct dm_arg_set *as, struct priority_group *pg,
755 			       struct dm_target *ti)
756 {
757 	int r;
758 	struct path_selector_type *pst;
759 	unsigned ps_argc;
760 
761 	static const struct dm_arg _args[] = {
762 		{0, 1024, "invalid number of path selector args"},
763 	};
764 
765 	pst = dm_get_path_selector(dm_shift_arg(as));
766 	if (!pst) {
767 		ti->error = "unknown path selector type";
768 		return -EINVAL;
769 	}
770 
771 	r = dm_read_arg_group(_args, as, &ps_argc, &ti->error);
772 	if (r) {
773 		dm_put_path_selector(pst);
774 		return -EINVAL;
775 	}
776 
777 	r = pst->create(&pg->ps, ps_argc, as->argv);
778 	if (r) {
779 		dm_put_path_selector(pst);
780 		ti->error = "path selector constructor failed";
781 		return r;
782 	}
783 
784 	pg->ps.type = pst;
785 	dm_consume_args(as, ps_argc);
786 
787 	return 0;
788 }
789 
setup_scsi_dh(struct block_device * bdev,struct multipath * m,const char ** attached_handler_name,char ** error)790 static int setup_scsi_dh(struct block_device *bdev, struct multipath *m,
791 			 const char **attached_handler_name, char **error)
792 {
793 	struct request_queue *q = bdev_get_queue(bdev);
794 	int r;
795 
796 	if (test_bit(MPATHF_RETAIN_ATTACHED_HW_HANDLER, &m->flags)) {
797 retain:
798 		if (*attached_handler_name) {
799 			/*
800 			 * Clear any hw_handler_params associated with a
801 			 * handler that isn't already attached.
802 			 */
803 			if (m->hw_handler_name && strcmp(*attached_handler_name, m->hw_handler_name)) {
804 				kfree(m->hw_handler_params);
805 				m->hw_handler_params = NULL;
806 			}
807 
808 			/*
809 			 * Reset hw_handler_name to match the attached handler
810 			 *
811 			 * NB. This modifies the table line to show the actual
812 			 * handler instead of the original table passed in.
813 			 */
814 			kfree(m->hw_handler_name);
815 			m->hw_handler_name = *attached_handler_name;
816 			*attached_handler_name = NULL;
817 		}
818 	}
819 
820 	if (m->hw_handler_name) {
821 		r = scsi_dh_attach(q, m->hw_handler_name);
822 		if (r == -EBUSY) {
823 			char b[BDEVNAME_SIZE];
824 
825 			printk(KERN_INFO "dm-mpath: retaining handler on device %s\n",
826 			       bdevname(bdev, b));
827 			goto retain;
828 		}
829 		if (r < 0) {
830 			*error = "error attaching hardware handler";
831 			return r;
832 		}
833 
834 		if (m->hw_handler_params) {
835 			r = scsi_dh_set_params(q, m->hw_handler_params);
836 			if (r < 0) {
837 				*error = "unable to set hardware handler parameters";
838 				return r;
839 			}
840 		}
841 	}
842 
843 	return 0;
844 }
845 
parse_path(struct dm_arg_set * as,struct path_selector * ps,struct dm_target * ti)846 static struct pgpath *parse_path(struct dm_arg_set *as, struct path_selector *ps,
847 				 struct dm_target *ti)
848 {
849 	int r;
850 	struct pgpath *p;
851 	struct multipath *m = ti->private;
852 	struct request_queue *q;
853 	const char *attached_handler_name = NULL;
854 
855 	/* we need at least a path arg */
856 	if (as->argc < 1) {
857 		ti->error = "no device given";
858 		return ERR_PTR(-EINVAL);
859 	}
860 
861 	p = alloc_pgpath();
862 	if (!p)
863 		return ERR_PTR(-ENOMEM);
864 
865 	r = dm_get_device(ti, dm_shift_arg(as), dm_table_get_mode(ti->table),
866 			  &p->path.dev);
867 	if (r) {
868 		ti->error = "error getting device";
869 		goto bad;
870 	}
871 
872 	q = bdev_get_queue(p->path.dev->bdev);
873 	attached_handler_name = scsi_dh_attached_handler_name(q, GFP_KERNEL);
874 	if (attached_handler_name || m->hw_handler_name) {
875 		INIT_DELAYED_WORK(&p->activate_path, activate_path_work);
876 		r = setup_scsi_dh(p->path.dev->bdev, m, &attached_handler_name, &ti->error);
877 		kfree(attached_handler_name);
878 		if (r) {
879 			dm_put_device(ti, p->path.dev);
880 			goto bad;
881 		}
882 	}
883 
884 	r = ps->type->add_path(ps, &p->path, as->argc, as->argv, &ti->error);
885 	if (r) {
886 		dm_put_device(ti, p->path.dev);
887 		goto bad;
888 	}
889 
890 	return p;
891  bad:
892 	free_pgpath(p);
893 	return ERR_PTR(r);
894 }
895 
parse_priority_group(struct dm_arg_set * as,struct multipath * m)896 static struct priority_group *parse_priority_group(struct dm_arg_set *as,
897 						   struct multipath *m)
898 {
899 	static const struct dm_arg _args[] = {
900 		{1, 1024, "invalid number of paths"},
901 		{0, 1024, "invalid number of selector args"}
902 	};
903 
904 	int r;
905 	unsigned i, nr_selector_args, nr_args;
906 	struct priority_group *pg;
907 	struct dm_target *ti = m->ti;
908 
909 	if (as->argc < 2) {
910 		as->argc = 0;
911 		ti->error = "not enough priority group arguments";
912 		return ERR_PTR(-EINVAL);
913 	}
914 
915 	pg = alloc_priority_group();
916 	if (!pg) {
917 		ti->error = "couldn't allocate priority group";
918 		return ERR_PTR(-ENOMEM);
919 	}
920 	pg->m = m;
921 
922 	r = parse_path_selector(as, pg, ti);
923 	if (r)
924 		goto bad;
925 
926 	/*
927 	 * read the paths
928 	 */
929 	r = dm_read_arg(_args, as, &pg->nr_pgpaths, &ti->error);
930 	if (r)
931 		goto bad;
932 
933 	r = dm_read_arg(_args + 1, as, &nr_selector_args, &ti->error);
934 	if (r)
935 		goto bad;
936 
937 	nr_args = 1 + nr_selector_args;
938 	for (i = 0; i < pg->nr_pgpaths; i++) {
939 		struct pgpath *pgpath;
940 		struct dm_arg_set path_args;
941 
942 		if (as->argc < nr_args) {
943 			ti->error = "not enough path parameters";
944 			r = -EINVAL;
945 			goto bad;
946 		}
947 
948 		path_args.argc = nr_args;
949 		path_args.argv = as->argv;
950 
951 		pgpath = parse_path(&path_args, &pg->ps, ti);
952 		if (IS_ERR(pgpath)) {
953 			r = PTR_ERR(pgpath);
954 			goto bad;
955 		}
956 
957 		pgpath->pg = pg;
958 		list_add_tail(&pgpath->list, &pg->pgpaths);
959 		dm_consume_args(as, nr_args);
960 	}
961 
962 	return pg;
963 
964  bad:
965 	free_priority_group(pg, ti);
966 	return ERR_PTR(r);
967 }
968 
parse_hw_handler(struct dm_arg_set * as,struct multipath * m)969 static int parse_hw_handler(struct dm_arg_set *as, struct multipath *m)
970 {
971 	unsigned hw_argc;
972 	int ret;
973 	struct dm_target *ti = m->ti;
974 
975 	static const struct dm_arg _args[] = {
976 		{0, 1024, "invalid number of hardware handler args"},
977 	};
978 
979 	if (dm_read_arg_group(_args, as, &hw_argc, &ti->error))
980 		return -EINVAL;
981 
982 	if (!hw_argc)
983 		return 0;
984 
985 	if (m->queue_mode == DM_TYPE_BIO_BASED) {
986 		dm_consume_args(as, hw_argc);
987 		DMERR("bio-based multipath doesn't allow hardware handler args");
988 		return 0;
989 	}
990 
991 	m->hw_handler_name = kstrdup(dm_shift_arg(as), GFP_KERNEL);
992 	if (!m->hw_handler_name)
993 		return -EINVAL;
994 
995 	if (hw_argc > 1) {
996 		char *p;
997 		int i, j, len = 4;
998 
999 		for (i = 0; i <= hw_argc - 2; i++)
1000 			len += strlen(as->argv[i]) + 1;
1001 		p = m->hw_handler_params = kzalloc(len, GFP_KERNEL);
1002 		if (!p) {
1003 			ti->error = "memory allocation failed";
1004 			ret = -ENOMEM;
1005 			goto fail;
1006 		}
1007 		j = sprintf(p, "%d", hw_argc - 1);
1008 		for (i = 0, p+=j+1; i <= hw_argc - 2; i++, p+=j+1)
1009 			j = sprintf(p, "%s", as->argv[i]);
1010 	}
1011 	dm_consume_args(as, hw_argc - 1);
1012 
1013 	return 0;
1014 fail:
1015 	kfree(m->hw_handler_name);
1016 	m->hw_handler_name = NULL;
1017 	return ret;
1018 }
1019 
parse_features(struct dm_arg_set * as,struct multipath * m)1020 static int parse_features(struct dm_arg_set *as, struct multipath *m)
1021 {
1022 	int r;
1023 	unsigned argc;
1024 	struct dm_target *ti = m->ti;
1025 	const char *arg_name;
1026 
1027 	static const struct dm_arg _args[] = {
1028 		{0, 8, "invalid number of feature args"},
1029 		{1, 50, "pg_init_retries must be between 1 and 50"},
1030 		{0, 60000, "pg_init_delay_msecs must be between 0 and 60000"},
1031 	};
1032 
1033 	r = dm_read_arg_group(_args, as, &argc, &ti->error);
1034 	if (r)
1035 		return -EINVAL;
1036 
1037 	if (!argc)
1038 		return 0;
1039 
1040 	do {
1041 		arg_name = dm_shift_arg(as);
1042 		argc--;
1043 
1044 		if (!strcasecmp(arg_name, "queue_if_no_path")) {
1045 			r = queue_if_no_path(m, true, false);
1046 			continue;
1047 		}
1048 
1049 		if (!strcasecmp(arg_name, "retain_attached_hw_handler")) {
1050 			set_bit(MPATHF_RETAIN_ATTACHED_HW_HANDLER, &m->flags);
1051 			continue;
1052 		}
1053 
1054 		if (!strcasecmp(arg_name, "pg_init_retries") &&
1055 		    (argc >= 1)) {
1056 			r = dm_read_arg(_args + 1, as, &m->pg_init_retries, &ti->error);
1057 			argc--;
1058 			continue;
1059 		}
1060 
1061 		if (!strcasecmp(arg_name, "pg_init_delay_msecs") &&
1062 		    (argc >= 1)) {
1063 			r = dm_read_arg(_args + 2, as, &m->pg_init_delay_msecs, &ti->error);
1064 			argc--;
1065 			continue;
1066 		}
1067 
1068 		if (!strcasecmp(arg_name, "queue_mode") &&
1069 		    (argc >= 1)) {
1070 			const char *queue_mode_name = dm_shift_arg(as);
1071 
1072 			if (!strcasecmp(queue_mode_name, "bio"))
1073 				m->queue_mode = DM_TYPE_BIO_BASED;
1074 			else if (!strcasecmp(queue_mode_name, "rq"))
1075 				m->queue_mode = DM_TYPE_REQUEST_BASED;
1076 			else if (!strcasecmp(queue_mode_name, "mq"))
1077 				m->queue_mode = DM_TYPE_MQ_REQUEST_BASED;
1078 			else {
1079 				ti->error = "Unknown 'queue_mode' requested";
1080 				r = -EINVAL;
1081 			}
1082 			argc--;
1083 			continue;
1084 		}
1085 
1086 		ti->error = "Unrecognised multipath feature request";
1087 		r = -EINVAL;
1088 	} while (argc && !r);
1089 
1090 	return r;
1091 }
1092 
multipath_ctr(struct dm_target * ti,unsigned argc,char ** argv)1093 static int multipath_ctr(struct dm_target *ti, unsigned argc, char **argv)
1094 {
1095 	/* target arguments */
1096 	static const struct dm_arg _args[] = {
1097 		{0, 1024, "invalid number of priority groups"},
1098 		{0, 1024, "invalid initial priority group number"},
1099 	};
1100 
1101 	int r;
1102 	struct multipath *m;
1103 	struct dm_arg_set as;
1104 	unsigned pg_count = 0;
1105 	unsigned next_pg_num;
1106 
1107 	as.argc = argc;
1108 	as.argv = argv;
1109 
1110 	m = alloc_multipath(ti);
1111 	if (!m) {
1112 		ti->error = "can't allocate multipath";
1113 		return -EINVAL;
1114 	}
1115 
1116 	r = parse_features(&as, m);
1117 	if (r)
1118 		goto bad;
1119 
1120 	r = alloc_multipath_stage2(ti, m);
1121 	if (r)
1122 		goto bad;
1123 
1124 	r = parse_hw_handler(&as, m);
1125 	if (r)
1126 		goto bad;
1127 
1128 	r = dm_read_arg(_args, &as, &m->nr_priority_groups, &ti->error);
1129 	if (r)
1130 		goto bad;
1131 
1132 	r = dm_read_arg(_args + 1, &as, &next_pg_num, &ti->error);
1133 	if (r)
1134 		goto bad;
1135 
1136 	if ((!m->nr_priority_groups && next_pg_num) ||
1137 	    (m->nr_priority_groups && !next_pg_num)) {
1138 		ti->error = "invalid initial priority group";
1139 		r = -EINVAL;
1140 		goto bad;
1141 	}
1142 
1143 	/* parse the priority groups */
1144 	while (as.argc) {
1145 		struct priority_group *pg;
1146 		unsigned nr_valid_paths = atomic_read(&m->nr_valid_paths);
1147 
1148 		pg = parse_priority_group(&as, m);
1149 		if (IS_ERR(pg)) {
1150 			r = PTR_ERR(pg);
1151 			goto bad;
1152 		}
1153 
1154 		nr_valid_paths += pg->nr_pgpaths;
1155 		atomic_set(&m->nr_valid_paths, nr_valid_paths);
1156 
1157 		list_add_tail(&pg->list, &m->priority_groups);
1158 		pg_count++;
1159 		pg->pg_num = pg_count;
1160 		if (!--next_pg_num)
1161 			m->next_pg = pg;
1162 	}
1163 
1164 	if (pg_count != m->nr_priority_groups) {
1165 		ti->error = "priority group count mismatch";
1166 		r = -EINVAL;
1167 		goto bad;
1168 	}
1169 
1170 	ti->num_flush_bios = 1;
1171 	ti->num_discard_bios = 1;
1172 	ti->num_write_same_bios = 1;
1173 	ti->num_write_zeroes_bios = 1;
1174 	if (m->queue_mode == DM_TYPE_BIO_BASED)
1175 		ti->per_io_data_size = multipath_per_bio_data_size();
1176 	else
1177 		ti->per_io_data_size = sizeof(struct dm_mpath_io);
1178 
1179 	return 0;
1180 
1181  bad:
1182 	free_multipath(m);
1183 	return r;
1184 }
1185 
multipath_wait_for_pg_init_completion(struct multipath * m)1186 static void multipath_wait_for_pg_init_completion(struct multipath *m)
1187 {
1188 	DEFINE_WAIT(wait);
1189 
1190 	while (1) {
1191 		prepare_to_wait(&m->pg_init_wait, &wait, TASK_UNINTERRUPTIBLE);
1192 
1193 		if (!atomic_read(&m->pg_init_in_progress))
1194 			break;
1195 
1196 		io_schedule();
1197 	}
1198 	finish_wait(&m->pg_init_wait, &wait);
1199 }
1200 
flush_multipath_work(struct multipath * m)1201 static void flush_multipath_work(struct multipath *m)
1202 {
1203 	if (m->hw_handler_name) {
1204 		set_bit(MPATHF_PG_INIT_DISABLED, &m->flags);
1205 		smp_mb__after_atomic();
1206 
1207 		flush_workqueue(kmpath_handlerd);
1208 		multipath_wait_for_pg_init_completion(m);
1209 
1210 		clear_bit(MPATHF_PG_INIT_DISABLED, &m->flags);
1211 		smp_mb__after_atomic();
1212 	}
1213 
1214 	flush_workqueue(kmultipathd);
1215 	flush_work(&m->trigger_event);
1216 }
1217 
multipath_dtr(struct dm_target * ti)1218 static void multipath_dtr(struct dm_target *ti)
1219 {
1220 	struct multipath *m = ti->private;
1221 
1222 	flush_multipath_work(m);
1223 	free_multipath(m);
1224 }
1225 
1226 /*
1227  * Take a path out of use.
1228  */
fail_path(struct pgpath * pgpath)1229 static int fail_path(struct pgpath *pgpath)
1230 {
1231 	unsigned long flags;
1232 	struct multipath *m = pgpath->pg->m;
1233 
1234 	spin_lock_irqsave(&m->lock, flags);
1235 
1236 	if (!pgpath->is_active)
1237 		goto out;
1238 
1239 	DMWARN("Failing path %s.", pgpath->path.dev->name);
1240 
1241 	pgpath->pg->ps.type->fail_path(&pgpath->pg->ps, &pgpath->path);
1242 	pgpath->is_active = false;
1243 	pgpath->fail_count++;
1244 
1245 	atomic_dec(&m->nr_valid_paths);
1246 
1247 	if (pgpath == m->current_pgpath)
1248 		m->current_pgpath = NULL;
1249 
1250 	dm_path_uevent(DM_UEVENT_PATH_FAILED, m->ti,
1251 		       pgpath->path.dev->name, atomic_read(&m->nr_valid_paths));
1252 
1253 	schedule_work(&m->trigger_event);
1254 
1255 out:
1256 	spin_unlock_irqrestore(&m->lock, flags);
1257 
1258 	return 0;
1259 }
1260 
1261 /*
1262  * Reinstate a previously-failed path
1263  */
reinstate_path(struct pgpath * pgpath)1264 static int reinstate_path(struct pgpath *pgpath)
1265 {
1266 	int r = 0, run_queue = 0;
1267 	unsigned long flags;
1268 	struct multipath *m = pgpath->pg->m;
1269 	unsigned nr_valid_paths;
1270 
1271 	spin_lock_irqsave(&m->lock, flags);
1272 
1273 	if (pgpath->is_active)
1274 		goto out;
1275 
1276 	DMWARN("Reinstating path %s.", pgpath->path.dev->name);
1277 
1278 	r = pgpath->pg->ps.type->reinstate_path(&pgpath->pg->ps, &pgpath->path);
1279 	if (r)
1280 		goto out;
1281 
1282 	pgpath->is_active = true;
1283 
1284 	nr_valid_paths = atomic_inc_return(&m->nr_valid_paths);
1285 	if (nr_valid_paths == 1) {
1286 		m->current_pgpath = NULL;
1287 		run_queue = 1;
1288 	} else if (m->hw_handler_name && (m->current_pg == pgpath->pg)) {
1289 		if (queue_work(kmpath_handlerd, &pgpath->activate_path.work))
1290 			atomic_inc(&m->pg_init_in_progress);
1291 	}
1292 
1293 	dm_path_uevent(DM_UEVENT_PATH_REINSTATED, m->ti,
1294 		       pgpath->path.dev->name, nr_valid_paths);
1295 
1296 	schedule_work(&m->trigger_event);
1297 
1298 out:
1299 	spin_unlock_irqrestore(&m->lock, flags);
1300 	if (run_queue) {
1301 		dm_table_run_md_queue_async(m->ti->table);
1302 		process_queued_io_list(m);
1303 	}
1304 
1305 	return r;
1306 }
1307 
1308 /*
1309  * Fail or reinstate all paths that match the provided struct dm_dev.
1310  */
action_dev(struct multipath * m,struct dm_dev * dev,action_fn action)1311 static int action_dev(struct multipath *m, struct dm_dev *dev,
1312 		      action_fn action)
1313 {
1314 	int r = -EINVAL;
1315 	struct pgpath *pgpath;
1316 	struct priority_group *pg;
1317 
1318 	list_for_each_entry(pg, &m->priority_groups, list) {
1319 		list_for_each_entry(pgpath, &pg->pgpaths, list) {
1320 			if (pgpath->path.dev == dev)
1321 				r = action(pgpath);
1322 		}
1323 	}
1324 
1325 	return r;
1326 }
1327 
1328 /*
1329  * Temporarily try to avoid having to use the specified PG
1330  */
bypass_pg(struct multipath * m,struct priority_group * pg,bool bypassed)1331 static void bypass_pg(struct multipath *m, struct priority_group *pg,
1332 		      bool bypassed)
1333 {
1334 	unsigned long flags;
1335 
1336 	spin_lock_irqsave(&m->lock, flags);
1337 
1338 	pg->bypassed = bypassed;
1339 	m->current_pgpath = NULL;
1340 	m->current_pg = NULL;
1341 
1342 	spin_unlock_irqrestore(&m->lock, flags);
1343 
1344 	schedule_work(&m->trigger_event);
1345 }
1346 
1347 /*
1348  * Switch to using the specified PG from the next I/O that gets mapped
1349  */
switch_pg_num(struct multipath * m,const char * pgstr)1350 static int switch_pg_num(struct multipath *m, const char *pgstr)
1351 {
1352 	struct priority_group *pg;
1353 	unsigned pgnum;
1354 	unsigned long flags;
1355 	char dummy;
1356 
1357 	if (!pgstr || (sscanf(pgstr, "%u%c", &pgnum, &dummy) != 1) || !pgnum ||
1358 	    !m->nr_priority_groups || (pgnum > m->nr_priority_groups)) {
1359 		DMWARN("invalid PG number supplied to switch_pg_num");
1360 		return -EINVAL;
1361 	}
1362 
1363 	spin_lock_irqsave(&m->lock, flags);
1364 	list_for_each_entry(pg, &m->priority_groups, list) {
1365 		pg->bypassed = false;
1366 		if (--pgnum)
1367 			continue;
1368 
1369 		m->current_pgpath = NULL;
1370 		m->current_pg = NULL;
1371 		m->next_pg = pg;
1372 	}
1373 	spin_unlock_irqrestore(&m->lock, flags);
1374 
1375 	schedule_work(&m->trigger_event);
1376 	return 0;
1377 }
1378 
1379 /*
1380  * Set/clear bypassed status of a PG.
1381  * PGs are numbered upwards from 1 in the order they were declared.
1382  */
bypass_pg_num(struct multipath * m,const char * pgstr,bool bypassed)1383 static int bypass_pg_num(struct multipath *m, const char *pgstr, bool bypassed)
1384 {
1385 	struct priority_group *pg;
1386 	unsigned pgnum;
1387 	char dummy;
1388 
1389 	if (!pgstr || (sscanf(pgstr, "%u%c", &pgnum, &dummy) != 1) || !pgnum ||
1390 	    !m->nr_priority_groups || (pgnum > m->nr_priority_groups)) {
1391 		DMWARN("invalid PG number supplied to bypass_pg");
1392 		return -EINVAL;
1393 	}
1394 
1395 	list_for_each_entry(pg, &m->priority_groups, list) {
1396 		if (!--pgnum)
1397 			break;
1398 	}
1399 
1400 	bypass_pg(m, pg, bypassed);
1401 	return 0;
1402 }
1403 
1404 /*
1405  * Should we retry pg_init immediately?
1406  */
pg_init_limit_reached(struct multipath * m,struct pgpath * pgpath)1407 static bool pg_init_limit_reached(struct multipath *m, struct pgpath *pgpath)
1408 {
1409 	unsigned long flags;
1410 	bool limit_reached = false;
1411 
1412 	spin_lock_irqsave(&m->lock, flags);
1413 
1414 	if (atomic_read(&m->pg_init_count) <= m->pg_init_retries &&
1415 	    !test_bit(MPATHF_PG_INIT_DISABLED, &m->flags))
1416 		set_bit(MPATHF_PG_INIT_REQUIRED, &m->flags);
1417 	else
1418 		limit_reached = true;
1419 
1420 	spin_unlock_irqrestore(&m->lock, flags);
1421 
1422 	return limit_reached;
1423 }
1424 
pg_init_done(void * data,int errors)1425 static void pg_init_done(void *data, int errors)
1426 {
1427 	struct pgpath *pgpath = data;
1428 	struct priority_group *pg = pgpath->pg;
1429 	struct multipath *m = pg->m;
1430 	unsigned long flags;
1431 	bool delay_retry = false;
1432 
1433 	/* device or driver problems */
1434 	switch (errors) {
1435 	case SCSI_DH_OK:
1436 		break;
1437 	case SCSI_DH_NOSYS:
1438 		if (!m->hw_handler_name) {
1439 			errors = 0;
1440 			break;
1441 		}
1442 		DMERR("Could not failover the device: Handler scsi_dh_%s "
1443 		      "Error %d.", m->hw_handler_name, errors);
1444 		/*
1445 		 * Fail path for now, so we do not ping pong
1446 		 */
1447 		fail_path(pgpath);
1448 		break;
1449 	case SCSI_DH_DEV_TEMP_BUSY:
1450 		/*
1451 		 * Probably doing something like FW upgrade on the
1452 		 * controller so try the other pg.
1453 		 */
1454 		bypass_pg(m, pg, true);
1455 		break;
1456 	case SCSI_DH_RETRY:
1457 		/* Wait before retrying. */
1458 		delay_retry = 1;
1459 		/* fall through */
1460 	case SCSI_DH_IMM_RETRY:
1461 	case SCSI_DH_RES_TEMP_UNAVAIL:
1462 		if (pg_init_limit_reached(m, pgpath))
1463 			fail_path(pgpath);
1464 		errors = 0;
1465 		break;
1466 	case SCSI_DH_DEV_OFFLINED:
1467 	default:
1468 		/*
1469 		 * We probably do not want to fail the path for a device
1470 		 * error, but this is what the old dm did. In future
1471 		 * patches we can do more advanced handling.
1472 		 */
1473 		fail_path(pgpath);
1474 	}
1475 
1476 	spin_lock_irqsave(&m->lock, flags);
1477 	if (errors) {
1478 		if (pgpath == m->current_pgpath) {
1479 			DMERR("Could not failover device. Error %d.", errors);
1480 			m->current_pgpath = NULL;
1481 			m->current_pg = NULL;
1482 		}
1483 	} else if (!test_bit(MPATHF_PG_INIT_REQUIRED, &m->flags))
1484 		pg->bypassed = false;
1485 
1486 	if (atomic_dec_return(&m->pg_init_in_progress) > 0)
1487 		/* Activations of other paths are still on going */
1488 		goto out;
1489 
1490 	if (test_bit(MPATHF_PG_INIT_REQUIRED, &m->flags)) {
1491 		if (delay_retry)
1492 			set_bit(MPATHF_PG_INIT_DELAY_RETRY, &m->flags);
1493 		else
1494 			clear_bit(MPATHF_PG_INIT_DELAY_RETRY, &m->flags);
1495 
1496 		if (__pg_init_all_paths(m))
1497 			goto out;
1498 	}
1499 	clear_bit(MPATHF_QUEUE_IO, &m->flags);
1500 
1501 	process_queued_io_list(m);
1502 
1503 	/*
1504 	 * Wake up any thread waiting to suspend.
1505 	 */
1506 	wake_up(&m->pg_init_wait);
1507 
1508 out:
1509 	spin_unlock_irqrestore(&m->lock, flags);
1510 }
1511 
activate_or_offline_path(struct pgpath * pgpath)1512 static void activate_or_offline_path(struct pgpath *pgpath)
1513 {
1514 	struct request_queue *q = bdev_get_queue(pgpath->path.dev->bdev);
1515 
1516 	if (pgpath->is_active && !blk_queue_dying(q))
1517 		scsi_dh_activate(q, pg_init_done, pgpath);
1518 	else
1519 		pg_init_done(pgpath, SCSI_DH_DEV_OFFLINED);
1520 }
1521 
activate_path_work(struct work_struct * work)1522 static void activate_path_work(struct work_struct *work)
1523 {
1524 	struct pgpath *pgpath =
1525 		container_of(work, struct pgpath, activate_path.work);
1526 
1527 	activate_or_offline_path(pgpath);
1528 }
1529 
multipath_end_io(struct dm_target * ti,struct request * clone,blk_status_t error,union map_info * map_context)1530 static int multipath_end_io(struct dm_target *ti, struct request *clone,
1531 			    blk_status_t error, union map_info *map_context)
1532 {
1533 	struct dm_mpath_io *mpio = get_mpio(map_context);
1534 	struct pgpath *pgpath = mpio->pgpath;
1535 	int r = DM_ENDIO_DONE;
1536 
1537 	/*
1538 	 * We don't queue any clone request inside the multipath target
1539 	 * during end I/O handling, since those clone requests don't have
1540 	 * bio clones.  If we queue them inside the multipath target,
1541 	 * we need to make bio clones, that requires memory allocation.
1542 	 * (See drivers/md/dm-rq.c:end_clone_bio() about why the clone requests
1543 	 *  don't have bio clones.)
1544 	 * Instead of queueing the clone request here, we queue the original
1545 	 * request into dm core, which will remake a clone request and
1546 	 * clone bios for it and resubmit it later.
1547 	 */
1548 	if (error && blk_path_error(error)) {
1549 		struct multipath *m = ti->private;
1550 
1551 		if (error == BLK_STS_RESOURCE)
1552 			r = DM_ENDIO_DELAY_REQUEUE;
1553 		else
1554 			r = DM_ENDIO_REQUEUE;
1555 
1556 		if (pgpath)
1557 			fail_path(pgpath);
1558 
1559 		if (atomic_read(&m->nr_valid_paths) == 0 &&
1560 		    !must_push_back_rq(m)) {
1561 			if (error == BLK_STS_IOERR)
1562 				dm_report_EIO(m);
1563 			/* complete with the original error */
1564 			r = DM_ENDIO_DONE;
1565 		}
1566 	}
1567 
1568 	if (pgpath) {
1569 		struct path_selector *ps = &pgpath->pg->ps;
1570 
1571 		if (ps->type->end_io)
1572 			ps->type->end_io(ps, &pgpath->path, mpio->nr_bytes);
1573 	}
1574 
1575 	return r;
1576 }
1577 
multipath_end_io_bio(struct dm_target * ti,struct bio * clone,blk_status_t * error)1578 static int multipath_end_io_bio(struct dm_target *ti, struct bio *clone,
1579 				blk_status_t *error)
1580 {
1581 	struct multipath *m = ti->private;
1582 	struct dm_mpath_io *mpio = get_mpio_from_bio(clone);
1583 	struct pgpath *pgpath = mpio->pgpath;
1584 	unsigned long flags;
1585 	int r = DM_ENDIO_DONE;
1586 
1587 	if (!*error || !blk_path_error(*error))
1588 		goto done;
1589 
1590 	if (pgpath)
1591 		fail_path(pgpath);
1592 
1593 	if (atomic_read(&m->nr_valid_paths) == 0 &&
1594 	    !test_bit(MPATHF_QUEUE_IF_NO_PATH, &m->flags)) {
1595 		if (must_push_back_bio(m)) {
1596 			r = DM_ENDIO_REQUEUE;
1597 		} else {
1598 			dm_report_EIO(m);
1599 			*error = BLK_STS_IOERR;
1600 		}
1601 		goto done;
1602 	}
1603 
1604 	spin_lock_irqsave(&m->lock, flags);
1605 	bio_list_add(&m->queued_bios, clone);
1606 	spin_unlock_irqrestore(&m->lock, flags);
1607 	if (!test_bit(MPATHF_QUEUE_IO, &m->flags))
1608 		queue_work(kmultipathd, &m->process_queued_bios);
1609 
1610 	r = DM_ENDIO_INCOMPLETE;
1611 done:
1612 	if (pgpath) {
1613 		struct path_selector *ps = &pgpath->pg->ps;
1614 
1615 		if (ps->type->end_io)
1616 			ps->type->end_io(ps, &pgpath->path, mpio->nr_bytes);
1617 	}
1618 
1619 	return r;
1620 }
1621 
1622 /*
1623  * Suspend can't complete until all the I/O is processed so if
1624  * the last path fails we must error any remaining I/O.
1625  * Note that if the freeze_bdev fails while suspending, the
1626  * queue_if_no_path state is lost - userspace should reset it.
1627  */
multipath_presuspend(struct dm_target * ti)1628 static void multipath_presuspend(struct dm_target *ti)
1629 {
1630 	struct multipath *m = ti->private;
1631 
1632 	queue_if_no_path(m, false, true);
1633 }
1634 
multipath_postsuspend(struct dm_target * ti)1635 static void multipath_postsuspend(struct dm_target *ti)
1636 {
1637 	struct multipath *m = ti->private;
1638 
1639 	mutex_lock(&m->work_mutex);
1640 	flush_multipath_work(m);
1641 	mutex_unlock(&m->work_mutex);
1642 }
1643 
1644 /*
1645  * Restore the queue_if_no_path setting.
1646  */
multipath_resume(struct dm_target * ti)1647 static void multipath_resume(struct dm_target *ti)
1648 {
1649 	struct multipath *m = ti->private;
1650 	unsigned long flags;
1651 
1652 	spin_lock_irqsave(&m->lock, flags);
1653 	assign_bit(MPATHF_QUEUE_IF_NO_PATH, &m->flags,
1654 		   test_bit(MPATHF_SAVED_QUEUE_IF_NO_PATH, &m->flags));
1655 	spin_unlock_irqrestore(&m->lock, flags);
1656 }
1657 
1658 /*
1659  * Info output has the following format:
1660  * num_multipath_feature_args [multipath_feature_args]*
1661  * num_handler_status_args [handler_status_args]*
1662  * num_groups init_group_number
1663  *            [A|D|E num_ps_status_args [ps_status_args]*
1664  *             num_paths num_selector_args
1665  *             [path_dev A|F fail_count [selector_args]* ]+ ]+
1666  *
1667  * Table output has the following format (identical to the constructor string):
1668  * num_feature_args [features_args]*
1669  * num_handler_args hw_handler [hw_handler_args]*
1670  * num_groups init_group_number
1671  *     [priority selector-name num_ps_args [ps_args]*
1672  *      num_paths num_selector_args [path_dev [selector_args]* ]+ ]+
1673  */
multipath_status(struct dm_target * ti,status_type_t type,unsigned status_flags,char * result,unsigned maxlen)1674 static void multipath_status(struct dm_target *ti, status_type_t type,
1675 			     unsigned status_flags, char *result, unsigned maxlen)
1676 {
1677 	int sz = 0;
1678 	unsigned long flags;
1679 	struct multipath *m = ti->private;
1680 	struct priority_group *pg;
1681 	struct pgpath *p;
1682 	unsigned pg_num;
1683 	char state;
1684 
1685 	spin_lock_irqsave(&m->lock, flags);
1686 
1687 	/* Features */
1688 	if (type == STATUSTYPE_INFO)
1689 		DMEMIT("2 %u %u ", test_bit(MPATHF_QUEUE_IO, &m->flags),
1690 		       atomic_read(&m->pg_init_count));
1691 	else {
1692 		DMEMIT("%u ", test_bit(MPATHF_QUEUE_IF_NO_PATH, &m->flags) +
1693 			      (m->pg_init_retries > 0) * 2 +
1694 			      (m->pg_init_delay_msecs != DM_PG_INIT_DELAY_DEFAULT) * 2 +
1695 			      test_bit(MPATHF_RETAIN_ATTACHED_HW_HANDLER, &m->flags) +
1696 			      (m->queue_mode != DM_TYPE_REQUEST_BASED) * 2);
1697 
1698 		if (test_bit(MPATHF_QUEUE_IF_NO_PATH, &m->flags))
1699 			DMEMIT("queue_if_no_path ");
1700 		if (m->pg_init_retries)
1701 			DMEMIT("pg_init_retries %u ", m->pg_init_retries);
1702 		if (m->pg_init_delay_msecs != DM_PG_INIT_DELAY_DEFAULT)
1703 			DMEMIT("pg_init_delay_msecs %u ", m->pg_init_delay_msecs);
1704 		if (test_bit(MPATHF_RETAIN_ATTACHED_HW_HANDLER, &m->flags))
1705 			DMEMIT("retain_attached_hw_handler ");
1706 		if (m->queue_mode != DM_TYPE_REQUEST_BASED) {
1707 			switch(m->queue_mode) {
1708 			case DM_TYPE_BIO_BASED:
1709 				DMEMIT("queue_mode bio ");
1710 				break;
1711 			case DM_TYPE_MQ_REQUEST_BASED:
1712 				DMEMIT("queue_mode mq ");
1713 				break;
1714 			default:
1715 				WARN_ON_ONCE(true);
1716 				break;
1717 			}
1718 		}
1719 	}
1720 
1721 	if (!m->hw_handler_name || type == STATUSTYPE_INFO)
1722 		DMEMIT("0 ");
1723 	else
1724 		DMEMIT("1 %s ", m->hw_handler_name);
1725 
1726 	DMEMIT("%u ", m->nr_priority_groups);
1727 
1728 	if (m->next_pg)
1729 		pg_num = m->next_pg->pg_num;
1730 	else if (m->current_pg)
1731 		pg_num = m->current_pg->pg_num;
1732 	else
1733 		pg_num = (m->nr_priority_groups ? 1 : 0);
1734 
1735 	DMEMIT("%u ", pg_num);
1736 
1737 	switch (type) {
1738 	case STATUSTYPE_INFO:
1739 		list_for_each_entry(pg, &m->priority_groups, list) {
1740 			if (pg->bypassed)
1741 				state = 'D';	/* Disabled */
1742 			else if (pg == m->current_pg)
1743 				state = 'A';	/* Currently Active */
1744 			else
1745 				state = 'E';	/* Enabled */
1746 
1747 			DMEMIT("%c ", state);
1748 
1749 			if (pg->ps.type->status)
1750 				sz += pg->ps.type->status(&pg->ps, NULL, type,
1751 							  result + sz,
1752 							  maxlen - sz);
1753 			else
1754 				DMEMIT("0 ");
1755 
1756 			DMEMIT("%u %u ", pg->nr_pgpaths,
1757 			       pg->ps.type->info_args);
1758 
1759 			list_for_each_entry(p, &pg->pgpaths, list) {
1760 				DMEMIT("%s %s %u ", p->path.dev->name,
1761 				       p->is_active ? "A" : "F",
1762 				       p->fail_count);
1763 				if (pg->ps.type->status)
1764 					sz += pg->ps.type->status(&pg->ps,
1765 					      &p->path, type, result + sz,
1766 					      maxlen - sz);
1767 			}
1768 		}
1769 		break;
1770 
1771 	case STATUSTYPE_TABLE:
1772 		list_for_each_entry(pg, &m->priority_groups, list) {
1773 			DMEMIT("%s ", pg->ps.type->name);
1774 
1775 			if (pg->ps.type->status)
1776 				sz += pg->ps.type->status(&pg->ps, NULL, type,
1777 							  result + sz,
1778 							  maxlen - sz);
1779 			else
1780 				DMEMIT("0 ");
1781 
1782 			DMEMIT("%u %u ", pg->nr_pgpaths,
1783 			       pg->ps.type->table_args);
1784 
1785 			list_for_each_entry(p, &pg->pgpaths, list) {
1786 				DMEMIT("%s ", p->path.dev->name);
1787 				if (pg->ps.type->status)
1788 					sz += pg->ps.type->status(&pg->ps,
1789 					      &p->path, type, result + sz,
1790 					      maxlen - sz);
1791 			}
1792 		}
1793 		break;
1794 	}
1795 
1796 	spin_unlock_irqrestore(&m->lock, flags);
1797 }
1798 
multipath_message(struct dm_target * ti,unsigned argc,char ** argv,char * result,unsigned maxlen)1799 static int multipath_message(struct dm_target *ti, unsigned argc, char **argv,
1800 			     char *result, unsigned maxlen)
1801 {
1802 	int r = -EINVAL;
1803 	struct dm_dev *dev;
1804 	struct multipath *m = ti->private;
1805 	action_fn action;
1806 
1807 	mutex_lock(&m->work_mutex);
1808 
1809 	if (dm_suspended(ti)) {
1810 		r = -EBUSY;
1811 		goto out;
1812 	}
1813 
1814 	if (argc == 1) {
1815 		if (!strcasecmp(argv[0], "queue_if_no_path")) {
1816 			r = queue_if_no_path(m, true, false);
1817 			goto out;
1818 		} else if (!strcasecmp(argv[0], "fail_if_no_path")) {
1819 			r = queue_if_no_path(m, false, false);
1820 			goto out;
1821 		}
1822 	}
1823 
1824 	if (argc != 2) {
1825 		DMWARN("Invalid multipath message arguments. Expected 2 arguments, got %d.", argc);
1826 		goto out;
1827 	}
1828 
1829 	if (!strcasecmp(argv[0], "disable_group")) {
1830 		r = bypass_pg_num(m, argv[1], true);
1831 		goto out;
1832 	} else if (!strcasecmp(argv[0], "enable_group")) {
1833 		r = bypass_pg_num(m, argv[1], false);
1834 		goto out;
1835 	} else if (!strcasecmp(argv[0], "switch_group")) {
1836 		r = switch_pg_num(m, argv[1]);
1837 		goto out;
1838 	} else if (!strcasecmp(argv[0], "reinstate_path"))
1839 		action = reinstate_path;
1840 	else if (!strcasecmp(argv[0], "fail_path"))
1841 		action = fail_path;
1842 	else {
1843 		DMWARN("Unrecognised multipath message received: %s", argv[0]);
1844 		goto out;
1845 	}
1846 
1847 	r = dm_get_device(ti, argv[1], dm_table_get_mode(ti->table), &dev);
1848 	if (r) {
1849 		DMWARN("message: error getting device %s",
1850 		       argv[1]);
1851 		goto out;
1852 	}
1853 
1854 	r = action_dev(m, dev, action);
1855 
1856 	dm_put_device(ti, dev);
1857 
1858 out:
1859 	mutex_unlock(&m->work_mutex);
1860 	return r;
1861 }
1862 
multipath_prepare_ioctl(struct dm_target * ti,struct block_device ** bdev)1863 static int multipath_prepare_ioctl(struct dm_target *ti,
1864 				   struct block_device **bdev)
1865 {
1866 	struct multipath *m = ti->private;
1867 	struct pgpath *current_pgpath;
1868 	int r;
1869 
1870 	current_pgpath = READ_ONCE(m->current_pgpath);
1871 	if (!current_pgpath || !test_bit(MPATHF_QUEUE_IO, &m->flags))
1872 		current_pgpath = choose_pgpath(m, 0);
1873 
1874 	if (current_pgpath) {
1875 		if (!test_bit(MPATHF_QUEUE_IO, &m->flags)) {
1876 			*bdev = current_pgpath->path.dev->bdev;
1877 			r = 0;
1878 		} else {
1879 			/* pg_init has not started or completed */
1880 			r = -ENOTCONN;
1881 		}
1882 	} else {
1883 		/* No path is available */
1884 		if (test_bit(MPATHF_QUEUE_IF_NO_PATH, &m->flags))
1885 			r = -ENOTCONN;
1886 		else
1887 			r = -EIO;
1888 	}
1889 
1890 	if (r == -ENOTCONN) {
1891 		if (!READ_ONCE(m->current_pg)) {
1892 			/* Path status changed, redo selection */
1893 			(void) choose_pgpath(m, 0);
1894 		}
1895 		if (test_bit(MPATHF_PG_INIT_REQUIRED, &m->flags))
1896 			pg_init_all_paths(m);
1897 		dm_table_run_md_queue_async(m->ti->table);
1898 		process_queued_io_list(m);
1899 	}
1900 
1901 	/*
1902 	 * Only pass ioctls through if the device sizes match exactly.
1903 	 */
1904 	if (!r && ti->len != i_size_read((*bdev)->bd_inode) >> SECTOR_SHIFT)
1905 		return 1;
1906 	return r;
1907 }
1908 
multipath_iterate_devices(struct dm_target * ti,iterate_devices_callout_fn fn,void * data)1909 static int multipath_iterate_devices(struct dm_target *ti,
1910 				     iterate_devices_callout_fn fn, void *data)
1911 {
1912 	struct multipath *m = ti->private;
1913 	struct priority_group *pg;
1914 	struct pgpath *p;
1915 	int ret = 0;
1916 
1917 	list_for_each_entry(pg, &m->priority_groups, list) {
1918 		list_for_each_entry(p, &pg->pgpaths, list) {
1919 			ret = fn(ti, p->path.dev, ti->begin, ti->len, data);
1920 			if (ret)
1921 				goto out;
1922 		}
1923 	}
1924 
1925 out:
1926 	return ret;
1927 }
1928 
pgpath_busy(struct pgpath * pgpath)1929 static int pgpath_busy(struct pgpath *pgpath)
1930 {
1931 	struct request_queue *q = bdev_get_queue(pgpath->path.dev->bdev);
1932 
1933 	return blk_lld_busy(q);
1934 }
1935 
1936 /*
1937  * We return "busy", only when we can map I/Os but underlying devices
1938  * are busy (so even if we map I/Os now, the I/Os will wait on
1939  * the underlying queue).
1940  * In other words, if we want to kill I/Os or queue them inside us
1941  * due to map unavailability, we don't return "busy".  Otherwise,
1942  * dm core won't give us the I/Os and we can't do what we want.
1943  */
multipath_busy(struct dm_target * ti)1944 static int multipath_busy(struct dm_target *ti)
1945 {
1946 	bool busy = false, has_active = false;
1947 	struct multipath *m = ti->private;
1948 	struct priority_group *pg, *next_pg;
1949 	struct pgpath *pgpath;
1950 
1951 	/* pg_init in progress */
1952 	if (atomic_read(&m->pg_init_in_progress))
1953 		return true;
1954 
1955 	/* no paths available, for blk-mq: rely on IO mapping to delay requeue */
1956 	if (!atomic_read(&m->nr_valid_paths) && test_bit(MPATHF_QUEUE_IF_NO_PATH, &m->flags))
1957 		return (m->queue_mode != DM_TYPE_MQ_REQUEST_BASED);
1958 
1959 	/* Guess which priority_group will be used at next mapping time */
1960 	pg = READ_ONCE(m->current_pg);
1961 	next_pg = READ_ONCE(m->next_pg);
1962 	if (unlikely(!READ_ONCE(m->current_pgpath) && next_pg))
1963 		pg = next_pg;
1964 
1965 	if (!pg) {
1966 		/*
1967 		 * We don't know which pg will be used at next mapping time.
1968 		 * We don't call choose_pgpath() here to avoid to trigger
1969 		 * pg_init just by busy checking.
1970 		 * So we don't know whether underlying devices we will be using
1971 		 * at next mapping time are busy or not. Just try mapping.
1972 		 */
1973 		return busy;
1974 	}
1975 
1976 	/*
1977 	 * If there is one non-busy active path at least, the path selector
1978 	 * will be able to select it. So we consider such a pg as not busy.
1979 	 */
1980 	busy = true;
1981 	list_for_each_entry(pgpath, &pg->pgpaths, list) {
1982 		if (pgpath->is_active) {
1983 			has_active = true;
1984 			if (!pgpath_busy(pgpath)) {
1985 				busy = false;
1986 				break;
1987 			}
1988 		}
1989 	}
1990 
1991 	if (!has_active) {
1992 		/*
1993 		 * No active path in this pg, so this pg won't be used and
1994 		 * the current_pg will be changed at next mapping time.
1995 		 * We need to try mapping to determine it.
1996 		 */
1997 		busy = false;
1998 	}
1999 
2000 	return busy;
2001 }
2002 
2003 /*-----------------------------------------------------------------
2004  * Module setup
2005  *---------------------------------------------------------------*/
2006 static struct target_type multipath_target = {
2007 	.name = "multipath",
2008 	.version = {1, 13, 0},
2009 	.features = DM_TARGET_SINGLETON | DM_TARGET_IMMUTABLE |
2010 		    DM_TARGET_PASSES_INTEGRITY,
2011 	.module = THIS_MODULE,
2012 	.ctr = multipath_ctr,
2013 	.dtr = multipath_dtr,
2014 	.clone_and_map_rq = multipath_clone_and_map,
2015 	.release_clone_rq = multipath_release_clone,
2016 	.rq_end_io = multipath_end_io,
2017 	.map = multipath_map_bio,
2018 	.end_io = multipath_end_io_bio,
2019 	.presuspend = multipath_presuspend,
2020 	.postsuspend = multipath_postsuspend,
2021 	.resume = multipath_resume,
2022 	.status = multipath_status,
2023 	.message = multipath_message,
2024 	.prepare_ioctl = multipath_prepare_ioctl,
2025 	.iterate_devices = multipath_iterate_devices,
2026 	.busy = multipath_busy,
2027 };
2028 
dm_multipath_init(void)2029 static int __init dm_multipath_init(void)
2030 {
2031 	int r;
2032 
2033 	kmultipathd = alloc_workqueue("kmpathd", WQ_MEM_RECLAIM, 0);
2034 	if (!kmultipathd) {
2035 		DMERR("failed to create workqueue kmpathd");
2036 		r = -ENOMEM;
2037 		goto bad_alloc_kmultipathd;
2038 	}
2039 
2040 	/*
2041 	 * A separate workqueue is used to handle the device handlers
2042 	 * to avoid overloading existing workqueue. Overloading the
2043 	 * old workqueue would also create a bottleneck in the
2044 	 * path of the storage hardware device activation.
2045 	 */
2046 	kmpath_handlerd = alloc_ordered_workqueue("kmpath_handlerd",
2047 						  WQ_MEM_RECLAIM);
2048 	if (!kmpath_handlerd) {
2049 		DMERR("failed to create workqueue kmpath_handlerd");
2050 		r = -ENOMEM;
2051 		goto bad_alloc_kmpath_handlerd;
2052 	}
2053 
2054 	r = dm_register_target(&multipath_target);
2055 	if (r < 0) {
2056 		DMERR("request-based register failed %d", r);
2057 		r = -EINVAL;
2058 		goto bad_register_target;
2059 	}
2060 
2061 	return 0;
2062 
2063 bad_register_target:
2064 	destroy_workqueue(kmpath_handlerd);
2065 bad_alloc_kmpath_handlerd:
2066 	destroy_workqueue(kmultipathd);
2067 bad_alloc_kmultipathd:
2068 	return r;
2069 }
2070 
dm_multipath_exit(void)2071 static void __exit dm_multipath_exit(void)
2072 {
2073 	destroy_workqueue(kmpath_handlerd);
2074 	destroy_workqueue(kmultipathd);
2075 
2076 	dm_unregister_target(&multipath_target);
2077 }
2078 
2079 module_init(dm_multipath_init);
2080 module_exit(dm_multipath_exit);
2081 
2082 MODULE_DESCRIPTION(DM_NAME " multipath target");
2083 MODULE_AUTHOR("Sistina Software <dm-devel@redhat.com>");
2084 MODULE_LICENSE("GPL");
2085