• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * raid10.c : Multiple Devices driver for Linux
3  *
4  * Copyright (C) 2000-2004 Neil Brown
5  *
6  * RAID-10 support for md.
7  *
8  * Base on code in raid1.c.  See raid1.c for further copyright information.
9  *
10  *
11  * This program is free software; you can redistribute it and/or modify
12  * it under the terms of the GNU General Public License as published by
13  * the Free Software Foundation; either version 2, or (at your option)
14  * any later version.
15  *
16  * You should have received a copy of the GNU General Public License
17  * (for example /usr/src/linux/COPYING); if not, write to the Free
18  * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19  */
20 
21 #include <linux/slab.h>
22 #include <linux/delay.h>
23 #include <linux/blkdev.h>
24 #include <linux/module.h>
25 #include <linux/seq_file.h>
26 #include <linux/ratelimit.h>
27 #include <linux/kthread.h>
28 #include <trace/events/block.h>
29 #include "md.h"
30 #include "raid10.h"
31 #include "raid0.h"
32 #include "md-bitmap.h"
33 
34 /*
35  * RAID10 provides a combination of RAID0 and RAID1 functionality.
36  * The layout of data is defined by
37  *    chunk_size
38  *    raid_disks
39  *    near_copies (stored in low byte of layout)
40  *    far_copies (stored in second byte of layout)
41  *    far_offset (stored in bit 16 of layout )
42  *    use_far_sets (stored in bit 17 of layout )
43  *    use_far_sets_bugfixed (stored in bit 18 of layout )
44  *
45  * The data to be stored is divided into chunks using chunksize.  Each device
46  * is divided into far_copies sections.   In each section, chunks are laid out
47  * in a style similar to raid0, but near_copies copies of each chunk is stored
48  * (each on a different drive).  The starting device for each section is offset
49  * near_copies from the starting device of the previous section.  Thus there
50  * are (near_copies * far_copies) of each chunk, and each is on a different
51  * drive.  near_copies and far_copies must be at least one, and their product
52  * is at most raid_disks.
53  *
54  * If far_offset is true, then the far_copies are handled a bit differently.
55  * The copies are still in different stripes, but instead of being very far
56  * apart on disk, there are adjacent stripes.
57  *
58  * The far and offset algorithms are handled slightly differently if
59  * 'use_far_sets' is true.  In this case, the array's devices are grouped into
60  * sets that are (near_copies * far_copies) in size.  The far copied stripes
61  * are still shifted by 'near_copies' devices, but this shifting stays confined
62  * to the set rather than the entire array.  This is done to improve the number
63  * of device combinations that can fail without causing the array to fail.
64  * Example 'far' algorithm w/o 'use_far_sets' (each letter represents a chunk
65  * on a device):
66  *    A B C D    A B C D E
67  *      ...         ...
68  *    D A B C    E A B C D
69  * Example 'far' algorithm w/ 'use_far_sets' enabled (sets illustrated w/ []'s):
70  *    [A B] [C D]    [A B] [C D E]
71  *    |...| |...|    |...| | ... |
72  *    [B A] [D C]    [B A] [E C D]
73  */
74 
75 /*
76  * Number of guaranteed r10bios in case of extreme VM load:
77  */
78 #define	NR_RAID10_BIOS 256
79 
80 /* when we get a read error on a read-only array, we redirect to another
81  * device without failing the first device, or trying to over-write to
82  * correct the read error.  To keep track of bad blocks on a per-bio
83  * level, we store IO_BLOCKED in the appropriate 'bios' pointer
84  */
85 #define IO_BLOCKED ((struct bio *)1)
86 /* When we successfully write to a known bad-block, we need to remove the
87  * bad-block marking which must be done from process context.  So we record
88  * the success by setting devs[n].bio to IO_MADE_GOOD
89  */
90 #define IO_MADE_GOOD ((struct bio *)2)
91 
92 #define BIO_SPECIAL(bio) ((unsigned long)bio <= 2)
93 
94 /* When there are this many requests queued to be written by
95  * the raid10 thread, we become 'congested' to provide back-pressure
96  * for writeback.
97  */
98 static int max_queued_requests = 1024;
99 
100 static void allow_barrier(struct r10conf *conf);
101 static void lower_barrier(struct r10conf *conf);
102 static int _enough(struct r10conf *conf, int previous, int ignore);
103 static int enough(struct r10conf *conf, int ignore);
104 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr,
105 				int *skipped);
106 static void reshape_request_write(struct mddev *mddev, struct r10bio *r10_bio);
107 static void end_reshape_write(struct bio *bio);
108 static void end_reshape(struct r10conf *conf);
109 
110 #define raid10_log(md, fmt, args...)				\
111 	do { if ((md)->queue) blk_add_trace_msg((md)->queue, "raid10 " fmt, ##args); } while (0)
112 
113 #include "raid1-10.c"
114 
115 /*
116  * for resync bio, r10bio pointer can be retrieved from the per-bio
117  * 'struct resync_pages'.
118  */
get_resync_r10bio(struct bio * bio)119 static inline struct r10bio *get_resync_r10bio(struct bio *bio)
120 {
121 	return get_resync_pages(bio)->raid_bio;
122 }
123 
r10bio_pool_alloc(gfp_t gfp_flags,void * data)124 static void * r10bio_pool_alloc(gfp_t gfp_flags, void *data)
125 {
126 	struct r10conf *conf = data;
127 	int size = offsetof(struct r10bio, devs[conf->copies]);
128 
129 	/* allocate a r10bio with room for raid_disks entries in the
130 	 * bios array */
131 	return kzalloc(size, gfp_flags);
132 }
133 
r10bio_pool_free(void * r10_bio,void * data)134 static void r10bio_pool_free(void *r10_bio, void *data)
135 {
136 	kfree(r10_bio);
137 }
138 
139 #define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9)
140 /* amount of memory to reserve for resync requests */
141 #define RESYNC_WINDOW (1024*1024)
142 /* maximum number of concurrent requests, memory permitting */
143 #define RESYNC_DEPTH (32*1024*1024/RESYNC_BLOCK_SIZE)
144 #define CLUSTER_RESYNC_WINDOW (32 * RESYNC_WINDOW)
145 #define CLUSTER_RESYNC_WINDOW_SECTORS (CLUSTER_RESYNC_WINDOW >> 9)
146 
147 /*
148  * When performing a resync, we need to read and compare, so
149  * we need as many pages are there are copies.
150  * When performing a recovery, we need 2 bios, one for read,
151  * one for write (we recover only one drive per r10buf)
152  *
153  */
r10buf_pool_alloc(gfp_t gfp_flags,void * data)154 static void * r10buf_pool_alloc(gfp_t gfp_flags, void *data)
155 {
156 	struct r10conf *conf = data;
157 	struct r10bio *r10_bio;
158 	struct bio *bio;
159 	int j;
160 	int nalloc, nalloc_rp;
161 	struct resync_pages *rps;
162 
163 	r10_bio = r10bio_pool_alloc(gfp_flags, conf);
164 	if (!r10_bio)
165 		return NULL;
166 
167 	if (test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery) ||
168 	    test_bit(MD_RECOVERY_RESHAPE, &conf->mddev->recovery))
169 		nalloc = conf->copies; /* resync */
170 	else
171 		nalloc = 2; /* recovery */
172 
173 	/* allocate once for all bios */
174 	if (!conf->have_replacement)
175 		nalloc_rp = nalloc;
176 	else
177 		nalloc_rp = nalloc * 2;
178 	rps = kmalloc_array(nalloc_rp, sizeof(struct resync_pages), gfp_flags);
179 	if (!rps)
180 		goto out_free_r10bio;
181 
182 	/*
183 	 * Allocate bios.
184 	 */
185 	for (j = nalloc ; j-- ; ) {
186 		bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
187 		if (!bio)
188 			goto out_free_bio;
189 		r10_bio->devs[j].bio = bio;
190 		if (!conf->have_replacement)
191 			continue;
192 		bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
193 		if (!bio)
194 			goto out_free_bio;
195 		r10_bio->devs[j].repl_bio = bio;
196 	}
197 	/*
198 	 * Allocate RESYNC_PAGES data pages and attach them
199 	 * where needed.
200 	 */
201 	for (j = 0; j < nalloc; j++) {
202 		struct bio *rbio = r10_bio->devs[j].repl_bio;
203 		struct resync_pages *rp, *rp_repl;
204 
205 		rp = &rps[j];
206 		if (rbio)
207 			rp_repl = &rps[nalloc + j];
208 
209 		bio = r10_bio->devs[j].bio;
210 
211 		if (!j || test_bit(MD_RECOVERY_SYNC,
212 				   &conf->mddev->recovery)) {
213 			if (resync_alloc_pages(rp, gfp_flags))
214 				goto out_free_pages;
215 		} else {
216 			memcpy(rp, &rps[0], sizeof(*rp));
217 			resync_get_all_pages(rp);
218 		}
219 
220 		rp->raid_bio = r10_bio;
221 		bio->bi_private = rp;
222 		if (rbio) {
223 			memcpy(rp_repl, rp, sizeof(*rp));
224 			rbio->bi_private = rp_repl;
225 		}
226 	}
227 
228 	return r10_bio;
229 
230 out_free_pages:
231 	while (--j >= 0)
232 		resync_free_pages(&rps[j]);
233 
234 	j = 0;
235 out_free_bio:
236 	for ( ; j < nalloc; j++) {
237 		if (r10_bio->devs[j].bio)
238 			bio_put(r10_bio->devs[j].bio);
239 		if (r10_bio->devs[j].repl_bio)
240 			bio_put(r10_bio->devs[j].repl_bio);
241 	}
242 	kfree(rps);
243 out_free_r10bio:
244 	r10bio_pool_free(r10_bio, conf);
245 	return NULL;
246 }
247 
r10buf_pool_free(void * __r10_bio,void * data)248 static void r10buf_pool_free(void *__r10_bio, void *data)
249 {
250 	struct r10conf *conf = data;
251 	struct r10bio *r10bio = __r10_bio;
252 	int j;
253 	struct resync_pages *rp = NULL;
254 
255 	for (j = conf->copies; j--; ) {
256 		struct bio *bio = r10bio->devs[j].bio;
257 
258 		if (bio) {
259 			rp = get_resync_pages(bio);
260 			resync_free_pages(rp);
261 			bio_put(bio);
262 		}
263 
264 		bio = r10bio->devs[j].repl_bio;
265 		if (bio)
266 			bio_put(bio);
267 	}
268 
269 	/* resync pages array stored in the 1st bio's .bi_private */
270 	kfree(rp);
271 
272 	r10bio_pool_free(r10bio, conf);
273 }
274 
put_all_bios(struct r10conf * conf,struct r10bio * r10_bio)275 static void put_all_bios(struct r10conf *conf, struct r10bio *r10_bio)
276 {
277 	int i;
278 
279 	for (i = 0; i < conf->copies; i++) {
280 		struct bio **bio = & r10_bio->devs[i].bio;
281 		if (!BIO_SPECIAL(*bio))
282 			bio_put(*bio);
283 		*bio = NULL;
284 		bio = &r10_bio->devs[i].repl_bio;
285 		if (r10_bio->read_slot < 0 && !BIO_SPECIAL(*bio))
286 			bio_put(*bio);
287 		*bio = NULL;
288 	}
289 }
290 
free_r10bio(struct r10bio * r10_bio)291 static void free_r10bio(struct r10bio *r10_bio)
292 {
293 	struct r10conf *conf = r10_bio->mddev->private;
294 
295 	put_all_bios(conf, r10_bio);
296 	mempool_free(r10_bio, &conf->r10bio_pool);
297 }
298 
put_buf(struct r10bio * r10_bio)299 static void put_buf(struct r10bio *r10_bio)
300 {
301 	struct r10conf *conf = r10_bio->mddev->private;
302 
303 	mempool_free(r10_bio, &conf->r10buf_pool);
304 
305 	lower_barrier(conf);
306 }
307 
reschedule_retry(struct r10bio * r10_bio)308 static void reschedule_retry(struct r10bio *r10_bio)
309 {
310 	unsigned long flags;
311 	struct mddev *mddev = r10_bio->mddev;
312 	struct r10conf *conf = mddev->private;
313 
314 	spin_lock_irqsave(&conf->device_lock, flags);
315 	list_add(&r10_bio->retry_list, &conf->retry_list);
316 	conf->nr_queued ++;
317 	spin_unlock_irqrestore(&conf->device_lock, flags);
318 
319 	/* wake up frozen array... */
320 	wake_up(&conf->wait_barrier);
321 
322 	md_wakeup_thread(mddev->thread);
323 }
324 
325 /*
326  * raid_end_bio_io() is called when we have finished servicing a mirrored
327  * operation and are ready to return a success/failure code to the buffer
328  * cache layer.
329  */
raid_end_bio_io(struct r10bio * r10_bio)330 static void raid_end_bio_io(struct r10bio *r10_bio)
331 {
332 	struct bio *bio = r10_bio->master_bio;
333 	struct r10conf *conf = r10_bio->mddev->private;
334 
335 	if (!test_bit(R10BIO_Uptodate, &r10_bio->state))
336 		bio->bi_status = BLK_STS_IOERR;
337 
338 	bio_endio(bio);
339 	/*
340 	 * Wake up any possible resync thread that waits for the device
341 	 * to go idle.
342 	 */
343 	allow_barrier(conf);
344 
345 	free_r10bio(r10_bio);
346 }
347 
348 /*
349  * Update disk head position estimator based on IRQ completion info.
350  */
update_head_pos(int slot,struct r10bio * r10_bio)351 static inline void update_head_pos(int slot, struct r10bio *r10_bio)
352 {
353 	struct r10conf *conf = r10_bio->mddev->private;
354 
355 	conf->mirrors[r10_bio->devs[slot].devnum].head_position =
356 		r10_bio->devs[slot].addr + (r10_bio->sectors);
357 }
358 
359 /*
360  * Find the disk number which triggered given bio
361  */
find_bio_disk(struct r10conf * conf,struct r10bio * r10_bio,struct bio * bio,int * slotp,int * replp)362 static int find_bio_disk(struct r10conf *conf, struct r10bio *r10_bio,
363 			 struct bio *bio, int *slotp, int *replp)
364 {
365 	int slot;
366 	int repl = 0;
367 
368 	for (slot = 0; slot < conf->copies; slot++) {
369 		if (r10_bio->devs[slot].bio == bio)
370 			break;
371 		if (r10_bio->devs[slot].repl_bio == bio) {
372 			repl = 1;
373 			break;
374 		}
375 	}
376 
377 	BUG_ON(slot == conf->copies);
378 	update_head_pos(slot, r10_bio);
379 
380 	if (slotp)
381 		*slotp = slot;
382 	if (replp)
383 		*replp = repl;
384 	return r10_bio->devs[slot].devnum;
385 }
386 
raid10_end_read_request(struct bio * bio)387 static void raid10_end_read_request(struct bio *bio)
388 {
389 	int uptodate = !bio->bi_status;
390 	struct r10bio *r10_bio = bio->bi_private;
391 	int slot;
392 	struct md_rdev *rdev;
393 	struct r10conf *conf = r10_bio->mddev->private;
394 
395 	slot = r10_bio->read_slot;
396 	rdev = r10_bio->devs[slot].rdev;
397 	/*
398 	 * this branch is our 'one mirror IO has finished' event handler:
399 	 */
400 	update_head_pos(slot, r10_bio);
401 
402 	if (uptodate) {
403 		/*
404 		 * Set R10BIO_Uptodate in our master bio, so that
405 		 * we will return a good error code to the higher
406 		 * levels even if IO on some other mirrored buffer fails.
407 		 *
408 		 * The 'master' represents the composite IO operation to
409 		 * user-side. So if something waits for IO, then it will
410 		 * wait for the 'master' bio.
411 		 */
412 		set_bit(R10BIO_Uptodate, &r10_bio->state);
413 	} else {
414 		/* If all other devices that store this block have
415 		 * failed, we want to return the error upwards rather
416 		 * than fail the last device.  Here we redefine
417 		 * "uptodate" to mean "Don't want to retry"
418 		 */
419 		if (!_enough(conf, test_bit(R10BIO_Previous, &r10_bio->state),
420 			     rdev->raid_disk))
421 			uptodate = 1;
422 	}
423 	if (uptodate) {
424 		raid_end_bio_io(r10_bio);
425 		rdev_dec_pending(rdev, conf->mddev);
426 	} else {
427 		/*
428 		 * oops, read error - keep the refcount on the rdev
429 		 */
430 		char b[BDEVNAME_SIZE];
431 		pr_err_ratelimited("md/raid10:%s: %s: rescheduling sector %llu\n",
432 				   mdname(conf->mddev),
433 				   bdevname(rdev->bdev, b),
434 				   (unsigned long long)r10_bio->sector);
435 		set_bit(R10BIO_ReadError, &r10_bio->state);
436 		reschedule_retry(r10_bio);
437 	}
438 }
439 
close_write(struct r10bio * r10_bio)440 static void close_write(struct r10bio *r10_bio)
441 {
442 	/* clear the bitmap if all writes complete successfully */
443 	md_bitmap_endwrite(r10_bio->mddev->bitmap, r10_bio->sector,
444 			   r10_bio->sectors,
445 			   !test_bit(R10BIO_Degraded, &r10_bio->state),
446 			   0);
447 	md_write_end(r10_bio->mddev);
448 }
449 
one_write_done(struct r10bio * r10_bio)450 static void one_write_done(struct r10bio *r10_bio)
451 {
452 	if (atomic_dec_and_test(&r10_bio->remaining)) {
453 		if (test_bit(R10BIO_WriteError, &r10_bio->state))
454 			reschedule_retry(r10_bio);
455 		else {
456 			close_write(r10_bio);
457 			if (test_bit(R10BIO_MadeGood, &r10_bio->state))
458 				reschedule_retry(r10_bio);
459 			else
460 				raid_end_bio_io(r10_bio);
461 		}
462 	}
463 }
464 
raid10_end_write_request(struct bio * bio)465 static void raid10_end_write_request(struct bio *bio)
466 {
467 	struct r10bio *r10_bio = bio->bi_private;
468 	int dev;
469 	int dec_rdev = 1;
470 	struct r10conf *conf = r10_bio->mddev->private;
471 	int slot, repl;
472 	struct md_rdev *rdev = NULL;
473 	struct bio *to_put = NULL;
474 	bool discard_error;
475 
476 	discard_error = bio->bi_status && bio_op(bio) == REQ_OP_DISCARD;
477 
478 	dev = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
479 
480 	if (repl)
481 		rdev = conf->mirrors[dev].replacement;
482 	if (!rdev) {
483 		smp_rmb();
484 		repl = 0;
485 		rdev = conf->mirrors[dev].rdev;
486 	}
487 	/*
488 	 * this branch is our 'one mirror IO has finished' event handler:
489 	 */
490 	if (bio->bi_status && !discard_error) {
491 		if (repl)
492 			/* Never record new bad blocks to replacement,
493 			 * just fail it.
494 			 */
495 			md_error(rdev->mddev, rdev);
496 		else {
497 			set_bit(WriteErrorSeen,	&rdev->flags);
498 			if (!test_and_set_bit(WantReplacement, &rdev->flags))
499 				set_bit(MD_RECOVERY_NEEDED,
500 					&rdev->mddev->recovery);
501 
502 			dec_rdev = 0;
503 			if (test_bit(FailFast, &rdev->flags) &&
504 			    (bio->bi_opf & MD_FAILFAST)) {
505 				md_error(rdev->mddev, rdev);
506 				if (!test_bit(Faulty, &rdev->flags))
507 					/* This is the only remaining device,
508 					 * We need to retry the write without
509 					 * FailFast
510 					 */
511 					set_bit(R10BIO_WriteError, &r10_bio->state);
512 				else {
513 					r10_bio->devs[slot].bio = NULL;
514 					to_put = bio;
515 					dec_rdev = 1;
516 				}
517 			} else
518 				set_bit(R10BIO_WriteError, &r10_bio->state);
519 		}
520 	} else {
521 		/*
522 		 * Set R10BIO_Uptodate in our master bio, so that
523 		 * we will return a good error code for to the higher
524 		 * levels even if IO on some other mirrored buffer fails.
525 		 *
526 		 * The 'master' represents the composite IO operation to
527 		 * user-side. So if something waits for IO, then it will
528 		 * wait for the 'master' bio.
529 		 */
530 		sector_t first_bad;
531 		int bad_sectors;
532 
533 		/*
534 		 * Do not set R10BIO_Uptodate if the current device is
535 		 * rebuilding or Faulty. This is because we cannot use
536 		 * such device for properly reading the data back (we could
537 		 * potentially use it, if the current write would have felt
538 		 * before rdev->recovery_offset, but for simplicity we don't
539 		 * check this here.
540 		 */
541 		if (test_bit(In_sync, &rdev->flags) &&
542 		    !test_bit(Faulty, &rdev->flags))
543 			set_bit(R10BIO_Uptodate, &r10_bio->state);
544 
545 		/* Maybe we can clear some bad blocks. */
546 		if (is_badblock(rdev,
547 				r10_bio->devs[slot].addr,
548 				r10_bio->sectors,
549 				&first_bad, &bad_sectors) && !discard_error) {
550 			bio_put(bio);
551 			if (repl)
552 				r10_bio->devs[slot].repl_bio = IO_MADE_GOOD;
553 			else
554 				r10_bio->devs[slot].bio = IO_MADE_GOOD;
555 			dec_rdev = 0;
556 			set_bit(R10BIO_MadeGood, &r10_bio->state);
557 		}
558 	}
559 
560 	/*
561 	 *
562 	 * Let's see if all mirrored write operations have finished
563 	 * already.
564 	 */
565 	one_write_done(r10_bio);
566 	if (dec_rdev)
567 		rdev_dec_pending(rdev, conf->mddev);
568 	if (to_put)
569 		bio_put(to_put);
570 }
571 
572 /*
573  * RAID10 layout manager
574  * As well as the chunksize and raid_disks count, there are two
575  * parameters: near_copies and far_copies.
576  * near_copies * far_copies must be <= raid_disks.
577  * Normally one of these will be 1.
578  * If both are 1, we get raid0.
579  * If near_copies == raid_disks, we get raid1.
580  *
581  * Chunks are laid out in raid0 style with near_copies copies of the
582  * first chunk, followed by near_copies copies of the next chunk and
583  * so on.
584  * If far_copies > 1, then after 1/far_copies of the array has been assigned
585  * as described above, we start again with a device offset of near_copies.
586  * So we effectively have another copy of the whole array further down all
587  * the drives, but with blocks on different drives.
588  * With this layout, and block is never stored twice on the one device.
589  *
590  * raid10_find_phys finds the sector offset of a given virtual sector
591  * on each device that it is on.
592  *
593  * raid10_find_virt does the reverse mapping, from a device and a
594  * sector offset to a virtual address
595  */
596 
__raid10_find_phys(struct geom * geo,struct r10bio * r10bio)597 static void __raid10_find_phys(struct geom *geo, struct r10bio *r10bio)
598 {
599 	int n,f;
600 	sector_t sector;
601 	sector_t chunk;
602 	sector_t stripe;
603 	int dev;
604 	int slot = 0;
605 	int last_far_set_start, last_far_set_size;
606 
607 	last_far_set_start = (geo->raid_disks / geo->far_set_size) - 1;
608 	last_far_set_start *= geo->far_set_size;
609 
610 	last_far_set_size = geo->far_set_size;
611 	last_far_set_size += (geo->raid_disks % geo->far_set_size);
612 
613 	/* now calculate first sector/dev */
614 	chunk = r10bio->sector >> geo->chunk_shift;
615 	sector = r10bio->sector & geo->chunk_mask;
616 
617 	chunk *= geo->near_copies;
618 	stripe = chunk;
619 	dev = sector_div(stripe, geo->raid_disks);
620 	if (geo->far_offset)
621 		stripe *= geo->far_copies;
622 
623 	sector += stripe << geo->chunk_shift;
624 
625 	/* and calculate all the others */
626 	for (n = 0; n < geo->near_copies; n++) {
627 		int d = dev;
628 		int set;
629 		sector_t s = sector;
630 		r10bio->devs[slot].devnum = d;
631 		r10bio->devs[slot].addr = s;
632 		slot++;
633 
634 		for (f = 1; f < geo->far_copies; f++) {
635 			set = d / geo->far_set_size;
636 			d += geo->near_copies;
637 
638 			if ((geo->raid_disks % geo->far_set_size) &&
639 			    (d > last_far_set_start)) {
640 				d -= last_far_set_start;
641 				d %= last_far_set_size;
642 				d += last_far_set_start;
643 			} else {
644 				d %= geo->far_set_size;
645 				d += geo->far_set_size * set;
646 			}
647 			s += geo->stride;
648 			r10bio->devs[slot].devnum = d;
649 			r10bio->devs[slot].addr = s;
650 			slot++;
651 		}
652 		dev++;
653 		if (dev >= geo->raid_disks) {
654 			dev = 0;
655 			sector += (geo->chunk_mask + 1);
656 		}
657 	}
658 }
659 
raid10_find_phys(struct r10conf * conf,struct r10bio * r10bio)660 static void raid10_find_phys(struct r10conf *conf, struct r10bio *r10bio)
661 {
662 	struct geom *geo = &conf->geo;
663 
664 	if (conf->reshape_progress != MaxSector &&
665 	    ((r10bio->sector >= conf->reshape_progress) !=
666 	     conf->mddev->reshape_backwards)) {
667 		set_bit(R10BIO_Previous, &r10bio->state);
668 		geo = &conf->prev;
669 	} else
670 		clear_bit(R10BIO_Previous, &r10bio->state);
671 
672 	__raid10_find_phys(geo, r10bio);
673 }
674 
raid10_find_virt(struct r10conf * conf,sector_t sector,int dev)675 static sector_t raid10_find_virt(struct r10conf *conf, sector_t sector, int dev)
676 {
677 	sector_t offset, chunk, vchunk;
678 	/* Never use conf->prev as this is only called during resync
679 	 * or recovery, so reshape isn't happening
680 	 */
681 	struct geom *geo = &conf->geo;
682 	int far_set_start = (dev / geo->far_set_size) * geo->far_set_size;
683 	int far_set_size = geo->far_set_size;
684 	int last_far_set_start;
685 
686 	if (geo->raid_disks % geo->far_set_size) {
687 		last_far_set_start = (geo->raid_disks / geo->far_set_size) - 1;
688 		last_far_set_start *= geo->far_set_size;
689 
690 		if (dev >= last_far_set_start) {
691 			far_set_size = geo->far_set_size;
692 			far_set_size += (geo->raid_disks % geo->far_set_size);
693 			far_set_start = last_far_set_start;
694 		}
695 	}
696 
697 	offset = sector & geo->chunk_mask;
698 	if (geo->far_offset) {
699 		int fc;
700 		chunk = sector >> geo->chunk_shift;
701 		fc = sector_div(chunk, geo->far_copies);
702 		dev -= fc * geo->near_copies;
703 		if (dev < far_set_start)
704 			dev += far_set_size;
705 	} else {
706 		while (sector >= geo->stride) {
707 			sector -= geo->stride;
708 			if (dev < (geo->near_copies + far_set_start))
709 				dev += far_set_size - geo->near_copies;
710 			else
711 				dev -= geo->near_copies;
712 		}
713 		chunk = sector >> geo->chunk_shift;
714 	}
715 	vchunk = chunk * geo->raid_disks + dev;
716 	sector_div(vchunk, geo->near_copies);
717 	return (vchunk << geo->chunk_shift) + offset;
718 }
719 
720 /*
721  * This routine returns the disk from which the requested read should
722  * be done. There is a per-array 'next expected sequential IO' sector
723  * number - if this matches on the next IO then we use the last disk.
724  * There is also a per-disk 'last know head position' sector that is
725  * maintained from IRQ contexts, both the normal and the resync IO
726  * completion handlers update this position correctly. If there is no
727  * perfect sequential match then we pick the disk whose head is closest.
728  *
729  * If there are 2 mirrors in the same 2 devices, performance degrades
730  * because position is mirror, not device based.
731  *
732  * The rdev for the device selected will have nr_pending incremented.
733  */
734 
735 /*
736  * FIXME: possibly should rethink readbalancing and do it differently
737  * depending on near_copies / far_copies geometry.
738  */
read_balance(struct r10conf * conf,struct r10bio * r10_bio,int * max_sectors)739 static struct md_rdev *read_balance(struct r10conf *conf,
740 				    struct r10bio *r10_bio,
741 				    int *max_sectors)
742 {
743 	const sector_t this_sector = r10_bio->sector;
744 	int disk, slot;
745 	int sectors = r10_bio->sectors;
746 	int best_good_sectors;
747 	sector_t new_distance, best_dist;
748 	struct md_rdev *best_rdev, *rdev = NULL;
749 	int do_balance;
750 	int best_slot;
751 	struct geom *geo = &conf->geo;
752 
753 	raid10_find_phys(conf, r10_bio);
754 	rcu_read_lock();
755 	best_slot = -1;
756 	best_rdev = NULL;
757 	best_dist = MaxSector;
758 	best_good_sectors = 0;
759 	do_balance = 1;
760 	clear_bit(R10BIO_FailFast, &r10_bio->state);
761 	/*
762 	 * Check if we can balance. We can balance on the whole
763 	 * device if no resync is going on (recovery is ok), or below
764 	 * the resync window. We take the first readable disk when
765 	 * above the resync window.
766 	 */
767 	if ((conf->mddev->recovery_cp < MaxSector
768 	     && (this_sector + sectors >= conf->next_resync)) ||
769 	    (mddev_is_clustered(conf->mddev) &&
770 	     md_cluster_ops->area_resyncing(conf->mddev, READ, this_sector,
771 					    this_sector + sectors)))
772 		do_balance = 0;
773 
774 	for (slot = 0; slot < conf->copies ; slot++) {
775 		sector_t first_bad;
776 		int bad_sectors;
777 		sector_t dev_sector;
778 
779 		if (r10_bio->devs[slot].bio == IO_BLOCKED)
780 			continue;
781 		disk = r10_bio->devs[slot].devnum;
782 		rdev = rcu_dereference(conf->mirrors[disk].replacement);
783 		if (rdev == NULL || test_bit(Faulty, &rdev->flags) ||
784 		    r10_bio->devs[slot].addr + sectors > rdev->recovery_offset)
785 			rdev = rcu_dereference(conf->mirrors[disk].rdev);
786 		if (rdev == NULL ||
787 		    test_bit(Faulty, &rdev->flags))
788 			continue;
789 		if (!test_bit(In_sync, &rdev->flags) &&
790 		    r10_bio->devs[slot].addr + sectors > rdev->recovery_offset)
791 			continue;
792 
793 		dev_sector = r10_bio->devs[slot].addr;
794 		if (is_badblock(rdev, dev_sector, sectors,
795 				&first_bad, &bad_sectors)) {
796 			if (best_dist < MaxSector)
797 				/* Already have a better slot */
798 				continue;
799 			if (first_bad <= dev_sector) {
800 				/* Cannot read here.  If this is the
801 				 * 'primary' device, then we must not read
802 				 * beyond 'bad_sectors' from another device.
803 				 */
804 				bad_sectors -= (dev_sector - first_bad);
805 				if (!do_balance && sectors > bad_sectors)
806 					sectors = bad_sectors;
807 				if (best_good_sectors > sectors)
808 					best_good_sectors = sectors;
809 			} else {
810 				sector_t good_sectors =
811 					first_bad - dev_sector;
812 				if (good_sectors > best_good_sectors) {
813 					best_good_sectors = good_sectors;
814 					best_slot = slot;
815 					best_rdev = rdev;
816 				}
817 				if (!do_balance)
818 					/* Must read from here */
819 					break;
820 			}
821 			continue;
822 		} else
823 			best_good_sectors = sectors;
824 
825 		if (!do_balance)
826 			break;
827 
828 		if (best_slot >= 0)
829 			/* At least 2 disks to choose from so failfast is OK */
830 			set_bit(R10BIO_FailFast, &r10_bio->state);
831 		/* This optimisation is debatable, and completely destroys
832 		 * sequential read speed for 'far copies' arrays.  So only
833 		 * keep it for 'near' arrays, and review those later.
834 		 */
835 		if (geo->near_copies > 1 && !atomic_read(&rdev->nr_pending))
836 			new_distance = 0;
837 
838 		/* for far > 1 always use the lowest address */
839 		else if (geo->far_copies > 1)
840 			new_distance = r10_bio->devs[slot].addr;
841 		else
842 			new_distance = abs(r10_bio->devs[slot].addr -
843 					   conf->mirrors[disk].head_position);
844 		if (new_distance < best_dist) {
845 			best_dist = new_distance;
846 			best_slot = slot;
847 			best_rdev = rdev;
848 		}
849 	}
850 	if (slot >= conf->copies) {
851 		slot = best_slot;
852 		rdev = best_rdev;
853 	}
854 
855 	if (slot >= 0) {
856 		atomic_inc(&rdev->nr_pending);
857 		r10_bio->read_slot = slot;
858 	} else
859 		rdev = NULL;
860 	rcu_read_unlock();
861 	*max_sectors = best_good_sectors;
862 
863 	return rdev;
864 }
865 
raid10_congested(struct mddev * mddev,int bits)866 static int raid10_congested(struct mddev *mddev, int bits)
867 {
868 	struct r10conf *conf = mddev->private;
869 	int i, ret = 0;
870 
871 	if ((bits & (1 << WB_async_congested)) &&
872 	    conf->pending_count >= max_queued_requests)
873 		return 1;
874 
875 	rcu_read_lock();
876 	for (i = 0;
877 	     (i < conf->geo.raid_disks || i < conf->prev.raid_disks)
878 		     && ret == 0;
879 	     i++) {
880 		struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
881 		if (rdev && !test_bit(Faulty, &rdev->flags)) {
882 			struct request_queue *q = bdev_get_queue(rdev->bdev);
883 
884 			ret |= bdi_congested(q->backing_dev_info, bits);
885 		}
886 	}
887 	rcu_read_unlock();
888 	return ret;
889 }
890 
flush_pending_writes(struct r10conf * conf)891 static void flush_pending_writes(struct r10conf *conf)
892 {
893 	/* Any writes that have been queued but are awaiting
894 	 * bitmap updates get flushed here.
895 	 */
896 	spin_lock_irq(&conf->device_lock);
897 
898 	if (conf->pending_bio_list.head) {
899 		struct blk_plug plug;
900 		struct bio *bio;
901 
902 		bio = bio_list_get(&conf->pending_bio_list);
903 		conf->pending_count = 0;
904 		spin_unlock_irq(&conf->device_lock);
905 
906 		/*
907 		 * As this is called in a wait_event() loop (see freeze_array),
908 		 * current->state might be TASK_UNINTERRUPTIBLE which will
909 		 * cause a warning when we prepare to wait again.  As it is
910 		 * rare that this path is taken, it is perfectly safe to force
911 		 * us to go around the wait_event() loop again, so the warning
912 		 * is a false-positive. Silence the warning by resetting
913 		 * thread state
914 		 */
915 		__set_current_state(TASK_RUNNING);
916 
917 		blk_start_plug(&plug);
918 		/* flush any pending bitmap writes to disk
919 		 * before proceeding w/ I/O */
920 		md_bitmap_unplug(conf->mddev->bitmap);
921 		wake_up(&conf->wait_barrier);
922 
923 		while (bio) { /* submit pending writes */
924 			struct bio *next = bio->bi_next;
925 			struct md_rdev *rdev = (void*)bio->bi_disk;
926 			bio->bi_next = NULL;
927 			bio_set_dev(bio, rdev->bdev);
928 			if (test_bit(Faulty, &rdev->flags)) {
929 				bio_io_error(bio);
930 			} else if (unlikely((bio_op(bio) ==  REQ_OP_DISCARD) &&
931 					    !blk_queue_discard(bio->bi_disk->queue)))
932 				/* Just ignore it */
933 				bio_endio(bio);
934 			else
935 				generic_make_request(bio);
936 			bio = next;
937 		}
938 		blk_finish_plug(&plug);
939 	} else
940 		spin_unlock_irq(&conf->device_lock);
941 }
942 
943 /* Barriers....
944  * Sometimes we need to suspend IO while we do something else,
945  * either some resync/recovery, or reconfigure the array.
946  * To do this we raise a 'barrier'.
947  * The 'barrier' is a counter that can be raised multiple times
948  * to count how many activities are happening which preclude
949  * normal IO.
950  * We can only raise the barrier if there is no pending IO.
951  * i.e. if nr_pending == 0.
952  * We choose only to raise the barrier if no-one is waiting for the
953  * barrier to go down.  This means that as soon as an IO request
954  * is ready, no other operations which require a barrier will start
955  * until the IO request has had a chance.
956  *
957  * So: regular IO calls 'wait_barrier'.  When that returns there
958  *    is no backgroup IO happening,  It must arrange to call
959  *    allow_barrier when it has finished its IO.
960  * backgroup IO calls must call raise_barrier.  Once that returns
961  *    there is no normal IO happeing.  It must arrange to call
962  *    lower_barrier when the particular background IO completes.
963  */
964 
raise_barrier(struct r10conf * conf,int force)965 static void raise_barrier(struct r10conf *conf, int force)
966 {
967 	BUG_ON(force && !conf->barrier);
968 	spin_lock_irq(&conf->resync_lock);
969 
970 	/* Wait until no block IO is waiting (unless 'force') */
971 	wait_event_lock_irq(conf->wait_barrier, force || !conf->nr_waiting,
972 			    conf->resync_lock);
973 
974 	/* block any new IO from starting */
975 	conf->barrier++;
976 
977 	/* Now wait for all pending IO to complete */
978 	wait_event_lock_irq(conf->wait_barrier,
979 			    !atomic_read(&conf->nr_pending) && conf->barrier < RESYNC_DEPTH,
980 			    conf->resync_lock);
981 
982 	spin_unlock_irq(&conf->resync_lock);
983 }
984 
lower_barrier(struct r10conf * conf)985 static void lower_barrier(struct r10conf *conf)
986 {
987 	unsigned long flags;
988 	spin_lock_irqsave(&conf->resync_lock, flags);
989 	conf->barrier--;
990 	spin_unlock_irqrestore(&conf->resync_lock, flags);
991 	wake_up(&conf->wait_barrier);
992 }
993 
wait_barrier(struct r10conf * conf)994 static void wait_barrier(struct r10conf *conf)
995 {
996 	spin_lock_irq(&conf->resync_lock);
997 	if (conf->barrier) {
998 		conf->nr_waiting++;
999 		/* Wait for the barrier to drop.
1000 		 * However if there are already pending
1001 		 * requests (preventing the barrier from
1002 		 * rising completely), and the
1003 		 * pre-process bio queue isn't empty,
1004 		 * then don't wait, as we need to empty
1005 		 * that queue to get the nr_pending
1006 		 * count down.
1007 		 */
1008 		raid10_log(conf->mddev, "wait barrier");
1009 		wait_event_lock_irq(conf->wait_barrier,
1010 				    !conf->barrier ||
1011 				    (atomic_read(&conf->nr_pending) &&
1012 				     current->bio_list &&
1013 				     (!bio_list_empty(&current->bio_list[0]) ||
1014 				      !bio_list_empty(&current->bio_list[1]))),
1015 				    conf->resync_lock);
1016 		conf->nr_waiting--;
1017 		if (!conf->nr_waiting)
1018 			wake_up(&conf->wait_barrier);
1019 	}
1020 	atomic_inc(&conf->nr_pending);
1021 	spin_unlock_irq(&conf->resync_lock);
1022 }
1023 
allow_barrier(struct r10conf * conf)1024 static void allow_barrier(struct r10conf *conf)
1025 {
1026 	if ((atomic_dec_and_test(&conf->nr_pending)) ||
1027 			(conf->array_freeze_pending))
1028 		wake_up(&conf->wait_barrier);
1029 }
1030 
freeze_array(struct r10conf * conf,int extra)1031 static void freeze_array(struct r10conf *conf, int extra)
1032 {
1033 	/* stop syncio and normal IO and wait for everything to
1034 	 * go quiet.
1035 	 * We increment barrier and nr_waiting, and then
1036 	 * wait until nr_pending match nr_queued+extra
1037 	 * This is called in the context of one normal IO request
1038 	 * that has failed. Thus any sync request that might be pending
1039 	 * will be blocked by nr_pending, and we need to wait for
1040 	 * pending IO requests to complete or be queued for re-try.
1041 	 * Thus the number queued (nr_queued) plus this request (extra)
1042 	 * must match the number of pending IOs (nr_pending) before
1043 	 * we continue.
1044 	 */
1045 	spin_lock_irq(&conf->resync_lock);
1046 	conf->array_freeze_pending++;
1047 	conf->barrier++;
1048 	conf->nr_waiting++;
1049 	wait_event_lock_irq_cmd(conf->wait_barrier,
1050 				atomic_read(&conf->nr_pending) == conf->nr_queued+extra,
1051 				conf->resync_lock,
1052 				flush_pending_writes(conf));
1053 
1054 	conf->array_freeze_pending--;
1055 	spin_unlock_irq(&conf->resync_lock);
1056 }
1057 
unfreeze_array(struct r10conf * conf)1058 static void unfreeze_array(struct r10conf *conf)
1059 {
1060 	/* reverse the effect of the freeze */
1061 	spin_lock_irq(&conf->resync_lock);
1062 	conf->barrier--;
1063 	conf->nr_waiting--;
1064 	wake_up(&conf->wait_barrier);
1065 	spin_unlock_irq(&conf->resync_lock);
1066 }
1067 
choose_data_offset(struct r10bio * r10_bio,struct md_rdev * rdev)1068 static sector_t choose_data_offset(struct r10bio *r10_bio,
1069 				   struct md_rdev *rdev)
1070 {
1071 	if (!test_bit(MD_RECOVERY_RESHAPE, &rdev->mddev->recovery) ||
1072 	    test_bit(R10BIO_Previous, &r10_bio->state))
1073 		return rdev->data_offset;
1074 	else
1075 		return rdev->new_data_offset;
1076 }
1077 
1078 struct raid10_plug_cb {
1079 	struct blk_plug_cb	cb;
1080 	struct bio_list		pending;
1081 	int			pending_cnt;
1082 };
1083 
raid10_unplug(struct blk_plug_cb * cb,bool from_schedule)1084 static void raid10_unplug(struct blk_plug_cb *cb, bool from_schedule)
1085 {
1086 	struct raid10_plug_cb *plug = container_of(cb, struct raid10_plug_cb,
1087 						   cb);
1088 	struct mddev *mddev = plug->cb.data;
1089 	struct r10conf *conf = mddev->private;
1090 	struct bio *bio;
1091 
1092 	if (from_schedule || current->bio_list) {
1093 		spin_lock_irq(&conf->device_lock);
1094 		bio_list_merge(&conf->pending_bio_list, &plug->pending);
1095 		conf->pending_count += plug->pending_cnt;
1096 		spin_unlock_irq(&conf->device_lock);
1097 		wake_up(&conf->wait_barrier);
1098 		md_wakeup_thread(mddev->thread);
1099 		kfree(plug);
1100 		return;
1101 	}
1102 
1103 	/* we aren't scheduling, so we can do the write-out directly. */
1104 	bio = bio_list_get(&plug->pending);
1105 	md_bitmap_unplug(mddev->bitmap);
1106 	wake_up(&conf->wait_barrier);
1107 
1108 	while (bio) { /* submit pending writes */
1109 		struct bio *next = bio->bi_next;
1110 		struct md_rdev *rdev = (void*)bio->bi_disk;
1111 		bio->bi_next = NULL;
1112 		bio_set_dev(bio, rdev->bdev);
1113 		if (test_bit(Faulty, &rdev->flags)) {
1114 			bio_io_error(bio);
1115 		} else if (unlikely((bio_op(bio) ==  REQ_OP_DISCARD) &&
1116 				    !blk_queue_discard(bio->bi_disk->queue)))
1117 			/* Just ignore it */
1118 			bio_endio(bio);
1119 		else
1120 			generic_make_request(bio);
1121 		bio = next;
1122 	}
1123 	kfree(plug);
1124 }
1125 
raid10_read_request(struct mddev * mddev,struct bio * bio,struct r10bio * r10_bio)1126 static void raid10_read_request(struct mddev *mddev, struct bio *bio,
1127 				struct r10bio *r10_bio)
1128 {
1129 	struct r10conf *conf = mddev->private;
1130 	struct bio *read_bio;
1131 	const int op = bio_op(bio);
1132 	const unsigned long do_sync = (bio->bi_opf & REQ_SYNC);
1133 	int max_sectors;
1134 	sector_t sectors;
1135 	struct md_rdev *rdev;
1136 	char b[BDEVNAME_SIZE];
1137 	int slot = r10_bio->read_slot;
1138 	struct md_rdev *err_rdev = NULL;
1139 	gfp_t gfp = GFP_NOIO;
1140 
1141 	if (r10_bio->devs[slot].rdev) {
1142 		/*
1143 		 * This is an error retry, but we cannot
1144 		 * safely dereference the rdev in the r10_bio,
1145 		 * we must use the one in conf.
1146 		 * If it has already been disconnected (unlikely)
1147 		 * we lose the device name in error messages.
1148 		 */
1149 		int disk;
1150 		/*
1151 		 * As we are blocking raid10, it is a little safer to
1152 		 * use __GFP_HIGH.
1153 		 */
1154 		gfp = GFP_NOIO | __GFP_HIGH;
1155 
1156 		rcu_read_lock();
1157 		disk = r10_bio->devs[slot].devnum;
1158 		err_rdev = rcu_dereference(conf->mirrors[disk].rdev);
1159 		if (err_rdev)
1160 			bdevname(err_rdev->bdev, b);
1161 		else {
1162 			strcpy(b, "???");
1163 			/* This never gets dereferenced */
1164 			err_rdev = r10_bio->devs[slot].rdev;
1165 		}
1166 		rcu_read_unlock();
1167 	}
1168 	/*
1169 	 * Register the new request and wait if the reconstruction
1170 	 * thread has put up a bar for new requests.
1171 	 * Continue immediately if no resync is active currently.
1172 	 */
1173 	wait_barrier(conf);
1174 
1175 	sectors = r10_bio->sectors;
1176 	while (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
1177 	    bio->bi_iter.bi_sector < conf->reshape_progress &&
1178 	    bio->bi_iter.bi_sector + sectors > conf->reshape_progress) {
1179 		/*
1180 		 * IO spans the reshape position.  Need to wait for reshape to
1181 		 * pass
1182 		 */
1183 		raid10_log(conf->mddev, "wait reshape");
1184 		allow_barrier(conf);
1185 		wait_event(conf->wait_barrier,
1186 			   conf->reshape_progress <= bio->bi_iter.bi_sector ||
1187 			   conf->reshape_progress >= bio->bi_iter.bi_sector +
1188 			   sectors);
1189 		wait_barrier(conf);
1190 	}
1191 
1192 	rdev = read_balance(conf, r10_bio, &max_sectors);
1193 	if (!rdev) {
1194 		if (err_rdev) {
1195 			pr_crit_ratelimited("md/raid10:%s: %s: unrecoverable I/O read error for block %llu\n",
1196 					    mdname(mddev), b,
1197 					    (unsigned long long)r10_bio->sector);
1198 		}
1199 		raid_end_bio_io(r10_bio);
1200 		return;
1201 	}
1202 	if (err_rdev)
1203 		pr_err_ratelimited("md/raid10:%s: %s: redirecting sector %llu to another mirror\n",
1204 				   mdname(mddev),
1205 				   bdevname(rdev->bdev, b),
1206 				   (unsigned long long)r10_bio->sector);
1207 	if (max_sectors < bio_sectors(bio)) {
1208 		struct bio *split = bio_split(bio, max_sectors,
1209 					      gfp, &conf->bio_split);
1210 		bio_chain(split, bio);
1211 		allow_barrier(conf);
1212 		generic_make_request(bio);
1213 		wait_barrier(conf);
1214 		bio = split;
1215 		r10_bio->master_bio = bio;
1216 		r10_bio->sectors = max_sectors;
1217 	}
1218 	slot = r10_bio->read_slot;
1219 
1220 	read_bio = bio_clone_fast(bio, gfp, &mddev->bio_set);
1221 
1222 	r10_bio->devs[slot].bio = read_bio;
1223 	r10_bio->devs[slot].rdev = rdev;
1224 
1225 	read_bio->bi_iter.bi_sector = r10_bio->devs[slot].addr +
1226 		choose_data_offset(r10_bio, rdev);
1227 	bio_set_dev(read_bio, rdev->bdev);
1228 	read_bio->bi_end_io = raid10_end_read_request;
1229 	bio_set_op_attrs(read_bio, op, do_sync);
1230 	if (test_bit(FailFast, &rdev->flags) &&
1231 	    test_bit(R10BIO_FailFast, &r10_bio->state))
1232 	        read_bio->bi_opf |= MD_FAILFAST;
1233 	read_bio->bi_private = r10_bio;
1234 
1235 	if (mddev->gendisk)
1236 	        trace_block_bio_remap(read_bio->bi_disk->queue,
1237 	                              read_bio, disk_devt(mddev->gendisk),
1238 	                              r10_bio->sector);
1239 	generic_make_request(read_bio);
1240 	return;
1241 }
1242 
raid10_write_one_disk(struct mddev * mddev,struct r10bio * r10_bio,struct bio * bio,bool replacement,int n_copy)1243 static void raid10_write_one_disk(struct mddev *mddev, struct r10bio *r10_bio,
1244 				  struct bio *bio, bool replacement,
1245 				  int n_copy)
1246 {
1247 	const int op = bio_op(bio);
1248 	const unsigned long do_sync = (bio->bi_opf & REQ_SYNC);
1249 	const unsigned long do_fua = (bio->bi_opf & REQ_FUA);
1250 	unsigned long flags;
1251 	struct blk_plug_cb *cb;
1252 	struct raid10_plug_cb *plug = NULL;
1253 	struct r10conf *conf = mddev->private;
1254 	struct md_rdev *rdev;
1255 	int devnum = r10_bio->devs[n_copy].devnum;
1256 	struct bio *mbio;
1257 
1258 	if (replacement) {
1259 		rdev = conf->mirrors[devnum].replacement;
1260 		if (rdev == NULL) {
1261 			/* Replacement just got moved to main 'rdev' */
1262 			smp_mb();
1263 			rdev = conf->mirrors[devnum].rdev;
1264 		}
1265 	} else
1266 		rdev = conf->mirrors[devnum].rdev;
1267 
1268 	mbio = bio_clone_fast(bio, GFP_NOIO, &mddev->bio_set);
1269 	if (replacement)
1270 		r10_bio->devs[n_copy].repl_bio = mbio;
1271 	else
1272 		r10_bio->devs[n_copy].bio = mbio;
1273 
1274 	mbio->bi_iter.bi_sector	= (r10_bio->devs[n_copy].addr +
1275 				   choose_data_offset(r10_bio, rdev));
1276 	bio_set_dev(mbio, rdev->bdev);
1277 	mbio->bi_end_io	= raid10_end_write_request;
1278 	bio_set_op_attrs(mbio, op, do_sync | do_fua);
1279 	if (!replacement && test_bit(FailFast,
1280 				     &conf->mirrors[devnum].rdev->flags)
1281 			 && enough(conf, devnum))
1282 		mbio->bi_opf |= MD_FAILFAST;
1283 	mbio->bi_private = r10_bio;
1284 
1285 	if (conf->mddev->gendisk)
1286 		trace_block_bio_remap(mbio->bi_disk->queue,
1287 				      mbio, disk_devt(conf->mddev->gendisk),
1288 				      r10_bio->sector);
1289 	/* flush_pending_writes() needs access to the rdev so...*/
1290 	mbio->bi_disk = (void *)rdev;
1291 
1292 	atomic_inc(&r10_bio->remaining);
1293 
1294 	cb = blk_check_plugged(raid10_unplug, mddev, sizeof(*plug));
1295 	if (cb)
1296 		plug = container_of(cb, struct raid10_plug_cb, cb);
1297 	else
1298 		plug = NULL;
1299 	if (plug) {
1300 		bio_list_add(&plug->pending, mbio);
1301 		plug->pending_cnt++;
1302 	} else {
1303 		spin_lock_irqsave(&conf->device_lock, flags);
1304 		bio_list_add(&conf->pending_bio_list, mbio);
1305 		conf->pending_count++;
1306 		spin_unlock_irqrestore(&conf->device_lock, flags);
1307 		md_wakeup_thread(mddev->thread);
1308 	}
1309 }
1310 
raid10_write_request(struct mddev * mddev,struct bio * bio,struct r10bio * r10_bio)1311 static void raid10_write_request(struct mddev *mddev, struct bio *bio,
1312 				 struct r10bio *r10_bio)
1313 {
1314 	struct r10conf *conf = mddev->private;
1315 	int i;
1316 	struct md_rdev *blocked_rdev;
1317 	sector_t sectors;
1318 	int max_sectors;
1319 
1320 	if ((mddev_is_clustered(mddev) &&
1321 	     md_cluster_ops->area_resyncing(mddev, WRITE,
1322 					    bio->bi_iter.bi_sector,
1323 					    bio_end_sector(bio)))) {
1324 		DEFINE_WAIT(w);
1325 		for (;;) {
1326 			prepare_to_wait(&conf->wait_barrier,
1327 					&w, TASK_IDLE);
1328 			if (!md_cluster_ops->area_resyncing(mddev, WRITE,
1329 				 bio->bi_iter.bi_sector, bio_end_sector(bio)))
1330 				break;
1331 			schedule();
1332 		}
1333 		finish_wait(&conf->wait_barrier, &w);
1334 	}
1335 
1336 	/*
1337 	 * Register the new request and wait if the reconstruction
1338 	 * thread has put up a bar for new requests.
1339 	 * Continue immediately if no resync is active currently.
1340 	 */
1341 	wait_barrier(conf);
1342 
1343 	sectors = r10_bio->sectors;
1344 	while (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
1345 	    bio->bi_iter.bi_sector < conf->reshape_progress &&
1346 	    bio->bi_iter.bi_sector + sectors > conf->reshape_progress) {
1347 		/*
1348 		 * IO spans the reshape position.  Need to wait for reshape to
1349 		 * pass
1350 		 */
1351 		raid10_log(conf->mddev, "wait reshape");
1352 		allow_barrier(conf);
1353 		wait_event(conf->wait_barrier,
1354 			   conf->reshape_progress <= bio->bi_iter.bi_sector ||
1355 			   conf->reshape_progress >= bio->bi_iter.bi_sector +
1356 			   sectors);
1357 		wait_barrier(conf);
1358 	}
1359 
1360 	if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
1361 	    (mddev->reshape_backwards
1362 	     ? (bio->bi_iter.bi_sector < conf->reshape_safe &&
1363 		bio->bi_iter.bi_sector + sectors > conf->reshape_progress)
1364 	     : (bio->bi_iter.bi_sector + sectors > conf->reshape_safe &&
1365 		bio->bi_iter.bi_sector < conf->reshape_progress))) {
1366 		/* Need to update reshape_position in metadata */
1367 		mddev->reshape_position = conf->reshape_progress;
1368 		set_mask_bits(&mddev->sb_flags, 0,
1369 			      BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING));
1370 		md_wakeup_thread(mddev->thread);
1371 		raid10_log(conf->mddev, "wait reshape metadata");
1372 		wait_event(mddev->sb_wait,
1373 			   !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags));
1374 
1375 		conf->reshape_safe = mddev->reshape_position;
1376 	}
1377 
1378 	if (conf->pending_count >= max_queued_requests) {
1379 		md_wakeup_thread(mddev->thread);
1380 		raid10_log(mddev, "wait queued");
1381 		wait_event(conf->wait_barrier,
1382 			   conf->pending_count < max_queued_requests);
1383 	}
1384 	/* first select target devices under rcu_lock and
1385 	 * inc refcount on their rdev.  Record them by setting
1386 	 * bios[x] to bio
1387 	 * If there are known/acknowledged bad blocks on any device
1388 	 * on which we have seen a write error, we want to avoid
1389 	 * writing to those blocks.  This potentially requires several
1390 	 * writes to write around the bad blocks.  Each set of writes
1391 	 * gets its own r10_bio with a set of bios attached.
1392 	 */
1393 
1394 	r10_bio->read_slot = -1; /* make sure repl_bio gets freed */
1395 	raid10_find_phys(conf, r10_bio);
1396 retry_write:
1397 	blocked_rdev = NULL;
1398 	rcu_read_lock();
1399 	max_sectors = r10_bio->sectors;
1400 
1401 	for (i = 0;  i < conf->copies; i++) {
1402 		int d = r10_bio->devs[i].devnum;
1403 		struct md_rdev *rdev = rcu_dereference(conf->mirrors[d].rdev);
1404 		struct md_rdev *rrdev = rcu_dereference(
1405 			conf->mirrors[d].replacement);
1406 		if (rdev == rrdev)
1407 			rrdev = NULL;
1408 		if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
1409 			atomic_inc(&rdev->nr_pending);
1410 			blocked_rdev = rdev;
1411 			break;
1412 		}
1413 		if (rrdev && unlikely(test_bit(Blocked, &rrdev->flags))) {
1414 			atomic_inc(&rrdev->nr_pending);
1415 			blocked_rdev = rrdev;
1416 			break;
1417 		}
1418 		if (rdev && (test_bit(Faulty, &rdev->flags)))
1419 			rdev = NULL;
1420 		if (rrdev && (test_bit(Faulty, &rrdev->flags)))
1421 			rrdev = NULL;
1422 
1423 		r10_bio->devs[i].bio = NULL;
1424 		r10_bio->devs[i].repl_bio = NULL;
1425 
1426 		if (!rdev && !rrdev) {
1427 			set_bit(R10BIO_Degraded, &r10_bio->state);
1428 			continue;
1429 		}
1430 		if (rdev && test_bit(WriteErrorSeen, &rdev->flags)) {
1431 			sector_t first_bad;
1432 			sector_t dev_sector = r10_bio->devs[i].addr;
1433 			int bad_sectors;
1434 			int is_bad;
1435 
1436 			is_bad = is_badblock(rdev, dev_sector, max_sectors,
1437 					     &first_bad, &bad_sectors);
1438 			if (is_bad < 0) {
1439 				/* Mustn't write here until the bad block
1440 				 * is acknowledged
1441 				 */
1442 				atomic_inc(&rdev->nr_pending);
1443 				set_bit(BlockedBadBlocks, &rdev->flags);
1444 				blocked_rdev = rdev;
1445 				break;
1446 			}
1447 			if (is_bad && first_bad <= dev_sector) {
1448 				/* Cannot write here at all */
1449 				bad_sectors -= (dev_sector - first_bad);
1450 				if (bad_sectors < max_sectors)
1451 					/* Mustn't write more than bad_sectors
1452 					 * to other devices yet
1453 					 */
1454 					max_sectors = bad_sectors;
1455 				/* We don't set R10BIO_Degraded as that
1456 				 * only applies if the disk is missing,
1457 				 * so it might be re-added, and we want to
1458 				 * know to recover this chunk.
1459 				 * In this case the device is here, and the
1460 				 * fact that this chunk is not in-sync is
1461 				 * recorded in the bad block log.
1462 				 */
1463 				continue;
1464 			}
1465 			if (is_bad) {
1466 				int good_sectors = first_bad - dev_sector;
1467 				if (good_sectors < max_sectors)
1468 					max_sectors = good_sectors;
1469 			}
1470 		}
1471 		if (rdev) {
1472 			r10_bio->devs[i].bio = bio;
1473 			atomic_inc(&rdev->nr_pending);
1474 		}
1475 		if (rrdev) {
1476 			r10_bio->devs[i].repl_bio = bio;
1477 			atomic_inc(&rrdev->nr_pending);
1478 		}
1479 	}
1480 	rcu_read_unlock();
1481 
1482 	if (unlikely(blocked_rdev)) {
1483 		/* Have to wait for this device to get unblocked, then retry */
1484 		int j;
1485 		int d;
1486 
1487 		for (j = 0; j < i; j++) {
1488 			if (r10_bio->devs[j].bio) {
1489 				d = r10_bio->devs[j].devnum;
1490 				rdev_dec_pending(conf->mirrors[d].rdev, mddev);
1491 			}
1492 			if (r10_bio->devs[j].repl_bio) {
1493 				struct md_rdev *rdev;
1494 				d = r10_bio->devs[j].devnum;
1495 				rdev = conf->mirrors[d].replacement;
1496 				if (!rdev) {
1497 					/* Race with remove_disk */
1498 					smp_mb();
1499 					rdev = conf->mirrors[d].rdev;
1500 				}
1501 				rdev_dec_pending(rdev, mddev);
1502 			}
1503 		}
1504 		allow_barrier(conf);
1505 		raid10_log(conf->mddev, "wait rdev %d blocked", blocked_rdev->raid_disk);
1506 		md_wait_for_blocked_rdev(blocked_rdev, mddev);
1507 		wait_barrier(conf);
1508 		goto retry_write;
1509 	}
1510 
1511 	if (max_sectors < r10_bio->sectors)
1512 		r10_bio->sectors = max_sectors;
1513 
1514 	if (r10_bio->sectors < bio_sectors(bio)) {
1515 		struct bio *split = bio_split(bio, r10_bio->sectors,
1516 					      GFP_NOIO, &conf->bio_split);
1517 		bio_chain(split, bio);
1518 		allow_barrier(conf);
1519 		generic_make_request(bio);
1520 		wait_barrier(conf);
1521 		bio = split;
1522 		r10_bio->master_bio = bio;
1523 	}
1524 
1525 	atomic_set(&r10_bio->remaining, 1);
1526 	md_bitmap_startwrite(mddev->bitmap, r10_bio->sector, r10_bio->sectors, 0);
1527 
1528 	for (i = 0; i < conf->copies; i++) {
1529 		if (r10_bio->devs[i].bio)
1530 			raid10_write_one_disk(mddev, r10_bio, bio, false, i);
1531 		if (r10_bio->devs[i].repl_bio)
1532 			raid10_write_one_disk(mddev, r10_bio, bio, true, i);
1533 	}
1534 	one_write_done(r10_bio);
1535 }
1536 
__make_request(struct mddev * mddev,struct bio * bio,int sectors)1537 static void __make_request(struct mddev *mddev, struct bio *bio, int sectors)
1538 {
1539 	struct r10conf *conf = mddev->private;
1540 	struct r10bio *r10_bio;
1541 
1542 	r10_bio = mempool_alloc(&conf->r10bio_pool, GFP_NOIO);
1543 
1544 	r10_bio->master_bio = bio;
1545 	r10_bio->sectors = sectors;
1546 
1547 	r10_bio->mddev = mddev;
1548 	r10_bio->sector = bio->bi_iter.bi_sector;
1549 	r10_bio->state = 0;
1550 	memset(r10_bio->devs, 0, sizeof(r10_bio->devs[0]) * conf->copies);
1551 
1552 	if (bio_data_dir(bio) == READ)
1553 		raid10_read_request(mddev, bio, r10_bio);
1554 	else
1555 		raid10_write_request(mddev, bio, r10_bio);
1556 }
1557 
raid10_make_request(struct mddev * mddev,struct bio * bio)1558 static bool raid10_make_request(struct mddev *mddev, struct bio *bio)
1559 {
1560 	struct r10conf *conf = mddev->private;
1561 	sector_t chunk_mask = (conf->geo.chunk_mask & conf->prev.chunk_mask);
1562 	int chunk_sects = chunk_mask + 1;
1563 	int sectors = bio_sectors(bio);
1564 
1565 	if (unlikely(bio->bi_opf & REQ_PREFLUSH)
1566 	    && md_flush_request(mddev, bio))
1567 		return true;
1568 
1569 	if (!md_write_start(mddev, bio))
1570 		return false;
1571 
1572 	/*
1573 	 * If this request crosses a chunk boundary, we need to split
1574 	 * it.
1575 	 */
1576 	if (unlikely((bio->bi_iter.bi_sector & chunk_mask) +
1577 		     sectors > chunk_sects
1578 		     && (conf->geo.near_copies < conf->geo.raid_disks
1579 			 || conf->prev.near_copies <
1580 			 conf->prev.raid_disks)))
1581 		sectors = chunk_sects -
1582 			(bio->bi_iter.bi_sector &
1583 			 (chunk_sects - 1));
1584 	__make_request(mddev, bio, sectors);
1585 
1586 	/* In case raid10d snuck in to freeze_array */
1587 	wake_up(&conf->wait_barrier);
1588 	return true;
1589 }
1590 
raid10_status(struct seq_file * seq,struct mddev * mddev)1591 static void raid10_status(struct seq_file *seq, struct mddev *mddev)
1592 {
1593 	struct r10conf *conf = mddev->private;
1594 	int i;
1595 
1596 	if (conf->geo.near_copies < conf->geo.raid_disks)
1597 		seq_printf(seq, " %dK chunks", mddev->chunk_sectors / 2);
1598 	if (conf->geo.near_copies > 1)
1599 		seq_printf(seq, " %d near-copies", conf->geo.near_copies);
1600 	if (conf->geo.far_copies > 1) {
1601 		if (conf->geo.far_offset)
1602 			seq_printf(seq, " %d offset-copies", conf->geo.far_copies);
1603 		else
1604 			seq_printf(seq, " %d far-copies", conf->geo.far_copies);
1605 		if (conf->geo.far_set_size != conf->geo.raid_disks)
1606 			seq_printf(seq, " %d devices per set", conf->geo.far_set_size);
1607 	}
1608 	seq_printf(seq, " [%d/%d] [", conf->geo.raid_disks,
1609 					conf->geo.raid_disks - mddev->degraded);
1610 	rcu_read_lock();
1611 	for (i = 0; i < conf->geo.raid_disks; i++) {
1612 		struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1613 		seq_printf(seq, "%s", rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_");
1614 	}
1615 	rcu_read_unlock();
1616 	seq_printf(seq, "]");
1617 }
1618 
1619 /* check if there are enough drives for
1620  * every block to appear on atleast one.
1621  * Don't consider the device numbered 'ignore'
1622  * as we might be about to remove it.
1623  */
_enough(struct r10conf * conf,int previous,int ignore)1624 static int _enough(struct r10conf *conf, int previous, int ignore)
1625 {
1626 	int first = 0;
1627 	int has_enough = 0;
1628 	int disks, ncopies;
1629 	if (previous) {
1630 		disks = conf->prev.raid_disks;
1631 		ncopies = conf->prev.near_copies;
1632 	} else {
1633 		disks = conf->geo.raid_disks;
1634 		ncopies = conf->geo.near_copies;
1635 	}
1636 
1637 	rcu_read_lock();
1638 	do {
1639 		int n = conf->copies;
1640 		int cnt = 0;
1641 		int this = first;
1642 		while (n--) {
1643 			struct md_rdev *rdev;
1644 			if (this != ignore &&
1645 			    (rdev = rcu_dereference(conf->mirrors[this].rdev)) &&
1646 			    test_bit(In_sync, &rdev->flags))
1647 				cnt++;
1648 			this = (this+1) % disks;
1649 		}
1650 		if (cnt == 0)
1651 			goto out;
1652 		first = (first + ncopies) % disks;
1653 	} while (first != 0);
1654 	has_enough = 1;
1655 out:
1656 	rcu_read_unlock();
1657 	return has_enough;
1658 }
1659 
enough(struct r10conf * conf,int ignore)1660 static int enough(struct r10conf *conf, int ignore)
1661 {
1662 	/* when calling 'enough', both 'prev' and 'geo' must
1663 	 * be stable.
1664 	 * This is ensured if ->reconfig_mutex or ->device_lock
1665 	 * is held.
1666 	 */
1667 	return _enough(conf, 0, ignore) &&
1668 		_enough(conf, 1, ignore);
1669 }
1670 
raid10_error(struct mddev * mddev,struct md_rdev * rdev)1671 static void raid10_error(struct mddev *mddev, struct md_rdev *rdev)
1672 {
1673 	char b[BDEVNAME_SIZE];
1674 	struct r10conf *conf = mddev->private;
1675 	unsigned long flags;
1676 
1677 	/*
1678 	 * If it is not operational, then we have already marked it as dead
1679 	 * else if it is the last working disks, ignore the error, let the
1680 	 * next level up know.
1681 	 * else mark the drive as failed
1682 	 */
1683 	spin_lock_irqsave(&conf->device_lock, flags);
1684 	if (test_bit(In_sync, &rdev->flags)
1685 	    && !enough(conf, rdev->raid_disk)) {
1686 		/*
1687 		 * Don't fail the drive, just return an IO error.
1688 		 */
1689 		spin_unlock_irqrestore(&conf->device_lock, flags);
1690 		return;
1691 	}
1692 	if (test_and_clear_bit(In_sync, &rdev->flags))
1693 		mddev->degraded++;
1694 	/*
1695 	 * If recovery is running, make sure it aborts.
1696 	 */
1697 	set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1698 	set_bit(Blocked, &rdev->flags);
1699 	set_bit(Faulty, &rdev->flags);
1700 	set_mask_bits(&mddev->sb_flags, 0,
1701 		      BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING));
1702 	spin_unlock_irqrestore(&conf->device_lock, flags);
1703 	pr_crit("md/raid10:%s: Disk failure on %s, disabling device.\n"
1704 		"md/raid10:%s: Operation continuing on %d devices.\n",
1705 		mdname(mddev), bdevname(rdev->bdev, b),
1706 		mdname(mddev), conf->geo.raid_disks - mddev->degraded);
1707 }
1708 
print_conf(struct r10conf * conf)1709 static void print_conf(struct r10conf *conf)
1710 {
1711 	int i;
1712 	struct md_rdev *rdev;
1713 
1714 	pr_debug("RAID10 conf printout:\n");
1715 	if (!conf) {
1716 		pr_debug("(!conf)\n");
1717 		return;
1718 	}
1719 	pr_debug(" --- wd:%d rd:%d\n", conf->geo.raid_disks - conf->mddev->degraded,
1720 		 conf->geo.raid_disks);
1721 
1722 	/* This is only called with ->reconfix_mutex held, so
1723 	 * rcu protection of rdev is not needed */
1724 	for (i = 0; i < conf->geo.raid_disks; i++) {
1725 		char b[BDEVNAME_SIZE];
1726 		rdev = conf->mirrors[i].rdev;
1727 		if (rdev)
1728 			pr_debug(" disk %d, wo:%d, o:%d, dev:%s\n",
1729 				 i, !test_bit(In_sync, &rdev->flags),
1730 				 !test_bit(Faulty, &rdev->flags),
1731 				 bdevname(rdev->bdev,b));
1732 	}
1733 }
1734 
close_sync(struct r10conf * conf)1735 static void close_sync(struct r10conf *conf)
1736 {
1737 	wait_barrier(conf);
1738 	allow_barrier(conf);
1739 
1740 	mempool_exit(&conf->r10buf_pool);
1741 }
1742 
raid10_spare_active(struct mddev * mddev)1743 static int raid10_spare_active(struct mddev *mddev)
1744 {
1745 	int i;
1746 	struct r10conf *conf = mddev->private;
1747 	struct raid10_info *tmp;
1748 	int count = 0;
1749 	unsigned long flags;
1750 
1751 	/*
1752 	 * Find all non-in_sync disks within the RAID10 configuration
1753 	 * and mark them in_sync
1754 	 */
1755 	for (i = 0; i < conf->geo.raid_disks; i++) {
1756 		tmp = conf->mirrors + i;
1757 		if (tmp->replacement
1758 		    && tmp->replacement->recovery_offset == MaxSector
1759 		    && !test_bit(Faulty, &tmp->replacement->flags)
1760 		    && !test_and_set_bit(In_sync, &tmp->replacement->flags)) {
1761 			/* Replacement has just become active */
1762 			if (!tmp->rdev
1763 			    || !test_and_clear_bit(In_sync, &tmp->rdev->flags))
1764 				count++;
1765 			if (tmp->rdev) {
1766 				/* Replaced device not technically faulty,
1767 				 * but we need to be sure it gets removed
1768 				 * and never re-added.
1769 				 */
1770 				set_bit(Faulty, &tmp->rdev->flags);
1771 				sysfs_notify_dirent_safe(
1772 					tmp->rdev->sysfs_state);
1773 			}
1774 			sysfs_notify_dirent_safe(tmp->replacement->sysfs_state);
1775 		} else if (tmp->rdev
1776 			   && tmp->rdev->recovery_offset == MaxSector
1777 			   && !test_bit(Faulty, &tmp->rdev->flags)
1778 			   && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
1779 			count++;
1780 			sysfs_notify_dirent_safe(tmp->rdev->sysfs_state);
1781 		}
1782 	}
1783 	spin_lock_irqsave(&conf->device_lock, flags);
1784 	mddev->degraded -= count;
1785 	spin_unlock_irqrestore(&conf->device_lock, flags);
1786 
1787 	print_conf(conf);
1788 	return count;
1789 }
1790 
raid10_add_disk(struct mddev * mddev,struct md_rdev * rdev)1791 static int raid10_add_disk(struct mddev *mddev, struct md_rdev *rdev)
1792 {
1793 	struct r10conf *conf = mddev->private;
1794 	int err = -EEXIST;
1795 	int mirror;
1796 	int first = 0;
1797 	int last = conf->geo.raid_disks - 1;
1798 
1799 	if (mddev->recovery_cp < MaxSector)
1800 		/* only hot-add to in-sync arrays, as recovery is
1801 		 * very different from resync
1802 		 */
1803 		return -EBUSY;
1804 	if (rdev->saved_raid_disk < 0 && !_enough(conf, 1, -1))
1805 		return -EINVAL;
1806 
1807 	if (md_integrity_add_rdev(rdev, mddev))
1808 		return -ENXIO;
1809 
1810 	if (rdev->raid_disk >= 0)
1811 		first = last = rdev->raid_disk;
1812 
1813 	if (rdev->saved_raid_disk >= first &&
1814 	    rdev->saved_raid_disk < conf->geo.raid_disks &&
1815 	    conf->mirrors[rdev->saved_raid_disk].rdev == NULL)
1816 		mirror = rdev->saved_raid_disk;
1817 	else
1818 		mirror = first;
1819 	for ( ; mirror <= last ; mirror++) {
1820 		struct raid10_info *p = &conf->mirrors[mirror];
1821 		if (p->recovery_disabled == mddev->recovery_disabled)
1822 			continue;
1823 		if (p->rdev) {
1824 			if (!test_bit(WantReplacement, &p->rdev->flags) ||
1825 			    p->replacement != NULL)
1826 				continue;
1827 			clear_bit(In_sync, &rdev->flags);
1828 			set_bit(Replacement, &rdev->flags);
1829 			rdev->raid_disk = mirror;
1830 			err = 0;
1831 			if (mddev->gendisk)
1832 				disk_stack_limits(mddev->gendisk, rdev->bdev,
1833 						  rdev->data_offset << 9);
1834 			conf->fullsync = 1;
1835 			rcu_assign_pointer(p->replacement, rdev);
1836 			break;
1837 		}
1838 
1839 		if (mddev->gendisk)
1840 			disk_stack_limits(mddev->gendisk, rdev->bdev,
1841 					  rdev->data_offset << 9);
1842 
1843 		p->head_position = 0;
1844 		p->recovery_disabled = mddev->recovery_disabled - 1;
1845 		rdev->raid_disk = mirror;
1846 		err = 0;
1847 		if (rdev->saved_raid_disk != mirror)
1848 			conf->fullsync = 1;
1849 		rcu_assign_pointer(p->rdev, rdev);
1850 		break;
1851 	}
1852 	if (mddev->queue && blk_queue_discard(bdev_get_queue(rdev->bdev)))
1853 		blk_queue_flag_set(QUEUE_FLAG_DISCARD, mddev->queue);
1854 
1855 	print_conf(conf);
1856 	return err;
1857 }
1858 
raid10_remove_disk(struct mddev * mddev,struct md_rdev * rdev)1859 static int raid10_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
1860 {
1861 	struct r10conf *conf = mddev->private;
1862 	int err = 0;
1863 	int number = rdev->raid_disk;
1864 	struct md_rdev **rdevp;
1865 	struct raid10_info *p = conf->mirrors + number;
1866 
1867 	print_conf(conf);
1868 	if (rdev == p->rdev)
1869 		rdevp = &p->rdev;
1870 	else if (rdev == p->replacement)
1871 		rdevp = &p->replacement;
1872 	else
1873 		return 0;
1874 
1875 	if (test_bit(In_sync, &rdev->flags) ||
1876 	    atomic_read(&rdev->nr_pending)) {
1877 		err = -EBUSY;
1878 		goto abort;
1879 	}
1880 	/* Only remove non-faulty devices if recovery
1881 	 * is not possible.
1882 	 */
1883 	if (!test_bit(Faulty, &rdev->flags) &&
1884 	    mddev->recovery_disabled != p->recovery_disabled &&
1885 	    (!p->replacement || p->replacement == rdev) &&
1886 	    number < conf->geo.raid_disks &&
1887 	    enough(conf, -1)) {
1888 		err = -EBUSY;
1889 		goto abort;
1890 	}
1891 	*rdevp = NULL;
1892 	if (!test_bit(RemoveSynchronized, &rdev->flags)) {
1893 		synchronize_rcu();
1894 		if (atomic_read(&rdev->nr_pending)) {
1895 			/* lost the race, try later */
1896 			err = -EBUSY;
1897 			*rdevp = rdev;
1898 			goto abort;
1899 		}
1900 	}
1901 	if (p->replacement) {
1902 		/* We must have just cleared 'rdev' */
1903 		p->rdev = p->replacement;
1904 		clear_bit(Replacement, &p->replacement->flags);
1905 		smp_mb(); /* Make sure other CPUs may see both as identical
1906 			   * but will never see neither -- if they are careful.
1907 			   */
1908 		p->replacement = NULL;
1909 	}
1910 
1911 	clear_bit(WantReplacement, &rdev->flags);
1912 	err = md_integrity_register(mddev);
1913 
1914 abort:
1915 
1916 	print_conf(conf);
1917 	return err;
1918 }
1919 
__end_sync_read(struct r10bio * r10_bio,struct bio * bio,int d)1920 static void __end_sync_read(struct r10bio *r10_bio, struct bio *bio, int d)
1921 {
1922 	struct r10conf *conf = r10_bio->mddev->private;
1923 
1924 	if (!bio->bi_status)
1925 		set_bit(R10BIO_Uptodate, &r10_bio->state);
1926 	else
1927 		/* The write handler will notice the lack of
1928 		 * R10BIO_Uptodate and record any errors etc
1929 		 */
1930 		atomic_add(r10_bio->sectors,
1931 			   &conf->mirrors[d].rdev->corrected_errors);
1932 
1933 	/* for reconstruct, we always reschedule after a read.
1934 	 * for resync, only after all reads
1935 	 */
1936 	rdev_dec_pending(conf->mirrors[d].rdev, conf->mddev);
1937 	if (test_bit(R10BIO_IsRecover, &r10_bio->state) ||
1938 	    atomic_dec_and_test(&r10_bio->remaining)) {
1939 		/* we have read all the blocks,
1940 		 * do the comparison in process context in raid10d
1941 		 */
1942 		reschedule_retry(r10_bio);
1943 	}
1944 }
1945 
end_sync_read(struct bio * bio)1946 static void end_sync_read(struct bio *bio)
1947 {
1948 	struct r10bio *r10_bio = get_resync_r10bio(bio);
1949 	struct r10conf *conf = r10_bio->mddev->private;
1950 	int d = find_bio_disk(conf, r10_bio, bio, NULL, NULL);
1951 
1952 	__end_sync_read(r10_bio, bio, d);
1953 }
1954 
end_reshape_read(struct bio * bio)1955 static void end_reshape_read(struct bio *bio)
1956 {
1957 	/* reshape read bio isn't allocated from r10buf_pool */
1958 	struct r10bio *r10_bio = bio->bi_private;
1959 
1960 	__end_sync_read(r10_bio, bio, r10_bio->read_slot);
1961 }
1962 
end_sync_request(struct r10bio * r10_bio)1963 static void end_sync_request(struct r10bio *r10_bio)
1964 {
1965 	struct mddev *mddev = r10_bio->mddev;
1966 
1967 	while (atomic_dec_and_test(&r10_bio->remaining)) {
1968 		if (r10_bio->master_bio == NULL) {
1969 			/* the primary of several recovery bios */
1970 			sector_t s = r10_bio->sectors;
1971 			if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
1972 			    test_bit(R10BIO_WriteError, &r10_bio->state))
1973 				reschedule_retry(r10_bio);
1974 			else
1975 				put_buf(r10_bio);
1976 			md_done_sync(mddev, s, 1);
1977 			break;
1978 		} else {
1979 			struct r10bio *r10_bio2 = (struct r10bio *)r10_bio->master_bio;
1980 			if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
1981 			    test_bit(R10BIO_WriteError, &r10_bio->state))
1982 				reschedule_retry(r10_bio);
1983 			else
1984 				put_buf(r10_bio);
1985 			r10_bio = r10_bio2;
1986 		}
1987 	}
1988 }
1989 
end_sync_write(struct bio * bio)1990 static void end_sync_write(struct bio *bio)
1991 {
1992 	struct r10bio *r10_bio = get_resync_r10bio(bio);
1993 	struct mddev *mddev = r10_bio->mddev;
1994 	struct r10conf *conf = mddev->private;
1995 	int d;
1996 	sector_t first_bad;
1997 	int bad_sectors;
1998 	int slot;
1999 	int repl;
2000 	struct md_rdev *rdev = NULL;
2001 
2002 	d = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
2003 	if (repl)
2004 		rdev = conf->mirrors[d].replacement;
2005 	else
2006 		rdev = conf->mirrors[d].rdev;
2007 
2008 	if (bio->bi_status) {
2009 		if (repl)
2010 			md_error(mddev, rdev);
2011 		else {
2012 			set_bit(WriteErrorSeen, &rdev->flags);
2013 			if (!test_and_set_bit(WantReplacement, &rdev->flags))
2014 				set_bit(MD_RECOVERY_NEEDED,
2015 					&rdev->mddev->recovery);
2016 			set_bit(R10BIO_WriteError, &r10_bio->state);
2017 		}
2018 	} else if (is_badblock(rdev,
2019 			     r10_bio->devs[slot].addr,
2020 			     r10_bio->sectors,
2021 			     &first_bad, &bad_sectors))
2022 		set_bit(R10BIO_MadeGood, &r10_bio->state);
2023 
2024 	rdev_dec_pending(rdev, mddev);
2025 
2026 	end_sync_request(r10_bio);
2027 }
2028 
2029 /*
2030  * Note: sync and recover and handled very differently for raid10
2031  * This code is for resync.
2032  * For resync, we read through virtual addresses and read all blocks.
2033  * If there is any error, we schedule a write.  The lowest numbered
2034  * drive is authoritative.
2035  * However requests come for physical address, so we need to map.
2036  * For every physical address there are raid_disks/copies virtual addresses,
2037  * which is always are least one, but is not necessarly an integer.
2038  * This means that a physical address can span multiple chunks, so we may
2039  * have to submit multiple io requests for a single sync request.
2040  */
2041 /*
2042  * We check if all blocks are in-sync and only write to blocks that
2043  * aren't in sync
2044  */
sync_request_write(struct mddev * mddev,struct r10bio * r10_bio)2045 static void sync_request_write(struct mddev *mddev, struct r10bio *r10_bio)
2046 {
2047 	struct r10conf *conf = mddev->private;
2048 	int i, first;
2049 	struct bio *tbio, *fbio;
2050 	int vcnt;
2051 	struct page **tpages, **fpages;
2052 
2053 	atomic_set(&r10_bio->remaining, 1);
2054 
2055 	/* find the first device with a block */
2056 	for (i=0; i<conf->copies; i++)
2057 		if (!r10_bio->devs[i].bio->bi_status)
2058 			break;
2059 
2060 	if (i == conf->copies)
2061 		goto done;
2062 
2063 	first = i;
2064 	fbio = r10_bio->devs[i].bio;
2065 	fbio->bi_iter.bi_size = r10_bio->sectors << 9;
2066 	fbio->bi_iter.bi_idx = 0;
2067 	fpages = get_resync_pages(fbio)->pages;
2068 
2069 	vcnt = (r10_bio->sectors + (PAGE_SIZE >> 9) - 1) >> (PAGE_SHIFT - 9);
2070 	/* now find blocks with errors */
2071 	for (i=0 ; i < conf->copies ; i++) {
2072 		int  j, d;
2073 		struct md_rdev *rdev;
2074 		struct resync_pages *rp;
2075 
2076 		tbio = r10_bio->devs[i].bio;
2077 
2078 		if (tbio->bi_end_io != end_sync_read)
2079 			continue;
2080 		if (i == first)
2081 			continue;
2082 
2083 		tpages = get_resync_pages(tbio)->pages;
2084 		d = r10_bio->devs[i].devnum;
2085 		rdev = conf->mirrors[d].rdev;
2086 		if (!r10_bio->devs[i].bio->bi_status) {
2087 			/* We know that the bi_io_vec layout is the same for
2088 			 * both 'first' and 'i', so we just compare them.
2089 			 * All vec entries are PAGE_SIZE;
2090 			 */
2091 			int sectors = r10_bio->sectors;
2092 			for (j = 0; j < vcnt; j++) {
2093 				int len = PAGE_SIZE;
2094 				if (sectors < (len / 512))
2095 					len = sectors * 512;
2096 				if (memcmp(page_address(fpages[j]),
2097 					   page_address(tpages[j]),
2098 					   len))
2099 					break;
2100 				sectors -= len/512;
2101 			}
2102 			if (j == vcnt)
2103 				continue;
2104 			atomic64_add(r10_bio->sectors, &mddev->resync_mismatches);
2105 			if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
2106 				/* Don't fix anything. */
2107 				continue;
2108 		} else if (test_bit(FailFast, &rdev->flags)) {
2109 			/* Just give up on this device */
2110 			md_error(rdev->mddev, rdev);
2111 			continue;
2112 		}
2113 		/* Ok, we need to write this bio, either to correct an
2114 		 * inconsistency or to correct an unreadable block.
2115 		 * First we need to fixup bv_offset, bv_len and
2116 		 * bi_vecs, as the read request might have corrupted these
2117 		 */
2118 		rp = get_resync_pages(tbio);
2119 		bio_reset(tbio);
2120 
2121 		md_bio_reset_resync_pages(tbio, rp, fbio->bi_iter.bi_size);
2122 
2123 		rp->raid_bio = r10_bio;
2124 		tbio->bi_private = rp;
2125 		tbio->bi_iter.bi_sector = r10_bio->devs[i].addr;
2126 		tbio->bi_end_io = end_sync_write;
2127 		bio_set_op_attrs(tbio, REQ_OP_WRITE, 0);
2128 
2129 		bio_copy_data(tbio, fbio);
2130 
2131 		atomic_inc(&conf->mirrors[d].rdev->nr_pending);
2132 		atomic_inc(&r10_bio->remaining);
2133 		md_sync_acct(conf->mirrors[d].rdev->bdev, bio_sectors(tbio));
2134 
2135 		if (test_bit(FailFast, &conf->mirrors[d].rdev->flags))
2136 			tbio->bi_opf |= MD_FAILFAST;
2137 		tbio->bi_iter.bi_sector += conf->mirrors[d].rdev->data_offset;
2138 		bio_set_dev(tbio, conf->mirrors[d].rdev->bdev);
2139 		generic_make_request(tbio);
2140 	}
2141 
2142 	/* Now write out to any replacement devices
2143 	 * that are active
2144 	 */
2145 	for (i = 0; i < conf->copies; i++) {
2146 		int d;
2147 
2148 		tbio = r10_bio->devs[i].repl_bio;
2149 		if (!tbio || !tbio->bi_end_io)
2150 			continue;
2151 		if (r10_bio->devs[i].bio->bi_end_io != end_sync_write
2152 		    && r10_bio->devs[i].bio != fbio)
2153 			bio_copy_data(tbio, fbio);
2154 		d = r10_bio->devs[i].devnum;
2155 		atomic_inc(&r10_bio->remaining);
2156 		md_sync_acct(conf->mirrors[d].replacement->bdev,
2157 			     bio_sectors(tbio));
2158 		generic_make_request(tbio);
2159 	}
2160 
2161 done:
2162 	if (atomic_dec_and_test(&r10_bio->remaining)) {
2163 		md_done_sync(mddev, r10_bio->sectors, 1);
2164 		put_buf(r10_bio);
2165 	}
2166 }
2167 
2168 /*
2169  * Now for the recovery code.
2170  * Recovery happens across physical sectors.
2171  * We recover all non-is_sync drives by finding the virtual address of
2172  * each, and then choose a working drive that also has that virt address.
2173  * There is a separate r10_bio for each non-in_sync drive.
2174  * Only the first two slots are in use. The first for reading,
2175  * The second for writing.
2176  *
2177  */
fix_recovery_read_error(struct r10bio * r10_bio)2178 static void fix_recovery_read_error(struct r10bio *r10_bio)
2179 {
2180 	/* We got a read error during recovery.
2181 	 * We repeat the read in smaller page-sized sections.
2182 	 * If a read succeeds, write it to the new device or record
2183 	 * a bad block if we cannot.
2184 	 * If a read fails, record a bad block on both old and
2185 	 * new devices.
2186 	 */
2187 	struct mddev *mddev = r10_bio->mddev;
2188 	struct r10conf *conf = mddev->private;
2189 	struct bio *bio = r10_bio->devs[0].bio;
2190 	sector_t sect = 0;
2191 	int sectors = r10_bio->sectors;
2192 	int idx = 0;
2193 	int dr = r10_bio->devs[0].devnum;
2194 	int dw = r10_bio->devs[1].devnum;
2195 	struct page **pages = get_resync_pages(bio)->pages;
2196 
2197 	while (sectors) {
2198 		int s = sectors;
2199 		struct md_rdev *rdev;
2200 		sector_t addr;
2201 		int ok;
2202 
2203 		if (s > (PAGE_SIZE>>9))
2204 			s = PAGE_SIZE >> 9;
2205 
2206 		rdev = conf->mirrors[dr].rdev;
2207 		addr = r10_bio->devs[0].addr + sect,
2208 		ok = sync_page_io(rdev,
2209 				  addr,
2210 				  s << 9,
2211 				  pages[idx],
2212 				  REQ_OP_READ, 0, false);
2213 		if (ok) {
2214 			rdev = conf->mirrors[dw].rdev;
2215 			addr = r10_bio->devs[1].addr + sect;
2216 			ok = sync_page_io(rdev,
2217 					  addr,
2218 					  s << 9,
2219 					  pages[idx],
2220 					  REQ_OP_WRITE, 0, false);
2221 			if (!ok) {
2222 				set_bit(WriteErrorSeen, &rdev->flags);
2223 				if (!test_and_set_bit(WantReplacement,
2224 						      &rdev->flags))
2225 					set_bit(MD_RECOVERY_NEEDED,
2226 						&rdev->mddev->recovery);
2227 			}
2228 		}
2229 		if (!ok) {
2230 			/* We don't worry if we cannot set a bad block -
2231 			 * it really is bad so there is no loss in not
2232 			 * recording it yet
2233 			 */
2234 			rdev_set_badblocks(rdev, addr, s, 0);
2235 
2236 			if (rdev != conf->mirrors[dw].rdev) {
2237 				/* need bad block on destination too */
2238 				struct md_rdev *rdev2 = conf->mirrors[dw].rdev;
2239 				addr = r10_bio->devs[1].addr + sect;
2240 				ok = rdev_set_badblocks(rdev2, addr, s, 0);
2241 				if (!ok) {
2242 					/* just abort the recovery */
2243 					pr_notice("md/raid10:%s: recovery aborted due to read error\n",
2244 						  mdname(mddev));
2245 
2246 					conf->mirrors[dw].recovery_disabled
2247 						= mddev->recovery_disabled;
2248 					set_bit(MD_RECOVERY_INTR,
2249 						&mddev->recovery);
2250 					break;
2251 				}
2252 			}
2253 		}
2254 
2255 		sectors -= s;
2256 		sect += s;
2257 		idx++;
2258 	}
2259 }
2260 
recovery_request_write(struct mddev * mddev,struct r10bio * r10_bio)2261 static void recovery_request_write(struct mddev *mddev, struct r10bio *r10_bio)
2262 {
2263 	struct r10conf *conf = mddev->private;
2264 	int d;
2265 	struct bio *wbio, *wbio2;
2266 
2267 	if (!test_bit(R10BIO_Uptodate, &r10_bio->state)) {
2268 		fix_recovery_read_error(r10_bio);
2269 		end_sync_request(r10_bio);
2270 		return;
2271 	}
2272 
2273 	/*
2274 	 * share the pages with the first bio
2275 	 * and submit the write request
2276 	 */
2277 	d = r10_bio->devs[1].devnum;
2278 	wbio = r10_bio->devs[1].bio;
2279 	wbio2 = r10_bio->devs[1].repl_bio;
2280 	/* Need to test wbio2->bi_end_io before we call
2281 	 * generic_make_request as if the former is NULL,
2282 	 * the latter is free to free wbio2.
2283 	 */
2284 	if (wbio2 && !wbio2->bi_end_io)
2285 		wbio2 = NULL;
2286 	if (wbio->bi_end_io) {
2287 		atomic_inc(&conf->mirrors[d].rdev->nr_pending);
2288 		md_sync_acct(conf->mirrors[d].rdev->bdev, bio_sectors(wbio));
2289 		generic_make_request(wbio);
2290 	}
2291 	if (wbio2) {
2292 		atomic_inc(&conf->mirrors[d].replacement->nr_pending);
2293 		md_sync_acct(conf->mirrors[d].replacement->bdev,
2294 			     bio_sectors(wbio2));
2295 		generic_make_request(wbio2);
2296 	}
2297 }
2298 
2299 /*
2300  * Used by fix_read_error() to decay the per rdev read_errors.
2301  * We halve the read error count for every hour that has elapsed
2302  * since the last recorded read error.
2303  *
2304  */
check_decay_read_errors(struct mddev * mddev,struct md_rdev * rdev)2305 static void check_decay_read_errors(struct mddev *mddev, struct md_rdev *rdev)
2306 {
2307 	long cur_time_mon;
2308 	unsigned long hours_since_last;
2309 	unsigned int read_errors = atomic_read(&rdev->read_errors);
2310 
2311 	cur_time_mon = ktime_get_seconds();
2312 
2313 	if (rdev->last_read_error == 0) {
2314 		/* first time we've seen a read error */
2315 		rdev->last_read_error = cur_time_mon;
2316 		return;
2317 	}
2318 
2319 	hours_since_last = (long)(cur_time_mon -
2320 			    rdev->last_read_error) / 3600;
2321 
2322 	rdev->last_read_error = cur_time_mon;
2323 
2324 	/*
2325 	 * if hours_since_last is > the number of bits in read_errors
2326 	 * just set read errors to 0. We do this to avoid
2327 	 * overflowing the shift of read_errors by hours_since_last.
2328 	 */
2329 	if (hours_since_last >= 8 * sizeof(read_errors))
2330 		atomic_set(&rdev->read_errors, 0);
2331 	else
2332 		atomic_set(&rdev->read_errors, read_errors >> hours_since_last);
2333 }
2334 
r10_sync_page_io(struct md_rdev * rdev,sector_t sector,int sectors,struct page * page,int rw)2335 static int r10_sync_page_io(struct md_rdev *rdev, sector_t sector,
2336 			    int sectors, struct page *page, int rw)
2337 {
2338 	sector_t first_bad;
2339 	int bad_sectors;
2340 
2341 	if (is_badblock(rdev, sector, sectors, &first_bad, &bad_sectors)
2342 	    && (rw == READ || test_bit(WriteErrorSeen, &rdev->flags)))
2343 		return -1;
2344 	if (sync_page_io(rdev, sector, sectors << 9, page, rw, 0, false))
2345 		/* success */
2346 		return 1;
2347 	if (rw == WRITE) {
2348 		set_bit(WriteErrorSeen, &rdev->flags);
2349 		if (!test_and_set_bit(WantReplacement, &rdev->flags))
2350 			set_bit(MD_RECOVERY_NEEDED,
2351 				&rdev->mddev->recovery);
2352 	}
2353 	/* need to record an error - either for the block or the device */
2354 	if (!rdev_set_badblocks(rdev, sector, sectors, 0))
2355 		md_error(rdev->mddev, rdev);
2356 	return 0;
2357 }
2358 
2359 /*
2360  * This is a kernel thread which:
2361  *
2362  *	1.	Retries failed read operations on working mirrors.
2363  *	2.	Updates the raid superblock when problems encounter.
2364  *	3.	Performs writes following reads for array synchronising.
2365  */
2366 
fix_read_error(struct r10conf * conf,struct mddev * mddev,struct r10bio * r10_bio)2367 static void fix_read_error(struct r10conf *conf, struct mddev *mddev, struct r10bio *r10_bio)
2368 {
2369 	int sect = 0; /* Offset from r10_bio->sector */
2370 	int sectors = r10_bio->sectors;
2371 	struct md_rdev *rdev;
2372 	int max_read_errors = atomic_read(&mddev->max_corr_read_errors);
2373 	int d = r10_bio->devs[r10_bio->read_slot].devnum;
2374 
2375 	/* still own a reference to this rdev, so it cannot
2376 	 * have been cleared recently.
2377 	 */
2378 	rdev = conf->mirrors[d].rdev;
2379 
2380 	if (test_bit(Faulty, &rdev->flags))
2381 		/* drive has already been failed, just ignore any
2382 		   more fix_read_error() attempts */
2383 		return;
2384 
2385 	check_decay_read_errors(mddev, rdev);
2386 	atomic_inc(&rdev->read_errors);
2387 	if (atomic_read(&rdev->read_errors) > max_read_errors) {
2388 		char b[BDEVNAME_SIZE];
2389 		bdevname(rdev->bdev, b);
2390 
2391 		pr_notice("md/raid10:%s: %s: Raid device exceeded read_error threshold [cur %d:max %d]\n",
2392 			  mdname(mddev), b,
2393 			  atomic_read(&rdev->read_errors), max_read_errors);
2394 		pr_notice("md/raid10:%s: %s: Failing raid device\n",
2395 			  mdname(mddev), b);
2396 		md_error(mddev, rdev);
2397 		r10_bio->devs[r10_bio->read_slot].bio = IO_BLOCKED;
2398 		return;
2399 	}
2400 
2401 	while(sectors) {
2402 		int s = sectors;
2403 		int sl = r10_bio->read_slot;
2404 		int success = 0;
2405 		int start;
2406 
2407 		if (s > (PAGE_SIZE>>9))
2408 			s = PAGE_SIZE >> 9;
2409 
2410 		rcu_read_lock();
2411 		do {
2412 			sector_t first_bad;
2413 			int bad_sectors;
2414 
2415 			d = r10_bio->devs[sl].devnum;
2416 			rdev = rcu_dereference(conf->mirrors[d].rdev);
2417 			if (rdev &&
2418 			    test_bit(In_sync, &rdev->flags) &&
2419 			    !test_bit(Faulty, &rdev->flags) &&
2420 			    is_badblock(rdev, r10_bio->devs[sl].addr + sect, s,
2421 					&first_bad, &bad_sectors) == 0) {
2422 				atomic_inc(&rdev->nr_pending);
2423 				rcu_read_unlock();
2424 				success = sync_page_io(rdev,
2425 						       r10_bio->devs[sl].addr +
2426 						       sect,
2427 						       s<<9,
2428 						       conf->tmppage,
2429 						       REQ_OP_READ, 0, false);
2430 				rdev_dec_pending(rdev, mddev);
2431 				rcu_read_lock();
2432 				if (success)
2433 					break;
2434 			}
2435 			sl++;
2436 			if (sl == conf->copies)
2437 				sl = 0;
2438 		} while (!success && sl != r10_bio->read_slot);
2439 		rcu_read_unlock();
2440 
2441 		if (!success) {
2442 			/* Cannot read from anywhere, just mark the block
2443 			 * as bad on the first device to discourage future
2444 			 * reads.
2445 			 */
2446 			int dn = r10_bio->devs[r10_bio->read_slot].devnum;
2447 			rdev = conf->mirrors[dn].rdev;
2448 
2449 			if (!rdev_set_badblocks(
2450 				    rdev,
2451 				    r10_bio->devs[r10_bio->read_slot].addr
2452 				    + sect,
2453 				    s, 0)) {
2454 				md_error(mddev, rdev);
2455 				r10_bio->devs[r10_bio->read_slot].bio
2456 					= IO_BLOCKED;
2457 			}
2458 			break;
2459 		}
2460 
2461 		start = sl;
2462 		/* write it back and re-read */
2463 		rcu_read_lock();
2464 		while (sl != r10_bio->read_slot) {
2465 			char b[BDEVNAME_SIZE];
2466 
2467 			if (sl==0)
2468 				sl = conf->copies;
2469 			sl--;
2470 			d = r10_bio->devs[sl].devnum;
2471 			rdev = rcu_dereference(conf->mirrors[d].rdev);
2472 			if (!rdev ||
2473 			    test_bit(Faulty, &rdev->flags) ||
2474 			    !test_bit(In_sync, &rdev->flags))
2475 				continue;
2476 
2477 			atomic_inc(&rdev->nr_pending);
2478 			rcu_read_unlock();
2479 			if (r10_sync_page_io(rdev,
2480 					     r10_bio->devs[sl].addr +
2481 					     sect,
2482 					     s, conf->tmppage, WRITE)
2483 			    == 0) {
2484 				/* Well, this device is dead */
2485 				pr_notice("md/raid10:%s: read correction write failed (%d sectors at %llu on %s)\n",
2486 					  mdname(mddev), s,
2487 					  (unsigned long long)(
2488 						  sect +
2489 						  choose_data_offset(r10_bio,
2490 								     rdev)),
2491 					  bdevname(rdev->bdev, b));
2492 				pr_notice("md/raid10:%s: %s: failing drive\n",
2493 					  mdname(mddev),
2494 					  bdevname(rdev->bdev, b));
2495 			}
2496 			rdev_dec_pending(rdev, mddev);
2497 			rcu_read_lock();
2498 		}
2499 		sl = start;
2500 		while (sl != r10_bio->read_slot) {
2501 			char b[BDEVNAME_SIZE];
2502 
2503 			if (sl==0)
2504 				sl = conf->copies;
2505 			sl--;
2506 			d = r10_bio->devs[sl].devnum;
2507 			rdev = rcu_dereference(conf->mirrors[d].rdev);
2508 			if (!rdev ||
2509 			    test_bit(Faulty, &rdev->flags) ||
2510 			    !test_bit(In_sync, &rdev->flags))
2511 				continue;
2512 
2513 			atomic_inc(&rdev->nr_pending);
2514 			rcu_read_unlock();
2515 			switch (r10_sync_page_io(rdev,
2516 					     r10_bio->devs[sl].addr +
2517 					     sect,
2518 					     s, conf->tmppage,
2519 						 READ)) {
2520 			case 0:
2521 				/* Well, this device is dead */
2522 				pr_notice("md/raid10:%s: unable to read back corrected sectors (%d sectors at %llu on %s)\n",
2523 				       mdname(mddev), s,
2524 				       (unsigned long long)(
2525 					       sect +
2526 					       choose_data_offset(r10_bio, rdev)),
2527 				       bdevname(rdev->bdev, b));
2528 				pr_notice("md/raid10:%s: %s: failing drive\n",
2529 				       mdname(mddev),
2530 				       bdevname(rdev->bdev, b));
2531 				break;
2532 			case 1:
2533 				pr_info("md/raid10:%s: read error corrected (%d sectors at %llu on %s)\n",
2534 				       mdname(mddev), s,
2535 				       (unsigned long long)(
2536 					       sect +
2537 					       choose_data_offset(r10_bio, rdev)),
2538 				       bdevname(rdev->bdev, b));
2539 				atomic_add(s, &rdev->corrected_errors);
2540 			}
2541 
2542 			rdev_dec_pending(rdev, mddev);
2543 			rcu_read_lock();
2544 		}
2545 		rcu_read_unlock();
2546 
2547 		sectors -= s;
2548 		sect += s;
2549 	}
2550 }
2551 
narrow_write_error(struct r10bio * r10_bio,int i)2552 static int narrow_write_error(struct r10bio *r10_bio, int i)
2553 {
2554 	struct bio *bio = r10_bio->master_bio;
2555 	struct mddev *mddev = r10_bio->mddev;
2556 	struct r10conf *conf = mddev->private;
2557 	struct md_rdev *rdev = conf->mirrors[r10_bio->devs[i].devnum].rdev;
2558 	/* bio has the data to be written to slot 'i' where
2559 	 * we just recently had a write error.
2560 	 * We repeatedly clone the bio and trim down to one block,
2561 	 * then try the write.  Where the write fails we record
2562 	 * a bad block.
2563 	 * It is conceivable that the bio doesn't exactly align with
2564 	 * blocks.  We must handle this.
2565 	 *
2566 	 * We currently own a reference to the rdev.
2567 	 */
2568 
2569 	int block_sectors;
2570 	sector_t sector;
2571 	int sectors;
2572 	int sect_to_write = r10_bio->sectors;
2573 	int ok = 1;
2574 
2575 	if (rdev->badblocks.shift < 0)
2576 		return 0;
2577 
2578 	block_sectors = roundup(1 << rdev->badblocks.shift,
2579 				bdev_logical_block_size(rdev->bdev) >> 9);
2580 	sector = r10_bio->sector;
2581 	sectors = ((r10_bio->sector + block_sectors)
2582 		   & ~(sector_t)(block_sectors - 1))
2583 		- sector;
2584 
2585 	while (sect_to_write) {
2586 		struct bio *wbio;
2587 		sector_t wsector;
2588 		if (sectors > sect_to_write)
2589 			sectors = sect_to_write;
2590 		/* Write at 'sector' for 'sectors' */
2591 		wbio = bio_clone_fast(bio, GFP_NOIO, &mddev->bio_set);
2592 		bio_trim(wbio, sector - bio->bi_iter.bi_sector, sectors);
2593 		wsector = r10_bio->devs[i].addr + (sector - r10_bio->sector);
2594 		wbio->bi_iter.bi_sector = wsector +
2595 				   choose_data_offset(r10_bio, rdev);
2596 		bio_set_dev(wbio, rdev->bdev);
2597 		bio_set_op_attrs(wbio, REQ_OP_WRITE, 0);
2598 
2599 		if (submit_bio_wait(wbio) < 0)
2600 			/* Failure! */
2601 			ok = rdev_set_badblocks(rdev, wsector,
2602 						sectors, 0)
2603 				&& ok;
2604 
2605 		bio_put(wbio);
2606 		sect_to_write -= sectors;
2607 		sector += sectors;
2608 		sectors = block_sectors;
2609 	}
2610 	return ok;
2611 }
2612 
handle_read_error(struct mddev * mddev,struct r10bio * r10_bio)2613 static void handle_read_error(struct mddev *mddev, struct r10bio *r10_bio)
2614 {
2615 	int slot = r10_bio->read_slot;
2616 	struct bio *bio;
2617 	struct r10conf *conf = mddev->private;
2618 	struct md_rdev *rdev = r10_bio->devs[slot].rdev;
2619 
2620 	/* we got a read error. Maybe the drive is bad.  Maybe just
2621 	 * the block and we can fix it.
2622 	 * We freeze all other IO, and try reading the block from
2623 	 * other devices.  When we find one, we re-write
2624 	 * and check it that fixes the read error.
2625 	 * This is all done synchronously while the array is
2626 	 * frozen.
2627 	 */
2628 	bio = r10_bio->devs[slot].bio;
2629 	bio_put(bio);
2630 	r10_bio->devs[slot].bio = NULL;
2631 
2632 	if (mddev->ro)
2633 		r10_bio->devs[slot].bio = IO_BLOCKED;
2634 	else if (!test_bit(FailFast, &rdev->flags)) {
2635 		freeze_array(conf, 1);
2636 		fix_read_error(conf, mddev, r10_bio);
2637 		unfreeze_array(conf);
2638 	} else
2639 		md_error(mddev, rdev);
2640 
2641 	rdev_dec_pending(rdev, mddev);
2642 	allow_barrier(conf);
2643 	r10_bio->state = 0;
2644 	raid10_read_request(mddev, r10_bio->master_bio, r10_bio);
2645 }
2646 
handle_write_completed(struct r10conf * conf,struct r10bio * r10_bio)2647 static void handle_write_completed(struct r10conf *conf, struct r10bio *r10_bio)
2648 {
2649 	/* Some sort of write request has finished and it
2650 	 * succeeded in writing where we thought there was a
2651 	 * bad block.  So forget the bad block.
2652 	 * Or possibly if failed and we need to record
2653 	 * a bad block.
2654 	 */
2655 	int m;
2656 	struct md_rdev *rdev;
2657 
2658 	if (test_bit(R10BIO_IsSync, &r10_bio->state) ||
2659 	    test_bit(R10BIO_IsRecover, &r10_bio->state)) {
2660 		for (m = 0; m < conf->copies; m++) {
2661 			int dev = r10_bio->devs[m].devnum;
2662 			rdev = conf->mirrors[dev].rdev;
2663 			if (r10_bio->devs[m].bio == NULL ||
2664 				r10_bio->devs[m].bio->bi_end_io == NULL)
2665 				continue;
2666 			if (!r10_bio->devs[m].bio->bi_status) {
2667 				rdev_clear_badblocks(
2668 					rdev,
2669 					r10_bio->devs[m].addr,
2670 					r10_bio->sectors, 0);
2671 			} else {
2672 				if (!rdev_set_badblocks(
2673 					    rdev,
2674 					    r10_bio->devs[m].addr,
2675 					    r10_bio->sectors, 0))
2676 					md_error(conf->mddev, rdev);
2677 			}
2678 			rdev = conf->mirrors[dev].replacement;
2679 			if (r10_bio->devs[m].repl_bio == NULL ||
2680 				r10_bio->devs[m].repl_bio->bi_end_io == NULL)
2681 				continue;
2682 
2683 			if (!r10_bio->devs[m].repl_bio->bi_status) {
2684 				rdev_clear_badblocks(
2685 					rdev,
2686 					r10_bio->devs[m].addr,
2687 					r10_bio->sectors, 0);
2688 			} else {
2689 				if (!rdev_set_badblocks(
2690 					    rdev,
2691 					    r10_bio->devs[m].addr,
2692 					    r10_bio->sectors, 0))
2693 					md_error(conf->mddev, rdev);
2694 			}
2695 		}
2696 		put_buf(r10_bio);
2697 	} else {
2698 		bool fail = false;
2699 		for (m = 0; m < conf->copies; m++) {
2700 			int dev = r10_bio->devs[m].devnum;
2701 			struct bio *bio = r10_bio->devs[m].bio;
2702 			rdev = conf->mirrors[dev].rdev;
2703 			if (bio == IO_MADE_GOOD) {
2704 				rdev_clear_badblocks(
2705 					rdev,
2706 					r10_bio->devs[m].addr,
2707 					r10_bio->sectors, 0);
2708 				rdev_dec_pending(rdev, conf->mddev);
2709 			} else if (bio != NULL && bio->bi_status) {
2710 				fail = true;
2711 				if (!narrow_write_error(r10_bio, m)) {
2712 					md_error(conf->mddev, rdev);
2713 					set_bit(R10BIO_Degraded,
2714 						&r10_bio->state);
2715 				}
2716 				rdev_dec_pending(rdev, conf->mddev);
2717 			}
2718 			bio = r10_bio->devs[m].repl_bio;
2719 			rdev = conf->mirrors[dev].replacement;
2720 			if (rdev && bio == IO_MADE_GOOD) {
2721 				rdev_clear_badblocks(
2722 					rdev,
2723 					r10_bio->devs[m].addr,
2724 					r10_bio->sectors, 0);
2725 				rdev_dec_pending(rdev, conf->mddev);
2726 			}
2727 		}
2728 		if (fail) {
2729 			spin_lock_irq(&conf->device_lock);
2730 			list_add(&r10_bio->retry_list, &conf->bio_end_io_list);
2731 			conf->nr_queued++;
2732 			spin_unlock_irq(&conf->device_lock);
2733 			/*
2734 			 * In case freeze_array() is waiting for condition
2735 			 * nr_pending == nr_queued + extra to be true.
2736 			 */
2737 			wake_up(&conf->wait_barrier);
2738 			md_wakeup_thread(conf->mddev->thread);
2739 		} else {
2740 			if (test_bit(R10BIO_WriteError,
2741 				     &r10_bio->state))
2742 				close_write(r10_bio);
2743 			raid_end_bio_io(r10_bio);
2744 		}
2745 	}
2746 }
2747 
raid10d(struct md_thread * thread)2748 static void raid10d(struct md_thread *thread)
2749 {
2750 	struct mddev *mddev = thread->mddev;
2751 	struct r10bio *r10_bio;
2752 	unsigned long flags;
2753 	struct r10conf *conf = mddev->private;
2754 	struct list_head *head = &conf->retry_list;
2755 	struct blk_plug plug;
2756 
2757 	md_check_recovery(mddev);
2758 
2759 	if (!list_empty_careful(&conf->bio_end_io_list) &&
2760 	    !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) {
2761 		LIST_HEAD(tmp);
2762 		spin_lock_irqsave(&conf->device_lock, flags);
2763 		if (!test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) {
2764 			while (!list_empty(&conf->bio_end_io_list)) {
2765 				list_move(conf->bio_end_io_list.prev, &tmp);
2766 				conf->nr_queued--;
2767 			}
2768 		}
2769 		spin_unlock_irqrestore(&conf->device_lock, flags);
2770 		while (!list_empty(&tmp)) {
2771 			r10_bio = list_first_entry(&tmp, struct r10bio,
2772 						   retry_list);
2773 			list_del(&r10_bio->retry_list);
2774 			if (mddev->degraded)
2775 				set_bit(R10BIO_Degraded, &r10_bio->state);
2776 
2777 			if (test_bit(R10BIO_WriteError,
2778 				     &r10_bio->state))
2779 				close_write(r10_bio);
2780 			raid_end_bio_io(r10_bio);
2781 		}
2782 	}
2783 
2784 	blk_start_plug(&plug);
2785 	for (;;) {
2786 
2787 		flush_pending_writes(conf);
2788 
2789 		spin_lock_irqsave(&conf->device_lock, flags);
2790 		if (list_empty(head)) {
2791 			spin_unlock_irqrestore(&conf->device_lock, flags);
2792 			break;
2793 		}
2794 		r10_bio = list_entry(head->prev, struct r10bio, retry_list);
2795 		list_del(head->prev);
2796 		conf->nr_queued--;
2797 		spin_unlock_irqrestore(&conf->device_lock, flags);
2798 
2799 		mddev = r10_bio->mddev;
2800 		conf = mddev->private;
2801 		if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
2802 		    test_bit(R10BIO_WriteError, &r10_bio->state))
2803 			handle_write_completed(conf, r10_bio);
2804 		else if (test_bit(R10BIO_IsReshape, &r10_bio->state))
2805 			reshape_request_write(mddev, r10_bio);
2806 		else if (test_bit(R10BIO_IsSync, &r10_bio->state))
2807 			sync_request_write(mddev, r10_bio);
2808 		else if (test_bit(R10BIO_IsRecover, &r10_bio->state))
2809 			recovery_request_write(mddev, r10_bio);
2810 		else if (test_bit(R10BIO_ReadError, &r10_bio->state))
2811 			handle_read_error(mddev, r10_bio);
2812 		else
2813 			WARN_ON_ONCE(1);
2814 
2815 		cond_resched();
2816 		if (mddev->sb_flags & ~(1<<MD_SB_CHANGE_PENDING))
2817 			md_check_recovery(mddev);
2818 	}
2819 	blk_finish_plug(&plug);
2820 }
2821 
init_resync(struct r10conf * conf)2822 static int init_resync(struct r10conf *conf)
2823 {
2824 	int ret, buffs, i;
2825 
2826 	buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
2827 	BUG_ON(mempool_initialized(&conf->r10buf_pool));
2828 	conf->have_replacement = 0;
2829 	for (i = 0; i < conf->geo.raid_disks; i++)
2830 		if (conf->mirrors[i].replacement)
2831 			conf->have_replacement = 1;
2832 	ret = mempool_init(&conf->r10buf_pool, buffs,
2833 			   r10buf_pool_alloc, r10buf_pool_free, conf);
2834 	if (ret)
2835 		return ret;
2836 	conf->next_resync = 0;
2837 	return 0;
2838 }
2839 
raid10_alloc_init_r10buf(struct r10conf * conf)2840 static struct r10bio *raid10_alloc_init_r10buf(struct r10conf *conf)
2841 {
2842 	struct r10bio *r10bio = mempool_alloc(&conf->r10buf_pool, GFP_NOIO);
2843 	struct rsync_pages *rp;
2844 	struct bio *bio;
2845 	int nalloc;
2846 	int i;
2847 
2848 	if (test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery) ||
2849 	    test_bit(MD_RECOVERY_RESHAPE, &conf->mddev->recovery))
2850 		nalloc = conf->copies; /* resync */
2851 	else
2852 		nalloc = 2; /* recovery */
2853 
2854 	for (i = 0; i < nalloc; i++) {
2855 		bio = r10bio->devs[i].bio;
2856 		rp = bio->bi_private;
2857 		bio_reset(bio);
2858 		bio->bi_private = rp;
2859 		bio = r10bio->devs[i].repl_bio;
2860 		if (bio) {
2861 			rp = bio->bi_private;
2862 			bio_reset(bio);
2863 			bio->bi_private = rp;
2864 		}
2865 	}
2866 	return r10bio;
2867 }
2868 
2869 /*
2870  * Set cluster_sync_high since we need other nodes to add the
2871  * range [cluster_sync_low, cluster_sync_high] to suspend list.
2872  */
raid10_set_cluster_sync_high(struct r10conf * conf)2873 static void raid10_set_cluster_sync_high(struct r10conf *conf)
2874 {
2875 	sector_t window_size;
2876 	int extra_chunk, chunks;
2877 
2878 	/*
2879 	 * First, here we define "stripe" as a unit which across
2880 	 * all member devices one time, so we get chunks by use
2881 	 * raid_disks / near_copies. Otherwise, if near_copies is
2882 	 * close to raid_disks, then resync window could increases
2883 	 * linearly with the increase of raid_disks, which means
2884 	 * we will suspend a really large IO window while it is not
2885 	 * necessary. If raid_disks is not divisible by near_copies,
2886 	 * an extra chunk is needed to ensure the whole "stripe" is
2887 	 * covered.
2888 	 */
2889 
2890 	chunks = conf->geo.raid_disks / conf->geo.near_copies;
2891 	if (conf->geo.raid_disks % conf->geo.near_copies == 0)
2892 		extra_chunk = 0;
2893 	else
2894 		extra_chunk = 1;
2895 	window_size = (chunks + extra_chunk) * conf->mddev->chunk_sectors;
2896 
2897 	/*
2898 	 * At least use a 32M window to align with raid1's resync window
2899 	 */
2900 	window_size = (CLUSTER_RESYNC_WINDOW_SECTORS > window_size) ?
2901 			CLUSTER_RESYNC_WINDOW_SECTORS : window_size;
2902 
2903 	conf->cluster_sync_high = conf->cluster_sync_low + window_size;
2904 }
2905 
2906 /*
2907  * perform a "sync" on one "block"
2908  *
2909  * We need to make sure that no normal I/O request - particularly write
2910  * requests - conflict with active sync requests.
2911  *
2912  * This is achieved by tracking pending requests and a 'barrier' concept
2913  * that can be installed to exclude normal IO requests.
2914  *
2915  * Resync and recovery are handled very differently.
2916  * We differentiate by looking at MD_RECOVERY_SYNC in mddev->recovery.
2917  *
2918  * For resync, we iterate over virtual addresses, read all copies,
2919  * and update if there are differences.  If only one copy is live,
2920  * skip it.
2921  * For recovery, we iterate over physical addresses, read a good
2922  * value for each non-in_sync drive, and over-write.
2923  *
2924  * So, for recovery we may have several outstanding complex requests for a
2925  * given address, one for each out-of-sync device.  We model this by allocating
2926  * a number of r10_bio structures, one for each out-of-sync device.
2927  * As we setup these structures, we collect all bio's together into a list
2928  * which we then process collectively to add pages, and then process again
2929  * to pass to generic_make_request.
2930  *
2931  * The r10_bio structures are linked using a borrowed master_bio pointer.
2932  * This link is counted in ->remaining.  When the r10_bio that points to NULL
2933  * has its remaining count decremented to 0, the whole complex operation
2934  * is complete.
2935  *
2936  */
2937 
raid10_sync_request(struct mddev * mddev,sector_t sector_nr,int * skipped)2938 static sector_t raid10_sync_request(struct mddev *mddev, sector_t sector_nr,
2939 			     int *skipped)
2940 {
2941 	struct r10conf *conf = mddev->private;
2942 	struct r10bio *r10_bio;
2943 	struct bio *biolist = NULL, *bio;
2944 	sector_t max_sector, nr_sectors;
2945 	int i;
2946 	int max_sync;
2947 	sector_t sync_blocks;
2948 	sector_t sectors_skipped = 0;
2949 	int chunks_skipped = 0;
2950 	sector_t chunk_mask = conf->geo.chunk_mask;
2951 	int page_idx = 0;
2952 
2953 	if (!mempool_initialized(&conf->r10buf_pool))
2954 		if (init_resync(conf))
2955 			return 0;
2956 
2957 	/*
2958 	 * Allow skipping a full rebuild for incremental assembly
2959 	 * of a clean array, like RAID1 does.
2960 	 */
2961 	if (mddev->bitmap == NULL &&
2962 	    mddev->recovery_cp == MaxSector &&
2963 	    mddev->reshape_position == MaxSector &&
2964 	    !test_bit(MD_RECOVERY_SYNC, &mddev->recovery) &&
2965 	    !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
2966 	    !test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
2967 	    conf->fullsync == 0) {
2968 		*skipped = 1;
2969 		return mddev->dev_sectors - sector_nr;
2970 	}
2971 
2972  skipped:
2973 	max_sector = mddev->dev_sectors;
2974 	if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ||
2975 	    test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
2976 		max_sector = mddev->resync_max_sectors;
2977 	if (sector_nr >= max_sector) {
2978 		conf->cluster_sync_low = 0;
2979 		conf->cluster_sync_high = 0;
2980 
2981 		/* If we aborted, we need to abort the
2982 		 * sync on the 'current' bitmap chucks (there can
2983 		 * be several when recovering multiple devices).
2984 		 * as we may have started syncing it but not finished.
2985 		 * We can find the current address in
2986 		 * mddev->curr_resync, but for recovery,
2987 		 * we need to convert that to several
2988 		 * virtual addresses.
2989 		 */
2990 		if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
2991 			end_reshape(conf);
2992 			close_sync(conf);
2993 			return 0;
2994 		}
2995 
2996 		if (mddev->curr_resync < max_sector) { /* aborted */
2997 			if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
2998 				md_bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
2999 						   &sync_blocks, 1);
3000 			else for (i = 0; i < conf->geo.raid_disks; i++) {
3001 				sector_t sect =
3002 					raid10_find_virt(conf, mddev->curr_resync, i);
3003 				md_bitmap_end_sync(mddev->bitmap, sect,
3004 						   &sync_blocks, 1);
3005 			}
3006 		} else {
3007 			/* completed sync */
3008 			if ((!mddev->bitmap || conf->fullsync)
3009 			    && conf->have_replacement
3010 			    && test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
3011 				/* Completed a full sync so the replacements
3012 				 * are now fully recovered.
3013 				 */
3014 				rcu_read_lock();
3015 				for (i = 0; i < conf->geo.raid_disks; i++) {
3016 					struct md_rdev *rdev =
3017 						rcu_dereference(conf->mirrors[i].replacement);
3018 					if (rdev)
3019 						rdev->recovery_offset = MaxSector;
3020 				}
3021 				rcu_read_unlock();
3022 			}
3023 			conf->fullsync = 0;
3024 		}
3025 		md_bitmap_close_sync(mddev->bitmap);
3026 		close_sync(conf);
3027 		*skipped = 1;
3028 		return sectors_skipped;
3029 	}
3030 
3031 	if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
3032 		return reshape_request(mddev, sector_nr, skipped);
3033 
3034 	if (chunks_skipped >= conf->geo.raid_disks) {
3035 		/* if there has been nothing to do on any drive,
3036 		 * then there is nothing to do at all..
3037 		 */
3038 		*skipped = 1;
3039 		return (max_sector - sector_nr) + sectors_skipped;
3040 	}
3041 
3042 	if (max_sector > mddev->resync_max)
3043 		max_sector = mddev->resync_max; /* Don't do IO beyond here */
3044 
3045 	/* make sure whole request will fit in a chunk - if chunks
3046 	 * are meaningful
3047 	 */
3048 	if (conf->geo.near_copies < conf->geo.raid_disks &&
3049 	    max_sector > (sector_nr | chunk_mask))
3050 		max_sector = (sector_nr | chunk_mask) + 1;
3051 
3052 	/*
3053 	 * If there is non-resync activity waiting for a turn, then let it
3054 	 * though before starting on this new sync request.
3055 	 */
3056 	if (conf->nr_waiting)
3057 		schedule_timeout_uninterruptible(1);
3058 
3059 	/* Again, very different code for resync and recovery.
3060 	 * Both must result in an r10bio with a list of bios that
3061 	 * have bi_end_io, bi_sector, bi_disk set,
3062 	 * and bi_private set to the r10bio.
3063 	 * For recovery, we may actually create several r10bios
3064 	 * with 2 bios in each, that correspond to the bios in the main one.
3065 	 * In this case, the subordinate r10bios link back through a
3066 	 * borrowed master_bio pointer, and the counter in the master
3067 	 * includes a ref from each subordinate.
3068 	 */
3069 	/* First, we decide what to do and set ->bi_end_io
3070 	 * To end_sync_read if we want to read, and
3071 	 * end_sync_write if we will want to write.
3072 	 */
3073 
3074 	max_sync = RESYNC_PAGES << (PAGE_SHIFT-9);
3075 	if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
3076 		/* recovery... the complicated one */
3077 		int j;
3078 		r10_bio = NULL;
3079 
3080 		for (i = 0 ; i < conf->geo.raid_disks; i++) {
3081 			int still_degraded;
3082 			struct r10bio *rb2;
3083 			sector_t sect;
3084 			int must_sync;
3085 			int any_working;
3086 			struct raid10_info *mirror = &conf->mirrors[i];
3087 			struct md_rdev *mrdev, *mreplace;
3088 
3089 			rcu_read_lock();
3090 			mrdev = rcu_dereference(mirror->rdev);
3091 			mreplace = rcu_dereference(mirror->replacement);
3092 
3093 			if ((mrdev == NULL ||
3094 			     test_bit(Faulty, &mrdev->flags) ||
3095 			     test_bit(In_sync, &mrdev->flags)) &&
3096 			    (mreplace == NULL ||
3097 			     test_bit(Faulty, &mreplace->flags))) {
3098 				rcu_read_unlock();
3099 				continue;
3100 			}
3101 
3102 			still_degraded = 0;
3103 			/* want to reconstruct this device */
3104 			rb2 = r10_bio;
3105 			sect = raid10_find_virt(conf, sector_nr, i);
3106 			if (sect >= mddev->resync_max_sectors) {
3107 				/* last stripe is not complete - don't
3108 				 * try to recover this sector.
3109 				 */
3110 				rcu_read_unlock();
3111 				continue;
3112 			}
3113 			if (mreplace && test_bit(Faulty, &mreplace->flags))
3114 				mreplace = NULL;
3115 			/* Unless we are doing a full sync, or a replacement
3116 			 * we only need to recover the block if it is set in
3117 			 * the bitmap
3118 			 */
3119 			must_sync = md_bitmap_start_sync(mddev->bitmap, sect,
3120 							 &sync_blocks, 1);
3121 			if (sync_blocks < max_sync)
3122 				max_sync = sync_blocks;
3123 			if (!must_sync &&
3124 			    mreplace == NULL &&
3125 			    !conf->fullsync) {
3126 				/* yep, skip the sync_blocks here, but don't assume
3127 				 * that there will never be anything to do here
3128 				 */
3129 				chunks_skipped = -1;
3130 				rcu_read_unlock();
3131 				continue;
3132 			}
3133 			atomic_inc(&mrdev->nr_pending);
3134 			if (mreplace)
3135 				atomic_inc(&mreplace->nr_pending);
3136 			rcu_read_unlock();
3137 
3138 			r10_bio = raid10_alloc_init_r10buf(conf);
3139 			r10_bio->state = 0;
3140 			raise_barrier(conf, rb2 != NULL);
3141 			atomic_set(&r10_bio->remaining, 0);
3142 
3143 			r10_bio->master_bio = (struct bio*)rb2;
3144 			if (rb2)
3145 				atomic_inc(&rb2->remaining);
3146 			r10_bio->mddev = mddev;
3147 			set_bit(R10BIO_IsRecover, &r10_bio->state);
3148 			r10_bio->sector = sect;
3149 
3150 			raid10_find_phys(conf, r10_bio);
3151 
3152 			/* Need to check if the array will still be
3153 			 * degraded
3154 			 */
3155 			rcu_read_lock();
3156 			for (j = 0; j < conf->geo.raid_disks; j++) {
3157 				struct md_rdev *rdev = rcu_dereference(
3158 					conf->mirrors[j].rdev);
3159 				if (rdev == NULL || test_bit(Faulty, &rdev->flags)) {
3160 					still_degraded = 1;
3161 					break;
3162 				}
3163 			}
3164 
3165 			must_sync = md_bitmap_start_sync(mddev->bitmap, sect,
3166 							 &sync_blocks, still_degraded);
3167 
3168 			any_working = 0;
3169 			for (j=0; j<conf->copies;j++) {
3170 				int k;
3171 				int d = r10_bio->devs[j].devnum;
3172 				sector_t from_addr, to_addr;
3173 				struct md_rdev *rdev =
3174 					rcu_dereference(conf->mirrors[d].rdev);
3175 				sector_t sector, first_bad;
3176 				int bad_sectors;
3177 				if (!rdev ||
3178 				    !test_bit(In_sync, &rdev->flags))
3179 					continue;
3180 				/* This is where we read from */
3181 				any_working = 1;
3182 				sector = r10_bio->devs[j].addr;
3183 
3184 				if (is_badblock(rdev, sector, max_sync,
3185 						&first_bad, &bad_sectors)) {
3186 					if (first_bad > sector)
3187 						max_sync = first_bad - sector;
3188 					else {
3189 						bad_sectors -= (sector
3190 								- first_bad);
3191 						if (max_sync > bad_sectors)
3192 							max_sync = bad_sectors;
3193 						continue;
3194 					}
3195 				}
3196 				bio = r10_bio->devs[0].bio;
3197 				bio->bi_next = biolist;
3198 				biolist = bio;
3199 				bio->bi_end_io = end_sync_read;
3200 				bio_set_op_attrs(bio, REQ_OP_READ, 0);
3201 				if (test_bit(FailFast, &rdev->flags))
3202 					bio->bi_opf |= MD_FAILFAST;
3203 				from_addr = r10_bio->devs[j].addr;
3204 				bio->bi_iter.bi_sector = from_addr +
3205 					rdev->data_offset;
3206 				bio_set_dev(bio, rdev->bdev);
3207 				atomic_inc(&rdev->nr_pending);
3208 				/* and we write to 'i' (if not in_sync) */
3209 
3210 				for (k=0; k<conf->copies; k++)
3211 					if (r10_bio->devs[k].devnum == i)
3212 						break;
3213 				BUG_ON(k == conf->copies);
3214 				to_addr = r10_bio->devs[k].addr;
3215 				r10_bio->devs[0].devnum = d;
3216 				r10_bio->devs[0].addr = from_addr;
3217 				r10_bio->devs[1].devnum = i;
3218 				r10_bio->devs[1].addr = to_addr;
3219 
3220 				if (!test_bit(In_sync, &mrdev->flags)) {
3221 					bio = r10_bio->devs[1].bio;
3222 					bio->bi_next = biolist;
3223 					biolist = bio;
3224 					bio->bi_end_io = end_sync_write;
3225 					bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
3226 					bio->bi_iter.bi_sector = to_addr
3227 						+ mrdev->data_offset;
3228 					bio_set_dev(bio, mrdev->bdev);
3229 					atomic_inc(&r10_bio->remaining);
3230 				} else
3231 					r10_bio->devs[1].bio->bi_end_io = NULL;
3232 
3233 				/* and maybe write to replacement */
3234 				bio = r10_bio->devs[1].repl_bio;
3235 				if (bio)
3236 					bio->bi_end_io = NULL;
3237 				/* Note: if mreplace != NULL, then bio
3238 				 * cannot be NULL as r10buf_pool_alloc will
3239 				 * have allocated it.
3240 				 * So the second test here is pointless.
3241 				 * But it keeps semantic-checkers happy, and
3242 				 * this comment keeps human reviewers
3243 				 * happy.
3244 				 */
3245 				if (mreplace == NULL || bio == NULL ||
3246 				    test_bit(Faulty, &mreplace->flags))
3247 					break;
3248 				bio->bi_next = biolist;
3249 				biolist = bio;
3250 				bio->bi_end_io = end_sync_write;
3251 				bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
3252 				bio->bi_iter.bi_sector = to_addr +
3253 					mreplace->data_offset;
3254 				bio_set_dev(bio, mreplace->bdev);
3255 				atomic_inc(&r10_bio->remaining);
3256 				break;
3257 			}
3258 			rcu_read_unlock();
3259 			if (j == conf->copies) {
3260 				/* Cannot recover, so abort the recovery or
3261 				 * record a bad block */
3262 				if (any_working) {
3263 					/* problem is that there are bad blocks
3264 					 * on other device(s)
3265 					 */
3266 					int k;
3267 					for (k = 0; k < conf->copies; k++)
3268 						if (r10_bio->devs[k].devnum == i)
3269 							break;
3270 					if (!test_bit(In_sync,
3271 						      &mrdev->flags)
3272 					    && !rdev_set_badblocks(
3273 						    mrdev,
3274 						    r10_bio->devs[k].addr,
3275 						    max_sync, 0))
3276 						any_working = 0;
3277 					if (mreplace &&
3278 					    !rdev_set_badblocks(
3279 						    mreplace,
3280 						    r10_bio->devs[k].addr,
3281 						    max_sync, 0))
3282 						any_working = 0;
3283 				}
3284 				if (!any_working)  {
3285 					if (!test_and_set_bit(MD_RECOVERY_INTR,
3286 							      &mddev->recovery))
3287 						pr_warn("md/raid10:%s: insufficient working devices for recovery.\n",
3288 						       mdname(mddev));
3289 					mirror->recovery_disabled
3290 						= mddev->recovery_disabled;
3291 				}
3292 				put_buf(r10_bio);
3293 				if (rb2)
3294 					atomic_dec(&rb2->remaining);
3295 				r10_bio = rb2;
3296 				rdev_dec_pending(mrdev, mddev);
3297 				if (mreplace)
3298 					rdev_dec_pending(mreplace, mddev);
3299 				break;
3300 			}
3301 			rdev_dec_pending(mrdev, mddev);
3302 			if (mreplace)
3303 				rdev_dec_pending(mreplace, mddev);
3304 			if (r10_bio->devs[0].bio->bi_opf & MD_FAILFAST) {
3305 				/* Only want this if there is elsewhere to
3306 				 * read from. 'j' is currently the first
3307 				 * readable copy.
3308 				 */
3309 				int targets = 1;
3310 				for (; j < conf->copies; j++) {
3311 					int d = r10_bio->devs[j].devnum;
3312 					if (conf->mirrors[d].rdev &&
3313 					    test_bit(In_sync,
3314 						      &conf->mirrors[d].rdev->flags))
3315 						targets++;
3316 				}
3317 				if (targets == 1)
3318 					r10_bio->devs[0].bio->bi_opf
3319 						&= ~MD_FAILFAST;
3320 			}
3321 		}
3322 		if (biolist == NULL) {
3323 			while (r10_bio) {
3324 				struct r10bio *rb2 = r10_bio;
3325 				r10_bio = (struct r10bio*) rb2->master_bio;
3326 				rb2->master_bio = NULL;
3327 				put_buf(rb2);
3328 			}
3329 			goto giveup;
3330 		}
3331 	} else {
3332 		/* resync. Schedule a read for every block at this virt offset */
3333 		int count = 0;
3334 
3335 		/*
3336 		 * Since curr_resync_completed could probably not update in
3337 		 * time, and we will set cluster_sync_low based on it.
3338 		 * Let's check against "sector_nr + 2 * RESYNC_SECTORS" for
3339 		 * safety reason, which ensures curr_resync_completed is
3340 		 * updated in bitmap_cond_end_sync.
3341 		 */
3342 		md_bitmap_cond_end_sync(mddev->bitmap, sector_nr,
3343 					mddev_is_clustered(mddev) &&
3344 					(sector_nr + 2 * RESYNC_SECTORS > conf->cluster_sync_high));
3345 
3346 		if (!md_bitmap_start_sync(mddev->bitmap, sector_nr,
3347 					  &sync_blocks, mddev->degraded) &&
3348 		    !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED,
3349 						 &mddev->recovery)) {
3350 			/* We can skip this block */
3351 			*skipped = 1;
3352 			return sync_blocks + sectors_skipped;
3353 		}
3354 		if (sync_blocks < max_sync)
3355 			max_sync = sync_blocks;
3356 		r10_bio = raid10_alloc_init_r10buf(conf);
3357 		r10_bio->state = 0;
3358 
3359 		r10_bio->mddev = mddev;
3360 		atomic_set(&r10_bio->remaining, 0);
3361 		raise_barrier(conf, 0);
3362 		conf->next_resync = sector_nr;
3363 
3364 		r10_bio->master_bio = NULL;
3365 		r10_bio->sector = sector_nr;
3366 		set_bit(R10BIO_IsSync, &r10_bio->state);
3367 		raid10_find_phys(conf, r10_bio);
3368 		r10_bio->sectors = (sector_nr | chunk_mask) - sector_nr + 1;
3369 
3370 		for (i = 0; i < conf->copies; i++) {
3371 			int d = r10_bio->devs[i].devnum;
3372 			sector_t first_bad, sector;
3373 			int bad_sectors;
3374 			struct md_rdev *rdev;
3375 
3376 			if (r10_bio->devs[i].repl_bio)
3377 				r10_bio->devs[i].repl_bio->bi_end_io = NULL;
3378 
3379 			bio = r10_bio->devs[i].bio;
3380 			bio->bi_status = BLK_STS_IOERR;
3381 			rcu_read_lock();
3382 			rdev = rcu_dereference(conf->mirrors[d].rdev);
3383 			if (rdev == NULL || test_bit(Faulty, &rdev->flags)) {
3384 				rcu_read_unlock();
3385 				continue;
3386 			}
3387 			sector = r10_bio->devs[i].addr;
3388 			if (is_badblock(rdev, sector, max_sync,
3389 					&first_bad, &bad_sectors)) {
3390 				if (first_bad > sector)
3391 					max_sync = first_bad - sector;
3392 				else {
3393 					bad_sectors -= (sector - first_bad);
3394 					if (max_sync > bad_sectors)
3395 						max_sync = bad_sectors;
3396 					rcu_read_unlock();
3397 					continue;
3398 				}
3399 			}
3400 			atomic_inc(&rdev->nr_pending);
3401 			atomic_inc(&r10_bio->remaining);
3402 			bio->bi_next = biolist;
3403 			biolist = bio;
3404 			bio->bi_end_io = end_sync_read;
3405 			bio_set_op_attrs(bio, REQ_OP_READ, 0);
3406 			if (test_bit(FailFast, &rdev->flags))
3407 				bio->bi_opf |= MD_FAILFAST;
3408 			bio->bi_iter.bi_sector = sector + rdev->data_offset;
3409 			bio_set_dev(bio, rdev->bdev);
3410 			count++;
3411 
3412 			rdev = rcu_dereference(conf->mirrors[d].replacement);
3413 			if (rdev == NULL || test_bit(Faulty, &rdev->flags)) {
3414 				rcu_read_unlock();
3415 				continue;
3416 			}
3417 			atomic_inc(&rdev->nr_pending);
3418 
3419 			/* Need to set up for writing to the replacement */
3420 			bio = r10_bio->devs[i].repl_bio;
3421 			bio->bi_status = BLK_STS_IOERR;
3422 
3423 			sector = r10_bio->devs[i].addr;
3424 			bio->bi_next = biolist;
3425 			biolist = bio;
3426 			bio->bi_end_io = end_sync_write;
3427 			bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
3428 			if (test_bit(FailFast, &rdev->flags))
3429 				bio->bi_opf |= MD_FAILFAST;
3430 			bio->bi_iter.bi_sector = sector + rdev->data_offset;
3431 			bio_set_dev(bio, rdev->bdev);
3432 			count++;
3433 			rcu_read_unlock();
3434 		}
3435 
3436 		if (count < 2) {
3437 			for (i=0; i<conf->copies; i++) {
3438 				int d = r10_bio->devs[i].devnum;
3439 				if (r10_bio->devs[i].bio->bi_end_io)
3440 					rdev_dec_pending(conf->mirrors[d].rdev,
3441 							 mddev);
3442 				if (r10_bio->devs[i].repl_bio &&
3443 				    r10_bio->devs[i].repl_bio->bi_end_io)
3444 					rdev_dec_pending(
3445 						conf->mirrors[d].replacement,
3446 						mddev);
3447 			}
3448 			put_buf(r10_bio);
3449 			biolist = NULL;
3450 			goto giveup;
3451 		}
3452 	}
3453 
3454 	nr_sectors = 0;
3455 	if (sector_nr + max_sync < max_sector)
3456 		max_sector = sector_nr + max_sync;
3457 	do {
3458 		struct page *page;
3459 		int len = PAGE_SIZE;
3460 		if (sector_nr + (len>>9) > max_sector)
3461 			len = (max_sector - sector_nr) << 9;
3462 		if (len == 0)
3463 			break;
3464 		for (bio= biolist ; bio ; bio=bio->bi_next) {
3465 			struct resync_pages *rp = get_resync_pages(bio);
3466 			page = resync_fetch_page(rp, page_idx);
3467 			/*
3468 			 * won't fail because the vec table is big enough
3469 			 * to hold all these pages
3470 			 */
3471 			bio_add_page(bio, page, len, 0);
3472 		}
3473 		nr_sectors += len>>9;
3474 		sector_nr += len>>9;
3475 	} while (++page_idx < RESYNC_PAGES);
3476 	r10_bio->sectors = nr_sectors;
3477 
3478 	if (mddev_is_clustered(mddev) &&
3479 	    test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
3480 		/* It is resync not recovery */
3481 		if (conf->cluster_sync_high < sector_nr + nr_sectors) {
3482 			conf->cluster_sync_low = mddev->curr_resync_completed;
3483 			raid10_set_cluster_sync_high(conf);
3484 			/* Send resync message */
3485 			md_cluster_ops->resync_info_update(mddev,
3486 						conf->cluster_sync_low,
3487 						conf->cluster_sync_high);
3488 		}
3489 	} else if (mddev_is_clustered(mddev)) {
3490 		/* This is recovery not resync */
3491 		sector_t sect_va1, sect_va2;
3492 		bool broadcast_msg = false;
3493 
3494 		for (i = 0; i < conf->geo.raid_disks; i++) {
3495 			/*
3496 			 * sector_nr is a device address for recovery, so we
3497 			 * need translate it to array address before compare
3498 			 * with cluster_sync_high.
3499 			 */
3500 			sect_va1 = raid10_find_virt(conf, sector_nr, i);
3501 
3502 			if (conf->cluster_sync_high < sect_va1 + nr_sectors) {
3503 				broadcast_msg = true;
3504 				/*
3505 				 * curr_resync_completed is similar as
3506 				 * sector_nr, so make the translation too.
3507 				 */
3508 				sect_va2 = raid10_find_virt(conf,
3509 					mddev->curr_resync_completed, i);
3510 
3511 				if (conf->cluster_sync_low == 0 ||
3512 				    conf->cluster_sync_low > sect_va2)
3513 					conf->cluster_sync_low = sect_va2;
3514 			}
3515 		}
3516 		if (broadcast_msg) {
3517 			raid10_set_cluster_sync_high(conf);
3518 			md_cluster_ops->resync_info_update(mddev,
3519 						conf->cluster_sync_low,
3520 						conf->cluster_sync_high);
3521 		}
3522 	}
3523 
3524 	while (biolist) {
3525 		bio = biolist;
3526 		biolist = biolist->bi_next;
3527 
3528 		bio->bi_next = NULL;
3529 		r10_bio = get_resync_r10bio(bio);
3530 		r10_bio->sectors = nr_sectors;
3531 
3532 		if (bio->bi_end_io == end_sync_read) {
3533 			md_sync_acct_bio(bio, nr_sectors);
3534 			bio->bi_status = 0;
3535 			generic_make_request(bio);
3536 		}
3537 	}
3538 
3539 	if (sectors_skipped)
3540 		/* pretend they weren't skipped, it makes
3541 		 * no important difference in this case
3542 		 */
3543 		md_done_sync(mddev, sectors_skipped, 1);
3544 
3545 	return sectors_skipped + nr_sectors;
3546  giveup:
3547 	/* There is nowhere to write, so all non-sync
3548 	 * drives must be failed or in resync, all drives
3549 	 * have a bad block, so try the next chunk...
3550 	 */
3551 	if (sector_nr + max_sync < max_sector)
3552 		max_sector = sector_nr + max_sync;
3553 
3554 	sectors_skipped += (max_sector - sector_nr);
3555 	chunks_skipped ++;
3556 	sector_nr = max_sector;
3557 	goto skipped;
3558 }
3559 
3560 static sector_t
raid10_size(struct mddev * mddev,sector_t sectors,int raid_disks)3561 raid10_size(struct mddev *mddev, sector_t sectors, int raid_disks)
3562 {
3563 	sector_t size;
3564 	struct r10conf *conf = mddev->private;
3565 
3566 	if (!raid_disks)
3567 		raid_disks = min(conf->geo.raid_disks,
3568 				 conf->prev.raid_disks);
3569 	if (!sectors)
3570 		sectors = conf->dev_sectors;
3571 
3572 	size = sectors >> conf->geo.chunk_shift;
3573 	sector_div(size, conf->geo.far_copies);
3574 	size = size * raid_disks;
3575 	sector_div(size, conf->geo.near_copies);
3576 
3577 	return size << conf->geo.chunk_shift;
3578 }
3579 
calc_sectors(struct r10conf * conf,sector_t size)3580 static void calc_sectors(struct r10conf *conf, sector_t size)
3581 {
3582 	/* Calculate the number of sectors-per-device that will
3583 	 * actually be used, and set conf->dev_sectors and
3584 	 * conf->stride
3585 	 */
3586 
3587 	size = size >> conf->geo.chunk_shift;
3588 	sector_div(size, conf->geo.far_copies);
3589 	size = size * conf->geo.raid_disks;
3590 	sector_div(size, conf->geo.near_copies);
3591 	/* 'size' is now the number of chunks in the array */
3592 	/* calculate "used chunks per device" */
3593 	size = size * conf->copies;
3594 
3595 	/* We need to round up when dividing by raid_disks to
3596 	 * get the stride size.
3597 	 */
3598 	size = DIV_ROUND_UP_SECTOR_T(size, conf->geo.raid_disks);
3599 
3600 	conf->dev_sectors = size << conf->geo.chunk_shift;
3601 
3602 	if (conf->geo.far_offset)
3603 		conf->geo.stride = 1 << conf->geo.chunk_shift;
3604 	else {
3605 		sector_div(size, conf->geo.far_copies);
3606 		conf->geo.stride = size << conf->geo.chunk_shift;
3607 	}
3608 }
3609 
3610 enum geo_type {geo_new, geo_old, geo_start};
setup_geo(struct geom * geo,struct mddev * mddev,enum geo_type new)3611 static int setup_geo(struct geom *geo, struct mddev *mddev, enum geo_type new)
3612 {
3613 	int nc, fc, fo;
3614 	int layout, chunk, disks;
3615 	switch (new) {
3616 	case geo_old:
3617 		layout = mddev->layout;
3618 		chunk = mddev->chunk_sectors;
3619 		disks = mddev->raid_disks - mddev->delta_disks;
3620 		break;
3621 	case geo_new:
3622 		layout = mddev->new_layout;
3623 		chunk = mddev->new_chunk_sectors;
3624 		disks = mddev->raid_disks;
3625 		break;
3626 	default: /* avoid 'may be unused' warnings */
3627 	case geo_start: /* new when starting reshape - raid_disks not
3628 			 * updated yet. */
3629 		layout = mddev->new_layout;
3630 		chunk = mddev->new_chunk_sectors;
3631 		disks = mddev->raid_disks + mddev->delta_disks;
3632 		break;
3633 	}
3634 	if (layout >> 19)
3635 		return -1;
3636 	if (chunk < (PAGE_SIZE >> 9) ||
3637 	    !is_power_of_2(chunk))
3638 		return -2;
3639 	nc = layout & 255;
3640 	fc = (layout >> 8) & 255;
3641 	fo = layout & (1<<16);
3642 	geo->raid_disks = disks;
3643 	geo->near_copies = nc;
3644 	geo->far_copies = fc;
3645 	geo->far_offset = fo;
3646 	switch (layout >> 17) {
3647 	case 0:	/* original layout.  simple but not always optimal */
3648 		geo->far_set_size = disks;
3649 		break;
3650 	case 1: /* "improved" layout which was buggy.  Hopefully no-one is
3651 		 * actually using this, but leave code here just in case.*/
3652 		geo->far_set_size = disks/fc;
3653 		WARN(geo->far_set_size < fc,
3654 		     "This RAID10 layout does not provide data safety - please backup and create new array\n");
3655 		break;
3656 	case 2: /* "improved" layout fixed to match documentation */
3657 		geo->far_set_size = fc * nc;
3658 		break;
3659 	default: /* Not a valid layout */
3660 		return -1;
3661 	}
3662 	geo->chunk_mask = chunk - 1;
3663 	geo->chunk_shift = ffz(~chunk);
3664 	return nc*fc;
3665 }
3666 
setup_conf(struct mddev * mddev)3667 static struct r10conf *setup_conf(struct mddev *mddev)
3668 {
3669 	struct r10conf *conf = NULL;
3670 	int err = -EINVAL;
3671 	struct geom geo;
3672 	int copies;
3673 
3674 	copies = setup_geo(&geo, mddev, geo_new);
3675 
3676 	if (copies == -2) {
3677 		pr_warn("md/raid10:%s: chunk size must be at least PAGE_SIZE(%ld) and be a power of 2.\n",
3678 			mdname(mddev), PAGE_SIZE);
3679 		goto out;
3680 	}
3681 
3682 	if (copies < 2 || copies > mddev->raid_disks) {
3683 		pr_warn("md/raid10:%s: unsupported raid10 layout: 0x%8x\n",
3684 			mdname(mddev), mddev->new_layout);
3685 		goto out;
3686 	}
3687 
3688 	err = -ENOMEM;
3689 	conf = kzalloc(sizeof(struct r10conf), GFP_KERNEL);
3690 	if (!conf)
3691 		goto out;
3692 
3693 	/* FIXME calc properly */
3694 	conf->mirrors = kcalloc(mddev->raid_disks + max(0, -mddev->delta_disks),
3695 				sizeof(struct raid10_info),
3696 				GFP_KERNEL);
3697 	if (!conf->mirrors)
3698 		goto out;
3699 
3700 	conf->tmppage = alloc_page(GFP_KERNEL);
3701 	if (!conf->tmppage)
3702 		goto out;
3703 
3704 	conf->geo = geo;
3705 	conf->copies = copies;
3706 	err = mempool_init(&conf->r10bio_pool, NR_RAID10_BIOS, r10bio_pool_alloc,
3707 			   r10bio_pool_free, conf);
3708 	if (err)
3709 		goto out;
3710 
3711 	err = bioset_init(&conf->bio_split, BIO_POOL_SIZE, 0, 0);
3712 	if (err)
3713 		goto out;
3714 
3715 	calc_sectors(conf, mddev->dev_sectors);
3716 	if (mddev->reshape_position == MaxSector) {
3717 		conf->prev = conf->geo;
3718 		conf->reshape_progress = MaxSector;
3719 	} else {
3720 		if (setup_geo(&conf->prev, mddev, geo_old) != conf->copies) {
3721 			err = -EINVAL;
3722 			goto out;
3723 		}
3724 		conf->reshape_progress = mddev->reshape_position;
3725 		if (conf->prev.far_offset)
3726 			conf->prev.stride = 1 << conf->prev.chunk_shift;
3727 		else
3728 			/* far_copies must be 1 */
3729 			conf->prev.stride = conf->dev_sectors;
3730 	}
3731 	conf->reshape_safe = conf->reshape_progress;
3732 	spin_lock_init(&conf->device_lock);
3733 	INIT_LIST_HEAD(&conf->retry_list);
3734 	INIT_LIST_HEAD(&conf->bio_end_io_list);
3735 
3736 	spin_lock_init(&conf->resync_lock);
3737 	init_waitqueue_head(&conf->wait_barrier);
3738 	atomic_set(&conf->nr_pending, 0);
3739 
3740 	err = -ENOMEM;
3741 	conf->thread = md_register_thread(raid10d, mddev, "raid10");
3742 	if (!conf->thread)
3743 		goto out;
3744 
3745 	conf->mddev = mddev;
3746 	return conf;
3747 
3748  out:
3749 	if (conf) {
3750 		mempool_exit(&conf->r10bio_pool);
3751 		kfree(conf->mirrors);
3752 		safe_put_page(conf->tmppage);
3753 		bioset_exit(&conf->bio_split);
3754 		kfree(conf);
3755 	}
3756 	return ERR_PTR(err);
3757 }
3758 
raid10_run(struct mddev * mddev)3759 static int raid10_run(struct mddev *mddev)
3760 {
3761 	struct r10conf *conf;
3762 	int i, disk_idx, chunk_size;
3763 	struct raid10_info *disk;
3764 	struct md_rdev *rdev;
3765 	sector_t size;
3766 	sector_t min_offset_diff = 0;
3767 	int first = 1;
3768 	bool discard_supported = false;
3769 
3770 	if (mddev_init_writes_pending(mddev) < 0)
3771 		return -ENOMEM;
3772 
3773 	if (mddev->private == NULL) {
3774 		conf = setup_conf(mddev);
3775 		if (IS_ERR(conf))
3776 			return PTR_ERR(conf);
3777 		mddev->private = conf;
3778 	}
3779 	conf = mddev->private;
3780 	if (!conf)
3781 		goto out;
3782 
3783 	if (mddev_is_clustered(conf->mddev)) {
3784 		int fc, fo;
3785 
3786 		fc = (mddev->layout >> 8) & 255;
3787 		fo = mddev->layout & (1<<16);
3788 		if (fc > 1 || fo > 0) {
3789 			pr_err("only near layout is supported by clustered"
3790 				" raid10\n");
3791 			goto out_free_conf;
3792 		}
3793 	}
3794 
3795 	mddev->thread = conf->thread;
3796 	conf->thread = NULL;
3797 
3798 	chunk_size = mddev->chunk_sectors << 9;
3799 	if (mddev->queue) {
3800 		blk_queue_max_discard_sectors(mddev->queue,
3801 					      mddev->chunk_sectors);
3802 		blk_queue_max_write_same_sectors(mddev->queue, 0);
3803 		blk_queue_max_write_zeroes_sectors(mddev->queue, 0);
3804 		blk_queue_io_min(mddev->queue, chunk_size);
3805 		if (conf->geo.raid_disks % conf->geo.near_copies)
3806 			blk_queue_io_opt(mddev->queue, chunk_size * conf->geo.raid_disks);
3807 		else
3808 			blk_queue_io_opt(mddev->queue, chunk_size *
3809 					 (conf->geo.raid_disks / conf->geo.near_copies));
3810 	}
3811 
3812 	rdev_for_each(rdev, mddev) {
3813 		long long diff;
3814 
3815 		disk_idx = rdev->raid_disk;
3816 		if (disk_idx < 0)
3817 			continue;
3818 		if (disk_idx >= conf->geo.raid_disks &&
3819 		    disk_idx >= conf->prev.raid_disks)
3820 			continue;
3821 		disk = conf->mirrors + disk_idx;
3822 
3823 		if (test_bit(Replacement, &rdev->flags)) {
3824 			if (disk->replacement)
3825 				goto out_free_conf;
3826 			disk->replacement = rdev;
3827 		} else {
3828 			if (disk->rdev)
3829 				goto out_free_conf;
3830 			disk->rdev = rdev;
3831 		}
3832 		diff = (rdev->new_data_offset - rdev->data_offset);
3833 		if (!mddev->reshape_backwards)
3834 			diff = -diff;
3835 		if (diff < 0)
3836 			diff = 0;
3837 		if (first || diff < min_offset_diff)
3838 			min_offset_diff = diff;
3839 
3840 		if (mddev->gendisk)
3841 			disk_stack_limits(mddev->gendisk, rdev->bdev,
3842 					  rdev->data_offset << 9);
3843 
3844 		disk->head_position = 0;
3845 
3846 		if (blk_queue_discard(bdev_get_queue(rdev->bdev)))
3847 			discard_supported = true;
3848 		first = 0;
3849 	}
3850 
3851 	if (mddev->queue) {
3852 		if (discard_supported)
3853 			blk_queue_flag_set(QUEUE_FLAG_DISCARD,
3854 						mddev->queue);
3855 		else
3856 			blk_queue_flag_clear(QUEUE_FLAG_DISCARD,
3857 						  mddev->queue);
3858 	}
3859 	/* need to check that every block has at least one working mirror */
3860 	if (!enough(conf, -1)) {
3861 		pr_err("md/raid10:%s: not enough operational mirrors.\n",
3862 		       mdname(mddev));
3863 		goto out_free_conf;
3864 	}
3865 
3866 	if (conf->reshape_progress != MaxSector) {
3867 		/* must ensure that shape change is supported */
3868 		if (conf->geo.far_copies != 1 &&
3869 		    conf->geo.far_offset == 0)
3870 			goto out_free_conf;
3871 		if (conf->prev.far_copies != 1 &&
3872 		    conf->prev.far_offset == 0)
3873 			goto out_free_conf;
3874 	}
3875 
3876 	mddev->degraded = 0;
3877 	for (i = 0;
3878 	     i < conf->geo.raid_disks
3879 		     || i < conf->prev.raid_disks;
3880 	     i++) {
3881 
3882 		disk = conf->mirrors + i;
3883 
3884 		if (!disk->rdev && disk->replacement) {
3885 			/* The replacement is all we have - use it */
3886 			disk->rdev = disk->replacement;
3887 			disk->replacement = NULL;
3888 			clear_bit(Replacement, &disk->rdev->flags);
3889 		}
3890 
3891 		if (!disk->rdev ||
3892 		    !test_bit(In_sync, &disk->rdev->flags)) {
3893 			disk->head_position = 0;
3894 			mddev->degraded++;
3895 			if (disk->rdev &&
3896 			    disk->rdev->saved_raid_disk < 0)
3897 				conf->fullsync = 1;
3898 		}
3899 
3900 		if (disk->replacement &&
3901 		    !test_bit(In_sync, &disk->replacement->flags) &&
3902 		    disk->replacement->saved_raid_disk < 0) {
3903 			conf->fullsync = 1;
3904 		}
3905 
3906 		disk->recovery_disabled = mddev->recovery_disabled - 1;
3907 	}
3908 
3909 	if (mddev->recovery_cp != MaxSector)
3910 		pr_notice("md/raid10:%s: not clean -- starting background reconstruction\n",
3911 			  mdname(mddev));
3912 	pr_info("md/raid10:%s: active with %d out of %d devices\n",
3913 		mdname(mddev), conf->geo.raid_disks - mddev->degraded,
3914 		conf->geo.raid_disks);
3915 	/*
3916 	 * Ok, everything is just fine now
3917 	 */
3918 	mddev->dev_sectors = conf->dev_sectors;
3919 	size = raid10_size(mddev, 0, 0);
3920 	md_set_array_sectors(mddev, size);
3921 	mddev->resync_max_sectors = size;
3922 	set_bit(MD_FAILFAST_SUPPORTED, &mddev->flags);
3923 
3924 	if (mddev->queue) {
3925 		int stripe = conf->geo.raid_disks *
3926 			((mddev->chunk_sectors << 9) / PAGE_SIZE);
3927 
3928 		/* Calculate max read-ahead size.
3929 		 * We need to readahead at least twice a whole stripe....
3930 		 * maybe...
3931 		 */
3932 		stripe /= conf->geo.near_copies;
3933 		if (mddev->queue->backing_dev_info->ra_pages < 2 * stripe)
3934 			mddev->queue->backing_dev_info->ra_pages = 2 * stripe;
3935 	}
3936 
3937 	if (md_integrity_register(mddev))
3938 		goto out_free_conf;
3939 
3940 	if (conf->reshape_progress != MaxSector) {
3941 		unsigned long before_length, after_length;
3942 
3943 		before_length = ((1 << conf->prev.chunk_shift) *
3944 				 conf->prev.far_copies);
3945 		after_length = ((1 << conf->geo.chunk_shift) *
3946 				conf->geo.far_copies);
3947 
3948 		if (max(before_length, after_length) > min_offset_diff) {
3949 			/* This cannot work */
3950 			pr_warn("md/raid10: offset difference not enough to continue reshape\n");
3951 			goto out_free_conf;
3952 		}
3953 		conf->offset_diff = min_offset_diff;
3954 
3955 		clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
3956 		clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
3957 		set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
3958 		set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
3959 		mddev->sync_thread = md_register_thread(md_do_sync, mddev,
3960 							"reshape");
3961 		if (!mddev->sync_thread)
3962 			goto out_free_conf;
3963 	}
3964 
3965 	return 0;
3966 
3967 out_free_conf:
3968 	md_unregister_thread(&mddev->thread);
3969 	mempool_exit(&conf->r10bio_pool);
3970 	safe_put_page(conf->tmppage);
3971 	kfree(conf->mirrors);
3972 	kfree(conf);
3973 	mddev->private = NULL;
3974 out:
3975 	return -EIO;
3976 }
3977 
raid10_free(struct mddev * mddev,void * priv)3978 static void raid10_free(struct mddev *mddev, void *priv)
3979 {
3980 	struct r10conf *conf = priv;
3981 
3982 	mempool_exit(&conf->r10bio_pool);
3983 	safe_put_page(conf->tmppage);
3984 	kfree(conf->mirrors);
3985 	kfree(conf->mirrors_old);
3986 	kfree(conf->mirrors_new);
3987 	bioset_exit(&conf->bio_split);
3988 	kfree(conf);
3989 }
3990 
raid10_quiesce(struct mddev * mddev,int quiesce)3991 static void raid10_quiesce(struct mddev *mddev, int quiesce)
3992 {
3993 	struct r10conf *conf = mddev->private;
3994 
3995 	if (quiesce)
3996 		raise_barrier(conf, 0);
3997 	else
3998 		lower_barrier(conf);
3999 }
4000 
raid10_resize(struct mddev * mddev,sector_t sectors)4001 static int raid10_resize(struct mddev *mddev, sector_t sectors)
4002 {
4003 	/* Resize of 'far' arrays is not supported.
4004 	 * For 'near' and 'offset' arrays we can set the
4005 	 * number of sectors used to be an appropriate multiple
4006 	 * of the chunk size.
4007 	 * For 'offset', this is far_copies*chunksize.
4008 	 * For 'near' the multiplier is the LCM of
4009 	 * near_copies and raid_disks.
4010 	 * So if far_copies > 1 && !far_offset, fail.
4011 	 * Else find LCM(raid_disks, near_copy)*far_copies and
4012 	 * multiply by chunk_size.  Then round to this number.
4013 	 * This is mostly done by raid10_size()
4014 	 */
4015 	struct r10conf *conf = mddev->private;
4016 	sector_t oldsize, size;
4017 
4018 	if (mddev->reshape_position != MaxSector)
4019 		return -EBUSY;
4020 
4021 	if (conf->geo.far_copies > 1 && !conf->geo.far_offset)
4022 		return -EINVAL;
4023 
4024 	oldsize = raid10_size(mddev, 0, 0);
4025 	size = raid10_size(mddev, sectors, 0);
4026 	if (mddev->external_size &&
4027 	    mddev->array_sectors > size)
4028 		return -EINVAL;
4029 	if (mddev->bitmap) {
4030 		int ret = md_bitmap_resize(mddev->bitmap, size, 0, 0);
4031 		if (ret)
4032 			return ret;
4033 	}
4034 	md_set_array_sectors(mddev, size);
4035 	if (sectors > mddev->dev_sectors &&
4036 	    mddev->recovery_cp > oldsize) {
4037 		mddev->recovery_cp = oldsize;
4038 		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4039 	}
4040 	calc_sectors(conf, sectors);
4041 	mddev->dev_sectors = conf->dev_sectors;
4042 	mddev->resync_max_sectors = size;
4043 	return 0;
4044 }
4045 
raid10_takeover_raid0(struct mddev * mddev,sector_t size,int devs)4046 static void *raid10_takeover_raid0(struct mddev *mddev, sector_t size, int devs)
4047 {
4048 	struct md_rdev *rdev;
4049 	struct r10conf *conf;
4050 
4051 	if (mddev->degraded > 0) {
4052 		pr_warn("md/raid10:%s: Error: degraded raid0!\n",
4053 			mdname(mddev));
4054 		return ERR_PTR(-EINVAL);
4055 	}
4056 	sector_div(size, devs);
4057 
4058 	/* Set new parameters */
4059 	mddev->new_level = 10;
4060 	/* new layout: far_copies = 1, near_copies = 2 */
4061 	mddev->new_layout = (1<<8) + 2;
4062 	mddev->new_chunk_sectors = mddev->chunk_sectors;
4063 	mddev->delta_disks = mddev->raid_disks;
4064 	mddev->raid_disks *= 2;
4065 	/* make sure it will be not marked as dirty */
4066 	mddev->recovery_cp = MaxSector;
4067 	mddev->dev_sectors = size;
4068 
4069 	conf = setup_conf(mddev);
4070 	if (!IS_ERR(conf)) {
4071 		rdev_for_each(rdev, mddev)
4072 			if (rdev->raid_disk >= 0) {
4073 				rdev->new_raid_disk = rdev->raid_disk * 2;
4074 				rdev->sectors = size;
4075 			}
4076 		conf->barrier = 1;
4077 	}
4078 
4079 	return conf;
4080 }
4081 
raid10_takeover(struct mddev * mddev)4082 static void *raid10_takeover(struct mddev *mddev)
4083 {
4084 	struct r0conf *raid0_conf;
4085 
4086 	/* raid10 can take over:
4087 	 *  raid0 - providing it has only two drives
4088 	 */
4089 	if (mddev->level == 0) {
4090 		/* for raid0 takeover only one zone is supported */
4091 		raid0_conf = mddev->private;
4092 		if (raid0_conf->nr_strip_zones > 1) {
4093 			pr_warn("md/raid10:%s: cannot takeover raid 0 with more than one zone.\n",
4094 				mdname(mddev));
4095 			return ERR_PTR(-EINVAL);
4096 		}
4097 		return raid10_takeover_raid0(mddev,
4098 			raid0_conf->strip_zone->zone_end,
4099 			raid0_conf->strip_zone->nb_dev);
4100 	}
4101 	return ERR_PTR(-EINVAL);
4102 }
4103 
raid10_check_reshape(struct mddev * mddev)4104 static int raid10_check_reshape(struct mddev *mddev)
4105 {
4106 	/* Called when there is a request to change
4107 	 * - layout (to ->new_layout)
4108 	 * - chunk size (to ->new_chunk_sectors)
4109 	 * - raid_disks (by delta_disks)
4110 	 * or when trying to restart a reshape that was ongoing.
4111 	 *
4112 	 * We need to validate the request and possibly allocate
4113 	 * space if that might be an issue later.
4114 	 *
4115 	 * Currently we reject any reshape of a 'far' mode array,
4116 	 * allow chunk size to change if new is generally acceptable,
4117 	 * allow raid_disks to increase, and allow
4118 	 * a switch between 'near' mode and 'offset' mode.
4119 	 */
4120 	struct r10conf *conf = mddev->private;
4121 	struct geom geo;
4122 
4123 	if (conf->geo.far_copies != 1 && !conf->geo.far_offset)
4124 		return -EINVAL;
4125 
4126 	if (setup_geo(&geo, mddev, geo_start) != conf->copies)
4127 		/* mustn't change number of copies */
4128 		return -EINVAL;
4129 	if (geo.far_copies > 1 && !geo.far_offset)
4130 		/* Cannot switch to 'far' mode */
4131 		return -EINVAL;
4132 
4133 	if (mddev->array_sectors & geo.chunk_mask)
4134 			/* not factor of array size */
4135 			return -EINVAL;
4136 
4137 	if (!enough(conf, -1))
4138 		return -EINVAL;
4139 
4140 	kfree(conf->mirrors_new);
4141 	conf->mirrors_new = NULL;
4142 	if (mddev->delta_disks > 0) {
4143 		/* allocate new 'mirrors' list */
4144 		conf->mirrors_new =
4145 			kcalloc(mddev->raid_disks + mddev->delta_disks,
4146 				sizeof(struct raid10_info),
4147 				GFP_KERNEL);
4148 		if (!conf->mirrors_new)
4149 			return -ENOMEM;
4150 	}
4151 	return 0;
4152 }
4153 
4154 /*
4155  * Need to check if array has failed when deciding whether to:
4156  *  - start an array
4157  *  - remove non-faulty devices
4158  *  - add a spare
4159  *  - allow a reshape
4160  * This determination is simple when no reshape is happening.
4161  * However if there is a reshape, we need to carefully check
4162  * both the before and after sections.
4163  * This is because some failed devices may only affect one
4164  * of the two sections, and some non-in_sync devices may
4165  * be insync in the section most affected by failed devices.
4166  */
calc_degraded(struct r10conf * conf)4167 static int calc_degraded(struct r10conf *conf)
4168 {
4169 	int degraded, degraded2;
4170 	int i;
4171 
4172 	rcu_read_lock();
4173 	degraded = 0;
4174 	/* 'prev' section first */
4175 	for (i = 0; i < conf->prev.raid_disks; i++) {
4176 		struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
4177 		if (!rdev || test_bit(Faulty, &rdev->flags))
4178 			degraded++;
4179 		else if (!test_bit(In_sync, &rdev->flags))
4180 			/* When we can reduce the number of devices in
4181 			 * an array, this might not contribute to
4182 			 * 'degraded'.  It does now.
4183 			 */
4184 			degraded++;
4185 	}
4186 	rcu_read_unlock();
4187 	if (conf->geo.raid_disks == conf->prev.raid_disks)
4188 		return degraded;
4189 	rcu_read_lock();
4190 	degraded2 = 0;
4191 	for (i = 0; i < conf->geo.raid_disks; i++) {
4192 		struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
4193 		if (!rdev || test_bit(Faulty, &rdev->flags))
4194 			degraded2++;
4195 		else if (!test_bit(In_sync, &rdev->flags)) {
4196 			/* If reshape is increasing the number of devices,
4197 			 * this section has already been recovered, so
4198 			 * it doesn't contribute to degraded.
4199 			 * else it does.
4200 			 */
4201 			if (conf->geo.raid_disks <= conf->prev.raid_disks)
4202 				degraded2++;
4203 		}
4204 	}
4205 	rcu_read_unlock();
4206 	if (degraded2 > degraded)
4207 		return degraded2;
4208 	return degraded;
4209 }
4210 
raid10_start_reshape(struct mddev * mddev)4211 static int raid10_start_reshape(struct mddev *mddev)
4212 {
4213 	/* A 'reshape' has been requested. This commits
4214 	 * the various 'new' fields and sets MD_RECOVER_RESHAPE
4215 	 * This also checks if there are enough spares and adds them
4216 	 * to the array.
4217 	 * We currently require enough spares to make the final
4218 	 * array non-degraded.  We also require that the difference
4219 	 * between old and new data_offset - on each device - is
4220 	 * enough that we never risk over-writing.
4221 	 */
4222 
4223 	unsigned long before_length, after_length;
4224 	sector_t min_offset_diff = 0;
4225 	int first = 1;
4226 	struct geom new;
4227 	struct r10conf *conf = mddev->private;
4228 	struct md_rdev *rdev;
4229 	int spares = 0;
4230 	int ret;
4231 
4232 	if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4233 		return -EBUSY;
4234 
4235 	if (setup_geo(&new, mddev, geo_start) != conf->copies)
4236 		return -EINVAL;
4237 
4238 	before_length = ((1 << conf->prev.chunk_shift) *
4239 			 conf->prev.far_copies);
4240 	after_length = ((1 << conf->geo.chunk_shift) *
4241 			conf->geo.far_copies);
4242 
4243 	rdev_for_each(rdev, mddev) {
4244 		if (!test_bit(In_sync, &rdev->flags)
4245 		    && !test_bit(Faulty, &rdev->flags))
4246 			spares++;
4247 		if (rdev->raid_disk >= 0) {
4248 			long long diff = (rdev->new_data_offset
4249 					  - rdev->data_offset);
4250 			if (!mddev->reshape_backwards)
4251 				diff = -diff;
4252 			if (diff < 0)
4253 				diff = 0;
4254 			if (first || diff < min_offset_diff)
4255 				min_offset_diff = diff;
4256 			first = 0;
4257 		}
4258 	}
4259 
4260 	if (max(before_length, after_length) > min_offset_diff)
4261 		return -EINVAL;
4262 
4263 	if (spares < mddev->delta_disks)
4264 		return -EINVAL;
4265 
4266 	conf->offset_diff = min_offset_diff;
4267 	spin_lock_irq(&conf->device_lock);
4268 	if (conf->mirrors_new) {
4269 		memcpy(conf->mirrors_new, conf->mirrors,
4270 		       sizeof(struct raid10_info)*conf->prev.raid_disks);
4271 		smp_mb();
4272 		kfree(conf->mirrors_old);
4273 		conf->mirrors_old = conf->mirrors;
4274 		conf->mirrors = conf->mirrors_new;
4275 		conf->mirrors_new = NULL;
4276 	}
4277 	setup_geo(&conf->geo, mddev, geo_start);
4278 	smp_mb();
4279 	if (mddev->reshape_backwards) {
4280 		sector_t size = raid10_size(mddev, 0, 0);
4281 		if (size < mddev->array_sectors) {
4282 			spin_unlock_irq(&conf->device_lock);
4283 			pr_warn("md/raid10:%s: array size must be reduce before number of disks\n",
4284 				mdname(mddev));
4285 			return -EINVAL;
4286 		}
4287 		mddev->resync_max_sectors = size;
4288 		conf->reshape_progress = size;
4289 	} else
4290 		conf->reshape_progress = 0;
4291 	conf->reshape_safe = conf->reshape_progress;
4292 	spin_unlock_irq(&conf->device_lock);
4293 
4294 	if (mddev->delta_disks && mddev->bitmap) {
4295 		ret = md_bitmap_resize(mddev->bitmap,
4296 				       raid10_size(mddev, 0, conf->geo.raid_disks),
4297 				       0, 0);
4298 		if (ret)
4299 			goto abort;
4300 	}
4301 	if (mddev->delta_disks > 0) {
4302 		rdev_for_each(rdev, mddev)
4303 			if (rdev->raid_disk < 0 &&
4304 			    !test_bit(Faulty, &rdev->flags)) {
4305 				if (raid10_add_disk(mddev, rdev) == 0) {
4306 					if (rdev->raid_disk >=
4307 					    conf->prev.raid_disks)
4308 						set_bit(In_sync, &rdev->flags);
4309 					else
4310 						rdev->recovery_offset = 0;
4311 
4312 					if (sysfs_link_rdev(mddev, rdev))
4313 						/* Failure here  is OK */;
4314 				}
4315 			} else if (rdev->raid_disk >= conf->prev.raid_disks
4316 				   && !test_bit(Faulty, &rdev->flags)) {
4317 				/* This is a spare that was manually added */
4318 				set_bit(In_sync, &rdev->flags);
4319 			}
4320 	}
4321 	/* When a reshape changes the number of devices,
4322 	 * ->degraded is measured against the larger of the
4323 	 * pre and  post numbers.
4324 	 */
4325 	spin_lock_irq(&conf->device_lock);
4326 	mddev->degraded = calc_degraded(conf);
4327 	spin_unlock_irq(&conf->device_lock);
4328 	mddev->raid_disks = conf->geo.raid_disks;
4329 	mddev->reshape_position = conf->reshape_progress;
4330 	set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
4331 
4332 	clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4333 	clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
4334 	clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
4335 	set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
4336 	set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
4337 
4338 	mddev->sync_thread = md_register_thread(md_do_sync, mddev,
4339 						"reshape");
4340 	if (!mddev->sync_thread) {
4341 		ret = -EAGAIN;
4342 		goto abort;
4343 	}
4344 	conf->reshape_checkpoint = jiffies;
4345 	md_wakeup_thread(mddev->sync_thread);
4346 	md_new_event(mddev);
4347 	return 0;
4348 
4349 abort:
4350 	mddev->recovery = 0;
4351 	spin_lock_irq(&conf->device_lock);
4352 	conf->geo = conf->prev;
4353 	mddev->raid_disks = conf->geo.raid_disks;
4354 	rdev_for_each(rdev, mddev)
4355 		rdev->new_data_offset = rdev->data_offset;
4356 	smp_wmb();
4357 	conf->reshape_progress = MaxSector;
4358 	conf->reshape_safe = MaxSector;
4359 	mddev->reshape_position = MaxSector;
4360 	spin_unlock_irq(&conf->device_lock);
4361 	return ret;
4362 }
4363 
4364 /* Calculate the last device-address that could contain
4365  * any block from the chunk that includes the array-address 's'
4366  * and report the next address.
4367  * i.e. the address returned will be chunk-aligned and after
4368  * any data that is in the chunk containing 's'.
4369  */
last_dev_address(sector_t s,struct geom * geo)4370 static sector_t last_dev_address(sector_t s, struct geom *geo)
4371 {
4372 	s = (s | geo->chunk_mask) + 1;
4373 	s >>= geo->chunk_shift;
4374 	s *= geo->near_copies;
4375 	s = DIV_ROUND_UP_SECTOR_T(s, geo->raid_disks);
4376 	s *= geo->far_copies;
4377 	s <<= geo->chunk_shift;
4378 	return s;
4379 }
4380 
4381 /* Calculate the first device-address that could contain
4382  * any block from the chunk that includes the array-address 's'.
4383  * This too will be the start of a chunk
4384  */
first_dev_address(sector_t s,struct geom * geo)4385 static sector_t first_dev_address(sector_t s, struct geom *geo)
4386 {
4387 	s >>= geo->chunk_shift;
4388 	s *= geo->near_copies;
4389 	sector_div(s, geo->raid_disks);
4390 	s *= geo->far_copies;
4391 	s <<= geo->chunk_shift;
4392 	return s;
4393 }
4394 
reshape_request(struct mddev * mddev,sector_t sector_nr,int * skipped)4395 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr,
4396 				int *skipped)
4397 {
4398 	/* We simply copy at most one chunk (smallest of old and new)
4399 	 * at a time, possibly less if that exceeds RESYNC_PAGES,
4400 	 * or we hit a bad block or something.
4401 	 * This might mean we pause for normal IO in the middle of
4402 	 * a chunk, but that is not a problem as mddev->reshape_position
4403 	 * can record any location.
4404 	 *
4405 	 * If we will want to write to a location that isn't
4406 	 * yet recorded as 'safe' (i.e. in metadata on disk) then
4407 	 * we need to flush all reshape requests and update the metadata.
4408 	 *
4409 	 * When reshaping forwards (e.g. to more devices), we interpret
4410 	 * 'safe' as the earliest block which might not have been copied
4411 	 * down yet.  We divide this by previous stripe size and multiply
4412 	 * by previous stripe length to get lowest device offset that we
4413 	 * cannot write to yet.
4414 	 * We interpret 'sector_nr' as an address that we want to write to.
4415 	 * From this we use last_device_address() to find where we might
4416 	 * write to, and first_device_address on the  'safe' position.
4417 	 * If this 'next' write position is after the 'safe' position,
4418 	 * we must update the metadata to increase the 'safe' position.
4419 	 *
4420 	 * When reshaping backwards, we round in the opposite direction
4421 	 * and perform the reverse test:  next write position must not be
4422 	 * less than current safe position.
4423 	 *
4424 	 * In all this the minimum difference in data offsets
4425 	 * (conf->offset_diff - always positive) allows a bit of slack,
4426 	 * so next can be after 'safe', but not by more than offset_diff
4427 	 *
4428 	 * We need to prepare all the bios here before we start any IO
4429 	 * to ensure the size we choose is acceptable to all devices.
4430 	 * The means one for each copy for write-out and an extra one for
4431 	 * read-in.
4432 	 * We store the read-in bio in ->master_bio and the others in
4433 	 * ->devs[x].bio and ->devs[x].repl_bio.
4434 	 */
4435 	struct r10conf *conf = mddev->private;
4436 	struct r10bio *r10_bio;
4437 	sector_t next, safe, last;
4438 	int max_sectors;
4439 	int nr_sectors;
4440 	int s;
4441 	struct md_rdev *rdev;
4442 	int need_flush = 0;
4443 	struct bio *blist;
4444 	struct bio *bio, *read_bio;
4445 	int sectors_done = 0;
4446 	struct page **pages;
4447 
4448 	if (sector_nr == 0) {
4449 		/* If restarting in the middle, skip the initial sectors */
4450 		if (mddev->reshape_backwards &&
4451 		    conf->reshape_progress < raid10_size(mddev, 0, 0)) {
4452 			sector_nr = (raid10_size(mddev, 0, 0)
4453 				     - conf->reshape_progress);
4454 		} else if (!mddev->reshape_backwards &&
4455 			   conf->reshape_progress > 0)
4456 			sector_nr = conf->reshape_progress;
4457 		if (sector_nr) {
4458 			mddev->curr_resync_completed = sector_nr;
4459 			sysfs_notify(&mddev->kobj, NULL, "sync_completed");
4460 			*skipped = 1;
4461 			return sector_nr;
4462 		}
4463 	}
4464 
4465 	/* We don't use sector_nr to track where we are up to
4466 	 * as that doesn't work well for ->reshape_backwards.
4467 	 * So just use ->reshape_progress.
4468 	 */
4469 	if (mddev->reshape_backwards) {
4470 		/* 'next' is the earliest device address that we might
4471 		 * write to for this chunk in the new layout
4472 		 */
4473 		next = first_dev_address(conf->reshape_progress - 1,
4474 					 &conf->geo);
4475 
4476 		/* 'safe' is the last device address that we might read from
4477 		 * in the old layout after a restart
4478 		 */
4479 		safe = last_dev_address(conf->reshape_safe - 1,
4480 					&conf->prev);
4481 
4482 		if (next + conf->offset_diff < safe)
4483 			need_flush = 1;
4484 
4485 		last = conf->reshape_progress - 1;
4486 		sector_nr = last & ~(sector_t)(conf->geo.chunk_mask
4487 					       & conf->prev.chunk_mask);
4488 		if (sector_nr + RESYNC_BLOCK_SIZE/512 < last)
4489 			sector_nr = last + 1 - RESYNC_BLOCK_SIZE/512;
4490 	} else {
4491 		/* 'next' is after the last device address that we
4492 		 * might write to for this chunk in the new layout
4493 		 */
4494 		next = last_dev_address(conf->reshape_progress, &conf->geo);
4495 
4496 		/* 'safe' is the earliest device address that we might
4497 		 * read from in the old layout after a restart
4498 		 */
4499 		safe = first_dev_address(conf->reshape_safe, &conf->prev);
4500 
4501 		/* Need to update metadata if 'next' might be beyond 'safe'
4502 		 * as that would possibly corrupt data
4503 		 */
4504 		if (next > safe + conf->offset_diff)
4505 			need_flush = 1;
4506 
4507 		sector_nr = conf->reshape_progress;
4508 		last  = sector_nr | (conf->geo.chunk_mask
4509 				     & conf->prev.chunk_mask);
4510 
4511 		if (sector_nr + RESYNC_BLOCK_SIZE/512 <= last)
4512 			last = sector_nr + RESYNC_BLOCK_SIZE/512 - 1;
4513 	}
4514 
4515 	if (need_flush ||
4516 	    time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) {
4517 		/* Need to update reshape_position in metadata */
4518 		wait_barrier(conf);
4519 		mddev->reshape_position = conf->reshape_progress;
4520 		if (mddev->reshape_backwards)
4521 			mddev->curr_resync_completed = raid10_size(mddev, 0, 0)
4522 				- conf->reshape_progress;
4523 		else
4524 			mddev->curr_resync_completed = conf->reshape_progress;
4525 		conf->reshape_checkpoint = jiffies;
4526 		set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
4527 		md_wakeup_thread(mddev->thread);
4528 		wait_event(mddev->sb_wait, mddev->sb_flags == 0 ||
4529 			   test_bit(MD_RECOVERY_INTR, &mddev->recovery));
4530 		if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
4531 			allow_barrier(conf);
4532 			return sectors_done;
4533 		}
4534 		conf->reshape_safe = mddev->reshape_position;
4535 		allow_barrier(conf);
4536 	}
4537 
4538 	raise_barrier(conf, 0);
4539 read_more:
4540 	/* Now schedule reads for blocks from sector_nr to last */
4541 	r10_bio = raid10_alloc_init_r10buf(conf);
4542 	r10_bio->state = 0;
4543 	raise_barrier(conf, 1);
4544 	atomic_set(&r10_bio->remaining, 0);
4545 	r10_bio->mddev = mddev;
4546 	r10_bio->sector = sector_nr;
4547 	set_bit(R10BIO_IsReshape, &r10_bio->state);
4548 	r10_bio->sectors = last - sector_nr + 1;
4549 	rdev = read_balance(conf, r10_bio, &max_sectors);
4550 	BUG_ON(!test_bit(R10BIO_Previous, &r10_bio->state));
4551 
4552 	if (!rdev) {
4553 		/* Cannot read from here, so need to record bad blocks
4554 		 * on all the target devices.
4555 		 */
4556 		// FIXME
4557 		mempool_free(r10_bio, &conf->r10buf_pool);
4558 		set_bit(MD_RECOVERY_INTR, &mddev->recovery);
4559 		return sectors_done;
4560 	}
4561 
4562 	read_bio = bio_alloc_mddev(GFP_KERNEL, RESYNC_PAGES, mddev);
4563 
4564 	bio_set_dev(read_bio, rdev->bdev);
4565 	read_bio->bi_iter.bi_sector = (r10_bio->devs[r10_bio->read_slot].addr
4566 			       + rdev->data_offset);
4567 	read_bio->bi_private = r10_bio;
4568 	read_bio->bi_end_io = end_reshape_read;
4569 	bio_set_op_attrs(read_bio, REQ_OP_READ, 0);
4570 	read_bio->bi_flags &= (~0UL << BIO_RESET_BITS);
4571 	read_bio->bi_status = 0;
4572 	read_bio->bi_vcnt = 0;
4573 	read_bio->bi_iter.bi_size = 0;
4574 	r10_bio->master_bio = read_bio;
4575 	r10_bio->read_slot = r10_bio->devs[r10_bio->read_slot].devnum;
4576 
4577 	/* Now find the locations in the new layout */
4578 	__raid10_find_phys(&conf->geo, r10_bio);
4579 
4580 	blist = read_bio;
4581 	read_bio->bi_next = NULL;
4582 
4583 	rcu_read_lock();
4584 	for (s = 0; s < conf->copies*2; s++) {
4585 		struct bio *b;
4586 		int d = r10_bio->devs[s/2].devnum;
4587 		struct md_rdev *rdev2;
4588 		if (s&1) {
4589 			rdev2 = rcu_dereference(conf->mirrors[d].replacement);
4590 			b = r10_bio->devs[s/2].repl_bio;
4591 		} else {
4592 			rdev2 = rcu_dereference(conf->mirrors[d].rdev);
4593 			b = r10_bio->devs[s/2].bio;
4594 		}
4595 		if (!rdev2 || test_bit(Faulty, &rdev2->flags))
4596 			continue;
4597 
4598 		bio_set_dev(b, rdev2->bdev);
4599 		b->bi_iter.bi_sector = r10_bio->devs[s/2].addr +
4600 			rdev2->new_data_offset;
4601 		b->bi_end_io = end_reshape_write;
4602 		bio_set_op_attrs(b, REQ_OP_WRITE, 0);
4603 		b->bi_next = blist;
4604 		blist = b;
4605 	}
4606 
4607 	/* Now add as many pages as possible to all of these bios. */
4608 
4609 	nr_sectors = 0;
4610 	pages = get_resync_pages(r10_bio->devs[0].bio)->pages;
4611 	for (s = 0 ; s < max_sectors; s += PAGE_SIZE >> 9) {
4612 		struct page *page = pages[s / (PAGE_SIZE >> 9)];
4613 		int len = (max_sectors - s) << 9;
4614 		if (len > PAGE_SIZE)
4615 			len = PAGE_SIZE;
4616 		for (bio = blist; bio ; bio = bio->bi_next) {
4617 			/*
4618 			 * won't fail because the vec table is big enough
4619 			 * to hold all these pages
4620 			 */
4621 			bio_add_page(bio, page, len, 0);
4622 		}
4623 		sector_nr += len >> 9;
4624 		nr_sectors += len >> 9;
4625 	}
4626 	rcu_read_unlock();
4627 	r10_bio->sectors = nr_sectors;
4628 
4629 	/* Now submit the read */
4630 	md_sync_acct_bio(read_bio, r10_bio->sectors);
4631 	atomic_inc(&r10_bio->remaining);
4632 	read_bio->bi_next = NULL;
4633 	generic_make_request(read_bio);
4634 	sectors_done += nr_sectors;
4635 	if (sector_nr <= last)
4636 		goto read_more;
4637 
4638 	lower_barrier(conf);
4639 
4640 	/* Now that we have done the whole section we can
4641 	 * update reshape_progress
4642 	 */
4643 	if (mddev->reshape_backwards)
4644 		conf->reshape_progress -= sectors_done;
4645 	else
4646 		conf->reshape_progress += sectors_done;
4647 
4648 	return sectors_done;
4649 }
4650 
4651 static void end_reshape_request(struct r10bio *r10_bio);
4652 static int handle_reshape_read_error(struct mddev *mddev,
4653 				     struct r10bio *r10_bio);
reshape_request_write(struct mddev * mddev,struct r10bio * r10_bio)4654 static void reshape_request_write(struct mddev *mddev, struct r10bio *r10_bio)
4655 {
4656 	/* Reshape read completed.  Hopefully we have a block
4657 	 * to write out.
4658 	 * If we got a read error then we do sync 1-page reads from
4659 	 * elsewhere until we find the data - or give up.
4660 	 */
4661 	struct r10conf *conf = mddev->private;
4662 	int s;
4663 
4664 	if (!test_bit(R10BIO_Uptodate, &r10_bio->state))
4665 		if (handle_reshape_read_error(mddev, r10_bio) < 0) {
4666 			/* Reshape has been aborted */
4667 			md_done_sync(mddev, r10_bio->sectors, 0);
4668 			return;
4669 		}
4670 
4671 	/* We definitely have the data in the pages, schedule the
4672 	 * writes.
4673 	 */
4674 	atomic_set(&r10_bio->remaining, 1);
4675 	for (s = 0; s < conf->copies*2; s++) {
4676 		struct bio *b;
4677 		int d = r10_bio->devs[s/2].devnum;
4678 		struct md_rdev *rdev;
4679 		rcu_read_lock();
4680 		if (s&1) {
4681 			rdev = rcu_dereference(conf->mirrors[d].replacement);
4682 			b = r10_bio->devs[s/2].repl_bio;
4683 		} else {
4684 			rdev = rcu_dereference(conf->mirrors[d].rdev);
4685 			b = r10_bio->devs[s/2].bio;
4686 		}
4687 		if (!rdev || test_bit(Faulty, &rdev->flags)) {
4688 			rcu_read_unlock();
4689 			continue;
4690 		}
4691 		atomic_inc(&rdev->nr_pending);
4692 		rcu_read_unlock();
4693 		md_sync_acct_bio(b, r10_bio->sectors);
4694 		atomic_inc(&r10_bio->remaining);
4695 		b->bi_next = NULL;
4696 		generic_make_request(b);
4697 	}
4698 	end_reshape_request(r10_bio);
4699 }
4700 
end_reshape(struct r10conf * conf)4701 static void end_reshape(struct r10conf *conf)
4702 {
4703 	if (test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery))
4704 		return;
4705 
4706 	spin_lock_irq(&conf->device_lock);
4707 	conf->prev = conf->geo;
4708 	md_finish_reshape(conf->mddev);
4709 	smp_wmb();
4710 	conf->reshape_progress = MaxSector;
4711 	conf->reshape_safe = MaxSector;
4712 	spin_unlock_irq(&conf->device_lock);
4713 
4714 	/* read-ahead size must cover two whole stripes, which is
4715 	 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
4716 	 */
4717 	if (conf->mddev->queue) {
4718 		int stripe = conf->geo.raid_disks *
4719 			((conf->mddev->chunk_sectors << 9) / PAGE_SIZE);
4720 		stripe /= conf->geo.near_copies;
4721 		if (conf->mddev->queue->backing_dev_info->ra_pages < 2 * stripe)
4722 			conf->mddev->queue->backing_dev_info->ra_pages = 2 * stripe;
4723 	}
4724 	conf->fullsync = 0;
4725 }
4726 
handle_reshape_read_error(struct mddev * mddev,struct r10bio * r10_bio)4727 static int handle_reshape_read_error(struct mddev *mddev,
4728 				     struct r10bio *r10_bio)
4729 {
4730 	/* Use sync reads to get the blocks from somewhere else */
4731 	int sectors = r10_bio->sectors;
4732 	struct r10conf *conf = mddev->private;
4733 	struct r10bio *r10b;
4734 	int slot = 0;
4735 	int idx = 0;
4736 	struct page **pages;
4737 
4738 	r10b = kmalloc(sizeof(*r10b) +
4739 	       sizeof(struct r10dev) * conf->copies, GFP_NOIO);
4740 	if (!r10b) {
4741 		set_bit(MD_RECOVERY_INTR, &mddev->recovery);
4742 		return -ENOMEM;
4743 	}
4744 
4745 	/* reshape IOs share pages from .devs[0].bio */
4746 	pages = get_resync_pages(r10_bio->devs[0].bio)->pages;
4747 
4748 	r10b->sector = r10_bio->sector;
4749 	__raid10_find_phys(&conf->prev, r10b);
4750 
4751 	while (sectors) {
4752 		int s = sectors;
4753 		int success = 0;
4754 		int first_slot = slot;
4755 
4756 		if (s > (PAGE_SIZE >> 9))
4757 			s = PAGE_SIZE >> 9;
4758 
4759 		rcu_read_lock();
4760 		while (!success) {
4761 			int d = r10b->devs[slot].devnum;
4762 			struct md_rdev *rdev = rcu_dereference(conf->mirrors[d].rdev);
4763 			sector_t addr;
4764 			if (rdev == NULL ||
4765 			    test_bit(Faulty, &rdev->flags) ||
4766 			    !test_bit(In_sync, &rdev->flags))
4767 				goto failed;
4768 
4769 			addr = r10b->devs[slot].addr + idx * PAGE_SIZE;
4770 			atomic_inc(&rdev->nr_pending);
4771 			rcu_read_unlock();
4772 			success = sync_page_io(rdev,
4773 					       addr,
4774 					       s << 9,
4775 					       pages[idx],
4776 					       REQ_OP_READ, 0, false);
4777 			rdev_dec_pending(rdev, mddev);
4778 			rcu_read_lock();
4779 			if (success)
4780 				break;
4781 		failed:
4782 			slot++;
4783 			if (slot >= conf->copies)
4784 				slot = 0;
4785 			if (slot == first_slot)
4786 				break;
4787 		}
4788 		rcu_read_unlock();
4789 		if (!success) {
4790 			/* couldn't read this block, must give up */
4791 			set_bit(MD_RECOVERY_INTR,
4792 				&mddev->recovery);
4793 			kfree(r10b);
4794 			return -EIO;
4795 		}
4796 		sectors -= s;
4797 		idx++;
4798 	}
4799 	kfree(r10b);
4800 	return 0;
4801 }
4802 
end_reshape_write(struct bio * bio)4803 static void end_reshape_write(struct bio *bio)
4804 {
4805 	struct r10bio *r10_bio = get_resync_r10bio(bio);
4806 	struct mddev *mddev = r10_bio->mddev;
4807 	struct r10conf *conf = mddev->private;
4808 	int d;
4809 	int slot;
4810 	int repl;
4811 	struct md_rdev *rdev = NULL;
4812 
4813 	d = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
4814 	if (repl)
4815 		rdev = conf->mirrors[d].replacement;
4816 	if (!rdev) {
4817 		smp_mb();
4818 		rdev = conf->mirrors[d].rdev;
4819 	}
4820 
4821 	if (bio->bi_status) {
4822 		/* FIXME should record badblock */
4823 		md_error(mddev, rdev);
4824 	}
4825 
4826 	rdev_dec_pending(rdev, mddev);
4827 	end_reshape_request(r10_bio);
4828 }
4829 
end_reshape_request(struct r10bio * r10_bio)4830 static void end_reshape_request(struct r10bio *r10_bio)
4831 {
4832 	if (!atomic_dec_and_test(&r10_bio->remaining))
4833 		return;
4834 	md_done_sync(r10_bio->mddev, r10_bio->sectors, 1);
4835 	bio_put(r10_bio->master_bio);
4836 	put_buf(r10_bio);
4837 }
4838 
raid10_finish_reshape(struct mddev * mddev)4839 static void raid10_finish_reshape(struct mddev *mddev)
4840 {
4841 	struct r10conf *conf = mddev->private;
4842 
4843 	if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
4844 		return;
4845 
4846 	if (mddev->delta_disks > 0) {
4847 		if (mddev->recovery_cp > mddev->resync_max_sectors) {
4848 			mddev->recovery_cp = mddev->resync_max_sectors;
4849 			set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4850 		}
4851 		mddev->resync_max_sectors = mddev->array_sectors;
4852 	} else {
4853 		int d;
4854 		rcu_read_lock();
4855 		for (d = conf->geo.raid_disks ;
4856 		     d < conf->geo.raid_disks - mddev->delta_disks;
4857 		     d++) {
4858 			struct md_rdev *rdev = rcu_dereference(conf->mirrors[d].rdev);
4859 			if (rdev)
4860 				clear_bit(In_sync, &rdev->flags);
4861 			rdev = rcu_dereference(conf->mirrors[d].replacement);
4862 			if (rdev)
4863 				clear_bit(In_sync, &rdev->flags);
4864 		}
4865 		rcu_read_unlock();
4866 	}
4867 	mddev->layout = mddev->new_layout;
4868 	mddev->chunk_sectors = 1 << conf->geo.chunk_shift;
4869 	mddev->reshape_position = MaxSector;
4870 	mddev->delta_disks = 0;
4871 	mddev->reshape_backwards = 0;
4872 }
4873 
4874 static struct md_personality raid10_personality =
4875 {
4876 	.name		= "raid10",
4877 	.level		= 10,
4878 	.owner		= THIS_MODULE,
4879 	.make_request	= raid10_make_request,
4880 	.run		= raid10_run,
4881 	.free		= raid10_free,
4882 	.status		= raid10_status,
4883 	.error_handler	= raid10_error,
4884 	.hot_add_disk	= raid10_add_disk,
4885 	.hot_remove_disk= raid10_remove_disk,
4886 	.spare_active	= raid10_spare_active,
4887 	.sync_request	= raid10_sync_request,
4888 	.quiesce	= raid10_quiesce,
4889 	.size		= raid10_size,
4890 	.resize		= raid10_resize,
4891 	.takeover	= raid10_takeover,
4892 	.check_reshape	= raid10_check_reshape,
4893 	.start_reshape	= raid10_start_reshape,
4894 	.finish_reshape	= raid10_finish_reshape,
4895 	.congested	= raid10_congested,
4896 };
4897 
raid_init(void)4898 static int __init raid_init(void)
4899 {
4900 	return register_md_personality(&raid10_personality);
4901 }
4902 
raid_exit(void)4903 static void raid_exit(void)
4904 {
4905 	unregister_md_personality(&raid10_personality);
4906 }
4907 
4908 module_init(raid_init);
4909 module_exit(raid_exit);
4910 MODULE_LICENSE("GPL");
4911 MODULE_DESCRIPTION("RAID10 (striped mirror) personality for MD");
4912 MODULE_ALIAS("md-personality-9"); /* RAID10 */
4913 MODULE_ALIAS("md-raid10");
4914 MODULE_ALIAS("md-level-10");
4915 
4916 module_param(max_queued_requests, int, S_IRUGO|S_IWUSR);
4917