• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * OV519 driver
3  *
4  * Copyright (C) 2008-2011 Jean-François Moine <moinejf@free.fr>
5  * Copyright (C) 2009 Hans de Goede <hdegoede@redhat.com>
6  *
7  * This module is adapted from the ov51x-jpeg package, which itself
8  * was adapted from the ov511 driver.
9  *
10  * Original copyright for the ov511 driver is:
11  *
12  * Copyright (c) 1999-2006 Mark W. McClelland
13  * Support for OV519, OV8610 Copyright (c) 2003 Joerg Heckenbach
14  * Many improvements by Bret Wallach <bwallac1@san.rr.com>
15  * Color fixes by by Orion Sky Lawlor <olawlor@acm.org> (2/26/2000)
16  * OV7620 fixes by Charl P. Botha <cpbotha@ieee.org>
17  * Changes by Claudio Matsuoka <claudio@conectiva.com>
18  *
19  * ov51x-jpeg original copyright is:
20  *
21  * Copyright (c) 2004-2007 Romain Beauxis <toots@rastageeks.org>
22  * Support for OV7670 sensors was contributed by Sam Skipsey <aoanla@yahoo.com>
23  *
24  * This program is free software; you can redistribute it and/or modify
25  * it under the terms of the GNU General Public License as published by
26  * the Free Software Foundation; either version 2 of the License, or
27  * any later version.
28  *
29  * This program is distributed in the hope that it will be useful,
30  * but WITHOUT ANY WARRANTY; without even the implied warranty of
31  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
32  * GNU General Public License for more details.
33  *
34  */
35 
36 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
37 
38 #define MODULE_NAME "ov519"
39 
40 #include <linux/input.h>
41 #include "gspca.h"
42 
43 /* The jpeg_hdr is used by w996Xcf only */
44 /* The CONEX_CAM define for jpeg.h needs renaming, now its used here too */
45 #define CONEX_CAM
46 #include "jpeg.h"
47 
48 MODULE_AUTHOR("Jean-Francois Moine <http://moinejf.free.fr>");
49 MODULE_DESCRIPTION("OV519 USB Camera Driver");
50 MODULE_LICENSE("GPL");
51 
52 /* global parameters */
53 static int frame_rate;
54 
55 /* Number of times to retry a failed I2C transaction. Increase this if you
56  * are getting "Failed to read sensor ID..." */
57 static int i2c_detect_tries = 10;
58 
59 /* ov519 device descriptor */
60 struct sd {
61 	struct gspca_dev gspca_dev;		/* !! must be the first item */
62 
63 	struct v4l2_ctrl *jpegqual;
64 	struct v4l2_ctrl *freq;
65 	struct { /* h/vflip control cluster */
66 		struct v4l2_ctrl *hflip;
67 		struct v4l2_ctrl *vflip;
68 	};
69 	struct { /* autobrightness/brightness control cluster */
70 		struct v4l2_ctrl *autobright;
71 		struct v4l2_ctrl *brightness;
72 	};
73 
74 	u8 revision;
75 
76 	u8 packet_nr;
77 
78 	char bridge;
79 #define BRIDGE_OV511		0
80 #define BRIDGE_OV511PLUS	1
81 #define BRIDGE_OV518		2
82 #define BRIDGE_OV518PLUS	3
83 #define BRIDGE_OV519		4		/* = ov530 */
84 #define BRIDGE_OVFX2		5
85 #define BRIDGE_W9968CF		6
86 #define BRIDGE_MASK		7
87 
88 	char invert_led;
89 #define BRIDGE_INVERT_LED	8
90 
91 	char snapshot_pressed;
92 	char snapshot_needs_reset;
93 
94 	/* Determined by sensor type */
95 	u8 sif;
96 
97 #define QUALITY_MIN 50
98 #define QUALITY_MAX 70
99 #define QUALITY_DEF 50
100 
101 	u8 stopped;		/* Streaming is temporarily paused */
102 	u8 first_frame;
103 
104 	u8 frame_rate;		/* current Framerate */
105 	u8 clockdiv;		/* clockdiv override */
106 
107 	s8 sensor;		/* Type of image sensor chip (SEN_*) */
108 
109 	u8 sensor_addr;
110 	u16 sensor_width;
111 	u16 sensor_height;
112 	s16 sensor_reg_cache[256];
113 
114 	u8 jpeg_hdr[JPEG_HDR_SZ];
115 };
116 enum sensors {
117 	SEN_OV2610,
118 	SEN_OV2610AE,
119 	SEN_OV3610,
120 	SEN_OV6620,
121 	SEN_OV6630,
122 	SEN_OV66308AF,
123 	SEN_OV7610,
124 	SEN_OV7620,
125 	SEN_OV7620AE,
126 	SEN_OV7640,
127 	SEN_OV7648,
128 	SEN_OV7660,
129 	SEN_OV7670,
130 	SEN_OV76BE,
131 	SEN_OV8610,
132 	SEN_OV9600,
133 };
134 
135 /* Note this is a bit of a hack, but the w9968cf driver needs the code for all
136    the ov sensors which is already present here. When we have the time we
137    really should move the sensor drivers to v4l2 sub drivers. */
138 #include "w996Xcf.c"
139 
140 /* table of the disabled controls */
141 struct ctrl_valid {
142 	unsigned int has_brightness:1;
143 	unsigned int has_contrast:1;
144 	unsigned int has_exposure:1;
145 	unsigned int has_autogain:1;
146 	unsigned int has_sat:1;
147 	unsigned int has_hvflip:1;
148 	unsigned int has_autobright:1;
149 	unsigned int has_freq:1;
150 };
151 
152 static const struct ctrl_valid valid_controls[] = {
153 	[SEN_OV2610] = {
154 		.has_exposure = 1,
155 		.has_autogain = 1,
156 	},
157 	[SEN_OV2610AE] = {
158 		.has_exposure = 1,
159 		.has_autogain = 1,
160 	},
161 	[SEN_OV3610] = {
162 		/* No controls */
163 	},
164 	[SEN_OV6620] = {
165 		.has_brightness = 1,
166 		.has_contrast = 1,
167 		.has_sat = 1,
168 		.has_autobright = 1,
169 		.has_freq = 1,
170 	},
171 	[SEN_OV6630] = {
172 		.has_brightness = 1,
173 		.has_contrast = 1,
174 		.has_sat = 1,
175 		.has_autobright = 1,
176 		.has_freq = 1,
177 	},
178 	[SEN_OV66308AF] = {
179 		.has_brightness = 1,
180 		.has_contrast = 1,
181 		.has_sat = 1,
182 		.has_autobright = 1,
183 		.has_freq = 1,
184 	},
185 	[SEN_OV7610] = {
186 		.has_brightness = 1,
187 		.has_contrast = 1,
188 		.has_sat = 1,
189 		.has_autobright = 1,
190 		.has_freq = 1,
191 	},
192 	[SEN_OV7620] = {
193 		.has_brightness = 1,
194 		.has_contrast = 1,
195 		.has_sat = 1,
196 		.has_autobright = 1,
197 		.has_freq = 1,
198 	},
199 	[SEN_OV7620AE] = {
200 		.has_brightness = 1,
201 		.has_contrast = 1,
202 		.has_sat = 1,
203 		.has_autobright = 1,
204 		.has_freq = 1,
205 	},
206 	[SEN_OV7640] = {
207 		.has_brightness = 1,
208 		.has_sat = 1,
209 		.has_freq = 1,
210 	},
211 	[SEN_OV7648] = {
212 		.has_brightness = 1,
213 		.has_sat = 1,
214 		.has_freq = 1,
215 	},
216 	[SEN_OV7660] = {
217 		.has_brightness = 1,
218 		.has_contrast = 1,
219 		.has_sat = 1,
220 		.has_hvflip = 1,
221 		.has_freq = 1,
222 	},
223 	[SEN_OV7670] = {
224 		.has_brightness = 1,
225 		.has_contrast = 1,
226 		.has_hvflip = 1,
227 		.has_freq = 1,
228 	},
229 	[SEN_OV76BE] = {
230 		.has_brightness = 1,
231 		.has_contrast = 1,
232 		.has_sat = 1,
233 		.has_autobright = 1,
234 		.has_freq = 1,
235 	},
236 	[SEN_OV8610] = {
237 		.has_brightness = 1,
238 		.has_contrast = 1,
239 		.has_sat = 1,
240 		.has_autobright = 1,
241 	},
242 	[SEN_OV9600] = {
243 		.has_exposure = 1,
244 		.has_autogain = 1,
245 	},
246 };
247 
248 static const struct v4l2_pix_format ov519_vga_mode[] = {
249 	{320, 240, V4L2_PIX_FMT_JPEG, V4L2_FIELD_NONE,
250 		.bytesperline = 320,
251 		.sizeimage = 320 * 240 * 3 / 8 + 590,
252 		.colorspace = V4L2_COLORSPACE_JPEG,
253 		.priv = 1},
254 	{640, 480, V4L2_PIX_FMT_JPEG, V4L2_FIELD_NONE,
255 		.bytesperline = 640,
256 		.sizeimage = 640 * 480 * 3 / 8 + 590,
257 		.colorspace = V4L2_COLORSPACE_JPEG,
258 		.priv = 0},
259 };
260 static const struct v4l2_pix_format ov519_sif_mode[] = {
261 	{160, 120, V4L2_PIX_FMT_JPEG, V4L2_FIELD_NONE,
262 		.bytesperline = 160,
263 		.sizeimage = 160 * 120 * 3 / 8 + 590,
264 		.colorspace = V4L2_COLORSPACE_JPEG,
265 		.priv = 3},
266 	{176, 144, V4L2_PIX_FMT_JPEG, V4L2_FIELD_NONE,
267 		.bytesperline = 176,
268 		.sizeimage = 176 * 144 * 3 / 8 + 590,
269 		.colorspace = V4L2_COLORSPACE_JPEG,
270 		.priv = 1},
271 	{320, 240, V4L2_PIX_FMT_JPEG, V4L2_FIELD_NONE,
272 		.bytesperline = 320,
273 		.sizeimage = 320 * 240 * 3 / 8 + 590,
274 		.colorspace = V4L2_COLORSPACE_JPEG,
275 		.priv = 2},
276 	{352, 288, V4L2_PIX_FMT_JPEG, V4L2_FIELD_NONE,
277 		.bytesperline = 352,
278 		.sizeimage = 352 * 288 * 3 / 8 + 590,
279 		.colorspace = V4L2_COLORSPACE_JPEG,
280 		.priv = 0},
281 };
282 
283 /* Note some of the sizeimage values for the ov511 / ov518 may seem
284    larger then necessary, however they need to be this big as the ov511 /
285    ov518 always fills the entire isoc frame, using 0 padding bytes when
286    it doesn't have any data. So with low framerates the amount of data
287    transferred can become quite large (libv4l will remove all the 0 padding
288    in userspace). */
289 static const struct v4l2_pix_format ov518_vga_mode[] = {
290 	{320, 240, V4L2_PIX_FMT_OV518, V4L2_FIELD_NONE,
291 		.bytesperline = 320,
292 		.sizeimage = 320 * 240 * 3,
293 		.colorspace = V4L2_COLORSPACE_JPEG,
294 		.priv = 1},
295 	{640, 480, V4L2_PIX_FMT_OV518, V4L2_FIELD_NONE,
296 		.bytesperline = 640,
297 		.sizeimage = 640 * 480 * 2,
298 		.colorspace = V4L2_COLORSPACE_JPEG,
299 		.priv = 0},
300 };
301 static const struct v4l2_pix_format ov518_sif_mode[] = {
302 	{160, 120, V4L2_PIX_FMT_OV518, V4L2_FIELD_NONE,
303 		.bytesperline = 160,
304 		.sizeimage = 70000,
305 		.colorspace = V4L2_COLORSPACE_JPEG,
306 		.priv = 3},
307 	{176, 144, V4L2_PIX_FMT_OV518, V4L2_FIELD_NONE,
308 		.bytesperline = 176,
309 		.sizeimage = 70000,
310 		.colorspace = V4L2_COLORSPACE_JPEG,
311 		.priv = 1},
312 	{320, 240, V4L2_PIX_FMT_OV518, V4L2_FIELD_NONE,
313 		.bytesperline = 320,
314 		.sizeimage = 320 * 240 * 3,
315 		.colorspace = V4L2_COLORSPACE_JPEG,
316 		.priv = 2},
317 	{352, 288, V4L2_PIX_FMT_OV518, V4L2_FIELD_NONE,
318 		.bytesperline = 352,
319 		.sizeimage = 352 * 288 * 3,
320 		.colorspace = V4L2_COLORSPACE_JPEG,
321 		.priv = 0},
322 };
323 
324 static const struct v4l2_pix_format ov511_vga_mode[] = {
325 	{320, 240, V4L2_PIX_FMT_OV511, V4L2_FIELD_NONE,
326 		.bytesperline = 320,
327 		.sizeimage = 320 * 240 * 3,
328 		.colorspace = V4L2_COLORSPACE_JPEG,
329 		.priv = 1},
330 	{640, 480, V4L2_PIX_FMT_OV511, V4L2_FIELD_NONE,
331 		.bytesperline = 640,
332 		.sizeimage = 640 * 480 * 2,
333 		.colorspace = V4L2_COLORSPACE_JPEG,
334 		.priv = 0},
335 };
336 static const struct v4l2_pix_format ov511_sif_mode[] = {
337 	{160, 120, V4L2_PIX_FMT_OV511, V4L2_FIELD_NONE,
338 		.bytesperline = 160,
339 		.sizeimage = 70000,
340 		.colorspace = V4L2_COLORSPACE_JPEG,
341 		.priv = 3},
342 	{176, 144, V4L2_PIX_FMT_OV511, V4L2_FIELD_NONE,
343 		.bytesperline = 176,
344 		.sizeimage = 70000,
345 		.colorspace = V4L2_COLORSPACE_JPEG,
346 		.priv = 1},
347 	{320, 240, V4L2_PIX_FMT_OV511, V4L2_FIELD_NONE,
348 		.bytesperline = 320,
349 		.sizeimage = 320 * 240 * 3,
350 		.colorspace = V4L2_COLORSPACE_JPEG,
351 		.priv = 2},
352 	{352, 288, V4L2_PIX_FMT_OV511, V4L2_FIELD_NONE,
353 		.bytesperline = 352,
354 		.sizeimage = 352 * 288 * 3,
355 		.colorspace = V4L2_COLORSPACE_JPEG,
356 		.priv = 0},
357 };
358 
359 static const struct v4l2_pix_format ovfx2_ov2610_mode[] = {
360 	{800, 600, V4L2_PIX_FMT_SBGGR8, V4L2_FIELD_NONE,
361 		.bytesperline = 800,
362 		.sizeimage = 800 * 600,
363 		.colorspace = V4L2_COLORSPACE_SRGB,
364 		.priv = 1},
365 	{1600, 1200, V4L2_PIX_FMT_SBGGR8, V4L2_FIELD_NONE,
366 		.bytesperline = 1600,
367 		.sizeimage = 1600 * 1200,
368 		.colorspace = V4L2_COLORSPACE_SRGB},
369 };
370 static const struct v4l2_pix_format ovfx2_ov3610_mode[] = {
371 	{640, 480, V4L2_PIX_FMT_SBGGR8, V4L2_FIELD_NONE,
372 		.bytesperline = 640,
373 		.sizeimage = 640 * 480,
374 		.colorspace = V4L2_COLORSPACE_SRGB,
375 		.priv = 1},
376 	{800, 600, V4L2_PIX_FMT_SBGGR8, V4L2_FIELD_NONE,
377 		.bytesperline = 800,
378 		.sizeimage = 800 * 600,
379 		.colorspace = V4L2_COLORSPACE_SRGB,
380 		.priv = 1},
381 	{1024, 768, V4L2_PIX_FMT_SBGGR8, V4L2_FIELD_NONE,
382 		.bytesperline = 1024,
383 		.sizeimage = 1024 * 768,
384 		.colorspace = V4L2_COLORSPACE_SRGB,
385 		.priv = 1},
386 	{1600, 1200, V4L2_PIX_FMT_SBGGR8, V4L2_FIELD_NONE,
387 		.bytesperline = 1600,
388 		.sizeimage = 1600 * 1200,
389 		.colorspace = V4L2_COLORSPACE_SRGB,
390 		.priv = 0},
391 	{2048, 1536, V4L2_PIX_FMT_SBGGR8, V4L2_FIELD_NONE,
392 		.bytesperline = 2048,
393 		.sizeimage = 2048 * 1536,
394 		.colorspace = V4L2_COLORSPACE_SRGB,
395 		.priv = 0},
396 };
397 static const struct v4l2_pix_format ovfx2_ov9600_mode[] = {
398 	{640, 480, V4L2_PIX_FMT_SBGGR8, V4L2_FIELD_NONE,
399 		.bytesperline = 640,
400 		.sizeimage = 640 * 480,
401 		.colorspace = V4L2_COLORSPACE_SRGB,
402 		.priv = 1},
403 	{1280, 1024, V4L2_PIX_FMT_SBGGR8, V4L2_FIELD_NONE,
404 		.bytesperline = 1280,
405 		.sizeimage = 1280 * 1024,
406 		.colorspace = V4L2_COLORSPACE_SRGB},
407 };
408 
409 /* Registers common to OV511 / OV518 */
410 #define R51x_FIFO_PSIZE			0x30	/* 2 bytes wide w/ OV518(+) */
411 #define R51x_SYS_RESET			0x50
412 	/* Reset type flags */
413 	#define	OV511_RESET_OMNICE	0x08
414 #define R51x_SYS_INIT			0x53
415 #define R51x_SYS_SNAP			0x52
416 #define R51x_SYS_CUST_ID		0x5f
417 #define R51x_COMP_LUT_BEGIN		0x80
418 
419 /* OV511 Camera interface register numbers */
420 #define R511_CAM_DELAY			0x10
421 #define R511_CAM_EDGE			0x11
422 #define R511_CAM_PXCNT			0x12
423 #define R511_CAM_LNCNT			0x13
424 #define R511_CAM_PXDIV			0x14
425 #define R511_CAM_LNDIV			0x15
426 #define R511_CAM_UV_EN			0x16
427 #define R511_CAM_LINE_MODE		0x17
428 #define R511_CAM_OPTS			0x18
429 
430 #define R511_SNAP_FRAME			0x19
431 #define R511_SNAP_PXCNT			0x1a
432 #define R511_SNAP_LNCNT			0x1b
433 #define R511_SNAP_PXDIV			0x1c
434 #define R511_SNAP_LNDIV			0x1d
435 #define R511_SNAP_UV_EN			0x1e
436 #define R511_SNAP_OPTS			0x1f
437 
438 #define R511_DRAM_FLOW_CTL		0x20
439 #define R511_FIFO_OPTS			0x31
440 #define R511_I2C_CTL			0x40
441 #define R511_SYS_LED_CTL		0x55	/* OV511+ only */
442 #define R511_COMP_EN			0x78
443 #define R511_COMP_LUT_EN		0x79
444 
445 /* OV518 Camera interface register numbers */
446 #define R518_GPIO_OUT			0x56	/* OV518(+) only */
447 #define R518_GPIO_CTL			0x57	/* OV518(+) only */
448 
449 /* OV519 Camera interface register numbers */
450 #define OV519_R10_H_SIZE		0x10
451 #define OV519_R11_V_SIZE		0x11
452 #define OV519_R12_X_OFFSETL		0x12
453 #define OV519_R13_X_OFFSETH		0x13
454 #define OV519_R14_Y_OFFSETL		0x14
455 #define OV519_R15_Y_OFFSETH		0x15
456 #define OV519_R16_DIVIDER		0x16
457 #define OV519_R20_DFR			0x20
458 #define OV519_R25_FORMAT		0x25
459 
460 /* OV519 System Controller register numbers */
461 #define OV519_R51_RESET1		0x51
462 #define OV519_R54_EN_CLK1		0x54
463 #define OV519_R57_SNAPSHOT		0x57
464 
465 #define OV519_GPIO_DATA_OUT0		0x71
466 #define OV519_GPIO_IO_CTRL0		0x72
467 
468 /*#define OV511_ENDPOINT_ADDRESS 1	 * Isoc endpoint number */
469 
470 /*
471  * The FX2 chip does not give us a zero length read at end of frame.
472  * It does, however, give a short read at the end of a frame, if
473  * necessary, rather than run two frames together.
474  *
475  * By choosing the right bulk transfer size, we are guaranteed to always
476  * get a short read for the last read of each frame.  Frame sizes are
477  * always a composite number (width * height, or a multiple) so if we
478  * choose a prime number, we are guaranteed that the last read of a
479  * frame will be short.
480  *
481  * But it isn't that easy: the 2.6 kernel requires a multiple of 4KB,
482  * otherwise EOVERFLOW "babbling" errors occur.  I have not been able
483  * to figure out why.  [PMiller]
484  *
485  * The constant (13 * 4096) is the largest "prime enough" number less than 64KB.
486  *
487  * It isn't enough to know the number of bytes per frame, in case we
488  * have data dropouts or buffer overruns (even though the FX2 double
489  * buffers, there are some pretty strict real time constraints for
490  * isochronous transfer for larger frame sizes).
491  */
492 /*jfm: this value does not work for 800x600 - see isoc_init */
493 #define OVFX2_BULK_SIZE (13 * 4096)
494 
495 /* I2C registers */
496 #define R51x_I2C_W_SID		0x41
497 #define R51x_I2C_SADDR_3	0x42
498 #define R51x_I2C_SADDR_2	0x43
499 #define R51x_I2C_R_SID		0x44
500 #define R51x_I2C_DATA		0x45
501 #define R518_I2C_CTL		0x47	/* OV518(+) only */
502 #define OVFX2_I2C_ADDR		0x00
503 
504 /* I2C ADDRESSES */
505 #define OV7xx0_SID   0x42
506 #define OV_HIRES_SID 0x60		/* OV9xxx / OV2xxx / OV3xxx */
507 #define OV8xx0_SID   0xa0
508 #define OV6xx0_SID   0xc0
509 
510 /* OV7610 registers */
511 #define OV7610_REG_GAIN		0x00	/* gain setting (5:0) */
512 #define OV7610_REG_BLUE		0x01	/* blue channel balance */
513 #define OV7610_REG_RED		0x02	/* red channel balance */
514 #define OV7610_REG_SAT		0x03	/* saturation */
515 #define OV8610_REG_HUE		0x04	/* 04 reserved */
516 #define OV7610_REG_CNT		0x05	/* Y contrast */
517 #define OV7610_REG_BRT		0x06	/* Y brightness */
518 #define OV7610_REG_COM_C	0x14	/* misc common regs */
519 #define OV7610_REG_ID_HIGH	0x1c	/* manufacturer ID MSB */
520 #define OV7610_REG_ID_LOW	0x1d	/* manufacturer ID LSB */
521 #define OV7610_REG_COM_I	0x29	/* misc settings */
522 
523 /* OV7660 and OV7670 registers */
524 #define OV7670_R00_GAIN		0x00	/* Gain lower 8 bits (rest in vref) */
525 #define OV7670_R01_BLUE		0x01	/* blue gain */
526 #define OV7670_R02_RED		0x02	/* red gain */
527 #define OV7670_R03_VREF		0x03	/* Pieces of GAIN, VSTART, VSTOP */
528 #define OV7670_R04_COM1		0x04	/* Control 1 */
529 /*#define OV7670_R07_AECHH	0x07	 * AEC MS 5 bits */
530 #define OV7670_R0C_COM3		0x0c	/* Control 3 */
531 #define OV7670_R0D_COM4		0x0d	/* Control 4 */
532 #define OV7670_R0E_COM5		0x0e	/* All "reserved" */
533 #define OV7670_R0F_COM6		0x0f	/* Control 6 */
534 #define OV7670_R10_AECH		0x10	/* More bits of AEC value */
535 #define OV7670_R11_CLKRC	0x11	/* Clock control */
536 #define OV7670_R12_COM7		0x12	/* Control 7 */
537 #define   OV7670_COM7_FMT_VGA	 0x00
538 /*#define   OV7670_COM7_YUV	 0x00	 * YUV */
539 #define   OV7670_COM7_FMT_QVGA	 0x10	/* QVGA format */
540 #define   OV7670_COM7_FMT_MASK	 0x38
541 #define   OV7670_COM7_RESET	 0x80	/* Register reset */
542 #define OV7670_R13_COM8		0x13	/* Control 8 */
543 #define   OV7670_COM8_AEC	 0x01	/* Auto exposure enable */
544 #define   OV7670_COM8_AWB	 0x02	/* White balance enable */
545 #define   OV7670_COM8_AGC	 0x04	/* Auto gain enable */
546 #define   OV7670_COM8_BFILT	 0x20	/* Band filter enable */
547 #define   OV7670_COM8_AECSTEP	 0x40	/* Unlimited AEC step size */
548 #define   OV7670_COM8_FASTAEC	 0x80	/* Enable fast AGC/AEC */
549 #define OV7670_R14_COM9		0x14	/* Control 9 - gain ceiling */
550 #define OV7670_R15_COM10	0x15	/* Control 10 */
551 #define OV7670_R17_HSTART	0x17	/* Horiz start high bits */
552 #define OV7670_R18_HSTOP	0x18	/* Horiz stop high bits */
553 #define OV7670_R19_VSTART	0x19	/* Vert start high bits */
554 #define OV7670_R1A_VSTOP	0x1a	/* Vert stop high bits */
555 #define OV7670_R1E_MVFP		0x1e	/* Mirror / vflip */
556 #define   OV7670_MVFP_VFLIP	 0x10	/* vertical flip */
557 #define   OV7670_MVFP_MIRROR	 0x20	/* Mirror image */
558 #define OV7670_R24_AEW		0x24	/* AGC upper limit */
559 #define OV7670_R25_AEB		0x25	/* AGC lower limit */
560 #define OV7670_R26_VPT		0x26	/* AGC/AEC fast mode op region */
561 #define OV7670_R32_HREF		0x32	/* HREF pieces */
562 #define OV7670_R3A_TSLB		0x3a	/* lots of stuff */
563 #define OV7670_R3B_COM11	0x3b	/* Control 11 */
564 #define   OV7670_COM11_EXP	 0x02
565 #define   OV7670_COM11_HZAUTO	 0x10	/* Auto detect 50/60 Hz */
566 #define OV7670_R3C_COM12	0x3c	/* Control 12 */
567 #define OV7670_R3D_COM13	0x3d	/* Control 13 */
568 #define   OV7670_COM13_GAMMA	 0x80	/* Gamma enable */
569 #define   OV7670_COM13_UVSAT	 0x40	/* UV saturation auto adjustment */
570 #define OV7670_R3E_COM14	0x3e	/* Control 14 */
571 #define OV7670_R3F_EDGE		0x3f	/* Edge enhancement factor */
572 #define OV7670_R40_COM15	0x40	/* Control 15 */
573 /*#define   OV7670_COM15_R00FF	 0xc0	 *	00 to FF */
574 #define OV7670_R41_COM16	0x41	/* Control 16 */
575 #define   OV7670_COM16_AWBGAIN	 0x08	/* AWB gain enable */
576 /* end of ov7660 common registers */
577 #define OV7670_R55_BRIGHT	0x55	/* Brightness */
578 #define OV7670_R56_CONTRAS	0x56	/* Contrast control */
579 #define OV7670_R69_GFIX		0x69	/* Fix gain control */
580 /*#define OV7670_R8C_RGB444	0x8c	 * RGB 444 control */
581 #define OV7670_R9F_HAECC1	0x9f	/* Hist AEC/AGC control 1 */
582 #define OV7670_RA0_HAECC2	0xa0	/* Hist AEC/AGC control 2 */
583 #define OV7670_RA5_BD50MAX	0xa5	/* 50hz banding step limit */
584 #define OV7670_RA6_HAECC3	0xa6	/* Hist AEC/AGC control 3 */
585 #define OV7670_RA7_HAECC4	0xa7	/* Hist AEC/AGC control 4 */
586 #define OV7670_RA8_HAECC5	0xa8	/* Hist AEC/AGC control 5 */
587 #define OV7670_RA9_HAECC6	0xa9	/* Hist AEC/AGC control 6 */
588 #define OV7670_RAA_HAECC7	0xaa	/* Hist AEC/AGC control 7 */
589 #define OV7670_RAB_BD60MAX	0xab	/* 60hz banding step limit */
590 
591 struct ov_regvals {
592 	u8 reg;
593 	u8 val;
594 };
595 struct ov_i2c_regvals {
596 	u8 reg;
597 	u8 val;
598 };
599 
600 /* Settings for OV2610 camera chip */
601 static const struct ov_i2c_regvals norm_2610[] = {
602 	{ 0x12, 0x80 },	/* reset */
603 };
604 
605 static const struct ov_i2c_regvals norm_2610ae[] = {
606 	{0x12, 0x80},	/* reset */
607 	{0x13, 0xcd},
608 	{0x09, 0x01},
609 	{0x0d, 0x00},
610 	{0x11, 0x80},
611 	{0x12, 0x20},	/* 1600x1200 */
612 	{0x33, 0x0c},
613 	{0x35, 0x90},
614 	{0x36, 0x37},
615 /* ms-win traces */
616 	{0x11, 0x83},	/* clock / 3 ? */
617 	{0x2d, 0x00},	/* 60 Hz filter */
618 	{0x24, 0xb0},	/* normal colors */
619 	{0x25, 0x90},
620 	{0x10, 0x43},
621 };
622 
623 static const struct ov_i2c_regvals norm_3620b[] = {
624 	/*
625 	 * From the datasheet: "Note that after writing to register COMH
626 	 * (0x12) to change the sensor mode, registers related to the
627 	 * sensor’s cropping window will be reset back to their default
628 	 * values."
629 	 *
630 	 * "wait 4096 external clock ... to make sure the sensor is
631 	 * stable and ready to access registers" i.e. 160us at 24MHz
632 	 */
633 	{ 0x12, 0x80 }, /* COMH reset */
634 	{ 0x12, 0x00 }, /* QXGA, master */
635 
636 	/*
637 	 * 11 CLKRC "Clock Rate Control"
638 	 * [7] internal frequency doublers: on
639 	 * [6] video port mode: master
640 	 * [5:0] clock divider: 1
641 	 */
642 	{ 0x11, 0x80 },
643 
644 	/*
645 	 * 13 COMI "Common Control I"
646 	 *                  = 192 (0xC0) 11000000
647 	 *    COMI[7] "AEC speed selection"
648 	 *                  =   1 (0x01) 1....... "Faster AEC correction"
649 	 *    COMI[6] "AEC speed step selection"
650 	 *                  =   1 (0x01) .1...... "Big steps, fast"
651 	 *    COMI[5] "Banding filter on off"
652 	 *                  =   0 (0x00) ..0..... "Off"
653 	 *    COMI[4] "Banding filter option"
654 	 *                  =   0 (0x00) ...0.... "Main clock is 48 MHz and
655 	 *                                         the PLL is ON"
656 	 *    COMI[3] "Reserved"
657 	 *                  =   0 (0x00) ....0...
658 	 *    COMI[2] "AGC auto manual control selection"
659 	 *                  =   0 (0x00) .....0.. "Manual"
660 	 *    COMI[1] "AWB auto manual control selection"
661 	 *                  =   0 (0x00) ......0. "Manual"
662 	 *    COMI[0] "Exposure control"
663 	 *                  =   0 (0x00) .......0 "Manual"
664 	 */
665 	{ 0x13, 0xc0 },
666 
667 	/*
668 	 * 09 COMC "Common Control C"
669 	 *                  =   8 (0x08) 00001000
670 	 *    COMC[7:5] "Reserved"
671 	 *                  =   0 (0x00) 000.....
672 	 *    COMC[4] "Sleep Mode Enable"
673 	 *                  =   0 (0x00) ...0.... "Normal mode"
674 	 *    COMC[3:2] "Sensor sampling reset timing selection"
675 	 *                  =   2 (0x02) ....10.. "Longer reset time"
676 	 *    COMC[1:0] "Output drive current select"
677 	 *                  =   0 (0x00) ......00 "Weakest"
678 	 */
679 	{ 0x09, 0x08 },
680 
681 	/*
682 	 * 0C COMD "Common Control D"
683 	 *                  =   8 (0x08) 00001000
684 	 *    COMD[7] "Reserved"
685 	 *                  =   0 (0x00) 0.......
686 	 *    COMD[6] "Swap MSB and LSB at the output port"
687 	 *                  =   0 (0x00) .0...... "False"
688 	 *    COMD[5:3] "Reserved"
689 	 *                  =   1 (0x01) ..001...
690 	 *    COMD[2] "Output Average On Off"
691 	 *                  =   0 (0x00) .....0.. "Output Normal"
692 	 *    COMD[1] "Sensor precharge voltage selection"
693 	 *                  =   0 (0x00) ......0. "Selects internal
694 	 *                                         reference precharge
695 	 *                                         voltage"
696 	 *    COMD[0] "Snapshot option"
697 	 *                  =   0 (0x00) .......0 "Enable live video output
698 	 *                                         after snapshot sequence"
699 	 */
700 	{ 0x0c, 0x08 },
701 
702 	/*
703 	 * 0D COME "Common Control E"
704 	 *                  = 161 (0xA1) 10100001
705 	 *    COME[7] "Output average option"
706 	 *                  =   1 (0x01) 1....... "Output average of 4 pixels"
707 	 *    COME[6] "Anti-blooming control"
708 	 *                  =   0 (0x00) .0...... "Off"
709 	 *    COME[5:3] "Reserved"
710 	 *                  =   4 (0x04) ..100...
711 	 *    COME[2] "Clock output power down pin status"
712 	 *                  =   0 (0x00) .....0.. "Tri-state data output pin
713 	 *                                         on power down"
714 	 *    COME[1] "Data output pin status selection at power down"
715 	 *                  =   0 (0x00) ......0. "Tri-state VSYNC, PCLK,
716 	 *                                         HREF, and CHSYNC pins on
717 	 *                                         power down"
718 	 *    COME[0] "Auto zero circuit select"
719 	 *                  =   1 (0x01) .......1 "On"
720 	 */
721 	{ 0x0d, 0xa1 },
722 
723 	/*
724 	 * 0E COMF "Common Control F"
725 	 *                  = 112 (0x70) 01110000
726 	 *    COMF[7] "System clock selection"
727 	 *                  =   0 (0x00) 0....... "Use 24 MHz system clock"
728 	 *    COMF[6:4] "Reserved"
729 	 *                  =   7 (0x07) .111....
730 	 *    COMF[3] "Manual auto negative offset canceling selection"
731 	 *                  =   0 (0x00) ....0... "Auto detect negative
732 	 *                                         offset and cancel it"
733 	 *    COMF[2:0] "Reserved"
734 	 *                  =   0 (0x00) .....000
735 	 */
736 	{ 0x0e, 0x70 },
737 
738 	/*
739 	 * 0F COMG "Common Control G"
740 	 *                  =  66 (0x42) 01000010
741 	 *    COMG[7] "Optical black output selection"
742 	 *                  =   0 (0x00) 0....... "Disable"
743 	 *    COMG[6] "Black level calibrate selection"
744 	 *                  =   1 (0x01) .1...... "Use optical black pixels
745 	 *                                         to calibrate"
746 	 *    COMG[5:4] "Reserved"
747 	 *                  =   0 (0x00) ..00....
748 	 *    COMG[3] "Channel offset adjustment"
749 	 *                  =   0 (0x00) ....0... "Disable offset adjustment"
750 	 *    COMG[2] "ADC black level calibration option"
751 	 *                  =   0 (0x00) .....0.. "Use B/G line and G/R
752 	 *                                         line to calibrate each
753 	 *                                         channel's black level"
754 	 *    COMG[1] "Reserved"
755 	 *                  =   1 (0x01) ......1.
756 	 *    COMG[0] "ADC black level calibration enable"
757 	 *                  =   0 (0x00) .......0 "Disable"
758 	 */
759 	{ 0x0f, 0x42 },
760 
761 	/*
762 	 * 14 COMJ "Common Control J"
763 	 *                  = 198 (0xC6) 11000110
764 	 *    COMJ[7:6] "AGC gain ceiling"
765 	 *                  =   3 (0x03) 11...... "8x"
766 	 *    COMJ[5:4] "Reserved"
767 	 *                  =   0 (0x00) ..00....
768 	 *    COMJ[3] "Auto banding filter"
769 	 *                  =   0 (0x00) ....0... "Banding filter is always
770 	 *                                         on off depending on
771 	 *                                         COMI[5] setting"
772 	 *    COMJ[2] "VSYNC drop option"
773 	 *                  =   1 (0x01) .....1.. "SYNC is dropped if frame
774 	 *                                         data is dropped"
775 	 *    COMJ[1] "Frame data drop"
776 	 *                  =   1 (0x01) ......1. "Drop frame data if
777 	 *                                         exposure is not within
778 	 *                                         tolerance.  In AEC mode,
779 	 *                                         data is normally dropped
780 	 *                                         when data is out of
781 	 *                                         range."
782 	 *    COMJ[0] "Reserved"
783 	 *                  =   0 (0x00) .......0
784 	 */
785 	{ 0x14, 0xc6 },
786 
787 	/*
788 	 * 15 COMK "Common Control K"
789 	 *                  =   2 (0x02) 00000010
790 	 *    COMK[7] "CHSYNC pin output swap"
791 	 *                  =   0 (0x00) 0....... "CHSYNC"
792 	 *    COMK[6] "HREF pin output swap"
793 	 *                  =   0 (0x00) .0...... "HREF"
794 	 *    COMK[5] "PCLK output selection"
795 	 *                  =   0 (0x00) ..0..... "PCLK always output"
796 	 *    COMK[4] "PCLK edge selection"
797 	 *                  =   0 (0x00) ...0.... "Data valid on falling edge"
798 	 *    COMK[3] "HREF output polarity"
799 	 *                  =   0 (0x00) ....0... "positive"
800 	 *    COMK[2] "Reserved"
801 	 *                  =   0 (0x00) .....0..
802 	 *    COMK[1] "VSYNC polarity"
803 	 *                  =   1 (0x01) ......1. "negative"
804 	 *    COMK[0] "HSYNC polarity"
805 	 *                  =   0 (0x00) .......0 "positive"
806 	 */
807 	{ 0x15, 0x02 },
808 
809 	/*
810 	 * 33 CHLF "Current Control"
811 	 *                  =   9 (0x09) 00001001
812 	 *    CHLF[7:6] "Sensor current control"
813 	 *                  =   0 (0x00) 00......
814 	 *    CHLF[5] "Sensor current range control"
815 	 *                  =   0 (0x00) ..0..... "normal range"
816 	 *    CHLF[4] "Sensor current"
817 	 *                  =   0 (0x00) ...0.... "normal current"
818 	 *    CHLF[3] "Sensor buffer current control"
819 	 *                  =   1 (0x01) ....1... "half current"
820 	 *    CHLF[2] "Column buffer current control"
821 	 *                  =   0 (0x00) .....0.. "normal current"
822 	 *    CHLF[1] "Analog DSP current control"
823 	 *                  =   0 (0x00) ......0. "normal current"
824 	 *    CHLF[1] "ADC current control"
825 	 *                  =   0 (0x00) ......0. "normal current"
826 	 */
827 	{ 0x33, 0x09 },
828 
829 	/*
830 	 * 34 VBLM "Blooming Control"
831 	 *                  =  80 (0x50) 01010000
832 	 *    VBLM[7] "Hard soft reset switch"
833 	 *                  =   0 (0x00) 0....... "Hard reset"
834 	 *    VBLM[6:4] "Blooming voltage selection"
835 	 *                  =   5 (0x05) .101....
836 	 *    VBLM[3:0] "Sensor current control"
837 	 *                  =   0 (0x00) ....0000
838 	 */
839 	{ 0x34, 0x50 },
840 
841 	/*
842 	 * 36 VCHG "Sensor Precharge Voltage Control"
843 	 *                  =   0 (0x00) 00000000
844 	 *    VCHG[7] "Reserved"
845 	 *                  =   0 (0x00) 0.......
846 	 *    VCHG[6:4] "Sensor precharge voltage control"
847 	 *                  =   0 (0x00) .000....
848 	 *    VCHG[3:0] "Sensor array common reference"
849 	 *                  =   0 (0x00) ....0000
850 	 */
851 	{ 0x36, 0x00 },
852 
853 	/*
854 	 * 37 ADC "ADC Reference Control"
855 	 *                  =   4 (0x04) 00000100
856 	 *    ADC[7:4] "Reserved"
857 	 *                  =   0 (0x00) 0000....
858 	 *    ADC[3] "ADC input signal range"
859 	 *                  =   0 (0x00) ....0... "Input signal 1.0x"
860 	 *    ADC[2:0] "ADC range control"
861 	 *                  =   4 (0x04) .....100
862 	 */
863 	{ 0x37, 0x04 },
864 
865 	/*
866 	 * 38 ACOM "Analog Common Ground"
867 	 *                  =  82 (0x52) 01010010
868 	 *    ACOM[7] "Analog gain control"
869 	 *                  =   0 (0x00) 0....... "Gain 1x"
870 	 *    ACOM[6] "Analog black level calibration"
871 	 *                  =   1 (0x01) .1...... "On"
872 	 *    ACOM[5:0] "Reserved"
873 	 *                  =  18 (0x12) ..010010
874 	 */
875 	{ 0x38, 0x52 },
876 
877 	/*
878 	 * 3A FREFA "Internal Reference Adjustment"
879 	 *                  =   0 (0x00) 00000000
880 	 *    FREFA[7:0] "Range"
881 	 *                  =   0 (0x00) 00000000
882 	 */
883 	{ 0x3a, 0x00 },
884 
885 	/*
886 	 * 3C FVOPT "Internal Reference Adjustment"
887 	 *                  =  31 (0x1F) 00011111
888 	 *    FVOPT[7:0] "Range"
889 	 *                  =  31 (0x1F) 00011111
890 	 */
891 	{ 0x3c, 0x1f },
892 
893 	/*
894 	 * 44 Undocumented  =   0 (0x00) 00000000
895 	 *    44[7:0] "It's a secret"
896 	 *                  =   0 (0x00) 00000000
897 	 */
898 	{ 0x44, 0x00 },
899 
900 	/*
901 	 * 40 Undocumented  =   0 (0x00) 00000000
902 	 *    40[7:0] "It's a secret"
903 	 *                  =   0 (0x00) 00000000
904 	 */
905 	{ 0x40, 0x00 },
906 
907 	/*
908 	 * 41 Undocumented  =   0 (0x00) 00000000
909 	 *    41[7:0] "It's a secret"
910 	 *                  =   0 (0x00) 00000000
911 	 */
912 	{ 0x41, 0x00 },
913 
914 	/*
915 	 * 42 Undocumented  =   0 (0x00) 00000000
916 	 *    42[7:0] "It's a secret"
917 	 *                  =   0 (0x00) 00000000
918 	 */
919 	{ 0x42, 0x00 },
920 
921 	/*
922 	 * 43 Undocumented  =   0 (0x00) 00000000
923 	 *    43[7:0] "It's a secret"
924 	 *                  =   0 (0x00) 00000000
925 	 */
926 	{ 0x43, 0x00 },
927 
928 	/*
929 	 * 45 Undocumented  = 128 (0x80) 10000000
930 	 *    45[7:0] "It's a secret"
931 	 *                  = 128 (0x80) 10000000
932 	 */
933 	{ 0x45, 0x80 },
934 
935 	/*
936 	 * 48 Undocumented  = 192 (0xC0) 11000000
937 	 *    48[7:0] "It's a secret"
938 	 *                  = 192 (0xC0) 11000000
939 	 */
940 	{ 0x48, 0xc0 },
941 
942 	/*
943 	 * 49 Undocumented  =  25 (0x19) 00011001
944 	 *    49[7:0] "It's a secret"
945 	 *                  =  25 (0x19) 00011001
946 	 */
947 	{ 0x49, 0x19 },
948 
949 	/*
950 	 * 4B Undocumented  = 128 (0x80) 10000000
951 	 *    4B[7:0] "It's a secret"
952 	 *                  = 128 (0x80) 10000000
953 	 */
954 	{ 0x4b, 0x80 },
955 
956 	/*
957 	 * 4D Undocumented  = 196 (0xC4) 11000100
958 	 *    4D[7:0] "It's a secret"
959 	 *                  = 196 (0xC4) 11000100
960 	 */
961 	{ 0x4d, 0xc4 },
962 
963 	/*
964 	 * 35 VREF "Reference Voltage Control"
965 	 *                  =  76 (0x4c) 01001100
966 	 *    VREF[7:5] "Column high reference control"
967 	 *                  =   2 (0x02) 010..... "higher voltage"
968 	 *    VREF[4:2] "Column low reference control"
969 	 *                  =   3 (0x03) ...011.. "Highest voltage"
970 	 *    VREF[1:0] "Reserved"
971 	 *                  =   0 (0x00) ......00
972 	 */
973 	{ 0x35, 0x4c },
974 
975 	/*
976 	 * 3D Undocumented  =   0 (0x00) 00000000
977 	 *    3D[7:0] "It's a secret"
978 	 *                  =   0 (0x00) 00000000
979 	 */
980 	{ 0x3d, 0x00 },
981 
982 	/*
983 	 * 3E Undocumented  =   0 (0x00) 00000000
984 	 *    3E[7:0] "It's a secret"
985 	 *                  =   0 (0x00) 00000000
986 	 */
987 	{ 0x3e, 0x00 },
988 
989 	/*
990 	 * 3B FREFB "Internal Reference Adjustment"
991 	 *                  =  24 (0x18) 00011000
992 	 *    FREFB[7:0] "Range"
993 	 *                  =  24 (0x18) 00011000
994 	 */
995 	{ 0x3b, 0x18 },
996 
997 	/*
998 	 * 33 CHLF "Current Control"
999 	 *                  =  25 (0x19) 00011001
1000 	 *    CHLF[7:6] "Sensor current control"
1001 	 *                  =   0 (0x00) 00......
1002 	 *    CHLF[5] "Sensor current range control"
1003 	 *                  =   0 (0x00) ..0..... "normal range"
1004 	 *    CHLF[4] "Sensor current"
1005 	 *                  =   1 (0x01) ...1.... "double current"
1006 	 *    CHLF[3] "Sensor buffer current control"
1007 	 *                  =   1 (0x01) ....1... "half current"
1008 	 *    CHLF[2] "Column buffer current control"
1009 	 *                  =   0 (0x00) .....0.. "normal current"
1010 	 *    CHLF[1] "Analog DSP current control"
1011 	 *                  =   0 (0x00) ......0. "normal current"
1012 	 *    CHLF[1] "ADC current control"
1013 	 *                  =   0 (0x00) ......0. "normal current"
1014 	 */
1015 	{ 0x33, 0x19 },
1016 
1017 	/*
1018 	 * 34 VBLM "Blooming Control"
1019 	 *                  =  90 (0x5A) 01011010
1020 	 *    VBLM[7] "Hard soft reset switch"
1021 	 *                  =   0 (0x00) 0....... "Hard reset"
1022 	 *    VBLM[6:4] "Blooming voltage selection"
1023 	 *                  =   5 (0x05) .101....
1024 	 *    VBLM[3:0] "Sensor current control"
1025 	 *                  =  10 (0x0A) ....1010
1026 	 */
1027 	{ 0x34, 0x5a },
1028 
1029 	/*
1030 	 * 3B FREFB "Internal Reference Adjustment"
1031 	 *                  =   0 (0x00) 00000000
1032 	 *    FREFB[7:0] "Range"
1033 	 *                  =   0 (0x00) 00000000
1034 	 */
1035 	{ 0x3b, 0x00 },
1036 
1037 	/*
1038 	 * 33 CHLF "Current Control"
1039 	 *                  =   9 (0x09) 00001001
1040 	 *    CHLF[7:6] "Sensor current control"
1041 	 *                  =   0 (0x00) 00......
1042 	 *    CHLF[5] "Sensor current range control"
1043 	 *                  =   0 (0x00) ..0..... "normal range"
1044 	 *    CHLF[4] "Sensor current"
1045 	 *                  =   0 (0x00) ...0.... "normal current"
1046 	 *    CHLF[3] "Sensor buffer current control"
1047 	 *                  =   1 (0x01) ....1... "half current"
1048 	 *    CHLF[2] "Column buffer current control"
1049 	 *                  =   0 (0x00) .....0.. "normal current"
1050 	 *    CHLF[1] "Analog DSP current control"
1051 	 *                  =   0 (0x00) ......0. "normal current"
1052 	 *    CHLF[1] "ADC current control"
1053 	 *                  =   0 (0x00) ......0. "normal current"
1054 	 */
1055 	{ 0x33, 0x09 },
1056 
1057 	/*
1058 	 * 34 VBLM "Blooming Control"
1059 	 *                  =  80 (0x50) 01010000
1060 	 *    VBLM[7] "Hard soft reset switch"
1061 	 *                  =   0 (0x00) 0....... "Hard reset"
1062 	 *    VBLM[6:4] "Blooming voltage selection"
1063 	 *                  =   5 (0x05) .101....
1064 	 *    VBLM[3:0] "Sensor current control"
1065 	 *                  =   0 (0x00) ....0000
1066 	 */
1067 	{ 0x34, 0x50 },
1068 
1069 	/*
1070 	 * 12 COMH "Common Control H"
1071 	 *                  =  64 (0x40) 01000000
1072 	 *    COMH[7] "SRST"
1073 	 *                  =   0 (0x00) 0....... "No-op"
1074 	 *    COMH[6:4] "Resolution selection"
1075 	 *                  =   4 (0x04) .100.... "XGA"
1076 	 *    COMH[3] "Master slave selection"
1077 	 *                  =   0 (0x00) ....0... "Master mode"
1078 	 *    COMH[2] "Internal B/R channel option"
1079 	 *                  =   0 (0x00) .....0.. "B/R use same channel"
1080 	 *    COMH[1] "Color bar test pattern"
1081 	 *                  =   0 (0x00) ......0. "Off"
1082 	 *    COMH[0] "Reserved"
1083 	 *                  =   0 (0x00) .......0
1084 	 */
1085 	{ 0x12, 0x40 },
1086 
1087 	/*
1088 	 * 17 HREFST "Horizontal window start"
1089 	 *                  =  31 (0x1F) 00011111
1090 	 *    HREFST[7:0] "Horizontal window start, 8 MSBs"
1091 	 *                  =  31 (0x1F) 00011111
1092 	 */
1093 	{ 0x17, 0x1f },
1094 
1095 	/*
1096 	 * 18 HREFEND "Horizontal window end"
1097 	 *                  =  95 (0x5F) 01011111
1098 	 *    HREFEND[7:0] "Horizontal Window End, 8 MSBs"
1099 	 *                  =  95 (0x5F) 01011111
1100 	 */
1101 	{ 0x18, 0x5f },
1102 
1103 	/*
1104 	 * 19 VSTRT "Vertical window start"
1105 	 *                  =   0 (0x00) 00000000
1106 	 *    VSTRT[7:0] "Vertical Window Start, 8 MSBs"
1107 	 *                  =   0 (0x00) 00000000
1108 	 */
1109 	{ 0x19, 0x00 },
1110 
1111 	/*
1112 	 * 1A VEND "Vertical window end"
1113 	 *                  =  96 (0x60) 01100000
1114 	 *    VEND[7:0] "Vertical Window End, 8 MSBs"
1115 	 *                  =  96 (0x60) 01100000
1116 	 */
1117 	{ 0x1a, 0x60 },
1118 
1119 	/*
1120 	 * 32 COMM "Common Control M"
1121 	 *                  =  18 (0x12) 00010010
1122 	 *    COMM[7:6] "Pixel clock divide option"
1123 	 *                  =   0 (0x00) 00...... "/1"
1124 	 *    COMM[5:3] "Horizontal window end position, 3 LSBs"
1125 	 *                  =   2 (0x02) ..010...
1126 	 *    COMM[2:0] "Horizontal window start position, 3 LSBs"
1127 	 *                  =   2 (0x02) .....010
1128 	 */
1129 	{ 0x32, 0x12 },
1130 
1131 	/*
1132 	 * 03 COMA "Common Control A"
1133 	 *                  =  74 (0x4A) 01001010
1134 	 *    COMA[7:4] "AWB Update Threshold"
1135 	 *                  =   4 (0x04) 0100....
1136 	 *    COMA[3:2] "Vertical window end line control 2 LSBs"
1137 	 *                  =   2 (0x02) ....10..
1138 	 *    COMA[1:0] "Vertical window start line control 2 LSBs"
1139 	 *                  =   2 (0x02) ......10
1140 	 */
1141 	{ 0x03, 0x4a },
1142 
1143 	/*
1144 	 * 11 CLKRC "Clock Rate Control"
1145 	 *                  = 128 (0x80) 10000000
1146 	 *    CLKRC[7] "Internal frequency doublers on off seclection"
1147 	 *                  =   1 (0x01) 1....... "On"
1148 	 *    CLKRC[6] "Digital video master slave selection"
1149 	 *                  =   0 (0x00) .0...... "Master mode, sensor
1150 	 *                                         provides PCLK"
1151 	 *    CLKRC[5:0] "Clock divider { CLK = PCLK/(1+CLKRC[5:0]) }"
1152 	 *                  =   0 (0x00) ..000000
1153 	 */
1154 	{ 0x11, 0x80 },
1155 
1156 	/*
1157 	 * 12 COMH "Common Control H"
1158 	 *                  =   0 (0x00) 00000000
1159 	 *    COMH[7] "SRST"
1160 	 *                  =   0 (0x00) 0....... "No-op"
1161 	 *    COMH[6:4] "Resolution selection"
1162 	 *                  =   0 (0x00) .000.... "QXGA"
1163 	 *    COMH[3] "Master slave selection"
1164 	 *                  =   0 (0x00) ....0... "Master mode"
1165 	 *    COMH[2] "Internal B/R channel option"
1166 	 *                  =   0 (0x00) .....0.. "B/R use same channel"
1167 	 *    COMH[1] "Color bar test pattern"
1168 	 *                  =   0 (0x00) ......0. "Off"
1169 	 *    COMH[0] "Reserved"
1170 	 *                  =   0 (0x00) .......0
1171 	 */
1172 	{ 0x12, 0x00 },
1173 
1174 	/*
1175 	 * 12 COMH "Common Control H"
1176 	 *                  =  64 (0x40) 01000000
1177 	 *    COMH[7] "SRST"
1178 	 *                  =   0 (0x00) 0....... "No-op"
1179 	 *    COMH[6:4] "Resolution selection"
1180 	 *                  =   4 (0x04) .100.... "XGA"
1181 	 *    COMH[3] "Master slave selection"
1182 	 *                  =   0 (0x00) ....0... "Master mode"
1183 	 *    COMH[2] "Internal B/R channel option"
1184 	 *                  =   0 (0x00) .....0.. "B/R use same channel"
1185 	 *    COMH[1] "Color bar test pattern"
1186 	 *                  =   0 (0x00) ......0. "Off"
1187 	 *    COMH[0] "Reserved"
1188 	 *                  =   0 (0x00) .......0
1189 	 */
1190 	{ 0x12, 0x40 },
1191 
1192 	/*
1193 	 * 17 HREFST "Horizontal window start"
1194 	 *                  =  31 (0x1F) 00011111
1195 	 *    HREFST[7:0] "Horizontal window start, 8 MSBs"
1196 	 *                  =  31 (0x1F) 00011111
1197 	 */
1198 	{ 0x17, 0x1f },
1199 
1200 	/*
1201 	 * 18 HREFEND "Horizontal window end"
1202 	 *                  =  95 (0x5F) 01011111
1203 	 *    HREFEND[7:0] "Horizontal Window End, 8 MSBs"
1204 	 *                  =  95 (0x5F) 01011111
1205 	 */
1206 	{ 0x18, 0x5f },
1207 
1208 	/*
1209 	 * 19 VSTRT "Vertical window start"
1210 	 *                  =   0 (0x00) 00000000
1211 	 *    VSTRT[7:0] "Vertical Window Start, 8 MSBs"
1212 	 *                  =   0 (0x00) 00000000
1213 	 */
1214 	{ 0x19, 0x00 },
1215 
1216 	/*
1217 	 * 1A VEND "Vertical window end"
1218 	 *                  =  96 (0x60) 01100000
1219 	 *    VEND[7:0] "Vertical Window End, 8 MSBs"
1220 	 *                  =  96 (0x60) 01100000
1221 	 */
1222 	{ 0x1a, 0x60 },
1223 
1224 	/*
1225 	 * 32 COMM "Common Control M"
1226 	 *                  =  18 (0x12) 00010010
1227 	 *    COMM[7:6] "Pixel clock divide option"
1228 	 *                  =   0 (0x00) 00...... "/1"
1229 	 *    COMM[5:3] "Horizontal window end position, 3 LSBs"
1230 	 *                  =   2 (0x02) ..010...
1231 	 *    COMM[2:0] "Horizontal window start position, 3 LSBs"
1232 	 *                  =   2 (0x02) .....010
1233 	 */
1234 	{ 0x32, 0x12 },
1235 
1236 	/*
1237 	 * 03 COMA "Common Control A"
1238 	 *                  =  74 (0x4A) 01001010
1239 	 *    COMA[7:4] "AWB Update Threshold"
1240 	 *                  =   4 (0x04) 0100....
1241 	 *    COMA[3:2] "Vertical window end line control 2 LSBs"
1242 	 *                  =   2 (0x02) ....10..
1243 	 *    COMA[1:0] "Vertical window start line control 2 LSBs"
1244 	 *                  =   2 (0x02) ......10
1245 	 */
1246 	{ 0x03, 0x4a },
1247 
1248 	/*
1249 	 * 02 RED "Red Gain Control"
1250 	 *                  = 175 (0xAF) 10101111
1251 	 *    RED[7] "Action"
1252 	 *                  =   1 (0x01) 1....... "gain = 1/(1+bitrev([6:0]))"
1253 	 *    RED[6:0] "Value"
1254 	 *                  =  47 (0x2F) .0101111
1255 	 */
1256 	{ 0x02, 0xaf },
1257 
1258 	/*
1259 	 * 2D ADDVSL "VSYNC Pulse Width"
1260 	 *                  = 210 (0xD2) 11010010
1261 	 *    ADDVSL[7:0] "VSYNC pulse width, LSB"
1262 	 *                  = 210 (0xD2) 11010010
1263 	 */
1264 	{ 0x2d, 0xd2 },
1265 
1266 	/*
1267 	 * 00 GAIN          =  24 (0x18) 00011000
1268 	 *    GAIN[7:6] "Reserved"
1269 	 *                  =   0 (0x00) 00......
1270 	 *    GAIN[5] "Double"
1271 	 *                  =   0 (0x00) ..0..... "False"
1272 	 *    GAIN[4] "Double"
1273 	 *                  =   1 (0x01) ...1.... "True"
1274 	 *    GAIN[3:0] "Range"
1275 	 *                  =   8 (0x08) ....1000
1276 	 */
1277 	{ 0x00, 0x18 },
1278 
1279 	/*
1280 	 * 01 BLUE "Blue Gain Control"
1281 	 *                  = 240 (0xF0) 11110000
1282 	 *    BLUE[7] "Action"
1283 	 *                  =   1 (0x01) 1....... "gain = 1/(1+bitrev([6:0]))"
1284 	 *    BLUE[6:0] "Value"
1285 	 *                  = 112 (0x70) .1110000
1286 	 */
1287 	{ 0x01, 0xf0 },
1288 
1289 	/*
1290 	 * 10 AEC "Automatic Exposure Control"
1291 	 *                  =  10 (0x0A) 00001010
1292 	 *    AEC[7:0] "Automatic Exposure Control, 8 MSBs"
1293 	 *                  =  10 (0x0A) 00001010
1294 	 */
1295 	{ 0x10, 0x0a },
1296 
1297 	{ 0xe1, 0x67 },
1298 	{ 0xe3, 0x03 },
1299 	{ 0xe4, 0x26 },
1300 	{ 0xe5, 0x3e },
1301 	{ 0xf8, 0x01 },
1302 	{ 0xff, 0x01 },
1303 };
1304 
1305 static const struct ov_i2c_regvals norm_6x20[] = {
1306 	{ 0x12, 0x80 }, /* reset */
1307 	{ 0x11, 0x01 },
1308 	{ 0x03, 0x60 },
1309 	{ 0x05, 0x7f }, /* For when autoadjust is off */
1310 	{ 0x07, 0xa8 },
1311 	/* The ratio of 0x0c and 0x0d controls the white point */
1312 	{ 0x0c, 0x24 },
1313 	{ 0x0d, 0x24 },
1314 	{ 0x0f, 0x15 }, /* COMS */
1315 	{ 0x10, 0x75 }, /* AEC Exposure time */
1316 	{ 0x12, 0x24 }, /* Enable AGC */
1317 	{ 0x14, 0x04 },
1318 	/* 0x16: 0x06 helps frame stability with moving objects */
1319 	{ 0x16, 0x06 },
1320 /*	{ 0x20, 0x30 },  * Aperture correction enable */
1321 	{ 0x26, 0xb2 }, /* BLC enable */
1322 	/* 0x28: 0x05 Selects RGB format if RGB on */
1323 	{ 0x28, 0x05 },
1324 	{ 0x2a, 0x04 }, /* Disable framerate adjust */
1325 /*	{ 0x2b, 0xac },  * Framerate; Set 2a[7] first */
1326 	{ 0x2d, 0x85 },
1327 	{ 0x33, 0xa0 }, /* Color Processing Parameter */
1328 	{ 0x34, 0xd2 }, /* Max A/D range */
1329 	{ 0x38, 0x8b },
1330 	{ 0x39, 0x40 },
1331 
1332 	{ 0x3c, 0x39 }, /* Enable AEC mode changing */
1333 	{ 0x3c, 0x3c }, /* Change AEC mode */
1334 	{ 0x3c, 0x24 }, /* Disable AEC mode changing */
1335 
1336 	{ 0x3d, 0x80 },
1337 	/* These next two registers (0x4a, 0x4b) are undocumented.
1338 	 * They control the color balance */
1339 	{ 0x4a, 0x80 },
1340 	{ 0x4b, 0x80 },
1341 	{ 0x4d, 0xd2 }, /* This reduces noise a bit */
1342 	{ 0x4e, 0xc1 },
1343 	{ 0x4f, 0x04 },
1344 /* Do 50-53 have any effect? */
1345 /* Toggle 0x12[2] off and on here? */
1346 };
1347 
1348 static const struct ov_i2c_regvals norm_6x30[] = {
1349 	{ 0x12, 0x80 }, /* Reset */
1350 	{ 0x00, 0x1f }, /* Gain */
1351 	{ 0x01, 0x99 }, /* Blue gain */
1352 	{ 0x02, 0x7c }, /* Red gain */
1353 	{ 0x03, 0xc0 }, /* Saturation */
1354 	{ 0x05, 0x0a }, /* Contrast */
1355 	{ 0x06, 0x95 }, /* Brightness */
1356 	{ 0x07, 0x2d }, /* Sharpness */
1357 	{ 0x0c, 0x20 },
1358 	{ 0x0d, 0x20 },
1359 	{ 0x0e, 0xa0 }, /* Was 0x20, bit7 enables a 2x gain which we need */
1360 	{ 0x0f, 0x05 },
1361 	{ 0x10, 0x9a },
1362 	{ 0x11, 0x00 }, /* Pixel clock = fastest */
1363 	{ 0x12, 0x24 }, /* Enable AGC and AWB */
1364 	{ 0x13, 0x21 },
1365 	{ 0x14, 0x80 },
1366 	{ 0x15, 0x01 },
1367 	{ 0x16, 0x03 },
1368 	{ 0x17, 0x38 },
1369 	{ 0x18, 0xea },
1370 	{ 0x19, 0x04 },
1371 	{ 0x1a, 0x93 },
1372 	{ 0x1b, 0x00 },
1373 	{ 0x1e, 0xc4 },
1374 	{ 0x1f, 0x04 },
1375 	{ 0x20, 0x20 },
1376 	{ 0x21, 0x10 },
1377 	{ 0x22, 0x88 },
1378 	{ 0x23, 0xc0 }, /* Crystal circuit power level */
1379 	{ 0x25, 0x9a }, /* Increase AEC black ratio */
1380 	{ 0x26, 0xb2 }, /* BLC enable */
1381 	{ 0x27, 0xa2 },
1382 	{ 0x28, 0x00 },
1383 	{ 0x29, 0x00 },
1384 	{ 0x2a, 0x84 }, /* 60 Hz power */
1385 	{ 0x2b, 0xa8 }, /* 60 Hz power */
1386 	{ 0x2c, 0xa0 },
1387 	{ 0x2d, 0x95 }, /* Enable auto-brightness */
1388 	{ 0x2e, 0x88 },
1389 	{ 0x33, 0x26 },
1390 	{ 0x34, 0x03 },
1391 	{ 0x36, 0x8f },
1392 	{ 0x37, 0x80 },
1393 	{ 0x38, 0x83 },
1394 	{ 0x39, 0x80 },
1395 	{ 0x3a, 0x0f },
1396 	{ 0x3b, 0x3c },
1397 	{ 0x3c, 0x1a },
1398 	{ 0x3d, 0x80 },
1399 	{ 0x3e, 0x80 },
1400 	{ 0x3f, 0x0e },
1401 	{ 0x40, 0x00 }, /* White bal */
1402 	{ 0x41, 0x00 }, /* White bal */
1403 	{ 0x42, 0x80 },
1404 	{ 0x43, 0x3f }, /* White bal */
1405 	{ 0x44, 0x80 },
1406 	{ 0x45, 0x20 },
1407 	{ 0x46, 0x20 },
1408 	{ 0x47, 0x80 },
1409 	{ 0x48, 0x7f },
1410 	{ 0x49, 0x00 },
1411 	{ 0x4a, 0x00 },
1412 	{ 0x4b, 0x80 },
1413 	{ 0x4c, 0xd0 },
1414 	{ 0x4d, 0x10 }, /* U = 0.563u, V = 0.714v */
1415 	{ 0x4e, 0x40 },
1416 	{ 0x4f, 0x07 }, /* UV avg., col. killer: max */
1417 	{ 0x50, 0xff },
1418 	{ 0x54, 0x23 }, /* Max AGC gain: 18dB */
1419 	{ 0x55, 0xff },
1420 	{ 0x56, 0x12 },
1421 	{ 0x57, 0x81 },
1422 	{ 0x58, 0x75 },
1423 	{ 0x59, 0x01 }, /* AGC dark current comp.: +1 */
1424 	{ 0x5a, 0x2c },
1425 	{ 0x5b, 0x0f }, /* AWB chrominance levels */
1426 	{ 0x5c, 0x10 },
1427 	{ 0x3d, 0x80 },
1428 	{ 0x27, 0xa6 },
1429 	{ 0x12, 0x20 }, /* Toggle AWB */
1430 	{ 0x12, 0x24 },
1431 };
1432 
1433 /* Lawrence Glaister <lg@jfm.bc.ca> reports:
1434  *
1435  * Register 0x0f in the 7610 has the following effects:
1436  *
1437  * 0x85 (AEC method 1): Best overall, good contrast range
1438  * 0x45 (AEC method 2): Very overexposed
1439  * 0xa5 (spec sheet default): Ok, but the black level is
1440  *	shifted resulting in loss of contrast
1441  * 0x05 (old driver setting): very overexposed, too much
1442  *	contrast
1443  */
1444 static const struct ov_i2c_regvals norm_7610[] = {
1445 	{ 0x10, 0xff },
1446 	{ 0x16, 0x06 },
1447 	{ 0x28, 0x24 },
1448 	{ 0x2b, 0xac },
1449 	{ 0x12, 0x00 },
1450 	{ 0x38, 0x81 },
1451 	{ 0x28, 0x24 },	/* 0c */
1452 	{ 0x0f, 0x85 },	/* lg's setting */
1453 	{ 0x15, 0x01 },
1454 	{ 0x20, 0x1c },
1455 	{ 0x23, 0x2a },
1456 	{ 0x24, 0x10 },
1457 	{ 0x25, 0x8a },
1458 	{ 0x26, 0xa2 },
1459 	{ 0x27, 0xc2 },
1460 	{ 0x2a, 0x04 },
1461 	{ 0x2c, 0xfe },
1462 	{ 0x2d, 0x93 },
1463 	{ 0x30, 0x71 },
1464 	{ 0x31, 0x60 },
1465 	{ 0x32, 0x26 },
1466 	{ 0x33, 0x20 },
1467 	{ 0x34, 0x48 },
1468 	{ 0x12, 0x24 },
1469 	{ 0x11, 0x01 },
1470 	{ 0x0c, 0x24 },
1471 	{ 0x0d, 0x24 },
1472 };
1473 
1474 static const struct ov_i2c_regvals norm_7620[] = {
1475 	{ 0x12, 0x80 },		/* reset */
1476 	{ 0x00, 0x00 },		/* gain */
1477 	{ 0x01, 0x80 },		/* blue gain */
1478 	{ 0x02, 0x80 },		/* red gain */
1479 	{ 0x03, 0xc0 },		/* OV7670_R03_VREF */
1480 	{ 0x06, 0x60 },
1481 	{ 0x07, 0x00 },
1482 	{ 0x0c, 0x24 },
1483 	{ 0x0c, 0x24 },
1484 	{ 0x0d, 0x24 },
1485 	{ 0x11, 0x01 },
1486 	{ 0x12, 0x24 },
1487 	{ 0x13, 0x01 },
1488 	{ 0x14, 0x84 },
1489 	{ 0x15, 0x01 },
1490 	{ 0x16, 0x03 },
1491 	{ 0x17, 0x2f },
1492 	{ 0x18, 0xcf },
1493 	{ 0x19, 0x06 },
1494 	{ 0x1a, 0xf5 },
1495 	{ 0x1b, 0x00 },
1496 	{ 0x20, 0x18 },
1497 	{ 0x21, 0x80 },
1498 	{ 0x22, 0x80 },
1499 	{ 0x23, 0x00 },
1500 	{ 0x26, 0xa2 },
1501 	{ 0x27, 0xea },
1502 	{ 0x28, 0x22 }, /* Was 0x20, bit1 enables a 2x gain which we need */
1503 	{ 0x29, 0x00 },
1504 	{ 0x2a, 0x10 },
1505 	{ 0x2b, 0x00 },
1506 	{ 0x2c, 0x88 },
1507 	{ 0x2d, 0x91 },
1508 	{ 0x2e, 0x80 },
1509 	{ 0x2f, 0x44 },
1510 	{ 0x60, 0x27 },
1511 	{ 0x61, 0x02 },
1512 	{ 0x62, 0x5f },
1513 	{ 0x63, 0xd5 },
1514 	{ 0x64, 0x57 },
1515 	{ 0x65, 0x83 },
1516 	{ 0x66, 0x55 },
1517 	{ 0x67, 0x92 },
1518 	{ 0x68, 0xcf },
1519 	{ 0x69, 0x76 },
1520 	{ 0x6a, 0x22 },
1521 	{ 0x6b, 0x00 },
1522 	{ 0x6c, 0x02 },
1523 	{ 0x6d, 0x44 },
1524 	{ 0x6e, 0x80 },
1525 	{ 0x6f, 0x1d },
1526 	{ 0x70, 0x8b },
1527 	{ 0x71, 0x00 },
1528 	{ 0x72, 0x14 },
1529 	{ 0x73, 0x54 },
1530 	{ 0x74, 0x00 },
1531 	{ 0x75, 0x8e },
1532 	{ 0x76, 0x00 },
1533 	{ 0x77, 0xff },
1534 	{ 0x78, 0x80 },
1535 	{ 0x79, 0x80 },
1536 	{ 0x7a, 0x80 },
1537 	{ 0x7b, 0xe2 },
1538 	{ 0x7c, 0x00 },
1539 };
1540 
1541 /* 7640 and 7648. The defaults should be OK for most registers. */
1542 static const struct ov_i2c_regvals norm_7640[] = {
1543 	{ 0x12, 0x80 },
1544 	{ 0x12, 0x14 },
1545 };
1546 
1547 static const struct ov_regvals init_519_ov7660[] = {
1548 	{ 0x5d,	0x03 }, /* Turn off suspend mode */
1549 	{ 0x53,	0x9b }, /* 0x9f enables the (unused) microcontroller */
1550 	{ 0x54,	0x0f }, /* bit2 (jpeg enable) */
1551 	{ 0xa2,	0x20 }, /* a2-a5 are undocumented */
1552 	{ 0xa3,	0x18 },
1553 	{ 0xa4,	0x04 },
1554 	{ 0xa5,	0x28 },
1555 	{ 0x37,	0x00 },	/* SetUsbInit */
1556 	{ 0x55,	0x02 }, /* 4.096 Mhz audio clock */
1557 	/* Enable both fields, YUV Input, disable defect comp (why?) */
1558 	{ 0x20,	0x0c },	/* 0x0d does U <-> V swap */
1559 	{ 0x21,	0x38 },
1560 	{ 0x22,	0x1d },
1561 	{ 0x17,	0x50 }, /* undocumented */
1562 	{ 0x37,	0x00 }, /* undocumented */
1563 	{ 0x40,	0xff }, /* I2C timeout counter */
1564 	{ 0x46,	0x00 }, /* I2C clock prescaler */
1565 };
1566 static const struct ov_i2c_regvals norm_7660[] = {
1567 	{OV7670_R12_COM7, OV7670_COM7_RESET},
1568 	{OV7670_R11_CLKRC, 0x81},
1569 	{0x92, 0x00},			/* DM_LNL */
1570 	{0x93, 0x00},			/* DM_LNH */
1571 	{0x9d, 0x4c},			/* BD50ST */
1572 	{0x9e, 0x3f},			/* BD60ST */
1573 	{OV7670_R3B_COM11, 0x02},
1574 	{OV7670_R13_COM8, 0xf5},
1575 	{OV7670_R10_AECH, 0x00},
1576 	{OV7670_R00_GAIN, 0x00},
1577 	{OV7670_R01_BLUE, 0x7c},
1578 	{OV7670_R02_RED, 0x9d},
1579 	{OV7670_R12_COM7, 0x00},
1580 	{OV7670_R04_COM1, 00},
1581 	{OV7670_R18_HSTOP, 0x01},
1582 	{OV7670_R17_HSTART, 0x13},
1583 	{OV7670_R32_HREF, 0x92},
1584 	{OV7670_R19_VSTART, 0x02},
1585 	{OV7670_R1A_VSTOP, 0x7a},
1586 	{OV7670_R03_VREF, 0x00},
1587 	{OV7670_R0E_COM5, 0x04},
1588 	{OV7670_R0F_COM6, 0x62},
1589 	{OV7670_R15_COM10, 0x00},
1590 	{0x16, 0x02},			/* RSVD */
1591 	{0x1b, 0x00},			/* PSHFT */
1592 	{OV7670_R1E_MVFP, 0x01},
1593 	{0x29, 0x3c},			/* RSVD */
1594 	{0x33, 0x00},			/* CHLF */
1595 	{0x34, 0x07},			/* ARBLM */
1596 	{0x35, 0x84},			/* RSVD */
1597 	{0x36, 0x00},			/* RSVD */
1598 	{0x37, 0x04},			/* ADC */
1599 	{0x39, 0x43},			/* OFON */
1600 	{OV7670_R3A_TSLB, 0x00},
1601 	{OV7670_R3C_COM12, 0x6c},
1602 	{OV7670_R3D_COM13, 0x98},
1603 	{OV7670_R3F_EDGE, 0x23},
1604 	{OV7670_R40_COM15, 0xc1},
1605 	{OV7670_R41_COM16, 0x22},
1606 	{0x6b, 0x0a},			/* DBLV */
1607 	{0xa1, 0x08},			/* RSVD */
1608 	{0x69, 0x80},			/* HV */
1609 	{0x43, 0xf0},			/* RSVD.. */
1610 	{0x44, 0x10},
1611 	{0x45, 0x78},
1612 	{0x46, 0xa8},
1613 	{0x47, 0x60},
1614 	{0x48, 0x80},
1615 	{0x59, 0xba},
1616 	{0x5a, 0x9a},
1617 	{0x5b, 0x22},
1618 	{0x5c, 0xb9},
1619 	{0x5d, 0x9b},
1620 	{0x5e, 0x10},
1621 	{0x5f, 0xe0},
1622 	{0x60, 0x85},
1623 	{0x61, 0x60},
1624 	{0x9f, 0x9d},			/* RSVD */
1625 	{0xa0, 0xa0},			/* DSPC2 */
1626 	{0x4f, 0x60},			/* matrix */
1627 	{0x50, 0x64},
1628 	{0x51, 0x04},
1629 	{0x52, 0x18},
1630 	{0x53, 0x3c},
1631 	{0x54, 0x54},
1632 	{0x55, 0x40},
1633 	{0x56, 0x40},
1634 	{0x57, 0x40},
1635 	{0x58, 0x0d},			/* matrix sign */
1636 	{0x8b, 0xcc},			/* RSVD */
1637 	{0x8c, 0xcc},
1638 	{0x8d, 0xcf},
1639 	{0x6c, 0x40},			/* gamma curve */
1640 	{0x6d, 0xe0},
1641 	{0x6e, 0xa0},
1642 	{0x6f, 0x80},
1643 	{0x70, 0x70},
1644 	{0x71, 0x80},
1645 	{0x72, 0x60},
1646 	{0x73, 0x60},
1647 	{0x74, 0x50},
1648 	{0x75, 0x40},
1649 	{0x76, 0x38},
1650 	{0x77, 0x3c},
1651 	{0x78, 0x32},
1652 	{0x79, 0x1a},
1653 	{0x7a, 0x28},
1654 	{0x7b, 0x24},
1655 	{0x7c, 0x04},			/* gamma curve */
1656 	{0x7d, 0x12},
1657 	{0x7e, 0x26},
1658 	{0x7f, 0x46},
1659 	{0x80, 0x54},
1660 	{0x81, 0x64},
1661 	{0x82, 0x70},
1662 	{0x83, 0x7c},
1663 	{0x84, 0x86},
1664 	{0x85, 0x8e},
1665 	{0x86, 0x9c},
1666 	{0x87, 0xab},
1667 	{0x88, 0xc4},
1668 	{0x89, 0xd1},
1669 	{0x8a, 0xe5},
1670 	{OV7670_R14_COM9, 0x1e},
1671 	{OV7670_R24_AEW, 0x80},
1672 	{OV7670_R25_AEB, 0x72},
1673 	{OV7670_R26_VPT, 0xb3},
1674 	{0x62, 0x80},			/* LCC1 */
1675 	{0x63, 0x80},			/* LCC2 */
1676 	{0x64, 0x06},			/* LCC3 */
1677 	{0x65, 0x00},			/* LCC4 */
1678 	{0x66, 0x01},			/* LCC5 */
1679 	{0x94, 0x0e},			/* RSVD.. */
1680 	{0x95, 0x14},
1681 	{OV7670_R13_COM8, OV7670_COM8_FASTAEC
1682 			| OV7670_COM8_AECSTEP
1683 			| OV7670_COM8_BFILT
1684 			| 0x10
1685 			| OV7670_COM8_AGC
1686 			| OV7670_COM8_AWB
1687 			| OV7670_COM8_AEC},
1688 	{0xa1, 0xc8}
1689 };
1690 static const struct ov_i2c_regvals norm_9600[] = {
1691 	{0x12, 0x80},
1692 	{0x0c, 0x28},
1693 	{0x11, 0x80},
1694 	{0x13, 0xb5},
1695 	{0x14, 0x3e},
1696 	{0x1b, 0x04},
1697 	{0x24, 0xb0},
1698 	{0x25, 0x90},
1699 	{0x26, 0x94},
1700 	{0x35, 0x90},
1701 	{0x37, 0x07},
1702 	{0x38, 0x08},
1703 	{0x01, 0x8e},
1704 	{0x02, 0x85}
1705 };
1706 
1707 /* 7670. Defaults taken from OmniVision provided data,
1708 *  as provided by Jonathan Corbet of OLPC		*/
1709 static const struct ov_i2c_regvals norm_7670[] = {
1710 	{ OV7670_R12_COM7, OV7670_COM7_RESET },
1711 	{ OV7670_R3A_TSLB, 0x04 },		/* OV */
1712 	{ OV7670_R12_COM7, OV7670_COM7_FMT_VGA }, /* VGA */
1713 	{ OV7670_R11_CLKRC, 0x01 },
1714 /*
1715  * Set the hardware window.  These values from OV don't entirely
1716  * make sense - hstop is less than hstart.  But they work...
1717  */
1718 	{ OV7670_R17_HSTART, 0x13 },
1719 	{ OV7670_R18_HSTOP, 0x01 },
1720 	{ OV7670_R32_HREF, 0xb6 },
1721 	{ OV7670_R19_VSTART, 0x02 },
1722 	{ OV7670_R1A_VSTOP, 0x7a },
1723 	{ OV7670_R03_VREF, 0x0a },
1724 
1725 	{ OV7670_R0C_COM3, 0x00 },
1726 	{ OV7670_R3E_COM14, 0x00 },
1727 /* Mystery scaling numbers */
1728 	{ 0x70, 0x3a },
1729 	{ 0x71, 0x35 },
1730 	{ 0x72, 0x11 },
1731 	{ 0x73, 0xf0 },
1732 	{ 0xa2, 0x02 },
1733 /*	{ OV7670_R15_COM10, 0x0 }, */
1734 
1735 /* Gamma curve values */
1736 	{ 0x7a, 0x20 },
1737 	{ 0x7b, 0x10 },
1738 	{ 0x7c, 0x1e },
1739 	{ 0x7d, 0x35 },
1740 	{ 0x7e, 0x5a },
1741 	{ 0x7f, 0x69 },
1742 	{ 0x80, 0x76 },
1743 	{ 0x81, 0x80 },
1744 	{ 0x82, 0x88 },
1745 	{ 0x83, 0x8f },
1746 	{ 0x84, 0x96 },
1747 	{ 0x85, 0xa3 },
1748 	{ 0x86, 0xaf },
1749 	{ 0x87, 0xc4 },
1750 	{ 0x88, 0xd7 },
1751 	{ 0x89, 0xe8 },
1752 
1753 /* AGC and AEC parameters.  Note we start by disabling those features,
1754    then turn them only after tweaking the values. */
1755 	{ OV7670_R13_COM8, OV7670_COM8_FASTAEC
1756 			 | OV7670_COM8_AECSTEP
1757 			 | OV7670_COM8_BFILT },
1758 	{ OV7670_R00_GAIN, 0x00 },
1759 	{ OV7670_R10_AECH, 0x00 },
1760 	{ OV7670_R0D_COM4, 0x40 }, /* magic reserved bit */
1761 	{ OV7670_R14_COM9, 0x18 }, /* 4x gain + magic rsvd bit */
1762 	{ OV7670_RA5_BD50MAX, 0x05 },
1763 	{ OV7670_RAB_BD60MAX, 0x07 },
1764 	{ OV7670_R24_AEW, 0x95 },
1765 	{ OV7670_R25_AEB, 0x33 },
1766 	{ OV7670_R26_VPT, 0xe3 },
1767 	{ OV7670_R9F_HAECC1, 0x78 },
1768 	{ OV7670_RA0_HAECC2, 0x68 },
1769 	{ 0xa1, 0x03 }, /* magic */
1770 	{ OV7670_RA6_HAECC3, 0xd8 },
1771 	{ OV7670_RA7_HAECC4, 0xd8 },
1772 	{ OV7670_RA8_HAECC5, 0xf0 },
1773 	{ OV7670_RA9_HAECC6, 0x90 },
1774 	{ OV7670_RAA_HAECC7, 0x94 },
1775 	{ OV7670_R13_COM8, OV7670_COM8_FASTAEC
1776 			| OV7670_COM8_AECSTEP
1777 			| OV7670_COM8_BFILT
1778 			| OV7670_COM8_AGC
1779 			| OV7670_COM8_AEC },
1780 
1781 /* Almost all of these are magic "reserved" values.  */
1782 	{ OV7670_R0E_COM5, 0x61 },
1783 	{ OV7670_R0F_COM6, 0x4b },
1784 	{ 0x16, 0x02 },
1785 	{ OV7670_R1E_MVFP, 0x07 },
1786 	{ 0x21, 0x02 },
1787 	{ 0x22, 0x91 },
1788 	{ 0x29, 0x07 },
1789 	{ 0x33, 0x0b },
1790 	{ 0x35, 0x0b },
1791 	{ 0x37, 0x1d },
1792 	{ 0x38, 0x71 },
1793 	{ 0x39, 0x2a },
1794 	{ OV7670_R3C_COM12, 0x78 },
1795 	{ 0x4d, 0x40 },
1796 	{ 0x4e, 0x20 },
1797 	{ OV7670_R69_GFIX, 0x00 },
1798 	{ 0x6b, 0x4a },
1799 	{ 0x74, 0x10 },
1800 	{ 0x8d, 0x4f },
1801 	{ 0x8e, 0x00 },
1802 	{ 0x8f, 0x00 },
1803 	{ 0x90, 0x00 },
1804 	{ 0x91, 0x00 },
1805 	{ 0x96, 0x00 },
1806 	{ 0x9a, 0x00 },
1807 	{ 0xb0, 0x84 },
1808 	{ 0xb1, 0x0c },
1809 	{ 0xb2, 0x0e },
1810 	{ 0xb3, 0x82 },
1811 	{ 0xb8, 0x0a },
1812 
1813 /* More reserved magic, some of which tweaks white balance */
1814 	{ 0x43, 0x0a },
1815 	{ 0x44, 0xf0 },
1816 	{ 0x45, 0x34 },
1817 	{ 0x46, 0x58 },
1818 	{ 0x47, 0x28 },
1819 	{ 0x48, 0x3a },
1820 	{ 0x59, 0x88 },
1821 	{ 0x5a, 0x88 },
1822 	{ 0x5b, 0x44 },
1823 	{ 0x5c, 0x67 },
1824 	{ 0x5d, 0x49 },
1825 	{ 0x5e, 0x0e },
1826 	{ 0x6c, 0x0a },
1827 	{ 0x6d, 0x55 },
1828 	{ 0x6e, 0x11 },
1829 	{ 0x6f, 0x9f },			/* "9e for advance AWB" */
1830 	{ 0x6a, 0x40 },
1831 	{ OV7670_R01_BLUE, 0x40 },
1832 	{ OV7670_R02_RED, 0x60 },
1833 	{ OV7670_R13_COM8, OV7670_COM8_FASTAEC
1834 			| OV7670_COM8_AECSTEP
1835 			| OV7670_COM8_BFILT
1836 			| OV7670_COM8_AGC
1837 			| OV7670_COM8_AEC
1838 			| OV7670_COM8_AWB },
1839 
1840 /* Matrix coefficients */
1841 	{ 0x4f, 0x80 },
1842 	{ 0x50, 0x80 },
1843 	{ 0x51, 0x00 },
1844 	{ 0x52, 0x22 },
1845 	{ 0x53, 0x5e },
1846 	{ 0x54, 0x80 },
1847 	{ 0x58, 0x9e },
1848 
1849 	{ OV7670_R41_COM16, OV7670_COM16_AWBGAIN },
1850 	{ OV7670_R3F_EDGE, 0x00 },
1851 	{ 0x75, 0x05 },
1852 	{ 0x76, 0xe1 },
1853 	{ 0x4c, 0x00 },
1854 	{ 0x77, 0x01 },
1855 	{ OV7670_R3D_COM13, OV7670_COM13_GAMMA
1856 			  | OV7670_COM13_UVSAT
1857 			  | 2},		/* was 3 */
1858 	{ 0x4b, 0x09 },
1859 	{ 0xc9, 0x60 },
1860 	{ OV7670_R41_COM16, 0x38 },
1861 	{ 0x56, 0x40 },
1862 
1863 	{ 0x34, 0x11 },
1864 	{ OV7670_R3B_COM11, OV7670_COM11_EXP|OV7670_COM11_HZAUTO },
1865 	{ 0xa4, 0x88 },
1866 	{ 0x96, 0x00 },
1867 	{ 0x97, 0x30 },
1868 	{ 0x98, 0x20 },
1869 	{ 0x99, 0x30 },
1870 	{ 0x9a, 0x84 },
1871 	{ 0x9b, 0x29 },
1872 	{ 0x9c, 0x03 },
1873 	{ 0x9d, 0x4c },
1874 	{ 0x9e, 0x3f },
1875 	{ 0x78, 0x04 },
1876 
1877 /* Extra-weird stuff.  Some sort of multiplexor register */
1878 	{ 0x79, 0x01 },
1879 	{ 0xc8, 0xf0 },
1880 	{ 0x79, 0x0f },
1881 	{ 0xc8, 0x00 },
1882 	{ 0x79, 0x10 },
1883 	{ 0xc8, 0x7e },
1884 	{ 0x79, 0x0a },
1885 	{ 0xc8, 0x80 },
1886 	{ 0x79, 0x0b },
1887 	{ 0xc8, 0x01 },
1888 	{ 0x79, 0x0c },
1889 	{ 0xc8, 0x0f },
1890 	{ 0x79, 0x0d },
1891 	{ 0xc8, 0x20 },
1892 	{ 0x79, 0x09 },
1893 	{ 0xc8, 0x80 },
1894 	{ 0x79, 0x02 },
1895 	{ 0xc8, 0xc0 },
1896 	{ 0x79, 0x03 },
1897 	{ 0xc8, 0x40 },
1898 	{ 0x79, 0x05 },
1899 	{ 0xc8, 0x30 },
1900 	{ 0x79, 0x26 },
1901 };
1902 
1903 static const struct ov_i2c_regvals norm_8610[] = {
1904 	{ 0x12, 0x80 },
1905 	{ 0x00, 0x00 },
1906 	{ 0x01, 0x80 },
1907 	{ 0x02, 0x80 },
1908 	{ 0x03, 0xc0 },
1909 	{ 0x04, 0x30 },
1910 	{ 0x05, 0x30 }, /* was 0x10, new from windrv 090403 */
1911 	{ 0x06, 0x70 }, /* was 0x80, new from windrv 090403 */
1912 	{ 0x0a, 0x86 },
1913 	{ 0x0b, 0xb0 },
1914 	{ 0x0c, 0x20 },
1915 	{ 0x0d, 0x20 },
1916 	{ 0x11, 0x01 },
1917 	{ 0x12, 0x25 },
1918 	{ 0x13, 0x01 },
1919 	{ 0x14, 0x04 },
1920 	{ 0x15, 0x01 }, /* Lin and Win think different about UV order */
1921 	{ 0x16, 0x03 },
1922 	{ 0x17, 0x38 }, /* was 0x2f, new from windrv 090403 */
1923 	{ 0x18, 0xea }, /* was 0xcf, new from windrv 090403 */
1924 	{ 0x19, 0x02 }, /* was 0x06, new from windrv 090403 */
1925 	{ 0x1a, 0xf5 },
1926 	{ 0x1b, 0x00 },
1927 	{ 0x20, 0xd0 }, /* was 0x90, new from windrv 090403 */
1928 	{ 0x23, 0xc0 }, /* was 0x00, new from windrv 090403 */
1929 	{ 0x24, 0x30 }, /* was 0x1d, new from windrv 090403 */
1930 	{ 0x25, 0x50 }, /* was 0x57, new from windrv 090403 */
1931 	{ 0x26, 0xa2 },
1932 	{ 0x27, 0xea },
1933 	{ 0x28, 0x00 },
1934 	{ 0x29, 0x00 },
1935 	{ 0x2a, 0x80 },
1936 	{ 0x2b, 0xc8 }, /* was 0xcc, new from windrv 090403 */
1937 	{ 0x2c, 0xac },
1938 	{ 0x2d, 0x45 }, /* was 0xd5, new from windrv 090403 */
1939 	{ 0x2e, 0x80 },
1940 	{ 0x2f, 0x14 }, /* was 0x01, new from windrv 090403 */
1941 	{ 0x4c, 0x00 },
1942 	{ 0x4d, 0x30 }, /* was 0x10, new from windrv 090403 */
1943 	{ 0x60, 0x02 }, /* was 0x01, new from windrv 090403 */
1944 	{ 0x61, 0x00 }, /* was 0x09, new from windrv 090403 */
1945 	{ 0x62, 0x5f }, /* was 0xd7, new from windrv 090403 */
1946 	{ 0x63, 0xff },
1947 	{ 0x64, 0x53 }, /* new windrv 090403 says 0x57,
1948 			 * maybe thats wrong */
1949 	{ 0x65, 0x00 },
1950 	{ 0x66, 0x55 },
1951 	{ 0x67, 0xb0 },
1952 	{ 0x68, 0xc0 }, /* was 0xaf, new from windrv 090403 */
1953 	{ 0x69, 0x02 },
1954 	{ 0x6a, 0x22 },
1955 	{ 0x6b, 0x00 },
1956 	{ 0x6c, 0x99 }, /* was 0x80, old windrv says 0x00, but
1957 			 * deleting bit7 colors the first images red */
1958 	{ 0x6d, 0x11 }, /* was 0x00, new from windrv 090403 */
1959 	{ 0x6e, 0x11 }, /* was 0x00, new from windrv 090403 */
1960 	{ 0x6f, 0x01 },
1961 	{ 0x70, 0x8b },
1962 	{ 0x71, 0x00 },
1963 	{ 0x72, 0x14 },
1964 	{ 0x73, 0x54 },
1965 	{ 0x74, 0x00 },/* 0x60? - was 0x00, new from windrv 090403 */
1966 	{ 0x75, 0x0e },
1967 	{ 0x76, 0x02 }, /* was 0x02, new from windrv 090403 */
1968 	{ 0x77, 0xff },
1969 	{ 0x78, 0x80 },
1970 	{ 0x79, 0x80 },
1971 	{ 0x7a, 0x80 },
1972 	{ 0x7b, 0x10 }, /* was 0x13, new from windrv 090403 */
1973 	{ 0x7c, 0x00 },
1974 	{ 0x7d, 0x08 }, /* was 0x09, new from windrv 090403 */
1975 	{ 0x7e, 0x08 }, /* was 0xc0, new from windrv 090403 */
1976 	{ 0x7f, 0xfb },
1977 	{ 0x80, 0x28 },
1978 	{ 0x81, 0x00 },
1979 	{ 0x82, 0x23 },
1980 	{ 0x83, 0x0b },
1981 	{ 0x84, 0x00 },
1982 	{ 0x85, 0x62 }, /* was 0x61, new from windrv 090403 */
1983 	{ 0x86, 0xc9 },
1984 	{ 0x87, 0x00 },
1985 	{ 0x88, 0x00 },
1986 	{ 0x89, 0x01 },
1987 	{ 0x12, 0x20 },
1988 	{ 0x12, 0x25 }, /* was 0x24, new from windrv 090403 */
1989 };
1990 
ov7670_abs_to_sm(unsigned char v)1991 static unsigned char ov7670_abs_to_sm(unsigned char v)
1992 {
1993 	if (v > 127)
1994 		return v & 0x7f;
1995 	return (128 - v) | 0x80;
1996 }
1997 
1998 /* Write a OV519 register */
reg_w(struct sd * sd,u16 index,u16 value)1999 static void reg_w(struct sd *sd, u16 index, u16 value)
2000 {
2001 	struct gspca_dev *gspca_dev = (struct gspca_dev *)sd;
2002 	int ret, req = 0;
2003 
2004 	if (sd->gspca_dev.usb_err < 0)
2005 		return;
2006 
2007 	/* Avoid things going to fast for the bridge with a xhci host */
2008 	udelay(150);
2009 
2010 	switch (sd->bridge) {
2011 	case BRIDGE_OV511:
2012 	case BRIDGE_OV511PLUS:
2013 		req = 2;
2014 		break;
2015 	case BRIDGE_OVFX2:
2016 		req = 0x0a;
2017 		/* fall through */
2018 	case BRIDGE_W9968CF:
2019 		gspca_dbg(gspca_dev, D_USBO, "SET %02x %04x %04x\n",
2020 			  req, value, index);
2021 		ret = usb_control_msg(sd->gspca_dev.dev,
2022 			usb_sndctrlpipe(sd->gspca_dev.dev, 0),
2023 			req,
2024 			USB_DIR_OUT | USB_TYPE_VENDOR | USB_RECIP_DEVICE,
2025 			value, index, NULL, 0, 500);
2026 		goto leave;
2027 	default:
2028 		req = 1;
2029 	}
2030 
2031 	gspca_dbg(gspca_dev, D_USBO, "SET %02x 0000 %04x %02x\n",
2032 		  req, index, value);
2033 	sd->gspca_dev.usb_buf[0] = value;
2034 	ret = usb_control_msg(sd->gspca_dev.dev,
2035 			usb_sndctrlpipe(sd->gspca_dev.dev, 0),
2036 			req,
2037 			USB_DIR_OUT | USB_TYPE_VENDOR | USB_RECIP_DEVICE,
2038 			0, index,
2039 			sd->gspca_dev.usb_buf, 1, 500);
2040 leave:
2041 	if (ret < 0) {
2042 		gspca_err(gspca_dev, "reg_w %02x failed %d\n", index, ret);
2043 		sd->gspca_dev.usb_err = ret;
2044 		return;
2045 	}
2046 }
2047 
2048 /* Read from a OV519 register, note not valid for the w9968cf!! */
2049 /* returns: negative is error, pos or zero is data */
reg_r(struct sd * sd,u16 index)2050 static int reg_r(struct sd *sd, u16 index)
2051 {
2052 	struct gspca_dev *gspca_dev = (struct gspca_dev *)sd;
2053 	int ret;
2054 	int req;
2055 
2056 	if (sd->gspca_dev.usb_err < 0)
2057 		return -1;
2058 
2059 	switch (sd->bridge) {
2060 	case BRIDGE_OV511:
2061 	case BRIDGE_OV511PLUS:
2062 		req = 3;
2063 		break;
2064 	case BRIDGE_OVFX2:
2065 		req = 0x0b;
2066 		break;
2067 	default:
2068 		req = 1;
2069 	}
2070 
2071 	/* Avoid things going to fast for the bridge with a xhci host */
2072 	udelay(150);
2073 	ret = usb_control_msg(sd->gspca_dev.dev,
2074 			usb_rcvctrlpipe(sd->gspca_dev.dev, 0),
2075 			req,
2076 			USB_DIR_IN | USB_TYPE_VENDOR | USB_RECIP_DEVICE,
2077 			0, index, sd->gspca_dev.usb_buf, 1, 500);
2078 
2079 	if (ret >= 0) {
2080 		ret = sd->gspca_dev.usb_buf[0];
2081 		gspca_dbg(gspca_dev, D_USBI, "GET %02x 0000 %04x %02x\n",
2082 			  req, index, ret);
2083 	} else {
2084 		gspca_err(gspca_dev, "reg_r %02x failed %d\n", index, ret);
2085 		sd->gspca_dev.usb_err = ret;
2086 		/*
2087 		 * Make sure the result is zeroed to avoid uninitialized
2088 		 * values.
2089 		 */
2090 		gspca_dev->usb_buf[0] = 0;
2091 	}
2092 
2093 	return ret;
2094 }
2095 
2096 /* Read 8 values from a OV519 register */
reg_r8(struct sd * sd,u16 index)2097 static int reg_r8(struct sd *sd,
2098 		  u16 index)
2099 {
2100 	struct gspca_dev *gspca_dev = (struct gspca_dev *)sd;
2101 	int ret;
2102 
2103 	if (sd->gspca_dev.usb_err < 0)
2104 		return -1;
2105 
2106 	/* Avoid things going to fast for the bridge with a xhci host */
2107 	udelay(150);
2108 	ret = usb_control_msg(sd->gspca_dev.dev,
2109 			usb_rcvctrlpipe(sd->gspca_dev.dev, 0),
2110 			1,			/* REQ_IO */
2111 			USB_DIR_IN | USB_TYPE_VENDOR | USB_RECIP_DEVICE,
2112 			0, index, sd->gspca_dev.usb_buf, 8, 500);
2113 
2114 	if (ret >= 0) {
2115 		ret = sd->gspca_dev.usb_buf[0];
2116 	} else {
2117 		gspca_err(gspca_dev, "reg_r8 %02x failed %d\n", index, ret);
2118 		sd->gspca_dev.usb_err = ret;
2119 		/*
2120 		 * Make sure the buffer is zeroed to avoid uninitialized
2121 		 * values.
2122 		 */
2123 		memset(gspca_dev->usb_buf, 0, 8);
2124 	}
2125 
2126 	return ret;
2127 }
2128 
2129 /*
2130  * Writes bits at positions specified by mask to an OV51x reg. Bits that are in
2131  * the same position as 1's in "mask" are cleared and set to "value". Bits
2132  * that are in the same position as 0's in "mask" are preserved, regardless
2133  * of their respective state in "value".
2134  */
reg_w_mask(struct sd * sd,u16 index,u8 value,u8 mask)2135 static void reg_w_mask(struct sd *sd,
2136 			u16 index,
2137 			u8 value,
2138 			u8 mask)
2139 {
2140 	int ret;
2141 	u8 oldval;
2142 
2143 	if (mask != 0xff) {
2144 		value &= mask;			/* Enforce mask on value */
2145 		ret = reg_r(sd, index);
2146 		if (ret < 0)
2147 			return;
2148 
2149 		oldval = ret & ~mask;		/* Clear the masked bits */
2150 		value |= oldval;		/* Set the desired bits */
2151 	}
2152 	reg_w(sd, index, value);
2153 }
2154 
2155 /*
2156  * Writes multiple (n) byte value to a single register. Only valid with certain
2157  * registers (0x30 and 0xc4 - 0xce).
2158  */
ov518_reg_w32(struct sd * sd,u16 index,u32 value,int n)2159 static void ov518_reg_w32(struct sd *sd, u16 index, u32 value, int n)
2160 {
2161 	struct gspca_dev *gspca_dev = (struct gspca_dev *)sd;
2162 	int ret;
2163 
2164 	if (sd->gspca_dev.usb_err < 0)
2165 		return;
2166 
2167 	*((__le32 *) sd->gspca_dev.usb_buf) = __cpu_to_le32(value);
2168 
2169 	/* Avoid things going to fast for the bridge with a xhci host */
2170 	udelay(150);
2171 	ret = usb_control_msg(sd->gspca_dev.dev,
2172 			usb_sndctrlpipe(sd->gspca_dev.dev, 0),
2173 			1 /* REG_IO */,
2174 			USB_DIR_OUT | USB_TYPE_VENDOR | USB_RECIP_DEVICE,
2175 			0, index,
2176 			sd->gspca_dev.usb_buf, n, 500);
2177 	if (ret < 0) {
2178 		gspca_err(gspca_dev, "reg_w32 %02x failed %d\n", index, ret);
2179 		sd->gspca_dev.usb_err = ret;
2180 	}
2181 }
2182 
ov511_i2c_w(struct sd * sd,u8 reg,u8 value)2183 static void ov511_i2c_w(struct sd *sd, u8 reg, u8 value)
2184 {
2185 	struct gspca_dev *gspca_dev = (struct gspca_dev *)sd;
2186 	int rc, retries;
2187 
2188 	gspca_dbg(gspca_dev, D_USBO, "ov511_i2c_w %02x %02x\n", reg, value);
2189 
2190 	/* Three byte write cycle */
2191 	for (retries = 6; ; ) {
2192 		/* Select camera register */
2193 		reg_w(sd, R51x_I2C_SADDR_3, reg);
2194 
2195 		/* Write "value" to I2C data port of OV511 */
2196 		reg_w(sd, R51x_I2C_DATA, value);
2197 
2198 		/* Initiate 3-byte write cycle */
2199 		reg_w(sd, R511_I2C_CTL, 0x01);
2200 
2201 		do {
2202 			rc = reg_r(sd, R511_I2C_CTL);
2203 		} while (rc > 0 && ((rc & 1) == 0)); /* Retry until idle */
2204 
2205 		if (rc < 0)
2206 			return;
2207 
2208 		if ((rc & 2) == 0) /* Ack? */
2209 			break;
2210 		if (--retries < 0) {
2211 			gspca_dbg(gspca_dev, D_USBO, "i2c write retries exhausted\n");
2212 			return;
2213 		}
2214 	}
2215 }
2216 
ov511_i2c_r(struct sd * sd,u8 reg)2217 static int ov511_i2c_r(struct sd *sd, u8 reg)
2218 {
2219 	struct gspca_dev *gspca_dev = (struct gspca_dev *)sd;
2220 	int rc, value, retries;
2221 
2222 	/* Two byte write cycle */
2223 	for (retries = 6; ; ) {
2224 		/* Select camera register */
2225 		reg_w(sd, R51x_I2C_SADDR_2, reg);
2226 
2227 		/* Initiate 2-byte write cycle */
2228 		reg_w(sd, R511_I2C_CTL, 0x03);
2229 
2230 		do {
2231 			rc = reg_r(sd, R511_I2C_CTL);
2232 		} while (rc > 0 && ((rc & 1) == 0)); /* Retry until idle */
2233 
2234 		if (rc < 0)
2235 			return rc;
2236 
2237 		if ((rc & 2) == 0) /* Ack? */
2238 			break;
2239 
2240 		/* I2C abort */
2241 		reg_w(sd, R511_I2C_CTL, 0x10);
2242 
2243 		if (--retries < 0) {
2244 			gspca_dbg(gspca_dev, D_USBI, "i2c write retries exhausted\n");
2245 			return -1;
2246 		}
2247 	}
2248 
2249 	/* Two byte read cycle */
2250 	for (retries = 6; ; ) {
2251 		/* Initiate 2-byte read cycle */
2252 		reg_w(sd, R511_I2C_CTL, 0x05);
2253 
2254 		do {
2255 			rc = reg_r(sd, R511_I2C_CTL);
2256 		} while (rc > 0 && ((rc & 1) == 0)); /* Retry until idle */
2257 
2258 		if (rc < 0)
2259 			return rc;
2260 
2261 		if ((rc & 2) == 0) /* Ack? */
2262 			break;
2263 
2264 		/* I2C abort */
2265 		reg_w(sd, R511_I2C_CTL, 0x10);
2266 
2267 		if (--retries < 0) {
2268 			gspca_dbg(gspca_dev, D_USBI, "i2c read retries exhausted\n");
2269 			return -1;
2270 		}
2271 	}
2272 
2273 	value = reg_r(sd, R51x_I2C_DATA);
2274 
2275 	gspca_dbg(gspca_dev, D_USBI, "ov511_i2c_r %02x %02x\n", reg, value);
2276 
2277 	/* This is needed to make i2c_w() work */
2278 	reg_w(sd, R511_I2C_CTL, 0x05);
2279 
2280 	return value;
2281 }
2282 
2283 /*
2284  * The OV518 I2C I/O procedure is different, hence, this function.
2285  * This is normally only called from i2c_w(). Note that this function
2286  * always succeeds regardless of whether the sensor is present and working.
2287  */
ov518_i2c_w(struct sd * sd,u8 reg,u8 value)2288 static void ov518_i2c_w(struct sd *sd,
2289 		u8 reg,
2290 		u8 value)
2291 {
2292 	struct gspca_dev *gspca_dev = (struct gspca_dev *)sd;
2293 
2294 	gspca_dbg(gspca_dev, D_USBO, "ov518_i2c_w %02x %02x\n", reg, value);
2295 
2296 	/* Select camera register */
2297 	reg_w(sd, R51x_I2C_SADDR_3, reg);
2298 
2299 	/* Write "value" to I2C data port of OV511 */
2300 	reg_w(sd, R51x_I2C_DATA, value);
2301 
2302 	/* Initiate 3-byte write cycle */
2303 	reg_w(sd, R518_I2C_CTL, 0x01);
2304 
2305 	/* wait for write complete */
2306 	msleep(4);
2307 	reg_r8(sd, R518_I2C_CTL);
2308 }
2309 
2310 /*
2311  * returns: negative is error, pos or zero is data
2312  *
2313  * The OV518 I2C I/O procedure is different, hence, this function.
2314  * This is normally only called from i2c_r(). Note that this function
2315  * always succeeds regardless of whether the sensor is present and working.
2316  */
ov518_i2c_r(struct sd * sd,u8 reg)2317 static int ov518_i2c_r(struct sd *sd, u8 reg)
2318 {
2319 	struct gspca_dev *gspca_dev = (struct gspca_dev *)sd;
2320 	int value;
2321 
2322 	/* Select camera register */
2323 	reg_w(sd, R51x_I2C_SADDR_2, reg);
2324 
2325 	/* Initiate 2-byte write cycle */
2326 	reg_w(sd, R518_I2C_CTL, 0x03);
2327 	reg_r8(sd, R518_I2C_CTL);
2328 
2329 	/* Initiate 2-byte read cycle */
2330 	reg_w(sd, R518_I2C_CTL, 0x05);
2331 	reg_r8(sd, R518_I2C_CTL);
2332 
2333 	value = reg_r(sd, R51x_I2C_DATA);
2334 	gspca_dbg(gspca_dev, D_USBI, "ov518_i2c_r %02x %02x\n", reg, value);
2335 	return value;
2336 }
2337 
ovfx2_i2c_w(struct sd * sd,u8 reg,u8 value)2338 static void ovfx2_i2c_w(struct sd *sd, u8 reg, u8 value)
2339 {
2340 	struct gspca_dev *gspca_dev = (struct gspca_dev *)sd;
2341 	int ret;
2342 
2343 	if (sd->gspca_dev.usb_err < 0)
2344 		return;
2345 
2346 	ret = usb_control_msg(sd->gspca_dev.dev,
2347 			usb_sndctrlpipe(sd->gspca_dev.dev, 0),
2348 			0x02,
2349 			USB_DIR_OUT | USB_TYPE_VENDOR | USB_RECIP_DEVICE,
2350 			(u16) value, (u16) reg, NULL, 0, 500);
2351 
2352 	if (ret < 0) {
2353 		gspca_err(gspca_dev, "ovfx2_i2c_w %02x failed %d\n", reg, ret);
2354 		sd->gspca_dev.usb_err = ret;
2355 	}
2356 
2357 	gspca_dbg(gspca_dev, D_USBO, "ovfx2_i2c_w %02x %02x\n", reg, value);
2358 }
2359 
ovfx2_i2c_r(struct sd * sd,u8 reg)2360 static int ovfx2_i2c_r(struct sd *sd, u8 reg)
2361 {
2362 	struct gspca_dev *gspca_dev = (struct gspca_dev *)sd;
2363 	int ret;
2364 
2365 	if (sd->gspca_dev.usb_err < 0)
2366 		return -1;
2367 
2368 	ret = usb_control_msg(sd->gspca_dev.dev,
2369 			usb_rcvctrlpipe(sd->gspca_dev.dev, 0),
2370 			0x03,
2371 			USB_DIR_IN | USB_TYPE_VENDOR | USB_RECIP_DEVICE,
2372 			0, (u16) reg, sd->gspca_dev.usb_buf, 1, 500);
2373 
2374 	if (ret >= 0) {
2375 		ret = sd->gspca_dev.usb_buf[0];
2376 		gspca_dbg(gspca_dev, D_USBI, "ovfx2_i2c_r %02x %02x\n",
2377 			  reg, ret);
2378 	} else {
2379 		gspca_err(gspca_dev, "ovfx2_i2c_r %02x failed %d\n", reg, ret);
2380 		sd->gspca_dev.usb_err = ret;
2381 	}
2382 
2383 	return ret;
2384 }
2385 
i2c_w(struct sd * sd,u8 reg,u8 value)2386 static void i2c_w(struct sd *sd, u8 reg, u8 value)
2387 {
2388 	if (sd->sensor_reg_cache[reg] == value)
2389 		return;
2390 
2391 	switch (sd->bridge) {
2392 	case BRIDGE_OV511:
2393 	case BRIDGE_OV511PLUS:
2394 		ov511_i2c_w(sd, reg, value);
2395 		break;
2396 	case BRIDGE_OV518:
2397 	case BRIDGE_OV518PLUS:
2398 	case BRIDGE_OV519:
2399 		ov518_i2c_w(sd, reg, value);
2400 		break;
2401 	case BRIDGE_OVFX2:
2402 		ovfx2_i2c_w(sd, reg, value);
2403 		break;
2404 	case BRIDGE_W9968CF:
2405 		w9968cf_i2c_w(sd, reg, value);
2406 		break;
2407 	}
2408 
2409 	if (sd->gspca_dev.usb_err >= 0) {
2410 		/* Up on sensor reset empty the register cache */
2411 		if (reg == 0x12 && (value & 0x80))
2412 			memset(sd->sensor_reg_cache, -1,
2413 				sizeof(sd->sensor_reg_cache));
2414 		else
2415 			sd->sensor_reg_cache[reg] = value;
2416 	}
2417 }
2418 
i2c_r(struct sd * sd,u8 reg)2419 static int i2c_r(struct sd *sd, u8 reg)
2420 {
2421 	int ret = -1;
2422 
2423 	if (sd->sensor_reg_cache[reg] != -1)
2424 		return sd->sensor_reg_cache[reg];
2425 
2426 	switch (sd->bridge) {
2427 	case BRIDGE_OV511:
2428 	case BRIDGE_OV511PLUS:
2429 		ret = ov511_i2c_r(sd, reg);
2430 		break;
2431 	case BRIDGE_OV518:
2432 	case BRIDGE_OV518PLUS:
2433 	case BRIDGE_OV519:
2434 		ret = ov518_i2c_r(sd, reg);
2435 		break;
2436 	case BRIDGE_OVFX2:
2437 		ret = ovfx2_i2c_r(sd, reg);
2438 		break;
2439 	case BRIDGE_W9968CF:
2440 		ret = w9968cf_i2c_r(sd, reg);
2441 		break;
2442 	}
2443 
2444 	if (ret >= 0)
2445 		sd->sensor_reg_cache[reg] = ret;
2446 
2447 	return ret;
2448 }
2449 
2450 /* Writes bits at positions specified by mask to an I2C reg. Bits that are in
2451  * the same position as 1's in "mask" are cleared and set to "value". Bits
2452  * that are in the same position as 0's in "mask" are preserved, regardless
2453  * of their respective state in "value".
2454  */
i2c_w_mask(struct sd * sd,u8 reg,u8 value,u8 mask)2455 static void i2c_w_mask(struct sd *sd,
2456 			u8 reg,
2457 			u8 value,
2458 			u8 mask)
2459 {
2460 	int rc;
2461 	u8 oldval;
2462 
2463 	value &= mask;			/* Enforce mask on value */
2464 	rc = i2c_r(sd, reg);
2465 	if (rc < 0)
2466 		return;
2467 	oldval = rc & ~mask;		/* Clear the masked bits */
2468 	value |= oldval;		/* Set the desired bits */
2469 	i2c_w(sd, reg, value);
2470 }
2471 
2472 /* Temporarily stops OV511 from functioning. Must do this before changing
2473  * registers while the camera is streaming */
ov51x_stop(struct sd * sd)2474 static inline void ov51x_stop(struct sd *sd)
2475 {
2476 	struct gspca_dev *gspca_dev = (struct gspca_dev *)sd;
2477 
2478 	gspca_dbg(gspca_dev, D_STREAM, "stopping\n");
2479 	sd->stopped = 1;
2480 	switch (sd->bridge) {
2481 	case BRIDGE_OV511:
2482 	case BRIDGE_OV511PLUS:
2483 		reg_w(sd, R51x_SYS_RESET, 0x3d);
2484 		break;
2485 	case BRIDGE_OV518:
2486 	case BRIDGE_OV518PLUS:
2487 		reg_w_mask(sd, R51x_SYS_RESET, 0x3a, 0x3a);
2488 		break;
2489 	case BRIDGE_OV519:
2490 		reg_w(sd, OV519_R51_RESET1, 0x0f);
2491 		reg_w(sd, OV519_R51_RESET1, 0x00);
2492 		reg_w(sd, 0x22, 0x00);		/* FRAR */
2493 		break;
2494 	case BRIDGE_OVFX2:
2495 		reg_w_mask(sd, 0x0f, 0x00, 0x02);
2496 		break;
2497 	case BRIDGE_W9968CF:
2498 		reg_w(sd, 0x3c, 0x0a05); /* stop USB transfer */
2499 		break;
2500 	}
2501 }
2502 
2503 /* Restarts OV511 after ov511_stop() is called. Has no effect if it is not
2504  * actually stopped (for performance). */
ov51x_restart(struct sd * sd)2505 static inline void ov51x_restart(struct sd *sd)
2506 {
2507 	struct gspca_dev *gspca_dev = (struct gspca_dev *)sd;
2508 
2509 	gspca_dbg(gspca_dev, D_STREAM, "restarting\n");
2510 	if (!sd->stopped)
2511 		return;
2512 	sd->stopped = 0;
2513 
2514 	/* Reinitialize the stream */
2515 	switch (sd->bridge) {
2516 	case BRIDGE_OV511:
2517 	case BRIDGE_OV511PLUS:
2518 		reg_w(sd, R51x_SYS_RESET, 0x00);
2519 		break;
2520 	case BRIDGE_OV518:
2521 	case BRIDGE_OV518PLUS:
2522 		reg_w(sd, 0x2f, 0x80);
2523 		reg_w(sd, R51x_SYS_RESET, 0x00);
2524 		break;
2525 	case BRIDGE_OV519:
2526 		reg_w(sd, OV519_R51_RESET1, 0x0f);
2527 		reg_w(sd, OV519_R51_RESET1, 0x00);
2528 		reg_w(sd, 0x22, 0x1d);		/* FRAR */
2529 		break;
2530 	case BRIDGE_OVFX2:
2531 		reg_w_mask(sd, 0x0f, 0x02, 0x02);
2532 		break;
2533 	case BRIDGE_W9968CF:
2534 		reg_w(sd, 0x3c, 0x8a05); /* USB FIFO enable */
2535 		break;
2536 	}
2537 }
2538 
2539 static void ov51x_set_slave_ids(struct sd *sd, u8 slave);
2540 
2541 /* This does an initial reset of an OmniVision sensor and ensures that I2C
2542  * is synchronized. Returns <0 on failure.
2543  */
init_ov_sensor(struct sd * sd,u8 slave)2544 static int init_ov_sensor(struct sd *sd, u8 slave)
2545 {
2546 	int i;
2547 	struct gspca_dev *gspca_dev = (struct gspca_dev *)sd;
2548 
2549 	ov51x_set_slave_ids(sd, slave);
2550 
2551 	/* Reset the sensor */
2552 	i2c_w(sd, 0x12, 0x80);
2553 
2554 	/* Wait for it to initialize */
2555 	msleep(150);
2556 
2557 	for (i = 0; i < i2c_detect_tries; i++) {
2558 		if (i2c_r(sd, OV7610_REG_ID_HIGH) == 0x7f &&
2559 		    i2c_r(sd, OV7610_REG_ID_LOW) == 0xa2) {
2560 			gspca_dbg(gspca_dev, D_PROBE, "I2C synced in %d attempt(s)\n",
2561 				  i);
2562 			return 0;
2563 		}
2564 
2565 		/* Reset the sensor */
2566 		i2c_w(sd, 0x12, 0x80);
2567 
2568 		/* Wait for it to initialize */
2569 		msleep(150);
2570 
2571 		/* Dummy read to sync I2C */
2572 		if (i2c_r(sd, 0x00) < 0)
2573 			return -1;
2574 	}
2575 	return -1;
2576 }
2577 
2578 /* Set the read and write slave IDs. The "slave" argument is the write slave,
2579  * and the read slave will be set to (slave + 1).
2580  * This should not be called from outside the i2c I/O functions.
2581  * Sets I2C read and write slave IDs. Returns <0 for error
2582  */
ov51x_set_slave_ids(struct sd * sd,u8 slave)2583 static void ov51x_set_slave_ids(struct sd *sd,
2584 				u8 slave)
2585 {
2586 	switch (sd->bridge) {
2587 	case BRIDGE_OVFX2:
2588 		reg_w(sd, OVFX2_I2C_ADDR, slave);
2589 		return;
2590 	case BRIDGE_W9968CF:
2591 		sd->sensor_addr = slave;
2592 		return;
2593 	}
2594 
2595 	reg_w(sd, R51x_I2C_W_SID, slave);
2596 	reg_w(sd, R51x_I2C_R_SID, slave + 1);
2597 }
2598 
write_regvals(struct sd * sd,const struct ov_regvals * regvals,int n)2599 static void write_regvals(struct sd *sd,
2600 			 const struct ov_regvals *regvals,
2601 			 int n)
2602 {
2603 	while (--n >= 0) {
2604 		reg_w(sd, regvals->reg, regvals->val);
2605 		regvals++;
2606 	}
2607 }
2608 
write_i2c_regvals(struct sd * sd,const struct ov_i2c_regvals * regvals,int n)2609 static void write_i2c_regvals(struct sd *sd,
2610 			const struct ov_i2c_regvals *regvals,
2611 			int n)
2612 {
2613 	while (--n >= 0) {
2614 		i2c_w(sd, regvals->reg, regvals->val);
2615 		regvals++;
2616 	}
2617 }
2618 
2619 /****************************************************************************
2620  *
2621  * OV511 and sensor configuration
2622  *
2623  ***************************************************************************/
2624 
2625 /* This initializes the OV2x10 / OV3610 / OV3620 / OV9600 */
ov_hires_configure(struct sd * sd)2626 static void ov_hires_configure(struct sd *sd)
2627 {
2628 	struct gspca_dev *gspca_dev = (struct gspca_dev *)sd;
2629 	int high, low;
2630 
2631 	if (sd->bridge != BRIDGE_OVFX2) {
2632 		gspca_err(gspca_dev, "error hires sensors only supported with ovfx2\n");
2633 		return;
2634 	}
2635 
2636 	gspca_dbg(gspca_dev, D_PROBE, "starting ov hires configuration\n");
2637 
2638 	/* Detect sensor (sub)type */
2639 	high = i2c_r(sd, 0x0a);
2640 	low = i2c_r(sd, 0x0b);
2641 	/* info("%x, %x", high, low); */
2642 	switch (high) {
2643 	case 0x96:
2644 		switch (low) {
2645 		case 0x40:
2646 			gspca_dbg(gspca_dev, D_PROBE, "Sensor is a OV2610\n");
2647 			sd->sensor = SEN_OV2610;
2648 			return;
2649 		case 0x41:
2650 			gspca_dbg(gspca_dev, D_PROBE, "Sensor is a OV2610AE\n");
2651 			sd->sensor = SEN_OV2610AE;
2652 			return;
2653 		case 0xb1:
2654 			gspca_dbg(gspca_dev, D_PROBE, "Sensor is a OV9600\n");
2655 			sd->sensor = SEN_OV9600;
2656 			return;
2657 		}
2658 		break;
2659 	case 0x36:
2660 		if ((low & 0x0f) == 0x00) {
2661 			gspca_dbg(gspca_dev, D_PROBE, "Sensor is a OV3610\n");
2662 			sd->sensor = SEN_OV3610;
2663 			return;
2664 		}
2665 		break;
2666 	}
2667 	gspca_err(gspca_dev, "Error unknown sensor type: %02x%02x\n",
2668 		  high, low);
2669 }
2670 
2671 /* This initializes the OV8110, OV8610 sensor. The OV8110 uses
2672  * the same register settings as the OV8610, since they are very similar.
2673  */
ov8xx0_configure(struct sd * sd)2674 static void ov8xx0_configure(struct sd *sd)
2675 {
2676 	struct gspca_dev *gspca_dev = (struct gspca_dev *)sd;
2677 	int rc;
2678 
2679 	gspca_dbg(gspca_dev, D_PROBE, "starting ov8xx0 configuration\n");
2680 
2681 	/* Detect sensor (sub)type */
2682 	rc = i2c_r(sd, OV7610_REG_COM_I);
2683 	if (rc < 0) {
2684 		gspca_err(gspca_dev, "Error detecting sensor type\n");
2685 		return;
2686 	}
2687 	if ((rc & 3) == 1)
2688 		sd->sensor = SEN_OV8610;
2689 	else
2690 		gspca_err(gspca_dev, "Unknown image sensor version: %d\n",
2691 			  rc & 3);
2692 }
2693 
2694 /* This initializes the OV7610, OV7620, or OV76BE sensor. The OV76BE uses
2695  * the same register settings as the OV7610, since they are very similar.
2696  */
ov7xx0_configure(struct sd * sd)2697 static void ov7xx0_configure(struct sd *sd)
2698 {
2699 	struct gspca_dev *gspca_dev = (struct gspca_dev *)sd;
2700 	int rc, high, low;
2701 
2702 	gspca_dbg(gspca_dev, D_PROBE, "starting OV7xx0 configuration\n");
2703 
2704 	/* Detect sensor (sub)type */
2705 	rc = i2c_r(sd, OV7610_REG_COM_I);
2706 
2707 	/* add OV7670 here
2708 	 * it appears to be wrongly detected as a 7610 by default */
2709 	if (rc < 0) {
2710 		gspca_err(gspca_dev, "Error detecting sensor type\n");
2711 		return;
2712 	}
2713 	if ((rc & 3) == 3) {
2714 		/* quick hack to make OV7670s work */
2715 		high = i2c_r(sd, 0x0a);
2716 		low = i2c_r(sd, 0x0b);
2717 		/* info("%x, %x", high, low); */
2718 		if (high == 0x76 && (low & 0xf0) == 0x70) {
2719 			gspca_dbg(gspca_dev, D_PROBE, "Sensor is an OV76%02x\n",
2720 				  low);
2721 			sd->sensor = SEN_OV7670;
2722 		} else {
2723 			gspca_dbg(gspca_dev, D_PROBE, "Sensor is an OV7610\n");
2724 			sd->sensor = SEN_OV7610;
2725 		}
2726 	} else if ((rc & 3) == 1) {
2727 		/* I don't know what's different about the 76BE yet. */
2728 		if (i2c_r(sd, 0x15) & 1) {
2729 			gspca_dbg(gspca_dev, D_PROBE, "Sensor is an OV7620AE\n");
2730 			sd->sensor = SEN_OV7620AE;
2731 		} else {
2732 			gspca_dbg(gspca_dev, D_PROBE, "Sensor is an OV76BE\n");
2733 			sd->sensor = SEN_OV76BE;
2734 		}
2735 	} else if ((rc & 3) == 0) {
2736 		/* try to read product id registers */
2737 		high = i2c_r(sd, 0x0a);
2738 		if (high < 0) {
2739 			gspca_err(gspca_dev, "Error detecting camera chip PID\n");
2740 			return;
2741 		}
2742 		low = i2c_r(sd, 0x0b);
2743 		if (low < 0) {
2744 			gspca_err(gspca_dev, "Error detecting camera chip VER\n");
2745 			return;
2746 		}
2747 		if (high == 0x76) {
2748 			switch (low) {
2749 			case 0x30:
2750 				gspca_err(gspca_dev, "Sensor is an OV7630/OV7635\n");
2751 				gspca_err(gspca_dev, "7630 is not supported by this driver\n");
2752 				return;
2753 			case 0x40:
2754 				gspca_dbg(gspca_dev, D_PROBE, "Sensor is an OV7645\n");
2755 				sd->sensor = SEN_OV7640; /* FIXME */
2756 				break;
2757 			case 0x45:
2758 				gspca_dbg(gspca_dev, D_PROBE, "Sensor is an OV7645B\n");
2759 				sd->sensor = SEN_OV7640; /* FIXME */
2760 				break;
2761 			case 0x48:
2762 				gspca_dbg(gspca_dev, D_PROBE, "Sensor is an OV7648\n");
2763 				sd->sensor = SEN_OV7648;
2764 				break;
2765 			case 0x60:
2766 				gspca_dbg(gspca_dev, D_PROBE, "Sensor is a OV7660\n");
2767 				sd->sensor = SEN_OV7660;
2768 				break;
2769 			default:
2770 				gspca_err(gspca_dev, "Unknown sensor: 0x76%02x\n",
2771 					  low);
2772 				return;
2773 			}
2774 		} else {
2775 			gspca_dbg(gspca_dev, D_PROBE, "Sensor is an OV7620\n");
2776 			sd->sensor = SEN_OV7620;
2777 		}
2778 	} else {
2779 		gspca_err(gspca_dev, "Unknown image sensor version: %d\n",
2780 			  rc & 3);
2781 	}
2782 }
2783 
2784 /* This initializes the OV6620, OV6630, OV6630AE, or OV6630AF sensor. */
ov6xx0_configure(struct sd * sd)2785 static void ov6xx0_configure(struct sd *sd)
2786 {
2787 	struct gspca_dev *gspca_dev = (struct gspca_dev *)sd;
2788 	int rc;
2789 
2790 	gspca_dbg(gspca_dev, D_PROBE, "starting OV6xx0 configuration\n");
2791 
2792 	/* Detect sensor (sub)type */
2793 	rc = i2c_r(sd, OV7610_REG_COM_I);
2794 	if (rc < 0) {
2795 		gspca_err(gspca_dev, "Error detecting sensor type\n");
2796 		return;
2797 	}
2798 
2799 	/* Ugh. The first two bits are the version bits, but
2800 	 * the entire register value must be used. I guess OVT
2801 	 * underestimated how many variants they would make. */
2802 	switch (rc) {
2803 	case 0x00:
2804 		sd->sensor = SEN_OV6630;
2805 		pr_warn("WARNING: Sensor is an OV66308. Your camera may have been misdetected in previous driver versions.\n");
2806 		break;
2807 	case 0x01:
2808 		sd->sensor = SEN_OV6620;
2809 		gspca_dbg(gspca_dev, D_PROBE, "Sensor is an OV6620\n");
2810 		break;
2811 	case 0x02:
2812 		sd->sensor = SEN_OV6630;
2813 		gspca_dbg(gspca_dev, D_PROBE, "Sensor is an OV66308AE\n");
2814 		break;
2815 	case 0x03:
2816 		sd->sensor = SEN_OV66308AF;
2817 		gspca_dbg(gspca_dev, D_PROBE, "Sensor is an OV66308AF\n");
2818 		break;
2819 	case 0x90:
2820 		sd->sensor = SEN_OV6630;
2821 		pr_warn("WARNING: Sensor is an OV66307. Your camera may have been misdetected in previous driver versions.\n");
2822 		break;
2823 	default:
2824 		gspca_err(gspca_dev, "FATAL: Unknown sensor version: 0x%02x\n",
2825 			  rc);
2826 		return;
2827 	}
2828 
2829 	/* Set sensor-specific vars */
2830 	sd->sif = 1;
2831 }
2832 
2833 /* Turns on or off the LED. Only has an effect with OV511+/OV518(+)/OV519 */
ov51x_led_control(struct sd * sd,int on)2834 static void ov51x_led_control(struct sd *sd, int on)
2835 {
2836 	if (sd->invert_led)
2837 		on = !on;
2838 
2839 	switch (sd->bridge) {
2840 	/* OV511 has no LED control */
2841 	case BRIDGE_OV511PLUS:
2842 		reg_w(sd, R511_SYS_LED_CTL, on);
2843 		break;
2844 	case BRIDGE_OV518:
2845 	case BRIDGE_OV518PLUS:
2846 		reg_w_mask(sd, R518_GPIO_OUT, 0x02 * on, 0x02);
2847 		break;
2848 	case BRIDGE_OV519:
2849 		reg_w_mask(sd, OV519_GPIO_DATA_OUT0, on, 1);
2850 		break;
2851 	}
2852 }
2853 
sd_reset_snapshot(struct gspca_dev * gspca_dev)2854 static void sd_reset_snapshot(struct gspca_dev *gspca_dev)
2855 {
2856 	struct sd *sd = (struct sd *) gspca_dev;
2857 
2858 	if (!sd->snapshot_needs_reset)
2859 		return;
2860 
2861 	/* Note it is important that we clear sd->snapshot_needs_reset,
2862 	   before actually clearing the snapshot state in the bridge
2863 	   otherwise we might race with the pkt_scan interrupt handler */
2864 	sd->snapshot_needs_reset = 0;
2865 
2866 	switch (sd->bridge) {
2867 	case BRIDGE_OV511:
2868 	case BRIDGE_OV511PLUS:
2869 		reg_w(sd, R51x_SYS_SNAP, 0x02);
2870 		reg_w(sd, R51x_SYS_SNAP, 0x00);
2871 		break;
2872 	case BRIDGE_OV518:
2873 	case BRIDGE_OV518PLUS:
2874 		reg_w(sd, R51x_SYS_SNAP, 0x02); /* Reset */
2875 		reg_w(sd, R51x_SYS_SNAP, 0x01); /* Enable */
2876 		break;
2877 	case BRIDGE_OV519:
2878 		reg_w(sd, R51x_SYS_RESET, 0x40);
2879 		reg_w(sd, R51x_SYS_RESET, 0x00);
2880 		break;
2881 	}
2882 }
2883 
ov51x_upload_quan_tables(struct sd * sd)2884 static void ov51x_upload_quan_tables(struct sd *sd)
2885 {
2886 	static const unsigned char yQuanTable511[] = {
2887 		0, 1, 1, 2, 2, 3, 3, 4,
2888 		1, 1, 1, 2, 2, 3, 4, 4,
2889 		1, 1, 2, 2, 3, 4, 4, 4,
2890 		2, 2, 2, 3, 4, 4, 4, 4,
2891 		2, 2, 3, 4, 4, 5, 5, 5,
2892 		3, 3, 4, 4, 5, 5, 5, 5,
2893 		3, 4, 4, 4, 5, 5, 5, 5,
2894 		4, 4, 4, 4, 5, 5, 5, 5
2895 	};
2896 
2897 	static const unsigned char uvQuanTable511[] = {
2898 		0, 2, 2, 3, 4, 4, 4, 4,
2899 		2, 2, 2, 4, 4, 4, 4, 4,
2900 		2, 2, 3, 4, 4, 4, 4, 4,
2901 		3, 4, 4, 4, 4, 4, 4, 4,
2902 		4, 4, 4, 4, 4, 4, 4, 4,
2903 		4, 4, 4, 4, 4, 4, 4, 4,
2904 		4, 4, 4, 4, 4, 4, 4, 4,
2905 		4, 4, 4, 4, 4, 4, 4, 4
2906 	};
2907 
2908 	/* OV518 quantization tables are 8x4 (instead of 8x8) */
2909 	static const unsigned char yQuanTable518[] = {
2910 		5, 4, 5, 6, 6, 7, 7, 7,
2911 		5, 5, 5, 5, 6, 7, 7, 7,
2912 		6, 6, 6, 6, 7, 7, 7, 8,
2913 		7, 7, 6, 7, 7, 7, 8, 8
2914 	};
2915 	static const unsigned char uvQuanTable518[] = {
2916 		6, 6, 6, 7, 7, 7, 7, 7,
2917 		6, 6, 6, 7, 7, 7, 7, 7,
2918 		6, 6, 6, 7, 7, 7, 7, 8,
2919 		7, 7, 7, 7, 7, 7, 8, 8
2920 	};
2921 
2922 	struct gspca_dev *gspca_dev = (struct gspca_dev *)sd;
2923 	const unsigned char *pYTable, *pUVTable;
2924 	unsigned char val0, val1;
2925 	int i, size, reg = R51x_COMP_LUT_BEGIN;
2926 
2927 	gspca_dbg(gspca_dev, D_PROBE, "Uploading quantization tables\n");
2928 
2929 	if (sd->bridge == BRIDGE_OV511 || sd->bridge == BRIDGE_OV511PLUS) {
2930 		pYTable = yQuanTable511;
2931 		pUVTable = uvQuanTable511;
2932 		size = 32;
2933 	} else {
2934 		pYTable = yQuanTable518;
2935 		pUVTable = uvQuanTable518;
2936 		size = 16;
2937 	}
2938 
2939 	for (i = 0; i < size; i++) {
2940 		val0 = *pYTable++;
2941 		val1 = *pYTable++;
2942 		val0 &= 0x0f;
2943 		val1 &= 0x0f;
2944 		val0 |= val1 << 4;
2945 		reg_w(sd, reg, val0);
2946 
2947 		val0 = *pUVTable++;
2948 		val1 = *pUVTable++;
2949 		val0 &= 0x0f;
2950 		val1 &= 0x0f;
2951 		val0 |= val1 << 4;
2952 		reg_w(sd, reg + size, val0);
2953 
2954 		reg++;
2955 	}
2956 }
2957 
2958 /* This initializes the OV511/OV511+ and the sensor */
ov511_configure(struct gspca_dev * gspca_dev)2959 static void ov511_configure(struct gspca_dev *gspca_dev)
2960 {
2961 	struct sd *sd = (struct sd *) gspca_dev;
2962 
2963 	/* For 511 and 511+ */
2964 	static const struct ov_regvals init_511[] = {
2965 		{ R51x_SYS_RESET,	0x7f },
2966 		{ R51x_SYS_INIT,	0x01 },
2967 		{ R51x_SYS_RESET,	0x7f },
2968 		{ R51x_SYS_INIT,	0x01 },
2969 		{ R51x_SYS_RESET,	0x3f },
2970 		{ R51x_SYS_INIT,	0x01 },
2971 		{ R51x_SYS_RESET,	0x3d },
2972 	};
2973 
2974 	static const struct ov_regvals norm_511[] = {
2975 		{ R511_DRAM_FLOW_CTL,	0x01 },
2976 		{ R51x_SYS_SNAP,	0x00 },
2977 		{ R51x_SYS_SNAP,	0x02 },
2978 		{ R51x_SYS_SNAP,	0x00 },
2979 		{ R511_FIFO_OPTS,	0x1f },
2980 		{ R511_COMP_EN,		0x00 },
2981 		{ R511_COMP_LUT_EN,	0x03 },
2982 	};
2983 
2984 	static const struct ov_regvals norm_511_p[] = {
2985 		{ R511_DRAM_FLOW_CTL,	0xff },
2986 		{ R51x_SYS_SNAP,	0x00 },
2987 		{ R51x_SYS_SNAP,	0x02 },
2988 		{ R51x_SYS_SNAP,	0x00 },
2989 		{ R511_FIFO_OPTS,	0xff },
2990 		{ R511_COMP_EN,		0x00 },
2991 		{ R511_COMP_LUT_EN,	0x03 },
2992 	};
2993 
2994 	static const struct ov_regvals compress_511[] = {
2995 		{ 0x70, 0x1f },
2996 		{ 0x71, 0x05 },
2997 		{ 0x72, 0x06 },
2998 		{ 0x73, 0x06 },
2999 		{ 0x74, 0x14 },
3000 		{ 0x75, 0x03 },
3001 		{ 0x76, 0x04 },
3002 		{ 0x77, 0x04 },
3003 	};
3004 
3005 	gspca_dbg(gspca_dev, D_PROBE, "Device custom id %x\n",
3006 		  reg_r(sd, R51x_SYS_CUST_ID));
3007 
3008 	write_regvals(sd, init_511, ARRAY_SIZE(init_511));
3009 
3010 	switch (sd->bridge) {
3011 	case BRIDGE_OV511:
3012 		write_regvals(sd, norm_511, ARRAY_SIZE(norm_511));
3013 		break;
3014 	case BRIDGE_OV511PLUS:
3015 		write_regvals(sd, norm_511_p, ARRAY_SIZE(norm_511_p));
3016 		break;
3017 	}
3018 
3019 	/* Init compression */
3020 	write_regvals(sd, compress_511, ARRAY_SIZE(compress_511));
3021 
3022 	ov51x_upload_quan_tables(sd);
3023 }
3024 
3025 /* This initializes the OV518/OV518+ and the sensor */
ov518_configure(struct gspca_dev * gspca_dev)3026 static void ov518_configure(struct gspca_dev *gspca_dev)
3027 {
3028 	struct sd *sd = (struct sd *) gspca_dev;
3029 
3030 	/* For 518 and 518+ */
3031 	static const struct ov_regvals init_518[] = {
3032 		{ R51x_SYS_RESET,	0x40 },
3033 		{ R51x_SYS_INIT,	0xe1 },
3034 		{ R51x_SYS_RESET,	0x3e },
3035 		{ R51x_SYS_INIT,	0xe1 },
3036 		{ R51x_SYS_RESET,	0x00 },
3037 		{ R51x_SYS_INIT,	0xe1 },
3038 		{ 0x46,			0x00 },
3039 		{ 0x5d,			0x03 },
3040 	};
3041 
3042 	static const struct ov_regvals norm_518[] = {
3043 		{ R51x_SYS_SNAP,	0x02 }, /* Reset */
3044 		{ R51x_SYS_SNAP,	0x01 }, /* Enable */
3045 		{ 0x31,			0x0f },
3046 		{ 0x5d,			0x03 },
3047 		{ 0x24,			0x9f },
3048 		{ 0x25,			0x90 },
3049 		{ 0x20,			0x00 },
3050 		{ 0x51,			0x04 },
3051 		{ 0x71,			0x19 },
3052 		{ 0x2f,			0x80 },
3053 	};
3054 
3055 	static const struct ov_regvals norm_518_p[] = {
3056 		{ R51x_SYS_SNAP,	0x02 }, /* Reset */
3057 		{ R51x_SYS_SNAP,	0x01 }, /* Enable */
3058 		{ 0x31,			0x0f },
3059 		{ 0x5d,			0x03 },
3060 		{ 0x24,			0x9f },
3061 		{ 0x25,			0x90 },
3062 		{ 0x20,			0x60 },
3063 		{ 0x51,			0x02 },
3064 		{ 0x71,			0x19 },
3065 		{ 0x40,			0xff },
3066 		{ 0x41,			0x42 },
3067 		{ 0x46,			0x00 },
3068 		{ 0x33,			0x04 },
3069 		{ 0x21,			0x19 },
3070 		{ 0x3f,			0x10 },
3071 		{ 0x2f,			0x80 },
3072 	};
3073 
3074 	/* First 5 bits of custom ID reg are a revision ID on OV518 */
3075 	sd->revision = reg_r(sd, R51x_SYS_CUST_ID) & 0x1f;
3076 	gspca_dbg(gspca_dev, D_PROBE, "Device revision %d\n", sd->revision);
3077 
3078 	write_regvals(sd, init_518, ARRAY_SIZE(init_518));
3079 
3080 	/* Set LED GPIO pin to output mode */
3081 	reg_w_mask(sd, R518_GPIO_CTL, 0x00, 0x02);
3082 
3083 	switch (sd->bridge) {
3084 	case BRIDGE_OV518:
3085 		write_regvals(sd, norm_518, ARRAY_SIZE(norm_518));
3086 		break;
3087 	case BRIDGE_OV518PLUS:
3088 		write_regvals(sd, norm_518_p, ARRAY_SIZE(norm_518_p));
3089 		break;
3090 	}
3091 
3092 	ov51x_upload_quan_tables(sd);
3093 
3094 	reg_w(sd, 0x2f, 0x80);
3095 }
3096 
ov519_configure(struct sd * sd)3097 static void ov519_configure(struct sd *sd)
3098 {
3099 	static const struct ov_regvals init_519[] = {
3100 		{ 0x5a, 0x6d }, /* EnableSystem */
3101 		{ 0x53, 0x9b }, /* don't enable the microcontroller */
3102 		{ OV519_R54_EN_CLK1, 0xff }, /* set bit2 to enable jpeg */
3103 		{ 0x5d, 0x03 },
3104 		{ 0x49, 0x01 },
3105 		{ 0x48, 0x00 },
3106 		/* Set LED pin to output mode. Bit 4 must be cleared or sensor
3107 		 * detection will fail. This deserves further investigation. */
3108 		{ OV519_GPIO_IO_CTRL0,   0xee },
3109 		{ OV519_R51_RESET1, 0x0f },
3110 		{ OV519_R51_RESET1, 0x00 },
3111 		{ 0x22, 0x00 },
3112 		/* windows reads 0x55 at this point*/
3113 	};
3114 
3115 	write_regvals(sd, init_519, ARRAY_SIZE(init_519));
3116 }
3117 
ovfx2_configure(struct sd * sd)3118 static void ovfx2_configure(struct sd *sd)
3119 {
3120 	static const struct ov_regvals init_fx2[] = {
3121 		{ 0x00, 0x60 },
3122 		{ 0x02, 0x01 },
3123 		{ 0x0f, 0x1d },
3124 		{ 0xe9, 0x82 },
3125 		{ 0xea, 0xc7 },
3126 		{ 0xeb, 0x10 },
3127 		{ 0xec, 0xf6 },
3128 	};
3129 
3130 	sd->stopped = 1;
3131 
3132 	write_regvals(sd, init_fx2, ARRAY_SIZE(init_fx2));
3133 }
3134 
3135 /* set the mode */
3136 /* This function works for ov7660 only */
ov519_set_mode(struct sd * sd)3137 static void ov519_set_mode(struct sd *sd)
3138 {
3139 	static const struct ov_regvals bridge_ov7660[2][10] = {
3140 		{{0x10, 0x14}, {0x11, 0x1e}, {0x12, 0x00}, {0x13, 0x00},
3141 		 {0x14, 0x00}, {0x15, 0x00}, {0x16, 0x00}, {0x20, 0x0c},
3142 		 {0x25, 0x01}, {0x26, 0x00}},
3143 		{{0x10, 0x28}, {0x11, 0x3c}, {0x12, 0x00}, {0x13, 0x00},
3144 		 {0x14, 0x00}, {0x15, 0x00}, {0x16, 0x00}, {0x20, 0x0c},
3145 		 {0x25, 0x03}, {0x26, 0x00}}
3146 	};
3147 	static const struct ov_i2c_regvals sensor_ov7660[2][3] = {
3148 		{{0x12, 0x00}, {0x24, 0x00}, {0x0c, 0x0c}},
3149 		{{0x12, 0x00}, {0x04, 0x00}, {0x0c, 0x00}}
3150 	};
3151 	static const struct ov_i2c_regvals sensor_ov7660_2[] = {
3152 		{OV7670_R17_HSTART, 0x13},
3153 		{OV7670_R18_HSTOP, 0x01},
3154 		{OV7670_R32_HREF, 0x92},
3155 		{OV7670_R19_VSTART, 0x02},
3156 		{OV7670_R1A_VSTOP, 0x7a},
3157 		{OV7670_R03_VREF, 0x00},
3158 /*		{0x33, 0x00}, */
3159 /*		{0x34, 0x07}, */
3160 /*		{0x36, 0x00}, */
3161 /*		{0x6b, 0x0a}, */
3162 	};
3163 
3164 	write_regvals(sd, bridge_ov7660[sd->gspca_dev.curr_mode],
3165 			ARRAY_SIZE(bridge_ov7660[0]));
3166 	write_i2c_regvals(sd, sensor_ov7660[sd->gspca_dev.curr_mode],
3167 			ARRAY_SIZE(sensor_ov7660[0]));
3168 	write_i2c_regvals(sd, sensor_ov7660_2,
3169 			ARRAY_SIZE(sensor_ov7660_2));
3170 }
3171 
3172 /* set the frame rate */
3173 /* This function works for sensors ov7640, ov7648 ov7660 and ov7670 only */
ov519_set_fr(struct sd * sd)3174 static void ov519_set_fr(struct sd *sd)
3175 {
3176 	int fr;
3177 	u8 clock;
3178 	/* frame rate table with indices:
3179 	 *	- mode = 0: 320x240, 1: 640x480
3180 	 *	- fr rate = 0: 30, 1: 25, 2: 20, 3: 15, 4: 10, 5: 5
3181 	 *	- reg = 0: bridge a4, 1: bridge 23, 2: sensor 11 (clock)
3182 	 */
3183 	static const u8 fr_tb[2][6][3] = {
3184 		{{0x04, 0xff, 0x00},
3185 		 {0x04, 0x1f, 0x00},
3186 		 {0x04, 0x1b, 0x00},
3187 		 {0x04, 0x15, 0x00},
3188 		 {0x04, 0x09, 0x00},
3189 		 {0x04, 0x01, 0x00}},
3190 		{{0x0c, 0xff, 0x00},
3191 		 {0x0c, 0x1f, 0x00},
3192 		 {0x0c, 0x1b, 0x00},
3193 		 {0x04, 0xff, 0x01},
3194 		 {0x04, 0x1f, 0x01},
3195 		 {0x04, 0x1b, 0x01}},
3196 	};
3197 
3198 	if (frame_rate > 0)
3199 		sd->frame_rate = frame_rate;
3200 	if (sd->frame_rate >= 30)
3201 		fr = 0;
3202 	else if (sd->frame_rate >= 25)
3203 		fr = 1;
3204 	else if (sd->frame_rate >= 20)
3205 		fr = 2;
3206 	else if (sd->frame_rate >= 15)
3207 		fr = 3;
3208 	else if (sd->frame_rate >= 10)
3209 		fr = 4;
3210 	else
3211 		fr = 5;
3212 	reg_w(sd, 0xa4, fr_tb[sd->gspca_dev.curr_mode][fr][0]);
3213 	reg_w(sd, 0x23, fr_tb[sd->gspca_dev.curr_mode][fr][1]);
3214 	clock = fr_tb[sd->gspca_dev.curr_mode][fr][2];
3215 	if (sd->sensor == SEN_OV7660)
3216 		clock |= 0x80;		/* enable double clock */
3217 	ov518_i2c_w(sd, OV7670_R11_CLKRC, clock);
3218 }
3219 
setautogain(struct gspca_dev * gspca_dev,s32 val)3220 static void setautogain(struct gspca_dev *gspca_dev, s32 val)
3221 {
3222 	struct sd *sd = (struct sd *) gspca_dev;
3223 
3224 	i2c_w_mask(sd, 0x13, val ? 0x05 : 0x00, 0x05);
3225 }
3226 
3227 /* this function is called at probe time */
sd_config(struct gspca_dev * gspca_dev,const struct usb_device_id * id)3228 static int sd_config(struct gspca_dev *gspca_dev,
3229 			const struct usb_device_id *id)
3230 {
3231 	struct sd *sd = (struct sd *) gspca_dev;
3232 	struct cam *cam = &gspca_dev->cam;
3233 
3234 	sd->bridge = id->driver_info & BRIDGE_MASK;
3235 	sd->invert_led = (id->driver_info & BRIDGE_INVERT_LED) != 0;
3236 
3237 	switch (sd->bridge) {
3238 	case BRIDGE_OV511:
3239 	case BRIDGE_OV511PLUS:
3240 		cam->cam_mode = ov511_vga_mode;
3241 		cam->nmodes = ARRAY_SIZE(ov511_vga_mode);
3242 		break;
3243 	case BRIDGE_OV518:
3244 	case BRIDGE_OV518PLUS:
3245 		cam->cam_mode = ov518_vga_mode;
3246 		cam->nmodes = ARRAY_SIZE(ov518_vga_mode);
3247 		break;
3248 	case BRIDGE_OV519:
3249 		cam->cam_mode = ov519_vga_mode;
3250 		cam->nmodes = ARRAY_SIZE(ov519_vga_mode);
3251 		break;
3252 	case BRIDGE_OVFX2:
3253 		cam->cam_mode = ov519_vga_mode;
3254 		cam->nmodes = ARRAY_SIZE(ov519_vga_mode);
3255 		cam->bulk_size = OVFX2_BULK_SIZE;
3256 		cam->bulk_nurbs = MAX_NURBS;
3257 		cam->bulk = 1;
3258 		break;
3259 	case BRIDGE_W9968CF:
3260 		cam->cam_mode = w9968cf_vga_mode;
3261 		cam->nmodes = ARRAY_SIZE(w9968cf_vga_mode);
3262 		break;
3263 	}
3264 
3265 	sd->frame_rate = 15;
3266 
3267 	return 0;
3268 }
3269 
3270 /* this function is called at probe and resume time */
sd_init(struct gspca_dev * gspca_dev)3271 static int sd_init(struct gspca_dev *gspca_dev)
3272 {
3273 	struct sd *sd = (struct sd *) gspca_dev;
3274 	struct cam *cam = &gspca_dev->cam;
3275 
3276 	switch (sd->bridge) {
3277 	case BRIDGE_OV511:
3278 	case BRIDGE_OV511PLUS:
3279 		ov511_configure(gspca_dev);
3280 		break;
3281 	case BRIDGE_OV518:
3282 	case BRIDGE_OV518PLUS:
3283 		ov518_configure(gspca_dev);
3284 		break;
3285 	case BRIDGE_OV519:
3286 		ov519_configure(sd);
3287 		break;
3288 	case BRIDGE_OVFX2:
3289 		ovfx2_configure(sd);
3290 		break;
3291 	case BRIDGE_W9968CF:
3292 		w9968cf_configure(sd);
3293 		break;
3294 	}
3295 
3296 	/* The OV519 must be more aggressive about sensor detection since
3297 	 * I2C write will never fail if the sensor is not present. We have
3298 	 * to try to initialize the sensor to detect its presence */
3299 	sd->sensor = -1;
3300 
3301 	/* Test for 76xx */
3302 	if (init_ov_sensor(sd, OV7xx0_SID) >= 0) {
3303 		ov7xx0_configure(sd);
3304 
3305 	/* Test for 6xx0 */
3306 	} else if (init_ov_sensor(sd, OV6xx0_SID) >= 0) {
3307 		ov6xx0_configure(sd);
3308 
3309 	/* Test for 8xx0 */
3310 	} else if (init_ov_sensor(sd, OV8xx0_SID) >= 0) {
3311 		ov8xx0_configure(sd);
3312 
3313 	/* Test for 3xxx / 2xxx */
3314 	} else if (init_ov_sensor(sd, OV_HIRES_SID) >= 0) {
3315 		ov_hires_configure(sd);
3316 	} else {
3317 		gspca_err(gspca_dev, "Can't determine sensor slave IDs\n");
3318 		goto error;
3319 	}
3320 
3321 	if (sd->sensor < 0)
3322 		goto error;
3323 
3324 	ov51x_led_control(sd, 0);	/* turn LED off */
3325 
3326 	switch (sd->bridge) {
3327 	case BRIDGE_OV511:
3328 	case BRIDGE_OV511PLUS:
3329 		if (sd->sif) {
3330 			cam->cam_mode = ov511_sif_mode;
3331 			cam->nmodes = ARRAY_SIZE(ov511_sif_mode);
3332 		}
3333 		break;
3334 	case BRIDGE_OV518:
3335 	case BRIDGE_OV518PLUS:
3336 		if (sd->sif) {
3337 			cam->cam_mode = ov518_sif_mode;
3338 			cam->nmodes = ARRAY_SIZE(ov518_sif_mode);
3339 		}
3340 		break;
3341 	case BRIDGE_OV519:
3342 		if (sd->sif) {
3343 			cam->cam_mode = ov519_sif_mode;
3344 			cam->nmodes = ARRAY_SIZE(ov519_sif_mode);
3345 		}
3346 		break;
3347 	case BRIDGE_OVFX2:
3348 		switch (sd->sensor) {
3349 		case SEN_OV2610:
3350 		case SEN_OV2610AE:
3351 			cam->cam_mode = ovfx2_ov2610_mode;
3352 			cam->nmodes = ARRAY_SIZE(ovfx2_ov2610_mode);
3353 			break;
3354 		case SEN_OV3610:
3355 			cam->cam_mode = ovfx2_ov3610_mode;
3356 			cam->nmodes = ARRAY_SIZE(ovfx2_ov3610_mode);
3357 			break;
3358 		case SEN_OV9600:
3359 			cam->cam_mode = ovfx2_ov9600_mode;
3360 			cam->nmodes = ARRAY_SIZE(ovfx2_ov9600_mode);
3361 			break;
3362 		default:
3363 			if (sd->sif) {
3364 				cam->cam_mode = ov519_sif_mode;
3365 				cam->nmodes = ARRAY_SIZE(ov519_sif_mode);
3366 			}
3367 			break;
3368 		}
3369 		break;
3370 	case BRIDGE_W9968CF:
3371 		if (sd->sif)
3372 			cam->nmodes = ARRAY_SIZE(w9968cf_vga_mode) - 1;
3373 
3374 		/* w9968cf needs initialisation once the sensor is known */
3375 		w9968cf_init(sd);
3376 		break;
3377 	}
3378 
3379 	/* initialize the sensor */
3380 	switch (sd->sensor) {
3381 	case SEN_OV2610:
3382 		write_i2c_regvals(sd, norm_2610, ARRAY_SIZE(norm_2610));
3383 
3384 		/* Enable autogain, autoexpo, awb, bandfilter */
3385 		i2c_w_mask(sd, 0x13, 0x27, 0x27);
3386 		break;
3387 	case SEN_OV2610AE:
3388 		write_i2c_regvals(sd, norm_2610ae, ARRAY_SIZE(norm_2610ae));
3389 
3390 		/* enable autoexpo */
3391 		i2c_w_mask(sd, 0x13, 0x05, 0x05);
3392 		break;
3393 	case SEN_OV3610:
3394 		write_i2c_regvals(sd, norm_3620b, ARRAY_SIZE(norm_3620b));
3395 
3396 		/* Enable autogain, autoexpo, awb, bandfilter */
3397 		i2c_w_mask(sd, 0x13, 0x27, 0x27);
3398 		break;
3399 	case SEN_OV6620:
3400 		write_i2c_regvals(sd, norm_6x20, ARRAY_SIZE(norm_6x20));
3401 		break;
3402 	case SEN_OV6630:
3403 	case SEN_OV66308AF:
3404 		write_i2c_regvals(sd, norm_6x30, ARRAY_SIZE(norm_6x30));
3405 		break;
3406 	default:
3407 /*	case SEN_OV7610: */
3408 /*	case SEN_OV76BE: */
3409 		write_i2c_regvals(sd, norm_7610, ARRAY_SIZE(norm_7610));
3410 		i2c_w_mask(sd, 0x0e, 0x00, 0x40);
3411 		break;
3412 	case SEN_OV7620:
3413 	case SEN_OV7620AE:
3414 		write_i2c_regvals(sd, norm_7620, ARRAY_SIZE(norm_7620));
3415 		break;
3416 	case SEN_OV7640:
3417 	case SEN_OV7648:
3418 		write_i2c_regvals(sd, norm_7640, ARRAY_SIZE(norm_7640));
3419 		break;
3420 	case SEN_OV7660:
3421 		i2c_w(sd, OV7670_R12_COM7, OV7670_COM7_RESET);
3422 		msleep(14);
3423 		reg_w(sd, OV519_R57_SNAPSHOT, 0x23);
3424 		write_regvals(sd, init_519_ov7660,
3425 				ARRAY_SIZE(init_519_ov7660));
3426 		write_i2c_regvals(sd, norm_7660, ARRAY_SIZE(norm_7660));
3427 		sd->gspca_dev.curr_mode = 1;	/* 640x480 */
3428 		ov519_set_mode(sd);
3429 		ov519_set_fr(sd);
3430 		sd_reset_snapshot(gspca_dev);
3431 		ov51x_restart(sd);
3432 		ov51x_stop(sd);			/* not in win traces */
3433 		ov51x_led_control(sd, 0);
3434 		break;
3435 	case SEN_OV7670:
3436 		write_i2c_regvals(sd, norm_7670, ARRAY_SIZE(norm_7670));
3437 		break;
3438 	case SEN_OV8610:
3439 		write_i2c_regvals(sd, norm_8610, ARRAY_SIZE(norm_8610));
3440 		break;
3441 	case SEN_OV9600:
3442 		write_i2c_regvals(sd, norm_9600, ARRAY_SIZE(norm_9600));
3443 
3444 		/* enable autoexpo */
3445 /*		i2c_w_mask(sd, 0x13, 0x05, 0x05); */
3446 		break;
3447 	}
3448 	return gspca_dev->usb_err;
3449 error:
3450 	gspca_err(gspca_dev, "OV519 Config failed\n");
3451 	return -EINVAL;
3452 }
3453 
3454 /* function called at start time before URB creation */
sd_isoc_init(struct gspca_dev * gspca_dev)3455 static int sd_isoc_init(struct gspca_dev *gspca_dev)
3456 {
3457 	struct sd *sd = (struct sd *) gspca_dev;
3458 
3459 	switch (sd->bridge) {
3460 	case BRIDGE_OVFX2:
3461 		if (gspca_dev->pixfmt.width != 800)
3462 			gspca_dev->cam.bulk_size = OVFX2_BULK_SIZE;
3463 		else
3464 			gspca_dev->cam.bulk_size = 7 * 4096;
3465 		break;
3466 	}
3467 	return 0;
3468 }
3469 
3470 /* Set up the OV511/OV511+ with the given image parameters.
3471  *
3472  * Do not put any sensor-specific code in here (including I2C I/O functions)
3473  */
ov511_mode_init_regs(struct sd * sd)3474 static void ov511_mode_init_regs(struct sd *sd)
3475 {
3476 	struct gspca_dev *gspca_dev = (struct gspca_dev *)sd;
3477 	int hsegs, vsegs, packet_size, fps, needed;
3478 	int interlaced = 0;
3479 	struct usb_host_interface *alt;
3480 	struct usb_interface *intf;
3481 
3482 	intf = usb_ifnum_to_if(sd->gspca_dev.dev, sd->gspca_dev.iface);
3483 	alt = usb_altnum_to_altsetting(intf, sd->gspca_dev.alt);
3484 	if (!alt) {
3485 		gspca_err(gspca_dev, "Couldn't get altsetting\n");
3486 		sd->gspca_dev.usb_err = -EIO;
3487 		return;
3488 	}
3489 
3490 	if (alt->desc.bNumEndpoints < 1) {
3491 		sd->gspca_dev.usb_err = -ENODEV;
3492 		return;
3493 	}
3494 
3495 	packet_size = le16_to_cpu(alt->endpoint[0].desc.wMaxPacketSize);
3496 	reg_w(sd, R51x_FIFO_PSIZE, packet_size >> 5);
3497 
3498 	reg_w(sd, R511_CAM_UV_EN, 0x01);
3499 	reg_w(sd, R511_SNAP_UV_EN, 0x01);
3500 	reg_w(sd, R511_SNAP_OPTS, 0x03);
3501 
3502 	/* Here I'm assuming that snapshot size == image size.
3503 	 * I hope that's always true. --claudio
3504 	 */
3505 	hsegs = (sd->gspca_dev.pixfmt.width >> 3) - 1;
3506 	vsegs = (sd->gspca_dev.pixfmt.height >> 3) - 1;
3507 
3508 	reg_w(sd, R511_CAM_PXCNT, hsegs);
3509 	reg_w(sd, R511_CAM_LNCNT, vsegs);
3510 	reg_w(sd, R511_CAM_PXDIV, 0x00);
3511 	reg_w(sd, R511_CAM_LNDIV, 0x00);
3512 
3513 	/* YUV420, low pass filter on */
3514 	reg_w(sd, R511_CAM_OPTS, 0x03);
3515 
3516 	/* Snapshot additions */
3517 	reg_w(sd, R511_SNAP_PXCNT, hsegs);
3518 	reg_w(sd, R511_SNAP_LNCNT, vsegs);
3519 	reg_w(sd, R511_SNAP_PXDIV, 0x00);
3520 	reg_w(sd, R511_SNAP_LNDIV, 0x00);
3521 
3522 	/******** Set the framerate ********/
3523 	if (frame_rate > 0)
3524 		sd->frame_rate = frame_rate;
3525 
3526 	switch (sd->sensor) {
3527 	case SEN_OV6620:
3528 		/* No framerate control, doesn't like higher rates yet */
3529 		sd->clockdiv = 3;
3530 		break;
3531 
3532 	/* Note once the FIXME's in mode_init_ov_sensor_regs() are fixed
3533 	   for more sensors we need to do this for them too */
3534 	case SEN_OV7620:
3535 	case SEN_OV7620AE:
3536 	case SEN_OV7640:
3537 	case SEN_OV7648:
3538 	case SEN_OV76BE:
3539 		if (sd->gspca_dev.pixfmt.width == 320)
3540 			interlaced = 1;
3541 		/* Fall through */
3542 	case SEN_OV6630:
3543 	case SEN_OV7610:
3544 	case SEN_OV7670:
3545 		switch (sd->frame_rate) {
3546 		case 30:
3547 		case 25:
3548 			/* Not enough bandwidth to do 640x480 @ 30 fps */
3549 			if (sd->gspca_dev.pixfmt.width != 640) {
3550 				sd->clockdiv = 0;
3551 				break;
3552 			}
3553 			/* For 640x480 case */
3554 			/* fall through */
3555 		default:
3556 /*		case 20: */
3557 /*		case 15: */
3558 			sd->clockdiv = 1;
3559 			break;
3560 		case 10:
3561 			sd->clockdiv = 2;
3562 			break;
3563 		case 5:
3564 			sd->clockdiv = 5;
3565 			break;
3566 		}
3567 		if (interlaced) {
3568 			sd->clockdiv = (sd->clockdiv + 1) * 2 - 1;
3569 			/* Higher then 10 does not work */
3570 			if (sd->clockdiv > 10)
3571 				sd->clockdiv = 10;
3572 		}
3573 		break;
3574 
3575 	case SEN_OV8610:
3576 		/* No framerate control ?? */
3577 		sd->clockdiv = 0;
3578 		break;
3579 	}
3580 
3581 	/* Check if we have enough bandwidth to disable compression */
3582 	fps = (interlaced ? 60 : 30) / (sd->clockdiv + 1) + 1;
3583 	needed = fps * sd->gspca_dev.pixfmt.width *
3584 			sd->gspca_dev.pixfmt.height * 3 / 2;
3585 	/* 1000 isoc packets/sec */
3586 	if (needed > 1000 * packet_size) {
3587 		/* Enable Y and UV quantization and compression */
3588 		reg_w(sd, R511_COMP_EN, 0x07);
3589 		reg_w(sd, R511_COMP_LUT_EN, 0x03);
3590 	} else {
3591 		reg_w(sd, R511_COMP_EN, 0x06);
3592 		reg_w(sd, R511_COMP_LUT_EN, 0x00);
3593 	}
3594 
3595 	reg_w(sd, R51x_SYS_RESET, OV511_RESET_OMNICE);
3596 	reg_w(sd, R51x_SYS_RESET, 0);
3597 }
3598 
3599 /* Sets up the OV518/OV518+ with the given image parameters
3600  *
3601  * OV518 needs a completely different approach, until we can figure out what
3602  * the individual registers do. Also, only 15 FPS is supported now.
3603  *
3604  * Do not put any sensor-specific code in here (including I2C I/O functions)
3605  */
ov518_mode_init_regs(struct sd * sd)3606 static void ov518_mode_init_regs(struct sd *sd)
3607 {
3608 	struct gspca_dev *gspca_dev = (struct gspca_dev *)sd;
3609 	int hsegs, vsegs, packet_size;
3610 	struct usb_host_interface *alt;
3611 	struct usb_interface *intf;
3612 
3613 	intf = usb_ifnum_to_if(sd->gspca_dev.dev, sd->gspca_dev.iface);
3614 	alt = usb_altnum_to_altsetting(intf, sd->gspca_dev.alt);
3615 	if (!alt) {
3616 		gspca_err(gspca_dev, "Couldn't get altsetting\n");
3617 		sd->gspca_dev.usb_err = -EIO;
3618 		return;
3619 	}
3620 
3621 	if (alt->desc.bNumEndpoints < 1) {
3622 		sd->gspca_dev.usb_err = -ENODEV;
3623 		return;
3624 	}
3625 
3626 	packet_size = le16_to_cpu(alt->endpoint[0].desc.wMaxPacketSize);
3627 	ov518_reg_w32(sd, R51x_FIFO_PSIZE, packet_size & ~7, 2);
3628 
3629 	/******** Set the mode ********/
3630 	reg_w(sd, 0x2b, 0);
3631 	reg_w(sd, 0x2c, 0);
3632 	reg_w(sd, 0x2d, 0);
3633 	reg_w(sd, 0x2e, 0);
3634 	reg_w(sd, 0x3b, 0);
3635 	reg_w(sd, 0x3c, 0);
3636 	reg_w(sd, 0x3d, 0);
3637 	reg_w(sd, 0x3e, 0);
3638 
3639 	if (sd->bridge == BRIDGE_OV518) {
3640 		/* Set 8-bit (YVYU) input format */
3641 		reg_w_mask(sd, 0x20, 0x08, 0x08);
3642 
3643 		/* Set 12-bit (4:2:0) output format */
3644 		reg_w_mask(sd, 0x28, 0x80, 0xf0);
3645 		reg_w_mask(sd, 0x38, 0x80, 0xf0);
3646 	} else {
3647 		reg_w(sd, 0x28, 0x80);
3648 		reg_w(sd, 0x38, 0x80);
3649 	}
3650 
3651 	hsegs = sd->gspca_dev.pixfmt.width / 16;
3652 	vsegs = sd->gspca_dev.pixfmt.height / 4;
3653 
3654 	reg_w(sd, 0x29, hsegs);
3655 	reg_w(sd, 0x2a, vsegs);
3656 
3657 	reg_w(sd, 0x39, hsegs);
3658 	reg_w(sd, 0x3a, vsegs);
3659 
3660 	/* Windows driver does this here; who knows why */
3661 	reg_w(sd, 0x2f, 0x80);
3662 
3663 	/******** Set the framerate ********/
3664 	if (sd->bridge == BRIDGE_OV518PLUS && sd->revision == 0 &&
3665 					      sd->sensor == SEN_OV7620AE)
3666 		sd->clockdiv = 0;
3667 	else
3668 		sd->clockdiv = 1;
3669 
3670 	/* Mode independent, but framerate dependent, regs */
3671 	/* 0x51: Clock divider; Only works on some cams which use 2 crystals */
3672 	reg_w(sd, 0x51, 0x04);
3673 	reg_w(sd, 0x22, 0x18);
3674 	reg_w(sd, 0x23, 0xff);
3675 
3676 	if (sd->bridge == BRIDGE_OV518PLUS) {
3677 		switch (sd->sensor) {
3678 		case SEN_OV7620AE:
3679 			/*
3680 			 * HdG: 640x480 needs special handling on device
3681 			 * revision 2, we check for device revison > 0 to
3682 			 * avoid regressions, as we don't know the correct
3683 			 * thing todo for revision 1.
3684 			 *
3685 			 * Also this likely means we don't need to
3686 			 * differentiate between the OV7620 and OV7620AE,
3687 			 * earlier testing hitting this same problem likely
3688 			 * happened to be with revision < 2 cams using an
3689 			 * OV7620 and revision 2 cams using an OV7620AE.
3690 			 */
3691 			if (sd->revision > 0 &&
3692 					sd->gspca_dev.pixfmt.width == 640) {
3693 				reg_w(sd, 0x20, 0x60);
3694 				reg_w(sd, 0x21, 0x1f);
3695 			} else {
3696 				reg_w(sd, 0x20, 0x00);
3697 				reg_w(sd, 0x21, 0x19);
3698 			}
3699 			break;
3700 		case SEN_OV7620:
3701 			reg_w(sd, 0x20, 0x00);
3702 			reg_w(sd, 0x21, 0x19);
3703 			break;
3704 		default:
3705 			reg_w(sd, 0x21, 0x19);
3706 		}
3707 	} else
3708 		reg_w(sd, 0x71, 0x17);	/* Compression-related? */
3709 
3710 	/* FIXME: Sensor-specific */
3711 	/* Bit 5 is what matters here. Of course, it is "reserved" */
3712 	i2c_w(sd, 0x54, 0x23);
3713 
3714 	reg_w(sd, 0x2f, 0x80);
3715 
3716 	if (sd->bridge == BRIDGE_OV518PLUS) {
3717 		reg_w(sd, 0x24, 0x94);
3718 		reg_w(sd, 0x25, 0x90);
3719 		ov518_reg_w32(sd, 0xc4,    400, 2);	/* 190h   */
3720 		ov518_reg_w32(sd, 0xc6,    540, 2);	/* 21ch   */
3721 		ov518_reg_w32(sd, 0xc7,    540, 2);	/* 21ch   */
3722 		ov518_reg_w32(sd, 0xc8,    108, 2);	/* 6ch    */
3723 		ov518_reg_w32(sd, 0xca, 131098, 3);	/* 2001ah */
3724 		ov518_reg_w32(sd, 0xcb,    532, 2);	/* 214h   */
3725 		ov518_reg_w32(sd, 0xcc,   2400, 2);	/* 960h   */
3726 		ov518_reg_w32(sd, 0xcd,     32, 2);	/* 20h    */
3727 		ov518_reg_w32(sd, 0xce,    608, 2);	/* 260h   */
3728 	} else {
3729 		reg_w(sd, 0x24, 0x9f);
3730 		reg_w(sd, 0x25, 0x90);
3731 		ov518_reg_w32(sd, 0xc4,    400, 2);	/* 190h   */
3732 		ov518_reg_w32(sd, 0xc6,    381, 2);	/* 17dh   */
3733 		ov518_reg_w32(sd, 0xc7,    381, 2);	/* 17dh   */
3734 		ov518_reg_w32(sd, 0xc8,    128, 2);	/* 80h    */
3735 		ov518_reg_w32(sd, 0xca, 183331, 3);	/* 2cc23h */
3736 		ov518_reg_w32(sd, 0xcb,    746, 2);	/* 2eah   */
3737 		ov518_reg_w32(sd, 0xcc,   1750, 2);	/* 6d6h   */
3738 		ov518_reg_w32(sd, 0xcd,     45, 2);	/* 2dh    */
3739 		ov518_reg_w32(sd, 0xce,    851, 2);	/* 353h   */
3740 	}
3741 
3742 	reg_w(sd, 0x2f, 0x80);
3743 }
3744 
3745 /* Sets up the OV519 with the given image parameters
3746  *
3747  * OV519 needs a completely different approach, until we can figure out what
3748  * the individual registers do.
3749  *
3750  * Do not put any sensor-specific code in here (including I2C I/O functions)
3751  */
ov519_mode_init_regs(struct sd * sd)3752 static void ov519_mode_init_regs(struct sd *sd)
3753 {
3754 	static const struct ov_regvals mode_init_519_ov7670[] = {
3755 		{ 0x5d,	0x03 }, /* Turn off suspend mode */
3756 		{ 0x53,	0x9f }, /* was 9b in 1.65-1.08 */
3757 		{ OV519_R54_EN_CLK1, 0x0f }, /* bit2 (jpeg enable) */
3758 		{ 0xa2,	0x20 }, /* a2-a5 are undocumented */
3759 		{ 0xa3,	0x18 },
3760 		{ 0xa4,	0x04 },
3761 		{ 0xa5,	0x28 },
3762 		{ 0x37,	0x00 },	/* SetUsbInit */
3763 		{ 0x55,	0x02 }, /* 4.096 Mhz audio clock */
3764 		/* Enable both fields, YUV Input, disable defect comp (why?) */
3765 		{ 0x20,	0x0c },
3766 		{ 0x21,	0x38 },
3767 		{ 0x22,	0x1d },
3768 		{ 0x17,	0x50 }, /* undocumented */
3769 		{ 0x37,	0x00 }, /* undocumented */
3770 		{ 0x40,	0xff }, /* I2C timeout counter */
3771 		{ 0x46,	0x00 }, /* I2C clock prescaler */
3772 		{ 0x59,	0x04 },	/* new from windrv 090403 */
3773 		{ 0xff,	0x00 }, /* undocumented */
3774 		/* windows reads 0x55 at this point, why? */
3775 	};
3776 
3777 	static const struct ov_regvals mode_init_519[] = {
3778 		{ 0x5d,	0x03 }, /* Turn off suspend mode */
3779 		{ 0x53,	0x9f }, /* was 9b in 1.65-1.08 */
3780 		{ OV519_R54_EN_CLK1, 0x0f }, /* bit2 (jpeg enable) */
3781 		{ 0xa2,	0x20 }, /* a2-a5 are undocumented */
3782 		{ 0xa3,	0x18 },
3783 		{ 0xa4,	0x04 },
3784 		{ 0xa5,	0x28 },
3785 		{ 0x37,	0x00 },	/* SetUsbInit */
3786 		{ 0x55,	0x02 }, /* 4.096 Mhz audio clock */
3787 		/* Enable both fields, YUV Input, disable defect comp (why?) */
3788 		{ 0x22,	0x1d },
3789 		{ 0x17,	0x50 }, /* undocumented */
3790 		{ 0x37,	0x00 }, /* undocumented */
3791 		{ 0x40,	0xff }, /* I2C timeout counter */
3792 		{ 0x46,	0x00 }, /* I2C clock prescaler */
3793 		{ 0x59,	0x04 },	/* new from windrv 090403 */
3794 		{ 0xff,	0x00 }, /* undocumented */
3795 		/* windows reads 0x55 at this point, why? */
3796 	};
3797 
3798 	struct gspca_dev *gspca_dev = (struct gspca_dev *)sd;
3799 
3800 	/******** Set the mode ********/
3801 	switch (sd->sensor) {
3802 	default:
3803 		write_regvals(sd, mode_init_519, ARRAY_SIZE(mode_init_519));
3804 		if (sd->sensor == SEN_OV7640 ||
3805 		    sd->sensor == SEN_OV7648) {
3806 			/* Select 8-bit input mode */
3807 			reg_w_mask(sd, OV519_R20_DFR, 0x10, 0x10);
3808 		}
3809 		break;
3810 	case SEN_OV7660:
3811 		return;		/* done by ov519_set_mode/fr() */
3812 	case SEN_OV7670:
3813 		write_regvals(sd, mode_init_519_ov7670,
3814 				ARRAY_SIZE(mode_init_519_ov7670));
3815 		break;
3816 	}
3817 
3818 	reg_w(sd, OV519_R10_H_SIZE,	sd->gspca_dev.pixfmt.width >> 4);
3819 	reg_w(sd, OV519_R11_V_SIZE,	sd->gspca_dev.pixfmt.height >> 3);
3820 	if (sd->sensor == SEN_OV7670 &&
3821 	    sd->gspca_dev.cam.cam_mode[sd->gspca_dev.curr_mode].priv)
3822 		reg_w(sd, OV519_R12_X_OFFSETL, 0x04);
3823 	else if (sd->sensor == SEN_OV7648 &&
3824 	    sd->gspca_dev.cam.cam_mode[sd->gspca_dev.curr_mode].priv)
3825 		reg_w(sd, OV519_R12_X_OFFSETL, 0x01);
3826 	else
3827 		reg_w(sd, OV519_R12_X_OFFSETL, 0x00);
3828 	reg_w(sd, OV519_R13_X_OFFSETH,	0x00);
3829 	reg_w(sd, OV519_R14_Y_OFFSETL,	0x00);
3830 	reg_w(sd, OV519_R15_Y_OFFSETH,	0x00);
3831 	reg_w(sd, OV519_R16_DIVIDER,	0x00);
3832 	reg_w(sd, OV519_R25_FORMAT,	0x03); /* YUV422 */
3833 	reg_w(sd, 0x26,			0x00); /* Undocumented */
3834 
3835 	/******** Set the framerate ********/
3836 	if (frame_rate > 0)
3837 		sd->frame_rate = frame_rate;
3838 
3839 /* FIXME: These are only valid at the max resolution. */
3840 	sd->clockdiv = 0;
3841 	switch (sd->sensor) {
3842 	case SEN_OV7640:
3843 	case SEN_OV7648:
3844 		switch (sd->frame_rate) {
3845 		default:
3846 /*		case 30: */
3847 			reg_w(sd, 0xa4, 0x0c);
3848 			reg_w(sd, 0x23, 0xff);
3849 			break;
3850 		case 25:
3851 			reg_w(sd, 0xa4, 0x0c);
3852 			reg_w(sd, 0x23, 0x1f);
3853 			break;
3854 		case 20:
3855 			reg_w(sd, 0xa4, 0x0c);
3856 			reg_w(sd, 0x23, 0x1b);
3857 			break;
3858 		case 15:
3859 			reg_w(sd, 0xa4, 0x04);
3860 			reg_w(sd, 0x23, 0xff);
3861 			sd->clockdiv = 1;
3862 			break;
3863 		case 10:
3864 			reg_w(sd, 0xa4, 0x04);
3865 			reg_w(sd, 0x23, 0x1f);
3866 			sd->clockdiv = 1;
3867 			break;
3868 		case 5:
3869 			reg_w(sd, 0xa4, 0x04);
3870 			reg_w(sd, 0x23, 0x1b);
3871 			sd->clockdiv = 1;
3872 			break;
3873 		}
3874 		break;
3875 	case SEN_OV8610:
3876 		switch (sd->frame_rate) {
3877 		default:	/* 15 fps */
3878 /*		case 15: */
3879 			reg_w(sd, 0xa4, 0x06);
3880 			reg_w(sd, 0x23, 0xff);
3881 			break;
3882 		case 10:
3883 			reg_w(sd, 0xa4, 0x06);
3884 			reg_w(sd, 0x23, 0x1f);
3885 			break;
3886 		case 5:
3887 			reg_w(sd, 0xa4, 0x06);
3888 			reg_w(sd, 0x23, 0x1b);
3889 			break;
3890 		}
3891 		break;
3892 	case SEN_OV7670:		/* guesses, based on 7640 */
3893 		gspca_dbg(gspca_dev, D_STREAM, "Setting framerate to %d fps\n",
3894 			  (sd->frame_rate == 0) ? 15 : sd->frame_rate);
3895 		reg_w(sd, 0xa4, 0x10);
3896 		switch (sd->frame_rate) {
3897 		case 30:
3898 			reg_w(sd, 0x23, 0xff);
3899 			break;
3900 		case 20:
3901 			reg_w(sd, 0x23, 0x1b);
3902 			break;
3903 		default:
3904 /*		case 15: */
3905 			reg_w(sd, 0x23, 0xff);
3906 			sd->clockdiv = 1;
3907 			break;
3908 		}
3909 		break;
3910 	}
3911 }
3912 
mode_init_ov_sensor_regs(struct sd * sd)3913 static void mode_init_ov_sensor_regs(struct sd *sd)
3914 {
3915 	struct gspca_dev *gspca_dev = (struct gspca_dev *)sd;
3916 	int qvga, xstart, xend, ystart, yend;
3917 	u8 v;
3918 
3919 	qvga = gspca_dev->cam.cam_mode[gspca_dev->curr_mode].priv & 1;
3920 
3921 	/******** Mode (VGA/QVGA) and sensor specific regs ********/
3922 	switch (sd->sensor) {
3923 	case SEN_OV2610:
3924 		i2c_w_mask(sd, 0x14, qvga ? 0x20 : 0x00, 0x20);
3925 		i2c_w_mask(sd, 0x28, qvga ? 0x00 : 0x20, 0x20);
3926 		i2c_w(sd, 0x24, qvga ? 0x20 : 0x3a);
3927 		i2c_w(sd, 0x25, qvga ? 0x30 : 0x60);
3928 		i2c_w_mask(sd, 0x2d, qvga ? 0x40 : 0x00, 0x40);
3929 		i2c_w_mask(sd, 0x67, qvga ? 0xf0 : 0x90, 0xf0);
3930 		i2c_w_mask(sd, 0x74, qvga ? 0x20 : 0x00, 0x20);
3931 		return;
3932 	case SEN_OV2610AE: {
3933 		u8 v;
3934 
3935 		/* frame rates:
3936 		 *	10fps / 5 fps for 1600x1200
3937 		 *	40fps / 20fps for 800x600
3938 		 */
3939 		v = 80;
3940 		if (qvga) {
3941 			if (sd->frame_rate < 25)
3942 				v = 0x81;
3943 		} else {
3944 			if (sd->frame_rate < 10)
3945 				v = 0x81;
3946 		}
3947 		i2c_w(sd, 0x11, v);
3948 		i2c_w(sd, 0x12, qvga ? 0x60 : 0x20);
3949 		return;
3950 	    }
3951 	case SEN_OV3610:
3952 		if (qvga) {
3953 			xstart = (1040 - gspca_dev->pixfmt.width) / 2 +
3954 				(0x1f << 4);
3955 			ystart = (776 - gspca_dev->pixfmt.height) / 2;
3956 		} else {
3957 			xstart = (2076 - gspca_dev->pixfmt.width) / 2 +
3958 				(0x10 << 4);
3959 			ystart = (1544 - gspca_dev->pixfmt.height) / 2;
3960 		}
3961 		xend = xstart + gspca_dev->pixfmt.width;
3962 		yend = ystart + gspca_dev->pixfmt.height;
3963 		/* Writing to the COMH register resets the other windowing regs
3964 		   to their default values, so we must do this first. */
3965 		i2c_w_mask(sd, 0x12, qvga ? 0x40 : 0x00, 0xf0);
3966 		i2c_w_mask(sd, 0x32,
3967 			   (((xend >> 1) & 7) << 3) | ((xstart >> 1) & 7),
3968 			   0x3f);
3969 		i2c_w_mask(sd, 0x03,
3970 			   (((yend >> 1) & 3) << 2) | ((ystart >> 1) & 3),
3971 			   0x0f);
3972 		i2c_w(sd, 0x17, xstart >> 4);
3973 		i2c_w(sd, 0x18, xend >> 4);
3974 		i2c_w(sd, 0x19, ystart >> 3);
3975 		i2c_w(sd, 0x1a, yend >> 3);
3976 		return;
3977 	case SEN_OV8610:
3978 		/* For OV8610 qvga means qsvga */
3979 		i2c_w_mask(sd, OV7610_REG_COM_C, qvga ? (1 << 5) : 0, 1 << 5);
3980 		i2c_w_mask(sd, 0x13, 0x00, 0x20); /* Select 16 bit data bus */
3981 		i2c_w_mask(sd, 0x12, 0x04, 0x06); /* AWB: 1 Test pattern: 0 */
3982 		i2c_w_mask(sd, 0x2d, 0x00, 0x40); /* from windrv 090403 */
3983 		i2c_w_mask(sd, 0x28, 0x20, 0x20); /* progressive mode on */
3984 		break;
3985 	case SEN_OV7610:
3986 		i2c_w_mask(sd, 0x14, qvga ? 0x20 : 0x00, 0x20);
3987 		i2c_w(sd, 0x35, qvga ? 0x1e : 0x9e);
3988 		i2c_w_mask(sd, 0x13, 0x00, 0x20); /* Select 16 bit data bus */
3989 		i2c_w_mask(sd, 0x12, 0x04, 0x06); /* AWB: 1 Test pattern: 0 */
3990 		break;
3991 	case SEN_OV7620:
3992 	case SEN_OV7620AE:
3993 	case SEN_OV76BE:
3994 		i2c_w_mask(sd, 0x14, qvga ? 0x20 : 0x00, 0x20);
3995 		i2c_w_mask(sd, 0x28, qvga ? 0x00 : 0x20, 0x20);
3996 		i2c_w(sd, 0x24, qvga ? 0x20 : 0x3a);
3997 		i2c_w(sd, 0x25, qvga ? 0x30 : 0x60);
3998 		i2c_w_mask(sd, 0x2d, qvga ? 0x40 : 0x00, 0x40);
3999 		i2c_w_mask(sd, 0x67, qvga ? 0xb0 : 0x90, 0xf0);
4000 		i2c_w_mask(sd, 0x74, qvga ? 0x20 : 0x00, 0x20);
4001 		i2c_w_mask(sd, 0x13, 0x00, 0x20); /* Select 16 bit data bus */
4002 		i2c_w_mask(sd, 0x12, 0x04, 0x06); /* AWB: 1 Test pattern: 0 */
4003 		if (sd->sensor == SEN_OV76BE)
4004 			i2c_w(sd, 0x35, qvga ? 0x1e : 0x9e);
4005 		break;
4006 	case SEN_OV7640:
4007 	case SEN_OV7648:
4008 		i2c_w_mask(sd, 0x14, qvga ? 0x20 : 0x00, 0x20);
4009 		i2c_w_mask(sd, 0x28, qvga ? 0x00 : 0x20, 0x20);
4010 		/* Setting this undocumented bit in qvga mode removes a very
4011 		   annoying vertical shaking of the image */
4012 		i2c_w_mask(sd, 0x2d, qvga ? 0x40 : 0x00, 0x40);
4013 		/* Unknown */
4014 		i2c_w_mask(sd, 0x67, qvga ? 0xf0 : 0x90, 0xf0);
4015 		/* Allow higher automatic gain (to allow higher framerates) */
4016 		i2c_w_mask(sd, 0x74, qvga ? 0x20 : 0x00, 0x20);
4017 		i2c_w_mask(sd, 0x12, 0x04, 0x04); /* AWB: 1 */
4018 		break;
4019 	case SEN_OV7670:
4020 		/* set COM7_FMT_VGA or COM7_FMT_QVGA
4021 		 * do we need to set anything else?
4022 		 *	HSTART etc are set in set_ov_sensor_window itself */
4023 		i2c_w_mask(sd, OV7670_R12_COM7,
4024 			 qvga ? OV7670_COM7_FMT_QVGA : OV7670_COM7_FMT_VGA,
4025 			 OV7670_COM7_FMT_MASK);
4026 		i2c_w_mask(sd, 0x13, 0x00, 0x20); /* Select 16 bit data bus */
4027 		i2c_w_mask(sd, OV7670_R13_COM8, OV7670_COM8_AWB,
4028 				OV7670_COM8_AWB);
4029 		if (qvga) {		/* QVGA from ov7670.c by
4030 					 * Jonathan Corbet */
4031 			xstart = 164;
4032 			xend = 28;
4033 			ystart = 14;
4034 			yend = 494;
4035 		} else {		/* VGA */
4036 			xstart = 158;
4037 			xend = 14;
4038 			ystart = 10;
4039 			yend = 490;
4040 		}
4041 		/* OV7670 hardware window registers are split across
4042 		 * multiple locations */
4043 		i2c_w(sd, OV7670_R17_HSTART, xstart >> 3);
4044 		i2c_w(sd, OV7670_R18_HSTOP, xend >> 3);
4045 		v = i2c_r(sd, OV7670_R32_HREF);
4046 		v = (v & 0xc0) | ((xend & 0x7) << 3) | (xstart & 0x07);
4047 		msleep(10);	/* need to sleep between read and write to
4048 				 * same reg! */
4049 		i2c_w(sd, OV7670_R32_HREF, v);
4050 
4051 		i2c_w(sd, OV7670_R19_VSTART, ystart >> 2);
4052 		i2c_w(sd, OV7670_R1A_VSTOP, yend >> 2);
4053 		v = i2c_r(sd, OV7670_R03_VREF);
4054 		v = (v & 0xc0) | ((yend & 0x3) << 2) | (ystart & 0x03);
4055 		msleep(10);	/* need to sleep between read and write to
4056 				 * same reg! */
4057 		i2c_w(sd, OV7670_R03_VREF, v);
4058 		break;
4059 	case SEN_OV6620:
4060 		i2c_w_mask(sd, 0x14, qvga ? 0x20 : 0x00, 0x20);
4061 		i2c_w_mask(sd, 0x13, 0x00, 0x20); /* Select 16 bit data bus */
4062 		i2c_w_mask(sd, 0x12, 0x04, 0x06); /* AWB: 1 Test pattern: 0 */
4063 		break;
4064 	case SEN_OV6630:
4065 	case SEN_OV66308AF:
4066 		i2c_w_mask(sd, 0x14, qvga ? 0x20 : 0x00, 0x20);
4067 		i2c_w_mask(sd, 0x12, 0x04, 0x06); /* AWB: 1 Test pattern: 0 */
4068 		break;
4069 	case SEN_OV9600: {
4070 		const struct ov_i2c_regvals *vals;
4071 		static const struct ov_i2c_regvals sxga_15[] = {
4072 			{0x11, 0x80}, {0x14, 0x3e}, {0x24, 0x85}, {0x25, 0x75}
4073 		};
4074 		static const struct ov_i2c_regvals sxga_7_5[] = {
4075 			{0x11, 0x81}, {0x14, 0x3e}, {0x24, 0x85}, {0x25, 0x75}
4076 		};
4077 		static const struct ov_i2c_regvals vga_30[] = {
4078 			{0x11, 0x81}, {0x14, 0x7e}, {0x24, 0x70}, {0x25, 0x60}
4079 		};
4080 		static const struct ov_i2c_regvals vga_15[] = {
4081 			{0x11, 0x83}, {0x14, 0x3e}, {0x24, 0x80}, {0x25, 0x70}
4082 		};
4083 
4084 		/* frame rates:
4085 		 *	15fps / 7.5 fps for 1280x1024
4086 		 *	30fps / 15fps for 640x480
4087 		 */
4088 		i2c_w_mask(sd, 0x12, qvga ? 0x40 : 0x00, 0x40);
4089 		if (qvga)
4090 			vals = sd->frame_rate < 30 ? vga_15 : vga_30;
4091 		else
4092 			vals = sd->frame_rate < 15 ? sxga_7_5 : sxga_15;
4093 		write_i2c_regvals(sd, vals, ARRAY_SIZE(sxga_15));
4094 		return;
4095 	    }
4096 	default:
4097 		return;
4098 	}
4099 
4100 	/******** Clock programming ********/
4101 	i2c_w(sd, 0x11, sd->clockdiv);
4102 }
4103 
4104 /* this function works for bridge ov519 and sensors ov7660 and ov7670 only */
sethvflip(struct gspca_dev * gspca_dev,s32 hflip,s32 vflip)4105 static void sethvflip(struct gspca_dev *gspca_dev, s32 hflip, s32 vflip)
4106 {
4107 	struct sd *sd = (struct sd *) gspca_dev;
4108 
4109 	if (sd->gspca_dev.streaming)
4110 		reg_w(sd, OV519_R51_RESET1, 0x0f);	/* block stream */
4111 	i2c_w_mask(sd, OV7670_R1E_MVFP,
4112 		OV7670_MVFP_MIRROR * hflip | OV7670_MVFP_VFLIP * vflip,
4113 		OV7670_MVFP_MIRROR | OV7670_MVFP_VFLIP);
4114 	if (sd->gspca_dev.streaming)
4115 		reg_w(sd, OV519_R51_RESET1, 0x00);	/* restart stream */
4116 }
4117 
set_ov_sensor_window(struct sd * sd)4118 static void set_ov_sensor_window(struct sd *sd)
4119 {
4120 	struct gspca_dev *gspca_dev;
4121 	int qvga, crop;
4122 	int hwsbase, hwebase, vwsbase, vwebase, hwscale, vwscale;
4123 
4124 	/* mode setup is fully handled in mode_init_ov_sensor_regs for these */
4125 	switch (sd->sensor) {
4126 	case SEN_OV2610:
4127 	case SEN_OV2610AE:
4128 	case SEN_OV3610:
4129 	case SEN_OV7670:
4130 	case SEN_OV9600:
4131 		mode_init_ov_sensor_regs(sd);
4132 		return;
4133 	case SEN_OV7660:
4134 		ov519_set_mode(sd);
4135 		ov519_set_fr(sd);
4136 		return;
4137 	}
4138 
4139 	gspca_dev = &sd->gspca_dev;
4140 	qvga = gspca_dev->cam.cam_mode[gspca_dev->curr_mode].priv & 1;
4141 	crop = gspca_dev->cam.cam_mode[gspca_dev->curr_mode].priv & 2;
4142 
4143 	/* The different sensor ICs handle setting up of window differently.
4144 	 * IF YOU SET IT WRONG, YOU WILL GET ALL ZERO ISOC DATA FROM OV51x!! */
4145 	switch (sd->sensor) {
4146 	case SEN_OV8610:
4147 		hwsbase = 0x1e;
4148 		hwebase = 0x1e;
4149 		vwsbase = 0x02;
4150 		vwebase = 0x02;
4151 		break;
4152 	case SEN_OV7610:
4153 	case SEN_OV76BE:
4154 		hwsbase = 0x38;
4155 		hwebase = 0x3a;
4156 		vwsbase = vwebase = 0x05;
4157 		break;
4158 	case SEN_OV6620:
4159 	case SEN_OV6630:
4160 	case SEN_OV66308AF:
4161 		hwsbase = 0x38;
4162 		hwebase = 0x3a;
4163 		vwsbase = 0x05;
4164 		vwebase = 0x06;
4165 		if (sd->sensor == SEN_OV66308AF && qvga)
4166 			/* HDG: this fixes U and V getting swapped */
4167 			hwsbase++;
4168 		if (crop) {
4169 			hwsbase += 8;
4170 			hwebase += 8;
4171 			vwsbase += 11;
4172 			vwebase += 11;
4173 		}
4174 		break;
4175 	case SEN_OV7620:
4176 	case SEN_OV7620AE:
4177 		hwsbase = 0x2f;		/* From 7620.SET (spec is wrong) */
4178 		hwebase = 0x2f;
4179 		vwsbase = vwebase = 0x05;
4180 		break;
4181 	case SEN_OV7640:
4182 	case SEN_OV7648:
4183 		hwsbase = 0x1a;
4184 		hwebase = 0x1a;
4185 		vwsbase = vwebase = 0x03;
4186 		break;
4187 	default:
4188 		return;
4189 	}
4190 
4191 	switch (sd->sensor) {
4192 	case SEN_OV6620:
4193 	case SEN_OV6630:
4194 	case SEN_OV66308AF:
4195 		if (qvga) {		/* QCIF */
4196 			hwscale = 0;
4197 			vwscale = 0;
4198 		} else {		/* CIF */
4199 			hwscale = 1;
4200 			vwscale = 1;	/* The datasheet says 0;
4201 					 * it's wrong */
4202 		}
4203 		break;
4204 	case SEN_OV8610:
4205 		if (qvga) {		/* QSVGA */
4206 			hwscale = 1;
4207 			vwscale = 1;
4208 		} else {		/* SVGA */
4209 			hwscale = 2;
4210 			vwscale = 2;
4211 		}
4212 		break;
4213 	default:			/* SEN_OV7xx0 */
4214 		if (qvga) {		/* QVGA */
4215 			hwscale = 1;
4216 			vwscale = 0;
4217 		} else {		/* VGA */
4218 			hwscale = 2;
4219 			vwscale = 1;
4220 		}
4221 	}
4222 
4223 	mode_init_ov_sensor_regs(sd);
4224 
4225 	i2c_w(sd, 0x17, hwsbase);
4226 	i2c_w(sd, 0x18, hwebase + (sd->sensor_width >> hwscale));
4227 	i2c_w(sd, 0x19, vwsbase);
4228 	i2c_w(sd, 0x1a, vwebase + (sd->sensor_height >> vwscale));
4229 }
4230 
4231 /* -- start the camera -- */
sd_start(struct gspca_dev * gspca_dev)4232 static int sd_start(struct gspca_dev *gspca_dev)
4233 {
4234 	struct sd *sd = (struct sd *) gspca_dev;
4235 
4236 	/* Default for most bridges, allow bridge_mode_init_regs to override */
4237 	sd->sensor_width = sd->gspca_dev.pixfmt.width;
4238 	sd->sensor_height = sd->gspca_dev.pixfmt.height;
4239 
4240 	switch (sd->bridge) {
4241 	case BRIDGE_OV511:
4242 	case BRIDGE_OV511PLUS:
4243 		ov511_mode_init_regs(sd);
4244 		break;
4245 	case BRIDGE_OV518:
4246 	case BRIDGE_OV518PLUS:
4247 		ov518_mode_init_regs(sd);
4248 		break;
4249 	case BRIDGE_OV519:
4250 		ov519_mode_init_regs(sd);
4251 		break;
4252 	/* case BRIDGE_OVFX2: nothing to do */
4253 	case BRIDGE_W9968CF:
4254 		w9968cf_mode_init_regs(sd);
4255 		break;
4256 	}
4257 
4258 	set_ov_sensor_window(sd);
4259 
4260 	/* Force clear snapshot state in case the snapshot button was
4261 	   pressed while we weren't streaming */
4262 	sd->snapshot_needs_reset = 1;
4263 	sd_reset_snapshot(gspca_dev);
4264 
4265 	sd->first_frame = 3;
4266 
4267 	ov51x_restart(sd);
4268 	ov51x_led_control(sd, 1);
4269 	return gspca_dev->usb_err;
4270 }
4271 
sd_stopN(struct gspca_dev * gspca_dev)4272 static void sd_stopN(struct gspca_dev *gspca_dev)
4273 {
4274 	struct sd *sd = (struct sd *) gspca_dev;
4275 
4276 	ov51x_stop(sd);
4277 	ov51x_led_control(sd, 0);
4278 }
4279 
sd_stop0(struct gspca_dev * gspca_dev)4280 static void sd_stop0(struct gspca_dev *gspca_dev)
4281 {
4282 	struct sd *sd = (struct sd *) gspca_dev;
4283 
4284 	if (!sd->gspca_dev.present)
4285 		return;
4286 	if (sd->bridge == BRIDGE_W9968CF)
4287 		w9968cf_stop0(sd);
4288 
4289 #if IS_ENABLED(CONFIG_INPUT)
4290 	/* If the last button state is pressed, release it now! */
4291 	if (sd->snapshot_pressed) {
4292 		input_report_key(gspca_dev->input_dev, KEY_CAMERA, 0);
4293 		input_sync(gspca_dev->input_dev);
4294 		sd->snapshot_pressed = 0;
4295 	}
4296 #endif
4297 	if (sd->bridge == BRIDGE_OV519)
4298 		reg_w(sd, OV519_R57_SNAPSHOT, 0x23);
4299 }
4300 
ov51x_handle_button(struct gspca_dev * gspca_dev,u8 state)4301 static void ov51x_handle_button(struct gspca_dev *gspca_dev, u8 state)
4302 {
4303 	struct sd *sd = (struct sd *) gspca_dev;
4304 
4305 	if (sd->snapshot_pressed != state) {
4306 #if IS_ENABLED(CONFIG_INPUT)
4307 		input_report_key(gspca_dev->input_dev, KEY_CAMERA, state);
4308 		input_sync(gspca_dev->input_dev);
4309 #endif
4310 		if (state)
4311 			sd->snapshot_needs_reset = 1;
4312 
4313 		sd->snapshot_pressed = state;
4314 	} else {
4315 		/* On the ov511 / ov519 we need to reset the button state
4316 		   multiple times, as resetting does not work as long as the
4317 		   button stays pressed */
4318 		switch (sd->bridge) {
4319 		case BRIDGE_OV511:
4320 		case BRIDGE_OV511PLUS:
4321 		case BRIDGE_OV519:
4322 			if (state)
4323 				sd->snapshot_needs_reset = 1;
4324 			break;
4325 		}
4326 	}
4327 }
4328 
ov511_pkt_scan(struct gspca_dev * gspca_dev,u8 * in,int len)4329 static void ov511_pkt_scan(struct gspca_dev *gspca_dev,
4330 			u8 *in,			/* isoc packet */
4331 			int len)		/* iso packet length */
4332 {
4333 	struct sd *sd = (struct sd *) gspca_dev;
4334 
4335 	/* SOF/EOF packets have 1st to 8th bytes zeroed and the 9th
4336 	 * byte non-zero. The EOF packet has image width/height in the
4337 	 * 10th and 11th bytes. The 9th byte is given as follows:
4338 	 *
4339 	 * bit 7: EOF
4340 	 *     6: compression enabled
4341 	 *     5: 422/420/400 modes
4342 	 *     4: 422/420/400 modes
4343 	 *     3: 1
4344 	 *     2: snapshot button on
4345 	 *     1: snapshot frame
4346 	 *     0: even/odd field
4347 	 */
4348 	if (!(in[0] | in[1] | in[2] | in[3] | in[4] | in[5] | in[6] | in[7]) &&
4349 	    (in[8] & 0x08)) {
4350 		ov51x_handle_button(gspca_dev, (in[8] >> 2) & 1);
4351 		if (in[8] & 0x80) {
4352 			/* Frame end */
4353 			if ((in[9] + 1) * 8 != gspca_dev->pixfmt.width ||
4354 			    (in[10] + 1) * 8 != gspca_dev->pixfmt.height) {
4355 				gspca_err(gspca_dev, "Invalid frame size, got: %dx%d, requested: %dx%d\n",
4356 					  (in[9] + 1) * 8, (in[10] + 1) * 8,
4357 					  gspca_dev->pixfmt.width,
4358 					  gspca_dev->pixfmt.height);
4359 				gspca_dev->last_packet_type = DISCARD_PACKET;
4360 				return;
4361 			}
4362 			/* Add 11 byte footer to frame, might be useful */
4363 			gspca_frame_add(gspca_dev, LAST_PACKET, in, 11);
4364 			return;
4365 		} else {
4366 			/* Frame start */
4367 			gspca_frame_add(gspca_dev, FIRST_PACKET, in, 0);
4368 			sd->packet_nr = 0;
4369 		}
4370 	}
4371 
4372 	/* Ignore the packet number */
4373 	len--;
4374 
4375 	/* intermediate packet */
4376 	gspca_frame_add(gspca_dev, INTER_PACKET, in, len);
4377 }
4378 
ov518_pkt_scan(struct gspca_dev * gspca_dev,u8 * data,int len)4379 static void ov518_pkt_scan(struct gspca_dev *gspca_dev,
4380 			u8 *data,			/* isoc packet */
4381 			int len)			/* iso packet length */
4382 {
4383 	struct sd *sd = (struct sd *) gspca_dev;
4384 
4385 	/* A false positive here is likely, until OVT gives me
4386 	 * the definitive SOF/EOF format */
4387 	if ((!(data[0] | data[1] | data[2] | data[3] | data[5])) && data[6]) {
4388 		ov51x_handle_button(gspca_dev, (data[6] >> 1) & 1);
4389 		gspca_frame_add(gspca_dev, LAST_PACKET, NULL, 0);
4390 		gspca_frame_add(gspca_dev, FIRST_PACKET, NULL, 0);
4391 		sd->packet_nr = 0;
4392 	}
4393 
4394 	if (gspca_dev->last_packet_type == DISCARD_PACKET)
4395 		return;
4396 
4397 	/* Does this device use packet numbers ? */
4398 	if (len & 7) {
4399 		len--;
4400 		if (sd->packet_nr == data[len])
4401 			sd->packet_nr++;
4402 		/* The last few packets of the frame (which are all 0's
4403 		   except that they may contain part of the footer), are
4404 		   numbered 0 */
4405 		else if (sd->packet_nr == 0 || data[len]) {
4406 			gspca_err(gspca_dev, "Invalid packet nr: %d (expect: %d)\n",
4407 				  (int)data[len], (int)sd->packet_nr);
4408 			gspca_dev->last_packet_type = DISCARD_PACKET;
4409 			return;
4410 		}
4411 	}
4412 
4413 	/* intermediate packet */
4414 	gspca_frame_add(gspca_dev, INTER_PACKET, data, len);
4415 }
4416 
ov519_pkt_scan(struct gspca_dev * gspca_dev,u8 * data,int len)4417 static void ov519_pkt_scan(struct gspca_dev *gspca_dev,
4418 			u8 *data,			/* isoc packet */
4419 			int len)			/* iso packet length */
4420 {
4421 	/* Header of ov519 is 16 bytes:
4422 	 *     Byte     Value      Description
4423 	 *	0	0xff	magic
4424 	 *	1	0xff	magic
4425 	 *	2	0xff	magic
4426 	 *	3	0xXX	0x50 = SOF, 0x51 = EOF
4427 	 *	9	0xXX	0x01 initial frame without data,
4428 	 *			0x00 standard frame with image
4429 	 *	14	Lo	in EOF: length of image data / 8
4430 	 *	15	Hi
4431 	 */
4432 
4433 	if (data[0] == 0xff && data[1] == 0xff && data[2] == 0xff) {
4434 		switch (data[3]) {
4435 		case 0x50:		/* start of frame */
4436 			/* Don't check the button state here, as the state
4437 			   usually (always ?) changes at EOF and checking it
4438 			   here leads to unnecessary snapshot state resets. */
4439 #define HDRSZ 16
4440 			data += HDRSZ;
4441 			len -= HDRSZ;
4442 #undef HDRSZ
4443 			if (data[0] == 0xff || data[1] == 0xd8)
4444 				gspca_frame_add(gspca_dev, FIRST_PACKET,
4445 						data, len);
4446 			else
4447 				gspca_dev->last_packet_type = DISCARD_PACKET;
4448 			return;
4449 		case 0x51:		/* end of frame */
4450 			ov51x_handle_button(gspca_dev, data[11] & 1);
4451 			if (data[9] != 0)
4452 				gspca_dev->last_packet_type = DISCARD_PACKET;
4453 			gspca_frame_add(gspca_dev, LAST_PACKET,
4454 					NULL, 0);
4455 			return;
4456 		}
4457 	}
4458 
4459 	/* intermediate packet */
4460 	gspca_frame_add(gspca_dev, INTER_PACKET, data, len);
4461 }
4462 
ovfx2_pkt_scan(struct gspca_dev * gspca_dev,u8 * data,int len)4463 static void ovfx2_pkt_scan(struct gspca_dev *gspca_dev,
4464 			u8 *data,			/* isoc packet */
4465 			int len)			/* iso packet length */
4466 {
4467 	struct sd *sd = (struct sd *) gspca_dev;
4468 
4469 	gspca_frame_add(gspca_dev, INTER_PACKET, data, len);
4470 
4471 	/* A short read signals EOF */
4472 	if (len < gspca_dev->cam.bulk_size) {
4473 		/* If the frame is short, and it is one of the first ones
4474 		   the sensor and bridge are still syncing, so drop it. */
4475 		if (sd->first_frame) {
4476 			sd->first_frame--;
4477 			if (gspca_dev->image_len <
4478 				  sd->gspca_dev.pixfmt.width *
4479 					sd->gspca_dev.pixfmt.height)
4480 				gspca_dev->last_packet_type = DISCARD_PACKET;
4481 		}
4482 		gspca_frame_add(gspca_dev, LAST_PACKET, NULL, 0);
4483 		gspca_frame_add(gspca_dev, FIRST_PACKET, NULL, 0);
4484 	}
4485 }
4486 
sd_pkt_scan(struct gspca_dev * gspca_dev,u8 * data,int len)4487 static void sd_pkt_scan(struct gspca_dev *gspca_dev,
4488 			u8 *data,			/* isoc packet */
4489 			int len)			/* iso packet length */
4490 {
4491 	struct sd *sd = (struct sd *) gspca_dev;
4492 
4493 	switch (sd->bridge) {
4494 	case BRIDGE_OV511:
4495 	case BRIDGE_OV511PLUS:
4496 		ov511_pkt_scan(gspca_dev, data, len);
4497 		break;
4498 	case BRIDGE_OV518:
4499 	case BRIDGE_OV518PLUS:
4500 		ov518_pkt_scan(gspca_dev, data, len);
4501 		break;
4502 	case BRIDGE_OV519:
4503 		ov519_pkt_scan(gspca_dev, data, len);
4504 		break;
4505 	case BRIDGE_OVFX2:
4506 		ovfx2_pkt_scan(gspca_dev, data, len);
4507 		break;
4508 	case BRIDGE_W9968CF:
4509 		w9968cf_pkt_scan(gspca_dev, data, len);
4510 		break;
4511 	}
4512 }
4513 
4514 /* -- management routines -- */
4515 
setbrightness(struct gspca_dev * gspca_dev,s32 val)4516 static void setbrightness(struct gspca_dev *gspca_dev, s32 val)
4517 {
4518 	struct sd *sd = (struct sd *) gspca_dev;
4519 	static const struct ov_i2c_regvals brit_7660[][7] = {
4520 		{{0x0f, 0x6a}, {0x24, 0x40}, {0x25, 0x2b}, {0x26, 0x90},
4521 			{0x27, 0xe0}, {0x28, 0xe0}, {0x2c, 0xe0}},
4522 		{{0x0f, 0x6a}, {0x24, 0x50}, {0x25, 0x40}, {0x26, 0xa1},
4523 			{0x27, 0xc0}, {0x28, 0xc0}, {0x2c, 0xc0}},
4524 		{{0x0f, 0x6a}, {0x24, 0x68}, {0x25, 0x58}, {0x26, 0xc2},
4525 			{0x27, 0xa0}, {0x28, 0xa0}, {0x2c, 0xa0}},
4526 		{{0x0f, 0x6a}, {0x24, 0x70}, {0x25, 0x68}, {0x26, 0xd3},
4527 			{0x27, 0x80}, {0x28, 0x80}, {0x2c, 0x80}},
4528 		{{0x0f, 0x6a}, {0x24, 0x80}, {0x25, 0x70}, {0x26, 0xd3},
4529 			{0x27, 0x20}, {0x28, 0x20}, {0x2c, 0x20}},
4530 		{{0x0f, 0x6a}, {0x24, 0x88}, {0x25, 0x78}, {0x26, 0xd3},
4531 			{0x27, 0x40}, {0x28, 0x40}, {0x2c, 0x40}},
4532 		{{0x0f, 0x6a}, {0x24, 0x90}, {0x25, 0x80}, {0x26, 0xd4},
4533 			{0x27, 0x60}, {0x28, 0x60}, {0x2c, 0x60}}
4534 	};
4535 
4536 	switch (sd->sensor) {
4537 	case SEN_OV8610:
4538 	case SEN_OV7610:
4539 	case SEN_OV76BE:
4540 	case SEN_OV6620:
4541 	case SEN_OV6630:
4542 	case SEN_OV66308AF:
4543 	case SEN_OV7640:
4544 	case SEN_OV7648:
4545 		i2c_w(sd, OV7610_REG_BRT, val);
4546 		break;
4547 	case SEN_OV7620:
4548 	case SEN_OV7620AE:
4549 		i2c_w(sd, OV7610_REG_BRT, val);
4550 		break;
4551 	case SEN_OV7660:
4552 		write_i2c_regvals(sd, brit_7660[val],
4553 				ARRAY_SIZE(brit_7660[0]));
4554 		break;
4555 	case SEN_OV7670:
4556 /*win trace
4557  *		i2c_w_mask(sd, OV7670_R13_COM8, 0, OV7670_COM8_AEC); */
4558 		i2c_w(sd, OV7670_R55_BRIGHT, ov7670_abs_to_sm(val));
4559 		break;
4560 	}
4561 }
4562 
setcontrast(struct gspca_dev * gspca_dev,s32 val)4563 static void setcontrast(struct gspca_dev *gspca_dev, s32 val)
4564 {
4565 	struct sd *sd = (struct sd *) gspca_dev;
4566 	static const struct ov_i2c_regvals contrast_7660[][31] = {
4567 		{{0x6c, 0xf0}, {0x6d, 0xf0}, {0x6e, 0xf8}, {0x6f, 0xa0},
4568 		 {0x70, 0x58}, {0x71, 0x38}, {0x72, 0x30}, {0x73, 0x30},
4569 		 {0x74, 0x28}, {0x75, 0x28}, {0x76, 0x24}, {0x77, 0x24},
4570 		 {0x78, 0x22}, {0x79, 0x28}, {0x7a, 0x2a}, {0x7b, 0x34},
4571 		 {0x7c, 0x0f}, {0x7d, 0x1e}, {0x7e, 0x3d}, {0x7f, 0x65},
4572 		 {0x80, 0x70}, {0x81, 0x77}, {0x82, 0x7d}, {0x83, 0x83},
4573 		 {0x84, 0x88}, {0x85, 0x8d}, {0x86, 0x96}, {0x87, 0x9f},
4574 		 {0x88, 0xb0}, {0x89, 0xc4}, {0x8a, 0xd9}},
4575 		{{0x6c, 0xf0}, {0x6d, 0xf0}, {0x6e, 0xf8}, {0x6f, 0x94},
4576 		 {0x70, 0x58}, {0x71, 0x40}, {0x72, 0x30}, {0x73, 0x30},
4577 		 {0x74, 0x30}, {0x75, 0x30}, {0x76, 0x2c}, {0x77, 0x24},
4578 		 {0x78, 0x22}, {0x79, 0x28}, {0x7a, 0x2a}, {0x7b, 0x31},
4579 		 {0x7c, 0x0f}, {0x7d, 0x1e}, {0x7e, 0x3d}, {0x7f, 0x62},
4580 		 {0x80, 0x6d}, {0x81, 0x75}, {0x82, 0x7b}, {0x83, 0x81},
4581 		 {0x84, 0x87}, {0x85, 0x8d}, {0x86, 0x98}, {0x87, 0xa1},
4582 		 {0x88, 0xb2}, {0x89, 0xc6}, {0x8a, 0xdb}},
4583 		{{0x6c, 0xf0}, {0x6d, 0xf0}, {0x6e, 0xf0}, {0x6f, 0x84},
4584 		 {0x70, 0x58}, {0x71, 0x48}, {0x72, 0x40}, {0x73, 0x40},
4585 		 {0x74, 0x28}, {0x75, 0x28}, {0x76, 0x28}, {0x77, 0x24},
4586 		 {0x78, 0x26}, {0x79, 0x28}, {0x7a, 0x28}, {0x7b, 0x34},
4587 		 {0x7c, 0x0f}, {0x7d, 0x1e}, {0x7e, 0x3c}, {0x7f, 0x5d},
4588 		 {0x80, 0x68}, {0x81, 0x71}, {0x82, 0x79}, {0x83, 0x81},
4589 		 {0x84, 0x86}, {0x85, 0x8b}, {0x86, 0x95}, {0x87, 0x9e},
4590 		 {0x88, 0xb1}, {0x89, 0xc5}, {0x8a, 0xd9}},
4591 		{{0x6c, 0xf0}, {0x6d, 0xf0}, {0x6e, 0xf0}, {0x6f, 0x70},
4592 		 {0x70, 0x58}, {0x71, 0x58}, {0x72, 0x48}, {0x73, 0x48},
4593 		 {0x74, 0x38}, {0x75, 0x40}, {0x76, 0x34}, {0x77, 0x34},
4594 		 {0x78, 0x2e}, {0x79, 0x28}, {0x7a, 0x24}, {0x7b, 0x22},
4595 		 {0x7c, 0x0f}, {0x7d, 0x1e}, {0x7e, 0x3c}, {0x7f, 0x58},
4596 		 {0x80, 0x63}, {0x81, 0x6e}, {0x82, 0x77}, {0x83, 0x80},
4597 		 {0x84, 0x87}, {0x85, 0x8f}, {0x86, 0x9c}, {0x87, 0xa9},
4598 		 {0x88, 0xc0}, {0x89, 0xd4}, {0x8a, 0xe6}},
4599 		{{0x6c, 0xa0}, {0x6d, 0xf0}, {0x6e, 0x90}, {0x6f, 0x80},
4600 		 {0x70, 0x70}, {0x71, 0x80}, {0x72, 0x60}, {0x73, 0x60},
4601 		 {0x74, 0x58}, {0x75, 0x60}, {0x76, 0x4c}, {0x77, 0x38},
4602 		 {0x78, 0x38}, {0x79, 0x2a}, {0x7a, 0x20}, {0x7b, 0x0e},
4603 		 {0x7c, 0x0a}, {0x7d, 0x14}, {0x7e, 0x26}, {0x7f, 0x46},
4604 		 {0x80, 0x54}, {0x81, 0x64}, {0x82, 0x70}, {0x83, 0x7c},
4605 		 {0x84, 0x87}, {0x85, 0x93}, {0x86, 0xa6}, {0x87, 0xb4},
4606 		 {0x88, 0xd0}, {0x89, 0xe5}, {0x8a, 0xf5}},
4607 		{{0x6c, 0x60}, {0x6d, 0x80}, {0x6e, 0x60}, {0x6f, 0x80},
4608 		 {0x70, 0x80}, {0x71, 0x80}, {0x72, 0x88}, {0x73, 0x30},
4609 		 {0x74, 0x70}, {0x75, 0x68}, {0x76, 0x64}, {0x77, 0x50},
4610 		 {0x78, 0x3c}, {0x79, 0x22}, {0x7a, 0x10}, {0x7b, 0x08},
4611 		 {0x7c, 0x06}, {0x7d, 0x0e}, {0x7e, 0x1a}, {0x7f, 0x3a},
4612 		 {0x80, 0x4a}, {0x81, 0x5a}, {0x82, 0x6b}, {0x83, 0x7b},
4613 		 {0x84, 0x89}, {0x85, 0x96}, {0x86, 0xaf}, {0x87, 0xc3},
4614 		 {0x88, 0xe1}, {0x89, 0xf2}, {0x8a, 0xfa}},
4615 		{{0x6c, 0x20}, {0x6d, 0x40}, {0x6e, 0x20}, {0x6f, 0x60},
4616 		 {0x70, 0x88}, {0x71, 0xc8}, {0x72, 0xc0}, {0x73, 0xb8},
4617 		 {0x74, 0xa8}, {0x75, 0xb8}, {0x76, 0x80}, {0x77, 0x5c},
4618 		 {0x78, 0x26}, {0x79, 0x10}, {0x7a, 0x08}, {0x7b, 0x04},
4619 		 {0x7c, 0x02}, {0x7d, 0x06}, {0x7e, 0x0a}, {0x7f, 0x22},
4620 		 {0x80, 0x33}, {0x81, 0x4c}, {0x82, 0x64}, {0x83, 0x7b},
4621 		 {0x84, 0x90}, {0x85, 0xa7}, {0x86, 0xc7}, {0x87, 0xde},
4622 		 {0x88, 0xf1}, {0x89, 0xf9}, {0x8a, 0xfd}},
4623 	};
4624 
4625 	switch (sd->sensor) {
4626 	case SEN_OV7610:
4627 	case SEN_OV6620:
4628 		i2c_w(sd, OV7610_REG_CNT, val);
4629 		break;
4630 	case SEN_OV6630:
4631 	case SEN_OV66308AF:
4632 		i2c_w_mask(sd, OV7610_REG_CNT, val >> 4, 0x0f);
4633 		break;
4634 	case SEN_OV8610: {
4635 		static const u8 ctab[] = {
4636 			0x03, 0x09, 0x0b, 0x0f, 0x53, 0x6f, 0x35, 0x7f
4637 		};
4638 
4639 		/* Use Y gamma control instead. Bit 0 enables it. */
4640 		i2c_w(sd, 0x64, ctab[val >> 5]);
4641 		break;
4642 	    }
4643 	case SEN_OV7620:
4644 	case SEN_OV7620AE: {
4645 		static const u8 ctab[] = {
4646 			0x01, 0x05, 0x09, 0x11, 0x15, 0x35, 0x37, 0x57,
4647 			0x5b, 0xa5, 0xa7, 0xc7, 0xc9, 0xcf, 0xef, 0xff
4648 		};
4649 
4650 		/* Use Y gamma control instead. Bit 0 enables it. */
4651 		i2c_w(sd, 0x64, ctab[val >> 4]);
4652 		break;
4653 	    }
4654 	case SEN_OV7660:
4655 		write_i2c_regvals(sd, contrast_7660[val],
4656 					ARRAY_SIZE(contrast_7660[0]));
4657 		break;
4658 	case SEN_OV7670:
4659 		/* check that this isn't just the same as ov7610 */
4660 		i2c_w(sd, OV7670_R56_CONTRAS, val >> 1);
4661 		break;
4662 	}
4663 }
4664 
setexposure(struct gspca_dev * gspca_dev,s32 val)4665 static void setexposure(struct gspca_dev *gspca_dev, s32 val)
4666 {
4667 	struct sd *sd = (struct sd *) gspca_dev;
4668 
4669 	i2c_w(sd, 0x10, val);
4670 }
4671 
setcolors(struct gspca_dev * gspca_dev,s32 val)4672 static void setcolors(struct gspca_dev *gspca_dev, s32 val)
4673 {
4674 	struct sd *sd = (struct sd *) gspca_dev;
4675 	static const struct ov_i2c_regvals colors_7660[][6] = {
4676 		{{0x4f, 0x28}, {0x50, 0x2a}, {0x51, 0x02}, {0x52, 0x0a},
4677 		 {0x53, 0x19}, {0x54, 0x23}},
4678 		{{0x4f, 0x47}, {0x50, 0x4a}, {0x51, 0x03}, {0x52, 0x11},
4679 		 {0x53, 0x2c}, {0x54, 0x3e}},
4680 		{{0x4f, 0x66}, {0x50, 0x6b}, {0x51, 0x05}, {0x52, 0x19},
4681 		 {0x53, 0x40}, {0x54, 0x59}},
4682 		{{0x4f, 0x84}, {0x50, 0x8b}, {0x51, 0x06}, {0x52, 0x20},
4683 		 {0x53, 0x53}, {0x54, 0x73}},
4684 		{{0x4f, 0xa3}, {0x50, 0xab}, {0x51, 0x08}, {0x52, 0x28},
4685 		 {0x53, 0x66}, {0x54, 0x8e}},
4686 	};
4687 
4688 	switch (sd->sensor) {
4689 	case SEN_OV8610:
4690 	case SEN_OV7610:
4691 	case SEN_OV76BE:
4692 	case SEN_OV6620:
4693 	case SEN_OV6630:
4694 	case SEN_OV66308AF:
4695 		i2c_w(sd, OV7610_REG_SAT, val);
4696 		break;
4697 	case SEN_OV7620:
4698 	case SEN_OV7620AE:
4699 		/* Use UV gamma control instead. Bits 0 & 7 are reserved. */
4700 /*		rc = ov_i2c_write(sd->dev, 0x62, (val >> 9) & 0x7e);
4701 		if (rc < 0)
4702 			goto out; */
4703 		i2c_w(sd, OV7610_REG_SAT, val);
4704 		break;
4705 	case SEN_OV7640:
4706 	case SEN_OV7648:
4707 		i2c_w(sd, OV7610_REG_SAT, val & 0xf0);
4708 		break;
4709 	case SEN_OV7660:
4710 		write_i2c_regvals(sd, colors_7660[val],
4711 					ARRAY_SIZE(colors_7660[0]));
4712 		break;
4713 	case SEN_OV7670:
4714 		/* supported later once I work out how to do it
4715 		 * transparently fail now! */
4716 		/* set REG_COM13 values for UV sat auto mode */
4717 		break;
4718 	}
4719 }
4720 
setautobright(struct gspca_dev * gspca_dev,s32 val)4721 static void setautobright(struct gspca_dev *gspca_dev, s32 val)
4722 {
4723 	struct sd *sd = (struct sd *) gspca_dev;
4724 
4725 	i2c_w_mask(sd, 0x2d, val ? 0x10 : 0x00, 0x10);
4726 }
4727 
setfreq_i(struct sd * sd,s32 val)4728 static void setfreq_i(struct sd *sd, s32 val)
4729 {
4730 	if (sd->sensor == SEN_OV7660
4731 	 || sd->sensor == SEN_OV7670) {
4732 		switch (val) {
4733 		case 0: /* Banding filter disabled */
4734 			i2c_w_mask(sd, OV7670_R13_COM8, 0, OV7670_COM8_BFILT);
4735 			break;
4736 		case 1: /* 50 hz */
4737 			i2c_w_mask(sd, OV7670_R13_COM8, OV7670_COM8_BFILT,
4738 				   OV7670_COM8_BFILT);
4739 			i2c_w_mask(sd, OV7670_R3B_COM11, 0x08, 0x18);
4740 			break;
4741 		case 2: /* 60 hz */
4742 			i2c_w_mask(sd, OV7670_R13_COM8, OV7670_COM8_BFILT,
4743 				   OV7670_COM8_BFILT);
4744 			i2c_w_mask(sd, OV7670_R3B_COM11, 0x00, 0x18);
4745 			break;
4746 		case 3: /* Auto hz - ov7670 only */
4747 			i2c_w_mask(sd, OV7670_R13_COM8, OV7670_COM8_BFILT,
4748 				   OV7670_COM8_BFILT);
4749 			i2c_w_mask(sd, OV7670_R3B_COM11, OV7670_COM11_HZAUTO,
4750 				   0x18);
4751 			break;
4752 		}
4753 	} else {
4754 		switch (val) {
4755 		case 0: /* Banding filter disabled */
4756 			i2c_w_mask(sd, 0x2d, 0x00, 0x04);
4757 			i2c_w_mask(sd, 0x2a, 0x00, 0x80);
4758 			break;
4759 		case 1: /* 50 hz (filter on and framerate adj) */
4760 			i2c_w_mask(sd, 0x2d, 0x04, 0x04);
4761 			i2c_w_mask(sd, 0x2a, 0x80, 0x80);
4762 			/* 20 fps -> 16.667 fps */
4763 			if (sd->sensor == SEN_OV6620 ||
4764 			    sd->sensor == SEN_OV6630 ||
4765 			    sd->sensor == SEN_OV66308AF)
4766 				i2c_w(sd, 0x2b, 0x5e);
4767 			else
4768 				i2c_w(sd, 0x2b, 0xac);
4769 			break;
4770 		case 2: /* 60 hz (filter on, ...) */
4771 			i2c_w_mask(sd, 0x2d, 0x04, 0x04);
4772 			if (sd->sensor == SEN_OV6620 ||
4773 			    sd->sensor == SEN_OV6630 ||
4774 			    sd->sensor == SEN_OV66308AF) {
4775 				/* 20 fps -> 15 fps */
4776 				i2c_w_mask(sd, 0x2a, 0x80, 0x80);
4777 				i2c_w(sd, 0x2b, 0xa8);
4778 			} else {
4779 				/* no framerate adj. */
4780 				i2c_w_mask(sd, 0x2a, 0x00, 0x80);
4781 			}
4782 			break;
4783 		}
4784 	}
4785 }
4786 
setfreq(struct gspca_dev * gspca_dev,s32 val)4787 static void setfreq(struct gspca_dev *gspca_dev, s32 val)
4788 {
4789 	struct sd *sd = (struct sd *) gspca_dev;
4790 
4791 	setfreq_i(sd, val);
4792 
4793 	/* Ugly but necessary */
4794 	if (sd->bridge == BRIDGE_W9968CF)
4795 		w9968cf_set_crop_window(sd);
4796 }
4797 
sd_get_jcomp(struct gspca_dev * gspca_dev,struct v4l2_jpegcompression * jcomp)4798 static int sd_get_jcomp(struct gspca_dev *gspca_dev,
4799 			struct v4l2_jpegcompression *jcomp)
4800 {
4801 	struct sd *sd = (struct sd *) gspca_dev;
4802 
4803 	if (sd->bridge != BRIDGE_W9968CF)
4804 		return -ENOTTY;
4805 
4806 	memset(jcomp, 0, sizeof *jcomp);
4807 	jcomp->quality = v4l2_ctrl_g_ctrl(sd->jpegqual);
4808 	jcomp->jpeg_markers = V4L2_JPEG_MARKER_DHT | V4L2_JPEG_MARKER_DQT |
4809 			      V4L2_JPEG_MARKER_DRI;
4810 	return 0;
4811 }
4812 
sd_set_jcomp(struct gspca_dev * gspca_dev,const struct v4l2_jpegcompression * jcomp)4813 static int sd_set_jcomp(struct gspca_dev *gspca_dev,
4814 			const struct v4l2_jpegcompression *jcomp)
4815 {
4816 	struct sd *sd = (struct sd *) gspca_dev;
4817 
4818 	if (sd->bridge != BRIDGE_W9968CF)
4819 		return -ENOTTY;
4820 
4821 	v4l2_ctrl_s_ctrl(sd->jpegqual, jcomp->quality);
4822 	return 0;
4823 }
4824 
sd_g_volatile_ctrl(struct v4l2_ctrl * ctrl)4825 static int sd_g_volatile_ctrl(struct v4l2_ctrl *ctrl)
4826 {
4827 	struct gspca_dev *gspca_dev =
4828 		container_of(ctrl->handler, struct gspca_dev, ctrl_handler);
4829 	struct sd *sd = (struct sd *)gspca_dev;
4830 
4831 	gspca_dev->usb_err = 0;
4832 
4833 	switch (ctrl->id) {
4834 	case V4L2_CID_AUTOGAIN:
4835 		gspca_dev->exposure->val = i2c_r(sd, 0x10);
4836 		break;
4837 	}
4838 	return 0;
4839 }
4840 
sd_s_ctrl(struct v4l2_ctrl * ctrl)4841 static int sd_s_ctrl(struct v4l2_ctrl *ctrl)
4842 {
4843 	struct gspca_dev *gspca_dev =
4844 		container_of(ctrl->handler, struct gspca_dev, ctrl_handler);
4845 	struct sd *sd = (struct sd *)gspca_dev;
4846 
4847 	gspca_dev->usb_err = 0;
4848 
4849 	if (!gspca_dev->streaming)
4850 		return 0;
4851 
4852 	switch (ctrl->id) {
4853 	case V4L2_CID_BRIGHTNESS:
4854 		setbrightness(gspca_dev, ctrl->val);
4855 		break;
4856 	case V4L2_CID_CONTRAST:
4857 		setcontrast(gspca_dev, ctrl->val);
4858 		break;
4859 	case V4L2_CID_POWER_LINE_FREQUENCY:
4860 		setfreq(gspca_dev, ctrl->val);
4861 		break;
4862 	case V4L2_CID_AUTOBRIGHTNESS:
4863 		if (ctrl->is_new)
4864 			setautobright(gspca_dev, ctrl->val);
4865 		if (!ctrl->val && sd->brightness->is_new)
4866 			setbrightness(gspca_dev, sd->brightness->val);
4867 		break;
4868 	case V4L2_CID_SATURATION:
4869 		setcolors(gspca_dev, ctrl->val);
4870 		break;
4871 	case V4L2_CID_HFLIP:
4872 		sethvflip(gspca_dev, ctrl->val, sd->vflip->val);
4873 		break;
4874 	case V4L2_CID_AUTOGAIN:
4875 		if (ctrl->is_new)
4876 			setautogain(gspca_dev, ctrl->val);
4877 		if (!ctrl->val && gspca_dev->exposure->is_new)
4878 			setexposure(gspca_dev, gspca_dev->exposure->val);
4879 		break;
4880 	case V4L2_CID_JPEG_COMPRESSION_QUALITY:
4881 		return -EBUSY; /* Should never happen, as we grab the ctrl */
4882 	}
4883 	return gspca_dev->usb_err;
4884 }
4885 
4886 static const struct v4l2_ctrl_ops sd_ctrl_ops = {
4887 	.g_volatile_ctrl = sd_g_volatile_ctrl,
4888 	.s_ctrl = sd_s_ctrl,
4889 };
4890 
sd_init_controls(struct gspca_dev * gspca_dev)4891 static int sd_init_controls(struct gspca_dev *gspca_dev)
4892 {
4893 	struct sd *sd = (struct sd *)gspca_dev;
4894 	struct v4l2_ctrl_handler *hdl = &gspca_dev->ctrl_handler;
4895 
4896 	gspca_dev->vdev.ctrl_handler = hdl;
4897 	v4l2_ctrl_handler_init(hdl, 10);
4898 	if (valid_controls[sd->sensor].has_brightness)
4899 		sd->brightness = v4l2_ctrl_new_std(hdl, &sd_ctrl_ops,
4900 			V4L2_CID_BRIGHTNESS, 0,
4901 			sd->sensor == SEN_OV7660 ? 6 : 255, 1,
4902 			sd->sensor == SEN_OV7660 ? 3 : 127);
4903 	if (valid_controls[sd->sensor].has_contrast) {
4904 		if (sd->sensor == SEN_OV7660)
4905 			v4l2_ctrl_new_std(hdl, &sd_ctrl_ops,
4906 				V4L2_CID_CONTRAST, 0, 6, 1, 3);
4907 		else
4908 			v4l2_ctrl_new_std(hdl, &sd_ctrl_ops,
4909 				V4L2_CID_CONTRAST, 0, 255, 1,
4910 				(sd->sensor == SEN_OV6630 ||
4911 				 sd->sensor == SEN_OV66308AF) ? 200 : 127);
4912 	}
4913 	if (valid_controls[sd->sensor].has_sat)
4914 		v4l2_ctrl_new_std(hdl, &sd_ctrl_ops,
4915 			V4L2_CID_SATURATION, 0,
4916 			sd->sensor == SEN_OV7660 ? 4 : 255, 1,
4917 			sd->sensor == SEN_OV7660 ? 2 : 127);
4918 	if (valid_controls[sd->sensor].has_exposure)
4919 		gspca_dev->exposure = v4l2_ctrl_new_std(hdl, &sd_ctrl_ops,
4920 			V4L2_CID_EXPOSURE, 0, 255, 1, 127);
4921 	if (valid_controls[sd->sensor].has_hvflip) {
4922 		sd->hflip = v4l2_ctrl_new_std(hdl, &sd_ctrl_ops,
4923 			V4L2_CID_HFLIP, 0, 1, 1, 0);
4924 		sd->vflip = v4l2_ctrl_new_std(hdl, &sd_ctrl_ops,
4925 			V4L2_CID_VFLIP, 0, 1, 1, 0);
4926 	}
4927 	if (valid_controls[sd->sensor].has_autobright)
4928 		sd->autobright = v4l2_ctrl_new_std(hdl, &sd_ctrl_ops,
4929 			V4L2_CID_AUTOBRIGHTNESS, 0, 1, 1, 1);
4930 	if (valid_controls[sd->sensor].has_autogain)
4931 		gspca_dev->autogain = v4l2_ctrl_new_std(hdl, &sd_ctrl_ops,
4932 			V4L2_CID_AUTOGAIN, 0, 1, 1, 1);
4933 	if (valid_controls[sd->sensor].has_freq) {
4934 		if (sd->sensor == SEN_OV7670)
4935 			sd->freq = v4l2_ctrl_new_std_menu(hdl, &sd_ctrl_ops,
4936 				V4L2_CID_POWER_LINE_FREQUENCY,
4937 				V4L2_CID_POWER_LINE_FREQUENCY_AUTO, 0,
4938 				V4L2_CID_POWER_LINE_FREQUENCY_AUTO);
4939 		else
4940 			sd->freq = v4l2_ctrl_new_std_menu(hdl, &sd_ctrl_ops,
4941 				V4L2_CID_POWER_LINE_FREQUENCY,
4942 				V4L2_CID_POWER_LINE_FREQUENCY_60HZ, 0, 0);
4943 	}
4944 	if (sd->bridge == BRIDGE_W9968CF)
4945 		sd->jpegqual = v4l2_ctrl_new_std(hdl, &sd_ctrl_ops,
4946 			V4L2_CID_JPEG_COMPRESSION_QUALITY,
4947 			QUALITY_MIN, QUALITY_MAX, 1, QUALITY_DEF);
4948 
4949 	if (hdl->error) {
4950 		gspca_err(gspca_dev, "Could not initialize controls\n");
4951 		return hdl->error;
4952 	}
4953 	if (gspca_dev->autogain)
4954 		v4l2_ctrl_auto_cluster(3, &gspca_dev->autogain, 0, true);
4955 	if (sd->autobright)
4956 		v4l2_ctrl_auto_cluster(2, &sd->autobright, 0, false);
4957 	if (sd->hflip)
4958 		v4l2_ctrl_cluster(2, &sd->hflip);
4959 	return 0;
4960 }
4961 
4962 /* sub-driver description */
4963 static const struct sd_desc sd_desc = {
4964 	.name = MODULE_NAME,
4965 	.config = sd_config,
4966 	.init = sd_init,
4967 	.init_controls = sd_init_controls,
4968 	.isoc_init = sd_isoc_init,
4969 	.start = sd_start,
4970 	.stopN = sd_stopN,
4971 	.stop0 = sd_stop0,
4972 	.pkt_scan = sd_pkt_scan,
4973 	.dq_callback = sd_reset_snapshot,
4974 	.get_jcomp = sd_get_jcomp,
4975 	.set_jcomp = sd_set_jcomp,
4976 #if IS_ENABLED(CONFIG_INPUT)
4977 	.other_input = 1,
4978 #endif
4979 };
4980 
4981 /* -- module initialisation -- */
4982 static const struct usb_device_id device_table[] = {
4983 	{USB_DEVICE(0x041e, 0x4003), .driver_info = BRIDGE_W9968CF },
4984 	{USB_DEVICE(0x041e, 0x4052),
4985 		.driver_info = BRIDGE_OV519 | BRIDGE_INVERT_LED },
4986 	{USB_DEVICE(0x041e, 0x405f), .driver_info = BRIDGE_OV519 },
4987 	{USB_DEVICE(0x041e, 0x4060), .driver_info = BRIDGE_OV519 },
4988 	{USB_DEVICE(0x041e, 0x4061), .driver_info = BRIDGE_OV519 },
4989 	{USB_DEVICE(0x041e, 0x4064), .driver_info = BRIDGE_OV519 },
4990 	{USB_DEVICE(0x041e, 0x4067), .driver_info = BRIDGE_OV519 },
4991 	{USB_DEVICE(0x041e, 0x4068), .driver_info = BRIDGE_OV519 },
4992 	{USB_DEVICE(0x045e, 0x028c),
4993 		.driver_info = BRIDGE_OV519 | BRIDGE_INVERT_LED },
4994 	{USB_DEVICE(0x054c, 0x0154), .driver_info = BRIDGE_OV519 },
4995 	{USB_DEVICE(0x054c, 0x0155), .driver_info = BRIDGE_OV519 },
4996 	{USB_DEVICE(0x05a9, 0x0511), .driver_info = BRIDGE_OV511 },
4997 	{USB_DEVICE(0x05a9, 0x0518), .driver_info = BRIDGE_OV518 },
4998 	{USB_DEVICE(0x05a9, 0x0519),
4999 		.driver_info = BRIDGE_OV519 | BRIDGE_INVERT_LED },
5000 	{USB_DEVICE(0x05a9, 0x0530),
5001 		.driver_info = BRIDGE_OV519 | BRIDGE_INVERT_LED },
5002 	{USB_DEVICE(0x05a9, 0x2800), .driver_info = BRIDGE_OVFX2 },
5003 	{USB_DEVICE(0x05a9, 0x4519), .driver_info = BRIDGE_OV519 },
5004 	{USB_DEVICE(0x05a9, 0x8519), .driver_info = BRIDGE_OV519 },
5005 	{USB_DEVICE(0x05a9, 0xa511), .driver_info = BRIDGE_OV511PLUS },
5006 	{USB_DEVICE(0x05a9, 0xa518), .driver_info = BRIDGE_OV518PLUS },
5007 	{USB_DEVICE(0x0813, 0x0002), .driver_info = BRIDGE_OV511PLUS },
5008 	{USB_DEVICE(0x0b62, 0x0059), .driver_info = BRIDGE_OVFX2 },
5009 	{USB_DEVICE(0x0e96, 0xc001), .driver_info = BRIDGE_OVFX2 },
5010 	{USB_DEVICE(0x1046, 0x9967), .driver_info = BRIDGE_W9968CF },
5011 	{USB_DEVICE(0x8020, 0xef04), .driver_info = BRIDGE_OVFX2 },
5012 	{}
5013 };
5014 
5015 MODULE_DEVICE_TABLE(usb, device_table);
5016 
5017 /* -- device connect -- */
sd_probe(struct usb_interface * intf,const struct usb_device_id * id)5018 static int sd_probe(struct usb_interface *intf,
5019 			const struct usb_device_id *id)
5020 {
5021 	return gspca_dev_probe(intf, id, &sd_desc, sizeof(struct sd),
5022 				THIS_MODULE);
5023 }
5024 
5025 static struct usb_driver sd_driver = {
5026 	.name = MODULE_NAME,
5027 	.id_table = device_table,
5028 	.probe = sd_probe,
5029 	.disconnect = gspca_disconnect,
5030 #ifdef CONFIG_PM
5031 	.suspend = gspca_suspend,
5032 	.resume = gspca_resume,
5033 	.reset_resume = gspca_resume,
5034 #endif
5035 };
5036 
5037 module_usb_driver(sd_driver);
5038 
5039 module_param(frame_rate, int, 0644);
5040 MODULE_PARM_DESC(frame_rate, "Frame rate (5, 10, 15, 20 or 30 fps)");
5041