• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * VMware VMCI Driver
3  *
4  * Copyright (C) 2012 VMware, Inc. All rights reserved.
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms of the GNU General Public License as published by the
8  * Free Software Foundation version 2 and no later version.
9  *
10  * This program is distributed in the hope that it will be useful, but
11  * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
12  * or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
13  * for more details.
14  */
15 
16 #include <linux/vmw_vmci_defs.h>
17 #include <linux/vmw_vmci_api.h>
18 #include <linux/highmem.h>
19 #include <linux/kernel.h>
20 #include <linux/mm.h>
21 #include <linux/module.h>
22 #include <linux/mutex.h>
23 #include <linux/pagemap.h>
24 #include <linux/pci.h>
25 #include <linux/sched.h>
26 #include <linux/slab.h>
27 #include <linux/uio.h>
28 #include <linux/wait.h>
29 #include <linux/vmalloc.h>
30 #include <linux/skbuff.h>
31 
32 #include "vmci_handle_array.h"
33 #include "vmci_queue_pair.h"
34 #include "vmci_datagram.h"
35 #include "vmci_resource.h"
36 #include "vmci_context.h"
37 #include "vmci_driver.h"
38 #include "vmci_event.h"
39 #include "vmci_route.h"
40 
41 /*
42  * In the following, we will distinguish between two kinds of VMX processes -
43  * the ones with versions lower than VMCI_VERSION_NOVMVM that use specialized
44  * VMCI page files in the VMX and supporting VM to VM communication and the
45  * newer ones that use the guest memory directly. We will in the following
46  * refer to the older VMX versions as old-style VMX'en, and the newer ones as
47  * new-style VMX'en.
48  *
49  * The state transition datagram is as follows (the VMCIQPB_ prefix has been
50  * removed for readability) - see below for more details on the transtions:
51  *
52  *            --------------  NEW  -------------
53  *            |                                |
54  *           \_/                              \_/
55  *     CREATED_NO_MEM <-----------------> CREATED_MEM
56  *            |    |                           |
57  *            |    o-----------------------o   |
58  *            |                            |   |
59  *           \_/                          \_/ \_/
60  *     ATTACHED_NO_MEM <----------------> ATTACHED_MEM
61  *            |                            |   |
62  *            |     o----------------------o   |
63  *            |     |                          |
64  *           \_/   \_/                        \_/
65  *     SHUTDOWN_NO_MEM <----------------> SHUTDOWN_MEM
66  *            |                                |
67  *            |                                |
68  *            -------------> gone <-------------
69  *
70  * In more detail. When a VMCI queue pair is first created, it will be in the
71  * VMCIQPB_NEW state. It will then move into one of the following states:
72  *
73  * - VMCIQPB_CREATED_NO_MEM: this state indicates that either:
74  *
75  *     - the created was performed by a host endpoint, in which case there is
76  *       no backing memory yet.
77  *
78  *     - the create was initiated by an old-style VMX, that uses
79  *       vmci_qp_broker_set_page_store to specify the UVAs of the queue pair at
80  *       a later point in time. This state can be distinguished from the one
81  *       above by the context ID of the creator. A host side is not allowed to
82  *       attach until the page store has been set.
83  *
84  * - VMCIQPB_CREATED_MEM: this state is the result when the queue pair
85  *     is created by a VMX using the queue pair device backend that
86  *     sets the UVAs of the queue pair immediately and stores the
87  *     information for later attachers. At this point, it is ready for
88  *     the host side to attach to it.
89  *
90  * Once the queue pair is in one of the created states (with the exception of
91  * the case mentioned for older VMX'en above), it is possible to attach to the
92  * queue pair. Again we have two new states possible:
93  *
94  * - VMCIQPB_ATTACHED_MEM: this state can be reached through the following
95  *   paths:
96  *
97  *     - from VMCIQPB_CREATED_NO_MEM when a new-style VMX allocates a queue
98  *       pair, and attaches to a queue pair previously created by the host side.
99  *
100  *     - from VMCIQPB_CREATED_MEM when the host side attaches to a queue pair
101  *       already created by a guest.
102  *
103  *     - from VMCIQPB_ATTACHED_NO_MEM, when an old-style VMX calls
104  *       vmci_qp_broker_set_page_store (see below).
105  *
106  * - VMCIQPB_ATTACHED_NO_MEM: If the queue pair already was in the
107  *     VMCIQPB_CREATED_NO_MEM due to a host side create, an old-style VMX will
108  *     bring the queue pair into this state. Once vmci_qp_broker_set_page_store
109  *     is called to register the user memory, the VMCIQPB_ATTACH_MEM state
110  *     will be entered.
111  *
112  * From the attached queue pair, the queue pair can enter the shutdown states
113  * when either side of the queue pair detaches. If the guest side detaches
114  * first, the queue pair will enter the VMCIQPB_SHUTDOWN_NO_MEM state, where
115  * the content of the queue pair will no longer be available. If the host
116  * side detaches first, the queue pair will either enter the
117  * VMCIQPB_SHUTDOWN_MEM, if the guest memory is currently mapped, or
118  * VMCIQPB_SHUTDOWN_NO_MEM, if the guest memory is not mapped
119  * (e.g., the host detaches while a guest is stunned).
120  *
121  * New-style VMX'en will also unmap guest memory, if the guest is
122  * quiesced, e.g., during a snapshot operation. In that case, the guest
123  * memory will no longer be available, and the queue pair will transition from
124  * *_MEM state to a *_NO_MEM state. The VMX may later map the memory once more,
125  * in which case the queue pair will transition from the *_NO_MEM state at that
126  * point back to the *_MEM state. Note that the *_NO_MEM state may have changed,
127  * since the peer may have either attached or detached in the meantime. The
128  * values are laid out such that ++ on a state will move from a *_NO_MEM to a
129  * *_MEM state, and vice versa.
130  */
131 
132 /* The Kernel specific component of the struct vmci_queue structure. */
133 struct vmci_queue_kern_if {
134 	struct mutex __mutex;	/* Protects the queue. */
135 	struct mutex *mutex;	/* Shared by producer and consumer queues. */
136 	size_t num_pages;	/* Number of pages incl. header. */
137 	bool host;		/* Host or guest? */
138 	union {
139 		struct {
140 			dma_addr_t *pas;
141 			void **vas;
142 		} g;		/* Used by the guest. */
143 		struct {
144 			struct page **page;
145 			struct page **header_page;
146 		} h;		/* Used by the host. */
147 	} u;
148 };
149 
150 /*
151  * This structure is opaque to the clients.
152  */
153 struct vmci_qp {
154 	struct vmci_handle handle;
155 	struct vmci_queue *produce_q;
156 	struct vmci_queue *consume_q;
157 	u64 produce_q_size;
158 	u64 consume_q_size;
159 	u32 peer;
160 	u32 flags;
161 	u32 priv_flags;
162 	bool guest_endpoint;
163 	unsigned int blocked;
164 	unsigned int generation;
165 	wait_queue_head_t event;
166 };
167 
168 enum qp_broker_state {
169 	VMCIQPB_NEW,
170 	VMCIQPB_CREATED_NO_MEM,
171 	VMCIQPB_CREATED_MEM,
172 	VMCIQPB_ATTACHED_NO_MEM,
173 	VMCIQPB_ATTACHED_MEM,
174 	VMCIQPB_SHUTDOWN_NO_MEM,
175 	VMCIQPB_SHUTDOWN_MEM,
176 	VMCIQPB_GONE
177 };
178 
179 #define QPBROKERSTATE_HAS_MEM(_qpb) (_qpb->state == VMCIQPB_CREATED_MEM || \
180 				     _qpb->state == VMCIQPB_ATTACHED_MEM || \
181 				     _qpb->state == VMCIQPB_SHUTDOWN_MEM)
182 
183 /*
184  * In the queue pair broker, we always use the guest point of view for
185  * the produce and consume queue values and references, e.g., the
186  * produce queue size stored is the guests produce queue size. The
187  * host endpoint will need to swap these around. The only exception is
188  * the local queue pairs on the host, in which case the host endpoint
189  * that creates the queue pair will have the right orientation, and
190  * the attaching host endpoint will need to swap.
191  */
192 struct qp_entry {
193 	struct list_head list_item;
194 	struct vmci_handle handle;
195 	u32 peer;
196 	u32 flags;
197 	u64 produce_size;
198 	u64 consume_size;
199 	u32 ref_count;
200 };
201 
202 struct qp_broker_entry {
203 	struct vmci_resource resource;
204 	struct qp_entry qp;
205 	u32 create_id;
206 	u32 attach_id;
207 	enum qp_broker_state state;
208 	bool require_trusted_attach;
209 	bool created_by_trusted;
210 	bool vmci_page_files;	/* Created by VMX using VMCI page files */
211 	struct vmci_queue *produce_q;
212 	struct vmci_queue *consume_q;
213 	struct vmci_queue_header saved_produce_q;
214 	struct vmci_queue_header saved_consume_q;
215 	vmci_event_release_cb wakeup_cb;
216 	void *client_data;
217 	void *local_mem;	/* Kernel memory for local queue pair */
218 };
219 
220 struct qp_guest_endpoint {
221 	struct vmci_resource resource;
222 	struct qp_entry qp;
223 	u64 num_ppns;
224 	void *produce_q;
225 	void *consume_q;
226 	struct ppn_set ppn_set;
227 };
228 
229 struct qp_list {
230 	struct list_head head;
231 	struct mutex mutex;	/* Protect queue list. */
232 };
233 
234 static struct qp_list qp_broker_list = {
235 	.head = LIST_HEAD_INIT(qp_broker_list.head),
236 	.mutex = __MUTEX_INITIALIZER(qp_broker_list.mutex),
237 };
238 
239 static struct qp_list qp_guest_endpoints = {
240 	.head = LIST_HEAD_INIT(qp_guest_endpoints.head),
241 	.mutex = __MUTEX_INITIALIZER(qp_guest_endpoints.mutex),
242 };
243 
244 #define INVALID_VMCI_GUEST_MEM_ID  0
245 #define QPE_NUM_PAGES(_QPE) ((u32) \
246 			     (DIV_ROUND_UP(_QPE.produce_size, PAGE_SIZE) + \
247 			      DIV_ROUND_UP(_QPE.consume_size, PAGE_SIZE) + 2))
248 
249 
250 /*
251  * Frees kernel VA space for a given queue and its queue header, and
252  * frees physical data pages.
253  */
qp_free_queue(void * q,u64 size)254 static void qp_free_queue(void *q, u64 size)
255 {
256 	struct vmci_queue *queue = q;
257 
258 	if (queue) {
259 		u64 i;
260 
261 		/* Given size does not include header, so add in a page here. */
262 		for (i = 0; i < DIV_ROUND_UP(size, PAGE_SIZE) + 1; i++) {
263 			dma_free_coherent(&vmci_pdev->dev, PAGE_SIZE,
264 					  queue->kernel_if->u.g.vas[i],
265 					  queue->kernel_if->u.g.pas[i]);
266 		}
267 
268 		vfree(queue);
269 	}
270 }
271 
272 /*
273  * Allocates kernel queue pages of specified size with IOMMU mappings,
274  * plus space for the queue structure/kernel interface and the queue
275  * header.
276  */
qp_alloc_queue(u64 size,u32 flags)277 static void *qp_alloc_queue(u64 size, u32 flags)
278 {
279 	u64 i;
280 	struct vmci_queue *queue;
281 	size_t pas_size;
282 	size_t vas_size;
283 	size_t queue_size = sizeof(*queue) + sizeof(*queue->kernel_if);
284 	u64 num_pages;
285 
286 	if (size > SIZE_MAX - PAGE_SIZE)
287 		return NULL;
288 	num_pages = DIV_ROUND_UP(size, PAGE_SIZE) + 1;
289 	if (num_pages >
290 		 (SIZE_MAX - queue_size) /
291 		 (sizeof(*queue->kernel_if->u.g.pas) +
292 		  sizeof(*queue->kernel_if->u.g.vas)))
293 		return NULL;
294 
295 	pas_size = num_pages * sizeof(*queue->kernel_if->u.g.pas);
296 	vas_size = num_pages * sizeof(*queue->kernel_if->u.g.vas);
297 	queue_size += pas_size + vas_size;
298 
299 	queue = vmalloc(queue_size);
300 	if (!queue)
301 		return NULL;
302 
303 	queue->q_header = NULL;
304 	queue->saved_header = NULL;
305 	queue->kernel_if = (struct vmci_queue_kern_if *)(queue + 1);
306 	queue->kernel_if->mutex = NULL;
307 	queue->kernel_if->num_pages = num_pages;
308 	queue->kernel_if->u.g.pas = (dma_addr_t *)(queue->kernel_if + 1);
309 	queue->kernel_if->u.g.vas =
310 		(void **)((u8 *)queue->kernel_if->u.g.pas + pas_size);
311 	queue->kernel_if->host = false;
312 
313 	for (i = 0; i < num_pages; i++) {
314 		queue->kernel_if->u.g.vas[i] =
315 			dma_alloc_coherent(&vmci_pdev->dev, PAGE_SIZE,
316 					   &queue->kernel_if->u.g.pas[i],
317 					   GFP_KERNEL);
318 		if (!queue->kernel_if->u.g.vas[i]) {
319 			/* Size excl. the header. */
320 			qp_free_queue(queue, i * PAGE_SIZE);
321 			return NULL;
322 		}
323 	}
324 
325 	/* Queue header is the first page. */
326 	queue->q_header = queue->kernel_if->u.g.vas[0];
327 
328 	return queue;
329 }
330 
331 /*
332  * Copies from a given buffer or iovector to a VMCI Queue.  Uses
333  * kmap()/kunmap() to dynamically map/unmap required portions of the queue
334  * by traversing the offset -> page translation structure for the queue.
335  * Assumes that offset + size does not wrap around in the queue.
336  */
qp_memcpy_to_queue_iter(struct vmci_queue * queue,u64 queue_offset,struct iov_iter * from,size_t size)337 static int qp_memcpy_to_queue_iter(struct vmci_queue *queue,
338 				  u64 queue_offset,
339 				  struct iov_iter *from,
340 				  size_t size)
341 {
342 	struct vmci_queue_kern_if *kernel_if = queue->kernel_if;
343 	size_t bytes_copied = 0;
344 
345 	while (bytes_copied < size) {
346 		const u64 page_index =
347 			(queue_offset + bytes_copied) / PAGE_SIZE;
348 		const size_t page_offset =
349 		    (queue_offset + bytes_copied) & (PAGE_SIZE - 1);
350 		void *va;
351 		size_t to_copy;
352 
353 		if (kernel_if->host)
354 			va = kmap(kernel_if->u.h.page[page_index]);
355 		else
356 			va = kernel_if->u.g.vas[page_index + 1];
357 			/* Skip header. */
358 
359 		if (size - bytes_copied > PAGE_SIZE - page_offset)
360 			/* Enough payload to fill up from this page. */
361 			to_copy = PAGE_SIZE - page_offset;
362 		else
363 			to_copy = size - bytes_copied;
364 
365 		if (!copy_from_iter_full((u8 *)va + page_offset, to_copy,
366 					 from)) {
367 			if (kernel_if->host)
368 				kunmap(kernel_if->u.h.page[page_index]);
369 			return VMCI_ERROR_INVALID_ARGS;
370 		}
371 		bytes_copied += to_copy;
372 		if (kernel_if->host)
373 			kunmap(kernel_if->u.h.page[page_index]);
374 	}
375 
376 	return VMCI_SUCCESS;
377 }
378 
379 /*
380  * Copies to a given buffer or iovector from a VMCI Queue.  Uses
381  * kmap()/kunmap() to dynamically map/unmap required portions of the queue
382  * by traversing the offset -> page translation structure for the queue.
383  * Assumes that offset + size does not wrap around in the queue.
384  */
qp_memcpy_from_queue_iter(struct iov_iter * to,const struct vmci_queue * queue,u64 queue_offset,size_t size)385 static int qp_memcpy_from_queue_iter(struct iov_iter *to,
386 				    const struct vmci_queue *queue,
387 				    u64 queue_offset, size_t size)
388 {
389 	struct vmci_queue_kern_if *kernel_if = queue->kernel_if;
390 	size_t bytes_copied = 0;
391 
392 	while (bytes_copied < size) {
393 		const u64 page_index =
394 			(queue_offset + bytes_copied) / PAGE_SIZE;
395 		const size_t page_offset =
396 		    (queue_offset + bytes_copied) & (PAGE_SIZE - 1);
397 		void *va;
398 		size_t to_copy;
399 		int err;
400 
401 		if (kernel_if->host)
402 			va = kmap(kernel_if->u.h.page[page_index]);
403 		else
404 			va = kernel_if->u.g.vas[page_index + 1];
405 			/* Skip header. */
406 
407 		if (size - bytes_copied > PAGE_SIZE - page_offset)
408 			/* Enough payload to fill up this page. */
409 			to_copy = PAGE_SIZE - page_offset;
410 		else
411 			to_copy = size - bytes_copied;
412 
413 		err = copy_to_iter((u8 *)va + page_offset, to_copy, to);
414 		if (err != to_copy) {
415 			if (kernel_if->host)
416 				kunmap(kernel_if->u.h.page[page_index]);
417 			return VMCI_ERROR_INVALID_ARGS;
418 		}
419 		bytes_copied += to_copy;
420 		if (kernel_if->host)
421 			kunmap(kernel_if->u.h.page[page_index]);
422 	}
423 
424 	return VMCI_SUCCESS;
425 }
426 
427 /*
428  * Allocates two list of PPNs --- one for the pages in the produce queue,
429  * and the other for the pages in the consume queue. Intializes the list
430  * of PPNs with the page frame numbers of the KVA for the two queues (and
431  * the queue headers).
432  */
qp_alloc_ppn_set(void * prod_q,u64 num_produce_pages,void * cons_q,u64 num_consume_pages,struct ppn_set * ppn_set)433 static int qp_alloc_ppn_set(void *prod_q,
434 			    u64 num_produce_pages,
435 			    void *cons_q,
436 			    u64 num_consume_pages, struct ppn_set *ppn_set)
437 {
438 	u32 *produce_ppns;
439 	u32 *consume_ppns;
440 	struct vmci_queue *produce_q = prod_q;
441 	struct vmci_queue *consume_q = cons_q;
442 	u64 i;
443 
444 	if (!produce_q || !num_produce_pages || !consume_q ||
445 	    !num_consume_pages || !ppn_set)
446 		return VMCI_ERROR_INVALID_ARGS;
447 
448 	if (ppn_set->initialized)
449 		return VMCI_ERROR_ALREADY_EXISTS;
450 
451 	produce_ppns =
452 	    kmalloc_array(num_produce_pages, sizeof(*produce_ppns),
453 			  GFP_KERNEL);
454 	if (!produce_ppns)
455 		return VMCI_ERROR_NO_MEM;
456 
457 	consume_ppns =
458 	    kmalloc_array(num_consume_pages, sizeof(*consume_ppns),
459 			  GFP_KERNEL);
460 	if (!consume_ppns) {
461 		kfree(produce_ppns);
462 		return VMCI_ERROR_NO_MEM;
463 	}
464 
465 	for (i = 0; i < num_produce_pages; i++) {
466 		unsigned long pfn;
467 
468 		produce_ppns[i] =
469 			produce_q->kernel_if->u.g.pas[i] >> PAGE_SHIFT;
470 		pfn = produce_ppns[i];
471 
472 		/* Fail allocation if PFN isn't supported by hypervisor. */
473 		if (sizeof(pfn) > sizeof(*produce_ppns)
474 		    && pfn != produce_ppns[i])
475 			goto ppn_error;
476 	}
477 
478 	for (i = 0; i < num_consume_pages; i++) {
479 		unsigned long pfn;
480 
481 		consume_ppns[i] =
482 			consume_q->kernel_if->u.g.pas[i] >> PAGE_SHIFT;
483 		pfn = consume_ppns[i];
484 
485 		/* Fail allocation if PFN isn't supported by hypervisor. */
486 		if (sizeof(pfn) > sizeof(*consume_ppns)
487 		    && pfn != consume_ppns[i])
488 			goto ppn_error;
489 	}
490 
491 	ppn_set->num_produce_pages = num_produce_pages;
492 	ppn_set->num_consume_pages = num_consume_pages;
493 	ppn_set->produce_ppns = produce_ppns;
494 	ppn_set->consume_ppns = consume_ppns;
495 	ppn_set->initialized = true;
496 	return VMCI_SUCCESS;
497 
498  ppn_error:
499 	kfree(produce_ppns);
500 	kfree(consume_ppns);
501 	return VMCI_ERROR_INVALID_ARGS;
502 }
503 
504 /*
505  * Frees the two list of PPNs for a queue pair.
506  */
qp_free_ppn_set(struct ppn_set * ppn_set)507 static void qp_free_ppn_set(struct ppn_set *ppn_set)
508 {
509 	if (ppn_set->initialized) {
510 		/* Do not call these functions on NULL inputs. */
511 		kfree(ppn_set->produce_ppns);
512 		kfree(ppn_set->consume_ppns);
513 	}
514 	memset(ppn_set, 0, sizeof(*ppn_set));
515 }
516 
517 /*
518  * Populates the list of PPNs in the hypercall structure with the PPNS
519  * of the produce queue and the consume queue.
520  */
qp_populate_ppn_set(u8 * call_buf,const struct ppn_set * ppn_set)521 static int qp_populate_ppn_set(u8 *call_buf, const struct ppn_set *ppn_set)
522 {
523 	memcpy(call_buf, ppn_set->produce_ppns,
524 	       ppn_set->num_produce_pages * sizeof(*ppn_set->produce_ppns));
525 	memcpy(call_buf +
526 	       ppn_set->num_produce_pages * sizeof(*ppn_set->produce_ppns),
527 	       ppn_set->consume_ppns,
528 	       ppn_set->num_consume_pages * sizeof(*ppn_set->consume_ppns));
529 
530 	return VMCI_SUCCESS;
531 }
532 
533 /*
534  * Allocates kernel VA space of specified size plus space for the queue
535  * and kernel interface.  This is different from the guest queue allocator,
536  * because we do not allocate our own queue header/data pages here but
537  * share those of the guest.
538  */
qp_host_alloc_queue(u64 size)539 static struct vmci_queue *qp_host_alloc_queue(u64 size)
540 {
541 	struct vmci_queue *queue;
542 	size_t queue_page_size;
543 	u64 num_pages;
544 	const size_t queue_size = sizeof(*queue) + sizeof(*(queue->kernel_if));
545 
546 	if (size > SIZE_MAX - PAGE_SIZE)
547 		return NULL;
548 	num_pages = DIV_ROUND_UP(size, PAGE_SIZE) + 1;
549 	if (num_pages > (SIZE_MAX - queue_size) /
550 		 sizeof(*queue->kernel_if->u.h.page))
551 		return NULL;
552 
553 	queue_page_size = num_pages * sizeof(*queue->kernel_if->u.h.page);
554 
555 	queue = kzalloc(queue_size + queue_page_size, GFP_KERNEL);
556 	if (queue) {
557 		queue->q_header = NULL;
558 		queue->saved_header = NULL;
559 		queue->kernel_if = (struct vmci_queue_kern_if *)(queue + 1);
560 		queue->kernel_if->host = true;
561 		queue->kernel_if->mutex = NULL;
562 		queue->kernel_if->num_pages = num_pages;
563 		queue->kernel_if->u.h.header_page =
564 		    (struct page **)((u8 *)queue + queue_size);
565 		queue->kernel_if->u.h.page =
566 			&queue->kernel_if->u.h.header_page[1];
567 	}
568 
569 	return queue;
570 }
571 
572 /*
573  * Frees kernel memory for a given queue (header plus translation
574  * structure).
575  */
qp_host_free_queue(struct vmci_queue * queue,u64 queue_size)576 static void qp_host_free_queue(struct vmci_queue *queue, u64 queue_size)
577 {
578 	kfree(queue);
579 }
580 
581 /*
582  * Initialize the mutex for the pair of queues.  This mutex is used to
583  * protect the q_header and the buffer from changing out from under any
584  * users of either queue.  Of course, it's only any good if the mutexes
585  * are actually acquired.  Queue structure must lie on non-paged memory
586  * or we cannot guarantee access to the mutex.
587  */
qp_init_queue_mutex(struct vmci_queue * produce_q,struct vmci_queue * consume_q)588 static void qp_init_queue_mutex(struct vmci_queue *produce_q,
589 				struct vmci_queue *consume_q)
590 {
591 	/*
592 	 * Only the host queue has shared state - the guest queues do not
593 	 * need to synchronize access using a queue mutex.
594 	 */
595 
596 	if (produce_q->kernel_if->host) {
597 		produce_q->kernel_if->mutex = &produce_q->kernel_if->__mutex;
598 		consume_q->kernel_if->mutex = &produce_q->kernel_if->__mutex;
599 		mutex_init(produce_q->kernel_if->mutex);
600 	}
601 }
602 
603 /*
604  * Cleans up the mutex for the pair of queues.
605  */
qp_cleanup_queue_mutex(struct vmci_queue * produce_q,struct vmci_queue * consume_q)606 static void qp_cleanup_queue_mutex(struct vmci_queue *produce_q,
607 				   struct vmci_queue *consume_q)
608 {
609 	if (produce_q->kernel_if->host) {
610 		produce_q->kernel_if->mutex = NULL;
611 		consume_q->kernel_if->mutex = NULL;
612 	}
613 }
614 
615 /*
616  * Acquire the mutex for the queue.  Note that the produce_q and
617  * the consume_q share a mutex.  So, only one of the two need to
618  * be passed in to this routine.  Either will work just fine.
619  */
qp_acquire_queue_mutex(struct vmci_queue * queue)620 static void qp_acquire_queue_mutex(struct vmci_queue *queue)
621 {
622 	if (queue->kernel_if->host)
623 		mutex_lock(queue->kernel_if->mutex);
624 }
625 
626 /*
627  * Release the mutex for the queue.  Note that the produce_q and
628  * the consume_q share a mutex.  So, only one of the two need to
629  * be passed in to this routine.  Either will work just fine.
630  */
qp_release_queue_mutex(struct vmci_queue * queue)631 static void qp_release_queue_mutex(struct vmci_queue *queue)
632 {
633 	if (queue->kernel_if->host)
634 		mutex_unlock(queue->kernel_if->mutex);
635 }
636 
637 /*
638  * Helper function to release pages in the PageStoreAttachInfo
639  * previously obtained using get_user_pages.
640  */
qp_release_pages(struct page ** pages,u64 num_pages,bool dirty)641 static void qp_release_pages(struct page **pages,
642 			     u64 num_pages, bool dirty)
643 {
644 	int i;
645 
646 	for (i = 0; i < num_pages; i++) {
647 		if (dirty)
648 			set_page_dirty(pages[i]);
649 
650 		put_page(pages[i]);
651 		pages[i] = NULL;
652 	}
653 }
654 
655 /*
656  * Lock the user pages referenced by the {produce,consume}Buffer
657  * struct into memory and populate the {produce,consume}Pages
658  * arrays in the attach structure with them.
659  */
qp_host_get_user_memory(u64 produce_uva,u64 consume_uva,struct vmci_queue * produce_q,struct vmci_queue * consume_q)660 static int qp_host_get_user_memory(u64 produce_uva,
661 				   u64 consume_uva,
662 				   struct vmci_queue *produce_q,
663 				   struct vmci_queue *consume_q)
664 {
665 	int retval;
666 	int err = VMCI_SUCCESS;
667 
668 	retval = get_user_pages_fast((uintptr_t) produce_uva,
669 				     produce_q->kernel_if->num_pages, 1,
670 				     produce_q->kernel_if->u.h.header_page);
671 	if (retval < (int)produce_q->kernel_if->num_pages) {
672 		pr_debug("get_user_pages_fast(produce) failed (retval=%d)",
673 			retval);
674 		if (retval > 0)
675 			qp_release_pages(produce_q->kernel_if->u.h.header_page,
676 					retval, false);
677 		err = VMCI_ERROR_NO_MEM;
678 		goto out;
679 	}
680 
681 	retval = get_user_pages_fast((uintptr_t) consume_uva,
682 				     consume_q->kernel_if->num_pages, 1,
683 				     consume_q->kernel_if->u.h.header_page);
684 	if (retval < (int)consume_q->kernel_if->num_pages) {
685 		pr_debug("get_user_pages_fast(consume) failed (retval=%d)",
686 			retval);
687 		if (retval > 0)
688 			qp_release_pages(consume_q->kernel_if->u.h.header_page,
689 					retval, false);
690 		qp_release_pages(produce_q->kernel_if->u.h.header_page,
691 				 produce_q->kernel_if->num_pages, false);
692 		err = VMCI_ERROR_NO_MEM;
693 	}
694 
695  out:
696 	return err;
697 }
698 
699 /*
700  * Registers the specification of the user pages used for backing a queue
701  * pair. Enough information to map in pages is stored in the OS specific
702  * part of the struct vmci_queue structure.
703  */
qp_host_register_user_memory(struct vmci_qp_page_store * page_store,struct vmci_queue * produce_q,struct vmci_queue * consume_q)704 static int qp_host_register_user_memory(struct vmci_qp_page_store *page_store,
705 					struct vmci_queue *produce_q,
706 					struct vmci_queue *consume_q)
707 {
708 	u64 produce_uva;
709 	u64 consume_uva;
710 
711 	/*
712 	 * The new style and the old style mapping only differs in
713 	 * that we either get a single or two UVAs, so we split the
714 	 * single UVA range at the appropriate spot.
715 	 */
716 	produce_uva = page_store->pages;
717 	consume_uva = page_store->pages +
718 	    produce_q->kernel_if->num_pages * PAGE_SIZE;
719 	return qp_host_get_user_memory(produce_uva, consume_uva, produce_q,
720 				       consume_q);
721 }
722 
723 /*
724  * Releases and removes the references to user pages stored in the attach
725  * struct.  Pages are released from the page cache and may become
726  * swappable again.
727  */
qp_host_unregister_user_memory(struct vmci_queue * produce_q,struct vmci_queue * consume_q)728 static void qp_host_unregister_user_memory(struct vmci_queue *produce_q,
729 					   struct vmci_queue *consume_q)
730 {
731 	qp_release_pages(produce_q->kernel_if->u.h.header_page,
732 			 produce_q->kernel_if->num_pages, true);
733 	memset(produce_q->kernel_if->u.h.header_page, 0,
734 	       sizeof(*produce_q->kernel_if->u.h.header_page) *
735 	       produce_q->kernel_if->num_pages);
736 	qp_release_pages(consume_q->kernel_if->u.h.header_page,
737 			 consume_q->kernel_if->num_pages, true);
738 	memset(consume_q->kernel_if->u.h.header_page, 0,
739 	       sizeof(*consume_q->kernel_if->u.h.header_page) *
740 	       consume_q->kernel_if->num_pages);
741 }
742 
743 /*
744  * Once qp_host_register_user_memory has been performed on a
745  * queue, the queue pair headers can be mapped into the
746  * kernel. Once mapped, they must be unmapped with
747  * qp_host_unmap_queues prior to calling
748  * qp_host_unregister_user_memory.
749  * Pages are pinned.
750  */
qp_host_map_queues(struct vmci_queue * produce_q,struct vmci_queue * consume_q)751 static int qp_host_map_queues(struct vmci_queue *produce_q,
752 			      struct vmci_queue *consume_q)
753 {
754 	int result;
755 
756 	if (!produce_q->q_header || !consume_q->q_header) {
757 		struct page *headers[2];
758 
759 		if (produce_q->q_header != consume_q->q_header)
760 			return VMCI_ERROR_QUEUEPAIR_MISMATCH;
761 
762 		if (produce_q->kernel_if->u.h.header_page == NULL ||
763 		    *produce_q->kernel_if->u.h.header_page == NULL)
764 			return VMCI_ERROR_UNAVAILABLE;
765 
766 		headers[0] = *produce_q->kernel_if->u.h.header_page;
767 		headers[1] = *consume_q->kernel_if->u.h.header_page;
768 
769 		produce_q->q_header = vmap(headers, 2, VM_MAP, PAGE_KERNEL);
770 		if (produce_q->q_header != NULL) {
771 			consume_q->q_header =
772 			    (struct vmci_queue_header *)((u8 *)
773 							 produce_q->q_header +
774 							 PAGE_SIZE);
775 			result = VMCI_SUCCESS;
776 		} else {
777 			pr_warn("vmap failed\n");
778 			result = VMCI_ERROR_NO_MEM;
779 		}
780 	} else {
781 		result = VMCI_SUCCESS;
782 	}
783 
784 	return result;
785 }
786 
787 /*
788  * Unmaps previously mapped queue pair headers from the kernel.
789  * Pages are unpinned.
790  */
qp_host_unmap_queues(u32 gid,struct vmci_queue * produce_q,struct vmci_queue * consume_q)791 static int qp_host_unmap_queues(u32 gid,
792 				struct vmci_queue *produce_q,
793 				struct vmci_queue *consume_q)
794 {
795 	if (produce_q->q_header) {
796 		if (produce_q->q_header < consume_q->q_header)
797 			vunmap(produce_q->q_header);
798 		else
799 			vunmap(consume_q->q_header);
800 
801 		produce_q->q_header = NULL;
802 		consume_q->q_header = NULL;
803 	}
804 
805 	return VMCI_SUCCESS;
806 }
807 
808 /*
809  * Finds the entry in the list corresponding to a given handle. Assumes
810  * that the list is locked.
811  */
qp_list_find(struct qp_list * qp_list,struct vmci_handle handle)812 static struct qp_entry *qp_list_find(struct qp_list *qp_list,
813 				     struct vmci_handle handle)
814 {
815 	struct qp_entry *entry;
816 
817 	if (vmci_handle_is_invalid(handle))
818 		return NULL;
819 
820 	list_for_each_entry(entry, &qp_list->head, list_item) {
821 		if (vmci_handle_is_equal(entry->handle, handle))
822 			return entry;
823 	}
824 
825 	return NULL;
826 }
827 
828 /*
829  * Finds the entry in the list corresponding to a given handle.
830  */
831 static struct qp_guest_endpoint *
qp_guest_handle_to_entry(struct vmci_handle handle)832 qp_guest_handle_to_entry(struct vmci_handle handle)
833 {
834 	struct qp_guest_endpoint *entry;
835 	struct qp_entry *qp = qp_list_find(&qp_guest_endpoints, handle);
836 
837 	entry = qp ? container_of(
838 		qp, struct qp_guest_endpoint, qp) : NULL;
839 	return entry;
840 }
841 
842 /*
843  * Finds the entry in the list corresponding to a given handle.
844  */
845 static struct qp_broker_entry *
qp_broker_handle_to_entry(struct vmci_handle handle)846 qp_broker_handle_to_entry(struct vmci_handle handle)
847 {
848 	struct qp_broker_entry *entry;
849 	struct qp_entry *qp = qp_list_find(&qp_broker_list, handle);
850 
851 	entry = qp ? container_of(
852 		qp, struct qp_broker_entry, qp) : NULL;
853 	return entry;
854 }
855 
856 /*
857  * Dispatches a queue pair event message directly into the local event
858  * queue.
859  */
qp_notify_peer_local(bool attach,struct vmci_handle handle)860 static int qp_notify_peer_local(bool attach, struct vmci_handle handle)
861 {
862 	u32 context_id = vmci_get_context_id();
863 	struct vmci_event_qp ev;
864 
865 	ev.msg.hdr.dst = vmci_make_handle(context_id, VMCI_EVENT_HANDLER);
866 	ev.msg.hdr.src = vmci_make_handle(VMCI_HYPERVISOR_CONTEXT_ID,
867 					  VMCI_CONTEXT_RESOURCE_ID);
868 	ev.msg.hdr.payload_size = sizeof(ev) - sizeof(ev.msg.hdr);
869 	ev.msg.event_data.event =
870 	    attach ? VMCI_EVENT_QP_PEER_ATTACH : VMCI_EVENT_QP_PEER_DETACH;
871 	ev.payload.peer_id = context_id;
872 	ev.payload.handle = handle;
873 
874 	return vmci_event_dispatch(&ev.msg.hdr);
875 }
876 
877 /*
878  * Allocates and initializes a qp_guest_endpoint structure.
879  * Allocates a queue_pair rid (and handle) iff the given entry has
880  * an invalid handle.  0 through VMCI_RESERVED_RESOURCE_ID_MAX
881  * are reserved handles.  Assumes that the QP list mutex is held
882  * by the caller.
883  */
884 static struct qp_guest_endpoint *
qp_guest_endpoint_create(struct vmci_handle handle,u32 peer,u32 flags,u64 produce_size,u64 consume_size,void * produce_q,void * consume_q)885 qp_guest_endpoint_create(struct vmci_handle handle,
886 			 u32 peer,
887 			 u32 flags,
888 			 u64 produce_size,
889 			 u64 consume_size,
890 			 void *produce_q,
891 			 void *consume_q)
892 {
893 	int result;
894 	struct qp_guest_endpoint *entry;
895 	/* One page each for the queue headers. */
896 	const u64 num_ppns = DIV_ROUND_UP(produce_size, PAGE_SIZE) +
897 	    DIV_ROUND_UP(consume_size, PAGE_SIZE) + 2;
898 
899 	if (vmci_handle_is_invalid(handle)) {
900 		u32 context_id = vmci_get_context_id();
901 
902 		handle = vmci_make_handle(context_id, VMCI_INVALID_ID);
903 	}
904 
905 	entry = kzalloc(sizeof(*entry), GFP_KERNEL);
906 	if (entry) {
907 		entry->qp.peer = peer;
908 		entry->qp.flags = flags;
909 		entry->qp.produce_size = produce_size;
910 		entry->qp.consume_size = consume_size;
911 		entry->qp.ref_count = 0;
912 		entry->num_ppns = num_ppns;
913 		entry->produce_q = produce_q;
914 		entry->consume_q = consume_q;
915 		INIT_LIST_HEAD(&entry->qp.list_item);
916 
917 		/* Add resource obj */
918 		result = vmci_resource_add(&entry->resource,
919 					   VMCI_RESOURCE_TYPE_QPAIR_GUEST,
920 					   handle);
921 		entry->qp.handle = vmci_resource_handle(&entry->resource);
922 		if ((result != VMCI_SUCCESS) ||
923 		    qp_list_find(&qp_guest_endpoints, entry->qp.handle)) {
924 			pr_warn("Failed to add new resource (handle=0x%x:0x%x), error: %d",
925 				handle.context, handle.resource, result);
926 			kfree(entry);
927 			entry = NULL;
928 		}
929 	}
930 	return entry;
931 }
932 
933 /*
934  * Frees a qp_guest_endpoint structure.
935  */
qp_guest_endpoint_destroy(struct qp_guest_endpoint * entry)936 static void qp_guest_endpoint_destroy(struct qp_guest_endpoint *entry)
937 {
938 	qp_free_ppn_set(&entry->ppn_set);
939 	qp_cleanup_queue_mutex(entry->produce_q, entry->consume_q);
940 	qp_free_queue(entry->produce_q, entry->qp.produce_size);
941 	qp_free_queue(entry->consume_q, entry->qp.consume_size);
942 	/* Unlink from resource hash table and free callback */
943 	vmci_resource_remove(&entry->resource);
944 
945 	kfree(entry);
946 }
947 
948 /*
949  * Helper to make a queue_pairAlloc hypercall when the driver is
950  * supporting a guest device.
951  */
qp_alloc_hypercall(const struct qp_guest_endpoint * entry)952 static int qp_alloc_hypercall(const struct qp_guest_endpoint *entry)
953 {
954 	struct vmci_qp_alloc_msg *alloc_msg;
955 	size_t msg_size;
956 	int result;
957 
958 	if (!entry || entry->num_ppns <= 2)
959 		return VMCI_ERROR_INVALID_ARGS;
960 
961 	msg_size = sizeof(*alloc_msg) +
962 	    (size_t) entry->num_ppns * sizeof(u32);
963 	alloc_msg = kmalloc(msg_size, GFP_KERNEL);
964 	if (!alloc_msg)
965 		return VMCI_ERROR_NO_MEM;
966 
967 	alloc_msg->hdr.dst = vmci_make_handle(VMCI_HYPERVISOR_CONTEXT_ID,
968 					      VMCI_QUEUEPAIR_ALLOC);
969 	alloc_msg->hdr.src = VMCI_ANON_SRC_HANDLE;
970 	alloc_msg->hdr.payload_size = msg_size - VMCI_DG_HEADERSIZE;
971 	alloc_msg->handle = entry->qp.handle;
972 	alloc_msg->peer = entry->qp.peer;
973 	alloc_msg->flags = entry->qp.flags;
974 	alloc_msg->produce_size = entry->qp.produce_size;
975 	alloc_msg->consume_size = entry->qp.consume_size;
976 	alloc_msg->num_ppns = entry->num_ppns;
977 
978 	result = qp_populate_ppn_set((u8 *)alloc_msg + sizeof(*alloc_msg),
979 				     &entry->ppn_set);
980 	if (result == VMCI_SUCCESS)
981 		result = vmci_send_datagram(&alloc_msg->hdr);
982 
983 	kfree(alloc_msg);
984 
985 	return result;
986 }
987 
988 /*
989  * Helper to make a queue_pairDetach hypercall when the driver is
990  * supporting a guest device.
991  */
qp_detatch_hypercall(struct vmci_handle handle)992 static int qp_detatch_hypercall(struct vmci_handle handle)
993 {
994 	struct vmci_qp_detach_msg detach_msg;
995 
996 	detach_msg.hdr.dst = vmci_make_handle(VMCI_HYPERVISOR_CONTEXT_ID,
997 					      VMCI_QUEUEPAIR_DETACH);
998 	detach_msg.hdr.src = VMCI_ANON_SRC_HANDLE;
999 	detach_msg.hdr.payload_size = sizeof(handle);
1000 	detach_msg.handle = handle;
1001 
1002 	return vmci_send_datagram(&detach_msg.hdr);
1003 }
1004 
1005 /*
1006  * Adds the given entry to the list. Assumes that the list is locked.
1007  */
qp_list_add_entry(struct qp_list * qp_list,struct qp_entry * entry)1008 static void qp_list_add_entry(struct qp_list *qp_list, struct qp_entry *entry)
1009 {
1010 	if (entry)
1011 		list_add(&entry->list_item, &qp_list->head);
1012 }
1013 
1014 /*
1015  * Removes the given entry from the list. Assumes that the list is locked.
1016  */
qp_list_remove_entry(struct qp_list * qp_list,struct qp_entry * entry)1017 static void qp_list_remove_entry(struct qp_list *qp_list,
1018 				 struct qp_entry *entry)
1019 {
1020 	if (entry)
1021 		list_del(&entry->list_item);
1022 }
1023 
1024 /*
1025  * Helper for VMCI queue_pair detach interface. Frees the physical
1026  * pages for the queue pair.
1027  */
qp_detatch_guest_work(struct vmci_handle handle)1028 static int qp_detatch_guest_work(struct vmci_handle handle)
1029 {
1030 	int result;
1031 	struct qp_guest_endpoint *entry;
1032 	u32 ref_count = ~0;	/* To avoid compiler warning below */
1033 
1034 	mutex_lock(&qp_guest_endpoints.mutex);
1035 
1036 	entry = qp_guest_handle_to_entry(handle);
1037 	if (!entry) {
1038 		mutex_unlock(&qp_guest_endpoints.mutex);
1039 		return VMCI_ERROR_NOT_FOUND;
1040 	}
1041 
1042 	if (entry->qp.flags & VMCI_QPFLAG_LOCAL) {
1043 		result = VMCI_SUCCESS;
1044 
1045 		if (entry->qp.ref_count > 1) {
1046 			result = qp_notify_peer_local(false, handle);
1047 			/*
1048 			 * We can fail to notify a local queuepair
1049 			 * because we can't allocate.  We still want
1050 			 * to release the entry if that happens, so
1051 			 * don't bail out yet.
1052 			 */
1053 		}
1054 	} else {
1055 		result = qp_detatch_hypercall(handle);
1056 		if (result < VMCI_SUCCESS) {
1057 			/*
1058 			 * We failed to notify a non-local queuepair.
1059 			 * That other queuepair might still be
1060 			 * accessing the shared memory, so don't
1061 			 * release the entry yet.  It will get cleaned
1062 			 * up by VMCIqueue_pair_Exit() if necessary
1063 			 * (assuming we are going away, otherwise why
1064 			 * did this fail?).
1065 			 */
1066 
1067 			mutex_unlock(&qp_guest_endpoints.mutex);
1068 			return result;
1069 		}
1070 	}
1071 
1072 	/*
1073 	 * If we get here then we either failed to notify a local queuepair, or
1074 	 * we succeeded in all cases.  Release the entry if required.
1075 	 */
1076 
1077 	entry->qp.ref_count--;
1078 	if (entry->qp.ref_count == 0)
1079 		qp_list_remove_entry(&qp_guest_endpoints, &entry->qp);
1080 
1081 	/* If we didn't remove the entry, this could change once we unlock. */
1082 	if (entry)
1083 		ref_count = entry->qp.ref_count;
1084 
1085 	mutex_unlock(&qp_guest_endpoints.mutex);
1086 
1087 	if (ref_count == 0)
1088 		qp_guest_endpoint_destroy(entry);
1089 
1090 	return result;
1091 }
1092 
1093 /*
1094  * This functions handles the actual allocation of a VMCI queue
1095  * pair guest endpoint. Allocates physical pages for the queue
1096  * pair. It makes OS dependent calls through generic wrappers.
1097  */
qp_alloc_guest_work(struct vmci_handle * handle,struct vmci_queue ** produce_q,u64 produce_size,struct vmci_queue ** consume_q,u64 consume_size,u32 peer,u32 flags,u32 priv_flags)1098 static int qp_alloc_guest_work(struct vmci_handle *handle,
1099 			       struct vmci_queue **produce_q,
1100 			       u64 produce_size,
1101 			       struct vmci_queue **consume_q,
1102 			       u64 consume_size,
1103 			       u32 peer,
1104 			       u32 flags,
1105 			       u32 priv_flags)
1106 {
1107 	const u64 num_produce_pages =
1108 	    DIV_ROUND_UP(produce_size, PAGE_SIZE) + 1;
1109 	const u64 num_consume_pages =
1110 	    DIV_ROUND_UP(consume_size, PAGE_SIZE) + 1;
1111 	void *my_produce_q = NULL;
1112 	void *my_consume_q = NULL;
1113 	int result;
1114 	struct qp_guest_endpoint *queue_pair_entry = NULL;
1115 
1116 	if (priv_flags != VMCI_NO_PRIVILEGE_FLAGS)
1117 		return VMCI_ERROR_NO_ACCESS;
1118 
1119 	mutex_lock(&qp_guest_endpoints.mutex);
1120 
1121 	queue_pair_entry = qp_guest_handle_to_entry(*handle);
1122 	if (queue_pair_entry) {
1123 		if (queue_pair_entry->qp.flags & VMCI_QPFLAG_LOCAL) {
1124 			/* Local attach case. */
1125 			if (queue_pair_entry->qp.ref_count > 1) {
1126 				pr_devel("Error attempting to attach more than once\n");
1127 				result = VMCI_ERROR_UNAVAILABLE;
1128 				goto error_keep_entry;
1129 			}
1130 
1131 			if (queue_pair_entry->qp.produce_size != consume_size ||
1132 			    queue_pair_entry->qp.consume_size !=
1133 			    produce_size ||
1134 			    queue_pair_entry->qp.flags !=
1135 			    (flags & ~VMCI_QPFLAG_ATTACH_ONLY)) {
1136 				pr_devel("Error mismatched queue pair in local attach\n");
1137 				result = VMCI_ERROR_QUEUEPAIR_MISMATCH;
1138 				goto error_keep_entry;
1139 			}
1140 
1141 			/*
1142 			 * Do a local attach.  We swap the consume and
1143 			 * produce queues for the attacher and deliver
1144 			 * an attach event.
1145 			 */
1146 			result = qp_notify_peer_local(true, *handle);
1147 			if (result < VMCI_SUCCESS)
1148 				goto error_keep_entry;
1149 
1150 			my_produce_q = queue_pair_entry->consume_q;
1151 			my_consume_q = queue_pair_entry->produce_q;
1152 			goto out;
1153 		}
1154 
1155 		result = VMCI_ERROR_ALREADY_EXISTS;
1156 		goto error_keep_entry;
1157 	}
1158 
1159 	my_produce_q = qp_alloc_queue(produce_size, flags);
1160 	if (!my_produce_q) {
1161 		pr_warn("Error allocating pages for produce queue\n");
1162 		result = VMCI_ERROR_NO_MEM;
1163 		goto error;
1164 	}
1165 
1166 	my_consume_q = qp_alloc_queue(consume_size, flags);
1167 	if (!my_consume_q) {
1168 		pr_warn("Error allocating pages for consume queue\n");
1169 		result = VMCI_ERROR_NO_MEM;
1170 		goto error;
1171 	}
1172 
1173 	queue_pair_entry = qp_guest_endpoint_create(*handle, peer, flags,
1174 						    produce_size, consume_size,
1175 						    my_produce_q, my_consume_q);
1176 	if (!queue_pair_entry) {
1177 		pr_warn("Error allocating memory in %s\n", __func__);
1178 		result = VMCI_ERROR_NO_MEM;
1179 		goto error;
1180 	}
1181 
1182 	result = qp_alloc_ppn_set(my_produce_q, num_produce_pages, my_consume_q,
1183 				  num_consume_pages,
1184 				  &queue_pair_entry->ppn_set);
1185 	if (result < VMCI_SUCCESS) {
1186 		pr_warn("qp_alloc_ppn_set failed\n");
1187 		goto error;
1188 	}
1189 
1190 	/*
1191 	 * It's only necessary to notify the host if this queue pair will be
1192 	 * attached to from another context.
1193 	 */
1194 	if (queue_pair_entry->qp.flags & VMCI_QPFLAG_LOCAL) {
1195 		/* Local create case. */
1196 		u32 context_id = vmci_get_context_id();
1197 
1198 		/*
1199 		 * Enforce similar checks on local queue pairs as we
1200 		 * do for regular ones.  The handle's context must
1201 		 * match the creator or attacher context id (here they
1202 		 * are both the current context id) and the
1203 		 * attach-only flag cannot exist during create.  We
1204 		 * also ensure specified peer is this context or an
1205 		 * invalid one.
1206 		 */
1207 		if (queue_pair_entry->qp.handle.context != context_id ||
1208 		    (queue_pair_entry->qp.peer != VMCI_INVALID_ID &&
1209 		     queue_pair_entry->qp.peer != context_id)) {
1210 			result = VMCI_ERROR_NO_ACCESS;
1211 			goto error;
1212 		}
1213 
1214 		if (queue_pair_entry->qp.flags & VMCI_QPFLAG_ATTACH_ONLY) {
1215 			result = VMCI_ERROR_NOT_FOUND;
1216 			goto error;
1217 		}
1218 	} else {
1219 		result = qp_alloc_hypercall(queue_pair_entry);
1220 		if (result < VMCI_SUCCESS) {
1221 			pr_warn("qp_alloc_hypercall result = %d\n", result);
1222 			goto error;
1223 		}
1224 	}
1225 
1226 	qp_init_queue_mutex((struct vmci_queue *)my_produce_q,
1227 			    (struct vmci_queue *)my_consume_q);
1228 
1229 	qp_list_add_entry(&qp_guest_endpoints, &queue_pair_entry->qp);
1230 
1231  out:
1232 	queue_pair_entry->qp.ref_count++;
1233 	*handle = queue_pair_entry->qp.handle;
1234 	*produce_q = (struct vmci_queue *)my_produce_q;
1235 	*consume_q = (struct vmci_queue *)my_consume_q;
1236 
1237 	/*
1238 	 * We should initialize the queue pair header pages on a local
1239 	 * queue pair create.  For non-local queue pairs, the
1240 	 * hypervisor initializes the header pages in the create step.
1241 	 */
1242 	if ((queue_pair_entry->qp.flags & VMCI_QPFLAG_LOCAL) &&
1243 	    queue_pair_entry->qp.ref_count == 1) {
1244 		vmci_q_header_init((*produce_q)->q_header, *handle);
1245 		vmci_q_header_init((*consume_q)->q_header, *handle);
1246 	}
1247 
1248 	mutex_unlock(&qp_guest_endpoints.mutex);
1249 
1250 	return VMCI_SUCCESS;
1251 
1252  error:
1253 	mutex_unlock(&qp_guest_endpoints.mutex);
1254 	if (queue_pair_entry) {
1255 		/* The queues will be freed inside the destroy routine. */
1256 		qp_guest_endpoint_destroy(queue_pair_entry);
1257 	} else {
1258 		qp_free_queue(my_produce_q, produce_size);
1259 		qp_free_queue(my_consume_q, consume_size);
1260 	}
1261 	return result;
1262 
1263  error_keep_entry:
1264 	/* This path should only be used when an existing entry was found. */
1265 	mutex_unlock(&qp_guest_endpoints.mutex);
1266 	return result;
1267 }
1268 
1269 /*
1270  * The first endpoint issuing a queue pair allocation will create the state
1271  * of the queue pair in the queue pair broker.
1272  *
1273  * If the creator is a guest, it will associate a VMX virtual address range
1274  * with the queue pair as specified by the page_store. For compatibility with
1275  * older VMX'en, that would use a separate step to set the VMX virtual
1276  * address range, the virtual address range can be registered later using
1277  * vmci_qp_broker_set_page_store. In that case, a page_store of NULL should be
1278  * used.
1279  *
1280  * If the creator is the host, a page_store of NULL should be used as well,
1281  * since the host is not able to supply a page store for the queue pair.
1282  *
1283  * For older VMX and host callers, the queue pair will be created in the
1284  * VMCIQPB_CREATED_NO_MEM state, and for current VMX callers, it will be
1285  * created in VMCOQPB_CREATED_MEM state.
1286  */
qp_broker_create(struct vmci_handle handle,u32 peer,u32 flags,u32 priv_flags,u64 produce_size,u64 consume_size,struct vmci_qp_page_store * page_store,struct vmci_ctx * context,vmci_event_release_cb wakeup_cb,void * client_data,struct qp_broker_entry ** ent)1287 static int qp_broker_create(struct vmci_handle handle,
1288 			    u32 peer,
1289 			    u32 flags,
1290 			    u32 priv_flags,
1291 			    u64 produce_size,
1292 			    u64 consume_size,
1293 			    struct vmci_qp_page_store *page_store,
1294 			    struct vmci_ctx *context,
1295 			    vmci_event_release_cb wakeup_cb,
1296 			    void *client_data, struct qp_broker_entry **ent)
1297 {
1298 	struct qp_broker_entry *entry = NULL;
1299 	const u32 context_id = vmci_ctx_get_id(context);
1300 	bool is_local = flags & VMCI_QPFLAG_LOCAL;
1301 	int result;
1302 	u64 guest_produce_size;
1303 	u64 guest_consume_size;
1304 
1305 	/* Do not create if the caller asked not to. */
1306 	if (flags & VMCI_QPFLAG_ATTACH_ONLY)
1307 		return VMCI_ERROR_NOT_FOUND;
1308 
1309 	/*
1310 	 * Creator's context ID should match handle's context ID or the creator
1311 	 * must allow the context in handle's context ID as the "peer".
1312 	 */
1313 	if (handle.context != context_id && handle.context != peer)
1314 		return VMCI_ERROR_NO_ACCESS;
1315 
1316 	if (VMCI_CONTEXT_IS_VM(context_id) && VMCI_CONTEXT_IS_VM(peer))
1317 		return VMCI_ERROR_DST_UNREACHABLE;
1318 
1319 	/*
1320 	 * Creator's context ID for local queue pairs should match the
1321 	 * peer, if a peer is specified.
1322 	 */
1323 	if (is_local && peer != VMCI_INVALID_ID && context_id != peer)
1324 		return VMCI_ERROR_NO_ACCESS;
1325 
1326 	entry = kzalloc(sizeof(*entry), GFP_ATOMIC);
1327 	if (!entry)
1328 		return VMCI_ERROR_NO_MEM;
1329 
1330 	if (vmci_ctx_get_id(context) == VMCI_HOST_CONTEXT_ID && !is_local) {
1331 		/*
1332 		 * The queue pair broker entry stores values from the guest
1333 		 * point of view, so a creating host side endpoint should swap
1334 		 * produce and consume values -- unless it is a local queue
1335 		 * pair, in which case no swapping is necessary, since the local
1336 		 * attacher will swap queues.
1337 		 */
1338 
1339 		guest_produce_size = consume_size;
1340 		guest_consume_size = produce_size;
1341 	} else {
1342 		guest_produce_size = produce_size;
1343 		guest_consume_size = consume_size;
1344 	}
1345 
1346 	entry->qp.handle = handle;
1347 	entry->qp.peer = peer;
1348 	entry->qp.flags = flags;
1349 	entry->qp.produce_size = guest_produce_size;
1350 	entry->qp.consume_size = guest_consume_size;
1351 	entry->qp.ref_count = 1;
1352 	entry->create_id = context_id;
1353 	entry->attach_id = VMCI_INVALID_ID;
1354 	entry->state = VMCIQPB_NEW;
1355 	entry->require_trusted_attach =
1356 	    !!(context->priv_flags & VMCI_PRIVILEGE_FLAG_RESTRICTED);
1357 	entry->created_by_trusted =
1358 	    !!(priv_flags & VMCI_PRIVILEGE_FLAG_TRUSTED);
1359 	entry->vmci_page_files = false;
1360 	entry->wakeup_cb = wakeup_cb;
1361 	entry->client_data = client_data;
1362 	entry->produce_q = qp_host_alloc_queue(guest_produce_size);
1363 	if (entry->produce_q == NULL) {
1364 		result = VMCI_ERROR_NO_MEM;
1365 		goto error;
1366 	}
1367 	entry->consume_q = qp_host_alloc_queue(guest_consume_size);
1368 	if (entry->consume_q == NULL) {
1369 		result = VMCI_ERROR_NO_MEM;
1370 		goto error;
1371 	}
1372 
1373 	qp_init_queue_mutex(entry->produce_q, entry->consume_q);
1374 
1375 	INIT_LIST_HEAD(&entry->qp.list_item);
1376 
1377 	if (is_local) {
1378 		u8 *tmp;
1379 
1380 		entry->local_mem = kcalloc(QPE_NUM_PAGES(entry->qp),
1381 					   PAGE_SIZE, GFP_KERNEL);
1382 		if (entry->local_mem == NULL) {
1383 			result = VMCI_ERROR_NO_MEM;
1384 			goto error;
1385 		}
1386 		entry->state = VMCIQPB_CREATED_MEM;
1387 		entry->produce_q->q_header = entry->local_mem;
1388 		tmp = (u8 *)entry->local_mem + PAGE_SIZE *
1389 		    (DIV_ROUND_UP(entry->qp.produce_size, PAGE_SIZE) + 1);
1390 		entry->consume_q->q_header = (struct vmci_queue_header *)tmp;
1391 	} else if (page_store) {
1392 		/*
1393 		 * The VMX already initialized the queue pair headers, so no
1394 		 * need for the kernel side to do that.
1395 		 */
1396 		result = qp_host_register_user_memory(page_store,
1397 						      entry->produce_q,
1398 						      entry->consume_q);
1399 		if (result < VMCI_SUCCESS)
1400 			goto error;
1401 
1402 		entry->state = VMCIQPB_CREATED_MEM;
1403 	} else {
1404 		/*
1405 		 * A create without a page_store may be either a host
1406 		 * side create (in which case we are waiting for the
1407 		 * guest side to supply the memory) or an old style
1408 		 * queue pair create (in which case we will expect a
1409 		 * set page store call as the next step).
1410 		 */
1411 		entry->state = VMCIQPB_CREATED_NO_MEM;
1412 	}
1413 
1414 	qp_list_add_entry(&qp_broker_list, &entry->qp);
1415 	if (ent != NULL)
1416 		*ent = entry;
1417 
1418 	/* Add to resource obj */
1419 	result = vmci_resource_add(&entry->resource,
1420 				   VMCI_RESOURCE_TYPE_QPAIR_HOST,
1421 				   handle);
1422 	if (result != VMCI_SUCCESS) {
1423 		pr_warn("Failed to add new resource (handle=0x%x:0x%x), error: %d",
1424 			handle.context, handle.resource, result);
1425 		goto error;
1426 	}
1427 
1428 	entry->qp.handle = vmci_resource_handle(&entry->resource);
1429 	if (is_local) {
1430 		vmci_q_header_init(entry->produce_q->q_header,
1431 				   entry->qp.handle);
1432 		vmci_q_header_init(entry->consume_q->q_header,
1433 				   entry->qp.handle);
1434 	}
1435 
1436 	vmci_ctx_qp_create(context, entry->qp.handle);
1437 
1438 	return VMCI_SUCCESS;
1439 
1440  error:
1441 	if (entry != NULL) {
1442 		qp_host_free_queue(entry->produce_q, guest_produce_size);
1443 		qp_host_free_queue(entry->consume_q, guest_consume_size);
1444 		kfree(entry);
1445 	}
1446 
1447 	return result;
1448 }
1449 
1450 /*
1451  * Enqueues an event datagram to notify the peer VM attached to
1452  * the given queue pair handle about attach/detach event by the
1453  * given VM.  Returns Payload size of datagram enqueued on
1454  * success, error code otherwise.
1455  */
qp_notify_peer(bool attach,struct vmci_handle handle,u32 my_id,u32 peer_id)1456 static int qp_notify_peer(bool attach,
1457 			  struct vmci_handle handle,
1458 			  u32 my_id,
1459 			  u32 peer_id)
1460 {
1461 	int rv;
1462 	struct vmci_event_qp ev;
1463 
1464 	if (vmci_handle_is_invalid(handle) || my_id == VMCI_INVALID_ID ||
1465 	    peer_id == VMCI_INVALID_ID)
1466 		return VMCI_ERROR_INVALID_ARGS;
1467 
1468 	/*
1469 	 * In vmci_ctx_enqueue_datagram() we enforce the upper limit on
1470 	 * number of pending events from the hypervisor to a given VM
1471 	 * otherwise a rogue VM could do an arbitrary number of attach
1472 	 * and detach operations causing memory pressure in the host
1473 	 * kernel.
1474 	 */
1475 
1476 	ev.msg.hdr.dst = vmci_make_handle(peer_id, VMCI_EVENT_HANDLER);
1477 	ev.msg.hdr.src = vmci_make_handle(VMCI_HYPERVISOR_CONTEXT_ID,
1478 					  VMCI_CONTEXT_RESOURCE_ID);
1479 	ev.msg.hdr.payload_size = sizeof(ev) - sizeof(ev.msg.hdr);
1480 	ev.msg.event_data.event = attach ?
1481 	    VMCI_EVENT_QP_PEER_ATTACH : VMCI_EVENT_QP_PEER_DETACH;
1482 	ev.payload.handle = handle;
1483 	ev.payload.peer_id = my_id;
1484 
1485 	rv = vmci_datagram_dispatch(VMCI_HYPERVISOR_CONTEXT_ID,
1486 				    &ev.msg.hdr, false);
1487 	if (rv < VMCI_SUCCESS)
1488 		pr_warn("Failed to enqueue queue_pair %s event datagram for context (ID=0x%x)\n",
1489 			attach ? "ATTACH" : "DETACH", peer_id);
1490 
1491 	return rv;
1492 }
1493 
1494 /*
1495  * The second endpoint issuing a queue pair allocation will attach to
1496  * the queue pair registered with the queue pair broker.
1497  *
1498  * If the attacher is a guest, it will associate a VMX virtual address
1499  * range with the queue pair as specified by the page_store. At this
1500  * point, the already attach host endpoint may start using the queue
1501  * pair, and an attach event is sent to it. For compatibility with
1502  * older VMX'en, that used a separate step to set the VMX virtual
1503  * address range, the virtual address range can be registered later
1504  * using vmci_qp_broker_set_page_store. In that case, a page_store of
1505  * NULL should be used, and the attach event will be generated once
1506  * the actual page store has been set.
1507  *
1508  * If the attacher is the host, a page_store of NULL should be used as
1509  * well, since the page store information is already set by the guest.
1510  *
1511  * For new VMX and host callers, the queue pair will be moved to the
1512  * VMCIQPB_ATTACHED_MEM state, and for older VMX callers, it will be
1513  * moved to the VMCOQPB_ATTACHED_NO_MEM state.
1514  */
qp_broker_attach(struct qp_broker_entry * entry,u32 peer,u32 flags,u32 priv_flags,u64 produce_size,u64 consume_size,struct vmci_qp_page_store * page_store,struct vmci_ctx * context,vmci_event_release_cb wakeup_cb,void * client_data,struct qp_broker_entry ** ent)1515 static int qp_broker_attach(struct qp_broker_entry *entry,
1516 			    u32 peer,
1517 			    u32 flags,
1518 			    u32 priv_flags,
1519 			    u64 produce_size,
1520 			    u64 consume_size,
1521 			    struct vmci_qp_page_store *page_store,
1522 			    struct vmci_ctx *context,
1523 			    vmci_event_release_cb wakeup_cb,
1524 			    void *client_data,
1525 			    struct qp_broker_entry **ent)
1526 {
1527 	const u32 context_id = vmci_ctx_get_id(context);
1528 	bool is_local = flags & VMCI_QPFLAG_LOCAL;
1529 	int result;
1530 
1531 	if (entry->state != VMCIQPB_CREATED_NO_MEM &&
1532 	    entry->state != VMCIQPB_CREATED_MEM)
1533 		return VMCI_ERROR_UNAVAILABLE;
1534 
1535 	if (is_local) {
1536 		if (!(entry->qp.flags & VMCI_QPFLAG_LOCAL) ||
1537 		    context_id != entry->create_id) {
1538 			return VMCI_ERROR_INVALID_ARGS;
1539 		}
1540 	} else if (context_id == entry->create_id ||
1541 		   context_id == entry->attach_id) {
1542 		return VMCI_ERROR_ALREADY_EXISTS;
1543 	}
1544 
1545 	if (VMCI_CONTEXT_IS_VM(context_id) &&
1546 	    VMCI_CONTEXT_IS_VM(entry->create_id))
1547 		return VMCI_ERROR_DST_UNREACHABLE;
1548 
1549 	/*
1550 	 * If we are attaching from a restricted context then the queuepair
1551 	 * must have been created by a trusted endpoint.
1552 	 */
1553 	if ((context->priv_flags & VMCI_PRIVILEGE_FLAG_RESTRICTED) &&
1554 	    !entry->created_by_trusted)
1555 		return VMCI_ERROR_NO_ACCESS;
1556 
1557 	/*
1558 	 * If we are attaching to a queuepair that was created by a restricted
1559 	 * context then we must be trusted.
1560 	 */
1561 	if (entry->require_trusted_attach &&
1562 	    (!(priv_flags & VMCI_PRIVILEGE_FLAG_TRUSTED)))
1563 		return VMCI_ERROR_NO_ACCESS;
1564 
1565 	/*
1566 	 * If the creator specifies VMCI_INVALID_ID in "peer" field, access
1567 	 * control check is not performed.
1568 	 */
1569 	if (entry->qp.peer != VMCI_INVALID_ID && entry->qp.peer != context_id)
1570 		return VMCI_ERROR_NO_ACCESS;
1571 
1572 	if (entry->create_id == VMCI_HOST_CONTEXT_ID) {
1573 		/*
1574 		 * Do not attach if the caller doesn't support Host Queue Pairs
1575 		 * and a host created this queue pair.
1576 		 */
1577 
1578 		if (!vmci_ctx_supports_host_qp(context))
1579 			return VMCI_ERROR_INVALID_RESOURCE;
1580 
1581 	} else if (context_id == VMCI_HOST_CONTEXT_ID) {
1582 		struct vmci_ctx *create_context;
1583 		bool supports_host_qp;
1584 
1585 		/*
1586 		 * Do not attach a host to a user created queue pair if that
1587 		 * user doesn't support host queue pair end points.
1588 		 */
1589 
1590 		create_context = vmci_ctx_get(entry->create_id);
1591 		supports_host_qp = vmci_ctx_supports_host_qp(create_context);
1592 		vmci_ctx_put(create_context);
1593 
1594 		if (!supports_host_qp)
1595 			return VMCI_ERROR_INVALID_RESOURCE;
1596 	}
1597 
1598 	if ((entry->qp.flags & ~VMCI_QP_ASYMM) != (flags & ~VMCI_QP_ASYMM_PEER))
1599 		return VMCI_ERROR_QUEUEPAIR_MISMATCH;
1600 
1601 	if (context_id != VMCI_HOST_CONTEXT_ID) {
1602 		/*
1603 		 * The queue pair broker entry stores values from the guest
1604 		 * point of view, so an attaching guest should match the values
1605 		 * stored in the entry.
1606 		 */
1607 
1608 		if (entry->qp.produce_size != produce_size ||
1609 		    entry->qp.consume_size != consume_size) {
1610 			return VMCI_ERROR_QUEUEPAIR_MISMATCH;
1611 		}
1612 	} else if (entry->qp.produce_size != consume_size ||
1613 		   entry->qp.consume_size != produce_size) {
1614 		return VMCI_ERROR_QUEUEPAIR_MISMATCH;
1615 	}
1616 
1617 	if (context_id != VMCI_HOST_CONTEXT_ID) {
1618 		/*
1619 		 * If a guest attached to a queue pair, it will supply
1620 		 * the backing memory.  If this is a pre NOVMVM vmx,
1621 		 * the backing memory will be supplied by calling
1622 		 * vmci_qp_broker_set_page_store() following the
1623 		 * return of the vmci_qp_broker_alloc() call. If it is
1624 		 * a vmx of version NOVMVM or later, the page store
1625 		 * must be supplied as part of the
1626 		 * vmci_qp_broker_alloc call.  Under all circumstances
1627 		 * must the initially created queue pair not have any
1628 		 * memory associated with it already.
1629 		 */
1630 
1631 		if (entry->state != VMCIQPB_CREATED_NO_MEM)
1632 			return VMCI_ERROR_INVALID_ARGS;
1633 
1634 		if (page_store != NULL) {
1635 			/*
1636 			 * Patch up host state to point to guest
1637 			 * supplied memory. The VMX already
1638 			 * initialized the queue pair headers, so no
1639 			 * need for the kernel side to do that.
1640 			 */
1641 
1642 			result = qp_host_register_user_memory(page_store,
1643 							      entry->produce_q,
1644 							      entry->consume_q);
1645 			if (result < VMCI_SUCCESS)
1646 				return result;
1647 
1648 			entry->state = VMCIQPB_ATTACHED_MEM;
1649 		} else {
1650 			entry->state = VMCIQPB_ATTACHED_NO_MEM;
1651 		}
1652 	} else if (entry->state == VMCIQPB_CREATED_NO_MEM) {
1653 		/*
1654 		 * The host side is attempting to attach to a queue
1655 		 * pair that doesn't have any memory associated with
1656 		 * it. This must be a pre NOVMVM vmx that hasn't set
1657 		 * the page store information yet, or a quiesced VM.
1658 		 */
1659 
1660 		return VMCI_ERROR_UNAVAILABLE;
1661 	} else {
1662 		/* The host side has successfully attached to a queue pair. */
1663 		entry->state = VMCIQPB_ATTACHED_MEM;
1664 	}
1665 
1666 	if (entry->state == VMCIQPB_ATTACHED_MEM) {
1667 		result =
1668 		    qp_notify_peer(true, entry->qp.handle, context_id,
1669 				   entry->create_id);
1670 		if (result < VMCI_SUCCESS)
1671 			pr_warn("Failed to notify peer (ID=0x%x) of attach to queue pair (handle=0x%x:0x%x)\n",
1672 				entry->create_id, entry->qp.handle.context,
1673 				entry->qp.handle.resource);
1674 	}
1675 
1676 	entry->attach_id = context_id;
1677 	entry->qp.ref_count++;
1678 	if (wakeup_cb) {
1679 		entry->wakeup_cb = wakeup_cb;
1680 		entry->client_data = client_data;
1681 	}
1682 
1683 	/*
1684 	 * When attaching to local queue pairs, the context already has
1685 	 * an entry tracking the queue pair, so don't add another one.
1686 	 */
1687 	if (!is_local)
1688 		vmci_ctx_qp_create(context, entry->qp.handle);
1689 
1690 	if (ent != NULL)
1691 		*ent = entry;
1692 
1693 	return VMCI_SUCCESS;
1694 }
1695 
1696 /*
1697  * queue_pair_Alloc for use when setting up queue pair endpoints
1698  * on the host.
1699  */
qp_broker_alloc(struct vmci_handle handle,u32 peer,u32 flags,u32 priv_flags,u64 produce_size,u64 consume_size,struct vmci_qp_page_store * page_store,struct vmci_ctx * context,vmci_event_release_cb wakeup_cb,void * client_data,struct qp_broker_entry ** ent,bool * swap)1700 static int qp_broker_alloc(struct vmci_handle handle,
1701 			   u32 peer,
1702 			   u32 flags,
1703 			   u32 priv_flags,
1704 			   u64 produce_size,
1705 			   u64 consume_size,
1706 			   struct vmci_qp_page_store *page_store,
1707 			   struct vmci_ctx *context,
1708 			   vmci_event_release_cb wakeup_cb,
1709 			   void *client_data,
1710 			   struct qp_broker_entry **ent,
1711 			   bool *swap)
1712 {
1713 	const u32 context_id = vmci_ctx_get_id(context);
1714 	bool create;
1715 	struct qp_broker_entry *entry = NULL;
1716 	bool is_local = flags & VMCI_QPFLAG_LOCAL;
1717 	int result;
1718 
1719 	if (vmci_handle_is_invalid(handle) ||
1720 	    (flags & ~VMCI_QP_ALL_FLAGS) || is_local ||
1721 	    !(produce_size || consume_size) ||
1722 	    !context || context_id == VMCI_INVALID_ID ||
1723 	    handle.context == VMCI_INVALID_ID) {
1724 		return VMCI_ERROR_INVALID_ARGS;
1725 	}
1726 
1727 	if (page_store && !VMCI_QP_PAGESTORE_IS_WELLFORMED(page_store))
1728 		return VMCI_ERROR_INVALID_ARGS;
1729 
1730 	/*
1731 	 * In the initial argument check, we ensure that non-vmkernel hosts
1732 	 * are not allowed to create local queue pairs.
1733 	 */
1734 
1735 	mutex_lock(&qp_broker_list.mutex);
1736 
1737 	if (!is_local && vmci_ctx_qp_exists(context, handle)) {
1738 		pr_devel("Context (ID=0x%x) already attached to queue pair (handle=0x%x:0x%x)\n",
1739 			 context_id, handle.context, handle.resource);
1740 		mutex_unlock(&qp_broker_list.mutex);
1741 		return VMCI_ERROR_ALREADY_EXISTS;
1742 	}
1743 
1744 	if (handle.resource != VMCI_INVALID_ID)
1745 		entry = qp_broker_handle_to_entry(handle);
1746 
1747 	if (!entry) {
1748 		create = true;
1749 		result =
1750 		    qp_broker_create(handle, peer, flags, priv_flags,
1751 				     produce_size, consume_size, page_store,
1752 				     context, wakeup_cb, client_data, ent);
1753 	} else {
1754 		create = false;
1755 		result =
1756 		    qp_broker_attach(entry, peer, flags, priv_flags,
1757 				     produce_size, consume_size, page_store,
1758 				     context, wakeup_cb, client_data, ent);
1759 	}
1760 
1761 	mutex_unlock(&qp_broker_list.mutex);
1762 
1763 	if (swap)
1764 		*swap = (context_id == VMCI_HOST_CONTEXT_ID) &&
1765 		    !(create && is_local);
1766 
1767 	return result;
1768 }
1769 
1770 /*
1771  * This function implements the kernel API for allocating a queue
1772  * pair.
1773  */
qp_alloc_host_work(struct vmci_handle * handle,struct vmci_queue ** produce_q,u64 produce_size,struct vmci_queue ** consume_q,u64 consume_size,u32 peer,u32 flags,u32 priv_flags,vmci_event_release_cb wakeup_cb,void * client_data)1774 static int qp_alloc_host_work(struct vmci_handle *handle,
1775 			      struct vmci_queue **produce_q,
1776 			      u64 produce_size,
1777 			      struct vmci_queue **consume_q,
1778 			      u64 consume_size,
1779 			      u32 peer,
1780 			      u32 flags,
1781 			      u32 priv_flags,
1782 			      vmci_event_release_cb wakeup_cb,
1783 			      void *client_data)
1784 {
1785 	struct vmci_handle new_handle;
1786 	struct vmci_ctx *context;
1787 	struct qp_broker_entry *entry;
1788 	int result;
1789 	bool swap;
1790 
1791 	if (vmci_handle_is_invalid(*handle)) {
1792 		new_handle = vmci_make_handle(
1793 			VMCI_HOST_CONTEXT_ID, VMCI_INVALID_ID);
1794 	} else
1795 		new_handle = *handle;
1796 
1797 	context = vmci_ctx_get(VMCI_HOST_CONTEXT_ID);
1798 	entry = NULL;
1799 	result =
1800 	    qp_broker_alloc(new_handle, peer, flags, priv_flags,
1801 			    produce_size, consume_size, NULL, context,
1802 			    wakeup_cb, client_data, &entry, &swap);
1803 	if (result == VMCI_SUCCESS) {
1804 		if (swap) {
1805 			/*
1806 			 * If this is a local queue pair, the attacher
1807 			 * will swap around produce and consume
1808 			 * queues.
1809 			 */
1810 
1811 			*produce_q = entry->consume_q;
1812 			*consume_q = entry->produce_q;
1813 		} else {
1814 			*produce_q = entry->produce_q;
1815 			*consume_q = entry->consume_q;
1816 		}
1817 
1818 		*handle = vmci_resource_handle(&entry->resource);
1819 	} else {
1820 		*handle = VMCI_INVALID_HANDLE;
1821 		pr_devel("queue pair broker failed to alloc (result=%d)\n",
1822 			 result);
1823 	}
1824 	vmci_ctx_put(context);
1825 	return result;
1826 }
1827 
1828 /*
1829  * Allocates a VMCI queue_pair. Only checks validity of input
1830  * arguments. The real work is done in the host or guest
1831  * specific function.
1832  */
vmci_qp_alloc(struct vmci_handle * handle,struct vmci_queue ** produce_q,u64 produce_size,struct vmci_queue ** consume_q,u64 consume_size,u32 peer,u32 flags,u32 priv_flags,bool guest_endpoint,vmci_event_release_cb wakeup_cb,void * client_data)1833 int vmci_qp_alloc(struct vmci_handle *handle,
1834 		  struct vmci_queue **produce_q,
1835 		  u64 produce_size,
1836 		  struct vmci_queue **consume_q,
1837 		  u64 consume_size,
1838 		  u32 peer,
1839 		  u32 flags,
1840 		  u32 priv_flags,
1841 		  bool guest_endpoint,
1842 		  vmci_event_release_cb wakeup_cb,
1843 		  void *client_data)
1844 {
1845 	if (!handle || !produce_q || !consume_q ||
1846 	    (!produce_size && !consume_size) || (flags & ~VMCI_QP_ALL_FLAGS))
1847 		return VMCI_ERROR_INVALID_ARGS;
1848 
1849 	if (guest_endpoint) {
1850 		return qp_alloc_guest_work(handle, produce_q,
1851 					   produce_size, consume_q,
1852 					   consume_size, peer,
1853 					   flags, priv_flags);
1854 	} else {
1855 		return qp_alloc_host_work(handle, produce_q,
1856 					  produce_size, consume_q,
1857 					  consume_size, peer, flags,
1858 					  priv_flags, wakeup_cb, client_data);
1859 	}
1860 }
1861 
1862 /*
1863  * This function implements the host kernel API for detaching from
1864  * a queue pair.
1865  */
qp_detatch_host_work(struct vmci_handle handle)1866 static int qp_detatch_host_work(struct vmci_handle handle)
1867 {
1868 	int result;
1869 	struct vmci_ctx *context;
1870 
1871 	context = vmci_ctx_get(VMCI_HOST_CONTEXT_ID);
1872 
1873 	result = vmci_qp_broker_detach(handle, context);
1874 
1875 	vmci_ctx_put(context);
1876 	return result;
1877 }
1878 
1879 /*
1880  * Detaches from a VMCI queue_pair. Only checks validity of input argument.
1881  * Real work is done in the host or guest specific function.
1882  */
qp_detatch(struct vmci_handle handle,bool guest_endpoint)1883 static int qp_detatch(struct vmci_handle handle, bool guest_endpoint)
1884 {
1885 	if (vmci_handle_is_invalid(handle))
1886 		return VMCI_ERROR_INVALID_ARGS;
1887 
1888 	if (guest_endpoint)
1889 		return qp_detatch_guest_work(handle);
1890 	else
1891 		return qp_detatch_host_work(handle);
1892 }
1893 
1894 /*
1895  * Returns the entry from the head of the list. Assumes that the list is
1896  * locked.
1897  */
qp_list_get_head(struct qp_list * qp_list)1898 static struct qp_entry *qp_list_get_head(struct qp_list *qp_list)
1899 {
1900 	if (!list_empty(&qp_list->head)) {
1901 		struct qp_entry *entry =
1902 		    list_first_entry(&qp_list->head, struct qp_entry,
1903 				     list_item);
1904 		return entry;
1905 	}
1906 
1907 	return NULL;
1908 }
1909 
vmci_qp_broker_exit(void)1910 void vmci_qp_broker_exit(void)
1911 {
1912 	struct qp_entry *entry;
1913 	struct qp_broker_entry *be;
1914 
1915 	mutex_lock(&qp_broker_list.mutex);
1916 
1917 	while ((entry = qp_list_get_head(&qp_broker_list))) {
1918 		be = (struct qp_broker_entry *)entry;
1919 
1920 		qp_list_remove_entry(&qp_broker_list, entry);
1921 		kfree(be);
1922 	}
1923 
1924 	mutex_unlock(&qp_broker_list.mutex);
1925 }
1926 
1927 /*
1928  * Requests that a queue pair be allocated with the VMCI queue
1929  * pair broker. Allocates a queue pair entry if one does not
1930  * exist. Attaches to one if it exists, and retrieves the page
1931  * files backing that queue_pair.  Assumes that the queue pair
1932  * broker lock is held.
1933  */
vmci_qp_broker_alloc(struct vmci_handle handle,u32 peer,u32 flags,u32 priv_flags,u64 produce_size,u64 consume_size,struct vmci_qp_page_store * page_store,struct vmci_ctx * context)1934 int vmci_qp_broker_alloc(struct vmci_handle handle,
1935 			 u32 peer,
1936 			 u32 flags,
1937 			 u32 priv_flags,
1938 			 u64 produce_size,
1939 			 u64 consume_size,
1940 			 struct vmci_qp_page_store *page_store,
1941 			 struct vmci_ctx *context)
1942 {
1943 	return qp_broker_alloc(handle, peer, flags, priv_flags,
1944 			       produce_size, consume_size,
1945 			       page_store, context, NULL, NULL, NULL, NULL);
1946 }
1947 
1948 /*
1949  * VMX'en with versions lower than VMCI_VERSION_NOVMVM use a separate
1950  * step to add the UVAs of the VMX mapping of the queue pair. This function
1951  * provides backwards compatibility with such VMX'en, and takes care of
1952  * registering the page store for a queue pair previously allocated by the
1953  * VMX during create or attach. This function will move the queue pair state
1954  * to either from VMCIQBP_CREATED_NO_MEM to VMCIQBP_CREATED_MEM or
1955  * VMCIQBP_ATTACHED_NO_MEM to VMCIQBP_ATTACHED_MEM. If moving to the
1956  * attached state with memory, the queue pair is ready to be used by the
1957  * host peer, and an attached event will be generated.
1958  *
1959  * Assumes that the queue pair broker lock is held.
1960  *
1961  * This function is only used by the hosted platform, since there is no
1962  * issue with backwards compatibility for vmkernel.
1963  */
vmci_qp_broker_set_page_store(struct vmci_handle handle,u64 produce_uva,u64 consume_uva,struct vmci_ctx * context)1964 int vmci_qp_broker_set_page_store(struct vmci_handle handle,
1965 				  u64 produce_uva,
1966 				  u64 consume_uva,
1967 				  struct vmci_ctx *context)
1968 {
1969 	struct qp_broker_entry *entry;
1970 	int result;
1971 	const u32 context_id = vmci_ctx_get_id(context);
1972 
1973 	if (vmci_handle_is_invalid(handle) || !context ||
1974 	    context_id == VMCI_INVALID_ID)
1975 		return VMCI_ERROR_INVALID_ARGS;
1976 
1977 	/*
1978 	 * We only support guest to host queue pairs, so the VMX must
1979 	 * supply UVAs for the mapped page files.
1980 	 */
1981 
1982 	if (produce_uva == 0 || consume_uva == 0)
1983 		return VMCI_ERROR_INVALID_ARGS;
1984 
1985 	mutex_lock(&qp_broker_list.mutex);
1986 
1987 	if (!vmci_ctx_qp_exists(context, handle)) {
1988 		pr_warn("Context (ID=0x%x) not attached to queue pair (handle=0x%x:0x%x)\n",
1989 			context_id, handle.context, handle.resource);
1990 		result = VMCI_ERROR_NOT_FOUND;
1991 		goto out;
1992 	}
1993 
1994 	entry = qp_broker_handle_to_entry(handle);
1995 	if (!entry) {
1996 		result = VMCI_ERROR_NOT_FOUND;
1997 		goto out;
1998 	}
1999 
2000 	/*
2001 	 * If I'm the owner then I can set the page store.
2002 	 *
2003 	 * Or, if a host created the queue_pair and I'm the attached peer
2004 	 * then I can set the page store.
2005 	 */
2006 	if (entry->create_id != context_id &&
2007 	    (entry->create_id != VMCI_HOST_CONTEXT_ID ||
2008 	     entry->attach_id != context_id)) {
2009 		result = VMCI_ERROR_QUEUEPAIR_NOTOWNER;
2010 		goto out;
2011 	}
2012 
2013 	if (entry->state != VMCIQPB_CREATED_NO_MEM &&
2014 	    entry->state != VMCIQPB_ATTACHED_NO_MEM) {
2015 		result = VMCI_ERROR_UNAVAILABLE;
2016 		goto out;
2017 	}
2018 
2019 	result = qp_host_get_user_memory(produce_uva, consume_uva,
2020 					 entry->produce_q, entry->consume_q);
2021 	if (result < VMCI_SUCCESS)
2022 		goto out;
2023 
2024 	result = qp_host_map_queues(entry->produce_q, entry->consume_q);
2025 	if (result < VMCI_SUCCESS) {
2026 		qp_host_unregister_user_memory(entry->produce_q,
2027 					       entry->consume_q);
2028 		goto out;
2029 	}
2030 
2031 	if (entry->state == VMCIQPB_CREATED_NO_MEM)
2032 		entry->state = VMCIQPB_CREATED_MEM;
2033 	else
2034 		entry->state = VMCIQPB_ATTACHED_MEM;
2035 
2036 	entry->vmci_page_files = true;
2037 
2038 	if (entry->state == VMCIQPB_ATTACHED_MEM) {
2039 		result =
2040 		    qp_notify_peer(true, handle, context_id, entry->create_id);
2041 		if (result < VMCI_SUCCESS) {
2042 			pr_warn("Failed to notify peer (ID=0x%x) of attach to queue pair (handle=0x%x:0x%x)\n",
2043 				entry->create_id, entry->qp.handle.context,
2044 				entry->qp.handle.resource);
2045 		}
2046 	}
2047 
2048 	result = VMCI_SUCCESS;
2049  out:
2050 	mutex_unlock(&qp_broker_list.mutex);
2051 	return result;
2052 }
2053 
2054 /*
2055  * Resets saved queue headers for the given QP broker
2056  * entry. Should be used when guest memory becomes available
2057  * again, or the guest detaches.
2058  */
qp_reset_saved_headers(struct qp_broker_entry * entry)2059 static void qp_reset_saved_headers(struct qp_broker_entry *entry)
2060 {
2061 	entry->produce_q->saved_header = NULL;
2062 	entry->consume_q->saved_header = NULL;
2063 }
2064 
2065 /*
2066  * The main entry point for detaching from a queue pair registered with the
2067  * queue pair broker. If more than one endpoint is attached to the queue
2068  * pair, the first endpoint will mainly decrement a reference count and
2069  * generate a notification to its peer. The last endpoint will clean up
2070  * the queue pair state registered with the broker.
2071  *
2072  * When a guest endpoint detaches, it will unmap and unregister the guest
2073  * memory backing the queue pair. If the host is still attached, it will
2074  * no longer be able to access the queue pair content.
2075  *
2076  * If the queue pair is already in a state where there is no memory
2077  * registered for the queue pair (any *_NO_MEM state), it will transition to
2078  * the VMCIQPB_SHUTDOWN_NO_MEM state. This will also happen, if a guest
2079  * endpoint is the first of two endpoints to detach. If the host endpoint is
2080  * the first out of two to detach, the queue pair will move to the
2081  * VMCIQPB_SHUTDOWN_MEM state.
2082  */
vmci_qp_broker_detach(struct vmci_handle handle,struct vmci_ctx * context)2083 int vmci_qp_broker_detach(struct vmci_handle handle, struct vmci_ctx *context)
2084 {
2085 	struct qp_broker_entry *entry;
2086 	const u32 context_id = vmci_ctx_get_id(context);
2087 	u32 peer_id;
2088 	bool is_local = false;
2089 	int result;
2090 
2091 	if (vmci_handle_is_invalid(handle) || !context ||
2092 	    context_id == VMCI_INVALID_ID) {
2093 		return VMCI_ERROR_INVALID_ARGS;
2094 	}
2095 
2096 	mutex_lock(&qp_broker_list.mutex);
2097 
2098 	if (!vmci_ctx_qp_exists(context, handle)) {
2099 		pr_devel("Context (ID=0x%x) not attached to queue pair (handle=0x%x:0x%x)\n",
2100 			 context_id, handle.context, handle.resource);
2101 		result = VMCI_ERROR_NOT_FOUND;
2102 		goto out;
2103 	}
2104 
2105 	entry = qp_broker_handle_to_entry(handle);
2106 	if (!entry) {
2107 		pr_devel("Context (ID=0x%x) reports being attached to queue pair(handle=0x%x:0x%x) that isn't present in broker\n",
2108 			 context_id, handle.context, handle.resource);
2109 		result = VMCI_ERROR_NOT_FOUND;
2110 		goto out;
2111 	}
2112 
2113 	if (context_id != entry->create_id && context_id != entry->attach_id) {
2114 		result = VMCI_ERROR_QUEUEPAIR_NOTATTACHED;
2115 		goto out;
2116 	}
2117 
2118 	if (context_id == entry->create_id) {
2119 		peer_id = entry->attach_id;
2120 		entry->create_id = VMCI_INVALID_ID;
2121 	} else {
2122 		peer_id = entry->create_id;
2123 		entry->attach_id = VMCI_INVALID_ID;
2124 	}
2125 	entry->qp.ref_count--;
2126 
2127 	is_local = entry->qp.flags & VMCI_QPFLAG_LOCAL;
2128 
2129 	if (context_id != VMCI_HOST_CONTEXT_ID) {
2130 		bool headers_mapped;
2131 
2132 		/*
2133 		 * Pre NOVMVM vmx'en may detach from a queue pair
2134 		 * before setting the page store, and in that case
2135 		 * there is no user memory to detach from. Also, more
2136 		 * recent VMX'en may detach from a queue pair in the
2137 		 * quiesced state.
2138 		 */
2139 
2140 		qp_acquire_queue_mutex(entry->produce_q);
2141 		headers_mapped = entry->produce_q->q_header ||
2142 		    entry->consume_q->q_header;
2143 		if (QPBROKERSTATE_HAS_MEM(entry)) {
2144 			result =
2145 			    qp_host_unmap_queues(INVALID_VMCI_GUEST_MEM_ID,
2146 						 entry->produce_q,
2147 						 entry->consume_q);
2148 			if (result < VMCI_SUCCESS)
2149 				pr_warn("Failed to unmap queue headers for queue pair (handle=0x%x:0x%x,result=%d)\n",
2150 					handle.context, handle.resource,
2151 					result);
2152 
2153 			qp_host_unregister_user_memory(entry->produce_q,
2154 						       entry->consume_q);
2155 
2156 		}
2157 
2158 		if (!headers_mapped)
2159 			qp_reset_saved_headers(entry);
2160 
2161 		qp_release_queue_mutex(entry->produce_q);
2162 
2163 		if (!headers_mapped && entry->wakeup_cb)
2164 			entry->wakeup_cb(entry->client_data);
2165 
2166 	} else {
2167 		if (entry->wakeup_cb) {
2168 			entry->wakeup_cb = NULL;
2169 			entry->client_data = NULL;
2170 		}
2171 	}
2172 
2173 	if (entry->qp.ref_count == 0) {
2174 		qp_list_remove_entry(&qp_broker_list, &entry->qp);
2175 
2176 		if (is_local)
2177 			kfree(entry->local_mem);
2178 
2179 		qp_cleanup_queue_mutex(entry->produce_q, entry->consume_q);
2180 		qp_host_free_queue(entry->produce_q, entry->qp.produce_size);
2181 		qp_host_free_queue(entry->consume_q, entry->qp.consume_size);
2182 		/* Unlink from resource hash table and free callback */
2183 		vmci_resource_remove(&entry->resource);
2184 
2185 		kfree(entry);
2186 
2187 		vmci_ctx_qp_destroy(context, handle);
2188 	} else {
2189 		qp_notify_peer(false, handle, context_id, peer_id);
2190 		if (context_id == VMCI_HOST_CONTEXT_ID &&
2191 		    QPBROKERSTATE_HAS_MEM(entry)) {
2192 			entry->state = VMCIQPB_SHUTDOWN_MEM;
2193 		} else {
2194 			entry->state = VMCIQPB_SHUTDOWN_NO_MEM;
2195 		}
2196 
2197 		if (!is_local)
2198 			vmci_ctx_qp_destroy(context, handle);
2199 
2200 	}
2201 	result = VMCI_SUCCESS;
2202  out:
2203 	mutex_unlock(&qp_broker_list.mutex);
2204 	return result;
2205 }
2206 
2207 /*
2208  * Establishes the necessary mappings for a queue pair given a
2209  * reference to the queue pair guest memory. This is usually
2210  * called when a guest is unquiesced and the VMX is allowed to
2211  * map guest memory once again.
2212  */
vmci_qp_broker_map(struct vmci_handle handle,struct vmci_ctx * context,u64 guest_mem)2213 int vmci_qp_broker_map(struct vmci_handle handle,
2214 		       struct vmci_ctx *context,
2215 		       u64 guest_mem)
2216 {
2217 	struct qp_broker_entry *entry;
2218 	const u32 context_id = vmci_ctx_get_id(context);
2219 	int result;
2220 
2221 	if (vmci_handle_is_invalid(handle) || !context ||
2222 	    context_id == VMCI_INVALID_ID)
2223 		return VMCI_ERROR_INVALID_ARGS;
2224 
2225 	mutex_lock(&qp_broker_list.mutex);
2226 
2227 	if (!vmci_ctx_qp_exists(context, handle)) {
2228 		pr_devel("Context (ID=0x%x) not attached to queue pair (handle=0x%x:0x%x)\n",
2229 			 context_id, handle.context, handle.resource);
2230 		result = VMCI_ERROR_NOT_FOUND;
2231 		goto out;
2232 	}
2233 
2234 	entry = qp_broker_handle_to_entry(handle);
2235 	if (!entry) {
2236 		pr_devel("Context (ID=0x%x) reports being attached to queue pair (handle=0x%x:0x%x) that isn't present in broker\n",
2237 			 context_id, handle.context, handle.resource);
2238 		result = VMCI_ERROR_NOT_FOUND;
2239 		goto out;
2240 	}
2241 
2242 	if (context_id != entry->create_id && context_id != entry->attach_id) {
2243 		result = VMCI_ERROR_QUEUEPAIR_NOTATTACHED;
2244 		goto out;
2245 	}
2246 
2247 	result = VMCI_SUCCESS;
2248 
2249 	if (context_id != VMCI_HOST_CONTEXT_ID) {
2250 		struct vmci_qp_page_store page_store;
2251 
2252 		page_store.pages = guest_mem;
2253 		page_store.len = QPE_NUM_PAGES(entry->qp);
2254 
2255 		qp_acquire_queue_mutex(entry->produce_q);
2256 		qp_reset_saved_headers(entry);
2257 		result =
2258 		    qp_host_register_user_memory(&page_store,
2259 						 entry->produce_q,
2260 						 entry->consume_q);
2261 		qp_release_queue_mutex(entry->produce_q);
2262 		if (result == VMCI_SUCCESS) {
2263 			/* Move state from *_NO_MEM to *_MEM */
2264 
2265 			entry->state++;
2266 
2267 			if (entry->wakeup_cb)
2268 				entry->wakeup_cb(entry->client_data);
2269 		}
2270 	}
2271 
2272  out:
2273 	mutex_unlock(&qp_broker_list.mutex);
2274 	return result;
2275 }
2276 
2277 /*
2278  * Saves a snapshot of the queue headers for the given QP broker
2279  * entry. Should be used when guest memory is unmapped.
2280  * Results:
2281  * VMCI_SUCCESS on success, appropriate error code if guest memory
2282  * can't be accessed..
2283  */
qp_save_headers(struct qp_broker_entry * entry)2284 static int qp_save_headers(struct qp_broker_entry *entry)
2285 {
2286 	int result;
2287 
2288 	if (entry->produce_q->saved_header != NULL &&
2289 	    entry->consume_q->saved_header != NULL) {
2290 		/*
2291 		 *  If the headers have already been saved, we don't need to do
2292 		 *  it again, and we don't want to map in the headers
2293 		 *  unnecessarily.
2294 		 */
2295 
2296 		return VMCI_SUCCESS;
2297 	}
2298 
2299 	if (NULL == entry->produce_q->q_header ||
2300 	    NULL == entry->consume_q->q_header) {
2301 		result = qp_host_map_queues(entry->produce_q, entry->consume_q);
2302 		if (result < VMCI_SUCCESS)
2303 			return result;
2304 	}
2305 
2306 	memcpy(&entry->saved_produce_q, entry->produce_q->q_header,
2307 	       sizeof(entry->saved_produce_q));
2308 	entry->produce_q->saved_header = &entry->saved_produce_q;
2309 	memcpy(&entry->saved_consume_q, entry->consume_q->q_header,
2310 	       sizeof(entry->saved_consume_q));
2311 	entry->consume_q->saved_header = &entry->saved_consume_q;
2312 
2313 	return VMCI_SUCCESS;
2314 }
2315 
2316 /*
2317  * Removes all references to the guest memory of a given queue pair, and
2318  * will move the queue pair from state *_MEM to *_NO_MEM. It is usually
2319  * called when a VM is being quiesced where access to guest memory should
2320  * avoided.
2321  */
vmci_qp_broker_unmap(struct vmci_handle handle,struct vmci_ctx * context,u32 gid)2322 int vmci_qp_broker_unmap(struct vmci_handle handle,
2323 			 struct vmci_ctx *context,
2324 			 u32 gid)
2325 {
2326 	struct qp_broker_entry *entry;
2327 	const u32 context_id = vmci_ctx_get_id(context);
2328 	int result;
2329 
2330 	if (vmci_handle_is_invalid(handle) || !context ||
2331 	    context_id == VMCI_INVALID_ID)
2332 		return VMCI_ERROR_INVALID_ARGS;
2333 
2334 	mutex_lock(&qp_broker_list.mutex);
2335 
2336 	if (!vmci_ctx_qp_exists(context, handle)) {
2337 		pr_devel("Context (ID=0x%x) not attached to queue pair (handle=0x%x:0x%x)\n",
2338 			 context_id, handle.context, handle.resource);
2339 		result = VMCI_ERROR_NOT_FOUND;
2340 		goto out;
2341 	}
2342 
2343 	entry = qp_broker_handle_to_entry(handle);
2344 	if (!entry) {
2345 		pr_devel("Context (ID=0x%x) reports being attached to queue pair (handle=0x%x:0x%x) that isn't present in broker\n",
2346 			 context_id, handle.context, handle.resource);
2347 		result = VMCI_ERROR_NOT_FOUND;
2348 		goto out;
2349 	}
2350 
2351 	if (context_id != entry->create_id && context_id != entry->attach_id) {
2352 		result = VMCI_ERROR_QUEUEPAIR_NOTATTACHED;
2353 		goto out;
2354 	}
2355 
2356 	if (context_id != VMCI_HOST_CONTEXT_ID) {
2357 		qp_acquire_queue_mutex(entry->produce_q);
2358 		result = qp_save_headers(entry);
2359 		if (result < VMCI_SUCCESS)
2360 			pr_warn("Failed to save queue headers for queue pair (handle=0x%x:0x%x,result=%d)\n",
2361 				handle.context, handle.resource, result);
2362 
2363 		qp_host_unmap_queues(gid, entry->produce_q, entry->consume_q);
2364 
2365 		/*
2366 		 * On hosted, when we unmap queue pairs, the VMX will also
2367 		 * unmap the guest memory, so we invalidate the previously
2368 		 * registered memory. If the queue pair is mapped again at a
2369 		 * later point in time, we will need to reregister the user
2370 		 * memory with a possibly new user VA.
2371 		 */
2372 		qp_host_unregister_user_memory(entry->produce_q,
2373 					       entry->consume_q);
2374 
2375 		/*
2376 		 * Move state from *_MEM to *_NO_MEM.
2377 		 */
2378 		entry->state--;
2379 
2380 		qp_release_queue_mutex(entry->produce_q);
2381 	}
2382 
2383 	result = VMCI_SUCCESS;
2384 
2385  out:
2386 	mutex_unlock(&qp_broker_list.mutex);
2387 	return result;
2388 }
2389 
2390 /*
2391  * Destroys all guest queue pair endpoints. If active guest queue
2392  * pairs still exist, hypercalls to attempt detach from these
2393  * queue pairs will be made. Any failure to detach is silently
2394  * ignored.
2395  */
vmci_qp_guest_endpoints_exit(void)2396 void vmci_qp_guest_endpoints_exit(void)
2397 {
2398 	struct qp_entry *entry;
2399 	struct qp_guest_endpoint *ep;
2400 
2401 	mutex_lock(&qp_guest_endpoints.mutex);
2402 
2403 	while ((entry = qp_list_get_head(&qp_guest_endpoints))) {
2404 		ep = (struct qp_guest_endpoint *)entry;
2405 
2406 		/* Don't make a hypercall for local queue_pairs. */
2407 		if (!(entry->flags & VMCI_QPFLAG_LOCAL))
2408 			qp_detatch_hypercall(entry->handle);
2409 
2410 		/* We cannot fail the exit, so let's reset ref_count. */
2411 		entry->ref_count = 0;
2412 		qp_list_remove_entry(&qp_guest_endpoints, entry);
2413 
2414 		qp_guest_endpoint_destroy(ep);
2415 	}
2416 
2417 	mutex_unlock(&qp_guest_endpoints.mutex);
2418 }
2419 
2420 /*
2421  * Helper routine that will lock the queue pair before subsequent
2422  * operations.
2423  * Note: Non-blocking on the host side is currently only implemented in ESX.
2424  * Since non-blocking isn't yet implemented on the host personality we
2425  * have no reason to acquire a spin lock.  So to avoid the use of an
2426  * unnecessary lock only acquire the mutex if we can block.
2427  */
qp_lock(const struct vmci_qp * qpair)2428 static void qp_lock(const struct vmci_qp *qpair)
2429 {
2430 	qp_acquire_queue_mutex(qpair->produce_q);
2431 }
2432 
2433 /*
2434  * Helper routine that unlocks the queue pair after calling
2435  * qp_lock.
2436  */
qp_unlock(const struct vmci_qp * qpair)2437 static void qp_unlock(const struct vmci_qp *qpair)
2438 {
2439 	qp_release_queue_mutex(qpair->produce_q);
2440 }
2441 
2442 /*
2443  * The queue headers may not be mapped at all times. If a queue is
2444  * currently not mapped, it will be attempted to do so.
2445  */
qp_map_queue_headers(struct vmci_queue * produce_q,struct vmci_queue * consume_q)2446 static int qp_map_queue_headers(struct vmci_queue *produce_q,
2447 				struct vmci_queue *consume_q)
2448 {
2449 	int result;
2450 
2451 	if (NULL == produce_q->q_header || NULL == consume_q->q_header) {
2452 		result = qp_host_map_queues(produce_q, consume_q);
2453 		if (result < VMCI_SUCCESS)
2454 			return (produce_q->saved_header &&
2455 				consume_q->saved_header) ?
2456 			    VMCI_ERROR_QUEUEPAIR_NOT_READY :
2457 			    VMCI_ERROR_QUEUEPAIR_NOTATTACHED;
2458 	}
2459 
2460 	return VMCI_SUCCESS;
2461 }
2462 
2463 /*
2464  * Helper routine that will retrieve the produce and consume
2465  * headers of a given queue pair. If the guest memory of the
2466  * queue pair is currently not available, the saved queue headers
2467  * will be returned, if these are available.
2468  */
qp_get_queue_headers(const struct vmci_qp * qpair,struct vmci_queue_header ** produce_q_header,struct vmci_queue_header ** consume_q_header)2469 static int qp_get_queue_headers(const struct vmci_qp *qpair,
2470 				struct vmci_queue_header **produce_q_header,
2471 				struct vmci_queue_header **consume_q_header)
2472 {
2473 	int result;
2474 
2475 	result = qp_map_queue_headers(qpair->produce_q, qpair->consume_q);
2476 	if (result == VMCI_SUCCESS) {
2477 		*produce_q_header = qpair->produce_q->q_header;
2478 		*consume_q_header = qpair->consume_q->q_header;
2479 	} else if (qpair->produce_q->saved_header &&
2480 		   qpair->consume_q->saved_header) {
2481 		*produce_q_header = qpair->produce_q->saved_header;
2482 		*consume_q_header = qpair->consume_q->saved_header;
2483 		result = VMCI_SUCCESS;
2484 	}
2485 
2486 	return result;
2487 }
2488 
2489 /*
2490  * Callback from VMCI queue pair broker indicating that a queue
2491  * pair that was previously not ready, now either is ready or
2492  * gone forever.
2493  */
qp_wakeup_cb(void * client_data)2494 static int qp_wakeup_cb(void *client_data)
2495 {
2496 	struct vmci_qp *qpair = (struct vmci_qp *)client_data;
2497 
2498 	qp_lock(qpair);
2499 	while (qpair->blocked > 0) {
2500 		qpair->blocked--;
2501 		qpair->generation++;
2502 		wake_up(&qpair->event);
2503 	}
2504 	qp_unlock(qpair);
2505 
2506 	return VMCI_SUCCESS;
2507 }
2508 
2509 /*
2510  * Makes the calling thread wait for the queue pair to become
2511  * ready for host side access.  Returns true when thread is
2512  * woken up after queue pair state change, false otherwise.
2513  */
qp_wait_for_ready_queue(struct vmci_qp * qpair)2514 static bool qp_wait_for_ready_queue(struct vmci_qp *qpair)
2515 {
2516 	unsigned int generation;
2517 
2518 	qpair->blocked++;
2519 	generation = qpair->generation;
2520 	qp_unlock(qpair);
2521 	wait_event(qpair->event, generation != qpair->generation);
2522 	qp_lock(qpair);
2523 
2524 	return true;
2525 }
2526 
2527 /*
2528  * Enqueues a given buffer to the produce queue using the provided
2529  * function. As many bytes as possible (space available in the queue)
2530  * are enqueued.  Assumes the queue->mutex has been acquired.  Returns
2531  * VMCI_ERROR_QUEUEPAIR_NOSPACE if no space was available to enqueue
2532  * data, VMCI_ERROR_INVALID_SIZE, if any queue pointer is outside the
2533  * queue (as defined by the queue size), VMCI_ERROR_INVALID_ARGS, if
2534  * an error occured when accessing the buffer,
2535  * VMCI_ERROR_QUEUEPAIR_NOTATTACHED, if the queue pair pages aren't
2536  * available.  Otherwise, the number of bytes written to the queue is
2537  * returned.  Updates the tail pointer of the produce queue.
2538  */
qp_enqueue_locked(struct vmci_queue * produce_q,struct vmci_queue * consume_q,const u64 produce_q_size,struct iov_iter * from)2539 static ssize_t qp_enqueue_locked(struct vmci_queue *produce_q,
2540 				 struct vmci_queue *consume_q,
2541 				 const u64 produce_q_size,
2542 				 struct iov_iter *from)
2543 {
2544 	s64 free_space;
2545 	u64 tail;
2546 	size_t buf_size = iov_iter_count(from);
2547 	size_t written;
2548 	ssize_t result;
2549 
2550 	result = qp_map_queue_headers(produce_q, consume_q);
2551 	if (unlikely(result != VMCI_SUCCESS))
2552 		return result;
2553 
2554 	free_space = vmci_q_header_free_space(produce_q->q_header,
2555 					      consume_q->q_header,
2556 					      produce_q_size);
2557 	if (free_space == 0)
2558 		return VMCI_ERROR_QUEUEPAIR_NOSPACE;
2559 
2560 	if (free_space < VMCI_SUCCESS)
2561 		return (ssize_t) free_space;
2562 
2563 	written = (size_t) (free_space > buf_size ? buf_size : free_space);
2564 	tail = vmci_q_header_producer_tail(produce_q->q_header);
2565 	if (likely(tail + written < produce_q_size)) {
2566 		result = qp_memcpy_to_queue_iter(produce_q, tail, from, written);
2567 	} else {
2568 		/* Tail pointer wraps around. */
2569 
2570 		const size_t tmp = (size_t) (produce_q_size - tail);
2571 
2572 		result = qp_memcpy_to_queue_iter(produce_q, tail, from, tmp);
2573 		if (result >= VMCI_SUCCESS)
2574 			result = qp_memcpy_to_queue_iter(produce_q, 0, from,
2575 						 written - tmp);
2576 	}
2577 
2578 	if (result < VMCI_SUCCESS)
2579 		return result;
2580 
2581 	vmci_q_header_add_producer_tail(produce_q->q_header, written,
2582 					produce_q_size);
2583 	return written;
2584 }
2585 
2586 /*
2587  * Dequeues data (if available) from the given consume queue. Writes data
2588  * to the user provided buffer using the provided function.
2589  * Assumes the queue->mutex has been acquired.
2590  * Results:
2591  * VMCI_ERROR_QUEUEPAIR_NODATA if no data was available to dequeue.
2592  * VMCI_ERROR_INVALID_SIZE, if any queue pointer is outside the queue
2593  * (as defined by the queue size).
2594  * VMCI_ERROR_INVALID_ARGS, if an error occured when accessing the buffer.
2595  * Otherwise the number of bytes dequeued is returned.
2596  * Side effects:
2597  * Updates the head pointer of the consume queue.
2598  */
qp_dequeue_locked(struct vmci_queue * produce_q,struct vmci_queue * consume_q,const u64 consume_q_size,struct iov_iter * to,bool update_consumer)2599 static ssize_t qp_dequeue_locked(struct vmci_queue *produce_q,
2600 				 struct vmci_queue *consume_q,
2601 				 const u64 consume_q_size,
2602 				 struct iov_iter *to,
2603 				 bool update_consumer)
2604 {
2605 	size_t buf_size = iov_iter_count(to);
2606 	s64 buf_ready;
2607 	u64 head;
2608 	size_t read;
2609 	ssize_t result;
2610 
2611 	result = qp_map_queue_headers(produce_q, consume_q);
2612 	if (unlikely(result != VMCI_SUCCESS))
2613 		return result;
2614 
2615 	buf_ready = vmci_q_header_buf_ready(consume_q->q_header,
2616 					    produce_q->q_header,
2617 					    consume_q_size);
2618 	if (buf_ready == 0)
2619 		return VMCI_ERROR_QUEUEPAIR_NODATA;
2620 
2621 	if (buf_ready < VMCI_SUCCESS)
2622 		return (ssize_t) buf_ready;
2623 
2624 	read = (size_t) (buf_ready > buf_size ? buf_size : buf_ready);
2625 	head = vmci_q_header_consumer_head(produce_q->q_header);
2626 	if (likely(head + read < consume_q_size)) {
2627 		result = qp_memcpy_from_queue_iter(to, consume_q, head, read);
2628 	} else {
2629 		/* Head pointer wraps around. */
2630 
2631 		const size_t tmp = (size_t) (consume_q_size - head);
2632 
2633 		result = qp_memcpy_from_queue_iter(to, consume_q, head, tmp);
2634 		if (result >= VMCI_SUCCESS)
2635 			result = qp_memcpy_from_queue_iter(to, consume_q, 0,
2636 						   read - tmp);
2637 
2638 	}
2639 
2640 	if (result < VMCI_SUCCESS)
2641 		return result;
2642 
2643 	if (update_consumer)
2644 		vmci_q_header_add_consumer_head(produce_q->q_header,
2645 						read, consume_q_size);
2646 
2647 	return read;
2648 }
2649 
2650 /*
2651  * vmci_qpair_alloc() - Allocates a queue pair.
2652  * @qpair:      Pointer for the new vmci_qp struct.
2653  * @handle:     Handle to track the resource.
2654  * @produce_qsize:      Desired size of the producer queue.
2655  * @consume_qsize:      Desired size of the consumer queue.
2656  * @peer:       ContextID of the peer.
2657  * @flags:      VMCI flags.
2658  * @priv_flags: VMCI priviledge flags.
2659  *
2660  * This is the client interface for allocating the memory for a
2661  * vmci_qp structure and then attaching to the underlying
2662  * queue.  If an error occurs allocating the memory for the
2663  * vmci_qp structure no attempt is made to attach.  If an
2664  * error occurs attaching, then the structure is freed.
2665  */
vmci_qpair_alloc(struct vmci_qp ** qpair,struct vmci_handle * handle,u64 produce_qsize,u64 consume_qsize,u32 peer,u32 flags,u32 priv_flags)2666 int vmci_qpair_alloc(struct vmci_qp **qpair,
2667 		     struct vmci_handle *handle,
2668 		     u64 produce_qsize,
2669 		     u64 consume_qsize,
2670 		     u32 peer,
2671 		     u32 flags,
2672 		     u32 priv_flags)
2673 {
2674 	struct vmci_qp *my_qpair;
2675 	int retval;
2676 	struct vmci_handle src = VMCI_INVALID_HANDLE;
2677 	struct vmci_handle dst = vmci_make_handle(peer, VMCI_INVALID_ID);
2678 	enum vmci_route route;
2679 	vmci_event_release_cb wakeup_cb;
2680 	void *client_data;
2681 
2682 	/*
2683 	 * Restrict the size of a queuepair.  The device already
2684 	 * enforces a limit on the total amount of memory that can be
2685 	 * allocated to queuepairs for a guest.  However, we try to
2686 	 * allocate this memory before we make the queuepair
2687 	 * allocation hypercall.  On Linux, we allocate each page
2688 	 * separately, which means rather than fail, the guest will
2689 	 * thrash while it tries to allocate, and will become
2690 	 * increasingly unresponsive to the point where it appears to
2691 	 * be hung.  So we place a limit on the size of an individual
2692 	 * queuepair here, and leave the device to enforce the
2693 	 * restriction on total queuepair memory.  (Note that this
2694 	 * doesn't prevent all cases; a user with only this much
2695 	 * physical memory could still get into trouble.)  The error
2696 	 * used by the device is NO_RESOURCES, so use that here too.
2697 	 */
2698 
2699 	if (produce_qsize + consume_qsize < max(produce_qsize, consume_qsize) ||
2700 	    produce_qsize + consume_qsize > VMCI_MAX_GUEST_QP_MEMORY)
2701 		return VMCI_ERROR_NO_RESOURCES;
2702 
2703 	retval = vmci_route(&src, &dst, false, &route);
2704 	if (retval < VMCI_SUCCESS)
2705 		route = vmci_guest_code_active() ?
2706 		    VMCI_ROUTE_AS_GUEST : VMCI_ROUTE_AS_HOST;
2707 
2708 	if (flags & (VMCI_QPFLAG_NONBLOCK | VMCI_QPFLAG_PINNED)) {
2709 		pr_devel("NONBLOCK OR PINNED set");
2710 		return VMCI_ERROR_INVALID_ARGS;
2711 	}
2712 
2713 	my_qpair = kzalloc(sizeof(*my_qpair), GFP_KERNEL);
2714 	if (!my_qpair)
2715 		return VMCI_ERROR_NO_MEM;
2716 
2717 	my_qpair->produce_q_size = produce_qsize;
2718 	my_qpair->consume_q_size = consume_qsize;
2719 	my_qpair->peer = peer;
2720 	my_qpair->flags = flags;
2721 	my_qpair->priv_flags = priv_flags;
2722 
2723 	wakeup_cb = NULL;
2724 	client_data = NULL;
2725 
2726 	if (VMCI_ROUTE_AS_HOST == route) {
2727 		my_qpair->guest_endpoint = false;
2728 		if (!(flags & VMCI_QPFLAG_LOCAL)) {
2729 			my_qpair->blocked = 0;
2730 			my_qpair->generation = 0;
2731 			init_waitqueue_head(&my_qpair->event);
2732 			wakeup_cb = qp_wakeup_cb;
2733 			client_data = (void *)my_qpair;
2734 		}
2735 	} else {
2736 		my_qpair->guest_endpoint = true;
2737 	}
2738 
2739 	retval = vmci_qp_alloc(handle,
2740 			       &my_qpair->produce_q,
2741 			       my_qpair->produce_q_size,
2742 			       &my_qpair->consume_q,
2743 			       my_qpair->consume_q_size,
2744 			       my_qpair->peer,
2745 			       my_qpair->flags,
2746 			       my_qpair->priv_flags,
2747 			       my_qpair->guest_endpoint,
2748 			       wakeup_cb, client_data);
2749 
2750 	if (retval < VMCI_SUCCESS) {
2751 		kfree(my_qpair);
2752 		return retval;
2753 	}
2754 
2755 	*qpair = my_qpair;
2756 	my_qpair->handle = *handle;
2757 
2758 	return retval;
2759 }
2760 EXPORT_SYMBOL_GPL(vmci_qpair_alloc);
2761 
2762 /*
2763  * vmci_qpair_detach() - Detatches the client from a queue pair.
2764  * @qpair:      Reference of a pointer to the qpair struct.
2765  *
2766  * This is the client interface for detaching from a VMCIQPair.
2767  * Note that this routine will free the memory allocated for the
2768  * vmci_qp structure too.
2769  */
vmci_qpair_detach(struct vmci_qp ** qpair)2770 int vmci_qpair_detach(struct vmci_qp **qpair)
2771 {
2772 	int result;
2773 	struct vmci_qp *old_qpair;
2774 
2775 	if (!qpair || !(*qpair))
2776 		return VMCI_ERROR_INVALID_ARGS;
2777 
2778 	old_qpair = *qpair;
2779 	result = qp_detatch(old_qpair->handle, old_qpair->guest_endpoint);
2780 
2781 	/*
2782 	 * The guest can fail to detach for a number of reasons, and
2783 	 * if it does so, it will cleanup the entry (if there is one).
2784 	 * The host can fail too, but it won't cleanup the entry
2785 	 * immediately, it will do that later when the context is
2786 	 * freed.  Either way, we need to release the qpair struct
2787 	 * here; there isn't much the caller can do, and we don't want
2788 	 * to leak.
2789 	 */
2790 
2791 	memset(old_qpair, 0, sizeof(*old_qpair));
2792 	old_qpair->handle = VMCI_INVALID_HANDLE;
2793 	old_qpair->peer = VMCI_INVALID_ID;
2794 	kfree(old_qpair);
2795 	*qpair = NULL;
2796 
2797 	return result;
2798 }
2799 EXPORT_SYMBOL_GPL(vmci_qpair_detach);
2800 
2801 /*
2802  * vmci_qpair_get_produce_indexes() - Retrieves the indexes of the producer.
2803  * @qpair:      Pointer to the queue pair struct.
2804  * @producer_tail:      Reference used for storing producer tail index.
2805  * @consumer_head:      Reference used for storing the consumer head index.
2806  *
2807  * This is the client interface for getting the current indexes of the
2808  * QPair from the point of the view of the caller as the producer.
2809  */
vmci_qpair_get_produce_indexes(const struct vmci_qp * qpair,u64 * producer_tail,u64 * consumer_head)2810 int vmci_qpair_get_produce_indexes(const struct vmci_qp *qpair,
2811 				   u64 *producer_tail,
2812 				   u64 *consumer_head)
2813 {
2814 	struct vmci_queue_header *produce_q_header;
2815 	struct vmci_queue_header *consume_q_header;
2816 	int result;
2817 
2818 	if (!qpair)
2819 		return VMCI_ERROR_INVALID_ARGS;
2820 
2821 	qp_lock(qpair);
2822 	result =
2823 	    qp_get_queue_headers(qpair, &produce_q_header, &consume_q_header);
2824 	if (result == VMCI_SUCCESS)
2825 		vmci_q_header_get_pointers(produce_q_header, consume_q_header,
2826 					   producer_tail, consumer_head);
2827 	qp_unlock(qpair);
2828 
2829 	if (result == VMCI_SUCCESS &&
2830 	    ((producer_tail && *producer_tail >= qpair->produce_q_size) ||
2831 	     (consumer_head && *consumer_head >= qpair->produce_q_size)))
2832 		return VMCI_ERROR_INVALID_SIZE;
2833 
2834 	return result;
2835 }
2836 EXPORT_SYMBOL_GPL(vmci_qpair_get_produce_indexes);
2837 
2838 /*
2839  * vmci_qpair_get_consume_indexes() - Retrieves the indexes of the consumer.
2840  * @qpair:      Pointer to the queue pair struct.
2841  * @consumer_tail:      Reference used for storing consumer tail index.
2842  * @producer_head:      Reference used for storing the producer head index.
2843  *
2844  * This is the client interface for getting the current indexes of the
2845  * QPair from the point of the view of the caller as the consumer.
2846  */
vmci_qpair_get_consume_indexes(const struct vmci_qp * qpair,u64 * consumer_tail,u64 * producer_head)2847 int vmci_qpair_get_consume_indexes(const struct vmci_qp *qpair,
2848 				   u64 *consumer_tail,
2849 				   u64 *producer_head)
2850 {
2851 	struct vmci_queue_header *produce_q_header;
2852 	struct vmci_queue_header *consume_q_header;
2853 	int result;
2854 
2855 	if (!qpair)
2856 		return VMCI_ERROR_INVALID_ARGS;
2857 
2858 	qp_lock(qpair);
2859 	result =
2860 	    qp_get_queue_headers(qpair, &produce_q_header, &consume_q_header);
2861 	if (result == VMCI_SUCCESS)
2862 		vmci_q_header_get_pointers(consume_q_header, produce_q_header,
2863 					   consumer_tail, producer_head);
2864 	qp_unlock(qpair);
2865 
2866 	if (result == VMCI_SUCCESS &&
2867 	    ((consumer_tail && *consumer_tail >= qpair->consume_q_size) ||
2868 	     (producer_head && *producer_head >= qpair->consume_q_size)))
2869 		return VMCI_ERROR_INVALID_SIZE;
2870 
2871 	return result;
2872 }
2873 EXPORT_SYMBOL_GPL(vmci_qpair_get_consume_indexes);
2874 
2875 /*
2876  * vmci_qpair_produce_free_space() - Retrieves free space in producer queue.
2877  * @qpair:      Pointer to the queue pair struct.
2878  *
2879  * This is the client interface for getting the amount of free
2880  * space in the QPair from the point of the view of the caller as
2881  * the producer which is the common case.  Returns < 0 if err, else
2882  * available bytes into which data can be enqueued if > 0.
2883  */
vmci_qpair_produce_free_space(const struct vmci_qp * qpair)2884 s64 vmci_qpair_produce_free_space(const struct vmci_qp *qpair)
2885 {
2886 	struct vmci_queue_header *produce_q_header;
2887 	struct vmci_queue_header *consume_q_header;
2888 	s64 result;
2889 
2890 	if (!qpair)
2891 		return VMCI_ERROR_INVALID_ARGS;
2892 
2893 	qp_lock(qpair);
2894 	result =
2895 	    qp_get_queue_headers(qpair, &produce_q_header, &consume_q_header);
2896 	if (result == VMCI_SUCCESS)
2897 		result = vmci_q_header_free_space(produce_q_header,
2898 						  consume_q_header,
2899 						  qpair->produce_q_size);
2900 	else
2901 		result = 0;
2902 
2903 	qp_unlock(qpair);
2904 
2905 	return result;
2906 }
2907 EXPORT_SYMBOL_GPL(vmci_qpair_produce_free_space);
2908 
2909 /*
2910  * vmci_qpair_consume_free_space() - Retrieves free space in consumer queue.
2911  * @qpair:      Pointer to the queue pair struct.
2912  *
2913  * This is the client interface for getting the amount of free
2914  * space in the QPair from the point of the view of the caller as
2915  * the consumer which is not the common case.  Returns < 0 if err, else
2916  * available bytes into which data can be enqueued if > 0.
2917  */
vmci_qpair_consume_free_space(const struct vmci_qp * qpair)2918 s64 vmci_qpair_consume_free_space(const struct vmci_qp *qpair)
2919 {
2920 	struct vmci_queue_header *produce_q_header;
2921 	struct vmci_queue_header *consume_q_header;
2922 	s64 result;
2923 
2924 	if (!qpair)
2925 		return VMCI_ERROR_INVALID_ARGS;
2926 
2927 	qp_lock(qpair);
2928 	result =
2929 	    qp_get_queue_headers(qpair, &produce_q_header, &consume_q_header);
2930 	if (result == VMCI_SUCCESS)
2931 		result = vmci_q_header_free_space(consume_q_header,
2932 						  produce_q_header,
2933 						  qpair->consume_q_size);
2934 	else
2935 		result = 0;
2936 
2937 	qp_unlock(qpair);
2938 
2939 	return result;
2940 }
2941 EXPORT_SYMBOL_GPL(vmci_qpair_consume_free_space);
2942 
2943 /*
2944  * vmci_qpair_produce_buf_ready() - Gets bytes ready to read from
2945  * producer queue.
2946  * @qpair:      Pointer to the queue pair struct.
2947  *
2948  * This is the client interface for getting the amount of
2949  * enqueued data in the QPair from the point of the view of the
2950  * caller as the producer which is not the common case.  Returns < 0 if err,
2951  * else available bytes that may be read.
2952  */
vmci_qpair_produce_buf_ready(const struct vmci_qp * qpair)2953 s64 vmci_qpair_produce_buf_ready(const struct vmci_qp *qpair)
2954 {
2955 	struct vmci_queue_header *produce_q_header;
2956 	struct vmci_queue_header *consume_q_header;
2957 	s64 result;
2958 
2959 	if (!qpair)
2960 		return VMCI_ERROR_INVALID_ARGS;
2961 
2962 	qp_lock(qpair);
2963 	result =
2964 	    qp_get_queue_headers(qpair, &produce_q_header, &consume_q_header);
2965 	if (result == VMCI_SUCCESS)
2966 		result = vmci_q_header_buf_ready(produce_q_header,
2967 						 consume_q_header,
2968 						 qpair->produce_q_size);
2969 	else
2970 		result = 0;
2971 
2972 	qp_unlock(qpair);
2973 
2974 	return result;
2975 }
2976 EXPORT_SYMBOL_GPL(vmci_qpair_produce_buf_ready);
2977 
2978 /*
2979  * vmci_qpair_consume_buf_ready() - Gets bytes ready to read from
2980  * consumer queue.
2981  * @qpair:      Pointer to the queue pair struct.
2982  *
2983  * This is the client interface for getting the amount of
2984  * enqueued data in the QPair from the point of the view of the
2985  * caller as the consumer which is the normal case.  Returns < 0 if err,
2986  * else available bytes that may be read.
2987  */
vmci_qpair_consume_buf_ready(const struct vmci_qp * qpair)2988 s64 vmci_qpair_consume_buf_ready(const struct vmci_qp *qpair)
2989 {
2990 	struct vmci_queue_header *produce_q_header;
2991 	struct vmci_queue_header *consume_q_header;
2992 	s64 result;
2993 
2994 	if (!qpair)
2995 		return VMCI_ERROR_INVALID_ARGS;
2996 
2997 	qp_lock(qpair);
2998 	result =
2999 	    qp_get_queue_headers(qpair, &produce_q_header, &consume_q_header);
3000 	if (result == VMCI_SUCCESS)
3001 		result = vmci_q_header_buf_ready(consume_q_header,
3002 						 produce_q_header,
3003 						 qpair->consume_q_size);
3004 	else
3005 		result = 0;
3006 
3007 	qp_unlock(qpair);
3008 
3009 	return result;
3010 }
3011 EXPORT_SYMBOL_GPL(vmci_qpair_consume_buf_ready);
3012 
3013 /*
3014  * vmci_qpair_enqueue() - Throw data on the queue.
3015  * @qpair:      Pointer to the queue pair struct.
3016  * @buf:        Pointer to buffer containing data
3017  * @buf_size:   Length of buffer.
3018  * @buf_type:   Buffer type (Unused).
3019  *
3020  * This is the client interface for enqueueing data into the queue.
3021  * Returns number of bytes enqueued or < 0 on error.
3022  */
vmci_qpair_enqueue(struct vmci_qp * qpair,const void * buf,size_t buf_size,int buf_type)3023 ssize_t vmci_qpair_enqueue(struct vmci_qp *qpair,
3024 			   const void *buf,
3025 			   size_t buf_size,
3026 			   int buf_type)
3027 {
3028 	ssize_t result;
3029 	struct iov_iter from;
3030 	struct kvec v = {.iov_base = (void *)buf, .iov_len = buf_size};
3031 
3032 	if (!qpair || !buf)
3033 		return VMCI_ERROR_INVALID_ARGS;
3034 
3035 	iov_iter_kvec(&from, WRITE | ITER_KVEC, &v, 1, buf_size);
3036 
3037 	qp_lock(qpair);
3038 
3039 	do {
3040 		result = qp_enqueue_locked(qpair->produce_q,
3041 					   qpair->consume_q,
3042 					   qpair->produce_q_size,
3043 					   &from);
3044 
3045 		if (result == VMCI_ERROR_QUEUEPAIR_NOT_READY &&
3046 		    !qp_wait_for_ready_queue(qpair))
3047 			result = VMCI_ERROR_WOULD_BLOCK;
3048 
3049 	} while (result == VMCI_ERROR_QUEUEPAIR_NOT_READY);
3050 
3051 	qp_unlock(qpair);
3052 
3053 	return result;
3054 }
3055 EXPORT_SYMBOL_GPL(vmci_qpair_enqueue);
3056 
3057 /*
3058  * vmci_qpair_dequeue() - Get data from the queue.
3059  * @qpair:      Pointer to the queue pair struct.
3060  * @buf:        Pointer to buffer for the data
3061  * @buf_size:   Length of buffer.
3062  * @buf_type:   Buffer type (Unused).
3063  *
3064  * This is the client interface for dequeueing data from the queue.
3065  * Returns number of bytes dequeued or < 0 on error.
3066  */
vmci_qpair_dequeue(struct vmci_qp * qpair,void * buf,size_t buf_size,int buf_type)3067 ssize_t vmci_qpair_dequeue(struct vmci_qp *qpair,
3068 			   void *buf,
3069 			   size_t buf_size,
3070 			   int buf_type)
3071 {
3072 	ssize_t result;
3073 	struct iov_iter to;
3074 	struct kvec v = {.iov_base = buf, .iov_len = buf_size};
3075 
3076 	if (!qpair || !buf)
3077 		return VMCI_ERROR_INVALID_ARGS;
3078 
3079 	iov_iter_kvec(&to, READ | ITER_KVEC, &v, 1, buf_size);
3080 
3081 	qp_lock(qpair);
3082 
3083 	do {
3084 		result = qp_dequeue_locked(qpair->produce_q,
3085 					   qpair->consume_q,
3086 					   qpair->consume_q_size,
3087 					   &to, true);
3088 
3089 		if (result == VMCI_ERROR_QUEUEPAIR_NOT_READY &&
3090 		    !qp_wait_for_ready_queue(qpair))
3091 			result = VMCI_ERROR_WOULD_BLOCK;
3092 
3093 	} while (result == VMCI_ERROR_QUEUEPAIR_NOT_READY);
3094 
3095 	qp_unlock(qpair);
3096 
3097 	return result;
3098 }
3099 EXPORT_SYMBOL_GPL(vmci_qpair_dequeue);
3100 
3101 /*
3102  * vmci_qpair_peek() - Peek at the data in the queue.
3103  * @qpair:      Pointer to the queue pair struct.
3104  * @buf:        Pointer to buffer for the data
3105  * @buf_size:   Length of buffer.
3106  * @buf_type:   Buffer type (Unused on Linux).
3107  *
3108  * This is the client interface for peeking into a queue.  (I.e.,
3109  * copy data from the queue without updating the head pointer.)
3110  * Returns number of bytes dequeued or < 0 on error.
3111  */
vmci_qpair_peek(struct vmci_qp * qpair,void * buf,size_t buf_size,int buf_type)3112 ssize_t vmci_qpair_peek(struct vmci_qp *qpair,
3113 			void *buf,
3114 			size_t buf_size,
3115 			int buf_type)
3116 {
3117 	struct iov_iter to;
3118 	struct kvec v = {.iov_base = buf, .iov_len = buf_size};
3119 	ssize_t result;
3120 
3121 	if (!qpair || !buf)
3122 		return VMCI_ERROR_INVALID_ARGS;
3123 
3124 	iov_iter_kvec(&to, READ | ITER_KVEC, &v, 1, buf_size);
3125 
3126 	qp_lock(qpair);
3127 
3128 	do {
3129 		result = qp_dequeue_locked(qpair->produce_q,
3130 					   qpair->consume_q,
3131 					   qpair->consume_q_size,
3132 					   &to, false);
3133 
3134 		if (result == VMCI_ERROR_QUEUEPAIR_NOT_READY &&
3135 		    !qp_wait_for_ready_queue(qpair))
3136 			result = VMCI_ERROR_WOULD_BLOCK;
3137 
3138 	} while (result == VMCI_ERROR_QUEUEPAIR_NOT_READY);
3139 
3140 	qp_unlock(qpair);
3141 
3142 	return result;
3143 }
3144 EXPORT_SYMBOL_GPL(vmci_qpair_peek);
3145 
3146 /*
3147  * vmci_qpair_enquev() - Throw data on the queue using iov.
3148  * @qpair:      Pointer to the queue pair struct.
3149  * @iov:        Pointer to buffer containing data
3150  * @iov_size:   Length of buffer.
3151  * @buf_type:   Buffer type (Unused).
3152  *
3153  * This is the client interface for enqueueing data into the queue.
3154  * This function uses IO vectors to handle the work. Returns number
3155  * of bytes enqueued or < 0 on error.
3156  */
vmci_qpair_enquev(struct vmci_qp * qpair,struct msghdr * msg,size_t iov_size,int buf_type)3157 ssize_t vmci_qpair_enquev(struct vmci_qp *qpair,
3158 			  struct msghdr *msg,
3159 			  size_t iov_size,
3160 			  int buf_type)
3161 {
3162 	ssize_t result;
3163 
3164 	if (!qpair)
3165 		return VMCI_ERROR_INVALID_ARGS;
3166 
3167 	qp_lock(qpair);
3168 
3169 	do {
3170 		result = qp_enqueue_locked(qpair->produce_q,
3171 					   qpair->consume_q,
3172 					   qpair->produce_q_size,
3173 					   &msg->msg_iter);
3174 
3175 		if (result == VMCI_ERROR_QUEUEPAIR_NOT_READY &&
3176 		    !qp_wait_for_ready_queue(qpair))
3177 			result = VMCI_ERROR_WOULD_BLOCK;
3178 
3179 	} while (result == VMCI_ERROR_QUEUEPAIR_NOT_READY);
3180 
3181 	qp_unlock(qpair);
3182 
3183 	return result;
3184 }
3185 EXPORT_SYMBOL_GPL(vmci_qpair_enquev);
3186 
3187 /*
3188  * vmci_qpair_dequev() - Get data from the queue using iov.
3189  * @qpair:      Pointer to the queue pair struct.
3190  * @iov:        Pointer to buffer for the data
3191  * @iov_size:   Length of buffer.
3192  * @buf_type:   Buffer type (Unused).
3193  *
3194  * This is the client interface for dequeueing data from the queue.
3195  * This function uses IO vectors to handle the work. Returns number
3196  * of bytes dequeued or < 0 on error.
3197  */
vmci_qpair_dequev(struct vmci_qp * qpair,struct msghdr * msg,size_t iov_size,int buf_type)3198 ssize_t vmci_qpair_dequev(struct vmci_qp *qpair,
3199 			  struct msghdr *msg,
3200 			  size_t iov_size,
3201 			  int buf_type)
3202 {
3203 	ssize_t result;
3204 
3205 	if (!qpair)
3206 		return VMCI_ERROR_INVALID_ARGS;
3207 
3208 	qp_lock(qpair);
3209 
3210 	do {
3211 		result = qp_dequeue_locked(qpair->produce_q,
3212 					   qpair->consume_q,
3213 					   qpair->consume_q_size,
3214 					   &msg->msg_iter, true);
3215 
3216 		if (result == VMCI_ERROR_QUEUEPAIR_NOT_READY &&
3217 		    !qp_wait_for_ready_queue(qpair))
3218 			result = VMCI_ERROR_WOULD_BLOCK;
3219 
3220 	} while (result == VMCI_ERROR_QUEUEPAIR_NOT_READY);
3221 
3222 	qp_unlock(qpair);
3223 
3224 	return result;
3225 }
3226 EXPORT_SYMBOL_GPL(vmci_qpair_dequev);
3227 
3228 /*
3229  * vmci_qpair_peekv() - Peek at the data in the queue using iov.
3230  * @qpair:      Pointer to the queue pair struct.
3231  * @iov:        Pointer to buffer for the data
3232  * @iov_size:   Length of buffer.
3233  * @buf_type:   Buffer type (Unused on Linux).
3234  *
3235  * This is the client interface for peeking into a queue.  (I.e.,
3236  * copy data from the queue without updating the head pointer.)
3237  * This function uses IO vectors to handle the work. Returns number
3238  * of bytes peeked or < 0 on error.
3239  */
vmci_qpair_peekv(struct vmci_qp * qpair,struct msghdr * msg,size_t iov_size,int buf_type)3240 ssize_t vmci_qpair_peekv(struct vmci_qp *qpair,
3241 			 struct msghdr *msg,
3242 			 size_t iov_size,
3243 			 int buf_type)
3244 {
3245 	ssize_t result;
3246 
3247 	if (!qpair)
3248 		return VMCI_ERROR_INVALID_ARGS;
3249 
3250 	qp_lock(qpair);
3251 
3252 	do {
3253 		result = qp_dequeue_locked(qpair->produce_q,
3254 					   qpair->consume_q,
3255 					   qpair->consume_q_size,
3256 					   &msg->msg_iter, false);
3257 
3258 		if (result == VMCI_ERROR_QUEUEPAIR_NOT_READY &&
3259 		    !qp_wait_for_ready_queue(qpair))
3260 			result = VMCI_ERROR_WOULD_BLOCK;
3261 
3262 	} while (result == VMCI_ERROR_QUEUEPAIR_NOT_READY);
3263 
3264 	qp_unlock(qpair);
3265 	return result;
3266 }
3267 EXPORT_SYMBOL_GPL(vmci_qpair_peekv);
3268