• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * drivers/mmc/host/sdhci-msm.c - Qualcomm SDHCI Platform driver
3  *
4  * Copyright (c) 2013-2014, The Linux Foundation. All rights reserved.
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License version 2 and
8  * only version 2 as published by the Free Software Foundation.
9  *
10  * This program is distributed in the hope that it will be useful,
11  * but WITHOUT ANY WARRANTY; without even the implied warranty of
12  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13  * GNU General Public License for more details.
14  *
15  */
16 
17 #include <linux/module.h>
18 #include <linux/of_device.h>
19 #include <linux/delay.h>
20 #include <linux/mmc/mmc.h>
21 #include <linux/pm_runtime.h>
22 #include <linux/slab.h>
23 #include <linux/iopoll.h>
24 #include <linux/regulator/consumer.h>
25 
26 #include "sdhci-pltfm.h"
27 
28 #define CORE_MCI_VERSION		0x50
29 #define CORE_VERSION_MAJOR_SHIFT	28
30 #define CORE_VERSION_MAJOR_MASK		(0xf << CORE_VERSION_MAJOR_SHIFT)
31 #define CORE_VERSION_MINOR_MASK		0xff
32 
33 #define CORE_MCI_GENERICS		0x70
34 #define SWITCHABLE_SIGNALING_VOLTAGE	BIT(29)
35 
36 #define HC_MODE_EN		0x1
37 #define CORE_POWER		0x0
38 #define CORE_SW_RST		BIT(7)
39 #define FF_CLK_SW_RST_DIS	BIT(13)
40 
41 #define CORE_PWRCTL_BUS_OFF	BIT(0)
42 #define CORE_PWRCTL_BUS_ON	BIT(1)
43 #define CORE_PWRCTL_IO_LOW	BIT(2)
44 #define CORE_PWRCTL_IO_HIGH	BIT(3)
45 #define CORE_PWRCTL_BUS_SUCCESS BIT(0)
46 #define CORE_PWRCTL_IO_SUCCESS	BIT(2)
47 #define REQ_BUS_OFF		BIT(0)
48 #define REQ_BUS_ON		BIT(1)
49 #define REQ_IO_LOW		BIT(2)
50 #define REQ_IO_HIGH		BIT(3)
51 #define INT_MASK		0xf
52 #define MAX_PHASES		16
53 #define CORE_DLL_LOCK		BIT(7)
54 #define CORE_DDR_DLL_LOCK	BIT(11)
55 #define CORE_DLL_EN		BIT(16)
56 #define CORE_CDR_EN		BIT(17)
57 #define CORE_CK_OUT_EN		BIT(18)
58 #define CORE_CDR_EXT_EN		BIT(19)
59 #define CORE_DLL_PDN		BIT(29)
60 #define CORE_DLL_RST		BIT(30)
61 #define CORE_CMD_DAT_TRACK_SEL	BIT(0)
62 
63 #define CORE_DDR_CAL_EN		BIT(0)
64 #define CORE_FLL_CYCLE_CNT	BIT(18)
65 #define CORE_DLL_CLOCK_DISABLE	BIT(21)
66 
67 #define CORE_VENDOR_SPEC_POR_VAL 0xa1c
68 #define CORE_CLK_PWRSAVE	BIT(1)
69 #define CORE_HC_MCLK_SEL_DFLT	(2 << 8)
70 #define CORE_HC_MCLK_SEL_HS400	(3 << 8)
71 #define CORE_HC_MCLK_SEL_MASK	(3 << 8)
72 #define CORE_IO_PAD_PWR_SWITCH_EN	(1 << 15)
73 #define CORE_IO_PAD_PWR_SWITCH  (1 << 16)
74 #define CORE_HC_SELECT_IN_EN	BIT(18)
75 #define CORE_HC_SELECT_IN_HS400	(6 << 19)
76 #define CORE_HC_SELECT_IN_MASK	(7 << 19)
77 
78 #define CORE_3_0V_SUPPORT	(1 << 25)
79 #define CORE_1_8V_SUPPORT	(1 << 26)
80 #define CORE_VOLT_SUPPORT	(CORE_3_0V_SUPPORT | CORE_1_8V_SUPPORT)
81 
82 #define CORE_CSR_CDC_CTLR_CFG0		0x130
83 #define CORE_SW_TRIG_FULL_CALIB		BIT(16)
84 #define CORE_HW_AUTOCAL_ENA		BIT(17)
85 
86 #define CORE_CSR_CDC_CTLR_CFG1		0x134
87 #define CORE_CSR_CDC_CAL_TIMER_CFG0	0x138
88 #define CORE_TIMER_ENA			BIT(16)
89 
90 #define CORE_CSR_CDC_CAL_TIMER_CFG1	0x13C
91 #define CORE_CSR_CDC_REFCOUNT_CFG	0x140
92 #define CORE_CSR_CDC_COARSE_CAL_CFG	0x144
93 #define CORE_CDC_OFFSET_CFG		0x14C
94 #define CORE_CSR_CDC_DELAY_CFG		0x150
95 #define CORE_CDC_SLAVE_DDA_CFG		0x160
96 #define CORE_CSR_CDC_STATUS0		0x164
97 #define CORE_CALIBRATION_DONE		BIT(0)
98 
99 #define CORE_CDC_ERROR_CODE_MASK	0x7000000
100 
101 #define CORE_CSR_CDC_GEN_CFG		0x178
102 #define CORE_CDC_SWITCH_BYPASS_OFF	BIT(0)
103 #define CORE_CDC_SWITCH_RC_EN		BIT(1)
104 
105 #define CORE_CDC_T4_DLY_SEL		BIT(0)
106 #define CORE_CMDIN_RCLK_EN		BIT(1)
107 #define CORE_START_CDC_TRAFFIC		BIT(6)
108 
109 #define CORE_PWRSAVE_DLL	BIT(3)
110 
111 #define DDR_CONFIG_POR_VAL	0x80040873
112 
113 
114 #define INVALID_TUNING_PHASE	-1
115 #define SDHCI_MSM_MIN_CLOCK	400000
116 #define CORE_FREQ_100MHZ	(100 * 1000 * 1000)
117 
118 #define CDR_SELEXT_SHIFT	20
119 #define CDR_SELEXT_MASK		(0xf << CDR_SELEXT_SHIFT)
120 #define CMUX_SHIFT_PHASE_SHIFT	24
121 #define CMUX_SHIFT_PHASE_MASK	(7 << CMUX_SHIFT_PHASE_SHIFT)
122 
123 #define MSM_MMC_AUTOSUSPEND_DELAY_MS	50
124 
125 /* Timeout value to avoid infinite waiting for pwr_irq */
126 #define MSM_PWR_IRQ_TIMEOUT_MS 5000
127 
128 #define msm_host_readl(msm_host, host, offset) \
129 	msm_host->var_ops->msm_readl_relaxed(host, offset)
130 
131 #define msm_host_writel(msm_host, val, host, offset) \
132 	msm_host->var_ops->msm_writel_relaxed(val, host, offset)
133 
134 struct sdhci_msm_offset {
135 	u32 core_hc_mode;
136 	u32 core_mci_data_cnt;
137 	u32 core_mci_status;
138 	u32 core_mci_fifo_cnt;
139 	u32 core_mci_version;
140 	u32 core_generics;
141 	u32 core_testbus_config;
142 	u32 core_testbus_sel2_bit;
143 	u32 core_testbus_ena;
144 	u32 core_testbus_sel2;
145 	u32 core_pwrctl_status;
146 	u32 core_pwrctl_mask;
147 	u32 core_pwrctl_clear;
148 	u32 core_pwrctl_ctl;
149 	u32 core_sdcc_debug_reg;
150 	u32 core_dll_config;
151 	u32 core_dll_status;
152 	u32 core_vendor_spec;
153 	u32 core_vendor_spec_adma_err_addr0;
154 	u32 core_vendor_spec_adma_err_addr1;
155 	u32 core_vendor_spec_func2;
156 	u32 core_vendor_spec_capabilities0;
157 	u32 core_ddr_200_cfg;
158 	u32 core_vendor_spec3;
159 	u32 core_dll_config_2;
160 	u32 core_dll_config_3;
161 	u32 core_ddr_config_old; /* Applicable to sdcc minor ver < 0x49 */
162 	u32 core_ddr_config;
163 };
164 
165 static const struct sdhci_msm_offset sdhci_msm_v5_offset = {
166 	.core_mci_data_cnt = 0x35c,
167 	.core_mci_status = 0x324,
168 	.core_mci_fifo_cnt = 0x308,
169 	.core_mci_version = 0x318,
170 	.core_generics = 0x320,
171 	.core_testbus_config = 0x32c,
172 	.core_testbus_sel2_bit = 3,
173 	.core_testbus_ena = (1 << 31),
174 	.core_testbus_sel2 = (1 << 3),
175 	.core_pwrctl_status = 0x240,
176 	.core_pwrctl_mask = 0x244,
177 	.core_pwrctl_clear = 0x248,
178 	.core_pwrctl_ctl = 0x24c,
179 	.core_sdcc_debug_reg = 0x358,
180 	.core_dll_config = 0x200,
181 	.core_dll_status = 0x208,
182 	.core_vendor_spec = 0x20c,
183 	.core_vendor_spec_adma_err_addr0 = 0x214,
184 	.core_vendor_spec_adma_err_addr1 = 0x218,
185 	.core_vendor_spec_func2 = 0x210,
186 	.core_vendor_spec_capabilities0 = 0x21c,
187 	.core_ddr_200_cfg = 0x224,
188 	.core_vendor_spec3 = 0x250,
189 	.core_dll_config_2 = 0x254,
190 	.core_dll_config_3 = 0x258,
191 	.core_ddr_config = 0x25c,
192 };
193 
194 static const struct sdhci_msm_offset sdhci_msm_mci_offset = {
195 	.core_hc_mode = 0x78,
196 	.core_mci_data_cnt = 0x30,
197 	.core_mci_status = 0x34,
198 	.core_mci_fifo_cnt = 0x44,
199 	.core_mci_version = 0x050,
200 	.core_generics = 0x70,
201 	.core_testbus_config = 0x0cc,
202 	.core_testbus_sel2_bit = 4,
203 	.core_testbus_ena = (1 << 3),
204 	.core_testbus_sel2 = (1 << 4),
205 	.core_pwrctl_status = 0xdc,
206 	.core_pwrctl_mask = 0xe0,
207 	.core_pwrctl_clear = 0xe4,
208 	.core_pwrctl_ctl = 0xe8,
209 	.core_sdcc_debug_reg = 0x124,
210 	.core_dll_config = 0x100,
211 	.core_dll_status = 0x108,
212 	.core_vendor_spec = 0x10c,
213 	.core_vendor_spec_adma_err_addr0 = 0x114,
214 	.core_vendor_spec_adma_err_addr1 = 0x118,
215 	.core_vendor_spec_func2 = 0x110,
216 	.core_vendor_spec_capabilities0 = 0x11c,
217 	.core_ddr_200_cfg = 0x184,
218 	.core_vendor_spec3 = 0x1b0,
219 	.core_dll_config_2 = 0x1b4,
220 	.core_ddr_config_old = 0x1b8,
221 	.core_ddr_config = 0x1bc,
222 };
223 
224 struct sdhci_msm_variant_ops {
225 	u32 (*msm_readl_relaxed)(struct sdhci_host *host, u32 offset);
226 	void (*msm_writel_relaxed)(u32 val, struct sdhci_host *host,
227 			u32 offset);
228 };
229 
230 /*
231  * From V5, register spaces have changed. Wrap this info in a structure
232  * and choose the data_structure based on version info mentioned in DT.
233  */
234 struct sdhci_msm_variant_info {
235 	bool mci_removed;
236 	const struct sdhci_msm_variant_ops *var_ops;
237 	const struct sdhci_msm_offset *offset;
238 };
239 
240 struct sdhci_msm_host {
241 	struct platform_device *pdev;
242 	void __iomem *core_mem;	/* MSM SDCC mapped address */
243 	int pwr_irq;		/* power irq */
244 	struct clk *bus_clk;	/* SDHC bus voter clock */
245 	struct clk *xo_clk;	/* TCXO clk needed for FLL feature of cm_dll*/
246 	struct clk_bulk_data bulk_clks[4]; /* core, iface, cal, sleep clocks */
247 	unsigned long clk_rate;
248 	struct mmc_host *mmc;
249 	bool use_14lpp_dll_reset;
250 	bool tuning_done;
251 	bool calibration_done;
252 	u8 saved_tuning_phase;
253 	bool use_cdclp533;
254 	u32 curr_pwr_state;
255 	u32 curr_io_level;
256 	wait_queue_head_t pwr_irq_wait;
257 	bool pwr_irq_flag;
258 	u32 caps_0;
259 	bool mci_removed;
260 	const struct sdhci_msm_variant_ops *var_ops;
261 	const struct sdhci_msm_offset *offset;
262 	bool use_cdr;
263 	u32 transfer_mode;
264 	bool updated_ddr_cfg;
265 };
266 
sdhci_priv_msm_offset(struct sdhci_host * host)267 static const struct sdhci_msm_offset *sdhci_priv_msm_offset(struct sdhci_host *host)
268 {
269 	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
270 	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
271 
272 	return msm_host->offset;
273 }
274 
275 /*
276  * APIs to read/write to vendor specific registers which were there in the
277  * core_mem region before MCI was removed.
278  */
sdhci_msm_mci_variant_readl_relaxed(struct sdhci_host * host,u32 offset)279 static u32 sdhci_msm_mci_variant_readl_relaxed(struct sdhci_host *host,
280 		u32 offset)
281 {
282 	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
283 	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
284 
285 	return readl_relaxed(msm_host->core_mem + offset);
286 }
287 
sdhci_msm_v5_variant_readl_relaxed(struct sdhci_host * host,u32 offset)288 static u32 sdhci_msm_v5_variant_readl_relaxed(struct sdhci_host *host,
289 		u32 offset)
290 {
291 	return readl_relaxed(host->ioaddr + offset);
292 }
293 
sdhci_msm_mci_variant_writel_relaxed(u32 val,struct sdhci_host * host,u32 offset)294 static void sdhci_msm_mci_variant_writel_relaxed(u32 val,
295 		struct sdhci_host *host, u32 offset)
296 {
297 	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
298 	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
299 
300 	writel_relaxed(val, msm_host->core_mem + offset);
301 }
302 
sdhci_msm_v5_variant_writel_relaxed(u32 val,struct sdhci_host * host,u32 offset)303 static void sdhci_msm_v5_variant_writel_relaxed(u32 val,
304 		struct sdhci_host *host, u32 offset)
305 {
306 	writel_relaxed(val, host->ioaddr + offset);
307 }
308 
msm_get_clock_rate_for_bus_mode(struct sdhci_host * host,unsigned int clock)309 static unsigned int msm_get_clock_rate_for_bus_mode(struct sdhci_host *host,
310 						    unsigned int clock)
311 {
312 	struct mmc_ios ios = host->mmc->ios;
313 	/*
314 	 * The SDHC requires internal clock frequency to be double the
315 	 * actual clock that will be set for DDR mode. The controller
316 	 * uses the faster clock(100/400MHz) for some of its parts and
317 	 * send the actual required clock (50/200MHz) to the card.
318 	 */
319 	if (ios.timing == MMC_TIMING_UHS_DDR50 ||
320 	    ios.timing == MMC_TIMING_MMC_DDR52 ||
321 	    ios.timing == MMC_TIMING_MMC_HS400 ||
322 	    host->flags & SDHCI_HS400_TUNING)
323 		clock *= 2;
324 	return clock;
325 }
326 
msm_set_clock_rate_for_bus_mode(struct sdhci_host * host,unsigned int clock)327 static void msm_set_clock_rate_for_bus_mode(struct sdhci_host *host,
328 					    unsigned int clock)
329 {
330 	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
331 	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
332 	struct mmc_ios curr_ios = host->mmc->ios;
333 	struct clk *core_clk = msm_host->bulk_clks[0].clk;
334 	int rc;
335 
336 	clock = msm_get_clock_rate_for_bus_mode(host, clock);
337 	rc = clk_set_rate(core_clk, clock);
338 	if (rc) {
339 		pr_err("%s: Failed to set clock at rate %u at timing %d\n",
340 		       mmc_hostname(host->mmc), clock,
341 		       curr_ios.timing);
342 		return;
343 	}
344 	msm_host->clk_rate = clock;
345 	pr_debug("%s: Setting clock at rate %lu at timing %d\n",
346 		 mmc_hostname(host->mmc), clk_get_rate(core_clk),
347 		 curr_ios.timing);
348 }
349 
350 /* Platform specific tuning */
msm_dll_poll_ck_out_en(struct sdhci_host * host,u8 poll)351 static inline int msm_dll_poll_ck_out_en(struct sdhci_host *host, u8 poll)
352 {
353 	u32 wait_cnt = 50;
354 	u8 ck_out_en;
355 	struct mmc_host *mmc = host->mmc;
356 	const struct sdhci_msm_offset *msm_offset =
357 					sdhci_priv_msm_offset(host);
358 
359 	/* Poll for CK_OUT_EN bit.  max. poll time = 50us */
360 	ck_out_en = !!(readl_relaxed(host->ioaddr +
361 			msm_offset->core_dll_config) & CORE_CK_OUT_EN);
362 
363 	while (ck_out_en != poll) {
364 		if (--wait_cnt == 0) {
365 			dev_err(mmc_dev(mmc), "%s: CK_OUT_EN bit is not %d\n",
366 			       mmc_hostname(mmc), poll);
367 			return -ETIMEDOUT;
368 		}
369 		udelay(1);
370 
371 		ck_out_en = !!(readl_relaxed(host->ioaddr +
372 			msm_offset->core_dll_config) & CORE_CK_OUT_EN);
373 	}
374 
375 	return 0;
376 }
377 
msm_config_cm_dll_phase(struct sdhci_host * host,u8 phase)378 static int msm_config_cm_dll_phase(struct sdhci_host *host, u8 phase)
379 {
380 	int rc;
381 	static const u8 grey_coded_phase_table[] = {
382 		0x0, 0x1, 0x3, 0x2, 0x6, 0x7, 0x5, 0x4,
383 		0xc, 0xd, 0xf, 0xe, 0xa, 0xb, 0x9, 0x8
384 	};
385 	unsigned long flags;
386 	u32 config;
387 	struct mmc_host *mmc = host->mmc;
388 	const struct sdhci_msm_offset *msm_offset =
389 					sdhci_priv_msm_offset(host);
390 
391 	if (phase > 0xf)
392 		return -EINVAL;
393 
394 	spin_lock_irqsave(&host->lock, flags);
395 
396 	config = readl_relaxed(host->ioaddr + msm_offset->core_dll_config);
397 	config &= ~(CORE_CDR_EN | CORE_CK_OUT_EN);
398 	config |= (CORE_CDR_EXT_EN | CORE_DLL_EN);
399 	writel_relaxed(config, host->ioaddr + msm_offset->core_dll_config);
400 
401 	/* Wait until CK_OUT_EN bit of DLL_CONFIG register becomes '0' */
402 	rc = msm_dll_poll_ck_out_en(host, 0);
403 	if (rc)
404 		goto err_out;
405 
406 	/*
407 	 * Write the selected DLL clock output phase (0 ... 15)
408 	 * to CDR_SELEXT bit field of DLL_CONFIG register.
409 	 */
410 	config = readl_relaxed(host->ioaddr + msm_offset->core_dll_config);
411 	config &= ~CDR_SELEXT_MASK;
412 	config |= grey_coded_phase_table[phase] << CDR_SELEXT_SHIFT;
413 	writel_relaxed(config, host->ioaddr + msm_offset->core_dll_config);
414 
415 	config = readl_relaxed(host->ioaddr + msm_offset->core_dll_config);
416 	config |= CORE_CK_OUT_EN;
417 	writel_relaxed(config, host->ioaddr + msm_offset->core_dll_config);
418 
419 	/* Wait until CK_OUT_EN bit of DLL_CONFIG register becomes '1' */
420 	rc = msm_dll_poll_ck_out_en(host, 1);
421 	if (rc)
422 		goto err_out;
423 
424 	config = readl_relaxed(host->ioaddr + msm_offset->core_dll_config);
425 	config |= CORE_CDR_EN;
426 	config &= ~CORE_CDR_EXT_EN;
427 	writel_relaxed(config, host->ioaddr + msm_offset->core_dll_config);
428 	goto out;
429 
430 err_out:
431 	dev_err(mmc_dev(mmc), "%s: Failed to set DLL phase: %d\n",
432 	       mmc_hostname(mmc), phase);
433 out:
434 	spin_unlock_irqrestore(&host->lock, flags);
435 	return rc;
436 }
437 
438 /*
439  * Find out the greatest range of consecuitive selected
440  * DLL clock output phases that can be used as sampling
441  * setting for SD3.0 UHS-I card read operation (in SDR104
442  * timing mode) or for eMMC4.5 card read operation (in
443  * HS400/HS200 timing mode).
444  * Select the 3/4 of the range and configure the DLL with the
445  * selected DLL clock output phase.
446  */
447 
msm_find_most_appropriate_phase(struct sdhci_host * host,u8 * phase_table,u8 total_phases)448 static int msm_find_most_appropriate_phase(struct sdhci_host *host,
449 					   u8 *phase_table, u8 total_phases)
450 {
451 	int ret;
452 	u8 ranges[MAX_PHASES][MAX_PHASES] = { {0}, {0} };
453 	u8 phases_per_row[MAX_PHASES] = { 0 };
454 	int row_index = 0, col_index = 0, selected_row_index = 0, curr_max = 0;
455 	int i, cnt, phase_0_raw_index = 0, phase_15_raw_index = 0;
456 	bool phase_0_found = false, phase_15_found = false;
457 	struct mmc_host *mmc = host->mmc;
458 
459 	if (!total_phases || (total_phases > MAX_PHASES)) {
460 		dev_err(mmc_dev(mmc), "%s: Invalid argument: total_phases=%d\n",
461 		       mmc_hostname(mmc), total_phases);
462 		return -EINVAL;
463 	}
464 
465 	for (cnt = 0; cnt < total_phases; cnt++) {
466 		ranges[row_index][col_index] = phase_table[cnt];
467 		phases_per_row[row_index] += 1;
468 		col_index++;
469 
470 		if ((cnt + 1) == total_phases) {
471 			continue;
472 		/* check if next phase in phase_table is consecutive or not */
473 		} else if ((phase_table[cnt] + 1) != phase_table[cnt + 1]) {
474 			row_index++;
475 			col_index = 0;
476 		}
477 	}
478 
479 	if (row_index >= MAX_PHASES)
480 		return -EINVAL;
481 
482 	/* Check if phase-0 is present in first valid window? */
483 	if (!ranges[0][0]) {
484 		phase_0_found = true;
485 		phase_0_raw_index = 0;
486 		/* Check if cycle exist between 2 valid windows */
487 		for (cnt = 1; cnt <= row_index; cnt++) {
488 			if (phases_per_row[cnt]) {
489 				for (i = 0; i < phases_per_row[cnt]; i++) {
490 					if (ranges[cnt][i] == 15) {
491 						phase_15_found = true;
492 						phase_15_raw_index = cnt;
493 						break;
494 					}
495 				}
496 			}
497 		}
498 	}
499 
500 	/* If 2 valid windows form cycle then merge them as single window */
501 	if (phase_0_found && phase_15_found) {
502 		/* number of phases in raw where phase 0 is present */
503 		u8 phases_0 = phases_per_row[phase_0_raw_index];
504 		/* number of phases in raw where phase 15 is present */
505 		u8 phases_15 = phases_per_row[phase_15_raw_index];
506 
507 		if (phases_0 + phases_15 >= MAX_PHASES)
508 			/*
509 			 * If there are more than 1 phase windows then total
510 			 * number of phases in both the windows should not be
511 			 * more than or equal to MAX_PHASES.
512 			 */
513 			return -EINVAL;
514 
515 		/* Merge 2 cyclic windows */
516 		i = phases_15;
517 		for (cnt = 0; cnt < phases_0; cnt++) {
518 			ranges[phase_15_raw_index][i] =
519 			    ranges[phase_0_raw_index][cnt];
520 			if (++i >= MAX_PHASES)
521 				break;
522 		}
523 
524 		phases_per_row[phase_0_raw_index] = 0;
525 		phases_per_row[phase_15_raw_index] = phases_15 + phases_0;
526 	}
527 
528 	for (cnt = 0; cnt <= row_index; cnt++) {
529 		if (phases_per_row[cnt] > curr_max) {
530 			curr_max = phases_per_row[cnt];
531 			selected_row_index = cnt;
532 		}
533 	}
534 
535 	i = (curr_max * 3) / 4;
536 	if (i)
537 		i--;
538 
539 	ret = ranges[selected_row_index][i];
540 
541 	if (ret >= MAX_PHASES) {
542 		ret = -EINVAL;
543 		dev_err(mmc_dev(mmc), "%s: Invalid phase selected=%d\n",
544 		       mmc_hostname(mmc), ret);
545 	}
546 
547 	return ret;
548 }
549 
msm_cm_dll_set_freq(struct sdhci_host * host)550 static inline void msm_cm_dll_set_freq(struct sdhci_host *host)
551 {
552 	u32 mclk_freq = 0, config;
553 	const struct sdhci_msm_offset *msm_offset =
554 					sdhci_priv_msm_offset(host);
555 
556 	/* Program the MCLK value to MCLK_FREQ bit field */
557 	if (host->clock <= 112000000)
558 		mclk_freq = 0;
559 	else if (host->clock <= 125000000)
560 		mclk_freq = 1;
561 	else if (host->clock <= 137000000)
562 		mclk_freq = 2;
563 	else if (host->clock <= 150000000)
564 		mclk_freq = 3;
565 	else if (host->clock <= 162000000)
566 		mclk_freq = 4;
567 	else if (host->clock <= 175000000)
568 		mclk_freq = 5;
569 	else if (host->clock <= 187000000)
570 		mclk_freq = 6;
571 	else if (host->clock <= 200000000)
572 		mclk_freq = 7;
573 
574 	config = readl_relaxed(host->ioaddr + msm_offset->core_dll_config);
575 	config &= ~CMUX_SHIFT_PHASE_MASK;
576 	config |= mclk_freq << CMUX_SHIFT_PHASE_SHIFT;
577 	writel_relaxed(config, host->ioaddr + msm_offset->core_dll_config);
578 }
579 
580 /* Initialize the DLL (Programmable Delay Line) */
msm_init_cm_dll(struct sdhci_host * host)581 static int msm_init_cm_dll(struct sdhci_host *host)
582 {
583 	struct mmc_host *mmc = host->mmc;
584 	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
585 	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
586 	int wait_cnt = 50;
587 	unsigned long flags, xo_clk = 0;
588 	u32 config;
589 	const struct sdhci_msm_offset *msm_offset =
590 					msm_host->offset;
591 
592 	if (msm_host->use_14lpp_dll_reset && !IS_ERR_OR_NULL(msm_host->xo_clk))
593 		xo_clk = clk_get_rate(msm_host->xo_clk);
594 
595 	spin_lock_irqsave(&host->lock, flags);
596 
597 	/*
598 	 * Make sure that clock is always enabled when DLL
599 	 * tuning is in progress. Keeping PWRSAVE ON may
600 	 * turn off the clock.
601 	 */
602 	config = readl_relaxed(host->ioaddr + msm_offset->core_vendor_spec);
603 	config &= ~CORE_CLK_PWRSAVE;
604 	writel_relaxed(config, host->ioaddr + msm_offset->core_vendor_spec);
605 
606 	if (msm_host->use_14lpp_dll_reset) {
607 		config = readl_relaxed(host->ioaddr +
608 				msm_offset->core_dll_config);
609 		config &= ~CORE_CK_OUT_EN;
610 		writel_relaxed(config, host->ioaddr +
611 				msm_offset->core_dll_config);
612 
613 		config = readl_relaxed(host->ioaddr +
614 				msm_offset->core_dll_config_2);
615 		config |= CORE_DLL_CLOCK_DISABLE;
616 		writel_relaxed(config, host->ioaddr +
617 				msm_offset->core_dll_config_2);
618 	}
619 
620 	config = readl_relaxed(host->ioaddr +
621 			msm_offset->core_dll_config);
622 	config |= CORE_DLL_RST;
623 	writel_relaxed(config, host->ioaddr +
624 			msm_offset->core_dll_config);
625 
626 	config = readl_relaxed(host->ioaddr +
627 			msm_offset->core_dll_config);
628 	config |= CORE_DLL_PDN;
629 	writel_relaxed(config, host->ioaddr +
630 			msm_offset->core_dll_config);
631 	msm_cm_dll_set_freq(host);
632 
633 	if (msm_host->use_14lpp_dll_reset &&
634 	    !IS_ERR_OR_NULL(msm_host->xo_clk)) {
635 		u32 mclk_freq = 0;
636 
637 		config = readl_relaxed(host->ioaddr +
638 				msm_offset->core_dll_config_2);
639 		config &= CORE_FLL_CYCLE_CNT;
640 		if (config)
641 			mclk_freq = DIV_ROUND_CLOSEST_ULL((host->clock * 8),
642 					xo_clk);
643 		else
644 			mclk_freq = DIV_ROUND_CLOSEST_ULL((host->clock * 4),
645 					xo_clk);
646 
647 		config = readl_relaxed(host->ioaddr +
648 				msm_offset->core_dll_config_2);
649 		config &= ~(0xFF << 10);
650 		config |= mclk_freq << 10;
651 
652 		writel_relaxed(config, host->ioaddr +
653 				msm_offset->core_dll_config_2);
654 		/* wait for 5us before enabling DLL clock */
655 		udelay(5);
656 	}
657 
658 	config = readl_relaxed(host->ioaddr +
659 			msm_offset->core_dll_config);
660 	config &= ~CORE_DLL_RST;
661 	writel_relaxed(config, host->ioaddr +
662 			msm_offset->core_dll_config);
663 
664 	config = readl_relaxed(host->ioaddr +
665 			msm_offset->core_dll_config);
666 	config &= ~CORE_DLL_PDN;
667 	writel_relaxed(config, host->ioaddr +
668 			msm_offset->core_dll_config);
669 
670 	if (msm_host->use_14lpp_dll_reset) {
671 		msm_cm_dll_set_freq(host);
672 		config = readl_relaxed(host->ioaddr +
673 				msm_offset->core_dll_config_2);
674 		config &= ~CORE_DLL_CLOCK_DISABLE;
675 		writel_relaxed(config, host->ioaddr +
676 				msm_offset->core_dll_config_2);
677 	}
678 
679 	config = readl_relaxed(host->ioaddr +
680 			msm_offset->core_dll_config);
681 	config |= CORE_DLL_EN;
682 	writel_relaxed(config, host->ioaddr +
683 			msm_offset->core_dll_config);
684 
685 	config = readl_relaxed(host->ioaddr +
686 			msm_offset->core_dll_config);
687 	config |= CORE_CK_OUT_EN;
688 	writel_relaxed(config, host->ioaddr +
689 			msm_offset->core_dll_config);
690 
691 	/* Wait until DLL_LOCK bit of DLL_STATUS register becomes '1' */
692 	while (!(readl_relaxed(host->ioaddr + msm_offset->core_dll_status) &
693 		 CORE_DLL_LOCK)) {
694 		/* max. wait for 50us sec for LOCK bit to be set */
695 		if (--wait_cnt == 0) {
696 			dev_err(mmc_dev(mmc), "%s: DLL failed to LOCK\n",
697 			       mmc_hostname(mmc));
698 			spin_unlock_irqrestore(&host->lock, flags);
699 			return -ETIMEDOUT;
700 		}
701 		udelay(1);
702 	}
703 
704 	spin_unlock_irqrestore(&host->lock, flags);
705 	return 0;
706 }
707 
msm_hc_select_default(struct sdhci_host * host)708 static void msm_hc_select_default(struct sdhci_host *host)
709 {
710 	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
711 	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
712 	u32 config;
713 	const struct sdhci_msm_offset *msm_offset =
714 					msm_host->offset;
715 
716 	if (!msm_host->use_cdclp533) {
717 		config = readl_relaxed(host->ioaddr +
718 				msm_offset->core_vendor_spec3);
719 		config &= ~CORE_PWRSAVE_DLL;
720 		writel_relaxed(config, host->ioaddr +
721 				msm_offset->core_vendor_spec3);
722 	}
723 
724 	config = readl_relaxed(host->ioaddr + msm_offset->core_vendor_spec);
725 	config &= ~CORE_HC_MCLK_SEL_MASK;
726 	config |= CORE_HC_MCLK_SEL_DFLT;
727 	writel_relaxed(config, host->ioaddr + msm_offset->core_vendor_spec);
728 
729 	/*
730 	 * Disable HC_SELECT_IN to be able to use the UHS mode select
731 	 * configuration from Host Control2 register for all other
732 	 * modes.
733 	 * Write 0 to HC_SELECT_IN and HC_SELECT_IN_EN field
734 	 * in VENDOR_SPEC_FUNC
735 	 */
736 	config = readl_relaxed(host->ioaddr + msm_offset->core_vendor_spec);
737 	config &= ~CORE_HC_SELECT_IN_EN;
738 	config &= ~CORE_HC_SELECT_IN_MASK;
739 	writel_relaxed(config, host->ioaddr + msm_offset->core_vendor_spec);
740 
741 	/*
742 	 * Make sure above writes impacting free running MCLK are completed
743 	 * before changing the clk_rate at GCC.
744 	 */
745 	wmb();
746 }
747 
msm_hc_select_hs400(struct sdhci_host * host)748 static void msm_hc_select_hs400(struct sdhci_host *host)
749 {
750 	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
751 	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
752 	struct mmc_ios ios = host->mmc->ios;
753 	u32 config, dll_lock;
754 	int rc;
755 	const struct sdhci_msm_offset *msm_offset =
756 					msm_host->offset;
757 
758 	/* Select the divided clock (free running MCLK/2) */
759 	config = readl_relaxed(host->ioaddr + msm_offset->core_vendor_spec);
760 	config &= ~CORE_HC_MCLK_SEL_MASK;
761 	config |= CORE_HC_MCLK_SEL_HS400;
762 
763 	writel_relaxed(config, host->ioaddr + msm_offset->core_vendor_spec);
764 	/*
765 	 * Select HS400 mode using the HC_SELECT_IN from VENDOR SPEC
766 	 * register
767 	 */
768 	if ((msm_host->tuning_done || ios.enhanced_strobe) &&
769 	    !msm_host->calibration_done) {
770 		config = readl_relaxed(host->ioaddr +
771 				msm_offset->core_vendor_spec);
772 		config |= CORE_HC_SELECT_IN_HS400;
773 		config |= CORE_HC_SELECT_IN_EN;
774 		writel_relaxed(config, host->ioaddr +
775 				msm_offset->core_vendor_spec);
776 	}
777 	if (!msm_host->clk_rate && !msm_host->use_cdclp533) {
778 		/*
779 		 * Poll on DLL_LOCK or DDR_DLL_LOCK bits in
780 		 * core_dll_status to be set. This should get set
781 		 * within 15 us at 200 MHz.
782 		 */
783 		rc = readl_relaxed_poll_timeout(host->ioaddr +
784 						msm_offset->core_dll_status,
785 						dll_lock,
786 						(dll_lock &
787 						(CORE_DLL_LOCK |
788 						CORE_DDR_DLL_LOCK)), 10,
789 						1000);
790 		if (rc == -ETIMEDOUT)
791 			pr_err("%s: Unable to get DLL_LOCK/DDR_DLL_LOCK, dll_status: 0x%08x\n",
792 			       mmc_hostname(host->mmc), dll_lock);
793 	}
794 	/*
795 	 * Make sure above writes impacting free running MCLK are completed
796 	 * before changing the clk_rate at GCC.
797 	 */
798 	wmb();
799 }
800 
801 /*
802  * sdhci_msm_hc_select_mode :- In general all timing modes are
803  * controlled via UHS mode select in Host Control2 register.
804  * eMMC specific HS200/HS400 doesn't have their respective modes
805  * defined here, hence we use these values.
806  *
807  * HS200 - SDR104 (Since they both are equivalent in functionality)
808  * HS400 - This involves multiple configurations
809  *		Initially SDR104 - when tuning is required as HS200
810  *		Then when switching to DDR @ 400MHz (HS400) we use
811  *		the vendor specific HC_SELECT_IN to control the mode.
812  *
813  * In addition to controlling the modes we also need to select the
814  * correct input clock for DLL depending on the mode.
815  *
816  * HS400 - divided clock (free running MCLK/2)
817  * All other modes - default (free running MCLK)
818  */
sdhci_msm_hc_select_mode(struct sdhci_host * host)819 static void sdhci_msm_hc_select_mode(struct sdhci_host *host)
820 {
821 	struct mmc_ios ios = host->mmc->ios;
822 
823 	if (ios.timing == MMC_TIMING_MMC_HS400 ||
824 	    host->flags & SDHCI_HS400_TUNING)
825 		msm_hc_select_hs400(host);
826 	else
827 		msm_hc_select_default(host);
828 }
829 
sdhci_msm_cdclp533_calibration(struct sdhci_host * host)830 static int sdhci_msm_cdclp533_calibration(struct sdhci_host *host)
831 {
832 	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
833 	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
834 	u32 config, calib_done;
835 	int ret;
836 	const struct sdhci_msm_offset *msm_offset =
837 					msm_host->offset;
838 
839 	pr_debug("%s: %s: Enter\n", mmc_hostname(host->mmc), __func__);
840 
841 	/*
842 	 * Retuning in HS400 (DDR mode) will fail, just reset the
843 	 * tuning block and restore the saved tuning phase.
844 	 */
845 	ret = msm_init_cm_dll(host);
846 	if (ret)
847 		goto out;
848 
849 	/* Set the selected phase in delay line hw block */
850 	ret = msm_config_cm_dll_phase(host, msm_host->saved_tuning_phase);
851 	if (ret)
852 		goto out;
853 
854 	config = readl_relaxed(host->ioaddr + msm_offset->core_dll_config);
855 	config |= CORE_CMD_DAT_TRACK_SEL;
856 	writel_relaxed(config, host->ioaddr + msm_offset->core_dll_config);
857 
858 	config = readl_relaxed(host->ioaddr + msm_offset->core_ddr_200_cfg);
859 	config &= ~CORE_CDC_T4_DLY_SEL;
860 	writel_relaxed(config, host->ioaddr + msm_offset->core_ddr_200_cfg);
861 
862 	config = readl_relaxed(host->ioaddr + CORE_CSR_CDC_GEN_CFG);
863 	config &= ~CORE_CDC_SWITCH_BYPASS_OFF;
864 	writel_relaxed(config, host->ioaddr + CORE_CSR_CDC_GEN_CFG);
865 
866 	config = readl_relaxed(host->ioaddr + CORE_CSR_CDC_GEN_CFG);
867 	config |= CORE_CDC_SWITCH_RC_EN;
868 	writel_relaxed(config, host->ioaddr + CORE_CSR_CDC_GEN_CFG);
869 
870 	config = readl_relaxed(host->ioaddr + msm_offset->core_ddr_200_cfg);
871 	config &= ~CORE_START_CDC_TRAFFIC;
872 	writel_relaxed(config, host->ioaddr + msm_offset->core_ddr_200_cfg);
873 
874 	/* Perform CDC Register Initialization Sequence */
875 
876 	writel_relaxed(0x11800EC, host->ioaddr + CORE_CSR_CDC_CTLR_CFG0);
877 	writel_relaxed(0x3011111, host->ioaddr + CORE_CSR_CDC_CTLR_CFG1);
878 	writel_relaxed(0x1201000, host->ioaddr + CORE_CSR_CDC_CAL_TIMER_CFG0);
879 	writel_relaxed(0x4, host->ioaddr + CORE_CSR_CDC_CAL_TIMER_CFG1);
880 	writel_relaxed(0xCB732020, host->ioaddr + CORE_CSR_CDC_REFCOUNT_CFG);
881 	writel_relaxed(0xB19, host->ioaddr + CORE_CSR_CDC_COARSE_CAL_CFG);
882 	writel_relaxed(0x4E2, host->ioaddr + CORE_CSR_CDC_DELAY_CFG);
883 	writel_relaxed(0x0, host->ioaddr + CORE_CDC_OFFSET_CFG);
884 	writel_relaxed(0x16334, host->ioaddr + CORE_CDC_SLAVE_DDA_CFG);
885 
886 	/* CDC HW Calibration */
887 
888 	config = readl_relaxed(host->ioaddr + CORE_CSR_CDC_CTLR_CFG0);
889 	config |= CORE_SW_TRIG_FULL_CALIB;
890 	writel_relaxed(config, host->ioaddr + CORE_CSR_CDC_CTLR_CFG0);
891 
892 	config = readl_relaxed(host->ioaddr + CORE_CSR_CDC_CTLR_CFG0);
893 	config &= ~CORE_SW_TRIG_FULL_CALIB;
894 	writel_relaxed(config, host->ioaddr + CORE_CSR_CDC_CTLR_CFG0);
895 
896 	config = readl_relaxed(host->ioaddr + CORE_CSR_CDC_CTLR_CFG0);
897 	config |= CORE_HW_AUTOCAL_ENA;
898 	writel_relaxed(config, host->ioaddr + CORE_CSR_CDC_CTLR_CFG0);
899 
900 	config = readl_relaxed(host->ioaddr + CORE_CSR_CDC_CAL_TIMER_CFG0);
901 	config |= CORE_TIMER_ENA;
902 	writel_relaxed(config, host->ioaddr + CORE_CSR_CDC_CAL_TIMER_CFG0);
903 
904 	ret = readl_relaxed_poll_timeout(host->ioaddr + CORE_CSR_CDC_STATUS0,
905 					 calib_done,
906 					 (calib_done & CORE_CALIBRATION_DONE),
907 					 1, 50);
908 
909 	if (ret == -ETIMEDOUT) {
910 		pr_err("%s: %s: CDC calibration was not completed\n",
911 		       mmc_hostname(host->mmc), __func__);
912 		goto out;
913 	}
914 
915 	ret = readl_relaxed(host->ioaddr + CORE_CSR_CDC_STATUS0)
916 			& CORE_CDC_ERROR_CODE_MASK;
917 	if (ret) {
918 		pr_err("%s: %s: CDC error code %d\n",
919 		       mmc_hostname(host->mmc), __func__, ret);
920 		ret = -EINVAL;
921 		goto out;
922 	}
923 
924 	config = readl_relaxed(host->ioaddr + msm_offset->core_ddr_200_cfg);
925 	config |= CORE_START_CDC_TRAFFIC;
926 	writel_relaxed(config, host->ioaddr + msm_offset->core_ddr_200_cfg);
927 out:
928 	pr_debug("%s: %s: Exit, ret %d\n", mmc_hostname(host->mmc),
929 		 __func__, ret);
930 	return ret;
931 }
932 
sdhci_msm_cm_dll_sdc4_calibration(struct sdhci_host * host)933 static int sdhci_msm_cm_dll_sdc4_calibration(struct sdhci_host *host)
934 {
935 	struct mmc_host *mmc = host->mmc;
936 	u32 dll_status, config, ddr_cfg_offset;
937 	int ret;
938 	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
939 	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
940 	const struct sdhci_msm_offset *msm_offset =
941 					sdhci_priv_msm_offset(host);
942 
943 	pr_debug("%s: %s: Enter\n", mmc_hostname(host->mmc), __func__);
944 
945 	/*
946 	 * Currently the core_ddr_config register defaults to desired
947 	 * configuration on reset. Currently reprogramming the power on
948 	 * reset (POR) value in case it might have been modified by
949 	 * bootloaders. In the future, if this changes, then the desired
950 	 * values will need to be programmed appropriately.
951 	 */
952 	if (msm_host->updated_ddr_cfg)
953 		ddr_cfg_offset = msm_offset->core_ddr_config;
954 	else
955 		ddr_cfg_offset = msm_offset->core_ddr_config_old;
956 	writel_relaxed(DDR_CONFIG_POR_VAL, host->ioaddr + ddr_cfg_offset);
957 
958 	if (mmc->ios.enhanced_strobe) {
959 		config = readl_relaxed(host->ioaddr +
960 				msm_offset->core_ddr_200_cfg);
961 		config |= CORE_CMDIN_RCLK_EN;
962 		writel_relaxed(config, host->ioaddr +
963 				msm_offset->core_ddr_200_cfg);
964 	}
965 
966 	config = readl_relaxed(host->ioaddr + msm_offset->core_dll_config_2);
967 	config |= CORE_DDR_CAL_EN;
968 	writel_relaxed(config, host->ioaddr + msm_offset->core_dll_config_2);
969 
970 	ret = readl_relaxed_poll_timeout(host->ioaddr +
971 					msm_offset->core_dll_status,
972 					dll_status,
973 					(dll_status & CORE_DDR_DLL_LOCK),
974 					10, 1000);
975 
976 	if (ret == -ETIMEDOUT) {
977 		pr_err("%s: %s: CM_DLL_SDC4 calibration was not completed\n",
978 		       mmc_hostname(host->mmc), __func__);
979 		goto out;
980 	}
981 
982 	config = readl_relaxed(host->ioaddr + msm_offset->core_vendor_spec3);
983 	config |= CORE_PWRSAVE_DLL;
984 	writel_relaxed(config, host->ioaddr + msm_offset->core_vendor_spec3);
985 
986 	/*
987 	 * Drain writebuffer to ensure above DLL calibration
988 	 * and PWRSAVE DLL is enabled.
989 	 */
990 	wmb();
991 out:
992 	pr_debug("%s: %s: Exit, ret %d\n", mmc_hostname(host->mmc),
993 		 __func__, ret);
994 	return ret;
995 }
996 
sdhci_msm_hs400_dll_calibration(struct sdhci_host * host)997 static int sdhci_msm_hs400_dll_calibration(struct sdhci_host *host)
998 {
999 	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
1000 	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
1001 	struct mmc_host *mmc = host->mmc;
1002 	int ret;
1003 	u32 config;
1004 	const struct sdhci_msm_offset *msm_offset =
1005 					msm_host->offset;
1006 
1007 	pr_debug("%s: %s: Enter\n", mmc_hostname(host->mmc), __func__);
1008 
1009 	/*
1010 	 * Retuning in HS400 (DDR mode) will fail, just reset the
1011 	 * tuning block and restore the saved tuning phase.
1012 	 */
1013 	ret = msm_init_cm_dll(host);
1014 	if (ret)
1015 		goto out;
1016 
1017 	if (!mmc->ios.enhanced_strobe) {
1018 		/* Set the selected phase in delay line hw block */
1019 		ret = msm_config_cm_dll_phase(host,
1020 					      msm_host->saved_tuning_phase);
1021 		if (ret)
1022 			goto out;
1023 		config = readl_relaxed(host->ioaddr +
1024 				msm_offset->core_dll_config);
1025 		config |= CORE_CMD_DAT_TRACK_SEL;
1026 		writel_relaxed(config, host->ioaddr +
1027 				msm_offset->core_dll_config);
1028 	}
1029 
1030 	if (msm_host->use_cdclp533)
1031 		ret = sdhci_msm_cdclp533_calibration(host);
1032 	else
1033 		ret = sdhci_msm_cm_dll_sdc4_calibration(host);
1034 out:
1035 	pr_debug("%s: %s: Exit, ret %d\n", mmc_hostname(host->mmc),
1036 		 __func__, ret);
1037 	return ret;
1038 }
1039 
sdhci_msm_set_cdr(struct sdhci_host * host,bool enable)1040 static void sdhci_msm_set_cdr(struct sdhci_host *host, bool enable)
1041 {
1042 	const struct sdhci_msm_offset *msm_offset = sdhci_priv_msm_offset(host);
1043 	u32 config, oldconfig = readl_relaxed(host->ioaddr +
1044 					      msm_offset->core_dll_config);
1045 
1046 	config = oldconfig;
1047 	if (enable) {
1048 		config |= CORE_CDR_EN;
1049 		config &= ~CORE_CDR_EXT_EN;
1050 	} else {
1051 		config &= ~CORE_CDR_EN;
1052 		config |= CORE_CDR_EXT_EN;
1053 	}
1054 
1055 	if (config != oldconfig)
1056 		writel_relaxed(config, host->ioaddr +
1057 			       msm_offset->core_dll_config);
1058 }
1059 
sdhci_msm_execute_tuning(struct mmc_host * mmc,u32 opcode)1060 static int sdhci_msm_execute_tuning(struct mmc_host *mmc, u32 opcode)
1061 {
1062 	struct sdhci_host *host = mmc_priv(mmc);
1063 	int tuning_seq_cnt = 10;
1064 	u8 phase, tuned_phases[16], tuned_phase_cnt = 0;
1065 	int rc;
1066 	struct mmc_ios ios = host->mmc->ios;
1067 	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
1068 	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
1069 
1070 	/*
1071 	 * Tuning is required for SDR104, HS200 and HS400 cards and
1072 	 * if clock frequency is greater than 100MHz in these modes.
1073 	 */
1074 	if (host->clock <= CORE_FREQ_100MHZ ||
1075 	    !(ios.timing == MMC_TIMING_MMC_HS400 ||
1076 	    ios.timing == MMC_TIMING_MMC_HS200 ||
1077 	    ios.timing == MMC_TIMING_UHS_SDR104)) {
1078 		msm_host->use_cdr = false;
1079 		sdhci_msm_set_cdr(host, false);
1080 		return 0;
1081 	}
1082 
1083 	/* Clock-Data-Recovery used to dynamically adjust RX sampling point */
1084 	msm_host->use_cdr = true;
1085 
1086 	/*
1087 	 * Clear tuning_done flag before tuning to ensure proper
1088 	 * HS400 settings.
1089 	 */
1090 	msm_host->tuning_done = 0;
1091 
1092 	/*
1093 	 * For HS400 tuning in HS200 timing requires:
1094 	 * - select MCLK/2 in VENDOR_SPEC
1095 	 * - program MCLK to 400MHz (or nearest supported) in GCC
1096 	 */
1097 	if (host->flags & SDHCI_HS400_TUNING) {
1098 		sdhci_msm_hc_select_mode(host);
1099 		msm_set_clock_rate_for_bus_mode(host, ios.clock);
1100 		host->flags &= ~SDHCI_HS400_TUNING;
1101 	}
1102 
1103 retry:
1104 	/* First of all reset the tuning block */
1105 	rc = msm_init_cm_dll(host);
1106 	if (rc)
1107 		return rc;
1108 
1109 	phase = 0;
1110 	do {
1111 		/* Set the phase in delay line hw block */
1112 		rc = msm_config_cm_dll_phase(host, phase);
1113 		if (rc)
1114 			return rc;
1115 
1116 		msm_host->saved_tuning_phase = phase;
1117 		rc = mmc_send_tuning(mmc, opcode, NULL);
1118 		if (!rc) {
1119 			/* Tuning is successful at this tuning point */
1120 			tuned_phases[tuned_phase_cnt++] = phase;
1121 			dev_dbg(mmc_dev(mmc), "%s: Found good phase = %d\n",
1122 				 mmc_hostname(mmc), phase);
1123 		}
1124 	} while (++phase < ARRAY_SIZE(tuned_phases));
1125 
1126 	if (tuned_phase_cnt) {
1127 		if (tuned_phase_cnt == ARRAY_SIZE(tuned_phases)) {
1128 			/*
1129 			 * All phases valid is _almost_ as bad as no phases
1130 			 * valid.  Probably all phases are not really reliable
1131 			 * but we didn't detect where the unreliable place is.
1132 			 * That means we'll essentially be guessing and hoping
1133 			 * we get a good phase.  Better to try a few times.
1134 			 */
1135 			dev_dbg(mmc_dev(mmc), "%s: All phases valid; try again\n",
1136 				mmc_hostname(mmc));
1137 			if (--tuning_seq_cnt) {
1138 				tuned_phase_cnt = 0;
1139 				goto retry;
1140 			}
1141 		}
1142 
1143 		rc = msm_find_most_appropriate_phase(host, tuned_phases,
1144 						     tuned_phase_cnt);
1145 		if (rc < 0)
1146 			return rc;
1147 		else
1148 			phase = rc;
1149 
1150 		/*
1151 		 * Finally set the selected phase in delay
1152 		 * line hw block.
1153 		 */
1154 		rc = msm_config_cm_dll_phase(host, phase);
1155 		if (rc)
1156 			return rc;
1157 		dev_dbg(mmc_dev(mmc), "%s: Setting the tuning phase to %d\n",
1158 			 mmc_hostname(mmc), phase);
1159 	} else {
1160 		if (--tuning_seq_cnt)
1161 			goto retry;
1162 		/* Tuning failed */
1163 		dev_dbg(mmc_dev(mmc), "%s: No tuning point found\n",
1164 		       mmc_hostname(mmc));
1165 		rc = -EIO;
1166 	}
1167 
1168 	if (!rc)
1169 		msm_host->tuning_done = true;
1170 	return rc;
1171 }
1172 
1173 /*
1174  * sdhci_msm_hs400 - Calibrate the DLL for HS400 bus speed mode operation.
1175  * This needs to be done for both tuning and enhanced_strobe mode.
1176  * DLL operation is only needed for clock > 100MHz. For clock <= 100MHz
1177  * fixed feedback clock is used.
1178  */
sdhci_msm_hs400(struct sdhci_host * host,struct mmc_ios * ios)1179 static void sdhci_msm_hs400(struct sdhci_host *host, struct mmc_ios *ios)
1180 {
1181 	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
1182 	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
1183 	int ret;
1184 
1185 	if (host->clock > CORE_FREQ_100MHZ &&
1186 	    (msm_host->tuning_done || ios->enhanced_strobe) &&
1187 	    !msm_host->calibration_done) {
1188 		ret = sdhci_msm_hs400_dll_calibration(host);
1189 		if (!ret)
1190 			msm_host->calibration_done = true;
1191 		else
1192 			pr_err("%s: Failed to calibrate DLL for hs400 mode (%d)\n",
1193 			       mmc_hostname(host->mmc), ret);
1194 	}
1195 }
1196 
sdhci_msm_set_uhs_signaling(struct sdhci_host * host,unsigned int uhs)1197 static void sdhci_msm_set_uhs_signaling(struct sdhci_host *host,
1198 					unsigned int uhs)
1199 {
1200 	struct mmc_host *mmc = host->mmc;
1201 	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
1202 	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
1203 	u16 ctrl_2;
1204 	u32 config;
1205 	const struct sdhci_msm_offset *msm_offset =
1206 					msm_host->offset;
1207 
1208 	ctrl_2 = sdhci_readw(host, SDHCI_HOST_CONTROL2);
1209 	/* Select Bus Speed Mode for host */
1210 	ctrl_2 &= ~SDHCI_CTRL_UHS_MASK;
1211 	switch (uhs) {
1212 	case MMC_TIMING_UHS_SDR12:
1213 		ctrl_2 |= SDHCI_CTRL_UHS_SDR12;
1214 		break;
1215 	case MMC_TIMING_UHS_SDR25:
1216 		ctrl_2 |= SDHCI_CTRL_UHS_SDR25;
1217 		break;
1218 	case MMC_TIMING_UHS_SDR50:
1219 		ctrl_2 |= SDHCI_CTRL_UHS_SDR50;
1220 		break;
1221 	case MMC_TIMING_MMC_HS400:
1222 	case MMC_TIMING_MMC_HS200:
1223 	case MMC_TIMING_UHS_SDR104:
1224 		ctrl_2 |= SDHCI_CTRL_UHS_SDR104;
1225 		break;
1226 	case MMC_TIMING_UHS_DDR50:
1227 	case MMC_TIMING_MMC_DDR52:
1228 		ctrl_2 |= SDHCI_CTRL_UHS_DDR50;
1229 		break;
1230 	}
1231 
1232 	/*
1233 	 * When clock frequency is less than 100MHz, the feedback clock must be
1234 	 * provided and DLL must not be used so that tuning can be skipped. To
1235 	 * provide feedback clock, the mode selection can be any value less
1236 	 * than 3'b011 in bits [2:0] of HOST CONTROL2 register.
1237 	 */
1238 	if (host->clock <= CORE_FREQ_100MHZ) {
1239 		if (uhs == MMC_TIMING_MMC_HS400 ||
1240 		    uhs == MMC_TIMING_MMC_HS200 ||
1241 		    uhs == MMC_TIMING_UHS_SDR104)
1242 			ctrl_2 &= ~SDHCI_CTRL_UHS_MASK;
1243 		/*
1244 		 * DLL is not required for clock <= 100MHz
1245 		 * Thus, make sure DLL it is disabled when not required
1246 		 */
1247 		config = readl_relaxed(host->ioaddr +
1248 				msm_offset->core_dll_config);
1249 		config |= CORE_DLL_RST;
1250 		writel_relaxed(config, host->ioaddr +
1251 				msm_offset->core_dll_config);
1252 
1253 		config = readl_relaxed(host->ioaddr +
1254 				msm_offset->core_dll_config);
1255 		config |= CORE_DLL_PDN;
1256 		writel_relaxed(config, host->ioaddr +
1257 				msm_offset->core_dll_config);
1258 
1259 		/*
1260 		 * The DLL needs to be restored and CDCLP533 recalibrated
1261 		 * when the clock frequency is set back to 400MHz.
1262 		 */
1263 		msm_host->calibration_done = false;
1264 	}
1265 
1266 	dev_dbg(mmc_dev(mmc), "%s: clock=%u uhs=%u ctrl_2=0x%x\n",
1267 		mmc_hostname(host->mmc), host->clock, uhs, ctrl_2);
1268 	sdhci_writew(host, ctrl_2, SDHCI_HOST_CONTROL2);
1269 
1270 	if (mmc->ios.timing == MMC_TIMING_MMC_HS400)
1271 		sdhci_msm_hs400(host, &mmc->ios);
1272 }
1273 
sdhci_msm_init_pwr_irq_wait(struct sdhci_msm_host * msm_host)1274 static inline void sdhci_msm_init_pwr_irq_wait(struct sdhci_msm_host *msm_host)
1275 {
1276 	init_waitqueue_head(&msm_host->pwr_irq_wait);
1277 }
1278 
sdhci_msm_complete_pwr_irq_wait(struct sdhci_msm_host * msm_host)1279 static inline void sdhci_msm_complete_pwr_irq_wait(
1280 		struct sdhci_msm_host *msm_host)
1281 {
1282 	wake_up(&msm_host->pwr_irq_wait);
1283 }
1284 
1285 /*
1286  * sdhci_msm_check_power_status API should be called when registers writes
1287  * which can toggle sdhci IO bus ON/OFF or change IO lines HIGH/LOW happens.
1288  * To what state the register writes will change the IO lines should be passed
1289  * as the argument req_type. This API will check whether the IO line's state
1290  * is already the expected state and will wait for power irq only if
1291  * power irq is expected to be trigerred based on the current IO line state
1292  * and expected IO line state.
1293  */
sdhci_msm_check_power_status(struct sdhci_host * host,u32 req_type)1294 static void sdhci_msm_check_power_status(struct sdhci_host *host, u32 req_type)
1295 {
1296 	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
1297 	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
1298 	bool done = false;
1299 	u32 val = SWITCHABLE_SIGNALING_VOLTAGE;
1300 	const struct sdhci_msm_offset *msm_offset =
1301 					msm_host->offset;
1302 
1303 	pr_debug("%s: %s: request %d curr_pwr_state %x curr_io_level %x\n",
1304 			mmc_hostname(host->mmc), __func__, req_type,
1305 			msm_host->curr_pwr_state, msm_host->curr_io_level);
1306 
1307 	/*
1308 	 * The power interrupt will not be generated for signal voltage
1309 	 * switches if SWITCHABLE_SIGNALING_VOLTAGE in MCI_GENERICS is not set.
1310 	 * Since sdhci-msm-v5, this bit has been removed and SW must consider
1311 	 * it as always set.
1312 	 */
1313 	if (!msm_host->mci_removed)
1314 		val = msm_host_readl(msm_host, host,
1315 				msm_offset->core_generics);
1316 	if ((req_type & REQ_IO_HIGH || req_type & REQ_IO_LOW) &&
1317 	    !(val & SWITCHABLE_SIGNALING_VOLTAGE)) {
1318 		return;
1319 	}
1320 
1321 	/*
1322 	 * The IRQ for request type IO High/LOW will be generated when -
1323 	 * there is a state change in 1.8V enable bit (bit 3) of
1324 	 * SDHCI_HOST_CONTROL2 register. The reset state of that bit is 0
1325 	 * which indicates 3.3V IO voltage. So, when MMC core layer tries
1326 	 * to set it to 3.3V before card detection happens, the
1327 	 * IRQ doesn't get triggered as there is no state change in this bit.
1328 	 * The driver already handles this case by changing the IO voltage
1329 	 * level to high as part of controller power up sequence. Hence, check
1330 	 * for host->pwr to handle a case where IO voltage high request is
1331 	 * issued even before controller power up.
1332 	 */
1333 	if ((req_type & REQ_IO_HIGH) && !host->pwr) {
1334 		pr_debug("%s: do not wait for power IRQ that never comes, req_type: %d\n",
1335 				mmc_hostname(host->mmc), req_type);
1336 		return;
1337 	}
1338 	if ((req_type & msm_host->curr_pwr_state) ||
1339 			(req_type & msm_host->curr_io_level))
1340 		done = true;
1341 	/*
1342 	 * This is needed here to handle cases where register writes will
1343 	 * not change the current bus state or io level of the controller.
1344 	 * In this case, no power irq will be triggerred and we should
1345 	 * not wait.
1346 	 */
1347 	if (!done) {
1348 		if (!wait_event_timeout(msm_host->pwr_irq_wait,
1349 				msm_host->pwr_irq_flag,
1350 				msecs_to_jiffies(MSM_PWR_IRQ_TIMEOUT_MS)))
1351 			dev_warn(&msm_host->pdev->dev,
1352 				 "%s: pwr_irq for req: (%d) timed out\n",
1353 				 mmc_hostname(host->mmc), req_type);
1354 	}
1355 	pr_debug("%s: %s: request %d done\n", mmc_hostname(host->mmc),
1356 			__func__, req_type);
1357 }
1358 
sdhci_msm_dump_pwr_ctrl_regs(struct sdhci_host * host)1359 static void sdhci_msm_dump_pwr_ctrl_regs(struct sdhci_host *host)
1360 {
1361 	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
1362 	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
1363 	const struct sdhci_msm_offset *msm_offset =
1364 					msm_host->offset;
1365 
1366 	pr_err("%s: PWRCTL_STATUS: 0x%08x | PWRCTL_MASK: 0x%08x | PWRCTL_CTL: 0x%08x\n",
1367 		mmc_hostname(host->mmc),
1368 		msm_host_readl(msm_host, host, msm_offset->core_pwrctl_status),
1369 		msm_host_readl(msm_host, host, msm_offset->core_pwrctl_mask),
1370 		msm_host_readl(msm_host, host, msm_offset->core_pwrctl_ctl));
1371 }
1372 
sdhci_msm_handle_pwr_irq(struct sdhci_host * host,int irq)1373 static void sdhci_msm_handle_pwr_irq(struct sdhci_host *host, int irq)
1374 {
1375 	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
1376 	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
1377 	u32 irq_status, irq_ack = 0;
1378 	int retry = 10;
1379 	u32 pwr_state = 0, io_level = 0;
1380 	u32 config;
1381 	const struct sdhci_msm_offset *msm_offset = msm_host->offset;
1382 
1383 	irq_status = msm_host_readl(msm_host, host,
1384 			msm_offset->core_pwrctl_status);
1385 	irq_status &= INT_MASK;
1386 
1387 	msm_host_writel(msm_host, irq_status, host,
1388 			msm_offset->core_pwrctl_clear);
1389 
1390 	/*
1391 	 * There is a rare HW scenario where the first clear pulse could be
1392 	 * lost when actual reset and clear/read of status register is
1393 	 * happening at a time. Hence, retry for at least 10 times to make
1394 	 * sure status register is cleared. Otherwise, this will result in
1395 	 * a spurious power IRQ resulting in system instability.
1396 	 */
1397 	while (irq_status & msm_host_readl(msm_host, host,
1398 				msm_offset->core_pwrctl_status)) {
1399 		if (retry == 0) {
1400 			pr_err("%s: Timedout clearing (0x%x) pwrctl status register\n",
1401 					mmc_hostname(host->mmc), irq_status);
1402 			sdhci_msm_dump_pwr_ctrl_regs(host);
1403 			WARN_ON(1);
1404 			break;
1405 		}
1406 		msm_host_writel(msm_host, irq_status, host,
1407 			msm_offset->core_pwrctl_clear);
1408 		retry--;
1409 		udelay(10);
1410 	}
1411 
1412 	/* Handle BUS ON/OFF*/
1413 	if (irq_status & CORE_PWRCTL_BUS_ON) {
1414 		pwr_state = REQ_BUS_ON;
1415 		io_level = REQ_IO_HIGH;
1416 		irq_ack |= CORE_PWRCTL_BUS_SUCCESS;
1417 	}
1418 	if (irq_status & CORE_PWRCTL_BUS_OFF) {
1419 		pwr_state = REQ_BUS_OFF;
1420 		io_level = REQ_IO_LOW;
1421 		irq_ack |= CORE_PWRCTL_BUS_SUCCESS;
1422 	}
1423 	/* Handle IO LOW/HIGH */
1424 	if (irq_status & CORE_PWRCTL_IO_LOW) {
1425 		io_level = REQ_IO_LOW;
1426 		irq_ack |= CORE_PWRCTL_IO_SUCCESS;
1427 	}
1428 	if (irq_status & CORE_PWRCTL_IO_HIGH) {
1429 		io_level = REQ_IO_HIGH;
1430 		irq_ack |= CORE_PWRCTL_IO_SUCCESS;
1431 	}
1432 
1433 	/*
1434 	 * The driver has to acknowledge the interrupt, switch voltages and
1435 	 * report back if it succeded or not to this register. The voltage
1436 	 * switches are handled by the sdhci core, so just report success.
1437 	 */
1438 	msm_host_writel(msm_host, irq_ack, host,
1439 			msm_offset->core_pwrctl_ctl);
1440 
1441 	/*
1442 	 * If we don't have info regarding the voltage levels supported by
1443 	 * regulators, don't change the IO PAD PWR SWITCH.
1444 	 */
1445 	if (msm_host->caps_0 & CORE_VOLT_SUPPORT) {
1446 		u32 new_config;
1447 		/*
1448 		 * We should unset IO PAD PWR switch only if the register write
1449 		 * can set IO lines high and the regulator also switches to 3 V.
1450 		 * Else, we should keep the IO PAD PWR switch set.
1451 		 * This is applicable to certain targets where eMMC vccq supply
1452 		 * is only 1.8V. In such targets, even during REQ_IO_HIGH, the
1453 		 * IO PAD PWR switch must be kept set to reflect actual
1454 		 * regulator voltage. This way, during initialization of
1455 		 * controllers with only 1.8V, we will set the IO PAD bit
1456 		 * without waiting for a REQ_IO_LOW.
1457 		 */
1458 		config = readl_relaxed(host->ioaddr +
1459 				msm_offset->core_vendor_spec);
1460 		new_config = config;
1461 
1462 		if ((io_level & REQ_IO_HIGH) &&
1463 				(msm_host->caps_0 & CORE_3_0V_SUPPORT))
1464 			new_config &= ~CORE_IO_PAD_PWR_SWITCH;
1465 		else if ((io_level & REQ_IO_LOW) ||
1466 				(msm_host->caps_0 & CORE_1_8V_SUPPORT))
1467 			new_config |= CORE_IO_PAD_PWR_SWITCH;
1468 
1469 		if (config ^ new_config)
1470 			writel_relaxed(new_config, host->ioaddr +
1471 					msm_offset->core_vendor_spec);
1472 	}
1473 
1474 	if (pwr_state)
1475 		msm_host->curr_pwr_state = pwr_state;
1476 	if (io_level)
1477 		msm_host->curr_io_level = io_level;
1478 
1479 	pr_debug("%s: %s: Handled IRQ(%d), irq_status=0x%x, ack=0x%x\n",
1480 		mmc_hostname(msm_host->mmc), __func__, irq, irq_status,
1481 		irq_ack);
1482 }
1483 
sdhci_msm_pwr_irq(int irq,void * data)1484 static irqreturn_t sdhci_msm_pwr_irq(int irq, void *data)
1485 {
1486 	struct sdhci_host *host = (struct sdhci_host *)data;
1487 	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
1488 	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
1489 
1490 	sdhci_msm_handle_pwr_irq(host, irq);
1491 	msm_host->pwr_irq_flag = 1;
1492 	sdhci_msm_complete_pwr_irq_wait(msm_host);
1493 
1494 
1495 	return IRQ_HANDLED;
1496 }
1497 
sdhci_msm_get_max_clock(struct sdhci_host * host)1498 static unsigned int sdhci_msm_get_max_clock(struct sdhci_host *host)
1499 {
1500 	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
1501 	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
1502 	struct clk *core_clk = msm_host->bulk_clks[0].clk;
1503 
1504 	return clk_round_rate(core_clk, ULONG_MAX);
1505 }
1506 
sdhci_msm_get_min_clock(struct sdhci_host * host)1507 static unsigned int sdhci_msm_get_min_clock(struct sdhci_host *host)
1508 {
1509 	return SDHCI_MSM_MIN_CLOCK;
1510 }
1511 
1512 /**
1513  * __sdhci_msm_set_clock - sdhci_msm clock control.
1514  *
1515  * Description:
1516  * MSM controller does not use internal divider and
1517  * instead directly control the GCC clock as per
1518  * HW recommendation.
1519  **/
__sdhci_msm_set_clock(struct sdhci_host * host,unsigned int clock)1520 static void __sdhci_msm_set_clock(struct sdhci_host *host, unsigned int clock)
1521 {
1522 	u16 clk;
1523 	/*
1524 	 * Keep actual_clock as zero -
1525 	 * - since there is no divider used so no need of having actual_clock.
1526 	 * - MSM controller uses SDCLK for data timeout calculation. If
1527 	 *   actual_clock is zero, host->clock is taken for calculation.
1528 	 */
1529 	host->mmc->actual_clock = 0;
1530 
1531 	sdhci_writew(host, 0, SDHCI_CLOCK_CONTROL);
1532 
1533 	if (clock == 0)
1534 		return;
1535 
1536 	/*
1537 	 * MSM controller do not use clock divider.
1538 	 * Thus read SDHCI_CLOCK_CONTROL and only enable
1539 	 * clock with no divider value programmed.
1540 	 */
1541 	clk = sdhci_readw(host, SDHCI_CLOCK_CONTROL);
1542 	sdhci_enable_clk(host, clk);
1543 }
1544 
1545 /* sdhci_msm_set_clock - Called with (host->lock) spinlock held. */
sdhci_msm_set_clock(struct sdhci_host * host,unsigned int clock)1546 static void sdhci_msm_set_clock(struct sdhci_host *host, unsigned int clock)
1547 {
1548 	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
1549 	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
1550 
1551 	if (!clock) {
1552 		msm_host->clk_rate = clock;
1553 		goto out;
1554 	}
1555 
1556 	sdhci_msm_hc_select_mode(host);
1557 
1558 	msm_set_clock_rate_for_bus_mode(host, clock);
1559 out:
1560 	__sdhci_msm_set_clock(host, clock);
1561 }
1562 
1563 /*
1564  * Platform specific register write functions. This is so that, if any
1565  * register write needs to be followed up by platform specific actions,
1566  * they can be added here. These functions can go to sleep when writes
1567  * to certain registers are done.
1568  * These functions are relying on sdhci_set_ios not using spinlock.
1569  */
__sdhci_msm_check_write(struct sdhci_host * host,u16 val,int reg)1570 static int __sdhci_msm_check_write(struct sdhci_host *host, u16 val, int reg)
1571 {
1572 	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
1573 	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
1574 	u32 req_type = 0;
1575 
1576 	switch (reg) {
1577 	case SDHCI_HOST_CONTROL2:
1578 		req_type = (val & SDHCI_CTRL_VDD_180) ? REQ_IO_LOW :
1579 			REQ_IO_HIGH;
1580 		break;
1581 	case SDHCI_SOFTWARE_RESET:
1582 		if (host->pwr && (val & SDHCI_RESET_ALL))
1583 			req_type = REQ_BUS_OFF;
1584 		break;
1585 	case SDHCI_POWER_CONTROL:
1586 		req_type = !val ? REQ_BUS_OFF : REQ_BUS_ON;
1587 		break;
1588 	case SDHCI_TRANSFER_MODE:
1589 		msm_host->transfer_mode = val;
1590 		break;
1591 	case SDHCI_COMMAND:
1592 		if (!msm_host->use_cdr)
1593 			break;
1594 		if ((msm_host->transfer_mode & SDHCI_TRNS_READ) &&
1595 		    SDHCI_GET_CMD(val) != MMC_SEND_TUNING_BLOCK_HS200 &&
1596 		    SDHCI_GET_CMD(val) != MMC_SEND_TUNING_BLOCK)
1597 			sdhci_msm_set_cdr(host, true);
1598 		else
1599 			sdhci_msm_set_cdr(host, false);
1600 		break;
1601 	}
1602 
1603 	if (req_type) {
1604 		msm_host->pwr_irq_flag = 0;
1605 		/*
1606 		 * Since this register write may trigger a power irq, ensure
1607 		 * all previous register writes are complete by this point.
1608 		 */
1609 		mb();
1610 	}
1611 	return req_type;
1612 }
1613 
1614 /* This function may sleep*/
sdhci_msm_writew(struct sdhci_host * host,u16 val,int reg)1615 static void sdhci_msm_writew(struct sdhci_host *host, u16 val, int reg)
1616 {
1617 	u32 req_type = 0;
1618 
1619 	req_type = __sdhci_msm_check_write(host, val, reg);
1620 	writew_relaxed(val, host->ioaddr + reg);
1621 
1622 	if (req_type)
1623 		sdhci_msm_check_power_status(host, req_type);
1624 }
1625 
1626 /* This function may sleep*/
sdhci_msm_writeb(struct sdhci_host * host,u8 val,int reg)1627 static void sdhci_msm_writeb(struct sdhci_host *host, u8 val, int reg)
1628 {
1629 	u32 req_type = 0;
1630 
1631 	req_type = __sdhci_msm_check_write(host, val, reg);
1632 
1633 	writeb_relaxed(val, host->ioaddr + reg);
1634 
1635 	if (req_type)
1636 		sdhci_msm_check_power_status(host, req_type);
1637 }
1638 
sdhci_msm_set_regulator_caps(struct sdhci_msm_host * msm_host)1639 static void sdhci_msm_set_regulator_caps(struct sdhci_msm_host *msm_host)
1640 {
1641 	struct mmc_host *mmc = msm_host->mmc;
1642 	struct regulator *supply = mmc->supply.vqmmc;
1643 	u32 caps = 0, config;
1644 	struct sdhci_host *host = mmc_priv(mmc);
1645 	const struct sdhci_msm_offset *msm_offset = msm_host->offset;
1646 
1647 	if (!IS_ERR(mmc->supply.vqmmc)) {
1648 		if (regulator_is_supported_voltage(supply, 1700000, 1950000))
1649 			caps |= CORE_1_8V_SUPPORT;
1650 		if (regulator_is_supported_voltage(supply, 2700000, 3600000))
1651 			caps |= CORE_3_0V_SUPPORT;
1652 
1653 		if (!caps)
1654 			pr_warn("%s: 1.8/3V not supported for vqmmc\n",
1655 					mmc_hostname(mmc));
1656 	}
1657 
1658 	if (caps) {
1659 		/*
1660 		 * Set the PAD_PWR_SWITCH_EN bit so that the PAD_PWR_SWITCH
1661 		 * bit can be used as required later on.
1662 		 */
1663 		u32 io_level = msm_host->curr_io_level;
1664 
1665 		config = readl_relaxed(host->ioaddr +
1666 				msm_offset->core_vendor_spec);
1667 		config |= CORE_IO_PAD_PWR_SWITCH_EN;
1668 
1669 		if ((io_level & REQ_IO_HIGH) && (caps &	CORE_3_0V_SUPPORT))
1670 			config &= ~CORE_IO_PAD_PWR_SWITCH;
1671 		else if ((io_level & REQ_IO_LOW) || (caps & CORE_1_8V_SUPPORT))
1672 			config |= CORE_IO_PAD_PWR_SWITCH;
1673 
1674 		writel_relaxed(config,
1675 				host->ioaddr + msm_offset->core_vendor_spec);
1676 	}
1677 	msm_host->caps_0 |= caps;
1678 	pr_debug("%s: supported caps: 0x%08x\n", mmc_hostname(mmc), caps);
1679 }
1680 
1681 static const struct sdhci_msm_variant_ops mci_var_ops = {
1682 	.msm_readl_relaxed = sdhci_msm_mci_variant_readl_relaxed,
1683 	.msm_writel_relaxed = sdhci_msm_mci_variant_writel_relaxed,
1684 };
1685 
1686 static const struct sdhci_msm_variant_ops v5_var_ops = {
1687 	.msm_readl_relaxed = sdhci_msm_v5_variant_readl_relaxed,
1688 	.msm_writel_relaxed = sdhci_msm_v5_variant_writel_relaxed,
1689 };
1690 
1691 static const struct sdhci_msm_variant_info sdhci_msm_mci_var = {
1692 	.mci_removed = false,
1693 	.var_ops = &mci_var_ops,
1694 	.offset = &sdhci_msm_mci_offset,
1695 };
1696 
1697 static const struct sdhci_msm_variant_info sdhci_msm_v5_var = {
1698 	.mci_removed = true,
1699 	.var_ops = &v5_var_ops,
1700 	.offset = &sdhci_msm_v5_offset,
1701 };
1702 
1703 static const struct of_device_id sdhci_msm_dt_match[] = {
1704 	{.compatible = "qcom,sdhci-msm-v4", .data = &sdhci_msm_mci_var},
1705 	{.compatible = "qcom,sdhci-msm-v5", .data = &sdhci_msm_v5_var},
1706 	{},
1707 };
1708 
1709 MODULE_DEVICE_TABLE(of, sdhci_msm_dt_match);
1710 
1711 static const struct sdhci_ops sdhci_msm_ops = {
1712 	.reset = sdhci_reset,
1713 	.set_clock = sdhci_msm_set_clock,
1714 	.get_min_clock = sdhci_msm_get_min_clock,
1715 	.get_max_clock = sdhci_msm_get_max_clock,
1716 	.set_bus_width = sdhci_set_bus_width,
1717 	.set_uhs_signaling = sdhci_msm_set_uhs_signaling,
1718 	.write_w = sdhci_msm_writew,
1719 	.write_b = sdhci_msm_writeb,
1720 };
1721 
1722 static const struct sdhci_pltfm_data sdhci_msm_pdata = {
1723 	.quirks = SDHCI_QUIRK_BROKEN_CARD_DETECTION |
1724 		  SDHCI_QUIRK_SINGLE_POWER_WRITE |
1725 		  SDHCI_QUIRK_CAP_CLOCK_BASE_BROKEN |
1726 		  SDHCI_QUIRK_MULTIBLOCK_READ_ACMD12,
1727 
1728 	.quirks2 = SDHCI_QUIRK2_PRESET_VALUE_BROKEN,
1729 	.ops = &sdhci_msm_ops,
1730 };
1731 
sdhci_msm_probe(struct platform_device * pdev)1732 static int sdhci_msm_probe(struct platform_device *pdev)
1733 {
1734 	struct sdhci_host *host;
1735 	struct sdhci_pltfm_host *pltfm_host;
1736 	struct sdhci_msm_host *msm_host;
1737 	struct resource *core_memres;
1738 	struct clk *clk;
1739 	int ret;
1740 	u16 host_version, core_minor;
1741 	u32 core_version, config;
1742 	u8 core_major;
1743 	const struct sdhci_msm_offset *msm_offset;
1744 	const struct sdhci_msm_variant_info *var_info;
1745 
1746 	host = sdhci_pltfm_init(pdev, &sdhci_msm_pdata, sizeof(*msm_host));
1747 	if (IS_ERR(host))
1748 		return PTR_ERR(host);
1749 
1750 	host->sdma_boundary = 0;
1751 	pltfm_host = sdhci_priv(host);
1752 	msm_host = sdhci_pltfm_priv(pltfm_host);
1753 	msm_host->mmc = host->mmc;
1754 	msm_host->pdev = pdev;
1755 
1756 	ret = mmc_of_parse(host->mmc);
1757 	if (ret)
1758 		goto pltfm_free;
1759 
1760 	/*
1761 	 * Based on the compatible string, load the required msm host info from
1762 	 * the data associated with the version info.
1763 	 */
1764 	var_info = of_device_get_match_data(&pdev->dev);
1765 
1766 	msm_host->mci_removed = var_info->mci_removed;
1767 	msm_host->var_ops = var_info->var_ops;
1768 	msm_host->offset = var_info->offset;
1769 
1770 	msm_offset = msm_host->offset;
1771 
1772 	sdhci_get_of_property(pdev);
1773 
1774 	msm_host->saved_tuning_phase = INVALID_TUNING_PHASE;
1775 
1776 	/* Setup SDCC bus voter clock. */
1777 	msm_host->bus_clk = devm_clk_get(&pdev->dev, "bus");
1778 	if (!IS_ERR(msm_host->bus_clk)) {
1779 		/* Vote for max. clk rate for max. performance */
1780 		ret = clk_set_rate(msm_host->bus_clk, INT_MAX);
1781 		if (ret)
1782 			goto pltfm_free;
1783 		ret = clk_prepare_enable(msm_host->bus_clk);
1784 		if (ret)
1785 			goto pltfm_free;
1786 	}
1787 
1788 	/* Setup main peripheral bus clock */
1789 	clk = devm_clk_get(&pdev->dev, "iface");
1790 	if (IS_ERR(clk)) {
1791 		ret = PTR_ERR(clk);
1792 		dev_err(&pdev->dev, "Peripheral clk setup failed (%d)\n", ret);
1793 		goto bus_clk_disable;
1794 	}
1795 	msm_host->bulk_clks[1].clk = clk;
1796 
1797 	/* Setup SDC MMC clock */
1798 	clk = devm_clk_get(&pdev->dev, "core");
1799 	if (IS_ERR(clk)) {
1800 		ret = PTR_ERR(clk);
1801 		dev_err(&pdev->dev, "SDC MMC clk setup failed (%d)\n", ret);
1802 		goto bus_clk_disable;
1803 	}
1804 	msm_host->bulk_clks[0].clk = clk;
1805 
1806 	/* Vote for maximum clock rate for maximum performance */
1807 	ret = clk_set_rate(clk, INT_MAX);
1808 	if (ret)
1809 		dev_warn(&pdev->dev, "core clock boost failed\n");
1810 
1811 	clk = devm_clk_get(&pdev->dev, "cal");
1812 	if (IS_ERR(clk))
1813 		clk = NULL;
1814 	msm_host->bulk_clks[2].clk = clk;
1815 
1816 	clk = devm_clk_get(&pdev->dev, "sleep");
1817 	if (IS_ERR(clk))
1818 		clk = NULL;
1819 	msm_host->bulk_clks[3].clk = clk;
1820 
1821 	ret = clk_bulk_prepare_enable(ARRAY_SIZE(msm_host->bulk_clks),
1822 				      msm_host->bulk_clks);
1823 	if (ret)
1824 		goto bus_clk_disable;
1825 
1826 	/*
1827 	 * xo clock is needed for FLL feature of cm_dll.
1828 	 * In case if xo clock is not mentioned in DT, warn and proceed.
1829 	 */
1830 	msm_host->xo_clk = devm_clk_get(&pdev->dev, "xo");
1831 	if (IS_ERR(msm_host->xo_clk)) {
1832 		ret = PTR_ERR(msm_host->xo_clk);
1833 		dev_warn(&pdev->dev, "TCXO clk not present (%d)\n", ret);
1834 	}
1835 
1836 	if (!msm_host->mci_removed) {
1837 		core_memres = platform_get_resource(pdev, IORESOURCE_MEM, 1);
1838 		msm_host->core_mem = devm_ioremap_resource(&pdev->dev,
1839 				core_memres);
1840 
1841 		if (IS_ERR(msm_host->core_mem)) {
1842 			ret = PTR_ERR(msm_host->core_mem);
1843 			goto clk_disable;
1844 		}
1845 	}
1846 
1847 	/* Reset the vendor spec register to power on reset state */
1848 	writel_relaxed(CORE_VENDOR_SPEC_POR_VAL,
1849 			host->ioaddr + msm_offset->core_vendor_spec);
1850 
1851 	if (!msm_host->mci_removed) {
1852 		/* Set HC_MODE_EN bit in HC_MODE register */
1853 		msm_host_writel(msm_host, HC_MODE_EN, host,
1854 				msm_offset->core_hc_mode);
1855 		config = msm_host_readl(msm_host, host,
1856 				msm_offset->core_hc_mode);
1857 		config |= FF_CLK_SW_RST_DIS;
1858 		msm_host_writel(msm_host, config, host,
1859 				msm_offset->core_hc_mode);
1860 	}
1861 
1862 	host_version = readw_relaxed((host->ioaddr + SDHCI_HOST_VERSION));
1863 	dev_dbg(&pdev->dev, "Host Version: 0x%x Vendor Version 0x%x\n",
1864 		host_version, ((host_version & SDHCI_VENDOR_VER_MASK) >>
1865 			       SDHCI_VENDOR_VER_SHIFT));
1866 
1867 	core_version = msm_host_readl(msm_host, host,
1868 			msm_offset->core_mci_version);
1869 	core_major = (core_version & CORE_VERSION_MAJOR_MASK) >>
1870 		      CORE_VERSION_MAJOR_SHIFT;
1871 	core_minor = core_version & CORE_VERSION_MINOR_MASK;
1872 	dev_dbg(&pdev->dev, "MCI Version: 0x%08x, major: 0x%04x, minor: 0x%02x\n",
1873 		core_version, core_major, core_minor);
1874 
1875 	if (core_major == 1 && core_minor >= 0x42)
1876 		msm_host->use_14lpp_dll_reset = true;
1877 
1878 	/*
1879 	 * SDCC 5 controller with major version 1, minor version 0x34 and later
1880 	 * with HS 400 mode support will use CM DLL instead of CDC LP 533 DLL.
1881 	 */
1882 	if (core_major == 1 && core_minor < 0x34)
1883 		msm_host->use_cdclp533 = true;
1884 
1885 	/*
1886 	 * Support for some capabilities is not advertised by newer
1887 	 * controller versions and must be explicitly enabled.
1888 	 */
1889 	if (core_major >= 1 && core_minor != 0x11 && core_minor != 0x12) {
1890 		config = readl_relaxed(host->ioaddr + SDHCI_CAPABILITIES);
1891 		config |= SDHCI_CAN_VDD_300 | SDHCI_CAN_DO_8BIT;
1892 		writel_relaxed(config, host->ioaddr +
1893 				msm_offset->core_vendor_spec_capabilities0);
1894 	}
1895 
1896 	if (core_major == 1 && core_minor >= 0x49)
1897 		msm_host->updated_ddr_cfg = true;
1898 
1899 	/*
1900 	 * Power on reset state may trigger power irq if previous status of
1901 	 * PWRCTL was either BUS_ON or IO_HIGH_V. So before enabling pwr irq
1902 	 * interrupt in GIC, any pending power irq interrupt should be
1903 	 * acknowledged. Otherwise power irq interrupt handler would be
1904 	 * fired prematurely.
1905 	 */
1906 	sdhci_msm_handle_pwr_irq(host, 0);
1907 
1908 	/*
1909 	 * Ensure that above writes are propogated before interrupt enablement
1910 	 * in GIC.
1911 	 */
1912 	mb();
1913 
1914 	/* Setup IRQ for handling power/voltage tasks with PMIC */
1915 	msm_host->pwr_irq = platform_get_irq_byname(pdev, "pwr_irq");
1916 	if (msm_host->pwr_irq < 0) {
1917 		dev_err(&pdev->dev, "Get pwr_irq failed (%d)\n",
1918 			msm_host->pwr_irq);
1919 		ret = msm_host->pwr_irq;
1920 		goto clk_disable;
1921 	}
1922 
1923 	sdhci_msm_init_pwr_irq_wait(msm_host);
1924 	/* Enable pwr irq interrupts */
1925 	msm_host_writel(msm_host, INT_MASK, host,
1926 		msm_offset->core_pwrctl_mask);
1927 
1928 	ret = devm_request_threaded_irq(&pdev->dev, msm_host->pwr_irq, NULL,
1929 					sdhci_msm_pwr_irq, IRQF_ONESHOT,
1930 					dev_name(&pdev->dev), host);
1931 	if (ret) {
1932 		dev_err(&pdev->dev, "Request IRQ failed (%d)\n", ret);
1933 		goto clk_disable;
1934 	}
1935 
1936 	msm_host->mmc->caps |= MMC_CAP_WAIT_WHILE_BUSY | MMC_CAP_NEED_RSP_BUSY;
1937 
1938 	pm_runtime_get_noresume(&pdev->dev);
1939 	pm_runtime_set_active(&pdev->dev);
1940 	pm_runtime_enable(&pdev->dev);
1941 	pm_runtime_set_autosuspend_delay(&pdev->dev,
1942 					 MSM_MMC_AUTOSUSPEND_DELAY_MS);
1943 	pm_runtime_use_autosuspend(&pdev->dev);
1944 
1945 	host->mmc_host_ops.execute_tuning = sdhci_msm_execute_tuning;
1946 	ret = sdhci_add_host(host);
1947 	if (ret)
1948 		goto pm_runtime_disable;
1949 	sdhci_msm_set_regulator_caps(msm_host);
1950 
1951 	pm_runtime_mark_last_busy(&pdev->dev);
1952 	pm_runtime_put_autosuspend(&pdev->dev);
1953 
1954 	return 0;
1955 
1956 pm_runtime_disable:
1957 	pm_runtime_disable(&pdev->dev);
1958 	pm_runtime_set_suspended(&pdev->dev);
1959 	pm_runtime_put_noidle(&pdev->dev);
1960 clk_disable:
1961 	clk_bulk_disable_unprepare(ARRAY_SIZE(msm_host->bulk_clks),
1962 				   msm_host->bulk_clks);
1963 bus_clk_disable:
1964 	if (!IS_ERR(msm_host->bus_clk))
1965 		clk_disable_unprepare(msm_host->bus_clk);
1966 pltfm_free:
1967 	sdhci_pltfm_free(pdev);
1968 	return ret;
1969 }
1970 
sdhci_msm_remove(struct platform_device * pdev)1971 static int sdhci_msm_remove(struct platform_device *pdev)
1972 {
1973 	struct sdhci_host *host = platform_get_drvdata(pdev);
1974 	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
1975 	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
1976 	int dead = (readl_relaxed(host->ioaddr + SDHCI_INT_STATUS) ==
1977 		    0xffffffff);
1978 
1979 	sdhci_remove_host(host, dead);
1980 
1981 	pm_runtime_get_sync(&pdev->dev);
1982 	pm_runtime_disable(&pdev->dev);
1983 	pm_runtime_put_noidle(&pdev->dev);
1984 
1985 	clk_bulk_disable_unprepare(ARRAY_SIZE(msm_host->bulk_clks),
1986 				   msm_host->bulk_clks);
1987 	if (!IS_ERR(msm_host->bus_clk))
1988 		clk_disable_unprepare(msm_host->bus_clk);
1989 	sdhci_pltfm_free(pdev);
1990 	return 0;
1991 }
1992 
1993 #ifdef CONFIG_PM
sdhci_msm_runtime_suspend(struct device * dev)1994 static int sdhci_msm_runtime_suspend(struct device *dev)
1995 {
1996 	struct sdhci_host *host = dev_get_drvdata(dev);
1997 	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
1998 	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
1999 
2000 	clk_bulk_disable_unprepare(ARRAY_SIZE(msm_host->bulk_clks),
2001 				   msm_host->bulk_clks);
2002 
2003 	return 0;
2004 }
2005 
sdhci_msm_runtime_resume(struct device * dev)2006 static int sdhci_msm_runtime_resume(struct device *dev)
2007 {
2008 	struct sdhci_host *host = dev_get_drvdata(dev);
2009 	struct sdhci_pltfm_host *pltfm_host = sdhci_priv(host);
2010 	struct sdhci_msm_host *msm_host = sdhci_pltfm_priv(pltfm_host);
2011 
2012 	return clk_bulk_prepare_enable(ARRAY_SIZE(msm_host->bulk_clks),
2013 				       msm_host->bulk_clks);
2014 }
2015 #endif
2016 
2017 static const struct dev_pm_ops sdhci_msm_pm_ops = {
2018 	SET_SYSTEM_SLEEP_PM_OPS(pm_runtime_force_suspend,
2019 				pm_runtime_force_resume)
2020 	SET_RUNTIME_PM_OPS(sdhci_msm_runtime_suspend,
2021 			   sdhci_msm_runtime_resume,
2022 			   NULL)
2023 };
2024 
2025 static struct platform_driver sdhci_msm_driver = {
2026 	.probe = sdhci_msm_probe,
2027 	.remove = sdhci_msm_remove,
2028 	.driver = {
2029 		   .name = "sdhci_msm",
2030 		   .of_match_table = sdhci_msm_dt_match,
2031 		   .pm = &sdhci_msm_pm_ops,
2032 	},
2033 };
2034 
2035 module_platform_driver(sdhci_msm_driver);
2036 
2037 MODULE_DESCRIPTION("Qualcomm Secure Digital Host Controller Interface driver");
2038 MODULE_LICENSE("GPL v2");
2039