• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Common Flash Interface support:
3  *   AMD & Fujitsu Standard Vendor Command Set (ID 0x0002)
4  *
5  * Copyright (C) 2000 Crossnet Co. <info@crossnet.co.jp>
6  * Copyright (C) 2004 Arcom Control Systems Ltd <linux@arcom.com>
7  * Copyright (C) 2005 MontaVista Software Inc. <source@mvista.com>
8  *
9  * 2_by_8 routines added by Simon Munton
10  *
11  * 4_by_16 work by Carolyn J. Smith
12  *
13  * XIP support hooks by Vitaly Wool (based on code for Intel flash
14  * by Nicolas Pitre)
15  *
16  * 25/09/2008 Christopher Moore: TopBottom fixup for many Macronix with CFI V1.0
17  *
18  * Occasionally maintained by Thayne Harbaugh tharbaugh at lnxi dot com
19  *
20  * This code is GPL
21  */
22 
23 #include <linux/module.h>
24 #include <linux/types.h>
25 #include <linux/kernel.h>
26 #include <linux/sched.h>
27 #include <asm/io.h>
28 #include <asm/byteorder.h>
29 
30 #include <linux/errno.h>
31 #include <linux/slab.h>
32 #include <linux/delay.h>
33 #include <linux/interrupt.h>
34 #include <linux/reboot.h>
35 #include <linux/of.h>
36 #include <linux/of_platform.h>
37 #include <linux/mtd/map.h>
38 #include <linux/mtd/mtd.h>
39 #include <linux/mtd/cfi.h>
40 #include <linux/mtd/xip.h>
41 
42 #define AMD_BOOTLOC_BUG
43 #define FORCE_WORD_WRITE 0
44 
45 #define MAX_RETRIES 3
46 
47 #define SST49LF004B		0x0060
48 #define SST49LF040B		0x0050
49 #define SST49LF008A		0x005a
50 #define AT49BV6416		0x00d6
51 
52 static int cfi_amdstd_read (struct mtd_info *, loff_t, size_t, size_t *, u_char *);
53 static int cfi_amdstd_write_words(struct mtd_info *, loff_t, size_t, size_t *, const u_char *);
54 static int cfi_amdstd_write_buffers(struct mtd_info *, loff_t, size_t, size_t *, const u_char *);
55 static int cfi_amdstd_erase_chip(struct mtd_info *, struct erase_info *);
56 static int cfi_amdstd_erase_varsize(struct mtd_info *, struct erase_info *);
57 static void cfi_amdstd_sync (struct mtd_info *);
58 static int cfi_amdstd_suspend (struct mtd_info *);
59 static void cfi_amdstd_resume (struct mtd_info *);
60 static int cfi_amdstd_reboot(struct notifier_block *, unsigned long, void *);
61 static int cfi_amdstd_get_fact_prot_info(struct mtd_info *, size_t,
62 					 size_t *, struct otp_info *);
63 static int cfi_amdstd_get_user_prot_info(struct mtd_info *, size_t,
64 					 size_t *, struct otp_info *);
65 static int cfi_amdstd_secsi_read (struct mtd_info *, loff_t, size_t, size_t *, u_char *);
66 static int cfi_amdstd_read_fact_prot_reg(struct mtd_info *, loff_t, size_t,
67 					 size_t *, u_char *);
68 static int cfi_amdstd_read_user_prot_reg(struct mtd_info *, loff_t, size_t,
69 					 size_t *, u_char *);
70 static int cfi_amdstd_write_user_prot_reg(struct mtd_info *, loff_t, size_t,
71 					  size_t *, u_char *);
72 static int cfi_amdstd_lock_user_prot_reg(struct mtd_info *, loff_t, size_t);
73 
74 static int cfi_amdstd_panic_write(struct mtd_info *mtd, loff_t to, size_t len,
75 				  size_t *retlen, const u_char *buf);
76 
77 static void cfi_amdstd_destroy(struct mtd_info *);
78 
79 struct mtd_info *cfi_cmdset_0002(struct map_info *, int);
80 static struct mtd_info *cfi_amdstd_setup (struct mtd_info *);
81 
82 static int get_chip(struct map_info *map, struct flchip *chip, unsigned long adr, int mode);
83 static void put_chip(struct map_info *map, struct flchip *chip, unsigned long adr);
84 #include "fwh_lock.h"
85 
86 static int cfi_atmel_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len);
87 static int cfi_atmel_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len);
88 
89 static int cfi_ppb_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len);
90 static int cfi_ppb_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len);
91 static int cfi_ppb_is_locked(struct mtd_info *mtd, loff_t ofs, uint64_t len);
92 
93 static struct mtd_chip_driver cfi_amdstd_chipdrv = {
94 	.probe		= NULL, /* Not usable directly */
95 	.destroy	= cfi_amdstd_destroy,
96 	.name		= "cfi_cmdset_0002",
97 	.module		= THIS_MODULE
98 };
99 
100 
101 /* #define DEBUG_CFI_FEATURES */
102 
103 
104 #ifdef DEBUG_CFI_FEATURES
cfi_tell_features(struct cfi_pri_amdstd * extp)105 static void cfi_tell_features(struct cfi_pri_amdstd *extp)
106 {
107 	const char* erase_suspend[3] = {
108 		"Not supported", "Read only", "Read/write"
109 	};
110 	const char* top_bottom[6] = {
111 		"No WP", "8x8KiB sectors at top & bottom, no WP",
112 		"Bottom boot", "Top boot",
113 		"Uniform, Bottom WP", "Uniform, Top WP"
114 	};
115 
116 	printk("  Silicon revision: %d\n", extp->SiliconRevision >> 1);
117 	printk("  Address sensitive unlock: %s\n",
118 	       (extp->SiliconRevision & 1) ? "Not required" : "Required");
119 
120 	if (extp->EraseSuspend < ARRAY_SIZE(erase_suspend))
121 		printk("  Erase Suspend: %s\n", erase_suspend[extp->EraseSuspend]);
122 	else
123 		printk("  Erase Suspend: Unknown value %d\n", extp->EraseSuspend);
124 
125 	if (extp->BlkProt == 0)
126 		printk("  Block protection: Not supported\n");
127 	else
128 		printk("  Block protection: %d sectors per group\n", extp->BlkProt);
129 
130 
131 	printk("  Temporary block unprotect: %s\n",
132 	       extp->TmpBlkUnprotect ? "Supported" : "Not supported");
133 	printk("  Block protect/unprotect scheme: %d\n", extp->BlkProtUnprot);
134 	printk("  Number of simultaneous operations: %d\n", extp->SimultaneousOps);
135 	printk("  Burst mode: %s\n",
136 	       extp->BurstMode ? "Supported" : "Not supported");
137 	if (extp->PageMode == 0)
138 		printk("  Page mode: Not supported\n");
139 	else
140 		printk("  Page mode: %d word page\n", extp->PageMode << 2);
141 
142 	printk("  Vpp Supply Minimum Program/Erase Voltage: %d.%d V\n",
143 	       extp->VppMin >> 4, extp->VppMin & 0xf);
144 	printk("  Vpp Supply Maximum Program/Erase Voltage: %d.%d V\n",
145 	       extp->VppMax >> 4, extp->VppMax & 0xf);
146 
147 	if (extp->TopBottom < ARRAY_SIZE(top_bottom))
148 		printk("  Top/Bottom Boot Block: %s\n", top_bottom[extp->TopBottom]);
149 	else
150 		printk("  Top/Bottom Boot Block: Unknown value %d\n", extp->TopBottom);
151 }
152 #endif
153 
154 #ifdef AMD_BOOTLOC_BUG
155 /* Wheee. Bring me the head of someone at AMD. */
fixup_amd_bootblock(struct mtd_info * mtd)156 static void fixup_amd_bootblock(struct mtd_info *mtd)
157 {
158 	struct map_info *map = mtd->priv;
159 	struct cfi_private *cfi = map->fldrv_priv;
160 	struct cfi_pri_amdstd *extp = cfi->cmdset_priv;
161 	__u8 major = extp->MajorVersion;
162 	__u8 minor = extp->MinorVersion;
163 
164 	if (((major << 8) | minor) < 0x3131) {
165 		/* CFI version 1.0 => don't trust bootloc */
166 
167 		pr_debug("%s: JEDEC Vendor ID is 0x%02X Device ID is 0x%02X\n",
168 			map->name, cfi->mfr, cfi->id);
169 
170 		/* AFAICS all 29LV400 with a bottom boot block have a device ID
171 		 * of 0x22BA in 16-bit mode and 0xBA in 8-bit mode.
172 		 * These were badly detected as they have the 0x80 bit set
173 		 * so treat them as a special case.
174 		 */
175 		if (((cfi->id == 0xBA) || (cfi->id == 0x22BA)) &&
176 
177 			/* Macronix added CFI to their 2nd generation
178 			 * MX29LV400C B/T but AFAICS no other 29LV400 (AMD,
179 			 * Fujitsu, Spansion, EON, ESI and older Macronix)
180 			 * has CFI.
181 			 *
182 			 * Therefore also check the manufacturer.
183 			 * This reduces the risk of false detection due to
184 			 * the 8-bit device ID.
185 			 */
186 			(cfi->mfr == CFI_MFR_MACRONIX)) {
187 			pr_debug("%s: Macronix MX29LV400C with bottom boot block"
188 				" detected\n", map->name);
189 			extp->TopBottom = 2;	/* bottom boot */
190 		} else
191 		if (cfi->id & 0x80) {
192 			printk(KERN_WARNING "%s: JEDEC Device ID is 0x%02X. Assuming broken CFI table.\n", map->name, cfi->id);
193 			extp->TopBottom = 3;	/* top boot */
194 		} else {
195 			extp->TopBottom = 2;	/* bottom boot */
196 		}
197 
198 		pr_debug("%s: AMD CFI PRI V%c.%c has no boot block field;"
199 			" deduced %s from Device ID\n", map->name, major, minor,
200 			extp->TopBottom == 2 ? "bottom" : "top");
201 	}
202 }
203 #endif
204 
fixup_use_write_buffers(struct mtd_info * mtd)205 static void fixup_use_write_buffers(struct mtd_info *mtd)
206 {
207 	struct map_info *map = mtd->priv;
208 	struct cfi_private *cfi = map->fldrv_priv;
209 	if (cfi->cfiq->BufWriteTimeoutTyp) {
210 		pr_debug("Using buffer write method\n");
211 		mtd->_write = cfi_amdstd_write_buffers;
212 	}
213 }
214 
215 /* Atmel chips don't use the same PRI format as AMD chips */
fixup_convert_atmel_pri(struct mtd_info * mtd)216 static void fixup_convert_atmel_pri(struct mtd_info *mtd)
217 {
218 	struct map_info *map = mtd->priv;
219 	struct cfi_private *cfi = map->fldrv_priv;
220 	struct cfi_pri_amdstd *extp = cfi->cmdset_priv;
221 	struct cfi_pri_atmel atmel_pri;
222 
223 	memcpy(&atmel_pri, extp, sizeof(atmel_pri));
224 	memset((char *)extp + 5, 0, sizeof(*extp) - 5);
225 
226 	if (atmel_pri.Features & 0x02)
227 		extp->EraseSuspend = 2;
228 
229 	/* Some chips got it backwards... */
230 	if (cfi->id == AT49BV6416) {
231 		if (atmel_pri.BottomBoot)
232 			extp->TopBottom = 3;
233 		else
234 			extp->TopBottom = 2;
235 	} else {
236 		if (atmel_pri.BottomBoot)
237 			extp->TopBottom = 2;
238 		else
239 			extp->TopBottom = 3;
240 	}
241 
242 	/* burst write mode not supported */
243 	cfi->cfiq->BufWriteTimeoutTyp = 0;
244 	cfi->cfiq->BufWriteTimeoutMax = 0;
245 }
246 
fixup_use_secsi(struct mtd_info * mtd)247 static void fixup_use_secsi(struct mtd_info *mtd)
248 {
249 	/* Setup for chips with a secsi area */
250 	mtd->_read_user_prot_reg = cfi_amdstd_secsi_read;
251 	mtd->_read_fact_prot_reg = cfi_amdstd_secsi_read;
252 }
253 
fixup_use_erase_chip(struct mtd_info * mtd)254 static void fixup_use_erase_chip(struct mtd_info *mtd)
255 {
256 	struct map_info *map = mtd->priv;
257 	struct cfi_private *cfi = map->fldrv_priv;
258 	if ((cfi->cfiq->NumEraseRegions == 1) &&
259 		((cfi->cfiq->EraseRegionInfo[0] & 0xffff) == 0)) {
260 		mtd->_erase = cfi_amdstd_erase_chip;
261 	}
262 
263 }
264 
265 /*
266  * Some Atmel chips (e.g. the AT49BV6416) power-up with all sectors
267  * locked by default.
268  */
fixup_use_atmel_lock(struct mtd_info * mtd)269 static void fixup_use_atmel_lock(struct mtd_info *mtd)
270 {
271 	mtd->_lock = cfi_atmel_lock;
272 	mtd->_unlock = cfi_atmel_unlock;
273 	mtd->flags |= MTD_POWERUP_LOCK;
274 }
275 
fixup_old_sst_eraseregion(struct mtd_info * mtd)276 static void fixup_old_sst_eraseregion(struct mtd_info *mtd)
277 {
278 	struct map_info *map = mtd->priv;
279 	struct cfi_private *cfi = map->fldrv_priv;
280 
281 	/*
282 	 * These flashes report two separate eraseblock regions based on the
283 	 * sector_erase-size and block_erase-size, although they both operate on the
284 	 * same memory. This is not allowed according to CFI, so we just pick the
285 	 * sector_erase-size.
286 	 */
287 	cfi->cfiq->NumEraseRegions = 1;
288 }
289 
fixup_sst39vf(struct mtd_info * mtd)290 static void fixup_sst39vf(struct mtd_info *mtd)
291 {
292 	struct map_info *map = mtd->priv;
293 	struct cfi_private *cfi = map->fldrv_priv;
294 
295 	fixup_old_sst_eraseregion(mtd);
296 
297 	cfi->addr_unlock1 = 0x5555;
298 	cfi->addr_unlock2 = 0x2AAA;
299 }
300 
fixup_sst39vf_rev_b(struct mtd_info * mtd)301 static void fixup_sst39vf_rev_b(struct mtd_info *mtd)
302 {
303 	struct map_info *map = mtd->priv;
304 	struct cfi_private *cfi = map->fldrv_priv;
305 
306 	fixup_old_sst_eraseregion(mtd);
307 
308 	cfi->addr_unlock1 = 0x555;
309 	cfi->addr_unlock2 = 0x2AA;
310 
311 	cfi->sector_erase_cmd = CMD(0x50);
312 }
313 
fixup_sst38vf640x_sectorsize(struct mtd_info * mtd)314 static void fixup_sst38vf640x_sectorsize(struct mtd_info *mtd)
315 {
316 	struct map_info *map = mtd->priv;
317 	struct cfi_private *cfi = map->fldrv_priv;
318 
319 	fixup_sst39vf_rev_b(mtd);
320 
321 	/*
322 	 * CFI reports 1024 sectors (0x03ff+1) of 64KBytes (0x0100*256) where
323 	 * it should report a size of 8KBytes (0x0020*256).
324 	 */
325 	cfi->cfiq->EraseRegionInfo[0] = 0x002003ff;
326 	pr_warn("%s: Bad 38VF640x CFI data; adjusting sector size from 64 to 8KiB\n",
327 		mtd->name);
328 }
329 
fixup_s29gl064n_sectors(struct mtd_info * mtd)330 static void fixup_s29gl064n_sectors(struct mtd_info *mtd)
331 {
332 	struct map_info *map = mtd->priv;
333 	struct cfi_private *cfi = map->fldrv_priv;
334 
335 	if ((cfi->cfiq->EraseRegionInfo[0] & 0xffff) == 0x003f) {
336 		cfi->cfiq->EraseRegionInfo[0] |= 0x0040;
337 		pr_warn("%s: Bad S29GL064N CFI data; adjust from 64 to 128 sectors\n",
338 			mtd->name);
339 	}
340 }
341 
fixup_s29gl032n_sectors(struct mtd_info * mtd)342 static void fixup_s29gl032n_sectors(struct mtd_info *mtd)
343 {
344 	struct map_info *map = mtd->priv;
345 	struct cfi_private *cfi = map->fldrv_priv;
346 
347 	if ((cfi->cfiq->EraseRegionInfo[1] & 0xffff) == 0x007e) {
348 		cfi->cfiq->EraseRegionInfo[1] &= ~0x0040;
349 		pr_warn("%s: Bad S29GL032N CFI data; adjust from 127 to 63 sectors\n",
350 			mtd->name);
351 	}
352 }
353 
fixup_s29ns512p_sectors(struct mtd_info * mtd)354 static void fixup_s29ns512p_sectors(struct mtd_info *mtd)
355 {
356 	struct map_info *map = mtd->priv;
357 	struct cfi_private *cfi = map->fldrv_priv;
358 
359 	/*
360 	 *  S29NS512P flash uses more than 8bits to report number of sectors,
361 	 * which is not permitted by CFI.
362 	 */
363 	cfi->cfiq->EraseRegionInfo[0] = 0x020001ff;
364 	pr_warn("%s: Bad S29NS512P CFI data; adjust to 512 sectors\n",
365 		mtd->name);
366 }
367 
368 /* Used to fix CFI-Tables of chips without Extended Query Tables */
369 static struct cfi_fixup cfi_nopri_fixup_table[] = {
370 	{ CFI_MFR_SST, 0x234a, fixup_sst39vf }, /* SST39VF1602 */
371 	{ CFI_MFR_SST, 0x234b, fixup_sst39vf }, /* SST39VF1601 */
372 	{ CFI_MFR_SST, 0x235a, fixup_sst39vf }, /* SST39VF3202 */
373 	{ CFI_MFR_SST, 0x235b, fixup_sst39vf }, /* SST39VF3201 */
374 	{ CFI_MFR_SST, 0x235c, fixup_sst39vf_rev_b }, /* SST39VF3202B */
375 	{ CFI_MFR_SST, 0x235d, fixup_sst39vf_rev_b }, /* SST39VF3201B */
376 	{ CFI_MFR_SST, 0x236c, fixup_sst39vf_rev_b }, /* SST39VF6402B */
377 	{ CFI_MFR_SST, 0x236d, fixup_sst39vf_rev_b }, /* SST39VF6401B */
378 	{ 0, 0, NULL }
379 };
380 
381 static struct cfi_fixup cfi_fixup_table[] = {
382 	{ CFI_MFR_ATMEL, CFI_ID_ANY, fixup_convert_atmel_pri },
383 #ifdef AMD_BOOTLOC_BUG
384 	{ CFI_MFR_AMD, CFI_ID_ANY, fixup_amd_bootblock },
385 	{ CFI_MFR_AMIC, CFI_ID_ANY, fixup_amd_bootblock },
386 	{ CFI_MFR_MACRONIX, CFI_ID_ANY, fixup_amd_bootblock },
387 #endif
388 	{ CFI_MFR_AMD, 0x0050, fixup_use_secsi },
389 	{ CFI_MFR_AMD, 0x0053, fixup_use_secsi },
390 	{ CFI_MFR_AMD, 0x0055, fixup_use_secsi },
391 	{ CFI_MFR_AMD, 0x0056, fixup_use_secsi },
392 	{ CFI_MFR_AMD, 0x005C, fixup_use_secsi },
393 	{ CFI_MFR_AMD, 0x005F, fixup_use_secsi },
394 	{ CFI_MFR_AMD, 0x0c01, fixup_s29gl064n_sectors },
395 	{ CFI_MFR_AMD, 0x1301, fixup_s29gl064n_sectors },
396 	{ CFI_MFR_AMD, 0x1a00, fixup_s29gl032n_sectors },
397 	{ CFI_MFR_AMD, 0x1a01, fixup_s29gl032n_sectors },
398 	{ CFI_MFR_AMD, 0x3f00, fixup_s29ns512p_sectors },
399 	{ CFI_MFR_SST, 0x536a, fixup_sst38vf640x_sectorsize }, /* SST38VF6402 */
400 	{ CFI_MFR_SST, 0x536b, fixup_sst38vf640x_sectorsize }, /* SST38VF6401 */
401 	{ CFI_MFR_SST, 0x536c, fixup_sst38vf640x_sectorsize }, /* SST38VF6404 */
402 	{ CFI_MFR_SST, 0x536d, fixup_sst38vf640x_sectorsize }, /* SST38VF6403 */
403 #if !FORCE_WORD_WRITE
404 	{ CFI_MFR_ANY, CFI_ID_ANY, fixup_use_write_buffers },
405 #endif
406 	{ 0, 0, NULL }
407 };
408 static struct cfi_fixup jedec_fixup_table[] = {
409 	{ CFI_MFR_SST, SST49LF004B, fixup_use_fwh_lock },
410 	{ CFI_MFR_SST, SST49LF040B, fixup_use_fwh_lock },
411 	{ CFI_MFR_SST, SST49LF008A, fixup_use_fwh_lock },
412 	{ 0, 0, NULL }
413 };
414 
415 static struct cfi_fixup fixup_table[] = {
416 	/* The CFI vendor ids and the JEDEC vendor IDs appear
417 	 * to be common.  It is like the devices id's are as
418 	 * well.  This table is to pick all cases where
419 	 * we know that is the case.
420 	 */
421 	{ CFI_MFR_ANY, CFI_ID_ANY, fixup_use_erase_chip },
422 	{ CFI_MFR_ATMEL, AT49BV6416, fixup_use_atmel_lock },
423 	{ 0, 0, NULL }
424 };
425 
426 
cfi_fixup_major_minor(struct cfi_private * cfi,struct cfi_pri_amdstd * extp)427 static void cfi_fixup_major_minor(struct cfi_private *cfi,
428 				  struct cfi_pri_amdstd *extp)
429 {
430 	if (cfi->mfr == CFI_MFR_SAMSUNG) {
431 		if ((extp->MajorVersion == '0' && extp->MinorVersion == '0') ||
432 		    (extp->MajorVersion == '3' && extp->MinorVersion == '3')) {
433 			/*
434 			 * Samsung K8P2815UQB and K8D6x16UxM chips
435 			 * report major=0 / minor=0.
436 			 * K8D3x16UxC chips report major=3 / minor=3.
437 			 */
438 			printk(KERN_NOTICE "  Fixing Samsung's Amd/Fujitsu"
439 			       " Extended Query version to 1.%c\n",
440 			       extp->MinorVersion);
441 			extp->MajorVersion = '1';
442 		}
443 	}
444 
445 	/*
446 	 * SST 38VF640x chips report major=0xFF / minor=0xFF.
447 	 */
448 	if (cfi->mfr == CFI_MFR_SST && (cfi->id >> 4) == 0x0536) {
449 		extp->MajorVersion = '1';
450 		extp->MinorVersion = '0';
451 	}
452 }
453 
is_m29ew(struct cfi_private * cfi)454 static int is_m29ew(struct cfi_private *cfi)
455 {
456 	if (cfi->mfr == CFI_MFR_INTEL &&
457 	    ((cfi->device_type == CFI_DEVICETYPE_X8 && (cfi->id & 0xff) == 0x7e) ||
458 	     (cfi->device_type == CFI_DEVICETYPE_X16 && cfi->id == 0x227e)))
459 		return 1;
460 	return 0;
461 }
462 
463 /*
464  * From TN-13-07: Patching the Linux Kernel and U-Boot for M29 Flash, page 20:
465  * Some revisions of the M29EW suffer from erase suspend hang ups. In
466  * particular, it can occur when the sequence
467  * Erase Confirm -> Suspend -> Program -> Resume
468  * causes a lockup due to internal timing issues. The consequence is that the
469  * erase cannot be resumed without inserting a dummy command after programming
470  * and prior to resuming. [...] The work-around is to issue a dummy write cycle
471  * that writes an F0 command code before the RESUME command.
472  */
cfi_fixup_m29ew_erase_suspend(struct map_info * map,unsigned long adr)473 static void cfi_fixup_m29ew_erase_suspend(struct map_info *map,
474 					  unsigned long adr)
475 {
476 	struct cfi_private *cfi = map->fldrv_priv;
477 	/* before resume, insert a dummy 0xF0 cycle for Micron M29EW devices */
478 	if (is_m29ew(cfi))
479 		map_write(map, CMD(0xF0), adr);
480 }
481 
482 /*
483  * From TN-13-07: Patching the Linux Kernel and U-Boot for M29 Flash, page 22:
484  *
485  * Some revisions of the M29EW (for example, A1 and A2 step revisions)
486  * are affected by a problem that could cause a hang up when an ERASE SUSPEND
487  * command is issued after an ERASE RESUME operation without waiting for a
488  * minimum delay.  The result is that once the ERASE seems to be completed
489  * (no bits are toggling), the contents of the Flash memory block on which
490  * the erase was ongoing could be inconsistent with the expected values
491  * (typically, the array value is stuck to the 0xC0, 0xC4, 0x80, or 0x84
492  * values), causing a consequent failure of the ERASE operation.
493  * The occurrence of this issue could be high, especially when file system
494  * operations on the Flash are intensive.  As a result, it is recommended
495  * that a patch be applied.  Intensive file system operations can cause many
496  * calls to the garbage routine to free Flash space (also by erasing physical
497  * Flash blocks) and as a result, many consecutive SUSPEND and RESUME
498  * commands can occur.  The problem disappears when a delay is inserted after
499  * the RESUME command by using the udelay() function available in Linux.
500  * The DELAY value must be tuned based on the customer's platform.
501  * The maximum value that fixes the problem in all cases is 500us.
502  * But, in our experience, a delay of 30 µs to 50 µs is sufficient
503  * in most cases.
504  * We have chosen 500µs because this latency is acceptable.
505  */
cfi_fixup_m29ew_delay_after_resume(struct cfi_private * cfi)506 static void cfi_fixup_m29ew_delay_after_resume(struct cfi_private *cfi)
507 {
508 	/*
509 	 * Resolving the Delay After Resume Issue see Micron TN-13-07
510 	 * Worst case delay must be 500µs but 30-50µs should be ok as well
511 	 */
512 	if (is_m29ew(cfi))
513 		cfi_udelay(500);
514 }
515 
cfi_cmdset_0002(struct map_info * map,int primary)516 struct mtd_info *cfi_cmdset_0002(struct map_info *map, int primary)
517 {
518 	struct cfi_private *cfi = map->fldrv_priv;
519 	struct device_node __maybe_unused *np = map->device_node;
520 	struct mtd_info *mtd;
521 	int i;
522 
523 	mtd = kzalloc(sizeof(*mtd), GFP_KERNEL);
524 	if (!mtd)
525 		return NULL;
526 	mtd->priv = map;
527 	mtd->type = MTD_NORFLASH;
528 
529 	/* Fill in the default mtd operations */
530 	mtd->_erase   = cfi_amdstd_erase_varsize;
531 	mtd->_write   = cfi_amdstd_write_words;
532 	mtd->_read    = cfi_amdstd_read;
533 	mtd->_sync    = cfi_amdstd_sync;
534 	mtd->_suspend = cfi_amdstd_suspend;
535 	mtd->_resume  = cfi_amdstd_resume;
536 	mtd->_read_user_prot_reg = cfi_amdstd_read_user_prot_reg;
537 	mtd->_read_fact_prot_reg = cfi_amdstd_read_fact_prot_reg;
538 	mtd->_get_fact_prot_info = cfi_amdstd_get_fact_prot_info;
539 	mtd->_get_user_prot_info = cfi_amdstd_get_user_prot_info;
540 	mtd->_write_user_prot_reg = cfi_amdstd_write_user_prot_reg;
541 	mtd->_lock_user_prot_reg = cfi_amdstd_lock_user_prot_reg;
542 	mtd->flags   = MTD_CAP_NORFLASH;
543 	mtd->name    = map->name;
544 	mtd->writesize = 1;
545 	mtd->writebufsize = cfi_interleave(cfi) << cfi->cfiq->MaxBufWriteSize;
546 
547 	pr_debug("MTD %s(): write buffer size %d\n", __func__,
548 			mtd->writebufsize);
549 
550 	mtd->_panic_write = cfi_amdstd_panic_write;
551 	mtd->reboot_notifier.notifier_call = cfi_amdstd_reboot;
552 
553 	if (cfi->cfi_mode==CFI_MODE_CFI){
554 		unsigned char bootloc;
555 		__u16 adr = primary?cfi->cfiq->P_ADR:cfi->cfiq->A_ADR;
556 		struct cfi_pri_amdstd *extp;
557 
558 		extp = (struct cfi_pri_amdstd*)cfi_read_pri(map, adr, sizeof(*extp), "Amd/Fujitsu");
559 		if (extp) {
560 			/*
561 			 * It's a real CFI chip, not one for which the probe
562 			 * routine faked a CFI structure.
563 			 */
564 			cfi_fixup_major_minor(cfi, extp);
565 
566 			/*
567 			 * Valid primary extension versions are: 1.0, 1.1, 1.2, 1.3, 1.4, 1.5
568 			 * see: http://cs.ozerki.net/zap/pub/axim-x5/docs/cfi_r20.pdf, page 19
569 			 *      http://www.spansion.com/Support/AppNotes/cfi_100_20011201.pdf
570 			 *      http://www.spansion.com/Support/Datasheets/s29ws-p_00_a12_e.pdf
571 			 *      http://www.spansion.com/Support/Datasheets/S29GL_128S_01GS_00_02_e.pdf
572 			 */
573 			if (extp->MajorVersion != '1' ||
574 			    (extp->MajorVersion == '1' && (extp->MinorVersion < '0' || extp->MinorVersion > '5'))) {
575 				printk(KERN_ERR "  Unknown Amd/Fujitsu Extended Query "
576 				       "version %c.%c (%#02x/%#02x).\n",
577 				       extp->MajorVersion, extp->MinorVersion,
578 				       extp->MajorVersion, extp->MinorVersion);
579 				kfree(extp);
580 				kfree(mtd);
581 				return NULL;
582 			}
583 
584 			printk(KERN_INFO "  Amd/Fujitsu Extended Query version %c.%c.\n",
585 			       extp->MajorVersion, extp->MinorVersion);
586 
587 			/* Install our own private info structure */
588 			cfi->cmdset_priv = extp;
589 
590 			/* Apply cfi device specific fixups */
591 			cfi_fixup(mtd, cfi_fixup_table);
592 
593 #ifdef DEBUG_CFI_FEATURES
594 			/* Tell the user about it in lots of lovely detail */
595 			cfi_tell_features(extp);
596 #endif
597 
598 #ifdef CONFIG_OF
599 			if (np && of_property_read_bool(
600 				    np, "use-advanced-sector-protection")
601 			    && extp->BlkProtUnprot == 8) {
602 				printk(KERN_INFO "  Advanced Sector Protection (PPB Locking) supported\n");
603 				mtd->_lock = cfi_ppb_lock;
604 				mtd->_unlock = cfi_ppb_unlock;
605 				mtd->_is_locked = cfi_ppb_is_locked;
606 			}
607 #endif
608 
609 			bootloc = extp->TopBottom;
610 			if ((bootloc < 2) || (bootloc > 5)) {
611 				printk(KERN_WARNING "%s: CFI contains unrecognised boot "
612 				       "bank location (%d). Assuming bottom.\n",
613 				       map->name, bootloc);
614 				bootloc = 2;
615 			}
616 
617 			if (bootloc == 3 && cfi->cfiq->NumEraseRegions > 1) {
618 				printk(KERN_WARNING "%s: Swapping erase regions for top-boot CFI table.\n", map->name);
619 
620 				for (i=0; i<cfi->cfiq->NumEraseRegions / 2; i++) {
621 					int j = (cfi->cfiq->NumEraseRegions-1)-i;
622 
623 					swap(cfi->cfiq->EraseRegionInfo[i],
624 					     cfi->cfiq->EraseRegionInfo[j]);
625 				}
626 			}
627 			/* Set the default CFI lock/unlock addresses */
628 			cfi->addr_unlock1 = 0x555;
629 			cfi->addr_unlock2 = 0x2aa;
630 		}
631 		cfi_fixup(mtd, cfi_nopri_fixup_table);
632 
633 		if (!cfi->addr_unlock1 || !cfi->addr_unlock2) {
634 			kfree(mtd);
635 			return NULL;
636 		}
637 
638 	} /* CFI mode */
639 	else if (cfi->cfi_mode == CFI_MODE_JEDEC) {
640 		/* Apply jedec specific fixups */
641 		cfi_fixup(mtd, jedec_fixup_table);
642 	}
643 	/* Apply generic fixups */
644 	cfi_fixup(mtd, fixup_table);
645 
646 	for (i=0; i< cfi->numchips; i++) {
647 		cfi->chips[i].word_write_time = 1<<cfi->cfiq->WordWriteTimeoutTyp;
648 		cfi->chips[i].buffer_write_time = 1<<cfi->cfiq->BufWriteTimeoutTyp;
649 		cfi->chips[i].erase_time = 1<<cfi->cfiq->BlockEraseTimeoutTyp;
650 		/*
651 		 * First calculate the timeout max according to timeout field
652 		 * of struct cfi_ident that probed from chip's CFI aera, if
653 		 * available. Specify a minimum of 2000us, in case the CFI data
654 		 * is wrong.
655 		 */
656 		if (cfi->cfiq->BufWriteTimeoutTyp &&
657 		    cfi->cfiq->BufWriteTimeoutMax)
658 			cfi->chips[i].buffer_write_time_max =
659 				1 << (cfi->cfiq->BufWriteTimeoutTyp +
660 				      cfi->cfiq->BufWriteTimeoutMax);
661 		else
662 			cfi->chips[i].buffer_write_time_max = 0;
663 
664 		cfi->chips[i].buffer_write_time_max =
665 			max(cfi->chips[i].buffer_write_time_max, 2000);
666 
667 		cfi->chips[i].ref_point_counter = 0;
668 		init_waitqueue_head(&(cfi->chips[i].wq));
669 	}
670 
671 	map->fldrv = &cfi_amdstd_chipdrv;
672 
673 	return cfi_amdstd_setup(mtd);
674 }
675 struct mtd_info *cfi_cmdset_0006(struct map_info *map, int primary) __attribute__((alias("cfi_cmdset_0002")));
676 struct mtd_info *cfi_cmdset_0701(struct map_info *map, int primary) __attribute__((alias("cfi_cmdset_0002")));
677 EXPORT_SYMBOL_GPL(cfi_cmdset_0002);
678 EXPORT_SYMBOL_GPL(cfi_cmdset_0006);
679 EXPORT_SYMBOL_GPL(cfi_cmdset_0701);
680 
cfi_amdstd_setup(struct mtd_info * mtd)681 static struct mtd_info *cfi_amdstd_setup(struct mtd_info *mtd)
682 {
683 	struct map_info *map = mtd->priv;
684 	struct cfi_private *cfi = map->fldrv_priv;
685 	unsigned long devsize = (1<<cfi->cfiq->DevSize) * cfi->interleave;
686 	unsigned long offset = 0;
687 	int i,j;
688 
689 	printk(KERN_NOTICE "number of %s chips: %d\n",
690 	       (cfi->cfi_mode == CFI_MODE_CFI)?"CFI":"JEDEC",cfi->numchips);
691 	/* Select the correct geometry setup */
692 	mtd->size = devsize * cfi->numchips;
693 
694 	mtd->numeraseregions = cfi->cfiq->NumEraseRegions * cfi->numchips;
695 	mtd->eraseregions = kmalloc_array(mtd->numeraseregions,
696 					  sizeof(struct mtd_erase_region_info),
697 					  GFP_KERNEL);
698 	if (!mtd->eraseregions)
699 		goto setup_err;
700 
701 	for (i=0; i<cfi->cfiq->NumEraseRegions; i++) {
702 		unsigned long ernum, ersize;
703 		ersize = ((cfi->cfiq->EraseRegionInfo[i] >> 8) & ~0xff) * cfi->interleave;
704 		ernum = (cfi->cfiq->EraseRegionInfo[i] & 0xffff) + 1;
705 
706 		if (mtd->erasesize < ersize) {
707 			mtd->erasesize = ersize;
708 		}
709 		for (j=0; j<cfi->numchips; j++) {
710 			mtd->eraseregions[(j*cfi->cfiq->NumEraseRegions)+i].offset = (j*devsize)+offset;
711 			mtd->eraseregions[(j*cfi->cfiq->NumEraseRegions)+i].erasesize = ersize;
712 			mtd->eraseregions[(j*cfi->cfiq->NumEraseRegions)+i].numblocks = ernum;
713 		}
714 		offset += (ersize * ernum);
715 	}
716 	if (offset != devsize) {
717 		/* Argh */
718 		printk(KERN_WARNING "Sum of regions (%lx) != total size of set of interleaved chips (%lx)\n", offset, devsize);
719 		goto setup_err;
720 	}
721 
722 	__module_get(THIS_MODULE);
723 	register_reboot_notifier(&mtd->reboot_notifier);
724 	return mtd;
725 
726  setup_err:
727 	kfree(mtd->eraseregions);
728 	kfree(mtd);
729 	kfree(cfi->cmdset_priv);
730 	return NULL;
731 }
732 
733 /*
734  * Return true if the chip is ready.
735  *
736  * Ready is one of: read mode, query mode, erase-suspend-read mode (in any
737  * non-suspended sector) and is indicated by no toggle bits toggling.
738  *
739  * Note that anything more complicated than checking if no bits are toggling
740  * (including checking DQ5 for an error status) is tricky to get working
741  * correctly and is therefore not done	(particularly with interleaved chips
742  * as each chip must be checked independently of the others).
743  */
chip_ready(struct map_info * map,unsigned long addr)744 static int __xipram chip_ready(struct map_info *map, unsigned long addr)
745 {
746 	map_word d, t;
747 
748 	d = map_read(map, addr);
749 	t = map_read(map, addr);
750 
751 	return map_word_equal(map, d, t);
752 }
753 
754 /*
755  * Return true if the chip is ready and has the correct value.
756  *
757  * Ready is one of: read mode, query mode, erase-suspend-read mode (in any
758  * non-suspended sector) and it is indicated by no bits toggling.
759  *
760  * Error are indicated by toggling bits or bits held with the wrong value,
761  * or with bits toggling.
762  *
763  * Note that anything more complicated than checking if no bits are toggling
764  * (including checking DQ5 for an error status) is tricky to get working
765  * correctly and is therefore not done	(particularly with interleaved chips
766  * as each chip must be checked independently of the others).
767  *
768  */
chip_good(struct map_info * map,unsigned long addr,map_word expected)769 static int __xipram chip_good(struct map_info *map, unsigned long addr, map_word expected)
770 {
771 	map_word oldd, curd;
772 
773 	oldd = map_read(map, addr);
774 	curd = map_read(map, addr);
775 
776 	return	map_word_equal(map, oldd, curd) &&
777 		map_word_equal(map, curd, expected);
778 }
779 
get_chip(struct map_info * map,struct flchip * chip,unsigned long adr,int mode)780 static int get_chip(struct map_info *map, struct flchip *chip, unsigned long adr, int mode)
781 {
782 	DECLARE_WAITQUEUE(wait, current);
783 	struct cfi_private *cfi = map->fldrv_priv;
784 	unsigned long timeo;
785 	struct cfi_pri_amdstd *cfip = (struct cfi_pri_amdstd *)cfi->cmdset_priv;
786 
787  resettime:
788 	timeo = jiffies + HZ;
789  retry:
790 	switch (chip->state) {
791 
792 	case FL_STATUS:
793 		for (;;) {
794 			if (chip_ready(map, adr))
795 				break;
796 
797 			if (time_after(jiffies, timeo)) {
798 				printk(KERN_ERR "Waiting for chip to be ready timed out.\n");
799 				return -EIO;
800 			}
801 			mutex_unlock(&chip->mutex);
802 			cfi_udelay(1);
803 			mutex_lock(&chip->mutex);
804 			/* Someone else might have been playing with it. */
805 			goto retry;
806 		}
807 
808 	case FL_READY:
809 	case FL_CFI_QUERY:
810 	case FL_JEDEC_QUERY:
811 		return 0;
812 
813 	case FL_ERASING:
814 		if (!cfip || !(cfip->EraseSuspend & (0x1|0x2)) ||
815 		    !(mode == FL_READY || mode == FL_POINT ||
816 		    (mode == FL_WRITING && (cfip->EraseSuspend & 0x2))))
817 			goto sleep;
818 
819 		/* Do not allow suspend iff read/write to EB address */
820 		if ((adr & chip->in_progress_block_mask) ==
821 		    chip->in_progress_block_addr)
822 			goto sleep;
823 
824 		/* Erase suspend */
825 		/* It's harmless to issue the Erase-Suspend and Erase-Resume
826 		 * commands when the erase algorithm isn't in progress. */
827 		map_write(map, CMD(0xB0), chip->in_progress_block_addr);
828 		chip->oldstate = FL_ERASING;
829 		chip->state = FL_ERASE_SUSPENDING;
830 		chip->erase_suspended = 1;
831 		for (;;) {
832 			if (chip_ready(map, adr))
833 				break;
834 
835 			if (time_after(jiffies, timeo)) {
836 				/* Should have suspended the erase by now.
837 				 * Send an Erase-Resume command as either
838 				 * there was an error (so leave the erase
839 				 * routine to recover from it) or we trying to
840 				 * use the erase-in-progress sector. */
841 				put_chip(map, chip, adr);
842 				printk(KERN_ERR "MTD %s(): chip not ready after erase suspend\n", __func__);
843 				return -EIO;
844 			}
845 
846 			mutex_unlock(&chip->mutex);
847 			cfi_udelay(1);
848 			mutex_lock(&chip->mutex);
849 			/* Nobody will touch it while it's in state FL_ERASE_SUSPENDING.
850 			   So we can just loop here. */
851 		}
852 		chip->state = FL_READY;
853 		return 0;
854 
855 	case FL_XIP_WHILE_ERASING:
856 		if (mode != FL_READY && mode != FL_POINT &&
857 		    (!cfip || !(cfip->EraseSuspend&2)))
858 			goto sleep;
859 		chip->oldstate = chip->state;
860 		chip->state = FL_READY;
861 		return 0;
862 
863 	case FL_SHUTDOWN:
864 		/* The machine is rebooting */
865 		return -EIO;
866 
867 	case FL_POINT:
868 		/* Only if there's no operation suspended... */
869 		if (mode == FL_READY && chip->oldstate == FL_READY)
870 			return 0;
871 
872 	default:
873 	sleep:
874 		set_current_state(TASK_UNINTERRUPTIBLE);
875 		add_wait_queue(&chip->wq, &wait);
876 		mutex_unlock(&chip->mutex);
877 		schedule();
878 		remove_wait_queue(&chip->wq, &wait);
879 		mutex_lock(&chip->mutex);
880 		goto resettime;
881 	}
882 }
883 
884 
put_chip(struct map_info * map,struct flchip * chip,unsigned long adr)885 static void put_chip(struct map_info *map, struct flchip *chip, unsigned long adr)
886 {
887 	struct cfi_private *cfi = map->fldrv_priv;
888 
889 	switch(chip->oldstate) {
890 	case FL_ERASING:
891 		cfi_fixup_m29ew_erase_suspend(map,
892 			chip->in_progress_block_addr);
893 		map_write(map, cfi->sector_erase_cmd, chip->in_progress_block_addr);
894 		cfi_fixup_m29ew_delay_after_resume(cfi);
895 		chip->oldstate = FL_READY;
896 		chip->state = FL_ERASING;
897 		break;
898 
899 	case FL_XIP_WHILE_ERASING:
900 		chip->state = chip->oldstate;
901 		chip->oldstate = FL_READY;
902 		break;
903 
904 	case FL_READY:
905 	case FL_STATUS:
906 		break;
907 	default:
908 		printk(KERN_ERR "MTD: put_chip() called with oldstate %d!!\n", chip->oldstate);
909 	}
910 	wake_up(&chip->wq);
911 }
912 
913 #ifdef CONFIG_MTD_XIP
914 
915 /*
916  * No interrupt what so ever can be serviced while the flash isn't in array
917  * mode.  This is ensured by the xip_disable() and xip_enable() functions
918  * enclosing any code path where the flash is known not to be in array mode.
919  * And within a XIP disabled code path, only functions marked with __xipram
920  * may be called and nothing else (it's a good thing to inspect generated
921  * assembly to make sure inline functions were actually inlined and that gcc
922  * didn't emit calls to its own support functions). Also configuring MTD CFI
923  * support to a single buswidth and a single interleave is also recommended.
924  */
925 
xip_disable(struct map_info * map,struct flchip * chip,unsigned long adr)926 static void xip_disable(struct map_info *map, struct flchip *chip,
927 			unsigned long adr)
928 {
929 	/* TODO: chips with no XIP use should ignore and return */
930 	(void) map_read(map, adr); /* ensure mmu mapping is up to date */
931 	local_irq_disable();
932 }
933 
xip_enable(struct map_info * map,struct flchip * chip,unsigned long adr)934 static void __xipram xip_enable(struct map_info *map, struct flchip *chip,
935 				unsigned long adr)
936 {
937 	struct cfi_private *cfi = map->fldrv_priv;
938 
939 	if (chip->state != FL_POINT && chip->state != FL_READY) {
940 		map_write(map, CMD(0xf0), adr);
941 		chip->state = FL_READY;
942 	}
943 	(void) map_read(map, adr);
944 	xip_iprefetch();
945 	local_irq_enable();
946 }
947 
948 /*
949  * When a delay is required for the flash operation to complete, the
950  * xip_udelay() function is polling for both the given timeout and pending
951  * (but still masked) hardware interrupts.  Whenever there is an interrupt
952  * pending then the flash erase operation is suspended, array mode restored
953  * and interrupts unmasked.  Task scheduling might also happen at that
954  * point.  The CPU eventually returns from the interrupt or the call to
955  * schedule() and the suspended flash operation is resumed for the remaining
956  * of the delay period.
957  *
958  * Warning: this function _will_ fool interrupt latency tracing tools.
959  */
960 
xip_udelay(struct map_info * map,struct flchip * chip,unsigned long adr,int usec)961 static void __xipram xip_udelay(struct map_info *map, struct flchip *chip,
962 				unsigned long adr, int usec)
963 {
964 	struct cfi_private *cfi = map->fldrv_priv;
965 	struct cfi_pri_amdstd *extp = cfi->cmdset_priv;
966 	map_word status, OK = CMD(0x80);
967 	unsigned long suspended, start = xip_currtime();
968 	flstate_t oldstate;
969 
970 	do {
971 		cpu_relax();
972 		if (xip_irqpending() && extp &&
973 		    ((chip->state == FL_ERASING && (extp->EraseSuspend & 2))) &&
974 		    (cfi_interleave_is_1(cfi) || chip->oldstate == FL_READY)) {
975 			/*
976 			 * Let's suspend the erase operation when supported.
977 			 * Note that we currently don't try to suspend
978 			 * interleaved chips if there is already another
979 			 * operation suspended (imagine what happens
980 			 * when one chip was already done with the current
981 			 * operation while another chip suspended it, then
982 			 * we resume the whole thing at once).  Yes, it
983 			 * can happen!
984 			 */
985 			map_write(map, CMD(0xb0), adr);
986 			usec -= xip_elapsed_since(start);
987 			suspended = xip_currtime();
988 			do {
989 				if (xip_elapsed_since(suspended) > 100000) {
990 					/*
991 					 * The chip doesn't want to suspend
992 					 * after waiting for 100 msecs.
993 					 * This is a critical error but there
994 					 * is not much we can do here.
995 					 */
996 					return;
997 				}
998 				status = map_read(map, adr);
999 			} while (!map_word_andequal(map, status, OK, OK));
1000 
1001 			/* Suspend succeeded */
1002 			oldstate = chip->state;
1003 			if (!map_word_bitsset(map, status, CMD(0x40)))
1004 				break;
1005 			chip->state = FL_XIP_WHILE_ERASING;
1006 			chip->erase_suspended = 1;
1007 			map_write(map, CMD(0xf0), adr);
1008 			(void) map_read(map, adr);
1009 			xip_iprefetch();
1010 			local_irq_enable();
1011 			mutex_unlock(&chip->mutex);
1012 			xip_iprefetch();
1013 			cond_resched();
1014 
1015 			/*
1016 			 * We're back.  However someone else might have
1017 			 * decided to go write to the chip if we are in
1018 			 * a suspended erase state.  If so let's wait
1019 			 * until it's done.
1020 			 */
1021 			mutex_lock(&chip->mutex);
1022 			while (chip->state != FL_XIP_WHILE_ERASING) {
1023 				DECLARE_WAITQUEUE(wait, current);
1024 				set_current_state(TASK_UNINTERRUPTIBLE);
1025 				add_wait_queue(&chip->wq, &wait);
1026 				mutex_unlock(&chip->mutex);
1027 				schedule();
1028 				remove_wait_queue(&chip->wq, &wait);
1029 				mutex_lock(&chip->mutex);
1030 			}
1031 			/* Disallow XIP again */
1032 			local_irq_disable();
1033 
1034 			/* Correct Erase Suspend Hangups for M29EW */
1035 			cfi_fixup_m29ew_erase_suspend(map, adr);
1036 			/* Resume the write or erase operation */
1037 			map_write(map, cfi->sector_erase_cmd, adr);
1038 			chip->state = oldstate;
1039 			start = xip_currtime();
1040 		} else if (usec >= 1000000/HZ) {
1041 			/*
1042 			 * Try to save on CPU power when waiting delay
1043 			 * is at least a system timer tick period.
1044 			 * No need to be extremely accurate here.
1045 			 */
1046 			xip_cpu_idle();
1047 		}
1048 		status = map_read(map, adr);
1049 	} while (!map_word_andequal(map, status, OK, OK)
1050 		 && xip_elapsed_since(start) < usec);
1051 }
1052 
1053 #define UDELAY(map, chip, adr, usec)  xip_udelay(map, chip, adr, usec)
1054 
1055 /*
1056  * The INVALIDATE_CACHED_RANGE() macro is normally used in parallel while
1057  * the flash is actively programming or erasing since we have to poll for
1058  * the operation to complete anyway.  We can't do that in a generic way with
1059  * a XIP setup so do it before the actual flash operation in this case
1060  * and stub it out from INVALIDATE_CACHE_UDELAY.
1061  */
1062 #define XIP_INVAL_CACHED_RANGE(map, from, size)  \
1063 	INVALIDATE_CACHED_RANGE(map, from, size)
1064 
1065 #define INVALIDATE_CACHE_UDELAY(map, chip, adr, len, usec)  \
1066 	UDELAY(map, chip, adr, usec)
1067 
1068 /*
1069  * Extra notes:
1070  *
1071  * Activating this XIP support changes the way the code works a bit.  For
1072  * example the code to suspend the current process when concurrent access
1073  * happens is never executed because xip_udelay() will always return with the
1074  * same chip state as it was entered with.  This is why there is no care for
1075  * the presence of add_wait_queue() or schedule() calls from within a couple
1076  * xip_disable()'d  areas of code, like in do_erase_oneblock for example.
1077  * The queueing and scheduling are always happening within xip_udelay().
1078  *
1079  * Similarly, get_chip() and put_chip() just happen to always be executed
1080  * with chip->state set to FL_READY (or FL_XIP_WHILE_*) where flash state
1081  * is in array mode, therefore never executing many cases therein and not
1082  * causing any problem with XIP.
1083  */
1084 
1085 #else
1086 
1087 #define xip_disable(map, chip, adr)
1088 #define xip_enable(map, chip, adr)
1089 #define XIP_INVAL_CACHED_RANGE(x...)
1090 
1091 #define UDELAY(map, chip, adr, usec)  \
1092 do {  \
1093 	mutex_unlock(&chip->mutex);  \
1094 	cfi_udelay(usec);  \
1095 	mutex_lock(&chip->mutex);  \
1096 } while (0)
1097 
1098 #define INVALIDATE_CACHE_UDELAY(map, chip, adr, len, usec)  \
1099 do {  \
1100 	mutex_unlock(&chip->mutex);  \
1101 	INVALIDATE_CACHED_RANGE(map, adr, len);  \
1102 	cfi_udelay(usec);  \
1103 	mutex_lock(&chip->mutex);  \
1104 } while (0)
1105 
1106 #endif
1107 
do_read_onechip(struct map_info * map,struct flchip * chip,loff_t adr,size_t len,u_char * buf)1108 static inline int do_read_onechip(struct map_info *map, struct flchip *chip, loff_t adr, size_t len, u_char *buf)
1109 {
1110 	unsigned long cmd_addr;
1111 	struct cfi_private *cfi = map->fldrv_priv;
1112 	int ret;
1113 
1114 	adr += chip->start;
1115 
1116 	/* Ensure cmd read/writes are aligned. */
1117 	cmd_addr = adr & ~(map_bankwidth(map)-1);
1118 
1119 	mutex_lock(&chip->mutex);
1120 	ret = get_chip(map, chip, cmd_addr, FL_READY);
1121 	if (ret) {
1122 		mutex_unlock(&chip->mutex);
1123 		return ret;
1124 	}
1125 
1126 	if (chip->state != FL_POINT && chip->state != FL_READY) {
1127 		map_write(map, CMD(0xf0), cmd_addr);
1128 		chip->state = FL_READY;
1129 	}
1130 
1131 	map_copy_from(map, buf, adr, len);
1132 
1133 	put_chip(map, chip, cmd_addr);
1134 
1135 	mutex_unlock(&chip->mutex);
1136 	return 0;
1137 }
1138 
1139 
cfi_amdstd_read(struct mtd_info * mtd,loff_t from,size_t len,size_t * retlen,u_char * buf)1140 static int cfi_amdstd_read (struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen, u_char *buf)
1141 {
1142 	struct map_info *map = mtd->priv;
1143 	struct cfi_private *cfi = map->fldrv_priv;
1144 	unsigned long ofs;
1145 	int chipnum;
1146 	int ret = 0;
1147 
1148 	/* ofs: offset within the first chip that the first read should start */
1149 	chipnum = (from >> cfi->chipshift);
1150 	ofs = from - (chipnum <<  cfi->chipshift);
1151 
1152 	while (len) {
1153 		unsigned long thislen;
1154 
1155 		if (chipnum >= cfi->numchips)
1156 			break;
1157 
1158 		if ((len + ofs -1) >> cfi->chipshift)
1159 			thislen = (1<<cfi->chipshift) - ofs;
1160 		else
1161 			thislen = len;
1162 
1163 		ret = do_read_onechip(map, &cfi->chips[chipnum], ofs, thislen, buf);
1164 		if (ret)
1165 			break;
1166 
1167 		*retlen += thislen;
1168 		len -= thislen;
1169 		buf += thislen;
1170 
1171 		ofs = 0;
1172 		chipnum++;
1173 	}
1174 	return ret;
1175 }
1176 
1177 typedef int (*otp_op_t)(struct map_info *map, struct flchip *chip,
1178 			loff_t adr, size_t len, u_char *buf, size_t grouplen);
1179 
otp_enter(struct map_info * map,struct flchip * chip,loff_t adr,size_t len)1180 static inline void otp_enter(struct map_info *map, struct flchip *chip,
1181 			     loff_t adr, size_t len)
1182 {
1183 	struct cfi_private *cfi = map->fldrv_priv;
1184 
1185 	cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi,
1186 			 cfi->device_type, NULL);
1187 	cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi,
1188 			 cfi->device_type, NULL);
1189 	cfi_send_gen_cmd(0x88, cfi->addr_unlock1, chip->start, map, cfi,
1190 			 cfi->device_type, NULL);
1191 
1192 	INVALIDATE_CACHED_RANGE(map, chip->start + adr, len);
1193 }
1194 
otp_exit(struct map_info * map,struct flchip * chip,loff_t adr,size_t len)1195 static inline void otp_exit(struct map_info *map, struct flchip *chip,
1196 			    loff_t adr, size_t len)
1197 {
1198 	struct cfi_private *cfi = map->fldrv_priv;
1199 
1200 	cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi,
1201 			 cfi->device_type, NULL);
1202 	cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi,
1203 			 cfi->device_type, NULL);
1204 	cfi_send_gen_cmd(0x90, cfi->addr_unlock1, chip->start, map, cfi,
1205 			 cfi->device_type, NULL);
1206 	cfi_send_gen_cmd(0x00, cfi->addr_unlock1, chip->start, map, cfi,
1207 			 cfi->device_type, NULL);
1208 
1209 	INVALIDATE_CACHED_RANGE(map, chip->start + adr, len);
1210 }
1211 
do_read_secsi_onechip(struct map_info * map,struct flchip * chip,loff_t adr,size_t len,u_char * buf,size_t grouplen)1212 static inline int do_read_secsi_onechip(struct map_info *map,
1213 					struct flchip *chip, loff_t adr,
1214 					size_t len, u_char *buf,
1215 					size_t grouplen)
1216 {
1217 	DECLARE_WAITQUEUE(wait, current);
1218 
1219  retry:
1220 	mutex_lock(&chip->mutex);
1221 
1222 	if (chip->state != FL_READY){
1223 		set_current_state(TASK_UNINTERRUPTIBLE);
1224 		add_wait_queue(&chip->wq, &wait);
1225 
1226 		mutex_unlock(&chip->mutex);
1227 
1228 		schedule();
1229 		remove_wait_queue(&chip->wq, &wait);
1230 
1231 		goto retry;
1232 	}
1233 
1234 	adr += chip->start;
1235 
1236 	chip->state = FL_READY;
1237 
1238 	otp_enter(map, chip, adr, len);
1239 	map_copy_from(map, buf, adr, len);
1240 	otp_exit(map, chip, adr, len);
1241 
1242 	wake_up(&chip->wq);
1243 	mutex_unlock(&chip->mutex);
1244 
1245 	return 0;
1246 }
1247 
cfi_amdstd_secsi_read(struct mtd_info * mtd,loff_t from,size_t len,size_t * retlen,u_char * buf)1248 static int cfi_amdstd_secsi_read (struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen, u_char *buf)
1249 {
1250 	struct map_info *map = mtd->priv;
1251 	struct cfi_private *cfi = map->fldrv_priv;
1252 	unsigned long ofs;
1253 	int chipnum;
1254 	int ret = 0;
1255 
1256 	/* ofs: offset within the first chip that the first read should start */
1257 	/* 8 secsi bytes per chip */
1258 	chipnum=from>>3;
1259 	ofs=from & 7;
1260 
1261 	while (len) {
1262 		unsigned long thislen;
1263 
1264 		if (chipnum >= cfi->numchips)
1265 			break;
1266 
1267 		if ((len + ofs -1) >> 3)
1268 			thislen = (1<<3) - ofs;
1269 		else
1270 			thislen = len;
1271 
1272 		ret = do_read_secsi_onechip(map, &cfi->chips[chipnum], ofs,
1273 					    thislen, buf, 0);
1274 		if (ret)
1275 			break;
1276 
1277 		*retlen += thislen;
1278 		len -= thislen;
1279 		buf += thislen;
1280 
1281 		ofs = 0;
1282 		chipnum++;
1283 	}
1284 	return ret;
1285 }
1286 
1287 static int __xipram do_write_oneword(struct map_info *map, struct flchip *chip,
1288 				     unsigned long adr, map_word datum,
1289 				     int mode);
1290 
do_otp_write(struct map_info * map,struct flchip * chip,loff_t adr,size_t len,u_char * buf,size_t grouplen)1291 static int do_otp_write(struct map_info *map, struct flchip *chip, loff_t adr,
1292 			size_t len, u_char *buf, size_t grouplen)
1293 {
1294 	int ret;
1295 	while (len) {
1296 		unsigned long bus_ofs = adr & ~(map_bankwidth(map)-1);
1297 		int gap = adr - bus_ofs;
1298 		int n = min_t(int, len, map_bankwidth(map) - gap);
1299 		map_word datum = map_word_ff(map);
1300 
1301 		if (n != map_bankwidth(map)) {
1302 			/* partial write of a word, load old contents */
1303 			otp_enter(map, chip, bus_ofs, map_bankwidth(map));
1304 			datum = map_read(map, bus_ofs);
1305 			otp_exit(map, chip, bus_ofs, map_bankwidth(map));
1306 		}
1307 
1308 		datum = map_word_load_partial(map, datum, buf, gap, n);
1309 		ret = do_write_oneword(map, chip, bus_ofs, datum, FL_OTP_WRITE);
1310 		if (ret)
1311 			return ret;
1312 
1313 		adr += n;
1314 		buf += n;
1315 		len -= n;
1316 	}
1317 
1318 	return 0;
1319 }
1320 
do_otp_lock(struct map_info * map,struct flchip * chip,loff_t adr,size_t len,u_char * buf,size_t grouplen)1321 static int do_otp_lock(struct map_info *map, struct flchip *chip, loff_t adr,
1322 		       size_t len, u_char *buf, size_t grouplen)
1323 {
1324 	struct cfi_private *cfi = map->fldrv_priv;
1325 	uint8_t lockreg;
1326 	unsigned long timeo;
1327 	int ret;
1328 
1329 	/* make sure area matches group boundaries */
1330 	if ((adr != 0) || (len != grouplen))
1331 		return -EINVAL;
1332 
1333 	mutex_lock(&chip->mutex);
1334 	ret = get_chip(map, chip, chip->start, FL_LOCKING);
1335 	if (ret) {
1336 		mutex_unlock(&chip->mutex);
1337 		return ret;
1338 	}
1339 	chip->state = FL_LOCKING;
1340 
1341 	/* Enter lock register command */
1342 	cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi,
1343 			 cfi->device_type, NULL);
1344 	cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi,
1345 			 cfi->device_type, NULL);
1346 	cfi_send_gen_cmd(0x40, cfi->addr_unlock1, chip->start, map, cfi,
1347 			 cfi->device_type, NULL);
1348 
1349 	/* read lock register */
1350 	lockreg = cfi_read_query(map, 0);
1351 
1352 	/* set bit 0 to protect extended memory block */
1353 	lockreg &= ~0x01;
1354 
1355 	/* set bit 0 to protect extended memory block */
1356 	/* write lock register */
1357 	map_write(map, CMD(0xA0), chip->start);
1358 	map_write(map, CMD(lockreg), chip->start);
1359 
1360 	/* wait for chip to become ready */
1361 	timeo = jiffies + msecs_to_jiffies(2);
1362 	for (;;) {
1363 		if (chip_ready(map, adr))
1364 			break;
1365 
1366 		if (time_after(jiffies, timeo)) {
1367 			pr_err("Waiting for chip to be ready timed out.\n");
1368 			ret = -EIO;
1369 			break;
1370 		}
1371 		UDELAY(map, chip, 0, 1);
1372 	}
1373 
1374 	/* exit protection commands */
1375 	map_write(map, CMD(0x90), chip->start);
1376 	map_write(map, CMD(0x00), chip->start);
1377 
1378 	chip->state = FL_READY;
1379 	put_chip(map, chip, chip->start);
1380 	mutex_unlock(&chip->mutex);
1381 
1382 	return ret;
1383 }
1384 
cfi_amdstd_otp_walk(struct mtd_info * mtd,loff_t from,size_t len,size_t * retlen,u_char * buf,otp_op_t action,int user_regs)1385 static int cfi_amdstd_otp_walk(struct mtd_info *mtd, loff_t from, size_t len,
1386 			       size_t *retlen, u_char *buf,
1387 			       otp_op_t action, int user_regs)
1388 {
1389 	struct map_info *map = mtd->priv;
1390 	struct cfi_private *cfi = map->fldrv_priv;
1391 	int ofs_factor = cfi->interleave * cfi->device_type;
1392 	unsigned long base;
1393 	int chipnum;
1394 	struct flchip *chip;
1395 	uint8_t otp, lockreg;
1396 	int ret;
1397 
1398 	size_t user_size, factory_size, otpsize;
1399 	loff_t user_offset, factory_offset, otpoffset;
1400 	int user_locked = 0, otplocked;
1401 
1402 	*retlen = 0;
1403 
1404 	for (chipnum = 0; chipnum < cfi->numchips; chipnum++) {
1405 		chip = &cfi->chips[chipnum];
1406 		factory_size = 0;
1407 		user_size = 0;
1408 
1409 		/* Micron M29EW family */
1410 		if (is_m29ew(cfi)) {
1411 			base = chip->start;
1412 
1413 			/* check whether secsi area is factory locked
1414 			   or user lockable */
1415 			mutex_lock(&chip->mutex);
1416 			ret = get_chip(map, chip, base, FL_CFI_QUERY);
1417 			if (ret) {
1418 				mutex_unlock(&chip->mutex);
1419 				return ret;
1420 			}
1421 			cfi_qry_mode_on(base, map, cfi);
1422 			otp = cfi_read_query(map, base + 0x3 * ofs_factor);
1423 			cfi_qry_mode_off(base, map, cfi);
1424 			put_chip(map, chip, base);
1425 			mutex_unlock(&chip->mutex);
1426 
1427 			if (otp & 0x80) {
1428 				/* factory locked */
1429 				factory_offset = 0;
1430 				factory_size = 0x100;
1431 			} else {
1432 				/* customer lockable */
1433 				user_offset = 0;
1434 				user_size = 0x100;
1435 
1436 				mutex_lock(&chip->mutex);
1437 				ret = get_chip(map, chip, base, FL_LOCKING);
1438 				if (ret) {
1439 					mutex_unlock(&chip->mutex);
1440 					return ret;
1441 				}
1442 
1443 				/* Enter lock register command */
1444 				cfi_send_gen_cmd(0xAA, cfi->addr_unlock1,
1445 						 chip->start, map, cfi,
1446 						 cfi->device_type, NULL);
1447 				cfi_send_gen_cmd(0x55, cfi->addr_unlock2,
1448 						 chip->start, map, cfi,
1449 						 cfi->device_type, NULL);
1450 				cfi_send_gen_cmd(0x40, cfi->addr_unlock1,
1451 						 chip->start, map, cfi,
1452 						 cfi->device_type, NULL);
1453 				/* read lock register */
1454 				lockreg = cfi_read_query(map, 0);
1455 				/* exit protection commands */
1456 				map_write(map, CMD(0x90), chip->start);
1457 				map_write(map, CMD(0x00), chip->start);
1458 				put_chip(map, chip, chip->start);
1459 				mutex_unlock(&chip->mutex);
1460 
1461 				user_locked = ((lockreg & 0x01) == 0x00);
1462 			}
1463 		}
1464 
1465 		otpsize = user_regs ? user_size : factory_size;
1466 		if (!otpsize)
1467 			continue;
1468 		otpoffset = user_regs ? user_offset : factory_offset;
1469 		otplocked = user_regs ? user_locked : 1;
1470 
1471 		if (!action) {
1472 			/* return otpinfo */
1473 			struct otp_info *otpinfo;
1474 			len -= sizeof(*otpinfo);
1475 			if (len <= 0)
1476 				return -ENOSPC;
1477 			otpinfo = (struct otp_info *)buf;
1478 			otpinfo->start = from;
1479 			otpinfo->length = otpsize;
1480 			otpinfo->locked = otplocked;
1481 			buf += sizeof(*otpinfo);
1482 			*retlen += sizeof(*otpinfo);
1483 			from += otpsize;
1484 		} else if ((from < otpsize) && (len > 0)) {
1485 			size_t size;
1486 			size = (len < otpsize - from) ? len : otpsize - from;
1487 			ret = action(map, chip, otpoffset + from, size, buf,
1488 				     otpsize);
1489 			if (ret < 0)
1490 				return ret;
1491 
1492 			buf += size;
1493 			len -= size;
1494 			*retlen += size;
1495 			from = 0;
1496 		} else {
1497 			from -= otpsize;
1498 		}
1499 	}
1500 	return 0;
1501 }
1502 
cfi_amdstd_get_fact_prot_info(struct mtd_info * mtd,size_t len,size_t * retlen,struct otp_info * buf)1503 static int cfi_amdstd_get_fact_prot_info(struct mtd_info *mtd, size_t len,
1504 					 size_t *retlen, struct otp_info *buf)
1505 {
1506 	return cfi_amdstd_otp_walk(mtd, 0, len, retlen, (u_char *)buf,
1507 				   NULL, 0);
1508 }
1509 
cfi_amdstd_get_user_prot_info(struct mtd_info * mtd,size_t len,size_t * retlen,struct otp_info * buf)1510 static int cfi_amdstd_get_user_prot_info(struct mtd_info *mtd, size_t len,
1511 					 size_t *retlen, struct otp_info *buf)
1512 {
1513 	return cfi_amdstd_otp_walk(mtd, 0, len, retlen, (u_char *)buf,
1514 				   NULL, 1);
1515 }
1516 
cfi_amdstd_read_fact_prot_reg(struct mtd_info * mtd,loff_t from,size_t len,size_t * retlen,u_char * buf)1517 static int cfi_amdstd_read_fact_prot_reg(struct mtd_info *mtd, loff_t from,
1518 					 size_t len, size_t *retlen,
1519 					 u_char *buf)
1520 {
1521 	return cfi_amdstd_otp_walk(mtd, from, len, retlen,
1522 				   buf, do_read_secsi_onechip, 0);
1523 }
1524 
cfi_amdstd_read_user_prot_reg(struct mtd_info * mtd,loff_t from,size_t len,size_t * retlen,u_char * buf)1525 static int cfi_amdstd_read_user_prot_reg(struct mtd_info *mtd, loff_t from,
1526 					 size_t len, size_t *retlen,
1527 					 u_char *buf)
1528 {
1529 	return cfi_amdstd_otp_walk(mtd, from, len, retlen,
1530 				   buf, do_read_secsi_onechip, 1);
1531 }
1532 
cfi_amdstd_write_user_prot_reg(struct mtd_info * mtd,loff_t from,size_t len,size_t * retlen,u_char * buf)1533 static int cfi_amdstd_write_user_prot_reg(struct mtd_info *mtd, loff_t from,
1534 					  size_t len, size_t *retlen,
1535 					  u_char *buf)
1536 {
1537 	return cfi_amdstd_otp_walk(mtd, from, len, retlen, buf,
1538 				   do_otp_write, 1);
1539 }
1540 
cfi_amdstd_lock_user_prot_reg(struct mtd_info * mtd,loff_t from,size_t len)1541 static int cfi_amdstd_lock_user_prot_reg(struct mtd_info *mtd, loff_t from,
1542 					 size_t len)
1543 {
1544 	size_t retlen;
1545 	return cfi_amdstd_otp_walk(mtd, from, len, &retlen, NULL,
1546 				   do_otp_lock, 1);
1547 }
1548 
do_write_oneword(struct map_info * map,struct flchip * chip,unsigned long adr,map_word datum,int mode)1549 static int __xipram do_write_oneword(struct map_info *map, struct flchip *chip,
1550 				     unsigned long adr, map_word datum,
1551 				     int mode)
1552 {
1553 	struct cfi_private *cfi = map->fldrv_priv;
1554 	unsigned long timeo = jiffies + HZ;
1555 	/*
1556 	 * We use a 1ms + 1 jiffies generic timeout for writes (most devices
1557 	 * have a max write time of a few hundreds usec). However, we should
1558 	 * use the maximum timeout value given by the chip at probe time
1559 	 * instead.  Unfortunately, struct flchip does have a field for
1560 	 * maximum timeout, only for typical which can be far too short
1561 	 * depending of the conditions.	 The ' + 1' is to avoid having a
1562 	 * timeout of 0 jiffies if HZ is smaller than 1000.
1563 	 */
1564 	unsigned long uWriteTimeout = (HZ / 1000) + 1;
1565 	int ret = 0;
1566 	map_word oldd;
1567 	int retry_cnt = 0;
1568 
1569 	adr += chip->start;
1570 
1571 	mutex_lock(&chip->mutex);
1572 	ret = get_chip(map, chip, adr, mode);
1573 	if (ret) {
1574 		mutex_unlock(&chip->mutex);
1575 		return ret;
1576 	}
1577 
1578 	pr_debug("MTD %s(): WRITE 0x%.8lx(0x%.8lx)\n",
1579 		 __func__, adr, datum.x[0]);
1580 
1581 	if (mode == FL_OTP_WRITE)
1582 		otp_enter(map, chip, adr, map_bankwidth(map));
1583 
1584 	/*
1585 	 * Check for a NOP for the case when the datum to write is already
1586 	 * present - it saves time and works around buggy chips that corrupt
1587 	 * data at other locations when 0xff is written to a location that
1588 	 * already contains 0xff.
1589 	 */
1590 	oldd = map_read(map, adr);
1591 	if (map_word_equal(map, oldd, datum)) {
1592 		pr_debug("MTD %s(): NOP\n",
1593 		       __func__);
1594 		goto op_done;
1595 	}
1596 
1597 	XIP_INVAL_CACHED_RANGE(map, adr, map_bankwidth(map));
1598 	ENABLE_VPP(map);
1599 	xip_disable(map, chip, adr);
1600 
1601  retry:
1602 	cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
1603 	cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi, cfi->device_type, NULL);
1604 	cfi_send_gen_cmd(0xA0, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
1605 	map_write(map, datum, adr);
1606 	chip->state = mode;
1607 
1608 	INVALIDATE_CACHE_UDELAY(map, chip,
1609 				adr, map_bankwidth(map),
1610 				chip->word_write_time);
1611 
1612 	/* See comment above for timeout value. */
1613 	timeo = jiffies + uWriteTimeout;
1614 	for (;;) {
1615 		if (chip->state != mode) {
1616 			/* Someone's suspended the write. Sleep */
1617 			DECLARE_WAITQUEUE(wait, current);
1618 
1619 			set_current_state(TASK_UNINTERRUPTIBLE);
1620 			add_wait_queue(&chip->wq, &wait);
1621 			mutex_unlock(&chip->mutex);
1622 			schedule();
1623 			remove_wait_queue(&chip->wq, &wait);
1624 			timeo = jiffies + (HZ / 2); /* FIXME */
1625 			mutex_lock(&chip->mutex);
1626 			continue;
1627 		}
1628 
1629 		/*
1630 		 * We check "time_after" and "!chip_good" before checking
1631 		 * "chip_good" to avoid the failure due to scheduling.
1632 		 */
1633 		if (time_after(jiffies, timeo) && !chip_good(map, adr, datum)) {
1634 			xip_enable(map, chip, adr);
1635 			printk(KERN_WARNING "MTD %s(): software timeout\n", __func__);
1636 			xip_disable(map, chip, adr);
1637 			ret = -EIO;
1638 			break;
1639 		}
1640 
1641 		if (chip_good(map, adr, datum))
1642 			break;
1643 
1644 		/* Latency issues. Drop the lock, wait a while and retry */
1645 		UDELAY(map, chip, adr, 1);
1646 	}
1647 
1648 	/* Did we succeed? */
1649 	if (ret) {
1650 		/* reset on all failures. */
1651 		map_write(map, CMD(0xF0), chip->start);
1652 		/* FIXME - should have reset delay before continuing */
1653 
1654 		if (++retry_cnt <= MAX_RETRIES) {
1655 			ret = 0;
1656 			goto retry;
1657 		}
1658 	}
1659 	xip_enable(map, chip, adr);
1660  op_done:
1661 	if (mode == FL_OTP_WRITE)
1662 		otp_exit(map, chip, adr, map_bankwidth(map));
1663 	chip->state = FL_READY;
1664 	DISABLE_VPP(map);
1665 	put_chip(map, chip, adr);
1666 	mutex_unlock(&chip->mutex);
1667 
1668 	return ret;
1669 }
1670 
1671 
cfi_amdstd_write_words(struct mtd_info * mtd,loff_t to,size_t len,size_t * retlen,const u_char * buf)1672 static int cfi_amdstd_write_words(struct mtd_info *mtd, loff_t to, size_t len,
1673 				  size_t *retlen, const u_char *buf)
1674 {
1675 	struct map_info *map = mtd->priv;
1676 	struct cfi_private *cfi = map->fldrv_priv;
1677 	int ret = 0;
1678 	int chipnum;
1679 	unsigned long ofs, chipstart;
1680 	DECLARE_WAITQUEUE(wait, current);
1681 
1682 	chipnum = to >> cfi->chipshift;
1683 	ofs = to  - (chipnum << cfi->chipshift);
1684 	chipstart = cfi->chips[chipnum].start;
1685 
1686 	/* If it's not bus-aligned, do the first byte write */
1687 	if (ofs & (map_bankwidth(map)-1)) {
1688 		unsigned long bus_ofs = ofs & ~(map_bankwidth(map)-1);
1689 		int i = ofs - bus_ofs;
1690 		int n = 0;
1691 		map_word tmp_buf;
1692 
1693  retry:
1694 		mutex_lock(&cfi->chips[chipnum].mutex);
1695 
1696 		if (cfi->chips[chipnum].state != FL_READY) {
1697 			set_current_state(TASK_UNINTERRUPTIBLE);
1698 			add_wait_queue(&cfi->chips[chipnum].wq, &wait);
1699 
1700 			mutex_unlock(&cfi->chips[chipnum].mutex);
1701 
1702 			schedule();
1703 			remove_wait_queue(&cfi->chips[chipnum].wq, &wait);
1704 			goto retry;
1705 		}
1706 
1707 		/* Load 'tmp_buf' with old contents of flash */
1708 		tmp_buf = map_read(map, bus_ofs+chipstart);
1709 
1710 		mutex_unlock(&cfi->chips[chipnum].mutex);
1711 
1712 		/* Number of bytes to copy from buffer */
1713 		n = min_t(int, len, map_bankwidth(map)-i);
1714 
1715 		tmp_buf = map_word_load_partial(map, tmp_buf, buf, i, n);
1716 
1717 		ret = do_write_oneword(map, &cfi->chips[chipnum],
1718 				       bus_ofs, tmp_buf, FL_WRITING);
1719 		if (ret)
1720 			return ret;
1721 
1722 		ofs += n;
1723 		buf += n;
1724 		(*retlen) += n;
1725 		len -= n;
1726 
1727 		if (ofs >> cfi->chipshift) {
1728 			chipnum ++;
1729 			ofs = 0;
1730 			if (chipnum == cfi->numchips)
1731 				return 0;
1732 		}
1733 	}
1734 
1735 	/* We are now aligned, write as much as possible */
1736 	while(len >= map_bankwidth(map)) {
1737 		map_word datum;
1738 
1739 		datum = map_word_load(map, buf);
1740 
1741 		ret = do_write_oneword(map, &cfi->chips[chipnum],
1742 				       ofs, datum, FL_WRITING);
1743 		if (ret)
1744 			return ret;
1745 
1746 		ofs += map_bankwidth(map);
1747 		buf += map_bankwidth(map);
1748 		(*retlen) += map_bankwidth(map);
1749 		len -= map_bankwidth(map);
1750 
1751 		if (ofs >> cfi->chipshift) {
1752 			chipnum ++;
1753 			ofs = 0;
1754 			if (chipnum == cfi->numchips)
1755 				return 0;
1756 			chipstart = cfi->chips[chipnum].start;
1757 		}
1758 	}
1759 
1760 	/* Write the trailing bytes if any */
1761 	if (len & (map_bankwidth(map)-1)) {
1762 		map_word tmp_buf;
1763 
1764  retry1:
1765 		mutex_lock(&cfi->chips[chipnum].mutex);
1766 
1767 		if (cfi->chips[chipnum].state != FL_READY) {
1768 			set_current_state(TASK_UNINTERRUPTIBLE);
1769 			add_wait_queue(&cfi->chips[chipnum].wq, &wait);
1770 
1771 			mutex_unlock(&cfi->chips[chipnum].mutex);
1772 
1773 			schedule();
1774 			remove_wait_queue(&cfi->chips[chipnum].wq, &wait);
1775 			goto retry1;
1776 		}
1777 
1778 		tmp_buf = map_read(map, ofs + chipstart);
1779 
1780 		mutex_unlock(&cfi->chips[chipnum].mutex);
1781 
1782 		tmp_buf = map_word_load_partial(map, tmp_buf, buf, 0, len);
1783 
1784 		ret = do_write_oneword(map, &cfi->chips[chipnum],
1785 				       ofs, tmp_buf, FL_WRITING);
1786 		if (ret)
1787 			return ret;
1788 
1789 		(*retlen) += len;
1790 	}
1791 
1792 	return 0;
1793 }
1794 
1795 
1796 /*
1797  * FIXME: interleaved mode not tested, and probably not supported!
1798  */
do_write_buffer(struct map_info * map,struct flchip * chip,unsigned long adr,const u_char * buf,int len)1799 static int __xipram do_write_buffer(struct map_info *map, struct flchip *chip,
1800 				    unsigned long adr, const u_char *buf,
1801 				    int len)
1802 {
1803 	struct cfi_private *cfi = map->fldrv_priv;
1804 	unsigned long timeo = jiffies + HZ;
1805 	/*
1806 	 * Timeout is calculated according to CFI data, if available.
1807 	 * See more comments in cfi_cmdset_0002().
1808 	 */
1809 	unsigned long uWriteTimeout =
1810 				usecs_to_jiffies(chip->buffer_write_time_max);
1811 	int ret = -EIO;
1812 	unsigned long cmd_adr;
1813 	int z, words;
1814 	map_word datum;
1815 
1816 	adr += chip->start;
1817 	cmd_adr = adr;
1818 
1819 	mutex_lock(&chip->mutex);
1820 	ret = get_chip(map, chip, adr, FL_WRITING);
1821 	if (ret) {
1822 		mutex_unlock(&chip->mutex);
1823 		return ret;
1824 	}
1825 
1826 	datum = map_word_load(map, buf);
1827 
1828 	pr_debug("MTD %s(): WRITE 0x%.8lx(0x%.8lx)\n",
1829 		 __func__, adr, datum.x[0]);
1830 
1831 	XIP_INVAL_CACHED_RANGE(map, adr, len);
1832 	ENABLE_VPP(map);
1833 	xip_disable(map, chip, cmd_adr);
1834 
1835 	cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
1836 	cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi, cfi->device_type, NULL);
1837 
1838 	/* Write Buffer Load */
1839 	map_write(map, CMD(0x25), cmd_adr);
1840 
1841 	chip->state = FL_WRITING_TO_BUFFER;
1842 
1843 	/* Write length of data to come */
1844 	words = len / map_bankwidth(map);
1845 	map_write(map, CMD(words - 1), cmd_adr);
1846 	/* Write data */
1847 	z = 0;
1848 	while(z < words * map_bankwidth(map)) {
1849 		datum = map_word_load(map, buf);
1850 		map_write(map, datum, adr + z);
1851 
1852 		z += map_bankwidth(map);
1853 		buf += map_bankwidth(map);
1854 	}
1855 	z -= map_bankwidth(map);
1856 
1857 	adr += z;
1858 
1859 	/* Write Buffer Program Confirm: GO GO GO */
1860 	map_write(map, CMD(0x29), cmd_adr);
1861 	chip->state = FL_WRITING;
1862 
1863 	INVALIDATE_CACHE_UDELAY(map, chip,
1864 				adr, map_bankwidth(map),
1865 				chip->word_write_time);
1866 
1867 	timeo = jiffies + uWriteTimeout;
1868 
1869 	for (;;) {
1870 		if (chip->state != FL_WRITING) {
1871 			/* Someone's suspended the write. Sleep */
1872 			DECLARE_WAITQUEUE(wait, current);
1873 
1874 			set_current_state(TASK_UNINTERRUPTIBLE);
1875 			add_wait_queue(&chip->wq, &wait);
1876 			mutex_unlock(&chip->mutex);
1877 			schedule();
1878 			remove_wait_queue(&chip->wq, &wait);
1879 			timeo = jiffies + (HZ / 2); /* FIXME */
1880 			mutex_lock(&chip->mutex);
1881 			continue;
1882 		}
1883 
1884 		/*
1885 		 * We check "time_after" and "!chip_good" before checking "chip_good" to avoid
1886 		 * the failure due to scheduling.
1887 		 */
1888 		if (time_after(jiffies, timeo) && !chip_good(map, adr, datum))
1889 			break;
1890 
1891 		if (chip_good(map, adr, datum)) {
1892 			xip_enable(map, chip, adr);
1893 			goto op_done;
1894 		}
1895 
1896 		/* Latency issues. Drop the lock, wait a while and retry */
1897 		UDELAY(map, chip, adr, 1);
1898 	}
1899 
1900 	/*
1901 	 * Recovery from write-buffer programming failures requires
1902 	 * the write-to-buffer-reset sequence.  Since the last part
1903 	 * of the sequence also works as a normal reset, we can run
1904 	 * the same commands regardless of why we are here.
1905 	 * See e.g.
1906 	 * http://www.spansion.com/Support/Application%20Notes/MirrorBit_Write_Buffer_Prog_Page_Buffer_Read_AN.pdf
1907 	 */
1908 	cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi,
1909 			 cfi->device_type, NULL);
1910 	cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi,
1911 			 cfi->device_type, NULL);
1912 	cfi_send_gen_cmd(0xF0, cfi->addr_unlock1, chip->start, map, cfi,
1913 			 cfi->device_type, NULL);
1914 	xip_enable(map, chip, adr);
1915 	/* FIXME - should have reset delay before continuing */
1916 
1917 	printk(KERN_WARNING "MTD %s(): software timeout, address:0x%.8lx.\n",
1918 	       __func__, adr);
1919 
1920 	ret = -EIO;
1921  op_done:
1922 	chip->state = FL_READY;
1923 	DISABLE_VPP(map);
1924 	put_chip(map, chip, adr);
1925 	mutex_unlock(&chip->mutex);
1926 
1927 	return ret;
1928 }
1929 
1930 
cfi_amdstd_write_buffers(struct mtd_info * mtd,loff_t to,size_t len,size_t * retlen,const u_char * buf)1931 static int cfi_amdstd_write_buffers(struct mtd_info *mtd, loff_t to, size_t len,
1932 				    size_t *retlen, const u_char *buf)
1933 {
1934 	struct map_info *map = mtd->priv;
1935 	struct cfi_private *cfi = map->fldrv_priv;
1936 	int wbufsize = cfi_interleave(cfi) << cfi->cfiq->MaxBufWriteSize;
1937 	int ret = 0;
1938 	int chipnum;
1939 	unsigned long ofs;
1940 
1941 	chipnum = to >> cfi->chipshift;
1942 	ofs = to  - (chipnum << cfi->chipshift);
1943 
1944 	/* If it's not bus-aligned, do the first word write */
1945 	if (ofs & (map_bankwidth(map)-1)) {
1946 		size_t local_len = (-ofs)&(map_bankwidth(map)-1);
1947 		if (local_len > len)
1948 			local_len = len;
1949 		ret = cfi_amdstd_write_words(mtd, ofs + (chipnum<<cfi->chipshift),
1950 					     local_len, retlen, buf);
1951 		if (ret)
1952 			return ret;
1953 		ofs += local_len;
1954 		buf += local_len;
1955 		len -= local_len;
1956 
1957 		if (ofs >> cfi->chipshift) {
1958 			chipnum ++;
1959 			ofs = 0;
1960 			if (chipnum == cfi->numchips)
1961 				return 0;
1962 		}
1963 	}
1964 
1965 	/* Write buffer is worth it only if more than one word to write... */
1966 	while (len >= map_bankwidth(map) * 2) {
1967 		/* We must not cross write block boundaries */
1968 		int size = wbufsize - (ofs & (wbufsize-1));
1969 
1970 		if (size > len)
1971 			size = len;
1972 		if (size % map_bankwidth(map))
1973 			size -= size % map_bankwidth(map);
1974 
1975 		ret = do_write_buffer(map, &cfi->chips[chipnum],
1976 				      ofs, buf, size);
1977 		if (ret)
1978 			return ret;
1979 
1980 		ofs += size;
1981 		buf += size;
1982 		(*retlen) += size;
1983 		len -= size;
1984 
1985 		if (ofs >> cfi->chipshift) {
1986 			chipnum ++;
1987 			ofs = 0;
1988 			if (chipnum == cfi->numchips)
1989 				return 0;
1990 		}
1991 	}
1992 
1993 	if (len) {
1994 		size_t retlen_dregs = 0;
1995 
1996 		ret = cfi_amdstd_write_words(mtd, ofs + (chipnum<<cfi->chipshift),
1997 					     len, &retlen_dregs, buf);
1998 
1999 		*retlen += retlen_dregs;
2000 		return ret;
2001 	}
2002 
2003 	return 0;
2004 }
2005 
2006 /*
2007  * Wait for the flash chip to become ready to write data
2008  *
2009  * This is only called during the panic_write() path. When panic_write()
2010  * is called, the kernel is in the process of a panic, and will soon be
2011  * dead. Therefore we don't take any locks, and attempt to get access
2012  * to the chip as soon as possible.
2013  */
cfi_amdstd_panic_wait(struct map_info * map,struct flchip * chip,unsigned long adr)2014 static int cfi_amdstd_panic_wait(struct map_info *map, struct flchip *chip,
2015 				 unsigned long adr)
2016 {
2017 	struct cfi_private *cfi = map->fldrv_priv;
2018 	int retries = 10;
2019 	int i;
2020 
2021 	/*
2022 	 * If the driver thinks the chip is idle, and no toggle bits
2023 	 * are changing, then the chip is actually idle for sure.
2024 	 */
2025 	if (chip->state == FL_READY && chip_ready(map, adr))
2026 		return 0;
2027 
2028 	/*
2029 	 * Try several times to reset the chip and then wait for it
2030 	 * to become idle. The upper limit of a few milliseconds of
2031 	 * delay isn't a big problem: the kernel is dying anyway. It
2032 	 * is more important to save the messages.
2033 	 */
2034 	while (retries > 0) {
2035 		const unsigned long timeo = (HZ / 1000) + 1;
2036 
2037 		/* send the reset command */
2038 		map_write(map, CMD(0xF0), chip->start);
2039 
2040 		/* wait for the chip to become ready */
2041 		for (i = 0; i < jiffies_to_usecs(timeo); i++) {
2042 			if (chip_ready(map, adr))
2043 				return 0;
2044 
2045 			udelay(1);
2046 		}
2047 
2048 		retries--;
2049 	}
2050 
2051 	/* the chip never became ready */
2052 	return -EBUSY;
2053 }
2054 
2055 /*
2056  * Write out one word of data to a single flash chip during a kernel panic
2057  *
2058  * This is only called during the panic_write() path. When panic_write()
2059  * is called, the kernel is in the process of a panic, and will soon be
2060  * dead. Therefore we don't take any locks, and attempt to get access
2061  * to the chip as soon as possible.
2062  *
2063  * The implementation of this routine is intentionally similar to
2064  * do_write_oneword(), in order to ease code maintenance.
2065  */
do_panic_write_oneword(struct map_info * map,struct flchip * chip,unsigned long adr,map_word datum)2066 static int do_panic_write_oneword(struct map_info *map, struct flchip *chip,
2067 				  unsigned long adr, map_word datum)
2068 {
2069 	const unsigned long uWriteTimeout = (HZ / 1000) + 1;
2070 	struct cfi_private *cfi = map->fldrv_priv;
2071 	int retry_cnt = 0;
2072 	map_word oldd;
2073 	int ret = 0;
2074 	int i;
2075 
2076 	adr += chip->start;
2077 
2078 	ret = cfi_amdstd_panic_wait(map, chip, adr);
2079 	if (ret)
2080 		return ret;
2081 
2082 	pr_debug("MTD %s(): PANIC WRITE 0x%.8lx(0x%.8lx)\n",
2083 			__func__, adr, datum.x[0]);
2084 
2085 	/*
2086 	 * Check for a NOP for the case when the datum to write is already
2087 	 * present - it saves time and works around buggy chips that corrupt
2088 	 * data at other locations when 0xff is written to a location that
2089 	 * already contains 0xff.
2090 	 */
2091 	oldd = map_read(map, adr);
2092 	if (map_word_equal(map, oldd, datum)) {
2093 		pr_debug("MTD %s(): NOP\n", __func__);
2094 		goto op_done;
2095 	}
2096 
2097 	ENABLE_VPP(map);
2098 
2099 retry:
2100 	cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
2101 	cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi, cfi->device_type, NULL);
2102 	cfi_send_gen_cmd(0xA0, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
2103 	map_write(map, datum, adr);
2104 
2105 	for (i = 0; i < jiffies_to_usecs(uWriteTimeout); i++) {
2106 		if (chip_ready(map, adr))
2107 			break;
2108 
2109 		udelay(1);
2110 	}
2111 
2112 	if (!chip_good(map, adr, datum)) {
2113 		/* reset on all failures. */
2114 		map_write(map, CMD(0xF0), chip->start);
2115 		/* FIXME - should have reset delay before continuing */
2116 
2117 		if (++retry_cnt <= MAX_RETRIES)
2118 			goto retry;
2119 
2120 		ret = -EIO;
2121 	}
2122 
2123 op_done:
2124 	DISABLE_VPP(map);
2125 	return ret;
2126 }
2127 
2128 /*
2129  * Write out some data during a kernel panic
2130  *
2131  * This is used by the mtdoops driver to save the dying messages from a
2132  * kernel which has panic'd.
2133  *
2134  * This routine ignores all of the locking used throughout the rest of the
2135  * driver, in order to ensure that the data gets written out no matter what
2136  * state this driver (and the flash chip itself) was in when the kernel crashed.
2137  *
2138  * The implementation of this routine is intentionally similar to
2139  * cfi_amdstd_write_words(), in order to ease code maintenance.
2140  */
cfi_amdstd_panic_write(struct mtd_info * mtd,loff_t to,size_t len,size_t * retlen,const u_char * buf)2141 static int cfi_amdstd_panic_write(struct mtd_info *mtd, loff_t to, size_t len,
2142 				  size_t *retlen, const u_char *buf)
2143 {
2144 	struct map_info *map = mtd->priv;
2145 	struct cfi_private *cfi = map->fldrv_priv;
2146 	unsigned long ofs, chipstart;
2147 	int ret = 0;
2148 	int chipnum;
2149 
2150 	chipnum = to >> cfi->chipshift;
2151 	ofs = to - (chipnum << cfi->chipshift);
2152 	chipstart = cfi->chips[chipnum].start;
2153 
2154 	/* If it's not bus aligned, do the first byte write */
2155 	if (ofs & (map_bankwidth(map) - 1)) {
2156 		unsigned long bus_ofs = ofs & ~(map_bankwidth(map) - 1);
2157 		int i = ofs - bus_ofs;
2158 		int n = 0;
2159 		map_word tmp_buf;
2160 
2161 		ret = cfi_amdstd_panic_wait(map, &cfi->chips[chipnum], bus_ofs);
2162 		if (ret)
2163 			return ret;
2164 
2165 		/* Load 'tmp_buf' with old contents of flash */
2166 		tmp_buf = map_read(map, bus_ofs + chipstart);
2167 
2168 		/* Number of bytes to copy from buffer */
2169 		n = min_t(int, len, map_bankwidth(map) - i);
2170 
2171 		tmp_buf = map_word_load_partial(map, tmp_buf, buf, i, n);
2172 
2173 		ret = do_panic_write_oneword(map, &cfi->chips[chipnum],
2174 					     bus_ofs, tmp_buf);
2175 		if (ret)
2176 			return ret;
2177 
2178 		ofs += n;
2179 		buf += n;
2180 		(*retlen) += n;
2181 		len -= n;
2182 
2183 		if (ofs >> cfi->chipshift) {
2184 			chipnum++;
2185 			ofs = 0;
2186 			if (chipnum == cfi->numchips)
2187 				return 0;
2188 		}
2189 	}
2190 
2191 	/* We are now aligned, write as much as possible */
2192 	while (len >= map_bankwidth(map)) {
2193 		map_word datum;
2194 
2195 		datum = map_word_load(map, buf);
2196 
2197 		ret = do_panic_write_oneword(map, &cfi->chips[chipnum],
2198 					     ofs, datum);
2199 		if (ret)
2200 			return ret;
2201 
2202 		ofs += map_bankwidth(map);
2203 		buf += map_bankwidth(map);
2204 		(*retlen) += map_bankwidth(map);
2205 		len -= map_bankwidth(map);
2206 
2207 		if (ofs >> cfi->chipshift) {
2208 			chipnum++;
2209 			ofs = 0;
2210 			if (chipnum == cfi->numchips)
2211 				return 0;
2212 
2213 			chipstart = cfi->chips[chipnum].start;
2214 		}
2215 	}
2216 
2217 	/* Write the trailing bytes if any */
2218 	if (len & (map_bankwidth(map) - 1)) {
2219 		map_word tmp_buf;
2220 
2221 		ret = cfi_amdstd_panic_wait(map, &cfi->chips[chipnum], ofs);
2222 		if (ret)
2223 			return ret;
2224 
2225 		tmp_buf = map_read(map, ofs + chipstart);
2226 
2227 		tmp_buf = map_word_load_partial(map, tmp_buf, buf, 0, len);
2228 
2229 		ret = do_panic_write_oneword(map, &cfi->chips[chipnum],
2230 					     ofs, tmp_buf);
2231 		if (ret)
2232 			return ret;
2233 
2234 		(*retlen) += len;
2235 	}
2236 
2237 	return 0;
2238 }
2239 
2240 
2241 /*
2242  * Handle devices with one erase region, that only implement
2243  * the chip erase command.
2244  */
do_erase_chip(struct map_info * map,struct flchip * chip)2245 static int __xipram do_erase_chip(struct map_info *map, struct flchip *chip)
2246 {
2247 	struct cfi_private *cfi = map->fldrv_priv;
2248 	unsigned long timeo = jiffies + HZ;
2249 	unsigned long int adr;
2250 	DECLARE_WAITQUEUE(wait, current);
2251 	int ret = 0;
2252 	int retry_cnt = 0;
2253 
2254 	adr = cfi->addr_unlock1;
2255 
2256 	mutex_lock(&chip->mutex);
2257 	ret = get_chip(map, chip, adr, FL_WRITING);
2258 	if (ret) {
2259 		mutex_unlock(&chip->mutex);
2260 		return ret;
2261 	}
2262 
2263 	pr_debug("MTD %s(): ERASE 0x%.8lx\n",
2264 	       __func__, chip->start);
2265 
2266 	XIP_INVAL_CACHED_RANGE(map, adr, map->size);
2267 	ENABLE_VPP(map);
2268 	xip_disable(map, chip, adr);
2269 
2270  retry:
2271 	cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
2272 	cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi, cfi->device_type, NULL);
2273 	cfi_send_gen_cmd(0x80, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
2274 	cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
2275 	cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi, cfi->device_type, NULL);
2276 	cfi_send_gen_cmd(0x10, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
2277 
2278 	chip->state = FL_ERASING;
2279 	chip->erase_suspended = 0;
2280 	chip->in_progress_block_addr = adr;
2281 	chip->in_progress_block_mask = ~(map->size - 1);
2282 
2283 	INVALIDATE_CACHE_UDELAY(map, chip,
2284 				adr, map->size,
2285 				chip->erase_time*500);
2286 
2287 	timeo = jiffies + (HZ*20);
2288 
2289 	for (;;) {
2290 		if (chip->state != FL_ERASING) {
2291 			/* Someone's suspended the erase. Sleep */
2292 			set_current_state(TASK_UNINTERRUPTIBLE);
2293 			add_wait_queue(&chip->wq, &wait);
2294 			mutex_unlock(&chip->mutex);
2295 			schedule();
2296 			remove_wait_queue(&chip->wq, &wait);
2297 			mutex_lock(&chip->mutex);
2298 			continue;
2299 		}
2300 		if (chip->erase_suspended) {
2301 			/* This erase was suspended and resumed.
2302 			   Adjust the timeout */
2303 			timeo = jiffies + (HZ*20); /* FIXME */
2304 			chip->erase_suspended = 0;
2305 		}
2306 
2307 		if (chip_good(map, adr, map_word_ff(map)))
2308 			break;
2309 
2310 		if (time_after(jiffies, timeo)) {
2311 			printk(KERN_WARNING "MTD %s(): software timeout\n",
2312 			       __func__);
2313 			ret = -EIO;
2314 			break;
2315 		}
2316 
2317 		/* Latency issues. Drop the lock, wait a while and retry */
2318 		UDELAY(map, chip, adr, 1000000/HZ);
2319 	}
2320 	/* Did we succeed? */
2321 	if (ret) {
2322 		/* reset on all failures. */
2323 		map_write(map, CMD(0xF0), chip->start);
2324 		/* FIXME - should have reset delay before continuing */
2325 
2326 		if (++retry_cnt <= MAX_RETRIES) {
2327 			ret = 0;
2328 			goto retry;
2329 		}
2330 	}
2331 
2332 	chip->state = FL_READY;
2333 	xip_enable(map, chip, adr);
2334 	DISABLE_VPP(map);
2335 	put_chip(map, chip, adr);
2336 	mutex_unlock(&chip->mutex);
2337 
2338 	return ret;
2339 }
2340 
2341 
do_erase_oneblock(struct map_info * map,struct flchip * chip,unsigned long adr,int len,void * thunk)2342 static int __xipram do_erase_oneblock(struct map_info *map, struct flchip *chip, unsigned long adr, int len, void *thunk)
2343 {
2344 	struct cfi_private *cfi = map->fldrv_priv;
2345 	unsigned long timeo = jiffies + HZ;
2346 	DECLARE_WAITQUEUE(wait, current);
2347 	int ret = 0;
2348 	int retry_cnt = 0;
2349 
2350 	adr += chip->start;
2351 
2352 	mutex_lock(&chip->mutex);
2353 	ret = get_chip(map, chip, adr, FL_ERASING);
2354 	if (ret) {
2355 		mutex_unlock(&chip->mutex);
2356 		return ret;
2357 	}
2358 
2359 	pr_debug("MTD %s(): ERASE 0x%.8lx\n",
2360 		 __func__, adr);
2361 
2362 	XIP_INVAL_CACHED_RANGE(map, adr, len);
2363 	ENABLE_VPP(map);
2364 	xip_disable(map, chip, adr);
2365 
2366  retry:
2367 	cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
2368 	cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi, cfi->device_type, NULL);
2369 	cfi_send_gen_cmd(0x80, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
2370 	cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
2371 	cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi, cfi->device_type, NULL);
2372 	map_write(map, cfi->sector_erase_cmd, adr);
2373 
2374 	chip->state = FL_ERASING;
2375 	chip->erase_suspended = 0;
2376 	chip->in_progress_block_addr = adr;
2377 	chip->in_progress_block_mask = ~(len - 1);
2378 
2379 	INVALIDATE_CACHE_UDELAY(map, chip,
2380 				adr, len,
2381 				chip->erase_time*500);
2382 
2383 	timeo = jiffies + (HZ*20);
2384 
2385 	for (;;) {
2386 		if (chip->state != FL_ERASING) {
2387 			/* Someone's suspended the erase. Sleep */
2388 			set_current_state(TASK_UNINTERRUPTIBLE);
2389 			add_wait_queue(&chip->wq, &wait);
2390 			mutex_unlock(&chip->mutex);
2391 			schedule();
2392 			remove_wait_queue(&chip->wq, &wait);
2393 			mutex_lock(&chip->mutex);
2394 			continue;
2395 		}
2396 		if (chip->erase_suspended) {
2397 			/* This erase was suspended and resumed.
2398 			   Adjust the timeout */
2399 			timeo = jiffies + (HZ*20); /* FIXME */
2400 			chip->erase_suspended = 0;
2401 		}
2402 
2403 		if (chip_good(map, adr, map_word_ff(map)))
2404 			break;
2405 
2406 		if (time_after(jiffies, timeo)) {
2407 			printk(KERN_WARNING "MTD %s(): software timeout\n",
2408 			       __func__);
2409 			ret = -EIO;
2410 			break;
2411 		}
2412 
2413 		/* Latency issues. Drop the lock, wait a while and retry */
2414 		UDELAY(map, chip, adr, 1000000/HZ);
2415 	}
2416 	/* Did we succeed? */
2417 	if (ret) {
2418 		/* reset on all failures. */
2419 		map_write(map, CMD(0xF0), chip->start);
2420 		/* FIXME - should have reset delay before continuing */
2421 
2422 		if (++retry_cnt <= MAX_RETRIES) {
2423 			ret = 0;
2424 			goto retry;
2425 		}
2426 	}
2427 
2428 	chip->state = FL_READY;
2429 	xip_enable(map, chip, adr);
2430 	DISABLE_VPP(map);
2431 	put_chip(map, chip, adr);
2432 	mutex_unlock(&chip->mutex);
2433 	return ret;
2434 }
2435 
2436 
cfi_amdstd_erase_varsize(struct mtd_info * mtd,struct erase_info * instr)2437 static int cfi_amdstd_erase_varsize(struct mtd_info *mtd, struct erase_info *instr)
2438 {
2439 	return cfi_varsize_frob(mtd, do_erase_oneblock, instr->addr,
2440 				instr->len, NULL);
2441 }
2442 
2443 
cfi_amdstd_erase_chip(struct mtd_info * mtd,struct erase_info * instr)2444 static int cfi_amdstd_erase_chip(struct mtd_info *mtd, struct erase_info *instr)
2445 {
2446 	struct map_info *map = mtd->priv;
2447 	struct cfi_private *cfi = map->fldrv_priv;
2448 
2449 	if (instr->addr != 0)
2450 		return -EINVAL;
2451 
2452 	if (instr->len != mtd->size)
2453 		return -EINVAL;
2454 
2455 	return do_erase_chip(map, &cfi->chips[0]);
2456 }
2457 
do_atmel_lock(struct map_info * map,struct flchip * chip,unsigned long adr,int len,void * thunk)2458 static int do_atmel_lock(struct map_info *map, struct flchip *chip,
2459 			 unsigned long adr, int len, void *thunk)
2460 {
2461 	struct cfi_private *cfi = map->fldrv_priv;
2462 	int ret;
2463 
2464 	mutex_lock(&chip->mutex);
2465 	ret = get_chip(map, chip, adr + chip->start, FL_LOCKING);
2466 	if (ret)
2467 		goto out_unlock;
2468 	chip->state = FL_LOCKING;
2469 
2470 	pr_debug("MTD %s(): LOCK 0x%08lx len %d\n", __func__, adr, len);
2471 
2472 	cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi,
2473 			 cfi->device_type, NULL);
2474 	cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi,
2475 			 cfi->device_type, NULL);
2476 	cfi_send_gen_cmd(0x80, cfi->addr_unlock1, chip->start, map, cfi,
2477 			 cfi->device_type, NULL);
2478 	cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi,
2479 			 cfi->device_type, NULL);
2480 	cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi,
2481 			 cfi->device_type, NULL);
2482 	map_write(map, CMD(0x40), chip->start + adr);
2483 
2484 	chip->state = FL_READY;
2485 	put_chip(map, chip, adr + chip->start);
2486 	ret = 0;
2487 
2488 out_unlock:
2489 	mutex_unlock(&chip->mutex);
2490 	return ret;
2491 }
2492 
do_atmel_unlock(struct map_info * map,struct flchip * chip,unsigned long adr,int len,void * thunk)2493 static int do_atmel_unlock(struct map_info *map, struct flchip *chip,
2494 			   unsigned long adr, int len, void *thunk)
2495 {
2496 	struct cfi_private *cfi = map->fldrv_priv;
2497 	int ret;
2498 
2499 	mutex_lock(&chip->mutex);
2500 	ret = get_chip(map, chip, adr + chip->start, FL_UNLOCKING);
2501 	if (ret)
2502 		goto out_unlock;
2503 	chip->state = FL_UNLOCKING;
2504 
2505 	pr_debug("MTD %s(): LOCK 0x%08lx len %d\n", __func__, adr, len);
2506 
2507 	cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi,
2508 			 cfi->device_type, NULL);
2509 	map_write(map, CMD(0x70), adr);
2510 
2511 	chip->state = FL_READY;
2512 	put_chip(map, chip, adr + chip->start);
2513 	ret = 0;
2514 
2515 out_unlock:
2516 	mutex_unlock(&chip->mutex);
2517 	return ret;
2518 }
2519 
cfi_atmel_lock(struct mtd_info * mtd,loff_t ofs,uint64_t len)2520 static int cfi_atmel_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
2521 {
2522 	return cfi_varsize_frob(mtd, do_atmel_lock, ofs, len, NULL);
2523 }
2524 
cfi_atmel_unlock(struct mtd_info * mtd,loff_t ofs,uint64_t len)2525 static int cfi_atmel_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
2526 {
2527 	return cfi_varsize_frob(mtd, do_atmel_unlock, ofs, len, NULL);
2528 }
2529 
2530 /*
2531  * Advanced Sector Protection - PPB (Persistent Protection Bit) locking
2532  */
2533 
2534 struct ppb_lock {
2535 	struct flchip *chip;
2536 	unsigned long adr;
2537 	int locked;
2538 };
2539 
2540 #define MAX_SECTORS			512
2541 
2542 #define DO_XXLOCK_ONEBLOCK_LOCK		((void *)1)
2543 #define DO_XXLOCK_ONEBLOCK_UNLOCK	((void *)2)
2544 #define DO_XXLOCK_ONEBLOCK_GETLOCK	((void *)3)
2545 
do_ppb_xxlock(struct map_info * map,struct flchip * chip,unsigned long adr,int len,void * thunk)2546 static int __maybe_unused do_ppb_xxlock(struct map_info *map,
2547 					struct flchip *chip,
2548 					unsigned long adr, int len, void *thunk)
2549 {
2550 	struct cfi_private *cfi = map->fldrv_priv;
2551 	unsigned long timeo;
2552 	int ret;
2553 
2554 	adr += chip->start;
2555 	mutex_lock(&chip->mutex);
2556 	ret = get_chip(map, chip, adr, FL_LOCKING);
2557 	if (ret) {
2558 		mutex_unlock(&chip->mutex);
2559 		return ret;
2560 	}
2561 
2562 	pr_debug("MTD %s(): XXLOCK 0x%08lx len %d\n", __func__, adr, len);
2563 
2564 	cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi,
2565 			 cfi->device_type, NULL);
2566 	cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi,
2567 			 cfi->device_type, NULL);
2568 	/* PPB entry command */
2569 	cfi_send_gen_cmd(0xC0, cfi->addr_unlock1, chip->start, map, cfi,
2570 			 cfi->device_type, NULL);
2571 
2572 	if (thunk == DO_XXLOCK_ONEBLOCK_LOCK) {
2573 		chip->state = FL_LOCKING;
2574 		map_write(map, CMD(0xA0), adr);
2575 		map_write(map, CMD(0x00), adr);
2576 	} else if (thunk == DO_XXLOCK_ONEBLOCK_UNLOCK) {
2577 		/*
2578 		 * Unlocking of one specific sector is not supported, so we
2579 		 * have to unlock all sectors of this device instead
2580 		 */
2581 		chip->state = FL_UNLOCKING;
2582 		map_write(map, CMD(0x80), chip->start);
2583 		map_write(map, CMD(0x30), chip->start);
2584 	} else if (thunk == DO_XXLOCK_ONEBLOCK_GETLOCK) {
2585 		chip->state = FL_JEDEC_QUERY;
2586 		/* Return locked status: 0->locked, 1->unlocked */
2587 		ret = !cfi_read_query(map, adr);
2588 	} else
2589 		BUG();
2590 
2591 	/*
2592 	 * Wait for some time as unlocking of all sectors takes quite long
2593 	 */
2594 	timeo = jiffies + msecs_to_jiffies(2000);	/* 2s max (un)locking */
2595 	for (;;) {
2596 		if (chip_ready(map, adr))
2597 			break;
2598 
2599 		if (time_after(jiffies, timeo)) {
2600 			printk(KERN_ERR "Waiting for chip to be ready timed out.\n");
2601 			ret = -EIO;
2602 			break;
2603 		}
2604 
2605 		UDELAY(map, chip, adr, 1);
2606 	}
2607 
2608 	/* Exit BC commands */
2609 	map_write(map, CMD(0x90), chip->start);
2610 	map_write(map, CMD(0x00), chip->start);
2611 
2612 	chip->state = FL_READY;
2613 	put_chip(map, chip, adr);
2614 	mutex_unlock(&chip->mutex);
2615 
2616 	return ret;
2617 }
2618 
cfi_ppb_lock(struct mtd_info * mtd,loff_t ofs,uint64_t len)2619 static int __maybe_unused cfi_ppb_lock(struct mtd_info *mtd, loff_t ofs,
2620 				       uint64_t len)
2621 {
2622 	return cfi_varsize_frob(mtd, do_ppb_xxlock, ofs, len,
2623 				DO_XXLOCK_ONEBLOCK_LOCK);
2624 }
2625 
cfi_ppb_unlock(struct mtd_info * mtd,loff_t ofs,uint64_t len)2626 static int __maybe_unused cfi_ppb_unlock(struct mtd_info *mtd, loff_t ofs,
2627 					 uint64_t len)
2628 {
2629 	struct mtd_erase_region_info *regions = mtd->eraseregions;
2630 	struct map_info *map = mtd->priv;
2631 	struct cfi_private *cfi = map->fldrv_priv;
2632 	struct ppb_lock *sect;
2633 	unsigned long adr;
2634 	loff_t offset;
2635 	uint64_t length;
2636 	int chipnum;
2637 	int i;
2638 	int sectors;
2639 	int ret;
2640 
2641 	/*
2642 	 * PPB unlocking always unlocks all sectors of the flash chip.
2643 	 * We need to re-lock all previously locked sectors. So lets
2644 	 * first check the locking status of all sectors and save
2645 	 * it for future use.
2646 	 */
2647 	sect = kcalloc(MAX_SECTORS, sizeof(struct ppb_lock), GFP_KERNEL);
2648 	if (!sect)
2649 		return -ENOMEM;
2650 
2651 	/*
2652 	 * This code to walk all sectors is a slightly modified version
2653 	 * of the cfi_varsize_frob() code.
2654 	 */
2655 	i = 0;
2656 	chipnum = 0;
2657 	adr = 0;
2658 	sectors = 0;
2659 	offset = 0;
2660 	length = mtd->size;
2661 
2662 	while (length) {
2663 		int size = regions[i].erasesize;
2664 
2665 		/*
2666 		 * Only test sectors that shall not be unlocked. The other
2667 		 * sectors shall be unlocked, so lets keep their locking
2668 		 * status at "unlocked" (locked=0) for the final re-locking.
2669 		 */
2670 		if ((offset < ofs) || (offset >= (ofs + len))) {
2671 			sect[sectors].chip = &cfi->chips[chipnum];
2672 			sect[sectors].adr = adr;
2673 			sect[sectors].locked = do_ppb_xxlock(
2674 				map, &cfi->chips[chipnum], adr, 0,
2675 				DO_XXLOCK_ONEBLOCK_GETLOCK);
2676 		}
2677 
2678 		adr += size;
2679 		offset += size;
2680 		length -= size;
2681 
2682 		if (offset == regions[i].offset + size * regions[i].numblocks)
2683 			i++;
2684 
2685 		if (adr >> cfi->chipshift) {
2686 			if (offset >= (ofs + len))
2687 				break;
2688 			adr = 0;
2689 			chipnum++;
2690 
2691 			if (chipnum >= cfi->numchips)
2692 				break;
2693 		}
2694 
2695 		sectors++;
2696 		if (sectors >= MAX_SECTORS) {
2697 			printk(KERN_ERR "Only %d sectors for PPB locking supported!\n",
2698 			       MAX_SECTORS);
2699 			kfree(sect);
2700 			return -EINVAL;
2701 		}
2702 	}
2703 
2704 	/* Now unlock the whole chip */
2705 	ret = cfi_varsize_frob(mtd, do_ppb_xxlock, ofs, len,
2706 			       DO_XXLOCK_ONEBLOCK_UNLOCK);
2707 	if (ret) {
2708 		kfree(sect);
2709 		return ret;
2710 	}
2711 
2712 	/*
2713 	 * PPB unlocking always unlocks all sectors of the flash chip.
2714 	 * We need to re-lock all previously locked sectors.
2715 	 */
2716 	for (i = 0; i < sectors; i++) {
2717 		if (sect[i].locked)
2718 			do_ppb_xxlock(map, sect[i].chip, sect[i].adr, 0,
2719 				      DO_XXLOCK_ONEBLOCK_LOCK);
2720 	}
2721 
2722 	kfree(sect);
2723 	return ret;
2724 }
2725 
cfi_ppb_is_locked(struct mtd_info * mtd,loff_t ofs,uint64_t len)2726 static int __maybe_unused cfi_ppb_is_locked(struct mtd_info *mtd, loff_t ofs,
2727 					    uint64_t len)
2728 {
2729 	return cfi_varsize_frob(mtd, do_ppb_xxlock, ofs, len,
2730 				DO_XXLOCK_ONEBLOCK_GETLOCK) ? 1 : 0;
2731 }
2732 
cfi_amdstd_sync(struct mtd_info * mtd)2733 static void cfi_amdstd_sync (struct mtd_info *mtd)
2734 {
2735 	struct map_info *map = mtd->priv;
2736 	struct cfi_private *cfi = map->fldrv_priv;
2737 	int i;
2738 	struct flchip *chip;
2739 	int ret = 0;
2740 	DECLARE_WAITQUEUE(wait, current);
2741 
2742 	for (i=0; !ret && i<cfi->numchips; i++) {
2743 		chip = &cfi->chips[i];
2744 
2745 	retry:
2746 		mutex_lock(&chip->mutex);
2747 
2748 		switch(chip->state) {
2749 		case FL_READY:
2750 		case FL_STATUS:
2751 		case FL_CFI_QUERY:
2752 		case FL_JEDEC_QUERY:
2753 			chip->oldstate = chip->state;
2754 			chip->state = FL_SYNCING;
2755 			/* No need to wake_up() on this state change -
2756 			 * as the whole point is that nobody can do anything
2757 			 * with the chip now anyway.
2758 			 */
2759 		case FL_SYNCING:
2760 			mutex_unlock(&chip->mutex);
2761 			break;
2762 
2763 		default:
2764 			/* Not an idle state */
2765 			set_current_state(TASK_UNINTERRUPTIBLE);
2766 			add_wait_queue(&chip->wq, &wait);
2767 
2768 			mutex_unlock(&chip->mutex);
2769 
2770 			schedule();
2771 
2772 			remove_wait_queue(&chip->wq, &wait);
2773 
2774 			goto retry;
2775 		}
2776 	}
2777 
2778 	/* Unlock the chips again */
2779 
2780 	for (i--; i >=0; i--) {
2781 		chip = &cfi->chips[i];
2782 
2783 		mutex_lock(&chip->mutex);
2784 
2785 		if (chip->state == FL_SYNCING) {
2786 			chip->state = chip->oldstate;
2787 			wake_up(&chip->wq);
2788 		}
2789 		mutex_unlock(&chip->mutex);
2790 	}
2791 }
2792 
2793 
cfi_amdstd_suspend(struct mtd_info * mtd)2794 static int cfi_amdstd_suspend(struct mtd_info *mtd)
2795 {
2796 	struct map_info *map = mtd->priv;
2797 	struct cfi_private *cfi = map->fldrv_priv;
2798 	int i;
2799 	struct flchip *chip;
2800 	int ret = 0;
2801 
2802 	for (i=0; !ret && i<cfi->numchips; i++) {
2803 		chip = &cfi->chips[i];
2804 
2805 		mutex_lock(&chip->mutex);
2806 
2807 		switch(chip->state) {
2808 		case FL_READY:
2809 		case FL_STATUS:
2810 		case FL_CFI_QUERY:
2811 		case FL_JEDEC_QUERY:
2812 			chip->oldstate = chip->state;
2813 			chip->state = FL_PM_SUSPENDED;
2814 			/* No need to wake_up() on this state change -
2815 			 * as the whole point is that nobody can do anything
2816 			 * with the chip now anyway.
2817 			 */
2818 		case FL_PM_SUSPENDED:
2819 			break;
2820 
2821 		default:
2822 			ret = -EAGAIN;
2823 			break;
2824 		}
2825 		mutex_unlock(&chip->mutex);
2826 	}
2827 
2828 	/* Unlock the chips again */
2829 
2830 	if (ret) {
2831 		for (i--; i >=0; i--) {
2832 			chip = &cfi->chips[i];
2833 
2834 			mutex_lock(&chip->mutex);
2835 
2836 			if (chip->state == FL_PM_SUSPENDED) {
2837 				chip->state = chip->oldstate;
2838 				wake_up(&chip->wq);
2839 			}
2840 			mutex_unlock(&chip->mutex);
2841 		}
2842 	}
2843 
2844 	return ret;
2845 }
2846 
2847 
cfi_amdstd_resume(struct mtd_info * mtd)2848 static void cfi_amdstd_resume(struct mtd_info *mtd)
2849 {
2850 	struct map_info *map = mtd->priv;
2851 	struct cfi_private *cfi = map->fldrv_priv;
2852 	int i;
2853 	struct flchip *chip;
2854 
2855 	for (i=0; i<cfi->numchips; i++) {
2856 
2857 		chip = &cfi->chips[i];
2858 
2859 		mutex_lock(&chip->mutex);
2860 
2861 		if (chip->state == FL_PM_SUSPENDED) {
2862 			chip->state = FL_READY;
2863 			map_write(map, CMD(0xF0), chip->start);
2864 			wake_up(&chip->wq);
2865 		}
2866 		else
2867 			printk(KERN_ERR "Argh. Chip not in PM_SUSPENDED state upon resume()\n");
2868 
2869 		mutex_unlock(&chip->mutex);
2870 	}
2871 }
2872 
2873 
2874 /*
2875  * Ensure that the flash device is put back into read array mode before
2876  * unloading the driver or rebooting.  On some systems, rebooting while
2877  * the flash is in query/program/erase mode will prevent the CPU from
2878  * fetching the bootloader code, requiring a hard reset or power cycle.
2879  */
cfi_amdstd_reset(struct mtd_info * mtd)2880 static int cfi_amdstd_reset(struct mtd_info *mtd)
2881 {
2882 	struct map_info *map = mtd->priv;
2883 	struct cfi_private *cfi = map->fldrv_priv;
2884 	int i, ret;
2885 	struct flchip *chip;
2886 
2887 	for (i = 0; i < cfi->numchips; i++) {
2888 
2889 		chip = &cfi->chips[i];
2890 
2891 		mutex_lock(&chip->mutex);
2892 
2893 		ret = get_chip(map, chip, chip->start, FL_SHUTDOWN);
2894 		if (!ret) {
2895 			map_write(map, CMD(0xF0), chip->start);
2896 			chip->state = FL_SHUTDOWN;
2897 			put_chip(map, chip, chip->start);
2898 		}
2899 
2900 		mutex_unlock(&chip->mutex);
2901 	}
2902 
2903 	return 0;
2904 }
2905 
2906 
cfi_amdstd_reboot(struct notifier_block * nb,unsigned long val,void * v)2907 static int cfi_amdstd_reboot(struct notifier_block *nb, unsigned long val,
2908 			       void *v)
2909 {
2910 	struct mtd_info *mtd;
2911 
2912 	mtd = container_of(nb, struct mtd_info, reboot_notifier);
2913 	cfi_amdstd_reset(mtd);
2914 	return NOTIFY_DONE;
2915 }
2916 
2917 
cfi_amdstd_destroy(struct mtd_info * mtd)2918 static void cfi_amdstd_destroy(struct mtd_info *mtd)
2919 {
2920 	struct map_info *map = mtd->priv;
2921 	struct cfi_private *cfi = map->fldrv_priv;
2922 
2923 	cfi_amdstd_reset(mtd);
2924 	unregister_reboot_notifier(&mtd->reboot_notifier);
2925 	kfree(cfi->cmdset_priv);
2926 	kfree(cfi->cfiq);
2927 	kfree(cfi);
2928 	kfree(mtd->eraseregions);
2929 }
2930 
2931 MODULE_LICENSE("GPL");
2932 MODULE_AUTHOR("Crossnet Co. <info@crossnet.co.jp> et al.");
2933 MODULE_DESCRIPTION("MTD chip driver for AMD/Fujitsu flash chips");
2934 MODULE_ALIAS("cfi_cmdset_0006");
2935 MODULE_ALIAS("cfi_cmdset_0701");
2936