• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * NAND Flash Controller Device Driver
3  * Copyright © 2009-2010, Intel Corporation and its suppliers.
4  *
5  * This program is free software; you can redistribute it and/or modify it
6  * under the terms and conditions of the GNU General Public License,
7  * version 2, as published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope it will be useful, but WITHOUT
10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
12  * more details.
13  */
14 
15 #include <linux/bitfield.h>
16 #include <linux/completion.h>
17 #include <linux/dma-mapping.h>
18 #include <linux/interrupt.h>
19 #include <linux/io.h>
20 #include <linux/module.h>
21 #include <linux/mtd/mtd.h>
22 #include <linux/mtd/rawnand.h>
23 #include <linux/slab.h>
24 #include <linux/spinlock.h>
25 
26 #include "denali.h"
27 
28 MODULE_LICENSE("GPL");
29 
30 #define DENALI_NAND_NAME    "denali-nand"
31 #define DENALI_DEFAULT_OOB_SKIP_BYTES	8
32 
33 /* for Indexed Addressing */
34 #define DENALI_INDEXED_CTRL	0x00
35 #define DENALI_INDEXED_DATA	0x10
36 
37 #define DENALI_MAP00		(0 << 26)	/* direct access to buffer */
38 #define DENALI_MAP01		(1 << 26)	/* read/write pages in PIO */
39 #define DENALI_MAP10		(2 << 26)	/* high-level control plane */
40 #define DENALI_MAP11		(3 << 26)	/* direct controller access */
41 
42 /* MAP11 access cycle type */
43 #define DENALI_MAP11_CMD	((DENALI_MAP11) | 0)	/* command cycle */
44 #define DENALI_MAP11_ADDR	((DENALI_MAP11) | 1)	/* address cycle */
45 #define DENALI_MAP11_DATA	((DENALI_MAP11) | 2)	/* data cycle */
46 
47 /* MAP10 commands */
48 #define DENALI_ERASE		0x01
49 
50 #define DENALI_BANK(denali)	((denali)->active_bank << 24)
51 
52 #define DENALI_INVALID_BANK	-1
53 #define DENALI_NR_BANKS		4
54 
mtd_to_denali(struct mtd_info * mtd)55 static inline struct denali_nand_info *mtd_to_denali(struct mtd_info *mtd)
56 {
57 	return container_of(mtd_to_nand(mtd), struct denali_nand_info, nand);
58 }
59 
60 /*
61  * Direct Addressing - the slave address forms the control information (command
62  * type, bank, block, and page address).  The slave data is the actual data to
63  * be transferred.  This mode requires 28 bits of address region allocated.
64  */
denali_direct_read(struct denali_nand_info * denali,u32 addr)65 static u32 denali_direct_read(struct denali_nand_info *denali, u32 addr)
66 {
67 	return ioread32(denali->host + addr);
68 }
69 
denali_direct_write(struct denali_nand_info * denali,u32 addr,u32 data)70 static void denali_direct_write(struct denali_nand_info *denali, u32 addr,
71 				u32 data)
72 {
73 	iowrite32(data, denali->host + addr);
74 }
75 
76 /*
77  * Indexed Addressing - address translation module intervenes in passing the
78  * control information.  This mode reduces the required address range.  The
79  * control information and transferred data are latched by the registers in
80  * the translation module.
81  */
denali_indexed_read(struct denali_nand_info * denali,u32 addr)82 static u32 denali_indexed_read(struct denali_nand_info *denali, u32 addr)
83 {
84 	iowrite32(addr, denali->host + DENALI_INDEXED_CTRL);
85 	return ioread32(denali->host + DENALI_INDEXED_DATA);
86 }
87 
denali_indexed_write(struct denali_nand_info * denali,u32 addr,u32 data)88 static void denali_indexed_write(struct denali_nand_info *denali, u32 addr,
89 				 u32 data)
90 {
91 	iowrite32(addr, denali->host + DENALI_INDEXED_CTRL);
92 	iowrite32(data, denali->host + DENALI_INDEXED_DATA);
93 }
94 
95 /*
96  * Use the configuration feature register to determine the maximum number of
97  * banks that the hardware supports.
98  */
denali_detect_max_banks(struct denali_nand_info * denali)99 static void denali_detect_max_banks(struct denali_nand_info *denali)
100 {
101 	uint32_t features = ioread32(denali->reg + FEATURES);
102 
103 	denali->max_banks = 1 << FIELD_GET(FEATURES__N_BANKS, features);
104 
105 	/* the encoding changed from rev 5.0 to 5.1 */
106 	if (denali->revision < 0x0501)
107 		denali->max_banks <<= 1;
108 }
109 
denali_enable_irq(struct denali_nand_info * denali)110 static void denali_enable_irq(struct denali_nand_info *denali)
111 {
112 	int i;
113 
114 	for (i = 0; i < DENALI_NR_BANKS; i++)
115 		iowrite32(U32_MAX, denali->reg + INTR_EN(i));
116 	iowrite32(GLOBAL_INT_EN_FLAG, denali->reg + GLOBAL_INT_ENABLE);
117 }
118 
denali_disable_irq(struct denali_nand_info * denali)119 static void denali_disable_irq(struct denali_nand_info *denali)
120 {
121 	int i;
122 
123 	for (i = 0; i < DENALI_NR_BANKS; i++)
124 		iowrite32(0, denali->reg + INTR_EN(i));
125 	iowrite32(0, denali->reg + GLOBAL_INT_ENABLE);
126 }
127 
denali_clear_irq(struct denali_nand_info * denali,int bank,uint32_t irq_status)128 static void denali_clear_irq(struct denali_nand_info *denali,
129 			     int bank, uint32_t irq_status)
130 {
131 	/* write one to clear bits */
132 	iowrite32(irq_status, denali->reg + INTR_STATUS(bank));
133 }
134 
denali_clear_irq_all(struct denali_nand_info * denali)135 static void denali_clear_irq_all(struct denali_nand_info *denali)
136 {
137 	int i;
138 
139 	for (i = 0; i < DENALI_NR_BANKS; i++)
140 		denali_clear_irq(denali, i, U32_MAX);
141 }
142 
denali_isr(int irq,void * dev_id)143 static irqreturn_t denali_isr(int irq, void *dev_id)
144 {
145 	struct denali_nand_info *denali = dev_id;
146 	irqreturn_t ret = IRQ_NONE;
147 	uint32_t irq_status;
148 	int i;
149 
150 	spin_lock(&denali->irq_lock);
151 
152 	for (i = 0; i < DENALI_NR_BANKS; i++) {
153 		irq_status = ioread32(denali->reg + INTR_STATUS(i));
154 		if (irq_status)
155 			ret = IRQ_HANDLED;
156 
157 		denali_clear_irq(denali, i, irq_status);
158 
159 		if (i != denali->active_bank)
160 			continue;
161 
162 		denali->irq_status |= irq_status;
163 
164 		if (denali->irq_status & denali->irq_mask)
165 			complete(&denali->complete);
166 	}
167 
168 	spin_unlock(&denali->irq_lock);
169 
170 	return ret;
171 }
172 
denali_reset_irq(struct denali_nand_info * denali)173 static void denali_reset_irq(struct denali_nand_info *denali)
174 {
175 	unsigned long flags;
176 
177 	spin_lock_irqsave(&denali->irq_lock, flags);
178 	denali->irq_status = 0;
179 	denali->irq_mask = 0;
180 	spin_unlock_irqrestore(&denali->irq_lock, flags);
181 }
182 
denali_wait_for_irq(struct denali_nand_info * denali,uint32_t irq_mask)183 static uint32_t denali_wait_for_irq(struct denali_nand_info *denali,
184 				    uint32_t irq_mask)
185 {
186 	unsigned long time_left, flags;
187 	uint32_t irq_status;
188 
189 	spin_lock_irqsave(&denali->irq_lock, flags);
190 
191 	irq_status = denali->irq_status;
192 
193 	if (irq_mask & irq_status) {
194 		/* return immediately if the IRQ has already happened. */
195 		spin_unlock_irqrestore(&denali->irq_lock, flags);
196 		return irq_status;
197 	}
198 
199 	denali->irq_mask = irq_mask;
200 	reinit_completion(&denali->complete);
201 	spin_unlock_irqrestore(&denali->irq_lock, flags);
202 
203 	time_left = wait_for_completion_timeout(&denali->complete,
204 						msecs_to_jiffies(1000));
205 	if (!time_left) {
206 		dev_err(denali->dev, "timeout while waiting for irq 0x%x\n",
207 			irq_mask);
208 		return 0;
209 	}
210 
211 	return denali->irq_status;
212 }
213 
denali_check_irq(struct denali_nand_info * denali)214 static uint32_t denali_check_irq(struct denali_nand_info *denali)
215 {
216 	unsigned long flags;
217 	uint32_t irq_status;
218 
219 	spin_lock_irqsave(&denali->irq_lock, flags);
220 	irq_status = denali->irq_status;
221 	spin_unlock_irqrestore(&denali->irq_lock, flags);
222 
223 	return irq_status;
224 }
225 
denali_read_buf(struct mtd_info * mtd,uint8_t * buf,int len)226 static void denali_read_buf(struct mtd_info *mtd, uint8_t *buf, int len)
227 {
228 	struct denali_nand_info *denali = mtd_to_denali(mtd);
229 	u32 addr = DENALI_MAP11_DATA | DENALI_BANK(denali);
230 	int i;
231 
232 	for (i = 0; i < len; i++)
233 		buf[i] = denali->host_read(denali, addr);
234 }
235 
denali_write_buf(struct mtd_info * mtd,const uint8_t * buf,int len)236 static void denali_write_buf(struct mtd_info *mtd, const uint8_t *buf, int len)
237 {
238 	struct denali_nand_info *denali = mtd_to_denali(mtd);
239 	u32 addr = DENALI_MAP11_DATA | DENALI_BANK(denali);
240 	int i;
241 
242 	for (i = 0; i < len; i++)
243 		denali->host_write(denali, addr, buf[i]);
244 }
245 
denali_read_buf16(struct mtd_info * mtd,uint8_t * buf,int len)246 static void denali_read_buf16(struct mtd_info *mtd, uint8_t *buf, int len)
247 {
248 	struct denali_nand_info *denali = mtd_to_denali(mtd);
249 	u32 addr = DENALI_MAP11_DATA | DENALI_BANK(denali);
250 	uint16_t *buf16 = (uint16_t *)buf;
251 	int i;
252 
253 	for (i = 0; i < len / 2; i++)
254 		buf16[i] = denali->host_read(denali, addr);
255 }
256 
denali_write_buf16(struct mtd_info * mtd,const uint8_t * buf,int len)257 static void denali_write_buf16(struct mtd_info *mtd, const uint8_t *buf,
258 			       int len)
259 {
260 	struct denali_nand_info *denali = mtd_to_denali(mtd);
261 	u32 addr = DENALI_MAP11_DATA | DENALI_BANK(denali);
262 	const uint16_t *buf16 = (const uint16_t *)buf;
263 	int i;
264 
265 	for (i = 0; i < len / 2; i++)
266 		denali->host_write(denali, addr, buf16[i]);
267 }
268 
denali_read_byte(struct mtd_info * mtd)269 static uint8_t denali_read_byte(struct mtd_info *mtd)
270 {
271 	uint8_t byte;
272 
273 	denali_read_buf(mtd, &byte, 1);
274 
275 	return byte;
276 }
277 
denali_write_byte(struct mtd_info * mtd,uint8_t byte)278 static void denali_write_byte(struct mtd_info *mtd, uint8_t byte)
279 {
280 	denali_write_buf(mtd, &byte, 1);
281 }
282 
denali_read_word(struct mtd_info * mtd)283 static uint16_t denali_read_word(struct mtd_info *mtd)
284 {
285 	uint16_t word;
286 
287 	denali_read_buf16(mtd, (uint8_t *)&word, 2);
288 
289 	return word;
290 }
291 
denali_cmd_ctrl(struct mtd_info * mtd,int dat,unsigned int ctrl)292 static void denali_cmd_ctrl(struct mtd_info *mtd, int dat, unsigned int ctrl)
293 {
294 	struct denali_nand_info *denali = mtd_to_denali(mtd);
295 	uint32_t type;
296 
297 	if (ctrl & NAND_CLE)
298 		type = DENALI_MAP11_CMD;
299 	else if (ctrl & NAND_ALE)
300 		type = DENALI_MAP11_ADDR;
301 	else
302 		return;
303 
304 	/*
305 	 * Some commands are followed by chip->dev_ready or chip->waitfunc.
306 	 * irq_status must be cleared here to catch the R/B# interrupt later.
307 	 */
308 	if (ctrl & NAND_CTRL_CHANGE)
309 		denali_reset_irq(denali);
310 
311 	denali->host_write(denali, DENALI_BANK(denali) | type, dat);
312 }
313 
denali_dev_ready(struct mtd_info * mtd)314 static int denali_dev_ready(struct mtd_info *mtd)
315 {
316 	struct denali_nand_info *denali = mtd_to_denali(mtd);
317 
318 	return !!(denali_check_irq(denali) & INTR__INT_ACT);
319 }
320 
denali_check_erased_page(struct mtd_info * mtd,struct nand_chip * chip,uint8_t * buf,unsigned long uncor_ecc_flags,unsigned int max_bitflips)321 static int denali_check_erased_page(struct mtd_info *mtd,
322 				    struct nand_chip *chip, uint8_t *buf,
323 				    unsigned long uncor_ecc_flags,
324 				    unsigned int max_bitflips)
325 {
326 	struct denali_nand_info *denali = mtd_to_denali(mtd);
327 	uint8_t *ecc_code = chip->oob_poi + denali->oob_skip_bytes;
328 	int ecc_steps = chip->ecc.steps;
329 	int ecc_size = chip->ecc.size;
330 	int ecc_bytes = chip->ecc.bytes;
331 	int i, stat;
332 
333 	for (i = 0; i < ecc_steps; i++) {
334 		if (!(uncor_ecc_flags & BIT(i)))
335 			continue;
336 
337 		stat = nand_check_erased_ecc_chunk(buf, ecc_size,
338 						  ecc_code, ecc_bytes,
339 						  NULL, 0,
340 						  chip->ecc.strength);
341 		if (stat < 0) {
342 			mtd->ecc_stats.failed++;
343 		} else {
344 			mtd->ecc_stats.corrected += stat;
345 			max_bitflips = max_t(unsigned int, max_bitflips, stat);
346 		}
347 
348 		buf += ecc_size;
349 		ecc_code += ecc_bytes;
350 	}
351 
352 	return max_bitflips;
353 }
354 
denali_hw_ecc_fixup(struct mtd_info * mtd,struct denali_nand_info * denali,unsigned long * uncor_ecc_flags)355 static int denali_hw_ecc_fixup(struct mtd_info *mtd,
356 			       struct denali_nand_info *denali,
357 			       unsigned long *uncor_ecc_flags)
358 {
359 	struct nand_chip *chip = mtd_to_nand(mtd);
360 	int bank = denali->active_bank;
361 	uint32_t ecc_cor;
362 	unsigned int max_bitflips;
363 
364 	ecc_cor = ioread32(denali->reg + ECC_COR_INFO(bank));
365 	ecc_cor >>= ECC_COR_INFO__SHIFT(bank);
366 
367 	if (ecc_cor & ECC_COR_INFO__UNCOR_ERR) {
368 		/*
369 		 * This flag is set when uncorrectable error occurs at least in
370 		 * one ECC sector.  We can not know "how many sectors", or
371 		 * "which sector(s)".  We need erase-page check for all sectors.
372 		 */
373 		*uncor_ecc_flags = GENMASK(chip->ecc.steps - 1, 0);
374 		return 0;
375 	}
376 
377 	max_bitflips = FIELD_GET(ECC_COR_INFO__MAX_ERRORS, ecc_cor);
378 
379 	/*
380 	 * The register holds the maximum of per-sector corrected bitflips.
381 	 * This is suitable for the return value of the ->read_page() callback.
382 	 * Unfortunately, we can not know the total number of corrected bits in
383 	 * the page.  Increase the stats by max_bitflips. (compromised solution)
384 	 */
385 	mtd->ecc_stats.corrected += max_bitflips;
386 
387 	return max_bitflips;
388 }
389 
denali_sw_ecc_fixup(struct mtd_info * mtd,struct denali_nand_info * denali,unsigned long * uncor_ecc_flags,uint8_t * buf)390 static int denali_sw_ecc_fixup(struct mtd_info *mtd,
391 			       struct denali_nand_info *denali,
392 			       unsigned long *uncor_ecc_flags, uint8_t *buf)
393 {
394 	unsigned int ecc_size = denali->nand.ecc.size;
395 	unsigned int bitflips = 0;
396 	unsigned int max_bitflips = 0;
397 	uint32_t err_addr, err_cor_info;
398 	unsigned int err_byte, err_sector, err_device;
399 	uint8_t err_cor_value;
400 	unsigned int prev_sector = 0;
401 	uint32_t irq_status;
402 
403 	denali_reset_irq(denali);
404 
405 	do {
406 		err_addr = ioread32(denali->reg + ECC_ERROR_ADDRESS);
407 		err_sector = FIELD_GET(ECC_ERROR_ADDRESS__SECTOR, err_addr);
408 		err_byte = FIELD_GET(ECC_ERROR_ADDRESS__OFFSET, err_addr);
409 
410 		err_cor_info = ioread32(denali->reg + ERR_CORRECTION_INFO);
411 		err_cor_value = FIELD_GET(ERR_CORRECTION_INFO__BYTE,
412 					  err_cor_info);
413 		err_device = FIELD_GET(ERR_CORRECTION_INFO__DEVICE,
414 				       err_cor_info);
415 
416 		/* reset the bitflip counter when crossing ECC sector */
417 		if (err_sector != prev_sector)
418 			bitflips = 0;
419 
420 		if (err_cor_info & ERR_CORRECTION_INFO__UNCOR) {
421 			/*
422 			 * Check later if this is a real ECC error, or
423 			 * an erased sector.
424 			 */
425 			*uncor_ecc_flags |= BIT(err_sector);
426 		} else if (err_byte < ecc_size) {
427 			/*
428 			 * If err_byte is larger than ecc_size, means error
429 			 * happened in OOB, so we ignore it. It's no need for
430 			 * us to correct it err_device is represented the NAND
431 			 * error bits are happened in if there are more than
432 			 * one NAND connected.
433 			 */
434 			int offset;
435 			unsigned int flips_in_byte;
436 
437 			offset = (err_sector * ecc_size + err_byte) *
438 					denali->devs_per_cs + err_device;
439 
440 			/* correct the ECC error */
441 			flips_in_byte = hweight8(buf[offset] ^ err_cor_value);
442 			buf[offset] ^= err_cor_value;
443 			mtd->ecc_stats.corrected += flips_in_byte;
444 			bitflips += flips_in_byte;
445 
446 			max_bitflips = max(max_bitflips, bitflips);
447 		}
448 
449 		prev_sector = err_sector;
450 	} while (!(err_cor_info & ERR_CORRECTION_INFO__LAST_ERR));
451 
452 	/*
453 	 * Once handle all ECC errors, controller will trigger an
454 	 * ECC_TRANSACTION_DONE interrupt.
455 	 */
456 	irq_status = denali_wait_for_irq(denali, INTR__ECC_TRANSACTION_DONE);
457 	if (!(irq_status & INTR__ECC_TRANSACTION_DONE))
458 		return -EIO;
459 
460 	return max_bitflips;
461 }
462 
denali_setup_dma64(struct denali_nand_info * denali,dma_addr_t dma_addr,int page,int write)463 static void denali_setup_dma64(struct denali_nand_info *denali,
464 			       dma_addr_t dma_addr, int page, int write)
465 {
466 	uint32_t mode;
467 	const int page_count = 1;
468 
469 	mode = DENALI_MAP10 | DENALI_BANK(denali) | page;
470 
471 	/* DMA is a three step process */
472 
473 	/*
474 	 * 1. setup transfer type, interrupt when complete,
475 	 *    burst len = 64 bytes, the number of pages
476 	 */
477 	denali->host_write(denali, mode,
478 			   0x01002000 | (64 << 16) | (write << 8) | page_count);
479 
480 	/* 2. set memory low address */
481 	denali->host_write(denali, mode, lower_32_bits(dma_addr));
482 
483 	/* 3. set memory high address */
484 	denali->host_write(denali, mode, upper_32_bits(dma_addr));
485 }
486 
denali_setup_dma32(struct denali_nand_info * denali,dma_addr_t dma_addr,int page,int write)487 static void denali_setup_dma32(struct denali_nand_info *denali,
488 			       dma_addr_t dma_addr, int page, int write)
489 {
490 	uint32_t mode;
491 	const int page_count = 1;
492 
493 	mode = DENALI_MAP10 | DENALI_BANK(denali);
494 
495 	/* DMA is a four step process */
496 
497 	/* 1. setup transfer type and # of pages */
498 	denali->host_write(denali, mode | page,
499 			   0x2000 | (write << 8) | page_count);
500 
501 	/* 2. set memory high address bits 23:8 */
502 	denali->host_write(denali, mode | ((dma_addr >> 16) << 8), 0x2200);
503 
504 	/* 3. set memory low address bits 23:8 */
505 	denali->host_write(denali, mode | ((dma_addr & 0xffff) << 8), 0x2300);
506 
507 	/* 4. interrupt when complete, burst len = 64 bytes */
508 	denali->host_write(denali, mode | 0x14000, 0x2400);
509 }
510 
denali_pio_read(struct denali_nand_info * denali,void * buf,size_t size,int page,int raw)511 static int denali_pio_read(struct denali_nand_info *denali, void *buf,
512 			   size_t size, int page, int raw)
513 {
514 	u32 addr = DENALI_MAP01 | DENALI_BANK(denali) | page;
515 	uint32_t *buf32 = (uint32_t *)buf;
516 	uint32_t irq_status, ecc_err_mask;
517 	int i;
518 
519 	if (denali->caps & DENALI_CAP_HW_ECC_FIXUP)
520 		ecc_err_mask = INTR__ECC_UNCOR_ERR;
521 	else
522 		ecc_err_mask = INTR__ECC_ERR;
523 
524 	denali_reset_irq(denali);
525 
526 	for (i = 0; i < size / 4; i++)
527 		*buf32++ = denali->host_read(denali, addr);
528 
529 	irq_status = denali_wait_for_irq(denali, INTR__PAGE_XFER_INC);
530 	if (!(irq_status & INTR__PAGE_XFER_INC))
531 		return -EIO;
532 
533 	if (irq_status & INTR__ERASED_PAGE)
534 		memset(buf, 0xff, size);
535 
536 	return irq_status & ecc_err_mask ? -EBADMSG : 0;
537 }
538 
denali_pio_write(struct denali_nand_info * denali,const void * buf,size_t size,int page,int raw)539 static int denali_pio_write(struct denali_nand_info *denali,
540 			    const void *buf, size_t size, int page, int raw)
541 {
542 	u32 addr = DENALI_MAP01 | DENALI_BANK(denali) | page;
543 	const uint32_t *buf32 = (uint32_t *)buf;
544 	uint32_t irq_status;
545 	int i;
546 
547 	denali_reset_irq(denali);
548 
549 	for (i = 0; i < size / 4; i++)
550 		denali->host_write(denali, addr, *buf32++);
551 
552 	irq_status = denali_wait_for_irq(denali,
553 				INTR__PROGRAM_COMP | INTR__PROGRAM_FAIL);
554 	if (!(irq_status & INTR__PROGRAM_COMP))
555 		return -EIO;
556 
557 	return 0;
558 }
559 
denali_pio_xfer(struct denali_nand_info * denali,void * buf,size_t size,int page,int raw,int write)560 static int denali_pio_xfer(struct denali_nand_info *denali, void *buf,
561 			   size_t size, int page, int raw, int write)
562 {
563 	if (write)
564 		return denali_pio_write(denali, buf, size, page, raw);
565 	else
566 		return denali_pio_read(denali, buf, size, page, raw);
567 }
568 
denali_dma_xfer(struct denali_nand_info * denali,void * buf,size_t size,int page,int raw,int write)569 static int denali_dma_xfer(struct denali_nand_info *denali, void *buf,
570 			   size_t size, int page, int raw, int write)
571 {
572 	dma_addr_t dma_addr;
573 	uint32_t irq_mask, irq_status, ecc_err_mask;
574 	enum dma_data_direction dir = write ? DMA_TO_DEVICE : DMA_FROM_DEVICE;
575 	int ret = 0;
576 
577 	dma_addr = dma_map_single(denali->dev, buf, size, dir);
578 	if (dma_mapping_error(denali->dev, dma_addr)) {
579 		dev_dbg(denali->dev, "Failed to DMA-map buffer. Trying PIO.\n");
580 		return denali_pio_xfer(denali, buf, size, page, raw, write);
581 	}
582 
583 	if (write) {
584 		/*
585 		 * INTR__PROGRAM_COMP is never asserted for the DMA transfer.
586 		 * We can use INTR__DMA_CMD_COMP instead.  This flag is asserted
587 		 * when the page program is completed.
588 		 */
589 		irq_mask = INTR__DMA_CMD_COMP | INTR__PROGRAM_FAIL;
590 		ecc_err_mask = 0;
591 	} else if (denali->caps & DENALI_CAP_HW_ECC_FIXUP) {
592 		irq_mask = INTR__DMA_CMD_COMP;
593 		ecc_err_mask = INTR__ECC_UNCOR_ERR;
594 	} else {
595 		irq_mask = INTR__DMA_CMD_COMP;
596 		ecc_err_mask = INTR__ECC_ERR;
597 	}
598 
599 	iowrite32(DMA_ENABLE__FLAG, denali->reg + DMA_ENABLE);
600 	/*
601 	 * The ->setup_dma() hook kicks DMA by using the data/command
602 	 * interface, which belongs to a different AXI port from the
603 	 * register interface.  Read back the register to avoid a race.
604 	 */
605 	ioread32(denali->reg + DMA_ENABLE);
606 
607 	denali_reset_irq(denali);
608 	denali->setup_dma(denali, dma_addr, page, write);
609 
610 	irq_status = denali_wait_for_irq(denali, irq_mask);
611 	if (!(irq_status & INTR__DMA_CMD_COMP))
612 		ret = -EIO;
613 	else if (irq_status & ecc_err_mask)
614 		ret = -EBADMSG;
615 
616 	iowrite32(0, denali->reg + DMA_ENABLE);
617 
618 	dma_unmap_single(denali->dev, dma_addr, size, dir);
619 
620 	if (irq_status & INTR__ERASED_PAGE)
621 		memset(buf, 0xff, size);
622 
623 	return ret;
624 }
625 
denali_data_xfer(struct denali_nand_info * denali,void * buf,size_t size,int page,int raw,int write)626 static int denali_data_xfer(struct denali_nand_info *denali, void *buf,
627 			    size_t size, int page, int raw, int write)
628 {
629 	iowrite32(raw ? 0 : ECC_ENABLE__FLAG, denali->reg + ECC_ENABLE);
630 	iowrite32(raw ? TRANSFER_SPARE_REG__FLAG : 0,
631 		  denali->reg + TRANSFER_SPARE_REG);
632 
633 	if (denali->dma_avail)
634 		return denali_dma_xfer(denali, buf, size, page, raw, write);
635 	else
636 		return denali_pio_xfer(denali, buf, size, page, raw, write);
637 }
638 
denali_oob_xfer(struct mtd_info * mtd,struct nand_chip * chip,int page,int write)639 static void denali_oob_xfer(struct mtd_info *mtd, struct nand_chip *chip,
640 			    int page, int write)
641 {
642 	struct denali_nand_info *denali = mtd_to_denali(mtd);
643 	int writesize = mtd->writesize;
644 	int oobsize = mtd->oobsize;
645 	uint8_t *bufpoi = chip->oob_poi;
646 	int ecc_steps = chip->ecc.steps;
647 	int ecc_size = chip->ecc.size;
648 	int ecc_bytes = chip->ecc.bytes;
649 	int oob_skip = denali->oob_skip_bytes;
650 	size_t size = writesize + oobsize;
651 	int i, pos, len;
652 
653 	/* BBM at the beginning of the OOB area */
654 	if (write)
655 		nand_prog_page_begin_op(chip, page, writesize, bufpoi,
656 					oob_skip);
657 	else
658 		nand_read_page_op(chip, page, writesize, bufpoi, oob_skip);
659 	bufpoi += oob_skip;
660 
661 	/* OOB ECC */
662 	for (i = 0; i < ecc_steps; i++) {
663 		pos = ecc_size + i * (ecc_size + ecc_bytes);
664 		len = ecc_bytes;
665 
666 		if (pos >= writesize)
667 			pos += oob_skip;
668 		else if (pos + len > writesize)
669 			len = writesize - pos;
670 
671 		if (write)
672 			nand_change_write_column_op(chip, pos, bufpoi, len,
673 						    false);
674 		else
675 			nand_change_read_column_op(chip, pos, bufpoi, len,
676 						   false);
677 		bufpoi += len;
678 		if (len < ecc_bytes) {
679 			len = ecc_bytes - len;
680 			if (write)
681 				nand_change_write_column_op(chip, writesize +
682 							    oob_skip, bufpoi,
683 							    len, false);
684 			else
685 				nand_change_read_column_op(chip, writesize +
686 							   oob_skip, bufpoi,
687 							   len, false);
688 			bufpoi += len;
689 		}
690 	}
691 
692 	/* OOB free */
693 	len = oobsize - (bufpoi - chip->oob_poi);
694 	if (write)
695 		nand_change_write_column_op(chip, size - len, bufpoi, len,
696 					    false);
697 	else
698 		nand_change_read_column_op(chip, size - len, bufpoi, len,
699 					   false);
700 }
701 
denali_read_page_raw(struct mtd_info * mtd,struct nand_chip * chip,uint8_t * buf,int oob_required,int page)702 static int denali_read_page_raw(struct mtd_info *mtd, struct nand_chip *chip,
703 				uint8_t *buf, int oob_required, int page)
704 {
705 	struct denali_nand_info *denali = mtd_to_denali(mtd);
706 	int writesize = mtd->writesize;
707 	int oobsize = mtd->oobsize;
708 	int ecc_steps = chip->ecc.steps;
709 	int ecc_size = chip->ecc.size;
710 	int ecc_bytes = chip->ecc.bytes;
711 	void *tmp_buf = denali->buf;
712 	int oob_skip = denali->oob_skip_bytes;
713 	size_t size = writesize + oobsize;
714 	int ret, i, pos, len;
715 
716 	ret = denali_data_xfer(denali, tmp_buf, size, page, 1, 0);
717 	if (ret)
718 		return ret;
719 
720 	/* Arrange the buffer for syndrome payload/ecc layout */
721 	if (buf) {
722 		for (i = 0; i < ecc_steps; i++) {
723 			pos = i * (ecc_size + ecc_bytes);
724 			len = ecc_size;
725 
726 			if (pos >= writesize)
727 				pos += oob_skip;
728 			else if (pos + len > writesize)
729 				len = writesize - pos;
730 
731 			memcpy(buf, tmp_buf + pos, len);
732 			buf += len;
733 			if (len < ecc_size) {
734 				len = ecc_size - len;
735 				memcpy(buf, tmp_buf + writesize + oob_skip,
736 				       len);
737 				buf += len;
738 			}
739 		}
740 	}
741 
742 	if (oob_required) {
743 		uint8_t *oob = chip->oob_poi;
744 
745 		/* BBM at the beginning of the OOB area */
746 		memcpy(oob, tmp_buf + writesize, oob_skip);
747 		oob += oob_skip;
748 
749 		/* OOB ECC */
750 		for (i = 0; i < ecc_steps; i++) {
751 			pos = ecc_size + i * (ecc_size + ecc_bytes);
752 			len = ecc_bytes;
753 
754 			if (pos >= writesize)
755 				pos += oob_skip;
756 			else if (pos + len > writesize)
757 				len = writesize - pos;
758 
759 			memcpy(oob, tmp_buf + pos, len);
760 			oob += len;
761 			if (len < ecc_bytes) {
762 				len = ecc_bytes - len;
763 				memcpy(oob, tmp_buf + writesize + oob_skip,
764 				       len);
765 				oob += len;
766 			}
767 		}
768 
769 		/* OOB free */
770 		len = oobsize - (oob - chip->oob_poi);
771 		memcpy(oob, tmp_buf + size - len, len);
772 	}
773 
774 	return 0;
775 }
776 
denali_read_oob(struct mtd_info * mtd,struct nand_chip * chip,int page)777 static int denali_read_oob(struct mtd_info *mtd, struct nand_chip *chip,
778 			   int page)
779 {
780 	denali_oob_xfer(mtd, chip, page, 0);
781 
782 	return 0;
783 }
784 
denali_write_oob(struct mtd_info * mtd,struct nand_chip * chip,int page)785 static int denali_write_oob(struct mtd_info *mtd, struct nand_chip *chip,
786 			    int page)
787 {
788 	struct denali_nand_info *denali = mtd_to_denali(mtd);
789 
790 	denali_reset_irq(denali);
791 
792 	denali_oob_xfer(mtd, chip, page, 1);
793 
794 	return nand_prog_page_end_op(chip);
795 }
796 
denali_read_page(struct mtd_info * mtd,struct nand_chip * chip,uint8_t * buf,int oob_required,int page)797 static int denali_read_page(struct mtd_info *mtd, struct nand_chip *chip,
798 			    uint8_t *buf, int oob_required, int page)
799 {
800 	struct denali_nand_info *denali = mtd_to_denali(mtd);
801 	unsigned long uncor_ecc_flags = 0;
802 	int stat = 0;
803 	int ret;
804 
805 	ret = denali_data_xfer(denali, buf, mtd->writesize, page, 0, 0);
806 	if (ret && ret != -EBADMSG)
807 		return ret;
808 
809 	if (denali->caps & DENALI_CAP_HW_ECC_FIXUP)
810 		stat = denali_hw_ecc_fixup(mtd, denali, &uncor_ecc_flags);
811 	else if (ret == -EBADMSG)
812 		stat = denali_sw_ecc_fixup(mtd, denali, &uncor_ecc_flags, buf);
813 
814 	if (stat < 0)
815 		return stat;
816 
817 	if (uncor_ecc_flags) {
818 		ret = denali_read_oob(mtd, chip, page);
819 		if (ret)
820 			return ret;
821 
822 		stat = denali_check_erased_page(mtd, chip, buf,
823 						uncor_ecc_flags, stat);
824 	}
825 
826 	return stat;
827 }
828 
denali_write_page_raw(struct mtd_info * mtd,struct nand_chip * chip,const uint8_t * buf,int oob_required,int page)829 static int denali_write_page_raw(struct mtd_info *mtd, struct nand_chip *chip,
830 				 const uint8_t *buf, int oob_required, int page)
831 {
832 	struct denali_nand_info *denali = mtd_to_denali(mtd);
833 	int writesize = mtd->writesize;
834 	int oobsize = mtd->oobsize;
835 	int ecc_steps = chip->ecc.steps;
836 	int ecc_size = chip->ecc.size;
837 	int ecc_bytes = chip->ecc.bytes;
838 	void *tmp_buf = denali->buf;
839 	int oob_skip = denali->oob_skip_bytes;
840 	size_t size = writesize + oobsize;
841 	int i, pos, len;
842 
843 	/*
844 	 * Fill the buffer with 0xff first except the full page transfer.
845 	 * This simplifies the logic.
846 	 */
847 	if (!buf || !oob_required)
848 		memset(tmp_buf, 0xff, size);
849 
850 	/* Arrange the buffer for syndrome payload/ecc layout */
851 	if (buf) {
852 		for (i = 0; i < ecc_steps; i++) {
853 			pos = i * (ecc_size + ecc_bytes);
854 			len = ecc_size;
855 
856 			if (pos >= writesize)
857 				pos += oob_skip;
858 			else if (pos + len > writesize)
859 				len = writesize - pos;
860 
861 			memcpy(tmp_buf + pos, buf, len);
862 			buf += len;
863 			if (len < ecc_size) {
864 				len = ecc_size - len;
865 				memcpy(tmp_buf + writesize + oob_skip, buf,
866 				       len);
867 				buf += len;
868 			}
869 		}
870 	}
871 
872 	if (oob_required) {
873 		const uint8_t *oob = chip->oob_poi;
874 
875 		/* BBM at the beginning of the OOB area */
876 		memcpy(tmp_buf + writesize, oob, oob_skip);
877 		oob += oob_skip;
878 
879 		/* OOB ECC */
880 		for (i = 0; i < ecc_steps; i++) {
881 			pos = ecc_size + i * (ecc_size + ecc_bytes);
882 			len = ecc_bytes;
883 
884 			if (pos >= writesize)
885 				pos += oob_skip;
886 			else if (pos + len > writesize)
887 				len = writesize - pos;
888 
889 			memcpy(tmp_buf + pos, oob, len);
890 			oob += len;
891 			if (len < ecc_bytes) {
892 				len = ecc_bytes - len;
893 				memcpy(tmp_buf + writesize + oob_skip, oob,
894 				       len);
895 				oob += len;
896 			}
897 		}
898 
899 		/* OOB free */
900 		len = oobsize - (oob - chip->oob_poi);
901 		memcpy(tmp_buf + size - len, oob, len);
902 	}
903 
904 	return denali_data_xfer(denali, tmp_buf, size, page, 1, 1);
905 }
906 
denali_write_page(struct mtd_info * mtd,struct nand_chip * chip,const uint8_t * buf,int oob_required,int page)907 static int denali_write_page(struct mtd_info *mtd, struct nand_chip *chip,
908 			     const uint8_t *buf, int oob_required, int page)
909 {
910 	struct denali_nand_info *denali = mtd_to_denali(mtd);
911 
912 	return denali_data_xfer(denali, (void *)buf, mtd->writesize,
913 				page, 0, 1);
914 }
915 
denali_select_chip(struct mtd_info * mtd,int chip)916 static void denali_select_chip(struct mtd_info *mtd, int chip)
917 {
918 	struct denali_nand_info *denali = mtd_to_denali(mtd);
919 
920 	denali->active_bank = chip;
921 }
922 
denali_waitfunc(struct mtd_info * mtd,struct nand_chip * chip)923 static int denali_waitfunc(struct mtd_info *mtd, struct nand_chip *chip)
924 {
925 	struct denali_nand_info *denali = mtd_to_denali(mtd);
926 	uint32_t irq_status;
927 
928 	/* R/B# pin transitioned from low to high? */
929 	irq_status = denali_wait_for_irq(denali, INTR__INT_ACT);
930 
931 	return irq_status & INTR__INT_ACT ? 0 : NAND_STATUS_FAIL;
932 }
933 
denali_erase(struct mtd_info * mtd,int page)934 static int denali_erase(struct mtd_info *mtd, int page)
935 {
936 	struct denali_nand_info *denali = mtd_to_denali(mtd);
937 	uint32_t irq_status;
938 
939 	denali_reset_irq(denali);
940 
941 	denali->host_write(denali, DENALI_MAP10 | DENALI_BANK(denali) | page,
942 			   DENALI_ERASE);
943 
944 	/* wait for erase to complete or failure to occur */
945 	irq_status = denali_wait_for_irq(denali,
946 					 INTR__ERASE_COMP | INTR__ERASE_FAIL);
947 
948 	return irq_status & INTR__ERASE_COMP ? 0 : -EIO;
949 }
950 
denali_setup_data_interface(struct mtd_info * mtd,int chipnr,const struct nand_data_interface * conf)951 static int denali_setup_data_interface(struct mtd_info *mtd, int chipnr,
952 				       const struct nand_data_interface *conf)
953 {
954 	struct denali_nand_info *denali = mtd_to_denali(mtd);
955 	const struct nand_sdr_timings *timings;
956 	unsigned long t_x, mult_x;
957 	int acc_clks, re_2_we, re_2_re, we_2_re, addr_2_data;
958 	int rdwr_en_lo, rdwr_en_hi, rdwr_en_lo_hi, cs_setup;
959 	int addr_2_data_mask;
960 	uint32_t tmp;
961 
962 	timings = nand_get_sdr_timings(conf);
963 	if (IS_ERR(timings))
964 		return PTR_ERR(timings);
965 
966 	/* clk_x period in picoseconds */
967 	t_x = DIV_ROUND_DOWN_ULL(1000000000000ULL, denali->clk_x_rate);
968 	if (!t_x)
969 		return -EINVAL;
970 
971 	/*
972 	 * The bus interface clock, clk_x, is phase aligned with the core clock.
973 	 * The clk_x is an integral multiple N of the core clk.  The value N is
974 	 * configured at IP delivery time, and its available value is 4, 5, 6.
975 	 */
976 	mult_x = DIV_ROUND_CLOSEST_ULL(denali->clk_x_rate, denali->clk_rate);
977 	if (mult_x < 4 || mult_x > 6)
978 		return -EINVAL;
979 
980 	if (chipnr == NAND_DATA_IFACE_CHECK_ONLY)
981 		return 0;
982 
983 	/* tREA -> ACC_CLKS */
984 	acc_clks = DIV_ROUND_UP(timings->tREA_max, t_x);
985 	acc_clks = min_t(int, acc_clks, ACC_CLKS__VALUE);
986 
987 	tmp = ioread32(denali->reg + ACC_CLKS);
988 	tmp &= ~ACC_CLKS__VALUE;
989 	tmp |= FIELD_PREP(ACC_CLKS__VALUE, acc_clks);
990 	iowrite32(tmp, denali->reg + ACC_CLKS);
991 
992 	/* tRWH -> RE_2_WE */
993 	re_2_we = DIV_ROUND_UP(timings->tRHW_min, t_x);
994 	re_2_we = min_t(int, re_2_we, RE_2_WE__VALUE);
995 
996 	tmp = ioread32(denali->reg + RE_2_WE);
997 	tmp &= ~RE_2_WE__VALUE;
998 	tmp |= FIELD_PREP(RE_2_WE__VALUE, re_2_we);
999 	iowrite32(tmp, denali->reg + RE_2_WE);
1000 
1001 	/* tRHZ -> RE_2_RE */
1002 	re_2_re = DIV_ROUND_UP(timings->tRHZ_max, t_x);
1003 	re_2_re = min_t(int, re_2_re, RE_2_RE__VALUE);
1004 
1005 	tmp = ioread32(denali->reg + RE_2_RE);
1006 	tmp &= ~RE_2_RE__VALUE;
1007 	tmp |= FIELD_PREP(RE_2_RE__VALUE, re_2_re);
1008 	iowrite32(tmp, denali->reg + RE_2_RE);
1009 
1010 	/*
1011 	 * tCCS, tWHR -> WE_2_RE
1012 	 *
1013 	 * With WE_2_RE properly set, the Denali controller automatically takes
1014 	 * care of the delay; the driver need not set NAND_WAIT_TCCS.
1015 	 */
1016 	we_2_re = DIV_ROUND_UP(max(timings->tCCS_min, timings->tWHR_min), t_x);
1017 	we_2_re = min_t(int, we_2_re, TWHR2_AND_WE_2_RE__WE_2_RE);
1018 
1019 	tmp = ioread32(denali->reg + TWHR2_AND_WE_2_RE);
1020 	tmp &= ~TWHR2_AND_WE_2_RE__WE_2_RE;
1021 	tmp |= FIELD_PREP(TWHR2_AND_WE_2_RE__WE_2_RE, we_2_re);
1022 	iowrite32(tmp, denali->reg + TWHR2_AND_WE_2_RE);
1023 
1024 	/* tADL -> ADDR_2_DATA */
1025 
1026 	/* for older versions, ADDR_2_DATA is only 6 bit wide */
1027 	addr_2_data_mask = TCWAW_AND_ADDR_2_DATA__ADDR_2_DATA;
1028 	if (denali->revision < 0x0501)
1029 		addr_2_data_mask >>= 1;
1030 
1031 	addr_2_data = DIV_ROUND_UP(timings->tADL_min, t_x);
1032 	addr_2_data = min_t(int, addr_2_data, addr_2_data_mask);
1033 
1034 	tmp = ioread32(denali->reg + TCWAW_AND_ADDR_2_DATA);
1035 	tmp &= ~TCWAW_AND_ADDR_2_DATA__ADDR_2_DATA;
1036 	tmp |= FIELD_PREP(TCWAW_AND_ADDR_2_DATA__ADDR_2_DATA, addr_2_data);
1037 	iowrite32(tmp, denali->reg + TCWAW_AND_ADDR_2_DATA);
1038 
1039 	/* tREH, tWH -> RDWR_EN_HI_CNT */
1040 	rdwr_en_hi = DIV_ROUND_UP(max(timings->tREH_min, timings->tWH_min),
1041 				  t_x);
1042 	rdwr_en_hi = min_t(int, rdwr_en_hi, RDWR_EN_HI_CNT__VALUE);
1043 
1044 	tmp = ioread32(denali->reg + RDWR_EN_HI_CNT);
1045 	tmp &= ~RDWR_EN_HI_CNT__VALUE;
1046 	tmp |= FIELD_PREP(RDWR_EN_HI_CNT__VALUE, rdwr_en_hi);
1047 	iowrite32(tmp, denali->reg + RDWR_EN_HI_CNT);
1048 
1049 	/* tRP, tWP -> RDWR_EN_LO_CNT */
1050 	rdwr_en_lo = DIV_ROUND_UP(max(timings->tRP_min, timings->tWP_min), t_x);
1051 	rdwr_en_lo_hi = DIV_ROUND_UP(max(timings->tRC_min, timings->tWC_min),
1052 				     t_x);
1053 	rdwr_en_lo_hi = max_t(int, rdwr_en_lo_hi, mult_x);
1054 	rdwr_en_lo = max(rdwr_en_lo, rdwr_en_lo_hi - rdwr_en_hi);
1055 	rdwr_en_lo = min_t(int, rdwr_en_lo, RDWR_EN_LO_CNT__VALUE);
1056 
1057 	tmp = ioread32(denali->reg + RDWR_EN_LO_CNT);
1058 	tmp &= ~RDWR_EN_LO_CNT__VALUE;
1059 	tmp |= FIELD_PREP(RDWR_EN_LO_CNT__VALUE, rdwr_en_lo);
1060 	iowrite32(tmp, denali->reg + RDWR_EN_LO_CNT);
1061 
1062 	/* tCS, tCEA -> CS_SETUP_CNT */
1063 	cs_setup = max3((int)DIV_ROUND_UP(timings->tCS_min, t_x) - rdwr_en_lo,
1064 			(int)DIV_ROUND_UP(timings->tCEA_max, t_x) - acc_clks,
1065 			0);
1066 	cs_setup = min_t(int, cs_setup, CS_SETUP_CNT__VALUE);
1067 
1068 	tmp = ioread32(denali->reg + CS_SETUP_CNT);
1069 	tmp &= ~CS_SETUP_CNT__VALUE;
1070 	tmp |= FIELD_PREP(CS_SETUP_CNT__VALUE, cs_setup);
1071 	iowrite32(tmp, denali->reg + CS_SETUP_CNT);
1072 
1073 	return 0;
1074 }
1075 
denali_reset_banks(struct denali_nand_info * denali)1076 static void denali_reset_banks(struct denali_nand_info *denali)
1077 {
1078 	u32 irq_status;
1079 	int i;
1080 
1081 	for (i = 0; i < denali->max_banks; i++) {
1082 		denali->active_bank = i;
1083 
1084 		denali_reset_irq(denali);
1085 
1086 		iowrite32(DEVICE_RESET__BANK(i),
1087 			  denali->reg + DEVICE_RESET);
1088 
1089 		irq_status = denali_wait_for_irq(denali,
1090 			INTR__RST_COMP | INTR__INT_ACT | INTR__TIME_OUT);
1091 		if (!(irq_status & INTR__INT_ACT))
1092 			break;
1093 	}
1094 
1095 	dev_dbg(denali->dev, "%d chips connected\n", i);
1096 	denali->max_banks = i;
1097 }
1098 
denali_hw_init(struct denali_nand_info * denali)1099 static void denali_hw_init(struct denali_nand_info *denali)
1100 {
1101 	/*
1102 	 * The REVISION register may not be reliable.  Platforms are allowed to
1103 	 * override it.
1104 	 */
1105 	if (!denali->revision)
1106 		denali->revision = swab16(ioread32(denali->reg + REVISION));
1107 
1108 	/*
1109 	 * Set how many bytes should be skipped before writing data in OOB.
1110 	 * If a non-zero value has already been set (by firmware or something),
1111 	 * just use it.  Otherwise, set the driver default.
1112 	 */
1113 	denali->oob_skip_bytes = ioread32(denali->reg + SPARE_AREA_SKIP_BYTES);
1114 	if (!denali->oob_skip_bytes) {
1115 		denali->oob_skip_bytes = DENALI_DEFAULT_OOB_SKIP_BYTES;
1116 		iowrite32(denali->oob_skip_bytes,
1117 			  denali->reg + SPARE_AREA_SKIP_BYTES);
1118 	}
1119 
1120 	denali_detect_max_banks(denali);
1121 	iowrite32(0x0F, denali->reg + RB_PIN_ENABLED);
1122 	iowrite32(CHIP_EN_DONT_CARE__FLAG, denali->reg + CHIP_ENABLE_DONT_CARE);
1123 
1124 	iowrite32(0xffff, denali->reg + SPARE_AREA_MARKER);
1125 }
1126 
denali_calc_ecc_bytes(int step_size,int strength)1127 int denali_calc_ecc_bytes(int step_size, int strength)
1128 {
1129 	/* BCH code.  Denali requires ecc.bytes to be multiple of 2 */
1130 	return DIV_ROUND_UP(strength * fls(step_size * 8), 16) * 2;
1131 }
1132 EXPORT_SYMBOL(denali_calc_ecc_bytes);
1133 
denali_ooblayout_ecc(struct mtd_info * mtd,int section,struct mtd_oob_region * oobregion)1134 static int denali_ooblayout_ecc(struct mtd_info *mtd, int section,
1135 				struct mtd_oob_region *oobregion)
1136 {
1137 	struct denali_nand_info *denali = mtd_to_denali(mtd);
1138 	struct nand_chip *chip = mtd_to_nand(mtd);
1139 
1140 	if (section)
1141 		return -ERANGE;
1142 
1143 	oobregion->offset = denali->oob_skip_bytes;
1144 	oobregion->length = chip->ecc.total;
1145 
1146 	return 0;
1147 }
1148 
denali_ooblayout_free(struct mtd_info * mtd,int section,struct mtd_oob_region * oobregion)1149 static int denali_ooblayout_free(struct mtd_info *mtd, int section,
1150 				 struct mtd_oob_region *oobregion)
1151 {
1152 	struct denali_nand_info *denali = mtd_to_denali(mtd);
1153 	struct nand_chip *chip = mtd_to_nand(mtd);
1154 
1155 	if (section)
1156 		return -ERANGE;
1157 
1158 	oobregion->offset = chip->ecc.total + denali->oob_skip_bytes;
1159 	oobregion->length = mtd->oobsize - oobregion->offset;
1160 
1161 	return 0;
1162 }
1163 
1164 static const struct mtd_ooblayout_ops denali_ooblayout_ops = {
1165 	.ecc = denali_ooblayout_ecc,
1166 	.free = denali_ooblayout_free,
1167 };
1168 
denali_multidev_fixup(struct denali_nand_info * denali)1169 static int denali_multidev_fixup(struct denali_nand_info *denali)
1170 {
1171 	struct nand_chip *chip = &denali->nand;
1172 	struct mtd_info *mtd = nand_to_mtd(chip);
1173 
1174 	/*
1175 	 * Support for multi device:
1176 	 * When the IP configuration is x16 capable and two x8 chips are
1177 	 * connected in parallel, DEVICES_CONNECTED should be set to 2.
1178 	 * In this case, the core framework knows nothing about this fact,
1179 	 * so we should tell it the _logical_ pagesize and anything necessary.
1180 	 */
1181 	denali->devs_per_cs = ioread32(denali->reg + DEVICES_CONNECTED);
1182 
1183 	/*
1184 	 * On some SoCs, DEVICES_CONNECTED is not auto-detected.
1185 	 * For those, DEVICES_CONNECTED is left to 0.  Set 1 if it is the case.
1186 	 */
1187 	if (denali->devs_per_cs == 0) {
1188 		denali->devs_per_cs = 1;
1189 		iowrite32(1, denali->reg + DEVICES_CONNECTED);
1190 	}
1191 
1192 	if (denali->devs_per_cs == 1)
1193 		return 0;
1194 
1195 	if (denali->devs_per_cs != 2) {
1196 		dev_err(denali->dev, "unsupported number of devices %d\n",
1197 			denali->devs_per_cs);
1198 		return -EINVAL;
1199 	}
1200 
1201 	/* 2 chips in parallel */
1202 	mtd->size <<= 1;
1203 	mtd->erasesize <<= 1;
1204 	mtd->writesize <<= 1;
1205 	mtd->oobsize <<= 1;
1206 	chip->chipsize <<= 1;
1207 	chip->page_shift += 1;
1208 	chip->phys_erase_shift += 1;
1209 	chip->bbt_erase_shift += 1;
1210 	chip->chip_shift += 1;
1211 	chip->pagemask <<= 1;
1212 	chip->ecc.size <<= 1;
1213 	chip->ecc.bytes <<= 1;
1214 	chip->ecc.strength <<= 1;
1215 	denali->oob_skip_bytes <<= 1;
1216 
1217 	return 0;
1218 }
1219 
denali_attach_chip(struct nand_chip * chip)1220 static int denali_attach_chip(struct nand_chip *chip)
1221 {
1222 	struct mtd_info *mtd = nand_to_mtd(chip);
1223 	struct denali_nand_info *denali = mtd_to_denali(mtd);
1224 	int ret;
1225 
1226 	if (ioread32(denali->reg + FEATURES) & FEATURES__DMA)
1227 		denali->dma_avail = 1;
1228 
1229 	if (denali->dma_avail) {
1230 		int dma_bit = denali->caps & DENALI_CAP_DMA_64BIT ? 64 : 32;
1231 
1232 		ret = dma_set_mask(denali->dev, DMA_BIT_MASK(dma_bit));
1233 		if (ret) {
1234 			dev_info(denali->dev,
1235 				 "Failed to set DMA mask. Disabling DMA.\n");
1236 			denali->dma_avail = 0;
1237 		}
1238 	}
1239 
1240 	if (denali->dma_avail) {
1241 		chip->options |= NAND_USE_BOUNCE_BUFFER;
1242 		chip->buf_align = 16;
1243 		if (denali->caps & DENALI_CAP_DMA_64BIT)
1244 			denali->setup_dma = denali_setup_dma64;
1245 		else
1246 			denali->setup_dma = denali_setup_dma32;
1247 	}
1248 
1249 	chip->bbt_options |= NAND_BBT_USE_FLASH;
1250 	chip->bbt_options |= NAND_BBT_NO_OOB;
1251 	chip->ecc.mode = NAND_ECC_HW_SYNDROME;
1252 	chip->options |= NAND_NO_SUBPAGE_WRITE;
1253 
1254 	ret = nand_ecc_choose_conf(chip, denali->ecc_caps,
1255 				   mtd->oobsize - denali->oob_skip_bytes);
1256 	if (ret) {
1257 		dev_err(denali->dev, "Failed to setup ECC settings.\n");
1258 		return ret;
1259 	}
1260 
1261 	dev_dbg(denali->dev,
1262 		"chosen ECC settings: step=%d, strength=%d, bytes=%d\n",
1263 		chip->ecc.size, chip->ecc.strength, chip->ecc.bytes);
1264 
1265 	iowrite32(FIELD_PREP(ECC_CORRECTION__ERASE_THRESHOLD, 1) |
1266 		  FIELD_PREP(ECC_CORRECTION__VALUE, chip->ecc.strength),
1267 		  denali->reg + ECC_CORRECTION);
1268 	iowrite32(mtd->erasesize / mtd->writesize,
1269 		  denali->reg + PAGES_PER_BLOCK);
1270 	iowrite32(chip->options & NAND_BUSWIDTH_16 ? 1 : 0,
1271 		  denali->reg + DEVICE_WIDTH);
1272 	iowrite32(chip->options & NAND_ROW_ADDR_3 ? 0 : TWO_ROW_ADDR_CYCLES__FLAG,
1273 		  denali->reg + TWO_ROW_ADDR_CYCLES);
1274 	iowrite32(mtd->writesize, denali->reg + DEVICE_MAIN_AREA_SIZE);
1275 	iowrite32(mtd->oobsize, denali->reg + DEVICE_SPARE_AREA_SIZE);
1276 
1277 	iowrite32(chip->ecc.size, denali->reg + CFG_DATA_BLOCK_SIZE);
1278 	iowrite32(chip->ecc.size, denali->reg + CFG_LAST_DATA_BLOCK_SIZE);
1279 	/* chip->ecc.steps is set by nand_scan_tail(); not available here */
1280 	iowrite32(mtd->writesize / chip->ecc.size,
1281 		  denali->reg + CFG_NUM_DATA_BLOCKS);
1282 
1283 	mtd_set_ooblayout(mtd, &denali_ooblayout_ops);
1284 
1285 	if (chip->options & NAND_BUSWIDTH_16) {
1286 		chip->read_buf = denali_read_buf16;
1287 		chip->write_buf = denali_write_buf16;
1288 	} else {
1289 		chip->read_buf = denali_read_buf;
1290 		chip->write_buf = denali_write_buf;
1291 	}
1292 	chip->ecc.read_page = denali_read_page;
1293 	chip->ecc.read_page_raw = denali_read_page_raw;
1294 	chip->ecc.write_page = denali_write_page;
1295 	chip->ecc.write_page_raw = denali_write_page_raw;
1296 	chip->ecc.read_oob = denali_read_oob;
1297 	chip->ecc.write_oob = denali_write_oob;
1298 	chip->erase = denali_erase;
1299 
1300 	ret = denali_multidev_fixup(denali);
1301 	if (ret)
1302 		return ret;
1303 
1304 	/*
1305 	 * This buffer is DMA-mapped by denali_{read,write}_page_raw.  Do not
1306 	 * use devm_kmalloc() because the memory allocated by devm_ does not
1307 	 * guarantee DMA-safe alignment.
1308 	 */
1309 	denali->buf = kmalloc(mtd->writesize + mtd->oobsize, GFP_KERNEL);
1310 	if (!denali->buf)
1311 		return -ENOMEM;
1312 
1313 	return 0;
1314 }
1315 
denali_detach_chip(struct nand_chip * chip)1316 static void denali_detach_chip(struct nand_chip *chip)
1317 {
1318 	struct mtd_info *mtd = nand_to_mtd(chip);
1319 	struct denali_nand_info *denali = mtd_to_denali(mtd);
1320 
1321 	kfree(denali->buf);
1322 }
1323 
1324 static const struct nand_controller_ops denali_controller_ops = {
1325 	.attach_chip = denali_attach_chip,
1326 	.detach_chip = denali_detach_chip,
1327 };
1328 
denali_init(struct denali_nand_info * denali)1329 int denali_init(struct denali_nand_info *denali)
1330 {
1331 	struct nand_chip *chip = &denali->nand;
1332 	struct mtd_info *mtd = nand_to_mtd(chip);
1333 	u32 features = ioread32(denali->reg + FEATURES);
1334 	int ret;
1335 
1336 	mtd->dev.parent = denali->dev;
1337 	denali_hw_init(denali);
1338 
1339 	init_completion(&denali->complete);
1340 	spin_lock_init(&denali->irq_lock);
1341 
1342 	denali_clear_irq_all(denali);
1343 
1344 	ret = devm_request_irq(denali->dev, denali->irq, denali_isr,
1345 			       IRQF_SHARED, DENALI_NAND_NAME, denali);
1346 	if (ret) {
1347 		dev_err(denali->dev, "Unable to request IRQ\n");
1348 		return ret;
1349 	}
1350 
1351 	denali_enable_irq(denali);
1352 	denali_reset_banks(denali);
1353 	if (!denali->max_banks) {
1354 		/* Error out earlier if no chip is found for some reasons. */
1355 		ret = -ENODEV;
1356 		goto disable_irq;
1357 	}
1358 
1359 	denali->active_bank = DENALI_INVALID_BANK;
1360 
1361 	nand_set_flash_node(chip, denali->dev->of_node);
1362 	/* Fallback to the default name if DT did not give "label" property */
1363 	if (!mtd->name)
1364 		mtd->name = "denali-nand";
1365 
1366 	chip->select_chip = denali_select_chip;
1367 	chip->read_byte = denali_read_byte;
1368 	chip->write_byte = denali_write_byte;
1369 	chip->read_word = denali_read_word;
1370 	chip->cmd_ctrl = denali_cmd_ctrl;
1371 	chip->dev_ready = denali_dev_ready;
1372 	chip->waitfunc = denali_waitfunc;
1373 
1374 	if (features & FEATURES__INDEX_ADDR) {
1375 		denali->host_read = denali_indexed_read;
1376 		denali->host_write = denali_indexed_write;
1377 	} else {
1378 		denali->host_read = denali_direct_read;
1379 		denali->host_write = denali_direct_write;
1380 	}
1381 
1382 	/* clk rate info is needed for setup_data_interface */
1383 	if (denali->clk_rate && denali->clk_x_rate)
1384 		chip->setup_data_interface = denali_setup_data_interface;
1385 
1386 	chip->dummy_controller.ops = &denali_controller_ops;
1387 	ret = nand_scan(chip, denali->max_banks);
1388 	if (ret)
1389 		goto disable_irq;
1390 
1391 	ret = mtd_device_register(mtd, NULL, 0);
1392 	if (ret) {
1393 		dev_err(denali->dev, "Failed to register MTD: %d\n", ret);
1394 		goto cleanup_nand;
1395 	}
1396 
1397 	return 0;
1398 
1399 cleanup_nand:
1400 	nand_cleanup(chip);
1401 disable_irq:
1402 	denali_disable_irq(denali);
1403 
1404 	return ret;
1405 }
1406 EXPORT_SYMBOL(denali_init);
1407 
denali_remove(struct denali_nand_info * denali)1408 void denali_remove(struct denali_nand_info *denali)
1409 {
1410 	nand_release(&denali->nand);
1411 	denali_disable_irq(denali);
1412 }
1413 EXPORT_SYMBOL(denali_remove);
1414