• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * Freescale GPMI NAND Flash Driver
4  *
5  * Copyright (C) 2008-2011 Freescale Semiconductor, Inc.
6  * Copyright (C) 2008 Embedded Alley Solutions, Inc.
7  */
8 #include <linux/delay.h>
9 #include <linux/clk.h>
10 #include <linux/slab.h>
11 
12 #include "gpmi-nand.h"
13 #include "gpmi-regs.h"
14 #include "bch-regs.h"
15 
16 /* Converts time to clock cycles */
17 #define TO_CYCLES(duration, period) DIV_ROUND_UP_ULL(duration, period)
18 
19 #define MXS_SET_ADDR		0x4
20 #define MXS_CLR_ADDR		0x8
21 /*
22  * Clear the bit and poll it cleared.  This is usually called with
23  * a reset address and mask being either SFTRST(bit 31) or CLKGATE
24  * (bit 30).
25  */
clear_poll_bit(void __iomem * addr,u32 mask)26 static int clear_poll_bit(void __iomem *addr, u32 mask)
27 {
28 	int timeout = 0x400;
29 
30 	/* clear the bit */
31 	writel(mask, addr + MXS_CLR_ADDR);
32 
33 	/*
34 	 * SFTRST needs 3 GPMI clocks to settle, the reference manual
35 	 * recommends to wait 1us.
36 	 */
37 	udelay(1);
38 
39 	/* poll the bit becoming clear */
40 	while ((readl(addr) & mask) && --timeout)
41 		/* nothing */;
42 
43 	return !timeout;
44 }
45 
46 #define MODULE_CLKGATE		(1 << 30)
47 #define MODULE_SFTRST		(1 << 31)
48 /*
49  * The current mxs_reset_block() will do two things:
50  *  [1] enable the module.
51  *  [2] reset the module.
52  *
53  * In most of the cases, it's ok.
54  * But in MX23, there is a hardware bug in the BCH block (see erratum #2847).
55  * If you try to soft reset the BCH block, it becomes unusable until
56  * the next hard reset. This case occurs in the NAND boot mode. When the board
57  * boots by NAND, the ROM of the chip will initialize the BCH blocks itself.
58  * So If the driver tries to reset the BCH again, the BCH will not work anymore.
59  * You will see a DMA timeout in this case. The bug has been fixed
60  * in the following chips, such as MX28.
61  *
62  * To avoid this bug, just add a new parameter `just_enable` for
63  * the mxs_reset_block(), and rewrite it here.
64  */
gpmi_reset_block(void __iomem * reset_addr,bool just_enable)65 static int gpmi_reset_block(void __iomem *reset_addr, bool just_enable)
66 {
67 	int ret;
68 	int timeout = 0x400;
69 
70 	/* clear and poll SFTRST */
71 	ret = clear_poll_bit(reset_addr, MODULE_SFTRST);
72 	if (unlikely(ret))
73 		goto error;
74 
75 	/* clear CLKGATE */
76 	writel(MODULE_CLKGATE, reset_addr + MXS_CLR_ADDR);
77 
78 	if (!just_enable) {
79 		/* set SFTRST to reset the block */
80 		writel(MODULE_SFTRST, reset_addr + MXS_SET_ADDR);
81 		udelay(1);
82 
83 		/* poll CLKGATE becoming set */
84 		while ((!(readl(reset_addr) & MODULE_CLKGATE)) && --timeout)
85 			/* nothing */;
86 		if (unlikely(!timeout))
87 			goto error;
88 	}
89 
90 	/* clear and poll SFTRST */
91 	ret = clear_poll_bit(reset_addr, MODULE_SFTRST);
92 	if (unlikely(ret))
93 		goto error;
94 
95 	/* clear and poll CLKGATE */
96 	ret = clear_poll_bit(reset_addr, MODULE_CLKGATE);
97 	if (unlikely(ret))
98 		goto error;
99 
100 	return 0;
101 
102 error:
103 	pr_err("%s(%p): module reset timeout\n", __func__, reset_addr);
104 	return -ETIMEDOUT;
105 }
106 
__gpmi_enable_clk(struct gpmi_nand_data * this,bool v)107 static int __gpmi_enable_clk(struct gpmi_nand_data *this, bool v)
108 {
109 	struct clk *clk;
110 	int ret;
111 	int i;
112 
113 	for (i = 0; i < GPMI_CLK_MAX; i++) {
114 		clk = this->resources.clock[i];
115 		if (!clk)
116 			break;
117 
118 		if (v) {
119 			ret = clk_prepare_enable(clk);
120 			if (ret)
121 				goto err_clk;
122 		} else {
123 			clk_disable_unprepare(clk);
124 		}
125 	}
126 	return 0;
127 
128 err_clk:
129 	for (; i > 0; i--)
130 		clk_disable_unprepare(this->resources.clock[i - 1]);
131 	return ret;
132 }
133 
gpmi_enable_clk(struct gpmi_nand_data * this)134 int gpmi_enable_clk(struct gpmi_nand_data *this)
135 {
136 	return __gpmi_enable_clk(this, true);
137 }
138 
gpmi_disable_clk(struct gpmi_nand_data * this)139 int gpmi_disable_clk(struct gpmi_nand_data *this)
140 {
141 	return __gpmi_enable_clk(this, false);
142 }
143 
gpmi_init(struct gpmi_nand_data * this)144 int gpmi_init(struct gpmi_nand_data *this)
145 {
146 	struct resources *r = &this->resources;
147 	int ret;
148 
149 	ret = gpmi_enable_clk(this);
150 	if (ret)
151 		return ret;
152 	ret = gpmi_reset_block(r->gpmi_regs, false);
153 	if (ret)
154 		goto err_out;
155 
156 	/*
157 	 * Reset BCH here, too. We got failures otherwise :(
158 	 * See later BCH reset for explanation of MX23 and MX28 handling
159 	 */
160 	ret = gpmi_reset_block(r->bch_regs,
161 			       GPMI_IS_MX23(this) || GPMI_IS_MX28(this));
162 	if (ret)
163 		goto err_out;
164 
165 	/* Choose NAND mode. */
166 	writel(BM_GPMI_CTRL1_GPMI_MODE, r->gpmi_regs + HW_GPMI_CTRL1_CLR);
167 
168 	/* Set the IRQ polarity. */
169 	writel(BM_GPMI_CTRL1_ATA_IRQRDY_POLARITY,
170 				r->gpmi_regs + HW_GPMI_CTRL1_SET);
171 
172 	/* Disable Write-Protection. */
173 	writel(BM_GPMI_CTRL1_DEV_RESET, r->gpmi_regs + HW_GPMI_CTRL1_SET);
174 
175 	/* Select BCH ECC. */
176 	writel(BM_GPMI_CTRL1_BCH_MODE, r->gpmi_regs + HW_GPMI_CTRL1_SET);
177 
178 	/*
179 	 * Decouple the chip select from dma channel. We use dma0 for all
180 	 * the chips.
181 	 */
182 	writel(BM_GPMI_CTRL1_DECOUPLE_CS, r->gpmi_regs + HW_GPMI_CTRL1_SET);
183 
184 	gpmi_disable_clk(this);
185 	return 0;
186 err_out:
187 	gpmi_disable_clk(this);
188 	return ret;
189 }
190 
191 /* This function is very useful. It is called only when the bug occur. */
gpmi_dump_info(struct gpmi_nand_data * this)192 void gpmi_dump_info(struct gpmi_nand_data *this)
193 {
194 	struct resources *r = &this->resources;
195 	struct bch_geometry *geo = &this->bch_geometry;
196 	u32 reg;
197 	int i;
198 
199 	dev_err(this->dev, "Show GPMI registers :\n");
200 	for (i = 0; i <= HW_GPMI_DEBUG / 0x10 + 1; i++) {
201 		reg = readl(r->gpmi_regs + i * 0x10);
202 		dev_err(this->dev, "offset 0x%.3x : 0x%.8x\n", i * 0x10, reg);
203 	}
204 
205 	/* start to print out the BCH info */
206 	dev_err(this->dev, "Show BCH registers :\n");
207 	for (i = 0; i <= HW_BCH_VERSION / 0x10 + 1; i++) {
208 		reg = readl(r->bch_regs + i * 0x10);
209 		dev_err(this->dev, "offset 0x%.3x : 0x%.8x\n", i * 0x10, reg);
210 	}
211 	dev_err(this->dev, "BCH Geometry :\n"
212 		"GF length              : %u\n"
213 		"ECC Strength           : %u\n"
214 		"Page Size in Bytes     : %u\n"
215 		"Metadata Size in Bytes : %u\n"
216 		"ECC Chunk Size in Bytes: %u\n"
217 		"ECC Chunk Count        : %u\n"
218 		"Payload Size in Bytes  : %u\n"
219 		"Auxiliary Size in Bytes: %u\n"
220 		"Auxiliary Status Offset: %u\n"
221 		"Block Mark Byte Offset : %u\n"
222 		"Block Mark Bit Offset  : %u\n",
223 		geo->gf_len,
224 		geo->ecc_strength,
225 		geo->page_size,
226 		geo->metadata_size,
227 		geo->ecc_chunk_size,
228 		geo->ecc_chunk_count,
229 		geo->payload_size,
230 		geo->auxiliary_size,
231 		geo->auxiliary_status_offset,
232 		geo->block_mark_byte_offset,
233 		geo->block_mark_bit_offset);
234 }
235 
236 /* Configures the geometry for BCH.  */
bch_set_geometry(struct gpmi_nand_data * this)237 int bch_set_geometry(struct gpmi_nand_data *this)
238 {
239 	struct resources *r = &this->resources;
240 	struct bch_geometry *bch_geo = &this->bch_geometry;
241 	unsigned int block_count;
242 	unsigned int block_size;
243 	unsigned int metadata_size;
244 	unsigned int ecc_strength;
245 	unsigned int page_size;
246 	unsigned int gf_len;
247 	int ret;
248 
249 	ret = common_nfc_set_geometry(this);
250 	if (ret)
251 		return ret;
252 
253 	block_count   = bch_geo->ecc_chunk_count - 1;
254 	block_size    = bch_geo->ecc_chunk_size;
255 	metadata_size = bch_geo->metadata_size;
256 	ecc_strength  = bch_geo->ecc_strength >> 1;
257 	page_size     = bch_geo->page_size;
258 	gf_len        = bch_geo->gf_len;
259 
260 	ret = gpmi_enable_clk(this);
261 	if (ret)
262 		return ret;
263 
264 	/*
265 	* Due to erratum #2847 of the MX23, the BCH cannot be soft reset on this
266 	* chip, otherwise it will lock up. So we skip resetting BCH on the MX23.
267 	* and MX28.
268 	*/
269 	ret = gpmi_reset_block(r->bch_regs,
270 			       GPMI_IS_MX23(this) || GPMI_IS_MX28(this));
271 	if (ret)
272 		goto err_out;
273 
274 	/* Configure layout 0. */
275 	writel(BF_BCH_FLASH0LAYOUT0_NBLOCKS(block_count)
276 			| BF_BCH_FLASH0LAYOUT0_META_SIZE(metadata_size)
277 			| BF_BCH_FLASH0LAYOUT0_ECC0(ecc_strength, this)
278 			| BF_BCH_FLASH0LAYOUT0_GF(gf_len, this)
279 			| BF_BCH_FLASH0LAYOUT0_DATA0_SIZE(block_size, this),
280 			r->bch_regs + HW_BCH_FLASH0LAYOUT0);
281 
282 	writel(BF_BCH_FLASH0LAYOUT1_PAGE_SIZE(page_size)
283 			| BF_BCH_FLASH0LAYOUT1_ECCN(ecc_strength, this)
284 			| BF_BCH_FLASH0LAYOUT1_GF(gf_len, this)
285 			| BF_BCH_FLASH0LAYOUT1_DATAN_SIZE(block_size, this),
286 			r->bch_regs + HW_BCH_FLASH0LAYOUT1);
287 
288 	/* Set *all* chip selects to use layout 0. */
289 	writel(0, r->bch_regs + HW_BCH_LAYOUTSELECT);
290 
291 	/* Enable interrupts. */
292 	writel(BM_BCH_CTRL_COMPLETE_IRQ_EN,
293 				r->bch_regs + HW_BCH_CTRL_SET);
294 
295 	gpmi_disable_clk(this);
296 	return 0;
297 err_out:
298 	gpmi_disable_clk(this);
299 	return ret;
300 }
301 
302 /*
303  * <1> Firstly, we should know what's the GPMI-clock means.
304  *     The GPMI-clock is the internal clock in the gpmi nand controller.
305  *     If you set 100MHz to gpmi nand controller, the GPMI-clock's period
306  *     is 10ns. Mark the GPMI-clock's period as GPMI-clock-period.
307  *
308  * <2> Secondly, we should know what's the frequency on the nand chip pins.
309  *     The frequency on the nand chip pins is derived from the GPMI-clock.
310  *     We can get it from the following equation:
311  *
312  *         F = G / (DS + DH)
313  *
314  *         F  : the frequency on the nand chip pins.
315  *         G  : the GPMI clock, such as 100MHz.
316  *         DS : GPMI_HW_GPMI_TIMING0:DATA_SETUP
317  *         DH : GPMI_HW_GPMI_TIMING0:DATA_HOLD
318  *
319  * <3> Thirdly, when the frequency on the nand chip pins is above 33MHz,
320  *     the nand EDO(extended Data Out) timing could be applied.
321  *     The GPMI implements a feedback read strobe to sample the read data.
322  *     The feedback read strobe can be delayed to support the nand EDO timing
323  *     where the read strobe may deasserts before the read data is valid, and
324  *     read data is valid for some time after read strobe.
325  *
326  *     The following figure illustrates some aspects of a NAND Flash read:
327  *
328  *                   |<---tREA---->|
329  *                   |             |
330  *                   |         |   |
331  *                   |<--tRP-->|   |
332  *                   |         |   |
333  *                  __          ___|__________________________________
334  *     RDN            \________/   |
335  *                                 |
336  *                                 /---------\
337  *     Read Data    --------------<           >---------
338  *                                 \---------/
339  *                                |     |
340  *                                |<-D->|
341  *     FeedbackRDN  ________             ____________
342  *                          \___________/
343  *
344  *          D stands for delay, set in the HW_GPMI_CTRL1:RDN_DELAY.
345  *
346  *
347  * <4> Now, we begin to describe how to compute the right RDN_DELAY.
348  *
349  *  4.1) From the aspect of the nand chip pins:
350  *        Delay = (tREA + C - tRP)               {1}
351  *
352  *        tREA : the maximum read access time.
353  *        C    : a constant to adjust the delay. default is 4000ps.
354  *        tRP  : the read pulse width, which is exactly:
355  *                   tRP = (GPMI-clock-period) * DATA_SETUP
356  *
357  *  4.2) From the aspect of the GPMI nand controller:
358  *         Delay = RDN_DELAY * 0.125 * RP        {2}
359  *
360  *         RP   : the DLL reference period.
361  *            if (GPMI-clock-period > DLL_THRETHOLD)
362  *                   RP = GPMI-clock-period / 2;
363  *            else
364  *                   RP = GPMI-clock-period;
365  *
366  *            Set the HW_GPMI_CTRL1:HALF_PERIOD if GPMI-clock-period
367  *            is greater DLL_THRETHOLD. In other SOCs, the DLL_THRETHOLD
368  *            is 16000ps, but in mx6q, we use 12000ps.
369  *
370  *  4.3) since {1} equals {2}, we get:
371  *
372  *                     (tREA + 4000 - tRP) * 8
373  *         RDN_DELAY = -----------------------     {3}
374  *                           RP
375  */
gpmi_nfc_compute_timings(struct gpmi_nand_data * this,const struct nand_sdr_timings * sdr)376 static void gpmi_nfc_compute_timings(struct gpmi_nand_data *this,
377 				     const struct nand_sdr_timings *sdr)
378 {
379 	struct gpmi_nfc_hardware_timing *hw = &this->hw;
380 	unsigned int dll_threshold_ps = this->devdata->max_chain_delay;
381 	unsigned int period_ps, reference_period_ps;
382 	unsigned int data_setup_cycles, data_hold_cycles, addr_setup_cycles;
383 	unsigned int tRP_ps;
384 	bool use_half_period;
385 	int sample_delay_ps, sample_delay_factor;
386 	u16 busy_timeout_cycles;
387 	u8 wrn_dly_sel;
388 
389 	if (sdr->tRC_min >= 30000) {
390 		/* ONFI non-EDO modes [0-3] */
391 		hw->clk_rate = 22000000;
392 		wrn_dly_sel = BV_GPMI_CTRL1_WRN_DLY_SEL_4_TO_8NS;
393 	} else if (sdr->tRC_min >= 25000) {
394 		/* ONFI EDO mode 4 */
395 		hw->clk_rate = 80000000;
396 		wrn_dly_sel = BV_GPMI_CTRL1_WRN_DLY_SEL_NO_DELAY;
397 	} else {
398 		/* ONFI EDO mode 5 */
399 		hw->clk_rate = 100000000;
400 		wrn_dly_sel = BV_GPMI_CTRL1_WRN_DLY_SEL_NO_DELAY;
401 	}
402 
403 	/* SDR core timings are given in picoseconds */
404 	period_ps = div_u64((u64)NSEC_PER_SEC * 1000, hw->clk_rate);
405 
406 	addr_setup_cycles = TO_CYCLES(sdr->tALS_min, period_ps);
407 	data_setup_cycles = TO_CYCLES(sdr->tDS_min, period_ps);
408 	data_hold_cycles = TO_CYCLES(sdr->tDH_min, period_ps);
409 	busy_timeout_cycles = TO_CYCLES(sdr->tWB_max + sdr->tR_max, period_ps);
410 
411 	hw->timing0 = BF_GPMI_TIMING0_ADDRESS_SETUP(addr_setup_cycles) |
412 		      BF_GPMI_TIMING0_DATA_HOLD(data_hold_cycles) |
413 		      BF_GPMI_TIMING0_DATA_SETUP(data_setup_cycles);
414 	hw->timing1 = BF_GPMI_TIMING1_BUSY_TIMEOUT(busy_timeout_cycles * 4096);
415 
416 	/*
417 	 * Derive NFC ideal delay from {3}:
418 	 *
419 	 *                     (tREA + 4000 - tRP) * 8
420 	 *         RDN_DELAY = -----------------------
421 	 *                                RP
422 	 */
423 	if (period_ps > dll_threshold_ps) {
424 		use_half_period = true;
425 		reference_period_ps = period_ps / 2;
426 	} else {
427 		use_half_period = false;
428 		reference_period_ps = period_ps;
429 	}
430 
431 	tRP_ps = data_setup_cycles * period_ps;
432 	sample_delay_ps = (sdr->tREA_max + 4000 - tRP_ps) * 8;
433 	if (sample_delay_ps > 0)
434 		sample_delay_factor = sample_delay_ps / reference_period_ps;
435 	else
436 		sample_delay_factor = 0;
437 
438 	hw->ctrl1n = BF_GPMI_CTRL1_WRN_DLY_SEL(wrn_dly_sel);
439 	if (sample_delay_factor)
440 		hw->ctrl1n |= BF_GPMI_CTRL1_RDN_DELAY(sample_delay_factor) |
441 			      BM_GPMI_CTRL1_DLL_ENABLE |
442 			      (use_half_period ? BM_GPMI_CTRL1_HALF_PERIOD : 0);
443 }
444 
gpmi_nfc_apply_timings(struct gpmi_nand_data * this)445 void gpmi_nfc_apply_timings(struct gpmi_nand_data *this)
446 {
447 	struct gpmi_nfc_hardware_timing *hw = &this->hw;
448 	struct resources *r = &this->resources;
449 	void __iomem *gpmi_regs = r->gpmi_regs;
450 	unsigned int dll_wait_time_us;
451 
452 	clk_set_rate(r->clock[0], hw->clk_rate);
453 
454 	writel(hw->timing0, gpmi_regs + HW_GPMI_TIMING0);
455 	writel(hw->timing1, gpmi_regs + HW_GPMI_TIMING1);
456 
457 	/*
458 	 * Clear several CTRL1 fields, DLL must be disabled when setting
459 	 * RDN_DELAY or HALF_PERIOD.
460 	 */
461 	writel(BM_GPMI_CTRL1_CLEAR_MASK, gpmi_regs + HW_GPMI_CTRL1_CLR);
462 	writel(hw->ctrl1n, gpmi_regs + HW_GPMI_CTRL1_SET);
463 
464 	/* Wait 64 clock cycles before using the GPMI after enabling the DLL */
465 	dll_wait_time_us = USEC_PER_SEC / hw->clk_rate * 64;
466 	if (!dll_wait_time_us)
467 		dll_wait_time_us = 1;
468 
469 	/* Wait for the DLL to settle. */
470 	udelay(dll_wait_time_us);
471 }
472 
gpmi_setup_data_interface(struct mtd_info * mtd,int chipnr,const struct nand_data_interface * conf)473 int gpmi_setup_data_interface(struct mtd_info *mtd, int chipnr,
474 			      const struct nand_data_interface *conf)
475 {
476 	struct nand_chip *chip = mtd_to_nand(mtd);
477 	struct gpmi_nand_data *this = nand_get_controller_data(chip);
478 	const struct nand_sdr_timings *sdr;
479 
480 	/* Retrieve required NAND timings */
481 	sdr = nand_get_sdr_timings(conf);
482 	if (IS_ERR(sdr))
483 		return PTR_ERR(sdr);
484 
485 	/* Only MX6 GPMI controller can reach EDO timings */
486 	if (sdr->tRC_min <= 25000 && !GPMI_IS_MX6(this))
487 		return -ENOTSUPP;
488 
489 	/* Stop here if this call was just a check */
490 	if (chipnr < 0)
491 		return 0;
492 
493 	/* Do the actual derivation of the controller timings */
494 	gpmi_nfc_compute_timings(this, sdr);
495 
496 	this->hw.must_apply_timings = true;
497 
498 	return 0;
499 }
500 
501 /* Clears a BCH interrupt. */
gpmi_clear_bch(struct gpmi_nand_data * this)502 void gpmi_clear_bch(struct gpmi_nand_data *this)
503 {
504 	struct resources *r = &this->resources;
505 	writel(BM_BCH_CTRL_COMPLETE_IRQ, r->bch_regs + HW_BCH_CTRL_CLR);
506 }
507 
508 /* Returns the Ready/Busy status of the given chip. */
gpmi_is_ready(struct gpmi_nand_data * this,unsigned chip)509 int gpmi_is_ready(struct gpmi_nand_data *this, unsigned chip)
510 {
511 	struct resources *r = &this->resources;
512 	uint32_t mask = 0;
513 	uint32_t reg = 0;
514 
515 	if (GPMI_IS_MX23(this)) {
516 		mask = MX23_BM_GPMI_DEBUG_READY0 << chip;
517 		reg = readl(r->gpmi_regs + HW_GPMI_DEBUG);
518 	} else if (GPMI_IS_MX28(this) || GPMI_IS_MX6(this)) {
519 		/*
520 		 * In the imx6, all the ready/busy pins are bound
521 		 * together. So we only need to check chip 0.
522 		 */
523 		if (GPMI_IS_MX6(this))
524 			chip = 0;
525 
526 		/* MX28 shares the same R/B register as MX6Q. */
527 		mask = MX28_BF_GPMI_STAT_READY_BUSY(1 << chip);
528 		reg = readl(r->gpmi_regs + HW_GPMI_STAT);
529 	} else
530 		dev_err(this->dev, "unknown arch.\n");
531 	return reg & mask;
532 }
533 
gpmi_send_command(struct gpmi_nand_data * this)534 int gpmi_send_command(struct gpmi_nand_data *this)
535 {
536 	struct dma_chan *channel = get_dma_chan(this);
537 	struct dma_async_tx_descriptor *desc;
538 	struct scatterlist *sgl;
539 	int chip = this->current_chip;
540 	int ret;
541 	u32 pio[3];
542 
543 	/* [1] send out the PIO words */
544 	pio[0] = BF_GPMI_CTRL0_COMMAND_MODE(BV_GPMI_CTRL0_COMMAND_MODE__WRITE)
545 		| BM_GPMI_CTRL0_WORD_LENGTH
546 		| BF_GPMI_CTRL0_CS(chip, this)
547 		| BF_GPMI_CTRL0_LOCK_CS(LOCK_CS_ENABLE, this)
548 		| BF_GPMI_CTRL0_ADDRESS(BV_GPMI_CTRL0_ADDRESS__NAND_CLE)
549 		| BM_GPMI_CTRL0_ADDRESS_INCREMENT
550 		| BF_GPMI_CTRL0_XFER_COUNT(this->command_length);
551 	pio[1] = pio[2] = 0;
552 	desc = dmaengine_prep_slave_sg(channel,
553 					(struct scatterlist *)pio,
554 					ARRAY_SIZE(pio), DMA_TRANS_NONE, 0);
555 	if (!desc)
556 		return -EINVAL;
557 
558 	/* [2] send out the COMMAND + ADDRESS string stored in @buffer */
559 	sgl = &this->cmd_sgl;
560 
561 	sg_init_one(sgl, this->cmd_buffer, this->command_length);
562 	dma_map_sg(this->dev, sgl, 1, DMA_TO_DEVICE);
563 	desc = dmaengine_prep_slave_sg(channel,
564 				sgl, 1, DMA_MEM_TO_DEV,
565 				DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
566 	if (!desc)
567 		return -EINVAL;
568 
569 	/* [3] submit the DMA */
570 	ret = start_dma_without_bch_irq(this, desc);
571 
572 	dma_unmap_sg(this->dev, sgl, 1, DMA_TO_DEVICE);
573 
574 	return ret;
575 }
576 
gpmi_send_data(struct gpmi_nand_data * this,const void * buf,int len)577 int gpmi_send_data(struct gpmi_nand_data *this, const void *buf, int len)
578 {
579 	struct dma_async_tx_descriptor *desc;
580 	struct dma_chan *channel = get_dma_chan(this);
581 	int chip = this->current_chip;
582 	int ret;
583 	uint32_t command_mode;
584 	uint32_t address;
585 	u32 pio[2];
586 
587 	/* [1] PIO */
588 	command_mode = BV_GPMI_CTRL0_COMMAND_MODE__WRITE;
589 	address      = BV_GPMI_CTRL0_ADDRESS__NAND_DATA;
590 
591 	pio[0] = BF_GPMI_CTRL0_COMMAND_MODE(command_mode)
592 		| BM_GPMI_CTRL0_WORD_LENGTH
593 		| BF_GPMI_CTRL0_CS(chip, this)
594 		| BF_GPMI_CTRL0_LOCK_CS(LOCK_CS_ENABLE, this)
595 		| BF_GPMI_CTRL0_ADDRESS(address)
596 		| BF_GPMI_CTRL0_XFER_COUNT(len);
597 	pio[1] = 0;
598 	desc = dmaengine_prep_slave_sg(channel, (struct scatterlist *)pio,
599 					ARRAY_SIZE(pio), DMA_TRANS_NONE, 0);
600 	if (!desc)
601 		return -EINVAL;
602 
603 	/* [2] send DMA request */
604 	prepare_data_dma(this, buf, len, DMA_TO_DEVICE);
605 	desc = dmaengine_prep_slave_sg(channel, &this->data_sgl,
606 					1, DMA_MEM_TO_DEV,
607 					DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
608 	if (!desc)
609 		return -EINVAL;
610 
611 	/* [3] submit the DMA */
612 	ret = start_dma_without_bch_irq(this, desc);
613 
614 	dma_unmap_sg(this->dev, &this->data_sgl, 1, DMA_TO_DEVICE);
615 
616 	return ret;
617 }
618 
gpmi_read_data(struct gpmi_nand_data * this,void * buf,int len)619 int gpmi_read_data(struct gpmi_nand_data *this, void *buf, int len)
620 {
621 	struct dma_async_tx_descriptor *desc;
622 	struct dma_chan *channel = get_dma_chan(this);
623 	int chip = this->current_chip;
624 	int ret;
625 	u32 pio[2];
626 	bool direct;
627 
628 	/* [1] : send PIO */
629 	pio[0] = BF_GPMI_CTRL0_COMMAND_MODE(BV_GPMI_CTRL0_COMMAND_MODE__READ)
630 		| BM_GPMI_CTRL0_WORD_LENGTH
631 		| BF_GPMI_CTRL0_CS(chip, this)
632 		| BF_GPMI_CTRL0_LOCK_CS(LOCK_CS_ENABLE, this)
633 		| BF_GPMI_CTRL0_ADDRESS(BV_GPMI_CTRL0_ADDRESS__NAND_DATA)
634 		| BF_GPMI_CTRL0_XFER_COUNT(len);
635 	pio[1] = 0;
636 	desc = dmaengine_prep_slave_sg(channel,
637 					(struct scatterlist *)pio,
638 					ARRAY_SIZE(pio), DMA_TRANS_NONE, 0);
639 	if (!desc)
640 		return -EINVAL;
641 
642 	/* [2] : send DMA request */
643 	direct = prepare_data_dma(this, buf, len, DMA_FROM_DEVICE);
644 	desc = dmaengine_prep_slave_sg(channel, &this->data_sgl,
645 					1, DMA_DEV_TO_MEM,
646 					DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
647 	if (!desc)
648 		return -EINVAL;
649 
650 	/* [3] : submit the DMA */
651 
652 	ret = start_dma_without_bch_irq(this, desc);
653 
654 	dma_unmap_sg(this->dev, &this->data_sgl, 1, DMA_FROM_DEVICE);
655 	if (!direct)
656 		memcpy(buf, this->data_buffer_dma, len);
657 
658 	return ret;
659 }
660 
gpmi_send_page(struct gpmi_nand_data * this,dma_addr_t payload,dma_addr_t auxiliary)661 int gpmi_send_page(struct gpmi_nand_data *this,
662 			dma_addr_t payload, dma_addr_t auxiliary)
663 {
664 	struct bch_geometry *geo = &this->bch_geometry;
665 	uint32_t command_mode;
666 	uint32_t address;
667 	uint32_t ecc_command;
668 	uint32_t buffer_mask;
669 	struct dma_async_tx_descriptor *desc;
670 	struct dma_chan *channel = get_dma_chan(this);
671 	int chip = this->current_chip;
672 	u32 pio[6];
673 
674 	/* A DMA descriptor that does an ECC page read. */
675 	command_mode = BV_GPMI_CTRL0_COMMAND_MODE__WRITE;
676 	address      = BV_GPMI_CTRL0_ADDRESS__NAND_DATA;
677 	ecc_command  = BV_GPMI_ECCCTRL_ECC_CMD__BCH_ENCODE;
678 	buffer_mask  = BV_GPMI_ECCCTRL_BUFFER_MASK__BCH_PAGE |
679 				BV_GPMI_ECCCTRL_BUFFER_MASK__BCH_AUXONLY;
680 
681 	pio[0] = BF_GPMI_CTRL0_COMMAND_MODE(command_mode)
682 		| BM_GPMI_CTRL0_WORD_LENGTH
683 		| BF_GPMI_CTRL0_CS(chip, this)
684 		| BF_GPMI_CTRL0_LOCK_CS(LOCK_CS_ENABLE, this)
685 		| BF_GPMI_CTRL0_ADDRESS(address)
686 		| BF_GPMI_CTRL0_XFER_COUNT(0);
687 	pio[1] = 0;
688 	pio[2] = BM_GPMI_ECCCTRL_ENABLE_ECC
689 		| BF_GPMI_ECCCTRL_ECC_CMD(ecc_command)
690 		| BF_GPMI_ECCCTRL_BUFFER_MASK(buffer_mask);
691 	pio[3] = geo->page_size;
692 	pio[4] = payload;
693 	pio[5] = auxiliary;
694 
695 	desc = dmaengine_prep_slave_sg(channel,
696 					(struct scatterlist *)pio,
697 					ARRAY_SIZE(pio), DMA_TRANS_NONE,
698 					DMA_CTRL_ACK);
699 	if (!desc)
700 		return -EINVAL;
701 
702 	return start_dma_with_bch_irq(this, desc);
703 }
704 
gpmi_read_page(struct gpmi_nand_data * this,dma_addr_t payload,dma_addr_t auxiliary)705 int gpmi_read_page(struct gpmi_nand_data *this,
706 				dma_addr_t payload, dma_addr_t auxiliary)
707 {
708 	struct bch_geometry *geo = &this->bch_geometry;
709 	uint32_t command_mode;
710 	uint32_t address;
711 	uint32_t ecc_command;
712 	uint32_t buffer_mask;
713 	struct dma_async_tx_descriptor *desc;
714 	struct dma_chan *channel = get_dma_chan(this);
715 	int chip = this->current_chip;
716 	u32 pio[6];
717 
718 	/* [1] Wait for the chip to report ready. */
719 	command_mode = BV_GPMI_CTRL0_COMMAND_MODE__WAIT_FOR_READY;
720 	address      = BV_GPMI_CTRL0_ADDRESS__NAND_DATA;
721 
722 	pio[0] =  BF_GPMI_CTRL0_COMMAND_MODE(command_mode)
723 		| BM_GPMI_CTRL0_WORD_LENGTH
724 		| BF_GPMI_CTRL0_CS(chip, this)
725 		| BF_GPMI_CTRL0_LOCK_CS(LOCK_CS_ENABLE, this)
726 		| BF_GPMI_CTRL0_ADDRESS(address)
727 		| BF_GPMI_CTRL0_XFER_COUNT(0);
728 	pio[1] = 0;
729 	desc = dmaengine_prep_slave_sg(channel,
730 				(struct scatterlist *)pio, 2,
731 				DMA_TRANS_NONE, 0);
732 	if (!desc)
733 		return -EINVAL;
734 
735 	/* [2] Enable the BCH block and read. */
736 	command_mode = BV_GPMI_CTRL0_COMMAND_MODE__READ;
737 	address      = BV_GPMI_CTRL0_ADDRESS__NAND_DATA;
738 	ecc_command  = BV_GPMI_ECCCTRL_ECC_CMD__BCH_DECODE;
739 	buffer_mask  = BV_GPMI_ECCCTRL_BUFFER_MASK__BCH_PAGE
740 			| BV_GPMI_ECCCTRL_BUFFER_MASK__BCH_AUXONLY;
741 
742 	pio[0] =  BF_GPMI_CTRL0_COMMAND_MODE(command_mode)
743 		| BM_GPMI_CTRL0_WORD_LENGTH
744 		| BF_GPMI_CTRL0_CS(chip, this)
745 		| BF_GPMI_CTRL0_LOCK_CS(LOCK_CS_ENABLE, this)
746 		| BF_GPMI_CTRL0_ADDRESS(address)
747 		| BF_GPMI_CTRL0_XFER_COUNT(geo->page_size);
748 
749 	pio[1] = 0;
750 	pio[2] =  BM_GPMI_ECCCTRL_ENABLE_ECC
751 		| BF_GPMI_ECCCTRL_ECC_CMD(ecc_command)
752 		| BF_GPMI_ECCCTRL_BUFFER_MASK(buffer_mask);
753 	pio[3] = geo->page_size;
754 	pio[4] = payload;
755 	pio[5] = auxiliary;
756 	desc = dmaengine_prep_slave_sg(channel,
757 					(struct scatterlist *)pio,
758 					ARRAY_SIZE(pio), DMA_TRANS_NONE,
759 					DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
760 	if (!desc)
761 		return -EINVAL;
762 
763 	/* [3] Disable the BCH block */
764 	command_mode = BV_GPMI_CTRL0_COMMAND_MODE__WAIT_FOR_READY;
765 	address      = BV_GPMI_CTRL0_ADDRESS__NAND_DATA;
766 
767 	pio[0] = BF_GPMI_CTRL0_COMMAND_MODE(command_mode)
768 		| BM_GPMI_CTRL0_WORD_LENGTH
769 		| BF_GPMI_CTRL0_CS(chip, this)
770 		| BF_GPMI_CTRL0_LOCK_CS(LOCK_CS_ENABLE, this)
771 		| BF_GPMI_CTRL0_ADDRESS(address)
772 		| BF_GPMI_CTRL0_XFER_COUNT(geo->page_size);
773 	pio[1] = 0;
774 	pio[2] = 0; /* clear GPMI_HW_GPMI_ECCCTRL, disable the BCH. */
775 	desc = dmaengine_prep_slave_sg(channel,
776 				(struct scatterlist *)pio, 3,
777 				DMA_TRANS_NONE,
778 				DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
779 	if (!desc)
780 		return -EINVAL;
781 
782 	/* [4] submit the DMA */
783 	return start_dma_with_bch_irq(this, desc);
784 }
785 
786 /**
787  * gpmi_copy_bits - copy bits from one memory region to another
788  * @dst: destination buffer
789  * @dst_bit_off: bit offset we're starting to write at
790  * @src: source buffer
791  * @src_bit_off: bit offset we're starting to read from
792  * @nbits: number of bits to copy
793  *
794  * This functions copies bits from one memory region to another, and is used by
795  * the GPMI driver to copy ECC sections which are not guaranteed to be byte
796  * aligned.
797  *
798  * src and dst should not overlap.
799  *
800  */
gpmi_copy_bits(u8 * dst,size_t dst_bit_off,const u8 * src,size_t src_bit_off,size_t nbits)801 void gpmi_copy_bits(u8 *dst, size_t dst_bit_off,
802 		    const u8 *src, size_t src_bit_off,
803 		    size_t nbits)
804 {
805 	size_t i;
806 	size_t nbytes;
807 	u32 src_buffer = 0;
808 	size_t bits_in_src_buffer = 0;
809 
810 	if (!nbits)
811 		return;
812 
813 	/*
814 	 * Move src and dst pointers to the closest byte pointer and store bit
815 	 * offsets within a byte.
816 	 */
817 	src += src_bit_off / 8;
818 	src_bit_off %= 8;
819 
820 	dst += dst_bit_off / 8;
821 	dst_bit_off %= 8;
822 
823 	/*
824 	 * Initialize the src_buffer value with bits available in the first
825 	 * byte of data so that we end up with a byte aligned src pointer.
826 	 */
827 	if (src_bit_off) {
828 		src_buffer = src[0] >> src_bit_off;
829 		if (nbits >= (8 - src_bit_off)) {
830 			bits_in_src_buffer += 8 - src_bit_off;
831 		} else {
832 			src_buffer &= GENMASK(nbits - 1, 0);
833 			bits_in_src_buffer += nbits;
834 		}
835 		nbits -= bits_in_src_buffer;
836 		src++;
837 	}
838 
839 	/* Calculate the number of bytes that can be copied from src to dst. */
840 	nbytes = nbits / 8;
841 
842 	/* Try to align dst to a byte boundary. */
843 	if (dst_bit_off) {
844 		if (bits_in_src_buffer < (8 - dst_bit_off) && nbytes) {
845 			src_buffer |= src[0] << bits_in_src_buffer;
846 			bits_in_src_buffer += 8;
847 			src++;
848 			nbytes--;
849 		}
850 
851 		if (bits_in_src_buffer >= (8 - dst_bit_off)) {
852 			dst[0] &= GENMASK(dst_bit_off - 1, 0);
853 			dst[0] |= src_buffer << dst_bit_off;
854 			src_buffer >>= (8 - dst_bit_off);
855 			bits_in_src_buffer -= (8 - dst_bit_off);
856 			dst_bit_off = 0;
857 			dst++;
858 			if (bits_in_src_buffer > 7) {
859 				bits_in_src_buffer -= 8;
860 				dst[0] = src_buffer;
861 				dst++;
862 				src_buffer >>= 8;
863 			}
864 		}
865 	}
866 
867 	if (!bits_in_src_buffer && !dst_bit_off) {
868 		/*
869 		 * Both src and dst pointers are byte aligned, thus we can
870 		 * just use the optimized memcpy function.
871 		 */
872 		if (nbytes)
873 			memcpy(dst, src, nbytes);
874 	} else {
875 		/*
876 		 * src buffer is not byte aligned, hence we have to copy each
877 		 * src byte to the src_buffer variable before extracting a byte
878 		 * to store in dst.
879 		 */
880 		for (i = 0; i < nbytes; i++) {
881 			src_buffer |= src[i] << bits_in_src_buffer;
882 			dst[i] = src_buffer;
883 			src_buffer >>= 8;
884 		}
885 	}
886 	/* Update dst and src pointers */
887 	dst += nbytes;
888 	src += nbytes;
889 
890 	/*
891 	 * nbits is the number of remaining bits. It should not exceed 8 as
892 	 * we've already copied as much bytes as possible.
893 	 */
894 	nbits %= 8;
895 
896 	/*
897 	 * If there's no more bits to copy to the destination and src buffer
898 	 * was already byte aligned, then we're done.
899 	 */
900 	if (!nbits && !bits_in_src_buffer)
901 		return;
902 
903 	/* Copy the remaining bits to src_buffer */
904 	if (nbits)
905 		src_buffer |= (*src & GENMASK(nbits - 1, 0)) <<
906 			      bits_in_src_buffer;
907 	bits_in_src_buffer += nbits;
908 
909 	/*
910 	 * In case there were not enough bits to get a byte aligned dst buffer
911 	 * prepare the src_buffer variable to match the dst organization (shift
912 	 * src_buffer by dst_bit_off and retrieve the least significant bits
913 	 * from dst).
914 	 */
915 	if (dst_bit_off)
916 		src_buffer = (src_buffer << dst_bit_off) |
917 			     (*dst & GENMASK(dst_bit_off - 1, 0));
918 	bits_in_src_buffer += dst_bit_off;
919 
920 	/*
921 	 * Keep most significant bits from dst if we end up with an unaligned
922 	 * number of bits.
923 	 */
924 	nbytes = bits_in_src_buffer / 8;
925 	if (bits_in_src_buffer % 8) {
926 		src_buffer |= (dst[nbytes] &
927 			       GENMASK(7, bits_in_src_buffer % 8)) <<
928 			      (nbytes * 8);
929 		nbytes++;
930 	}
931 
932 	/* Copy the remaining bytes to dst */
933 	for (i = 0; i < nbytes; i++) {
934 		dst[i] = src_buffer;
935 		src_buffer >>= 8;
936 	}
937 }
938