• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (c) 2016, The Linux Foundation. All rights reserved.
3  *
4  * This software is licensed under the terms of the GNU General Public
5  * License version 2, as published by the Free Software Foundation, and
6  * may be copied, distributed, and modified under those terms.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
11  * GNU General Public License for more details.
12  */
13 
14 #include <linux/clk.h>
15 #include <linux/slab.h>
16 #include <linux/bitops.h>
17 #include <linux/dma-mapping.h>
18 #include <linux/dmaengine.h>
19 #include <linux/module.h>
20 #include <linux/mtd/rawnand.h>
21 #include <linux/mtd/partitions.h>
22 #include <linux/of.h>
23 #include <linux/of_device.h>
24 #include <linux/delay.h>
25 #include <linux/dma/qcom_bam_dma.h>
26 
27 /* NANDc reg offsets */
28 #define	NAND_FLASH_CMD			0x00
29 #define	NAND_ADDR0			0x04
30 #define	NAND_ADDR1			0x08
31 #define	NAND_FLASH_CHIP_SELECT		0x0c
32 #define	NAND_EXEC_CMD			0x10
33 #define	NAND_FLASH_STATUS		0x14
34 #define	NAND_BUFFER_STATUS		0x18
35 #define	NAND_DEV0_CFG0			0x20
36 #define	NAND_DEV0_CFG1			0x24
37 #define	NAND_DEV0_ECC_CFG		0x28
38 #define	NAND_DEV1_ECC_CFG		0x2c
39 #define	NAND_DEV1_CFG0			0x30
40 #define	NAND_DEV1_CFG1			0x34
41 #define	NAND_READ_ID			0x40
42 #define	NAND_READ_STATUS		0x44
43 #define	NAND_DEV_CMD0			0xa0
44 #define	NAND_DEV_CMD1			0xa4
45 #define	NAND_DEV_CMD2			0xa8
46 #define	NAND_DEV_CMD_VLD		0xac
47 #define	SFLASHC_BURST_CFG		0xe0
48 #define	NAND_ERASED_CW_DETECT_CFG	0xe8
49 #define	NAND_ERASED_CW_DETECT_STATUS	0xec
50 #define	NAND_EBI2_ECC_BUF_CFG		0xf0
51 #define	FLASH_BUF_ACC			0x100
52 
53 #define	NAND_CTRL			0xf00
54 #define	NAND_VERSION			0xf08
55 #define	NAND_READ_LOCATION_0		0xf20
56 #define	NAND_READ_LOCATION_1		0xf24
57 #define	NAND_READ_LOCATION_2		0xf28
58 #define	NAND_READ_LOCATION_3		0xf2c
59 
60 /* dummy register offsets, used by write_reg_dma */
61 #define	NAND_DEV_CMD1_RESTORE		0xdead
62 #define	NAND_DEV_CMD_VLD_RESTORE	0xbeef
63 
64 /* NAND_FLASH_CMD bits */
65 #define	PAGE_ACC			BIT(4)
66 #define	LAST_PAGE			BIT(5)
67 
68 /* NAND_FLASH_CHIP_SELECT bits */
69 #define	NAND_DEV_SEL			0
70 #define	DM_EN				BIT(2)
71 
72 /* NAND_FLASH_STATUS bits */
73 #define	FS_OP_ERR			BIT(4)
74 #define	FS_READY_BSY_N			BIT(5)
75 #define	FS_MPU_ERR			BIT(8)
76 #define	FS_DEVICE_STS_ERR		BIT(16)
77 #define	FS_DEVICE_WP			BIT(23)
78 
79 /* NAND_BUFFER_STATUS bits */
80 #define	BS_UNCORRECTABLE_BIT		BIT(8)
81 #define	BS_CORRECTABLE_ERR_MSK		0x1f
82 
83 /* NAND_DEVn_CFG0 bits */
84 #define	DISABLE_STATUS_AFTER_WRITE	4
85 #define	CW_PER_PAGE			6
86 #define	UD_SIZE_BYTES			9
87 #define	ECC_PARITY_SIZE_BYTES_RS	19
88 #define	SPARE_SIZE_BYTES		23
89 #define	NUM_ADDR_CYCLES			27
90 #define	STATUS_BFR_READ			30
91 #define	SET_RD_MODE_AFTER_STATUS	31
92 
93 /* NAND_DEVn_CFG0 bits */
94 #define	DEV0_CFG1_ECC_DISABLE		0
95 #define	WIDE_FLASH			1
96 #define	NAND_RECOVERY_CYCLES		2
97 #define	CS_ACTIVE_BSY			5
98 #define	BAD_BLOCK_BYTE_NUM		6
99 #define	BAD_BLOCK_IN_SPARE_AREA		16
100 #define	WR_RD_BSY_GAP			17
101 #define	ENABLE_BCH_ECC			27
102 
103 /* NAND_DEV0_ECC_CFG bits */
104 #define	ECC_CFG_ECC_DISABLE		0
105 #define	ECC_SW_RESET			1
106 #define	ECC_MODE			4
107 #define	ECC_PARITY_SIZE_BYTES_BCH	8
108 #define	ECC_NUM_DATA_BYTES		16
109 #define	ECC_FORCE_CLK_OPEN		30
110 
111 /* NAND_DEV_CMD1 bits */
112 #define	READ_ADDR			0
113 
114 /* NAND_DEV_CMD_VLD bits */
115 #define	READ_START_VLD			BIT(0)
116 #define	READ_STOP_VLD			BIT(1)
117 #define	WRITE_START_VLD			BIT(2)
118 #define	ERASE_START_VLD			BIT(3)
119 #define	SEQ_READ_START_VLD		BIT(4)
120 
121 /* NAND_EBI2_ECC_BUF_CFG bits */
122 #define	NUM_STEPS			0
123 
124 /* NAND_ERASED_CW_DETECT_CFG bits */
125 #define	ERASED_CW_ECC_MASK		1
126 #define	AUTO_DETECT_RES			0
127 #define	MASK_ECC			(1 << ERASED_CW_ECC_MASK)
128 #define	RESET_ERASED_DET		(1 << AUTO_DETECT_RES)
129 #define	ACTIVE_ERASED_DET		(0 << AUTO_DETECT_RES)
130 #define	CLR_ERASED_PAGE_DET		(RESET_ERASED_DET | MASK_ECC)
131 #define	SET_ERASED_PAGE_DET		(ACTIVE_ERASED_DET | MASK_ECC)
132 
133 /* NAND_ERASED_CW_DETECT_STATUS bits */
134 #define	PAGE_ALL_ERASED			BIT(7)
135 #define	CODEWORD_ALL_ERASED		BIT(6)
136 #define	PAGE_ERASED			BIT(5)
137 #define	CODEWORD_ERASED			BIT(4)
138 #define	ERASED_PAGE			(PAGE_ALL_ERASED | PAGE_ERASED)
139 #define	ERASED_CW			(CODEWORD_ALL_ERASED | CODEWORD_ERASED)
140 
141 /* NAND_READ_LOCATION_n bits */
142 #define READ_LOCATION_OFFSET		0
143 #define READ_LOCATION_SIZE		16
144 #define READ_LOCATION_LAST		31
145 
146 /* Version Mask */
147 #define	NAND_VERSION_MAJOR_MASK		0xf0000000
148 #define	NAND_VERSION_MAJOR_SHIFT	28
149 #define	NAND_VERSION_MINOR_MASK		0x0fff0000
150 #define	NAND_VERSION_MINOR_SHIFT	16
151 
152 /* NAND OP_CMDs */
153 #define	OP_PAGE_READ			0x2
154 #define	OP_PAGE_READ_WITH_ECC		0x3
155 #define	OP_PAGE_READ_WITH_ECC_SPARE	0x4
156 #define	OP_PROGRAM_PAGE			0x6
157 #define	OP_PAGE_PROGRAM_WITH_ECC	0x7
158 #define	OP_PROGRAM_PAGE_SPARE		0x9
159 #define	OP_BLOCK_ERASE			0xa
160 #define	OP_FETCH_ID			0xb
161 #define	OP_RESET_DEVICE			0xd
162 
163 /* Default Value for NAND_DEV_CMD_VLD */
164 #define NAND_DEV_CMD_VLD_VAL		(READ_START_VLD | WRITE_START_VLD | \
165 					 ERASE_START_VLD | SEQ_READ_START_VLD)
166 
167 /* NAND_CTRL bits */
168 #define	BAM_MODE_EN			BIT(0)
169 
170 /*
171  * the NAND controller performs reads/writes with ECC in 516 byte chunks.
172  * the driver calls the chunks 'step' or 'codeword' interchangeably
173  */
174 #define	NANDC_STEP_SIZE			512
175 
176 /*
177  * the largest page size we support is 8K, this will have 16 steps/codewords
178  * of 512 bytes each
179  */
180 #define	MAX_NUM_STEPS			(SZ_8K / NANDC_STEP_SIZE)
181 
182 /* we read at most 3 registers per codeword scan */
183 #define	MAX_REG_RD			(3 * MAX_NUM_STEPS)
184 
185 /* ECC modes supported by the controller */
186 #define	ECC_NONE	BIT(0)
187 #define	ECC_RS_4BIT	BIT(1)
188 #define	ECC_BCH_4BIT	BIT(2)
189 #define	ECC_BCH_8BIT	BIT(3)
190 
191 #define nandc_set_read_loc(nandc, reg, offset, size, is_last)	\
192 nandc_set_reg(nandc, NAND_READ_LOCATION_##reg,			\
193 	      ((offset) << READ_LOCATION_OFFSET) |		\
194 	      ((size) << READ_LOCATION_SIZE) |			\
195 	      ((is_last) << READ_LOCATION_LAST))
196 
197 /*
198  * Returns the actual register address for all NAND_DEV_ registers
199  * (i.e. NAND_DEV_CMD0, NAND_DEV_CMD1, NAND_DEV_CMD2 and NAND_DEV_CMD_VLD)
200  */
201 #define dev_cmd_reg_addr(nandc, reg) ((nandc)->props->dev_cmd_reg_start + (reg))
202 
203 /* Returns the NAND register physical address */
204 #define nandc_reg_phys(chip, offset) ((chip)->base_phys + (offset))
205 
206 /* Returns the dma address for reg read buffer */
207 #define reg_buf_dma_addr(chip, vaddr) \
208 	((chip)->reg_read_dma + \
209 	((uint8_t *)(vaddr) - (uint8_t *)(chip)->reg_read_buf))
210 
211 #define QPIC_PER_CW_CMD_ELEMENTS	32
212 #define QPIC_PER_CW_CMD_SGL		32
213 #define QPIC_PER_CW_DATA_SGL		8
214 
215 #define QPIC_NAND_COMPLETION_TIMEOUT	msecs_to_jiffies(2000)
216 
217 /*
218  * Flags used in DMA descriptor preparation helper functions
219  * (i.e. read_reg_dma/write_reg_dma/read_data_dma/write_data_dma)
220  */
221 /* Don't set the EOT in current tx BAM sgl */
222 #define NAND_BAM_NO_EOT			BIT(0)
223 /* Set the NWD flag in current BAM sgl */
224 #define NAND_BAM_NWD			BIT(1)
225 /* Finish writing in the current BAM sgl and start writing in another BAM sgl */
226 #define NAND_BAM_NEXT_SGL		BIT(2)
227 /*
228  * Erased codeword status is being used two times in single transfer so this
229  * flag will determine the current value of erased codeword status register
230  */
231 #define NAND_ERASED_CW_SET		BIT(4)
232 
233 /*
234  * This data type corresponds to the BAM transaction which will be used for all
235  * NAND transfers.
236  * @bam_ce - the array of BAM command elements
237  * @cmd_sgl - sgl for NAND BAM command pipe
238  * @data_sgl - sgl for NAND BAM consumer/producer pipe
239  * @bam_ce_pos - the index in bam_ce which is available for next sgl
240  * @bam_ce_start - the index in bam_ce which marks the start position ce
241  *		   for current sgl. It will be used for size calculation
242  *		   for current sgl
243  * @cmd_sgl_pos - current index in command sgl.
244  * @cmd_sgl_start - start index in command sgl.
245  * @tx_sgl_pos - current index in data sgl for tx.
246  * @tx_sgl_start - start index in data sgl for tx.
247  * @rx_sgl_pos - current index in data sgl for rx.
248  * @rx_sgl_start - start index in data sgl for rx.
249  * @wait_second_completion - wait for second DMA desc completion before making
250  *			     the NAND transfer completion.
251  * @txn_done - completion for NAND transfer.
252  * @last_data_desc - last DMA desc in data channel (tx/rx).
253  * @last_cmd_desc - last DMA desc in command channel.
254  */
255 struct bam_transaction {
256 	struct bam_cmd_element *bam_ce;
257 	struct scatterlist *cmd_sgl;
258 	struct scatterlist *data_sgl;
259 	u32 bam_ce_pos;
260 	u32 bam_ce_start;
261 	u32 cmd_sgl_pos;
262 	u32 cmd_sgl_start;
263 	u32 tx_sgl_pos;
264 	u32 tx_sgl_start;
265 	u32 rx_sgl_pos;
266 	u32 rx_sgl_start;
267 	bool wait_second_completion;
268 	struct completion txn_done;
269 	struct dma_async_tx_descriptor *last_data_desc;
270 	struct dma_async_tx_descriptor *last_cmd_desc;
271 };
272 
273 /*
274  * This data type corresponds to the nand dma descriptor
275  * @list - list for desc_info
276  * @dir - DMA transfer direction
277  * @adm_sgl - sgl which will be used for single sgl dma descriptor. Only used by
278  *	      ADM
279  * @bam_sgl - sgl which will be used for dma descriptor. Only used by BAM
280  * @sgl_cnt - number of SGL in bam_sgl. Only used by BAM
281  * @dma_desc - low level DMA engine descriptor
282  */
283 struct desc_info {
284 	struct list_head node;
285 
286 	enum dma_data_direction dir;
287 	union {
288 		struct scatterlist adm_sgl;
289 		struct {
290 			struct scatterlist *bam_sgl;
291 			int sgl_cnt;
292 		};
293 	};
294 	struct dma_async_tx_descriptor *dma_desc;
295 };
296 
297 /*
298  * holds the current register values that we want to write. acts as a contiguous
299  * chunk of memory which we use to write the controller registers through DMA.
300  */
301 struct nandc_regs {
302 	__le32 cmd;
303 	__le32 addr0;
304 	__le32 addr1;
305 	__le32 chip_sel;
306 	__le32 exec;
307 
308 	__le32 cfg0;
309 	__le32 cfg1;
310 	__le32 ecc_bch_cfg;
311 
312 	__le32 clrflashstatus;
313 	__le32 clrreadstatus;
314 
315 	__le32 cmd1;
316 	__le32 vld;
317 
318 	__le32 orig_cmd1;
319 	__le32 orig_vld;
320 
321 	__le32 ecc_buf_cfg;
322 	__le32 read_location0;
323 	__le32 read_location1;
324 	__le32 read_location2;
325 	__le32 read_location3;
326 
327 	__le32 erased_cw_detect_cfg_clr;
328 	__le32 erased_cw_detect_cfg_set;
329 };
330 
331 /*
332  * NAND controller data struct
333  *
334  * @controller:			base controller structure
335  * @host_list:			list containing all the chips attached to the
336  *				controller
337  * @dev:			parent device
338  * @base:			MMIO base
339  * @base_phys:			physical base address of controller registers
340  * @base_dma:			dma base address of controller registers
341  * @core_clk:			controller clock
342  * @aon_clk:			another controller clock
343  *
344  * @chan:			dma channel
345  * @cmd_crci:			ADM DMA CRCI for command flow control
346  * @data_crci:			ADM DMA CRCI for data flow control
347  * @desc_list:			DMA descriptor list (list of desc_infos)
348  *
349  * @data_buffer:		our local DMA buffer for page read/writes,
350  *				used when we can't use the buffer provided
351  *				by upper layers directly
352  * @buf_size/count/start:	markers for chip->read_buf/write_buf functions
353  * @reg_read_buf:		local buffer for reading back registers via DMA
354  * @reg_read_dma:		contains dma address for register read buffer
355  * @reg_read_pos:		marker for data read in reg_read_buf
356  *
357  * @regs:			a contiguous chunk of memory for DMA register
358  *				writes. contains the register values to be
359  *				written to controller
360  * @cmd1/vld:			some fixed controller register values
361  * @props:			properties of current NAND controller,
362  *				initialized via DT match data
363  * @max_cwperpage:		maximum QPIC codewords required. calculated
364  *				from all connected NAND devices pagesize
365  */
366 struct qcom_nand_controller {
367 	struct nand_controller controller;
368 	struct list_head host_list;
369 
370 	struct device *dev;
371 
372 	void __iomem *base;
373 	phys_addr_t base_phys;
374 	dma_addr_t base_dma;
375 
376 	struct clk *core_clk;
377 	struct clk *aon_clk;
378 
379 	union {
380 		/* will be used only by QPIC for BAM DMA */
381 		struct {
382 			struct dma_chan *tx_chan;
383 			struct dma_chan *rx_chan;
384 			struct dma_chan *cmd_chan;
385 		};
386 
387 		/* will be used only by EBI2 for ADM DMA */
388 		struct {
389 			struct dma_chan *chan;
390 			unsigned int cmd_crci;
391 			unsigned int data_crci;
392 		};
393 	};
394 
395 	struct list_head desc_list;
396 	struct bam_transaction *bam_txn;
397 
398 	u8		*data_buffer;
399 	int		buf_size;
400 	int		buf_count;
401 	int		buf_start;
402 	unsigned int	max_cwperpage;
403 
404 	__le32 *reg_read_buf;
405 	dma_addr_t reg_read_dma;
406 	int reg_read_pos;
407 
408 	struct nandc_regs *regs;
409 
410 	u32 cmd1, vld;
411 	const struct qcom_nandc_props *props;
412 };
413 
414 /*
415  * NAND chip structure
416  *
417  * @chip:			base NAND chip structure
418  * @node:			list node to add itself to host_list in
419  *				qcom_nand_controller
420  *
421  * @cs:				chip select value for this chip
422  * @cw_size:			the number of bytes in a single step/codeword
423  *				of a page, consisting of all data, ecc, spare
424  *				and reserved bytes
425  * @cw_data:			the number of bytes within a codeword protected
426  *				by ECC
427  * @use_ecc:			request the controller to use ECC for the
428  *				upcoming read/write
429  * @bch_enabled:		flag to tell whether BCH ECC mode is used
430  * @ecc_bytes_hw:		ECC bytes used by controller hardware for this
431  *				chip
432  * @status:			value to be returned if NAND_CMD_STATUS command
433  *				is executed
434  * @last_command:		keeps track of last command on this chip. used
435  *				for reading correct status
436  *
437  * @cfg0, cfg1, cfg0_raw..:	NANDc register configurations needed for
438  *				ecc/non-ecc mode for the current nand flash
439  *				device
440  */
441 struct qcom_nand_host {
442 	struct nand_chip chip;
443 	struct list_head node;
444 
445 	int cs;
446 	int cw_size;
447 	int cw_data;
448 	bool use_ecc;
449 	bool bch_enabled;
450 	int ecc_bytes_hw;
451 	int spare_bytes;
452 	int bbm_size;
453 	u8 status;
454 	int last_command;
455 
456 	u32 cfg0, cfg1;
457 	u32 cfg0_raw, cfg1_raw;
458 	u32 ecc_buf_cfg;
459 	u32 ecc_bch_cfg;
460 	u32 clrflashstatus;
461 	u32 clrreadstatus;
462 };
463 
464 /*
465  * This data type corresponds to the NAND controller properties which varies
466  * among different NAND controllers.
467  * @ecc_modes - ecc mode for NAND
468  * @is_bam - whether NAND controller is using BAM
469  * @is_qpic - whether NAND CTRL is part of qpic IP
470  * @dev_cmd_reg_start - NAND_DEV_CMD_* registers starting offset
471  */
472 struct qcom_nandc_props {
473 	u32 ecc_modes;
474 	bool is_bam;
475 	bool is_qpic;
476 	u32 dev_cmd_reg_start;
477 };
478 
479 /* Frees the BAM transaction memory */
free_bam_transaction(struct qcom_nand_controller * nandc)480 static void free_bam_transaction(struct qcom_nand_controller *nandc)
481 {
482 	struct bam_transaction *bam_txn = nandc->bam_txn;
483 
484 	devm_kfree(nandc->dev, bam_txn);
485 }
486 
487 /* Allocates and Initializes the BAM transaction */
488 static struct bam_transaction *
alloc_bam_transaction(struct qcom_nand_controller * nandc)489 alloc_bam_transaction(struct qcom_nand_controller *nandc)
490 {
491 	struct bam_transaction *bam_txn;
492 	size_t bam_txn_size;
493 	unsigned int num_cw = nandc->max_cwperpage;
494 	void *bam_txn_buf;
495 
496 	bam_txn_size =
497 		sizeof(*bam_txn) + num_cw *
498 		((sizeof(*bam_txn->bam_ce) * QPIC_PER_CW_CMD_ELEMENTS) +
499 		(sizeof(*bam_txn->cmd_sgl) * QPIC_PER_CW_CMD_SGL) +
500 		(sizeof(*bam_txn->data_sgl) * QPIC_PER_CW_DATA_SGL));
501 
502 	bam_txn_buf = devm_kzalloc(nandc->dev, bam_txn_size, GFP_KERNEL);
503 	if (!bam_txn_buf)
504 		return NULL;
505 
506 	bam_txn = bam_txn_buf;
507 	bam_txn_buf += sizeof(*bam_txn);
508 
509 	bam_txn->bam_ce = bam_txn_buf;
510 	bam_txn_buf +=
511 		sizeof(*bam_txn->bam_ce) * QPIC_PER_CW_CMD_ELEMENTS * num_cw;
512 
513 	bam_txn->cmd_sgl = bam_txn_buf;
514 	bam_txn_buf +=
515 		sizeof(*bam_txn->cmd_sgl) * QPIC_PER_CW_CMD_SGL * num_cw;
516 
517 	bam_txn->data_sgl = bam_txn_buf;
518 
519 	init_completion(&bam_txn->txn_done);
520 
521 	return bam_txn;
522 }
523 
524 /* Clears the BAM transaction indexes */
clear_bam_transaction(struct qcom_nand_controller * nandc)525 static void clear_bam_transaction(struct qcom_nand_controller *nandc)
526 {
527 	struct bam_transaction *bam_txn = nandc->bam_txn;
528 
529 	if (!nandc->props->is_bam)
530 		return;
531 
532 	bam_txn->bam_ce_pos = 0;
533 	bam_txn->bam_ce_start = 0;
534 	bam_txn->cmd_sgl_pos = 0;
535 	bam_txn->cmd_sgl_start = 0;
536 	bam_txn->tx_sgl_pos = 0;
537 	bam_txn->tx_sgl_start = 0;
538 	bam_txn->rx_sgl_pos = 0;
539 	bam_txn->rx_sgl_start = 0;
540 	bam_txn->last_data_desc = NULL;
541 	bam_txn->wait_second_completion = false;
542 
543 	sg_init_table(bam_txn->cmd_sgl, nandc->max_cwperpage *
544 		      QPIC_PER_CW_CMD_SGL);
545 	sg_init_table(bam_txn->data_sgl, nandc->max_cwperpage *
546 		      QPIC_PER_CW_DATA_SGL);
547 
548 	reinit_completion(&bam_txn->txn_done);
549 }
550 
551 /* Callback for DMA descriptor completion */
qpic_bam_dma_done(void * data)552 static void qpic_bam_dma_done(void *data)
553 {
554 	struct bam_transaction *bam_txn = data;
555 
556 	/*
557 	 * In case of data transfer with NAND, 2 callbacks will be generated.
558 	 * One for command channel and another one for data channel.
559 	 * If current transaction has data descriptors
560 	 * (i.e. wait_second_completion is true), then set this to false
561 	 * and wait for second DMA descriptor completion.
562 	 */
563 	if (bam_txn->wait_second_completion)
564 		bam_txn->wait_second_completion = false;
565 	else
566 		complete(&bam_txn->txn_done);
567 }
568 
to_qcom_nand_host(struct nand_chip * chip)569 static inline struct qcom_nand_host *to_qcom_nand_host(struct nand_chip *chip)
570 {
571 	return container_of(chip, struct qcom_nand_host, chip);
572 }
573 
574 static inline struct qcom_nand_controller *
get_qcom_nand_controller(struct nand_chip * chip)575 get_qcom_nand_controller(struct nand_chip *chip)
576 {
577 	return container_of(chip->controller, struct qcom_nand_controller,
578 			    controller);
579 }
580 
nandc_read(struct qcom_nand_controller * nandc,int offset)581 static inline u32 nandc_read(struct qcom_nand_controller *nandc, int offset)
582 {
583 	return ioread32(nandc->base + offset);
584 }
585 
nandc_write(struct qcom_nand_controller * nandc,int offset,u32 val)586 static inline void nandc_write(struct qcom_nand_controller *nandc, int offset,
587 			       u32 val)
588 {
589 	iowrite32(val, nandc->base + offset);
590 }
591 
nandc_read_buffer_sync(struct qcom_nand_controller * nandc,bool is_cpu)592 static inline void nandc_read_buffer_sync(struct qcom_nand_controller *nandc,
593 					  bool is_cpu)
594 {
595 	if (!nandc->props->is_bam)
596 		return;
597 
598 	if (is_cpu)
599 		dma_sync_single_for_cpu(nandc->dev, nandc->reg_read_dma,
600 					MAX_REG_RD *
601 					sizeof(*nandc->reg_read_buf),
602 					DMA_FROM_DEVICE);
603 	else
604 		dma_sync_single_for_device(nandc->dev, nandc->reg_read_dma,
605 					   MAX_REG_RD *
606 					   sizeof(*nandc->reg_read_buf),
607 					   DMA_FROM_DEVICE);
608 }
609 
offset_to_nandc_reg(struct nandc_regs * regs,int offset)610 static __le32 *offset_to_nandc_reg(struct nandc_regs *regs, int offset)
611 {
612 	switch (offset) {
613 	case NAND_FLASH_CMD:
614 		return &regs->cmd;
615 	case NAND_ADDR0:
616 		return &regs->addr0;
617 	case NAND_ADDR1:
618 		return &regs->addr1;
619 	case NAND_FLASH_CHIP_SELECT:
620 		return &regs->chip_sel;
621 	case NAND_EXEC_CMD:
622 		return &regs->exec;
623 	case NAND_FLASH_STATUS:
624 		return &regs->clrflashstatus;
625 	case NAND_DEV0_CFG0:
626 		return &regs->cfg0;
627 	case NAND_DEV0_CFG1:
628 		return &regs->cfg1;
629 	case NAND_DEV0_ECC_CFG:
630 		return &regs->ecc_bch_cfg;
631 	case NAND_READ_STATUS:
632 		return &regs->clrreadstatus;
633 	case NAND_DEV_CMD1:
634 		return &regs->cmd1;
635 	case NAND_DEV_CMD1_RESTORE:
636 		return &regs->orig_cmd1;
637 	case NAND_DEV_CMD_VLD:
638 		return &regs->vld;
639 	case NAND_DEV_CMD_VLD_RESTORE:
640 		return &regs->orig_vld;
641 	case NAND_EBI2_ECC_BUF_CFG:
642 		return &regs->ecc_buf_cfg;
643 	case NAND_READ_LOCATION_0:
644 		return &regs->read_location0;
645 	case NAND_READ_LOCATION_1:
646 		return &regs->read_location1;
647 	case NAND_READ_LOCATION_2:
648 		return &regs->read_location2;
649 	case NAND_READ_LOCATION_3:
650 		return &regs->read_location3;
651 	default:
652 		return NULL;
653 	}
654 }
655 
nandc_set_reg(struct qcom_nand_controller * nandc,int offset,u32 val)656 static void nandc_set_reg(struct qcom_nand_controller *nandc, int offset,
657 			  u32 val)
658 {
659 	struct nandc_regs *regs = nandc->regs;
660 	__le32 *reg;
661 
662 	reg = offset_to_nandc_reg(regs, offset);
663 
664 	if (reg)
665 		*reg = cpu_to_le32(val);
666 }
667 
668 /* helper to configure address register values */
set_address(struct qcom_nand_host * host,u16 column,int page)669 static void set_address(struct qcom_nand_host *host, u16 column, int page)
670 {
671 	struct nand_chip *chip = &host->chip;
672 	struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
673 
674 	if (chip->options & NAND_BUSWIDTH_16)
675 		column >>= 1;
676 
677 	nandc_set_reg(nandc, NAND_ADDR0, page << 16 | column);
678 	nandc_set_reg(nandc, NAND_ADDR1, page >> 16 & 0xff);
679 }
680 
681 /*
682  * update_rw_regs:	set up read/write register values, these will be
683  *			written to the NAND controller registers via DMA
684  *
685  * @num_cw:		number of steps for the read/write operation
686  * @read:		read or write operation
687  */
update_rw_regs(struct qcom_nand_host * host,int num_cw,bool read)688 static void update_rw_regs(struct qcom_nand_host *host, int num_cw, bool read)
689 {
690 	struct nand_chip *chip = &host->chip;
691 	struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
692 	u32 cmd, cfg0, cfg1, ecc_bch_cfg;
693 
694 	if (read) {
695 		if (host->use_ecc)
696 			cmd = OP_PAGE_READ_WITH_ECC | PAGE_ACC | LAST_PAGE;
697 		else
698 			cmd = OP_PAGE_READ | PAGE_ACC | LAST_PAGE;
699 	} else {
700 		cmd = OP_PROGRAM_PAGE | PAGE_ACC | LAST_PAGE;
701 	}
702 
703 	if (host->use_ecc) {
704 		cfg0 = (host->cfg0 & ~(7U << CW_PER_PAGE)) |
705 				(num_cw - 1) << CW_PER_PAGE;
706 
707 		cfg1 = host->cfg1;
708 		ecc_bch_cfg = host->ecc_bch_cfg;
709 	} else {
710 		cfg0 = (host->cfg0_raw & ~(7U << CW_PER_PAGE)) |
711 				(num_cw - 1) << CW_PER_PAGE;
712 
713 		cfg1 = host->cfg1_raw;
714 		ecc_bch_cfg = 1 << ECC_CFG_ECC_DISABLE;
715 	}
716 
717 	nandc_set_reg(nandc, NAND_FLASH_CMD, cmd);
718 	nandc_set_reg(nandc, NAND_DEV0_CFG0, cfg0);
719 	nandc_set_reg(nandc, NAND_DEV0_CFG1, cfg1);
720 	nandc_set_reg(nandc, NAND_DEV0_ECC_CFG, ecc_bch_cfg);
721 	nandc_set_reg(nandc, NAND_EBI2_ECC_BUF_CFG, host->ecc_buf_cfg);
722 	nandc_set_reg(nandc, NAND_FLASH_STATUS, host->clrflashstatus);
723 	nandc_set_reg(nandc, NAND_READ_STATUS, host->clrreadstatus);
724 	nandc_set_reg(nandc, NAND_EXEC_CMD, 1);
725 
726 	if (read)
727 		nandc_set_read_loc(nandc, 0, 0, host->use_ecc ?
728 				   host->cw_data : host->cw_size, 1);
729 }
730 
731 /*
732  * Maps the scatter gather list for DMA transfer and forms the DMA descriptor
733  * for BAM. This descriptor will be added in the NAND DMA descriptor queue
734  * which will be submitted to DMA engine.
735  */
prepare_bam_async_desc(struct qcom_nand_controller * nandc,struct dma_chan * chan,unsigned long flags)736 static int prepare_bam_async_desc(struct qcom_nand_controller *nandc,
737 				  struct dma_chan *chan,
738 				  unsigned long flags)
739 {
740 	struct desc_info *desc;
741 	struct scatterlist *sgl;
742 	unsigned int sgl_cnt;
743 	int ret;
744 	struct bam_transaction *bam_txn = nandc->bam_txn;
745 	enum dma_transfer_direction dir_eng;
746 	struct dma_async_tx_descriptor *dma_desc;
747 
748 	desc = kzalloc(sizeof(*desc), GFP_KERNEL);
749 	if (!desc)
750 		return -ENOMEM;
751 
752 	if (chan == nandc->cmd_chan) {
753 		sgl = &bam_txn->cmd_sgl[bam_txn->cmd_sgl_start];
754 		sgl_cnt = bam_txn->cmd_sgl_pos - bam_txn->cmd_sgl_start;
755 		bam_txn->cmd_sgl_start = bam_txn->cmd_sgl_pos;
756 		dir_eng = DMA_MEM_TO_DEV;
757 		desc->dir = DMA_TO_DEVICE;
758 	} else if (chan == nandc->tx_chan) {
759 		sgl = &bam_txn->data_sgl[bam_txn->tx_sgl_start];
760 		sgl_cnt = bam_txn->tx_sgl_pos - bam_txn->tx_sgl_start;
761 		bam_txn->tx_sgl_start = bam_txn->tx_sgl_pos;
762 		dir_eng = DMA_MEM_TO_DEV;
763 		desc->dir = DMA_TO_DEVICE;
764 	} else {
765 		sgl = &bam_txn->data_sgl[bam_txn->rx_sgl_start];
766 		sgl_cnt = bam_txn->rx_sgl_pos - bam_txn->rx_sgl_start;
767 		bam_txn->rx_sgl_start = bam_txn->rx_sgl_pos;
768 		dir_eng = DMA_DEV_TO_MEM;
769 		desc->dir = DMA_FROM_DEVICE;
770 	}
771 
772 	sg_mark_end(sgl + sgl_cnt - 1);
773 	ret = dma_map_sg(nandc->dev, sgl, sgl_cnt, desc->dir);
774 	if (ret == 0) {
775 		dev_err(nandc->dev, "failure in mapping desc\n");
776 		kfree(desc);
777 		return -ENOMEM;
778 	}
779 
780 	desc->sgl_cnt = sgl_cnt;
781 	desc->bam_sgl = sgl;
782 
783 	dma_desc = dmaengine_prep_slave_sg(chan, sgl, sgl_cnt, dir_eng,
784 					   flags);
785 
786 	if (!dma_desc) {
787 		dev_err(nandc->dev, "failure in prep desc\n");
788 		dma_unmap_sg(nandc->dev, sgl, sgl_cnt, desc->dir);
789 		kfree(desc);
790 		return -EINVAL;
791 	}
792 
793 	desc->dma_desc = dma_desc;
794 
795 	/* update last data/command descriptor */
796 	if (chan == nandc->cmd_chan)
797 		bam_txn->last_cmd_desc = dma_desc;
798 	else
799 		bam_txn->last_data_desc = dma_desc;
800 
801 	list_add_tail(&desc->node, &nandc->desc_list);
802 
803 	return 0;
804 }
805 
806 /*
807  * Prepares the command descriptor for BAM DMA which will be used for NAND
808  * register reads and writes. The command descriptor requires the command
809  * to be formed in command element type so this function uses the command
810  * element from bam transaction ce array and fills the same with required
811  * data. A single SGL can contain multiple command elements so
812  * NAND_BAM_NEXT_SGL will be used for starting the separate SGL
813  * after the current command element.
814  */
prep_bam_dma_desc_cmd(struct qcom_nand_controller * nandc,bool read,int reg_off,const void * vaddr,int size,unsigned int flags)815 static int prep_bam_dma_desc_cmd(struct qcom_nand_controller *nandc, bool read,
816 				 int reg_off, const void *vaddr,
817 				 int size, unsigned int flags)
818 {
819 	int bam_ce_size;
820 	int i, ret;
821 	struct bam_cmd_element *bam_ce_buffer;
822 	struct bam_transaction *bam_txn = nandc->bam_txn;
823 
824 	bam_ce_buffer = &bam_txn->bam_ce[bam_txn->bam_ce_pos];
825 
826 	/* fill the command desc */
827 	for (i = 0; i < size; i++) {
828 		if (read)
829 			bam_prep_ce(&bam_ce_buffer[i],
830 				    nandc_reg_phys(nandc, reg_off + 4 * i),
831 				    BAM_READ_COMMAND,
832 				    reg_buf_dma_addr(nandc,
833 						     (__le32 *)vaddr + i));
834 		else
835 			bam_prep_ce_le32(&bam_ce_buffer[i],
836 					 nandc_reg_phys(nandc, reg_off + 4 * i),
837 					 BAM_WRITE_COMMAND,
838 					 *((__le32 *)vaddr + i));
839 	}
840 
841 	bam_txn->bam_ce_pos += size;
842 
843 	/* use the separate sgl after this command */
844 	if (flags & NAND_BAM_NEXT_SGL) {
845 		bam_ce_buffer = &bam_txn->bam_ce[bam_txn->bam_ce_start];
846 		bam_ce_size = (bam_txn->bam_ce_pos -
847 				bam_txn->bam_ce_start) *
848 				sizeof(struct bam_cmd_element);
849 		sg_set_buf(&bam_txn->cmd_sgl[bam_txn->cmd_sgl_pos],
850 			   bam_ce_buffer, bam_ce_size);
851 		bam_txn->cmd_sgl_pos++;
852 		bam_txn->bam_ce_start = bam_txn->bam_ce_pos;
853 
854 		if (flags & NAND_BAM_NWD) {
855 			ret = prepare_bam_async_desc(nandc, nandc->cmd_chan,
856 						     DMA_PREP_FENCE |
857 						     DMA_PREP_CMD);
858 			if (ret)
859 				return ret;
860 		}
861 	}
862 
863 	return 0;
864 }
865 
866 /*
867  * Prepares the data descriptor for BAM DMA which will be used for NAND
868  * data reads and writes.
869  */
prep_bam_dma_desc_data(struct qcom_nand_controller * nandc,bool read,const void * vaddr,int size,unsigned int flags)870 static int prep_bam_dma_desc_data(struct qcom_nand_controller *nandc, bool read,
871 				  const void *vaddr,
872 				  int size, unsigned int flags)
873 {
874 	int ret;
875 	struct bam_transaction *bam_txn = nandc->bam_txn;
876 
877 	if (read) {
878 		sg_set_buf(&bam_txn->data_sgl[bam_txn->rx_sgl_pos],
879 			   vaddr, size);
880 		bam_txn->rx_sgl_pos++;
881 	} else {
882 		sg_set_buf(&bam_txn->data_sgl[bam_txn->tx_sgl_pos],
883 			   vaddr, size);
884 		bam_txn->tx_sgl_pos++;
885 
886 		/*
887 		 * BAM will only set EOT for DMA_PREP_INTERRUPT so if this flag
888 		 * is not set, form the DMA descriptor
889 		 */
890 		if (!(flags & NAND_BAM_NO_EOT)) {
891 			ret = prepare_bam_async_desc(nandc, nandc->tx_chan,
892 						     DMA_PREP_INTERRUPT);
893 			if (ret)
894 				return ret;
895 		}
896 	}
897 
898 	return 0;
899 }
900 
prep_adm_dma_desc(struct qcom_nand_controller * nandc,bool read,int reg_off,const void * vaddr,int size,bool flow_control)901 static int prep_adm_dma_desc(struct qcom_nand_controller *nandc, bool read,
902 			     int reg_off, const void *vaddr, int size,
903 			     bool flow_control)
904 {
905 	struct desc_info *desc;
906 	struct dma_async_tx_descriptor *dma_desc;
907 	struct scatterlist *sgl;
908 	struct dma_slave_config slave_conf;
909 	enum dma_transfer_direction dir_eng;
910 	int ret;
911 
912 	desc = kzalloc(sizeof(*desc), GFP_KERNEL);
913 	if (!desc)
914 		return -ENOMEM;
915 
916 	sgl = &desc->adm_sgl;
917 
918 	sg_init_one(sgl, vaddr, size);
919 
920 	if (read) {
921 		dir_eng = DMA_DEV_TO_MEM;
922 		desc->dir = DMA_FROM_DEVICE;
923 	} else {
924 		dir_eng = DMA_MEM_TO_DEV;
925 		desc->dir = DMA_TO_DEVICE;
926 	}
927 
928 	ret = dma_map_sg(nandc->dev, sgl, 1, desc->dir);
929 	if (ret == 0) {
930 		ret = -ENOMEM;
931 		goto err;
932 	}
933 
934 	memset(&slave_conf, 0x00, sizeof(slave_conf));
935 
936 	slave_conf.device_fc = flow_control;
937 	if (read) {
938 		slave_conf.src_maxburst = 16;
939 		slave_conf.src_addr = nandc->base_dma + reg_off;
940 		slave_conf.slave_id = nandc->data_crci;
941 	} else {
942 		slave_conf.dst_maxburst = 16;
943 		slave_conf.dst_addr = nandc->base_dma + reg_off;
944 		slave_conf.slave_id = nandc->cmd_crci;
945 	}
946 
947 	ret = dmaengine_slave_config(nandc->chan, &slave_conf);
948 	if (ret) {
949 		dev_err(nandc->dev, "failed to configure dma channel\n");
950 		goto err;
951 	}
952 
953 	dma_desc = dmaengine_prep_slave_sg(nandc->chan, sgl, 1, dir_eng, 0);
954 	if (!dma_desc) {
955 		dev_err(nandc->dev, "failed to prepare desc\n");
956 		ret = -EINVAL;
957 		goto err;
958 	}
959 
960 	desc->dma_desc = dma_desc;
961 
962 	list_add_tail(&desc->node, &nandc->desc_list);
963 
964 	return 0;
965 err:
966 	kfree(desc);
967 
968 	return ret;
969 }
970 
971 /*
972  * read_reg_dma:	prepares a descriptor to read a given number of
973  *			contiguous registers to the reg_read_buf pointer
974  *
975  * @first:		offset of the first register in the contiguous block
976  * @num_regs:		number of registers to read
977  * @flags:		flags to control DMA descriptor preparation
978  */
read_reg_dma(struct qcom_nand_controller * nandc,int first,int num_regs,unsigned int flags)979 static int read_reg_dma(struct qcom_nand_controller *nandc, int first,
980 			int num_regs, unsigned int flags)
981 {
982 	bool flow_control = false;
983 	void *vaddr;
984 
985 	vaddr = nandc->reg_read_buf + nandc->reg_read_pos;
986 	nandc->reg_read_pos += num_regs;
987 
988 	if (first == NAND_DEV_CMD_VLD || first == NAND_DEV_CMD1)
989 		first = dev_cmd_reg_addr(nandc, first);
990 
991 	if (nandc->props->is_bam)
992 		return prep_bam_dma_desc_cmd(nandc, true, first, vaddr,
993 					     num_regs, flags);
994 
995 	if (first == NAND_READ_ID || first == NAND_FLASH_STATUS)
996 		flow_control = true;
997 
998 	return prep_adm_dma_desc(nandc, true, first, vaddr,
999 				 num_regs * sizeof(u32), flow_control);
1000 }
1001 
1002 /*
1003  * write_reg_dma:	prepares a descriptor to write a given number of
1004  *			contiguous registers
1005  *
1006  * @first:		offset of the first register in the contiguous block
1007  * @num_regs:		number of registers to write
1008  * @flags:		flags to control DMA descriptor preparation
1009  */
write_reg_dma(struct qcom_nand_controller * nandc,int first,int num_regs,unsigned int flags)1010 static int write_reg_dma(struct qcom_nand_controller *nandc, int first,
1011 			 int num_regs, unsigned int flags)
1012 {
1013 	bool flow_control = false;
1014 	struct nandc_regs *regs = nandc->regs;
1015 	void *vaddr;
1016 
1017 	vaddr = offset_to_nandc_reg(regs, first);
1018 
1019 	if (first == NAND_ERASED_CW_DETECT_CFG) {
1020 		if (flags & NAND_ERASED_CW_SET)
1021 			vaddr = &regs->erased_cw_detect_cfg_set;
1022 		else
1023 			vaddr = &regs->erased_cw_detect_cfg_clr;
1024 	}
1025 
1026 	if (first == NAND_EXEC_CMD)
1027 		flags |= NAND_BAM_NWD;
1028 
1029 	if (first == NAND_DEV_CMD1_RESTORE || first == NAND_DEV_CMD1)
1030 		first = dev_cmd_reg_addr(nandc, NAND_DEV_CMD1);
1031 
1032 	if (first == NAND_DEV_CMD_VLD_RESTORE || first == NAND_DEV_CMD_VLD)
1033 		first = dev_cmd_reg_addr(nandc, NAND_DEV_CMD_VLD);
1034 
1035 	if (nandc->props->is_bam)
1036 		return prep_bam_dma_desc_cmd(nandc, false, first, vaddr,
1037 					     num_regs, flags);
1038 
1039 	if (first == NAND_FLASH_CMD)
1040 		flow_control = true;
1041 
1042 	return prep_adm_dma_desc(nandc, false, first, vaddr,
1043 				 num_regs * sizeof(u32), flow_control);
1044 }
1045 
1046 /*
1047  * read_data_dma:	prepares a DMA descriptor to transfer data from the
1048  *			controller's internal buffer to the buffer 'vaddr'
1049  *
1050  * @reg_off:		offset within the controller's data buffer
1051  * @vaddr:		virtual address of the buffer we want to write to
1052  * @size:		DMA transaction size in bytes
1053  * @flags:		flags to control DMA descriptor preparation
1054  */
read_data_dma(struct qcom_nand_controller * nandc,int reg_off,const u8 * vaddr,int size,unsigned int flags)1055 static int read_data_dma(struct qcom_nand_controller *nandc, int reg_off,
1056 			 const u8 *vaddr, int size, unsigned int flags)
1057 {
1058 	if (nandc->props->is_bam)
1059 		return prep_bam_dma_desc_data(nandc, true, vaddr, size, flags);
1060 
1061 	return prep_adm_dma_desc(nandc, true, reg_off, vaddr, size, false);
1062 }
1063 
1064 /*
1065  * write_data_dma:	prepares a DMA descriptor to transfer data from
1066  *			'vaddr' to the controller's internal buffer
1067  *
1068  * @reg_off:		offset within the controller's data buffer
1069  * @vaddr:		virtual address of the buffer we want to read from
1070  * @size:		DMA transaction size in bytes
1071  * @flags:		flags to control DMA descriptor preparation
1072  */
write_data_dma(struct qcom_nand_controller * nandc,int reg_off,const u8 * vaddr,int size,unsigned int flags)1073 static int write_data_dma(struct qcom_nand_controller *nandc, int reg_off,
1074 			  const u8 *vaddr, int size, unsigned int flags)
1075 {
1076 	if (nandc->props->is_bam)
1077 		return prep_bam_dma_desc_data(nandc, false, vaddr, size, flags);
1078 
1079 	return prep_adm_dma_desc(nandc, false, reg_off, vaddr, size, false);
1080 }
1081 
1082 /*
1083  * Helper to prepare DMA descriptors for configuring registers
1084  * before reading a NAND page.
1085  */
config_nand_page_read(struct qcom_nand_controller * nandc)1086 static void config_nand_page_read(struct qcom_nand_controller *nandc)
1087 {
1088 	write_reg_dma(nandc, NAND_ADDR0, 2, 0);
1089 	write_reg_dma(nandc, NAND_DEV0_CFG0, 3, 0);
1090 	write_reg_dma(nandc, NAND_EBI2_ECC_BUF_CFG, 1, 0);
1091 	write_reg_dma(nandc, NAND_ERASED_CW_DETECT_CFG, 1, 0);
1092 	write_reg_dma(nandc, NAND_ERASED_CW_DETECT_CFG, 1,
1093 		      NAND_ERASED_CW_SET | NAND_BAM_NEXT_SGL);
1094 }
1095 
1096 /*
1097  * Helper to prepare DMA descriptors for configuring registers
1098  * before reading each codeword in NAND page.
1099  */
1100 static void
config_nand_cw_read(struct qcom_nand_controller * nandc,bool use_ecc)1101 config_nand_cw_read(struct qcom_nand_controller *nandc, bool use_ecc)
1102 {
1103 	if (nandc->props->is_bam)
1104 		write_reg_dma(nandc, NAND_READ_LOCATION_0, 4,
1105 			      NAND_BAM_NEXT_SGL);
1106 
1107 	write_reg_dma(nandc, NAND_FLASH_CMD, 1, NAND_BAM_NEXT_SGL);
1108 	write_reg_dma(nandc, NAND_EXEC_CMD, 1, NAND_BAM_NEXT_SGL);
1109 
1110 	if (use_ecc) {
1111 		read_reg_dma(nandc, NAND_FLASH_STATUS, 2, 0);
1112 		read_reg_dma(nandc, NAND_ERASED_CW_DETECT_STATUS, 1,
1113 			     NAND_BAM_NEXT_SGL);
1114 	} else {
1115 		read_reg_dma(nandc, NAND_FLASH_STATUS, 1, NAND_BAM_NEXT_SGL);
1116 	}
1117 }
1118 
1119 /*
1120  * Helper to prepare dma descriptors to configure registers needed for reading a
1121  * single codeword in page
1122  */
1123 static void
config_nand_single_cw_page_read(struct qcom_nand_controller * nandc,bool use_ecc)1124 config_nand_single_cw_page_read(struct qcom_nand_controller *nandc,
1125 				bool use_ecc)
1126 {
1127 	config_nand_page_read(nandc);
1128 	config_nand_cw_read(nandc, use_ecc);
1129 }
1130 
1131 /*
1132  * Helper to prepare DMA descriptors used to configure registers needed for
1133  * before writing a NAND page.
1134  */
config_nand_page_write(struct qcom_nand_controller * nandc)1135 static void config_nand_page_write(struct qcom_nand_controller *nandc)
1136 {
1137 	write_reg_dma(nandc, NAND_ADDR0, 2, 0);
1138 	write_reg_dma(nandc, NAND_DEV0_CFG0, 3, 0);
1139 	write_reg_dma(nandc, NAND_EBI2_ECC_BUF_CFG, 1,
1140 		      NAND_BAM_NEXT_SGL);
1141 }
1142 
1143 /*
1144  * Helper to prepare DMA descriptors for configuring registers
1145  * before writing each codeword in NAND page.
1146  */
config_nand_cw_write(struct qcom_nand_controller * nandc)1147 static void config_nand_cw_write(struct qcom_nand_controller *nandc)
1148 {
1149 	write_reg_dma(nandc, NAND_FLASH_CMD, 1, NAND_BAM_NEXT_SGL);
1150 	write_reg_dma(nandc, NAND_EXEC_CMD, 1, NAND_BAM_NEXT_SGL);
1151 
1152 	read_reg_dma(nandc, NAND_FLASH_STATUS, 1, NAND_BAM_NEXT_SGL);
1153 
1154 	write_reg_dma(nandc, NAND_FLASH_STATUS, 1, 0);
1155 	write_reg_dma(nandc, NAND_READ_STATUS, 1, NAND_BAM_NEXT_SGL);
1156 }
1157 
1158 /*
1159  * the following functions are used within chip->cmdfunc() to perform different
1160  * NAND_CMD_* commands
1161  */
1162 
1163 /* sets up descriptors for NAND_CMD_PARAM */
nandc_param(struct qcom_nand_host * host)1164 static int nandc_param(struct qcom_nand_host *host)
1165 {
1166 	struct nand_chip *chip = &host->chip;
1167 	struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
1168 
1169 	/*
1170 	 * NAND_CMD_PARAM is called before we know much about the FLASH chip
1171 	 * in use. we configure the controller to perform a raw read of 512
1172 	 * bytes to read onfi params
1173 	 */
1174 	nandc_set_reg(nandc, NAND_FLASH_CMD, OP_PAGE_READ | PAGE_ACC | LAST_PAGE);
1175 	nandc_set_reg(nandc, NAND_ADDR0, 0);
1176 	nandc_set_reg(nandc, NAND_ADDR1, 0);
1177 	nandc_set_reg(nandc, NAND_DEV0_CFG0, 0 << CW_PER_PAGE
1178 					| 512 << UD_SIZE_BYTES
1179 					| 5 << NUM_ADDR_CYCLES
1180 					| 0 << SPARE_SIZE_BYTES);
1181 	nandc_set_reg(nandc, NAND_DEV0_CFG1, 7 << NAND_RECOVERY_CYCLES
1182 					| 0 << CS_ACTIVE_BSY
1183 					| 17 << BAD_BLOCK_BYTE_NUM
1184 					| 1 << BAD_BLOCK_IN_SPARE_AREA
1185 					| 2 << WR_RD_BSY_GAP
1186 					| 0 << WIDE_FLASH
1187 					| 1 << DEV0_CFG1_ECC_DISABLE);
1188 	nandc_set_reg(nandc, NAND_EBI2_ECC_BUF_CFG, 1 << ECC_CFG_ECC_DISABLE);
1189 
1190 	/* configure CMD1 and VLD for ONFI param probing */
1191 	nandc_set_reg(nandc, NAND_DEV_CMD_VLD,
1192 		      (nandc->vld & ~READ_START_VLD));
1193 	nandc_set_reg(nandc, NAND_DEV_CMD1,
1194 		      (nandc->cmd1 & ~(0xFF << READ_ADDR))
1195 		      | NAND_CMD_PARAM << READ_ADDR);
1196 
1197 	nandc_set_reg(nandc, NAND_EXEC_CMD, 1);
1198 
1199 	nandc_set_reg(nandc, NAND_DEV_CMD1_RESTORE, nandc->cmd1);
1200 	nandc_set_reg(nandc, NAND_DEV_CMD_VLD_RESTORE, nandc->vld);
1201 	nandc_set_read_loc(nandc, 0, 0, 512, 1);
1202 
1203 	write_reg_dma(nandc, NAND_DEV_CMD_VLD, 1, 0);
1204 	write_reg_dma(nandc, NAND_DEV_CMD1, 1, NAND_BAM_NEXT_SGL);
1205 
1206 	nandc->buf_count = 512;
1207 	memset(nandc->data_buffer, 0xff, nandc->buf_count);
1208 
1209 	config_nand_single_cw_page_read(nandc, false);
1210 
1211 	read_data_dma(nandc, FLASH_BUF_ACC, nandc->data_buffer,
1212 		      nandc->buf_count, 0);
1213 
1214 	/* restore CMD1 and VLD regs */
1215 	write_reg_dma(nandc, NAND_DEV_CMD1_RESTORE, 1, 0);
1216 	write_reg_dma(nandc, NAND_DEV_CMD_VLD_RESTORE, 1, NAND_BAM_NEXT_SGL);
1217 
1218 	return 0;
1219 }
1220 
1221 /* sets up descriptors for NAND_CMD_ERASE1 */
erase_block(struct qcom_nand_host * host,int page_addr)1222 static int erase_block(struct qcom_nand_host *host, int page_addr)
1223 {
1224 	struct nand_chip *chip = &host->chip;
1225 	struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
1226 
1227 	nandc_set_reg(nandc, NAND_FLASH_CMD,
1228 		      OP_BLOCK_ERASE | PAGE_ACC | LAST_PAGE);
1229 	nandc_set_reg(nandc, NAND_ADDR0, page_addr);
1230 	nandc_set_reg(nandc, NAND_ADDR1, 0);
1231 	nandc_set_reg(nandc, NAND_DEV0_CFG0,
1232 		      host->cfg0_raw & ~(7 << CW_PER_PAGE));
1233 	nandc_set_reg(nandc, NAND_DEV0_CFG1, host->cfg1_raw);
1234 	nandc_set_reg(nandc, NAND_EXEC_CMD, 1);
1235 	nandc_set_reg(nandc, NAND_FLASH_STATUS, host->clrflashstatus);
1236 	nandc_set_reg(nandc, NAND_READ_STATUS, host->clrreadstatus);
1237 
1238 	write_reg_dma(nandc, NAND_FLASH_CMD, 3, NAND_BAM_NEXT_SGL);
1239 	write_reg_dma(nandc, NAND_DEV0_CFG0, 2, NAND_BAM_NEXT_SGL);
1240 	write_reg_dma(nandc, NAND_EXEC_CMD, 1, NAND_BAM_NEXT_SGL);
1241 
1242 	read_reg_dma(nandc, NAND_FLASH_STATUS, 1, NAND_BAM_NEXT_SGL);
1243 
1244 	write_reg_dma(nandc, NAND_FLASH_STATUS, 1, 0);
1245 	write_reg_dma(nandc, NAND_READ_STATUS, 1, NAND_BAM_NEXT_SGL);
1246 
1247 	return 0;
1248 }
1249 
1250 /* sets up descriptors for NAND_CMD_READID */
read_id(struct qcom_nand_host * host,int column)1251 static int read_id(struct qcom_nand_host *host, int column)
1252 {
1253 	struct nand_chip *chip = &host->chip;
1254 	struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
1255 
1256 	if (column == -1)
1257 		return 0;
1258 
1259 	nandc_set_reg(nandc, NAND_FLASH_CMD, OP_FETCH_ID);
1260 	nandc_set_reg(nandc, NAND_ADDR0, column);
1261 	nandc_set_reg(nandc, NAND_ADDR1, 0);
1262 	nandc_set_reg(nandc, NAND_FLASH_CHIP_SELECT,
1263 		      nandc->props->is_bam ? 0 : DM_EN);
1264 	nandc_set_reg(nandc, NAND_EXEC_CMD, 1);
1265 
1266 	write_reg_dma(nandc, NAND_FLASH_CMD, 4, NAND_BAM_NEXT_SGL);
1267 	write_reg_dma(nandc, NAND_EXEC_CMD, 1, NAND_BAM_NEXT_SGL);
1268 
1269 	read_reg_dma(nandc, NAND_READ_ID, 1, NAND_BAM_NEXT_SGL);
1270 
1271 	return 0;
1272 }
1273 
1274 /* sets up descriptors for NAND_CMD_RESET */
reset(struct qcom_nand_host * host)1275 static int reset(struct qcom_nand_host *host)
1276 {
1277 	struct nand_chip *chip = &host->chip;
1278 	struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
1279 
1280 	nandc_set_reg(nandc, NAND_FLASH_CMD, OP_RESET_DEVICE);
1281 	nandc_set_reg(nandc, NAND_EXEC_CMD, 1);
1282 
1283 	write_reg_dma(nandc, NAND_FLASH_CMD, 1, NAND_BAM_NEXT_SGL);
1284 	write_reg_dma(nandc, NAND_EXEC_CMD, 1, NAND_BAM_NEXT_SGL);
1285 
1286 	read_reg_dma(nandc, NAND_FLASH_STATUS, 1, NAND_BAM_NEXT_SGL);
1287 
1288 	return 0;
1289 }
1290 
1291 /* helpers to submit/free our list of dma descriptors */
submit_descs(struct qcom_nand_controller * nandc)1292 static int submit_descs(struct qcom_nand_controller *nandc)
1293 {
1294 	struct desc_info *desc;
1295 	dma_cookie_t cookie = 0;
1296 	struct bam_transaction *bam_txn = nandc->bam_txn;
1297 	int r;
1298 
1299 	if (nandc->props->is_bam) {
1300 		if (bam_txn->rx_sgl_pos > bam_txn->rx_sgl_start) {
1301 			r = prepare_bam_async_desc(nandc, nandc->rx_chan, 0);
1302 			if (r)
1303 				return r;
1304 		}
1305 
1306 		if (bam_txn->tx_sgl_pos > bam_txn->tx_sgl_start) {
1307 			r = prepare_bam_async_desc(nandc, nandc->tx_chan,
1308 						   DMA_PREP_INTERRUPT);
1309 			if (r)
1310 				return r;
1311 		}
1312 
1313 		if (bam_txn->cmd_sgl_pos > bam_txn->cmd_sgl_start) {
1314 			r = prepare_bam_async_desc(nandc, nandc->cmd_chan,
1315 						   DMA_PREP_CMD);
1316 			if (r)
1317 				return r;
1318 		}
1319 	}
1320 
1321 	list_for_each_entry(desc, &nandc->desc_list, node)
1322 		cookie = dmaengine_submit(desc->dma_desc);
1323 
1324 	if (nandc->props->is_bam) {
1325 		bam_txn->last_cmd_desc->callback = qpic_bam_dma_done;
1326 		bam_txn->last_cmd_desc->callback_param = bam_txn;
1327 		if (bam_txn->last_data_desc) {
1328 			bam_txn->last_data_desc->callback = qpic_bam_dma_done;
1329 			bam_txn->last_data_desc->callback_param = bam_txn;
1330 			bam_txn->wait_second_completion = true;
1331 		}
1332 
1333 		dma_async_issue_pending(nandc->tx_chan);
1334 		dma_async_issue_pending(nandc->rx_chan);
1335 		dma_async_issue_pending(nandc->cmd_chan);
1336 
1337 		if (!wait_for_completion_timeout(&bam_txn->txn_done,
1338 						 QPIC_NAND_COMPLETION_TIMEOUT))
1339 			return -ETIMEDOUT;
1340 	} else {
1341 		if (dma_sync_wait(nandc->chan, cookie) != DMA_COMPLETE)
1342 			return -ETIMEDOUT;
1343 	}
1344 
1345 	return 0;
1346 }
1347 
free_descs(struct qcom_nand_controller * nandc)1348 static void free_descs(struct qcom_nand_controller *nandc)
1349 {
1350 	struct desc_info *desc, *n;
1351 
1352 	list_for_each_entry_safe(desc, n, &nandc->desc_list, node) {
1353 		list_del(&desc->node);
1354 
1355 		if (nandc->props->is_bam)
1356 			dma_unmap_sg(nandc->dev, desc->bam_sgl,
1357 				     desc->sgl_cnt, desc->dir);
1358 		else
1359 			dma_unmap_sg(nandc->dev, &desc->adm_sgl, 1,
1360 				     desc->dir);
1361 
1362 		kfree(desc);
1363 	}
1364 }
1365 
1366 /* reset the register read buffer for next NAND operation */
clear_read_regs(struct qcom_nand_controller * nandc)1367 static void clear_read_regs(struct qcom_nand_controller *nandc)
1368 {
1369 	nandc->reg_read_pos = 0;
1370 	nandc_read_buffer_sync(nandc, false);
1371 }
1372 
pre_command(struct qcom_nand_host * host,int command)1373 static void pre_command(struct qcom_nand_host *host, int command)
1374 {
1375 	struct nand_chip *chip = &host->chip;
1376 	struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
1377 
1378 	nandc->buf_count = 0;
1379 	nandc->buf_start = 0;
1380 	host->use_ecc = false;
1381 	host->last_command = command;
1382 
1383 	clear_read_regs(nandc);
1384 
1385 	if (command == NAND_CMD_RESET || command == NAND_CMD_READID ||
1386 	    command == NAND_CMD_PARAM || command == NAND_CMD_ERASE1)
1387 		clear_bam_transaction(nandc);
1388 }
1389 
1390 /*
1391  * this is called after NAND_CMD_PAGEPROG and NAND_CMD_ERASE1 to set our
1392  * privately maintained status byte, this status byte can be read after
1393  * NAND_CMD_STATUS is called
1394  */
parse_erase_write_errors(struct qcom_nand_host * host,int command)1395 static void parse_erase_write_errors(struct qcom_nand_host *host, int command)
1396 {
1397 	struct nand_chip *chip = &host->chip;
1398 	struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
1399 	struct nand_ecc_ctrl *ecc = &chip->ecc;
1400 	int num_cw;
1401 	int i;
1402 
1403 	num_cw = command == NAND_CMD_PAGEPROG ? ecc->steps : 1;
1404 	nandc_read_buffer_sync(nandc, true);
1405 
1406 	for (i = 0; i < num_cw; i++) {
1407 		u32 flash_status = le32_to_cpu(nandc->reg_read_buf[i]);
1408 
1409 		if (flash_status & FS_MPU_ERR)
1410 			host->status &= ~NAND_STATUS_WP;
1411 
1412 		if (flash_status & FS_OP_ERR || (i == (num_cw - 1) &&
1413 						 (flash_status &
1414 						  FS_DEVICE_STS_ERR)))
1415 			host->status |= NAND_STATUS_FAIL;
1416 	}
1417 }
1418 
post_command(struct qcom_nand_host * host,int command)1419 static void post_command(struct qcom_nand_host *host, int command)
1420 {
1421 	struct nand_chip *chip = &host->chip;
1422 	struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
1423 
1424 	switch (command) {
1425 	case NAND_CMD_READID:
1426 		nandc_read_buffer_sync(nandc, true);
1427 		memcpy(nandc->data_buffer, nandc->reg_read_buf,
1428 		       nandc->buf_count);
1429 		break;
1430 	case NAND_CMD_PAGEPROG:
1431 	case NAND_CMD_ERASE1:
1432 		parse_erase_write_errors(host, command);
1433 		break;
1434 	default:
1435 		break;
1436 	}
1437 }
1438 
1439 /*
1440  * Implements chip->cmdfunc. It's  only used for a limited set of commands.
1441  * The rest of the commands wouldn't be called by upper layers. For example,
1442  * NAND_CMD_READOOB would never be called because we have our own versions
1443  * of read_oob ops for nand_ecc_ctrl.
1444  */
qcom_nandc_command(struct mtd_info * mtd,unsigned int command,int column,int page_addr)1445 static void qcom_nandc_command(struct mtd_info *mtd, unsigned int command,
1446 			       int column, int page_addr)
1447 {
1448 	struct nand_chip *chip = mtd_to_nand(mtd);
1449 	struct qcom_nand_host *host = to_qcom_nand_host(chip);
1450 	struct nand_ecc_ctrl *ecc = &chip->ecc;
1451 	struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
1452 	bool wait = false;
1453 	int ret = 0;
1454 
1455 	pre_command(host, command);
1456 
1457 	switch (command) {
1458 	case NAND_CMD_RESET:
1459 		ret = reset(host);
1460 		wait = true;
1461 		break;
1462 
1463 	case NAND_CMD_READID:
1464 		nandc->buf_count = 4;
1465 		ret = read_id(host, column);
1466 		wait = true;
1467 		break;
1468 
1469 	case NAND_CMD_PARAM:
1470 		ret = nandc_param(host);
1471 		wait = true;
1472 		break;
1473 
1474 	case NAND_CMD_ERASE1:
1475 		ret = erase_block(host, page_addr);
1476 		wait = true;
1477 		break;
1478 
1479 	case NAND_CMD_READ0:
1480 		/* we read the entire page for now */
1481 		WARN_ON(column != 0);
1482 
1483 		host->use_ecc = true;
1484 		set_address(host, 0, page_addr);
1485 		update_rw_regs(host, ecc->steps, true);
1486 		break;
1487 
1488 	case NAND_CMD_SEQIN:
1489 		WARN_ON(column != 0);
1490 		set_address(host, 0, page_addr);
1491 		break;
1492 
1493 	case NAND_CMD_PAGEPROG:
1494 	case NAND_CMD_STATUS:
1495 	case NAND_CMD_NONE:
1496 	default:
1497 		break;
1498 	}
1499 
1500 	if (ret) {
1501 		dev_err(nandc->dev, "failure executing command %d\n",
1502 			command);
1503 		free_descs(nandc);
1504 		return;
1505 	}
1506 
1507 	if (wait) {
1508 		ret = submit_descs(nandc);
1509 		if (ret)
1510 			dev_err(nandc->dev,
1511 				"failure submitting descs for command %d\n",
1512 				command);
1513 	}
1514 
1515 	free_descs(nandc);
1516 
1517 	post_command(host, command);
1518 }
1519 
1520 /*
1521  * when using BCH ECC, the HW flags an error in NAND_FLASH_STATUS if it read
1522  * an erased CW, and reports an erased CW in NAND_ERASED_CW_DETECT_STATUS.
1523  *
1524  * when using RS ECC, the HW reports the same erros when reading an erased CW,
1525  * but it notifies that it is an erased CW by placing special characters at
1526  * certain offsets in the buffer.
1527  *
1528  * verify if the page is erased or not, and fix up the page for RS ECC by
1529  * replacing the special characters with 0xff.
1530  */
erased_chunk_check_and_fixup(u8 * data_buf,int data_len)1531 static bool erased_chunk_check_and_fixup(u8 *data_buf, int data_len)
1532 {
1533 	u8 empty1, empty2;
1534 
1535 	/*
1536 	 * an erased page flags an error in NAND_FLASH_STATUS, check if the page
1537 	 * is erased by looking for 0x54s at offsets 3 and 175 from the
1538 	 * beginning of each codeword
1539 	 */
1540 
1541 	empty1 = data_buf[3];
1542 	empty2 = data_buf[175];
1543 
1544 	/*
1545 	 * if the erased codework markers, if they exist override them with
1546 	 * 0xffs
1547 	 */
1548 	if ((empty1 == 0x54 && empty2 == 0xff) ||
1549 	    (empty1 == 0xff && empty2 == 0x54)) {
1550 		data_buf[3] = 0xff;
1551 		data_buf[175] = 0xff;
1552 	}
1553 
1554 	/*
1555 	 * check if the entire chunk contains 0xffs or not. if it doesn't, then
1556 	 * restore the original values at the special offsets
1557 	 */
1558 	if (memchr_inv(data_buf, 0xff, data_len)) {
1559 		data_buf[3] = empty1;
1560 		data_buf[175] = empty2;
1561 
1562 		return false;
1563 	}
1564 
1565 	return true;
1566 }
1567 
1568 struct read_stats {
1569 	__le32 flash;
1570 	__le32 buffer;
1571 	__le32 erased_cw;
1572 };
1573 
1574 /* reads back FLASH_STATUS register set by the controller */
check_flash_errors(struct qcom_nand_host * host,int cw_cnt)1575 static int check_flash_errors(struct qcom_nand_host *host, int cw_cnt)
1576 {
1577 	struct nand_chip *chip = &host->chip;
1578 	struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
1579 	int i;
1580 
1581 	for (i = 0; i < cw_cnt; i++) {
1582 		u32 flash = le32_to_cpu(nandc->reg_read_buf[i]);
1583 
1584 		if (flash & (FS_OP_ERR | FS_MPU_ERR))
1585 			return -EIO;
1586 	}
1587 
1588 	return 0;
1589 }
1590 
1591 /* performs raw read for one codeword */
1592 static int
qcom_nandc_read_cw_raw(struct mtd_info * mtd,struct nand_chip * chip,u8 * data_buf,u8 * oob_buf,int page,int cw)1593 qcom_nandc_read_cw_raw(struct mtd_info *mtd, struct nand_chip *chip,
1594 		       u8 *data_buf, u8 *oob_buf, int page, int cw)
1595 {
1596 	struct qcom_nand_host *host = to_qcom_nand_host(chip);
1597 	struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
1598 	struct nand_ecc_ctrl *ecc = &chip->ecc;
1599 	int data_size1, data_size2, oob_size1, oob_size2;
1600 	int ret, reg_off = FLASH_BUF_ACC, read_loc = 0;
1601 
1602 	nand_read_page_op(chip, page, 0, NULL, 0);
1603 	host->use_ecc = false;
1604 
1605 	clear_bam_transaction(nandc);
1606 	set_address(host, host->cw_size * cw, page);
1607 	update_rw_regs(host, 1, true);
1608 	config_nand_page_read(nandc);
1609 
1610 	data_size1 = mtd->writesize - host->cw_size * (ecc->steps - 1);
1611 	oob_size1 = host->bbm_size;
1612 
1613 	if (cw == (ecc->steps - 1)) {
1614 		data_size2 = ecc->size - data_size1 -
1615 			     ((ecc->steps - 1) * 4);
1616 		oob_size2 = (ecc->steps * 4) + host->ecc_bytes_hw +
1617 			    host->spare_bytes;
1618 	} else {
1619 		data_size2 = host->cw_data - data_size1;
1620 		oob_size2 = host->ecc_bytes_hw + host->spare_bytes;
1621 	}
1622 
1623 	if (nandc->props->is_bam) {
1624 		nandc_set_read_loc(nandc, 0, read_loc, data_size1, 0);
1625 		read_loc += data_size1;
1626 
1627 		nandc_set_read_loc(nandc, 1, read_loc, oob_size1, 0);
1628 		read_loc += oob_size1;
1629 
1630 		nandc_set_read_loc(nandc, 2, read_loc, data_size2, 0);
1631 		read_loc += data_size2;
1632 
1633 		nandc_set_read_loc(nandc, 3, read_loc, oob_size2, 1);
1634 	}
1635 
1636 	config_nand_cw_read(nandc, false);
1637 
1638 	read_data_dma(nandc, reg_off, data_buf, data_size1, 0);
1639 	reg_off += data_size1;
1640 
1641 	read_data_dma(nandc, reg_off, oob_buf, oob_size1, 0);
1642 	reg_off += oob_size1;
1643 
1644 	read_data_dma(nandc, reg_off, data_buf + data_size1, data_size2, 0);
1645 	reg_off += data_size2;
1646 
1647 	read_data_dma(nandc, reg_off, oob_buf + oob_size1, oob_size2, 0);
1648 
1649 	ret = submit_descs(nandc);
1650 	free_descs(nandc);
1651 	if (ret) {
1652 		dev_err(nandc->dev, "failure to read raw cw %d\n", cw);
1653 		return ret;
1654 	}
1655 
1656 	return check_flash_errors(host, 1);
1657 }
1658 
1659 /*
1660  * Bitflips can happen in erased codewords also so this function counts the
1661  * number of 0 in each CW for which ECC engine returns the uncorrectable
1662  * error. The page will be assumed as erased if this count is less than or
1663  * equal to the ecc->strength for each CW.
1664  *
1665  * 1. Both DATA and OOB need to be checked for number of 0. The
1666  *    top-level API can be called with only data buf or OOB buf so use
1667  *    chip->data_buf if data buf is null and chip->oob_poi if oob buf
1668  *    is null for copying the raw bytes.
1669  * 2. Perform raw read for all the CW which has uncorrectable errors.
1670  * 3. For each CW, check the number of 0 in cw_data and usable OOB bytes.
1671  *    The BBM and spare bytes bit flip won’t affect the ECC so don’t check
1672  *    the number of bitflips in this area.
1673  */
1674 static int
check_for_erased_page(struct qcom_nand_host * host,u8 * data_buf,u8 * oob_buf,unsigned long uncorrectable_cws,int page,unsigned int max_bitflips)1675 check_for_erased_page(struct qcom_nand_host *host, u8 *data_buf,
1676 		      u8 *oob_buf, unsigned long uncorrectable_cws,
1677 		      int page, unsigned int max_bitflips)
1678 {
1679 	struct nand_chip *chip = &host->chip;
1680 	struct mtd_info *mtd = nand_to_mtd(chip);
1681 	struct nand_ecc_ctrl *ecc = &chip->ecc;
1682 	u8 *cw_data_buf, *cw_oob_buf;
1683 	int cw, data_size, oob_size, ret = 0;
1684 
1685 	if (!data_buf) {
1686 		data_buf = chip->data_buf;
1687 		chip->pagebuf = -1;
1688 	}
1689 
1690 	if (!oob_buf) {
1691 		oob_buf = chip->oob_poi;
1692 		chip->pagebuf = -1;
1693 	}
1694 
1695 	for_each_set_bit(cw, &uncorrectable_cws, ecc->steps) {
1696 		if (cw == (ecc->steps - 1)) {
1697 			data_size = ecc->size - ((ecc->steps - 1) * 4);
1698 			oob_size = (ecc->steps * 4) + host->ecc_bytes_hw;
1699 		} else {
1700 			data_size = host->cw_data;
1701 			oob_size = host->ecc_bytes_hw;
1702 		}
1703 
1704 		/* determine starting buffer address for current CW */
1705 		cw_data_buf = data_buf + (cw * host->cw_data);
1706 		cw_oob_buf = oob_buf + (cw * ecc->bytes);
1707 
1708 		ret = qcom_nandc_read_cw_raw(mtd, chip, cw_data_buf,
1709 					     cw_oob_buf, page, cw);
1710 		if (ret)
1711 			return ret;
1712 
1713 		/*
1714 		 * make sure it isn't an erased page reported
1715 		 * as not-erased by HW because of a few bitflips
1716 		 */
1717 		ret = nand_check_erased_ecc_chunk(cw_data_buf, data_size,
1718 						  cw_oob_buf + host->bbm_size,
1719 						  oob_size, NULL,
1720 						  0, ecc->strength);
1721 		if (ret < 0) {
1722 			mtd->ecc_stats.failed++;
1723 		} else {
1724 			mtd->ecc_stats.corrected += ret;
1725 			max_bitflips = max_t(unsigned int, max_bitflips, ret);
1726 		}
1727 	}
1728 
1729 	return max_bitflips;
1730 }
1731 
1732 /*
1733  * reads back status registers set by the controller to notify page read
1734  * errors. this is equivalent to what 'ecc->correct()' would do.
1735  */
parse_read_errors(struct qcom_nand_host * host,u8 * data_buf,u8 * oob_buf,int page)1736 static int parse_read_errors(struct qcom_nand_host *host, u8 *data_buf,
1737 			     u8 *oob_buf, int page)
1738 {
1739 	struct nand_chip *chip = &host->chip;
1740 	struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
1741 	struct mtd_info *mtd = nand_to_mtd(chip);
1742 	struct nand_ecc_ctrl *ecc = &chip->ecc;
1743 	unsigned int max_bitflips = 0, uncorrectable_cws = 0;
1744 	struct read_stats *buf;
1745 	bool flash_op_err = false, erased;
1746 	int i;
1747 	u8 *data_buf_start = data_buf, *oob_buf_start = oob_buf;
1748 
1749 	buf = (struct read_stats *)nandc->reg_read_buf;
1750 	nandc_read_buffer_sync(nandc, true);
1751 
1752 	for (i = 0; i < ecc->steps; i++, buf++) {
1753 		u32 flash, buffer, erased_cw;
1754 		int data_len, oob_len;
1755 
1756 		if (i == (ecc->steps - 1)) {
1757 			data_len = ecc->size - ((ecc->steps - 1) << 2);
1758 			oob_len = ecc->steps << 2;
1759 		} else {
1760 			data_len = host->cw_data;
1761 			oob_len = 0;
1762 		}
1763 
1764 		flash = le32_to_cpu(buf->flash);
1765 		buffer = le32_to_cpu(buf->buffer);
1766 		erased_cw = le32_to_cpu(buf->erased_cw);
1767 
1768 		/*
1769 		 * Check ECC failure for each codeword. ECC failure can
1770 		 * happen in either of the following conditions
1771 		 * 1. If number of bitflips are greater than ECC engine
1772 		 *    capability.
1773 		 * 2. If this codeword contains all 0xff for which erased
1774 		 *    codeword detection check will be done.
1775 		 */
1776 		if ((flash & FS_OP_ERR) && (buffer & BS_UNCORRECTABLE_BIT)) {
1777 			/*
1778 			 * For BCH ECC, ignore erased codeword errors, if
1779 			 * ERASED_CW bits are set.
1780 			 */
1781 			if (host->bch_enabled) {
1782 				erased = (erased_cw & ERASED_CW) == ERASED_CW ?
1783 					 true : false;
1784 			/*
1785 			 * For RS ECC, HW reports the erased CW by placing
1786 			 * special characters at certain offsets in the buffer.
1787 			 * These special characters will be valid only if
1788 			 * complete page is read i.e. data_buf is not NULL.
1789 			 */
1790 			} else if (data_buf) {
1791 				erased = erased_chunk_check_and_fixup(data_buf,
1792 								      data_len);
1793 			} else {
1794 				erased = false;
1795 			}
1796 
1797 			if (!erased)
1798 				uncorrectable_cws |= BIT(i);
1799 		/*
1800 		 * Check if MPU or any other operational error (timeout,
1801 		 * device failure, etc.) happened for this codeword and
1802 		 * make flash_op_err true. If flash_op_err is set, then
1803 		 * EIO will be returned for page read.
1804 		 */
1805 		} else if (flash & (FS_OP_ERR | FS_MPU_ERR)) {
1806 			flash_op_err = true;
1807 		/*
1808 		 * No ECC or operational errors happened. Check the number of
1809 		 * bits corrected and update the ecc_stats.corrected.
1810 		 */
1811 		} else {
1812 			unsigned int stat;
1813 
1814 			stat = buffer & BS_CORRECTABLE_ERR_MSK;
1815 			mtd->ecc_stats.corrected += stat;
1816 			max_bitflips = max(max_bitflips, stat);
1817 		}
1818 
1819 		if (data_buf)
1820 			data_buf += data_len;
1821 		if (oob_buf)
1822 			oob_buf += oob_len + ecc->bytes;
1823 	}
1824 
1825 	if (flash_op_err)
1826 		return -EIO;
1827 
1828 	if (!uncorrectable_cws)
1829 		return max_bitflips;
1830 
1831 	return check_for_erased_page(host, data_buf_start, oob_buf_start,
1832 				     uncorrectable_cws, page,
1833 				     max_bitflips);
1834 }
1835 
1836 /*
1837  * helper to perform the actual page read operation, used by ecc->read_page(),
1838  * ecc->read_oob()
1839  */
read_page_ecc(struct qcom_nand_host * host,u8 * data_buf,u8 * oob_buf,int page)1840 static int read_page_ecc(struct qcom_nand_host *host, u8 *data_buf,
1841 			 u8 *oob_buf, int page)
1842 {
1843 	struct nand_chip *chip = &host->chip;
1844 	struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
1845 	struct nand_ecc_ctrl *ecc = &chip->ecc;
1846 	u8 *data_buf_start = data_buf, *oob_buf_start = oob_buf;
1847 	int i, ret;
1848 
1849 	config_nand_page_read(nandc);
1850 
1851 	/* queue cmd descs for each codeword */
1852 	for (i = 0; i < ecc->steps; i++) {
1853 		int data_size, oob_size;
1854 
1855 		if (i == (ecc->steps - 1)) {
1856 			data_size = ecc->size - ((ecc->steps - 1) << 2);
1857 			oob_size = (ecc->steps << 2) + host->ecc_bytes_hw +
1858 				   host->spare_bytes;
1859 		} else {
1860 			data_size = host->cw_data;
1861 			oob_size = host->ecc_bytes_hw + host->spare_bytes;
1862 		}
1863 
1864 		if (nandc->props->is_bam) {
1865 			if (data_buf && oob_buf) {
1866 				nandc_set_read_loc(nandc, 0, 0, data_size, 0);
1867 				nandc_set_read_loc(nandc, 1, data_size,
1868 						   oob_size, 1);
1869 			} else if (data_buf) {
1870 				nandc_set_read_loc(nandc, 0, 0, data_size, 1);
1871 			} else {
1872 				nandc_set_read_loc(nandc, 0, data_size,
1873 						   oob_size, 1);
1874 			}
1875 		}
1876 
1877 		config_nand_cw_read(nandc, true);
1878 
1879 		if (data_buf)
1880 			read_data_dma(nandc, FLASH_BUF_ACC, data_buf,
1881 				      data_size, 0);
1882 
1883 		/*
1884 		 * when ecc is enabled, the controller doesn't read the real
1885 		 * or dummy bad block markers in each chunk. To maintain a
1886 		 * consistent layout across RAW and ECC reads, we just
1887 		 * leave the real/dummy BBM offsets empty (i.e, filled with
1888 		 * 0xffs)
1889 		 */
1890 		if (oob_buf) {
1891 			int j;
1892 
1893 			for (j = 0; j < host->bbm_size; j++)
1894 				*oob_buf++ = 0xff;
1895 
1896 			read_data_dma(nandc, FLASH_BUF_ACC + data_size,
1897 				      oob_buf, oob_size, 0);
1898 		}
1899 
1900 		if (data_buf)
1901 			data_buf += data_size;
1902 		if (oob_buf)
1903 			oob_buf += oob_size;
1904 	}
1905 
1906 	ret = submit_descs(nandc);
1907 	free_descs(nandc);
1908 
1909 	if (ret) {
1910 		dev_err(nandc->dev, "failure to read page/oob\n");
1911 		return ret;
1912 	}
1913 
1914 	return parse_read_errors(host, data_buf_start, oob_buf_start, page);
1915 }
1916 
1917 /*
1918  * a helper that copies the last step/codeword of a page (containing free oob)
1919  * into our local buffer
1920  */
copy_last_cw(struct qcom_nand_host * host,int page)1921 static int copy_last_cw(struct qcom_nand_host *host, int page)
1922 {
1923 	struct nand_chip *chip = &host->chip;
1924 	struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
1925 	struct nand_ecc_ctrl *ecc = &chip->ecc;
1926 	int size;
1927 	int ret;
1928 
1929 	clear_read_regs(nandc);
1930 
1931 	size = host->use_ecc ? host->cw_data : host->cw_size;
1932 
1933 	/* prepare a clean read buffer */
1934 	memset(nandc->data_buffer, 0xff, size);
1935 
1936 	set_address(host, host->cw_size * (ecc->steps - 1), page);
1937 	update_rw_regs(host, 1, true);
1938 
1939 	config_nand_single_cw_page_read(nandc, host->use_ecc);
1940 
1941 	read_data_dma(nandc, FLASH_BUF_ACC, nandc->data_buffer, size, 0);
1942 
1943 	ret = submit_descs(nandc);
1944 	if (ret)
1945 		dev_err(nandc->dev, "failed to copy last codeword\n");
1946 
1947 	free_descs(nandc);
1948 
1949 	return ret;
1950 }
1951 
1952 /* implements ecc->read_page() */
qcom_nandc_read_page(struct mtd_info * mtd,struct nand_chip * chip,uint8_t * buf,int oob_required,int page)1953 static int qcom_nandc_read_page(struct mtd_info *mtd, struct nand_chip *chip,
1954 				uint8_t *buf, int oob_required, int page)
1955 {
1956 	struct qcom_nand_host *host = to_qcom_nand_host(chip);
1957 	struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
1958 	u8 *data_buf, *oob_buf = NULL;
1959 
1960 	nand_read_page_op(chip, page, 0, NULL, 0);
1961 	data_buf = buf;
1962 	oob_buf = oob_required ? chip->oob_poi : NULL;
1963 
1964 	clear_bam_transaction(nandc);
1965 
1966 	return read_page_ecc(host, data_buf, oob_buf, page);
1967 }
1968 
1969 /* implements ecc->read_page_raw() */
qcom_nandc_read_page_raw(struct mtd_info * mtd,struct nand_chip * chip,uint8_t * buf,int oob_required,int page)1970 static int qcom_nandc_read_page_raw(struct mtd_info *mtd,
1971 				    struct nand_chip *chip, uint8_t *buf,
1972 				    int oob_required, int page)
1973 {
1974 	struct qcom_nand_host *host = to_qcom_nand_host(chip);
1975 	struct nand_ecc_ctrl *ecc = &chip->ecc;
1976 	int cw, ret;
1977 	u8 *data_buf = buf, *oob_buf = chip->oob_poi;
1978 
1979 	for (cw = 0; cw < ecc->steps; cw++) {
1980 		ret = qcom_nandc_read_cw_raw(mtd, chip, data_buf, oob_buf,
1981 					     page, cw);
1982 		if (ret)
1983 			return ret;
1984 
1985 		data_buf += host->cw_data;
1986 		oob_buf += ecc->bytes;
1987 	}
1988 
1989 	return 0;
1990 }
1991 
1992 /* implements ecc->read_oob() */
qcom_nandc_read_oob(struct mtd_info * mtd,struct nand_chip * chip,int page)1993 static int qcom_nandc_read_oob(struct mtd_info *mtd, struct nand_chip *chip,
1994 			       int page)
1995 {
1996 	struct qcom_nand_host *host = to_qcom_nand_host(chip);
1997 	struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
1998 	struct nand_ecc_ctrl *ecc = &chip->ecc;
1999 
2000 	clear_read_regs(nandc);
2001 	clear_bam_transaction(nandc);
2002 
2003 	host->use_ecc = true;
2004 	set_address(host, 0, page);
2005 	update_rw_regs(host, ecc->steps, true);
2006 
2007 	return read_page_ecc(host, NULL, chip->oob_poi, page);
2008 }
2009 
2010 /* implements ecc->write_page() */
qcom_nandc_write_page(struct mtd_info * mtd,struct nand_chip * chip,const uint8_t * buf,int oob_required,int page)2011 static int qcom_nandc_write_page(struct mtd_info *mtd, struct nand_chip *chip,
2012 				 const uint8_t *buf, int oob_required, int page)
2013 {
2014 	struct qcom_nand_host *host = to_qcom_nand_host(chip);
2015 	struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
2016 	struct nand_ecc_ctrl *ecc = &chip->ecc;
2017 	u8 *data_buf, *oob_buf;
2018 	int i, ret;
2019 
2020 	nand_prog_page_begin_op(chip, page, 0, NULL, 0);
2021 
2022 	clear_read_regs(nandc);
2023 	clear_bam_transaction(nandc);
2024 
2025 	data_buf = (u8 *)buf;
2026 	oob_buf = chip->oob_poi;
2027 
2028 	host->use_ecc = true;
2029 	update_rw_regs(host, ecc->steps, false);
2030 	config_nand_page_write(nandc);
2031 
2032 	for (i = 0; i < ecc->steps; i++) {
2033 		int data_size, oob_size;
2034 
2035 		if (i == (ecc->steps - 1)) {
2036 			data_size = ecc->size - ((ecc->steps - 1) << 2);
2037 			oob_size = (ecc->steps << 2) + host->ecc_bytes_hw +
2038 				   host->spare_bytes;
2039 		} else {
2040 			data_size = host->cw_data;
2041 			oob_size = ecc->bytes;
2042 		}
2043 
2044 
2045 		write_data_dma(nandc, FLASH_BUF_ACC, data_buf, data_size,
2046 			       i == (ecc->steps - 1) ? NAND_BAM_NO_EOT : 0);
2047 
2048 		/*
2049 		 * when ECC is enabled, we don't really need to write anything
2050 		 * to oob for the first n - 1 codewords since these oob regions
2051 		 * just contain ECC bytes that's written by the controller
2052 		 * itself. For the last codeword, we skip the bbm positions and
2053 		 * write to the free oob area.
2054 		 */
2055 		if (i == (ecc->steps - 1)) {
2056 			oob_buf += host->bbm_size;
2057 
2058 			write_data_dma(nandc, FLASH_BUF_ACC + data_size,
2059 				       oob_buf, oob_size, 0);
2060 		}
2061 
2062 		config_nand_cw_write(nandc);
2063 
2064 		data_buf += data_size;
2065 		oob_buf += oob_size;
2066 	}
2067 
2068 	ret = submit_descs(nandc);
2069 	if (ret)
2070 		dev_err(nandc->dev, "failure to write page\n");
2071 
2072 	free_descs(nandc);
2073 
2074 	if (!ret)
2075 		ret = nand_prog_page_end_op(chip);
2076 
2077 	return ret;
2078 }
2079 
2080 /* implements ecc->write_page_raw() */
qcom_nandc_write_page_raw(struct mtd_info * mtd,struct nand_chip * chip,const uint8_t * buf,int oob_required,int page)2081 static int qcom_nandc_write_page_raw(struct mtd_info *mtd,
2082 				     struct nand_chip *chip, const uint8_t *buf,
2083 				     int oob_required, int page)
2084 {
2085 	struct qcom_nand_host *host = to_qcom_nand_host(chip);
2086 	struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
2087 	struct nand_ecc_ctrl *ecc = &chip->ecc;
2088 	u8 *data_buf, *oob_buf;
2089 	int i, ret;
2090 
2091 	nand_prog_page_begin_op(chip, page, 0, NULL, 0);
2092 	clear_read_regs(nandc);
2093 	clear_bam_transaction(nandc);
2094 
2095 	data_buf = (u8 *)buf;
2096 	oob_buf = chip->oob_poi;
2097 
2098 	host->use_ecc = false;
2099 	update_rw_regs(host, ecc->steps, false);
2100 	config_nand_page_write(nandc);
2101 
2102 	for (i = 0; i < ecc->steps; i++) {
2103 		int data_size1, data_size2, oob_size1, oob_size2;
2104 		int reg_off = FLASH_BUF_ACC;
2105 
2106 		data_size1 = mtd->writesize - host->cw_size * (ecc->steps - 1);
2107 		oob_size1 = host->bbm_size;
2108 
2109 		if (i == (ecc->steps - 1)) {
2110 			data_size2 = ecc->size - data_size1 -
2111 				     ((ecc->steps - 1) << 2);
2112 			oob_size2 = (ecc->steps << 2) + host->ecc_bytes_hw +
2113 				    host->spare_bytes;
2114 		} else {
2115 			data_size2 = host->cw_data - data_size1;
2116 			oob_size2 = host->ecc_bytes_hw + host->spare_bytes;
2117 		}
2118 
2119 		write_data_dma(nandc, reg_off, data_buf, data_size1,
2120 			       NAND_BAM_NO_EOT);
2121 		reg_off += data_size1;
2122 		data_buf += data_size1;
2123 
2124 		write_data_dma(nandc, reg_off, oob_buf, oob_size1,
2125 			       NAND_BAM_NO_EOT);
2126 		reg_off += oob_size1;
2127 		oob_buf += oob_size1;
2128 
2129 		write_data_dma(nandc, reg_off, data_buf, data_size2,
2130 			       NAND_BAM_NO_EOT);
2131 		reg_off += data_size2;
2132 		data_buf += data_size2;
2133 
2134 		write_data_dma(nandc, reg_off, oob_buf, oob_size2, 0);
2135 		oob_buf += oob_size2;
2136 
2137 		config_nand_cw_write(nandc);
2138 	}
2139 
2140 	ret = submit_descs(nandc);
2141 	if (ret)
2142 		dev_err(nandc->dev, "failure to write raw page\n");
2143 
2144 	free_descs(nandc);
2145 
2146 	if (!ret)
2147 		ret = nand_prog_page_end_op(chip);
2148 
2149 	return ret;
2150 }
2151 
2152 /*
2153  * implements ecc->write_oob()
2154  *
2155  * the NAND controller cannot write only data or only OOB within a codeword
2156  * since ECC is calculated for the combined codeword. So update the OOB from
2157  * chip->oob_poi, and pad the data area with OxFF before writing.
2158  */
qcom_nandc_write_oob(struct mtd_info * mtd,struct nand_chip * chip,int page)2159 static int qcom_nandc_write_oob(struct mtd_info *mtd, struct nand_chip *chip,
2160 				int page)
2161 {
2162 	struct qcom_nand_host *host = to_qcom_nand_host(chip);
2163 	struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
2164 	struct nand_ecc_ctrl *ecc = &chip->ecc;
2165 	u8 *oob = chip->oob_poi;
2166 	int data_size, oob_size;
2167 	int ret;
2168 
2169 	host->use_ecc = true;
2170 	clear_bam_transaction(nandc);
2171 
2172 	/* calculate the data and oob size for the last codeword/step */
2173 	data_size = ecc->size - ((ecc->steps - 1) << 2);
2174 	oob_size = mtd->oobavail;
2175 
2176 	memset(nandc->data_buffer, 0xff, host->cw_data);
2177 	/* override new oob content to last codeword */
2178 	mtd_ooblayout_get_databytes(mtd, nandc->data_buffer + data_size, oob,
2179 				    0, mtd->oobavail);
2180 
2181 	set_address(host, host->cw_size * (ecc->steps - 1), page);
2182 	update_rw_regs(host, 1, false);
2183 
2184 	config_nand_page_write(nandc);
2185 	write_data_dma(nandc, FLASH_BUF_ACC,
2186 		       nandc->data_buffer, data_size + oob_size, 0);
2187 	config_nand_cw_write(nandc);
2188 
2189 	ret = submit_descs(nandc);
2190 
2191 	free_descs(nandc);
2192 
2193 	if (ret) {
2194 		dev_err(nandc->dev, "failure to write oob\n");
2195 		return -EIO;
2196 	}
2197 
2198 	return nand_prog_page_end_op(chip);
2199 }
2200 
qcom_nandc_block_bad(struct mtd_info * mtd,loff_t ofs)2201 static int qcom_nandc_block_bad(struct mtd_info *mtd, loff_t ofs)
2202 {
2203 	struct nand_chip *chip = mtd_to_nand(mtd);
2204 	struct qcom_nand_host *host = to_qcom_nand_host(chip);
2205 	struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
2206 	struct nand_ecc_ctrl *ecc = &chip->ecc;
2207 	int page, ret, bbpos, bad = 0;
2208 
2209 	page = (int)(ofs >> chip->page_shift) & chip->pagemask;
2210 
2211 	/*
2212 	 * configure registers for a raw sub page read, the address is set to
2213 	 * the beginning of the last codeword, we don't care about reading ecc
2214 	 * portion of oob. we just want the first few bytes from this codeword
2215 	 * that contains the BBM
2216 	 */
2217 	host->use_ecc = false;
2218 
2219 	clear_bam_transaction(nandc);
2220 	ret = copy_last_cw(host, page);
2221 	if (ret)
2222 		goto err;
2223 
2224 	if (check_flash_errors(host, 1)) {
2225 		dev_warn(nandc->dev, "error when trying to read BBM\n");
2226 		goto err;
2227 	}
2228 
2229 	bbpos = mtd->writesize - host->cw_size * (ecc->steps - 1);
2230 
2231 	bad = nandc->data_buffer[bbpos] != 0xff;
2232 
2233 	if (chip->options & NAND_BUSWIDTH_16)
2234 		bad = bad || (nandc->data_buffer[bbpos + 1] != 0xff);
2235 err:
2236 	return bad;
2237 }
2238 
qcom_nandc_block_markbad(struct mtd_info * mtd,loff_t ofs)2239 static int qcom_nandc_block_markbad(struct mtd_info *mtd, loff_t ofs)
2240 {
2241 	struct nand_chip *chip = mtd_to_nand(mtd);
2242 	struct qcom_nand_host *host = to_qcom_nand_host(chip);
2243 	struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
2244 	struct nand_ecc_ctrl *ecc = &chip->ecc;
2245 	int page, ret;
2246 
2247 	clear_read_regs(nandc);
2248 	clear_bam_transaction(nandc);
2249 
2250 	/*
2251 	 * to mark the BBM as bad, we flash the entire last codeword with 0s.
2252 	 * we don't care about the rest of the content in the codeword since
2253 	 * we aren't going to use this block again
2254 	 */
2255 	memset(nandc->data_buffer, 0x00, host->cw_size);
2256 
2257 	page = (int)(ofs >> chip->page_shift) & chip->pagemask;
2258 
2259 	/* prepare write */
2260 	host->use_ecc = false;
2261 	set_address(host, host->cw_size * (ecc->steps - 1), page);
2262 	update_rw_regs(host, 1, false);
2263 
2264 	config_nand_page_write(nandc);
2265 	write_data_dma(nandc, FLASH_BUF_ACC,
2266 		       nandc->data_buffer, host->cw_size, 0);
2267 	config_nand_cw_write(nandc);
2268 
2269 	ret = submit_descs(nandc);
2270 
2271 	free_descs(nandc);
2272 
2273 	if (ret) {
2274 		dev_err(nandc->dev, "failure to update BBM\n");
2275 		return -EIO;
2276 	}
2277 
2278 	return nand_prog_page_end_op(chip);
2279 }
2280 
2281 /*
2282  * the three functions below implement chip->read_byte(), chip->read_buf()
2283  * and chip->write_buf() respectively. these aren't used for
2284  * reading/writing page data, they are used for smaller data like reading
2285  * id, status etc
2286  */
qcom_nandc_read_byte(struct mtd_info * mtd)2287 static uint8_t qcom_nandc_read_byte(struct mtd_info *mtd)
2288 {
2289 	struct nand_chip *chip = mtd_to_nand(mtd);
2290 	struct qcom_nand_host *host = to_qcom_nand_host(chip);
2291 	struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
2292 	u8 *buf = nandc->data_buffer;
2293 	u8 ret = 0x0;
2294 
2295 	if (host->last_command == NAND_CMD_STATUS) {
2296 		ret = host->status;
2297 
2298 		host->status = NAND_STATUS_READY | NAND_STATUS_WP;
2299 
2300 		return ret;
2301 	}
2302 
2303 	if (nandc->buf_start < nandc->buf_count)
2304 		ret = buf[nandc->buf_start++];
2305 
2306 	return ret;
2307 }
2308 
qcom_nandc_read_buf(struct mtd_info * mtd,uint8_t * buf,int len)2309 static void qcom_nandc_read_buf(struct mtd_info *mtd, uint8_t *buf, int len)
2310 {
2311 	struct nand_chip *chip = mtd_to_nand(mtd);
2312 	struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
2313 	int real_len = min_t(size_t, len, nandc->buf_count - nandc->buf_start);
2314 
2315 	memcpy(buf, nandc->data_buffer + nandc->buf_start, real_len);
2316 	nandc->buf_start += real_len;
2317 }
2318 
qcom_nandc_write_buf(struct mtd_info * mtd,const uint8_t * buf,int len)2319 static void qcom_nandc_write_buf(struct mtd_info *mtd, const uint8_t *buf,
2320 				 int len)
2321 {
2322 	struct nand_chip *chip = mtd_to_nand(mtd);
2323 	struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
2324 	int real_len = min_t(size_t, len, nandc->buf_count - nandc->buf_start);
2325 
2326 	memcpy(nandc->data_buffer + nandc->buf_start, buf, real_len);
2327 
2328 	nandc->buf_start += real_len;
2329 }
2330 
2331 /* we support only one external chip for now */
qcom_nandc_select_chip(struct mtd_info * mtd,int chipnr)2332 static void qcom_nandc_select_chip(struct mtd_info *mtd, int chipnr)
2333 {
2334 	struct nand_chip *chip = mtd_to_nand(mtd);
2335 	struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
2336 
2337 	if (chipnr <= 0)
2338 		return;
2339 
2340 	dev_warn(nandc->dev, "invalid chip select\n");
2341 }
2342 
2343 /*
2344  * NAND controller page layout info
2345  *
2346  * Layout with ECC enabled:
2347  *
2348  * |----------------------|  |---------------------------------|
2349  * |           xx.......yy|  |             *********xx.......yy|
2350  * |    DATA   xx..ECC..yy|  |    DATA     **SPARE**xx..ECC..yy|
2351  * |   (516)   xx.......yy|  |  (516-n*4)  **(n*4)**xx.......yy|
2352  * |           xx.......yy|  |             *********xx.......yy|
2353  * |----------------------|  |---------------------------------|
2354  *     codeword 1,2..n-1                  codeword n
2355  *  <---(528/532 Bytes)-->    <-------(528/532 Bytes)--------->
2356  *
2357  * n = Number of codewords in the page
2358  * . = ECC bytes
2359  * * = Spare/free bytes
2360  * x = Unused byte(s)
2361  * y = Reserved byte(s)
2362  *
2363  * 2K page: n = 4, spare = 16 bytes
2364  * 4K page: n = 8, spare = 32 bytes
2365  * 8K page: n = 16, spare = 64 bytes
2366  *
2367  * the qcom nand controller operates at a sub page/codeword level. each
2368  * codeword is 528 and 532 bytes for 4 bit and 8 bit ECC modes respectively.
2369  * the number of ECC bytes vary based on the ECC strength and the bus width.
2370  *
2371  * the first n - 1 codewords contains 516 bytes of user data, the remaining
2372  * 12/16 bytes consist of ECC and reserved data. The nth codeword contains
2373  * both user data and spare(oobavail) bytes that sum up to 516 bytes.
2374  *
2375  * When we access a page with ECC enabled, the reserved bytes(s) are not
2376  * accessible at all. When reading, we fill up these unreadable positions
2377  * with 0xffs. When writing, the controller skips writing the inaccessible
2378  * bytes.
2379  *
2380  * Layout with ECC disabled:
2381  *
2382  * |------------------------------|  |---------------------------------------|
2383  * |         yy          xx.......|  |         bb          *********xx.......|
2384  * |  DATA1  yy  DATA2   xx..ECC..|  |  DATA1  bb  DATA2   **SPARE**xx..ECC..|
2385  * | (size1) yy (size2)  xx.......|  | (size1) bb (size2)  **(n*4)**xx.......|
2386  * |         yy          xx.......|  |         bb          *********xx.......|
2387  * |------------------------------|  |---------------------------------------|
2388  *         codeword 1,2..n-1                        codeword n
2389  *  <-------(528/532 Bytes)------>    <-----------(528/532 Bytes)----------->
2390  *
2391  * n = Number of codewords in the page
2392  * . = ECC bytes
2393  * * = Spare/free bytes
2394  * x = Unused byte(s)
2395  * y = Dummy Bad Bock byte(s)
2396  * b = Real Bad Block byte(s)
2397  * size1/size2 = function of codeword size and 'n'
2398  *
2399  * when the ECC block is disabled, one reserved byte (or two for 16 bit bus
2400  * width) is now accessible. For the first n - 1 codewords, these are dummy Bad
2401  * Block Markers. In the last codeword, this position contains the real BBM
2402  *
2403  * In order to have a consistent layout between RAW and ECC modes, we assume
2404  * the following OOB layout arrangement:
2405  *
2406  * |-----------|  |--------------------|
2407  * |yyxx.......|  |bb*********xx.......|
2408  * |yyxx..ECC..|  |bb*FREEOOB*xx..ECC..|
2409  * |yyxx.......|  |bb*********xx.......|
2410  * |yyxx.......|  |bb*********xx.......|
2411  * |-----------|  |--------------------|
2412  *  first n - 1       nth OOB region
2413  *  OOB regions
2414  *
2415  * n = Number of codewords in the page
2416  * . = ECC bytes
2417  * * = FREE OOB bytes
2418  * y = Dummy bad block byte(s) (inaccessible when ECC enabled)
2419  * x = Unused byte(s)
2420  * b = Real bad block byte(s) (inaccessible when ECC enabled)
2421  *
2422  * This layout is read as is when ECC is disabled. When ECC is enabled, the
2423  * inaccessible Bad Block byte(s) are ignored when we write to a page/oob,
2424  * and assumed as 0xffs when we read a page/oob. The ECC, unused and
2425  * dummy/real bad block bytes are grouped as ecc bytes (i.e, ecc->bytes is
2426  * the sum of the three).
2427  */
qcom_nand_ooblayout_ecc(struct mtd_info * mtd,int section,struct mtd_oob_region * oobregion)2428 static int qcom_nand_ooblayout_ecc(struct mtd_info *mtd, int section,
2429 				   struct mtd_oob_region *oobregion)
2430 {
2431 	struct nand_chip *chip = mtd_to_nand(mtd);
2432 	struct qcom_nand_host *host = to_qcom_nand_host(chip);
2433 	struct nand_ecc_ctrl *ecc = &chip->ecc;
2434 
2435 	if (section > 1)
2436 		return -ERANGE;
2437 
2438 	if (!section) {
2439 		oobregion->length = (ecc->bytes * (ecc->steps - 1)) +
2440 				    host->bbm_size;
2441 		oobregion->offset = 0;
2442 	} else {
2443 		oobregion->length = host->ecc_bytes_hw + host->spare_bytes;
2444 		oobregion->offset = mtd->oobsize - oobregion->length;
2445 	}
2446 
2447 	return 0;
2448 }
2449 
qcom_nand_ooblayout_free(struct mtd_info * mtd,int section,struct mtd_oob_region * oobregion)2450 static int qcom_nand_ooblayout_free(struct mtd_info *mtd, int section,
2451 				     struct mtd_oob_region *oobregion)
2452 {
2453 	struct nand_chip *chip = mtd_to_nand(mtd);
2454 	struct qcom_nand_host *host = to_qcom_nand_host(chip);
2455 	struct nand_ecc_ctrl *ecc = &chip->ecc;
2456 
2457 	if (section)
2458 		return -ERANGE;
2459 
2460 	oobregion->length = ecc->steps * 4;
2461 	oobregion->offset = ((ecc->steps - 1) * ecc->bytes) + host->bbm_size;
2462 
2463 	return 0;
2464 }
2465 
2466 static const struct mtd_ooblayout_ops qcom_nand_ooblayout_ops = {
2467 	.ecc = qcom_nand_ooblayout_ecc,
2468 	.free = qcom_nand_ooblayout_free,
2469 };
2470 
2471 static int
qcom_nandc_calc_ecc_bytes(int step_size,int strength)2472 qcom_nandc_calc_ecc_bytes(int step_size, int strength)
2473 {
2474 	return strength == 4 ? 12 : 16;
2475 }
2476 NAND_ECC_CAPS_SINGLE(qcom_nandc_ecc_caps, qcom_nandc_calc_ecc_bytes,
2477 		     NANDC_STEP_SIZE, 4, 8);
2478 
qcom_nand_attach_chip(struct nand_chip * chip)2479 static int qcom_nand_attach_chip(struct nand_chip *chip)
2480 {
2481 	struct mtd_info *mtd = nand_to_mtd(chip);
2482 	struct qcom_nand_host *host = to_qcom_nand_host(chip);
2483 	struct nand_ecc_ctrl *ecc = &chip->ecc;
2484 	struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip);
2485 	int cwperpage, bad_block_byte, ret;
2486 	bool wide_bus;
2487 	int ecc_mode = 1;
2488 
2489 	/* controller only supports 512 bytes data steps */
2490 	ecc->size = NANDC_STEP_SIZE;
2491 	wide_bus = chip->options & NAND_BUSWIDTH_16 ? true : false;
2492 	cwperpage = mtd->writesize / NANDC_STEP_SIZE;
2493 
2494 	/*
2495 	 * Each CW has 4 available OOB bytes which will be protected with ECC
2496 	 * so remaining bytes can be used for ECC.
2497 	 */
2498 	ret = nand_ecc_choose_conf(chip, &qcom_nandc_ecc_caps,
2499 				   mtd->oobsize - (cwperpage * 4));
2500 	if (ret) {
2501 		dev_err(nandc->dev, "No valid ECC settings possible\n");
2502 		return ret;
2503 	}
2504 
2505 	if (ecc->strength >= 8) {
2506 		/* 8 bit ECC defaults to BCH ECC on all platforms */
2507 		host->bch_enabled = true;
2508 		ecc_mode = 1;
2509 
2510 		if (wide_bus) {
2511 			host->ecc_bytes_hw = 14;
2512 			host->spare_bytes = 0;
2513 			host->bbm_size = 2;
2514 		} else {
2515 			host->ecc_bytes_hw = 13;
2516 			host->spare_bytes = 2;
2517 			host->bbm_size = 1;
2518 		}
2519 	} else {
2520 		/*
2521 		 * if the controller supports BCH for 4 bit ECC, the controller
2522 		 * uses lesser bytes for ECC. If RS is used, the ECC bytes is
2523 		 * always 10 bytes
2524 		 */
2525 		if (nandc->props->ecc_modes & ECC_BCH_4BIT) {
2526 			/* BCH */
2527 			host->bch_enabled = true;
2528 			ecc_mode = 0;
2529 
2530 			if (wide_bus) {
2531 				host->ecc_bytes_hw = 8;
2532 				host->spare_bytes = 2;
2533 				host->bbm_size = 2;
2534 			} else {
2535 				host->ecc_bytes_hw = 7;
2536 				host->spare_bytes = 4;
2537 				host->bbm_size = 1;
2538 			}
2539 		} else {
2540 			/* RS */
2541 			host->ecc_bytes_hw = 10;
2542 
2543 			if (wide_bus) {
2544 				host->spare_bytes = 0;
2545 				host->bbm_size = 2;
2546 			} else {
2547 				host->spare_bytes = 1;
2548 				host->bbm_size = 1;
2549 			}
2550 		}
2551 	}
2552 
2553 	/*
2554 	 * we consider ecc->bytes as the sum of all the non-data content in a
2555 	 * step. It gives us a clean representation of the oob area (even if
2556 	 * all the bytes aren't used for ECC).It is always 16 bytes for 8 bit
2557 	 * ECC and 12 bytes for 4 bit ECC
2558 	 */
2559 	ecc->bytes = host->ecc_bytes_hw + host->spare_bytes + host->bbm_size;
2560 
2561 	ecc->read_page		= qcom_nandc_read_page;
2562 	ecc->read_page_raw	= qcom_nandc_read_page_raw;
2563 	ecc->read_oob		= qcom_nandc_read_oob;
2564 	ecc->write_page		= qcom_nandc_write_page;
2565 	ecc->write_page_raw	= qcom_nandc_write_page_raw;
2566 	ecc->write_oob		= qcom_nandc_write_oob;
2567 
2568 	ecc->mode = NAND_ECC_HW;
2569 
2570 	mtd_set_ooblayout(mtd, &qcom_nand_ooblayout_ops);
2571 
2572 	nandc->max_cwperpage = max_t(unsigned int, nandc->max_cwperpage,
2573 				     cwperpage);
2574 
2575 	/*
2576 	 * DATA_UD_BYTES varies based on whether the read/write command protects
2577 	 * spare data with ECC too. We protect spare data by default, so we set
2578 	 * it to main + spare data, which are 512 and 4 bytes respectively.
2579 	 */
2580 	host->cw_data = 516;
2581 
2582 	/*
2583 	 * total bytes in a step, either 528 bytes for 4 bit ECC, or 532 bytes
2584 	 * for 8 bit ECC
2585 	 */
2586 	host->cw_size = host->cw_data + ecc->bytes;
2587 	bad_block_byte = mtd->writesize - host->cw_size * (cwperpage - 1) + 1;
2588 
2589 	host->cfg0 = (cwperpage - 1) << CW_PER_PAGE
2590 				| host->cw_data << UD_SIZE_BYTES
2591 				| 0 << DISABLE_STATUS_AFTER_WRITE
2592 				| 5 << NUM_ADDR_CYCLES
2593 				| host->ecc_bytes_hw << ECC_PARITY_SIZE_BYTES_RS
2594 				| 0 << STATUS_BFR_READ
2595 				| 1 << SET_RD_MODE_AFTER_STATUS
2596 				| host->spare_bytes << SPARE_SIZE_BYTES;
2597 
2598 	host->cfg1 = 7 << NAND_RECOVERY_CYCLES
2599 				| 0 <<  CS_ACTIVE_BSY
2600 				| bad_block_byte << BAD_BLOCK_BYTE_NUM
2601 				| 0 << BAD_BLOCK_IN_SPARE_AREA
2602 				| 2 << WR_RD_BSY_GAP
2603 				| wide_bus << WIDE_FLASH
2604 				| host->bch_enabled << ENABLE_BCH_ECC;
2605 
2606 	host->cfg0_raw = (cwperpage - 1) << CW_PER_PAGE
2607 				| host->cw_size << UD_SIZE_BYTES
2608 				| 5 << NUM_ADDR_CYCLES
2609 				| 0 << SPARE_SIZE_BYTES;
2610 
2611 	host->cfg1_raw = 7 << NAND_RECOVERY_CYCLES
2612 				| 0 << CS_ACTIVE_BSY
2613 				| 17 << BAD_BLOCK_BYTE_NUM
2614 				| 1 << BAD_BLOCK_IN_SPARE_AREA
2615 				| 2 << WR_RD_BSY_GAP
2616 				| wide_bus << WIDE_FLASH
2617 				| 1 << DEV0_CFG1_ECC_DISABLE;
2618 
2619 	host->ecc_bch_cfg = !host->bch_enabled << ECC_CFG_ECC_DISABLE
2620 				| 0 << ECC_SW_RESET
2621 				| host->cw_data << ECC_NUM_DATA_BYTES
2622 				| 1 << ECC_FORCE_CLK_OPEN
2623 				| ecc_mode << ECC_MODE
2624 				| host->ecc_bytes_hw << ECC_PARITY_SIZE_BYTES_BCH;
2625 
2626 	host->ecc_buf_cfg = 0x203 << NUM_STEPS;
2627 
2628 	host->clrflashstatus = FS_READY_BSY_N;
2629 	host->clrreadstatus = 0xc0;
2630 	nandc->regs->erased_cw_detect_cfg_clr =
2631 		cpu_to_le32(CLR_ERASED_PAGE_DET);
2632 	nandc->regs->erased_cw_detect_cfg_set =
2633 		cpu_to_le32(SET_ERASED_PAGE_DET);
2634 
2635 	dev_dbg(nandc->dev,
2636 		"cfg0 %x cfg1 %x ecc_buf_cfg %x ecc_bch cfg %x cw_size %d cw_data %d strength %d parity_bytes %d steps %d\n",
2637 		host->cfg0, host->cfg1, host->ecc_buf_cfg, host->ecc_bch_cfg,
2638 		host->cw_size, host->cw_data, ecc->strength, ecc->bytes,
2639 		cwperpage);
2640 
2641 	return 0;
2642 }
2643 
2644 static const struct nand_controller_ops qcom_nandc_ops = {
2645 	.attach_chip = qcom_nand_attach_chip,
2646 };
2647 
qcom_nandc_alloc(struct qcom_nand_controller * nandc)2648 static int qcom_nandc_alloc(struct qcom_nand_controller *nandc)
2649 {
2650 	int ret;
2651 
2652 	ret = dma_set_coherent_mask(nandc->dev, DMA_BIT_MASK(32));
2653 	if (ret) {
2654 		dev_err(nandc->dev, "failed to set DMA mask\n");
2655 		return ret;
2656 	}
2657 
2658 	/*
2659 	 * we use the internal buffer for reading ONFI params, reading small
2660 	 * data like ID and status, and preforming read-copy-write operations
2661 	 * when writing to a codeword partially. 532 is the maximum possible
2662 	 * size of a codeword for our nand controller
2663 	 */
2664 	nandc->buf_size = 532;
2665 
2666 	nandc->data_buffer = devm_kzalloc(nandc->dev, nandc->buf_size,
2667 					GFP_KERNEL);
2668 	if (!nandc->data_buffer)
2669 		return -ENOMEM;
2670 
2671 	nandc->regs = devm_kzalloc(nandc->dev, sizeof(*nandc->regs),
2672 					GFP_KERNEL);
2673 	if (!nandc->regs)
2674 		return -ENOMEM;
2675 
2676 	nandc->reg_read_buf = devm_kcalloc(nandc->dev,
2677 				MAX_REG_RD, sizeof(*nandc->reg_read_buf),
2678 				GFP_KERNEL);
2679 	if (!nandc->reg_read_buf)
2680 		return -ENOMEM;
2681 
2682 	if (nandc->props->is_bam) {
2683 		nandc->reg_read_dma =
2684 			dma_map_single(nandc->dev, nandc->reg_read_buf,
2685 				       MAX_REG_RD *
2686 				       sizeof(*nandc->reg_read_buf),
2687 				       DMA_FROM_DEVICE);
2688 		if (dma_mapping_error(nandc->dev, nandc->reg_read_dma)) {
2689 			dev_err(nandc->dev, "failed to DMA MAP reg buffer\n");
2690 			return -EIO;
2691 		}
2692 
2693 		nandc->tx_chan = dma_request_slave_channel(nandc->dev, "tx");
2694 		if (!nandc->tx_chan) {
2695 			dev_err(nandc->dev, "failed to request tx channel\n");
2696 			return -ENODEV;
2697 		}
2698 
2699 		nandc->rx_chan = dma_request_slave_channel(nandc->dev, "rx");
2700 		if (!nandc->rx_chan) {
2701 			dev_err(nandc->dev, "failed to request rx channel\n");
2702 			return -ENODEV;
2703 		}
2704 
2705 		nandc->cmd_chan = dma_request_slave_channel(nandc->dev, "cmd");
2706 		if (!nandc->cmd_chan) {
2707 			dev_err(nandc->dev, "failed to request cmd channel\n");
2708 			return -ENODEV;
2709 		}
2710 
2711 		/*
2712 		 * Initially allocate BAM transaction to read ONFI param page.
2713 		 * After detecting all the devices, this BAM transaction will
2714 		 * be freed and the next BAM tranasction will be allocated with
2715 		 * maximum codeword size
2716 		 */
2717 		nandc->max_cwperpage = 1;
2718 		nandc->bam_txn = alloc_bam_transaction(nandc);
2719 		if (!nandc->bam_txn) {
2720 			dev_err(nandc->dev,
2721 				"failed to allocate bam transaction\n");
2722 			return -ENOMEM;
2723 		}
2724 	} else {
2725 		nandc->chan = dma_request_slave_channel(nandc->dev, "rxtx");
2726 		if (!nandc->chan) {
2727 			dev_err(nandc->dev,
2728 				"failed to request slave channel\n");
2729 			return -ENODEV;
2730 		}
2731 	}
2732 
2733 	INIT_LIST_HEAD(&nandc->desc_list);
2734 	INIT_LIST_HEAD(&nandc->host_list);
2735 
2736 	nand_controller_init(&nandc->controller);
2737 	nandc->controller.ops = &qcom_nandc_ops;
2738 
2739 	return 0;
2740 }
2741 
qcom_nandc_unalloc(struct qcom_nand_controller * nandc)2742 static void qcom_nandc_unalloc(struct qcom_nand_controller *nandc)
2743 {
2744 	if (nandc->props->is_bam) {
2745 		if (!dma_mapping_error(nandc->dev, nandc->reg_read_dma))
2746 			dma_unmap_single(nandc->dev, nandc->reg_read_dma,
2747 					 MAX_REG_RD *
2748 					 sizeof(*nandc->reg_read_buf),
2749 					 DMA_FROM_DEVICE);
2750 
2751 		if (nandc->tx_chan)
2752 			dma_release_channel(nandc->tx_chan);
2753 
2754 		if (nandc->rx_chan)
2755 			dma_release_channel(nandc->rx_chan);
2756 
2757 		if (nandc->cmd_chan)
2758 			dma_release_channel(nandc->cmd_chan);
2759 	} else {
2760 		if (nandc->chan)
2761 			dma_release_channel(nandc->chan);
2762 	}
2763 }
2764 
2765 /* one time setup of a few nand controller registers */
qcom_nandc_setup(struct qcom_nand_controller * nandc)2766 static int qcom_nandc_setup(struct qcom_nand_controller *nandc)
2767 {
2768 	u32 nand_ctrl;
2769 
2770 	/* kill onenand */
2771 	if (!nandc->props->is_qpic)
2772 		nandc_write(nandc, SFLASHC_BURST_CFG, 0);
2773 	nandc_write(nandc, dev_cmd_reg_addr(nandc, NAND_DEV_CMD_VLD),
2774 		    NAND_DEV_CMD_VLD_VAL);
2775 
2776 	/* enable ADM or BAM DMA */
2777 	if (nandc->props->is_bam) {
2778 		nand_ctrl = nandc_read(nandc, NAND_CTRL);
2779 		nandc_write(nandc, NAND_CTRL, nand_ctrl | BAM_MODE_EN);
2780 	} else {
2781 		nandc_write(nandc, NAND_FLASH_CHIP_SELECT, DM_EN);
2782 	}
2783 
2784 	/* save the original values of these registers */
2785 	nandc->cmd1 = nandc_read(nandc, dev_cmd_reg_addr(nandc, NAND_DEV_CMD1));
2786 	nandc->vld = NAND_DEV_CMD_VLD_VAL;
2787 
2788 	return 0;
2789 }
2790 
qcom_nand_host_init_and_register(struct qcom_nand_controller * nandc,struct qcom_nand_host * host,struct device_node * dn)2791 static int qcom_nand_host_init_and_register(struct qcom_nand_controller *nandc,
2792 					    struct qcom_nand_host *host,
2793 					    struct device_node *dn)
2794 {
2795 	struct nand_chip *chip = &host->chip;
2796 	struct mtd_info *mtd = nand_to_mtd(chip);
2797 	struct device *dev = nandc->dev;
2798 	int ret;
2799 
2800 	ret = of_property_read_u32(dn, "reg", &host->cs);
2801 	if (ret) {
2802 		dev_err(dev, "can't get chip-select\n");
2803 		return -ENXIO;
2804 	}
2805 
2806 	nand_set_flash_node(chip, dn);
2807 	mtd->name = devm_kasprintf(dev, GFP_KERNEL, "qcom_nand.%d", host->cs);
2808 	if (!mtd->name)
2809 		return -ENOMEM;
2810 
2811 	mtd->owner = THIS_MODULE;
2812 	mtd->dev.parent = dev;
2813 
2814 	chip->cmdfunc		= qcom_nandc_command;
2815 	chip->select_chip	= qcom_nandc_select_chip;
2816 	chip->read_byte		= qcom_nandc_read_byte;
2817 	chip->read_buf		= qcom_nandc_read_buf;
2818 	chip->write_buf		= qcom_nandc_write_buf;
2819 	chip->set_features	= nand_get_set_features_notsupp;
2820 	chip->get_features	= nand_get_set_features_notsupp;
2821 
2822 	/*
2823 	 * the bad block marker is readable only when we read the last codeword
2824 	 * of a page with ECC disabled. currently, the nand_base and nand_bbt
2825 	 * helpers don't allow us to read BB from a nand chip with ECC
2826 	 * disabled (MTD_OPS_PLACE_OOB is set by default). use the block_bad
2827 	 * and block_markbad helpers until we permanently switch to using
2828 	 * MTD_OPS_RAW for all drivers (with the help of badblockbits)
2829 	 */
2830 	chip->block_bad		= qcom_nandc_block_bad;
2831 	chip->block_markbad	= qcom_nandc_block_markbad;
2832 
2833 	chip->controller = &nandc->controller;
2834 	chip->options |= NAND_NO_SUBPAGE_WRITE | NAND_USE_BOUNCE_BUFFER |
2835 			 NAND_SKIP_BBTSCAN;
2836 
2837 	/* set up initial status value */
2838 	host->status = NAND_STATUS_READY | NAND_STATUS_WP;
2839 
2840 	ret = nand_scan(chip, 1);
2841 	if (ret)
2842 		return ret;
2843 
2844 	if (nandc->props->is_bam) {
2845 		free_bam_transaction(nandc);
2846 		nandc->bam_txn = alloc_bam_transaction(nandc);
2847 		if (!nandc->bam_txn) {
2848 			dev_err(nandc->dev,
2849 				"failed to allocate bam transaction\n");
2850 			return -ENOMEM;
2851 		}
2852 	}
2853 
2854 	ret = mtd_device_register(mtd, NULL, 0);
2855 	if (ret)
2856 		nand_cleanup(chip);
2857 
2858 	return ret;
2859 }
2860 
qcom_probe_nand_devices(struct qcom_nand_controller * nandc)2861 static int qcom_probe_nand_devices(struct qcom_nand_controller *nandc)
2862 {
2863 	struct device *dev = nandc->dev;
2864 	struct device_node *dn = dev->of_node, *child;
2865 	struct qcom_nand_host *host;
2866 	int ret;
2867 
2868 	for_each_available_child_of_node(dn, child) {
2869 		host = devm_kzalloc(dev, sizeof(*host), GFP_KERNEL);
2870 		if (!host) {
2871 			of_node_put(child);
2872 			return -ENOMEM;
2873 		}
2874 
2875 		ret = qcom_nand_host_init_and_register(nandc, host, child);
2876 		if (ret) {
2877 			devm_kfree(dev, host);
2878 			continue;
2879 		}
2880 
2881 		list_add_tail(&host->node, &nandc->host_list);
2882 	}
2883 
2884 	if (list_empty(&nandc->host_list))
2885 		return -ENODEV;
2886 
2887 	return 0;
2888 }
2889 
2890 /* parse custom DT properties here */
qcom_nandc_parse_dt(struct platform_device * pdev)2891 static int qcom_nandc_parse_dt(struct platform_device *pdev)
2892 {
2893 	struct qcom_nand_controller *nandc = platform_get_drvdata(pdev);
2894 	struct device_node *np = nandc->dev->of_node;
2895 	int ret;
2896 
2897 	if (!nandc->props->is_bam) {
2898 		ret = of_property_read_u32(np, "qcom,cmd-crci",
2899 					   &nandc->cmd_crci);
2900 		if (ret) {
2901 			dev_err(nandc->dev, "command CRCI unspecified\n");
2902 			return ret;
2903 		}
2904 
2905 		ret = of_property_read_u32(np, "qcom,data-crci",
2906 					   &nandc->data_crci);
2907 		if (ret) {
2908 			dev_err(nandc->dev, "data CRCI unspecified\n");
2909 			return ret;
2910 		}
2911 	}
2912 
2913 	return 0;
2914 }
2915 
qcom_nandc_probe(struct platform_device * pdev)2916 static int qcom_nandc_probe(struct platform_device *pdev)
2917 {
2918 	struct qcom_nand_controller *nandc;
2919 	const void *dev_data;
2920 	struct device *dev = &pdev->dev;
2921 	struct resource *res;
2922 	int ret;
2923 
2924 	nandc = devm_kzalloc(&pdev->dev, sizeof(*nandc), GFP_KERNEL);
2925 	if (!nandc)
2926 		return -ENOMEM;
2927 
2928 	platform_set_drvdata(pdev, nandc);
2929 	nandc->dev = dev;
2930 
2931 	dev_data = of_device_get_match_data(dev);
2932 	if (!dev_data) {
2933 		dev_err(&pdev->dev, "failed to get device data\n");
2934 		return -ENODEV;
2935 	}
2936 
2937 	nandc->props = dev_data;
2938 
2939 	nandc->core_clk = devm_clk_get(dev, "core");
2940 	if (IS_ERR(nandc->core_clk))
2941 		return PTR_ERR(nandc->core_clk);
2942 
2943 	nandc->aon_clk = devm_clk_get(dev, "aon");
2944 	if (IS_ERR(nandc->aon_clk))
2945 		return PTR_ERR(nandc->aon_clk);
2946 
2947 	ret = qcom_nandc_parse_dt(pdev);
2948 	if (ret)
2949 		return ret;
2950 
2951 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2952 	nandc->base = devm_ioremap_resource(dev, res);
2953 	if (IS_ERR(nandc->base))
2954 		return PTR_ERR(nandc->base);
2955 
2956 	nandc->base_phys = res->start;
2957 	nandc->base_dma = dma_map_resource(dev, res->start,
2958 					   resource_size(res),
2959 					   DMA_BIDIRECTIONAL, 0);
2960 	if (!nandc->base_dma)
2961 		return -ENXIO;
2962 
2963 	ret = qcom_nandc_alloc(nandc);
2964 	if (ret)
2965 		goto err_nandc_alloc;
2966 
2967 	ret = clk_prepare_enable(nandc->core_clk);
2968 	if (ret)
2969 		goto err_core_clk;
2970 
2971 	ret = clk_prepare_enable(nandc->aon_clk);
2972 	if (ret)
2973 		goto err_aon_clk;
2974 
2975 	ret = qcom_nandc_setup(nandc);
2976 	if (ret)
2977 		goto err_setup;
2978 
2979 	ret = qcom_probe_nand_devices(nandc);
2980 	if (ret)
2981 		goto err_setup;
2982 
2983 	return 0;
2984 
2985 err_setup:
2986 	clk_disable_unprepare(nandc->aon_clk);
2987 err_aon_clk:
2988 	clk_disable_unprepare(nandc->core_clk);
2989 err_core_clk:
2990 	qcom_nandc_unalloc(nandc);
2991 err_nandc_alloc:
2992 	dma_unmap_resource(dev, res->start, resource_size(res),
2993 			   DMA_BIDIRECTIONAL, 0);
2994 
2995 	return ret;
2996 }
2997 
qcom_nandc_remove(struct platform_device * pdev)2998 static int qcom_nandc_remove(struct platform_device *pdev)
2999 {
3000 	struct qcom_nand_controller *nandc = platform_get_drvdata(pdev);
3001 	struct resource *res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
3002 	struct qcom_nand_host *host;
3003 
3004 	list_for_each_entry(host, &nandc->host_list, node)
3005 		nand_release(&host->chip);
3006 
3007 
3008 	qcom_nandc_unalloc(nandc);
3009 
3010 	clk_disable_unprepare(nandc->aon_clk);
3011 	clk_disable_unprepare(nandc->core_clk);
3012 
3013 	dma_unmap_resource(&pdev->dev, nandc->base_dma, resource_size(res),
3014 			   DMA_BIDIRECTIONAL, 0);
3015 
3016 	return 0;
3017 }
3018 
3019 static const struct qcom_nandc_props ipq806x_nandc_props = {
3020 	.ecc_modes = (ECC_RS_4BIT | ECC_BCH_8BIT),
3021 	.is_bam = false,
3022 	.dev_cmd_reg_start = 0x0,
3023 };
3024 
3025 static const struct qcom_nandc_props ipq4019_nandc_props = {
3026 	.ecc_modes = (ECC_BCH_4BIT | ECC_BCH_8BIT),
3027 	.is_bam = true,
3028 	.is_qpic = true,
3029 	.dev_cmd_reg_start = 0x0,
3030 };
3031 
3032 static const struct qcom_nandc_props ipq8074_nandc_props = {
3033 	.ecc_modes = (ECC_BCH_4BIT | ECC_BCH_8BIT),
3034 	.is_bam = true,
3035 	.is_qpic = true,
3036 	.dev_cmd_reg_start = 0x7000,
3037 };
3038 
3039 /*
3040  * data will hold a struct pointer containing more differences once we support
3041  * more controller variants
3042  */
3043 static const struct of_device_id qcom_nandc_of_match[] = {
3044 	{
3045 		.compatible = "qcom,ipq806x-nand",
3046 		.data = &ipq806x_nandc_props,
3047 	},
3048 	{
3049 		.compatible = "qcom,ipq4019-nand",
3050 		.data = &ipq4019_nandc_props,
3051 	},
3052 	{
3053 		.compatible = "qcom,ipq8074-nand",
3054 		.data = &ipq8074_nandc_props,
3055 	},
3056 	{}
3057 };
3058 MODULE_DEVICE_TABLE(of, qcom_nandc_of_match);
3059 
3060 static struct platform_driver qcom_nandc_driver = {
3061 	.driver = {
3062 		.name = "qcom-nandc",
3063 		.of_match_table = qcom_nandc_of_match,
3064 	},
3065 	.probe   = qcom_nandc_probe,
3066 	.remove  = qcom_nandc_remove,
3067 };
3068 module_platform_driver(qcom_nandc_driver);
3069 
3070 MODULE_AUTHOR("Archit Taneja <architt@codeaurora.org>");
3071 MODULE_DESCRIPTION("Qualcomm NAND Controller driver");
3072 MODULE_LICENSE("GPL v2");
3073