• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Driver for Cadence QSPI Controller
3  *
4  * Copyright Altera Corporation (C) 2012-2014. All rights reserved.
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms and conditions of the GNU General Public License,
8  * version 2, as published by the Free Software Foundation.
9  *
10  * This program is distributed in the hope it will be useful, but WITHOUT
11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13  * more details.
14  *
15  * You should have received a copy of the GNU General Public License along with
16  * this program.  If not, see <http://www.gnu.org/licenses/>.
17  */
18 #include <linux/clk.h>
19 #include <linux/completion.h>
20 #include <linux/delay.h>
21 #include <linux/dma-mapping.h>
22 #include <linux/dmaengine.h>
23 #include <linux/err.h>
24 #include <linux/errno.h>
25 #include <linux/interrupt.h>
26 #include <linux/io.h>
27 #include <linux/jiffies.h>
28 #include <linux/kernel.h>
29 #include <linux/module.h>
30 #include <linux/mtd/mtd.h>
31 #include <linux/mtd/partitions.h>
32 #include <linux/mtd/spi-nor.h>
33 #include <linux/of_device.h>
34 #include <linux/of.h>
35 #include <linux/platform_device.h>
36 #include <linux/pm_runtime.h>
37 #include <linux/sched.h>
38 #include <linux/spi/spi.h>
39 #include <linux/timer.h>
40 
41 #define CQSPI_NAME			"cadence-qspi"
42 #define CQSPI_MAX_CHIPSELECT		16
43 
44 /* Quirks */
45 #define CQSPI_NEEDS_WR_DELAY		BIT(0)
46 
47 struct cqspi_st;
48 
49 struct cqspi_flash_pdata {
50 	struct spi_nor	nor;
51 	struct cqspi_st	*cqspi;
52 	u32		clk_rate;
53 	u32		read_delay;
54 	u32		tshsl_ns;
55 	u32		tsd2d_ns;
56 	u32		tchsh_ns;
57 	u32		tslch_ns;
58 	u8		inst_width;
59 	u8		addr_width;
60 	u8		data_width;
61 	u8		cs;
62 	bool		registered;
63 	bool		use_direct_mode;
64 };
65 
66 struct cqspi_st {
67 	struct platform_device	*pdev;
68 
69 	struct clk		*clk;
70 	unsigned int		sclk;
71 
72 	void __iomem		*iobase;
73 	void __iomem		*ahb_base;
74 	resource_size_t		ahb_size;
75 	struct completion	transfer_complete;
76 	struct mutex		bus_mutex;
77 
78 	struct dma_chan		*rx_chan;
79 	struct completion	rx_dma_complete;
80 	dma_addr_t		mmap_phys_base;
81 
82 	int			current_cs;
83 	int			current_page_size;
84 	int			current_erase_size;
85 	int			current_addr_width;
86 	unsigned long		master_ref_clk_hz;
87 	bool			is_decoded_cs;
88 	u32			fifo_depth;
89 	u32			fifo_width;
90 	bool			rclk_en;
91 	u32			trigger_address;
92 	u32			wr_delay;
93 	struct cqspi_flash_pdata f_pdata[CQSPI_MAX_CHIPSELECT];
94 };
95 
96 /* Operation timeout value */
97 #define CQSPI_TIMEOUT_MS			500
98 #define CQSPI_READ_TIMEOUT_MS			10
99 
100 /* Instruction type */
101 #define CQSPI_INST_TYPE_SINGLE			0
102 #define CQSPI_INST_TYPE_DUAL			1
103 #define CQSPI_INST_TYPE_QUAD			2
104 
105 #define CQSPI_DUMMY_CLKS_PER_BYTE		8
106 #define CQSPI_DUMMY_BYTES_MAX			4
107 #define CQSPI_DUMMY_CLKS_MAX			31
108 
109 #define CQSPI_STIG_DATA_LEN_MAX			8
110 
111 /* Register map */
112 #define CQSPI_REG_CONFIG			0x00
113 #define CQSPI_REG_CONFIG_ENABLE_MASK		BIT(0)
114 #define CQSPI_REG_CONFIG_ENB_DIR_ACC_CTRL	BIT(7)
115 #define CQSPI_REG_CONFIG_DECODE_MASK		BIT(9)
116 #define CQSPI_REG_CONFIG_CHIPSELECT_LSB		10
117 #define CQSPI_REG_CONFIG_DMA_MASK		BIT(15)
118 #define CQSPI_REG_CONFIG_BAUD_LSB		19
119 #define CQSPI_REG_CONFIG_IDLE_LSB		31
120 #define CQSPI_REG_CONFIG_CHIPSELECT_MASK	0xF
121 #define CQSPI_REG_CONFIG_BAUD_MASK		0xF
122 
123 #define CQSPI_REG_RD_INSTR			0x04
124 #define CQSPI_REG_RD_INSTR_OPCODE_LSB		0
125 #define CQSPI_REG_RD_INSTR_TYPE_INSTR_LSB	8
126 #define CQSPI_REG_RD_INSTR_TYPE_ADDR_LSB	12
127 #define CQSPI_REG_RD_INSTR_TYPE_DATA_LSB	16
128 #define CQSPI_REG_RD_INSTR_MODE_EN_LSB		20
129 #define CQSPI_REG_RD_INSTR_DUMMY_LSB		24
130 #define CQSPI_REG_RD_INSTR_TYPE_INSTR_MASK	0x3
131 #define CQSPI_REG_RD_INSTR_TYPE_ADDR_MASK	0x3
132 #define CQSPI_REG_RD_INSTR_TYPE_DATA_MASK	0x3
133 #define CQSPI_REG_RD_INSTR_DUMMY_MASK		0x1F
134 
135 #define CQSPI_REG_WR_INSTR			0x08
136 #define CQSPI_REG_WR_INSTR_OPCODE_LSB		0
137 #define CQSPI_REG_WR_INSTR_TYPE_ADDR_LSB	12
138 #define CQSPI_REG_WR_INSTR_TYPE_DATA_LSB	16
139 
140 #define CQSPI_REG_DELAY				0x0C
141 #define CQSPI_REG_DELAY_TSLCH_LSB		0
142 #define CQSPI_REG_DELAY_TCHSH_LSB		8
143 #define CQSPI_REG_DELAY_TSD2D_LSB		16
144 #define CQSPI_REG_DELAY_TSHSL_LSB		24
145 #define CQSPI_REG_DELAY_TSLCH_MASK		0xFF
146 #define CQSPI_REG_DELAY_TCHSH_MASK		0xFF
147 #define CQSPI_REG_DELAY_TSD2D_MASK		0xFF
148 #define CQSPI_REG_DELAY_TSHSL_MASK		0xFF
149 
150 #define CQSPI_REG_READCAPTURE			0x10
151 #define CQSPI_REG_READCAPTURE_BYPASS_LSB	0
152 #define CQSPI_REG_READCAPTURE_DELAY_LSB		1
153 #define CQSPI_REG_READCAPTURE_DELAY_MASK	0xF
154 
155 #define CQSPI_REG_SIZE				0x14
156 #define CQSPI_REG_SIZE_ADDRESS_LSB		0
157 #define CQSPI_REG_SIZE_PAGE_LSB			4
158 #define CQSPI_REG_SIZE_BLOCK_LSB		16
159 #define CQSPI_REG_SIZE_ADDRESS_MASK		0xF
160 #define CQSPI_REG_SIZE_PAGE_MASK		0xFFF
161 #define CQSPI_REG_SIZE_BLOCK_MASK		0x3F
162 
163 #define CQSPI_REG_SRAMPARTITION			0x18
164 #define CQSPI_REG_INDIRECTTRIGGER		0x1C
165 
166 #define CQSPI_REG_DMA				0x20
167 #define CQSPI_REG_DMA_SINGLE_LSB		0
168 #define CQSPI_REG_DMA_BURST_LSB			8
169 #define CQSPI_REG_DMA_SINGLE_MASK		0xFF
170 #define CQSPI_REG_DMA_BURST_MASK		0xFF
171 
172 #define CQSPI_REG_REMAP				0x24
173 #define CQSPI_REG_MODE_BIT			0x28
174 
175 #define CQSPI_REG_SDRAMLEVEL			0x2C
176 #define CQSPI_REG_SDRAMLEVEL_RD_LSB		0
177 #define CQSPI_REG_SDRAMLEVEL_WR_LSB		16
178 #define CQSPI_REG_SDRAMLEVEL_RD_MASK		0xFFFF
179 #define CQSPI_REG_SDRAMLEVEL_WR_MASK		0xFFFF
180 
181 #define CQSPI_REG_IRQSTATUS			0x40
182 #define CQSPI_REG_IRQMASK			0x44
183 
184 #define CQSPI_REG_INDIRECTRD			0x60
185 #define CQSPI_REG_INDIRECTRD_START_MASK		BIT(0)
186 #define CQSPI_REG_INDIRECTRD_CANCEL_MASK	BIT(1)
187 #define CQSPI_REG_INDIRECTRD_DONE_MASK		BIT(5)
188 
189 #define CQSPI_REG_INDIRECTRDWATERMARK		0x64
190 #define CQSPI_REG_INDIRECTRDSTARTADDR		0x68
191 #define CQSPI_REG_INDIRECTRDBYTES		0x6C
192 
193 #define CQSPI_REG_CMDCTRL			0x90
194 #define CQSPI_REG_CMDCTRL_EXECUTE_MASK		BIT(0)
195 #define CQSPI_REG_CMDCTRL_INPROGRESS_MASK	BIT(1)
196 #define CQSPI_REG_CMDCTRL_WR_BYTES_LSB		12
197 #define CQSPI_REG_CMDCTRL_WR_EN_LSB		15
198 #define CQSPI_REG_CMDCTRL_ADD_BYTES_LSB		16
199 #define CQSPI_REG_CMDCTRL_ADDR_EN_LSB		19
200 #define CQSPI_REG_CMDCTRL_RD_BYTES_LSB		20
201 #define CQSPI_REG_CMDCTRL_RD_EN_LSB		23
202 #define CQSPI_REG_CMDCTRL_OPCODE_LSB		24
203 #define CQSPI_REG_CMDCTRL_WR_BYTES_MASK		0x7
204 #define CQSPI_REG_CMDCTRL_ADD_BYTES_MASK	0x3
205 #define CQSPI_REG_CMDCTRL_RD_BYTES_MASK		0x7
206 
207 #define CQSPI_REG_INDIRECTWR			0x70
208 #define CQSPI_REG_INDIRECTWR_START_MASK		BIT(0)
209 #define CQSPI_REG_INDIRECTWR_CANCEL_MASK	BIT(1)
210 #define CQSPI_REG_INDIRECTWR_DONE_MASK		BIT(5)
211 
212 #define CQSPI_REG_INDIRECTWRWATERMARK		0x74
213 #define CQSPI_REG_INDIRECTWRSTARTADDR		0x78
214 #define CQSPI_REG_INDIRECTWRBYTES		0x7C
215 
216 #define CQSPI_REG_CMDADDRESS			0x94
217 #define CQSPI_REG_CMDREADDATALOWER		0xA0
218 #define CQSPI_REG_CMDREADDATAUPPER		0xA4
219 #define CQSPI_REG_CMDWRITEDATALOWER		0xA8
220 #define CQSPI_REG_CMDWRITEDATAUPPER		0xAC
221 
222 /* Interrupt status bits */
223 #define CQSPI_REG_IRQ_MODE_ERR			BIT(0)
224 #define CQSPI_REG_IRQ_UNDERFLOW			BIT(1)
225 #define CQSPI_REG_IRQ_IND_COMP			BIT(2)
226 #define CQSPI_REG_IRQ_IND_RD_REJECT		BIT(3)
227 #define CQSPI_REG_IRQ_WR_PROTECTED_ERR		BIT(4)
228 #define CQSPI_REG_IRQ_ILLEGAL_AHB_ERR		BIT(5)
229 #define CQSPI_REG_IRQ_WATERMARK			BIT(6)
230 #define CQSPI_REG_IRQ_IND_SRAM_FULL		BIT(12)
231 
232 #define CQSPI_IRQ_MASK_RD		(CQSPI_REG_IRQ_WATERMARK	| \
233 					 CQSPI_REG_IRQ_IND_SRAM_FULL	| \
234 					 CQSPI_REG_IRQ_IND_COMP)
235 
236 #define CQSPI_IRQ_MASK_WR		(CQSPI_REG_IRQ_IND_COMP		| \
237 					 CQSPI_REG_IRQ_WATERMARK	| \
238 					 CQSPI_REG_IRQ_UNDERFLOW)
239 
240 #define CQSPI_IRQ_STATUS_MASK		0x1FFFF
241 
cqspi_wait_for_bit(void __iomem * reg,const u32 mask,bool clear)242 static int cqspi_wait_for_bit(void __iomem *reg, const u32 mask, bool clear)
243 {
244 	unsigned long end = jiffies + msecs_to_jiffies(CQSPI_TIMEOUT_MS);
245 	u32 val;
246 
247 	while (1) {
248 		val = readl(reg);
249 		if (clear)
250 			val = ~val;
251 		val &= mask;
252 
253 		if (val == mask)
254 			return 0;
255 
256 		if (time_after(jiffies, end))
257 			return -ETIMEDOUT;
258 	}
259 }
260 
cqspi_is_idle(struct cqspi_st * cqspi)261 static bool cqspi_is_idle(struct cqspi_st *cqspi)
262 {
263 	u32 reg = readl(cqspi->iobase + CQSPI_REG_CONFIG);
264 
265 	return reg & (1 << CQSPI_REG_CONFIG_IDLE_LSB);
266 }
267 
cqspi_get_rd_sram_level(struct cqspi_st * cqspi)268 static u32 cqspi_get_rd_sram_level(struct cqspi_st *cqspi)
269 {
270 	u32 reg = readl(cqspi->iobase + CQSPI_REG_SDRAMLEVEL);
271 
272 	reg >>= CQSPI_REG_SDRAMLEVEL_RD_LSB;
273 	return reg & CQSPI_REG_SDRAMLEVEL_RD_MASK;
274 }
275 
cqspi_irq_handler(int this_irq,void * dev)276 static irqreturn_t cqspi_irq_handler(int this_irq, void *dev)
277 {
278 	struct cqspi_st *cqspi = dev;
279 	unsigned int irq_status;
280 
281 	/* Read interrupt status */
282 	irq_status = readl(cqspi->iobase + CQSPI_REG_IRQSTATUS);
283 
284 	/* Clear interrupt */
285 	writel(irq_status, cqspi->iobase + CQSPI_REG_IRQSTATUS);
286 
287 	irq_status &= CQSPI_IRQ_MASK_RD | CQSPI_IRQ_MASK_WR;
288 
289 	if (irq_status)
290 		complete(&cqspi->transfer_complete);
291 
292 	return IRQ_HANDLED;
293 }
294 
cqspi_calc_rdreg(struct spi_nor * nor,const u8 opcode)295 static unsigned int cqspi_calc_rdreg(struct spi_nor *nor, const u8 opcode)
296 {
297 	struct cqspi_flash_pdata *f_pdata = nor->priv;
298 	u32 rdreg = 0;
299 
300 	rdreg |= f_pdata->inst_width << CQSPI_REG_RD_INSTR_TYPE_INSTR_LSB;
301 	rdreg |= f_pdata->addr_width << CQSPI_REG_RD_INSTR_TYPE_ADDR_LSB;
302 	rdreg |= f_pdata->data_width << CQSPI_REG_RD_INSTR_TYPE_DATA_LSB;
303 
304 	return rdreg;
305 }
306 
cqspi_wait_idle(struct cqspi_st * cqspi)307 static int cqspi_wait_idle(struct cqspi_st *cqspi)
308 {
309 	const unsigned int poll_idle_retry = 3;
310 	unsigned int count = 0;
311 	unsigned long timeout;
312 
313 	timeout = jiffies + msecs_to_jiffies(CQSPI_TIMEOUT_MS);
314 	while (1) {
315 		/*
316 		 * Read few times in succession to ensure the controller
317 		 * is indeed idle, that is, the bit does not transition
318 		 * low again.
319 		 */
320 		if (cqspi_is_idle(cqspi))
321 			count++;
322 		else
323 			count = 0;
324 
325 		if (count >= poll_idle_retry)
326 			return 0;
327 
328 		if (time_after(jiffies, timeout)) {
329 			/* Timeout, in busy mode. */
330 			dev_err(&cqspi->pdev->dev,
331 				"QSPI is still busy after %dms timeout.\n",
332 				CQSPI_TIMEOUT_MS);
333 			return -ETIMEDOUT;
334 		}
335 
336 		cpu_relax();
337 	}
338 }
339 
cqspi_exec_flash_cmd(struct cqspi_st * cqspi,unsigned int reg)340 static int cqspi_exec_flash_cmd(struct cqspi_st *cqspi, unsigned int reg)
341 {
342 	void __iomem *reg_base = cqspi->iobase;
343 	int ret;
344 
345 	/* Write the CMDCTRL without start execution. */
346 	writel(reg, reg_base + CQSPI_REG_CMDCTRL);
347 	/* Start execute */
348 	reg |= CQSPI_REG_CMDCTRL_EXECUTE_MASK;
349 	writel(reg, reg_base + CQSPI_REG_CMDCTRL);
350 
351 	/* Polling for completion. */
352 	ret = cqspi_wait_for_bit(reg_base + CQSPI_REG_CMDCTRL,
353 				 CQSPI_REG_CMDCTRL_INPROGRESS_MASK, 1);
354 	if (ret) {
355 		dev_err(&cqspi->pdev->dev,
356 			"Flash command execution timed out.\n");
357 		return ret;
358 	}
359 
360 	/* Polling QSPI idle status. */
361 	return cqspi_wait_idle(cqspi);
362 }
363 
cqspi_command_read(struct spi_nor * nor,const u8 * txbuf,const unsigned n_tx,u8 * rxbuf,const unsigned n_rx)364 static int cqspi_command_read(struct spi_nor *nor,
365 			      const u8 *txbuf, const unsigned n_tx,
366 			      u8 *rxbuf, const unsigned n_rx)
367 {
368 	struct cqspi_flash_pdata *f_pdata = nor->priv;
369 	struct cqspi_st *cqspi = f_pdata->cqspi;
370 	void __iomem *reg_base = cqspi->iobase;
371 	unsigned int rdreg;
372 	unsigned int reg;
373 	unsigned int read_len;
374 	int status;
375 
376 	if (!n_rx || n_rx > CQSPI_STIG_DATA_LEN_MAX || !rxbuf) {
377 		dev_err(nor->dev, "Invalid input argument, len %d rxbuf 0x%p\n",
378 			n_rx, rxbuf);
379 		return -EINVAL;
380 	}
381 
382 	reg = txbuf[0] << CQSPI_REG_CMDCTRL_OPCODE_LSB;
383 
384 	rdreg = cqspi_calc_rdreg(nor, txbuf[0]);
385 	writel(rdreg, reg_base + CQSPI_REG_RD_INSTR);
386 
387 	reg |= (0x1 << CQSPI_REG_CMDCTRL_RD_EN_LSB);
388 
389 	/* 0 means 1 byte. */
390 	reg |= (((n_rx - 1) & CQSPI_REG_CMDCTRL_RD_BYTES_MASK)
391 		<< CQSPI_REG_CMDCTRL_RD_BYTES_LSB);
392 	status = cqspi_exec_flash_cmd(cqspi, reg);
393 	if (status)
394 		return status;
395 
396 	reg = readl(reg_base + CQSPI_REG_CMDREADDATALOWER);
397 
398 	/* Put the read value into rx_buf */
399 	read_len = (n_rx > 4) ? 4 : n_rx;
400 	memcpy(rxbuf, &reg, read_len);
401 	rxbuf += read_len;
402 
403 	if (n_rx > 4) {
404 		reg = readl(reg_base + CQSPI_REG_CMDREADDATAUPPER);
405 
406 		read_len = n_rx - read_len;
407 		memcpy(rxbuf, &reg, read_len);
408 	}
409 
410 	return 0;
411 }
412 
cqspi_command_write(struct spi_nor * nor,const u8 opcode,const u8 * txbuf,const unsigned n_tx)413 static int cqspi_command_write(struct spi_nor *nor, const u8 opcode,
414 			       const u8 *txbuf, const unsigned n_tx)
415 {
416 	struct cqspi_flash_pdata *f_pdata = nor->priv;
417 	struct cqspi_st *cqspi = f_pdata->cqspi;
418 	void __iomem *reg_base = cqspi->iobase;
419 	unsigned int reg;
420 	unsigned int data;
421 	int ret;
422 
423 	if (n_tx > 4 || (n_tx && !txbuf)) {
424 		dev_err(nor->dev,
425 			"Invalid input argument, cmdlen %d txbuf 0x%p\n",
426 			n_tx, txbuf);
427 		return -EINVAL;
428 	}
429 
430 	reg = opcode << CQSPI_REG_CMDCTRL_OPCODE_LSB;
431 	if (n_tx) {
432 		reg |= (0x1 << CQSPI_REG_CMDCTRL_WR_EN_LSB);
433 		reg |= ((n_tx - 1) & CQSPI_REG_CMDCTRL_WR_BYTES_MASK)
434 			<< CQSPI_REG_CMDCTRL_WR_BYTES_LSB;
435 		data = 0;
436 		memcpy(&data, txbuf, n_tx);
437 		writel(data, reg_base + CQSPI_REG_CMDWRITEDATALOWER);
438 	}
439 
440 	ret = cqspi_exec_flash_cmd(cqspi, reg);
441 	return ret;
442 }
443 
cqspi_command_write_addr(struct spi_nor * nor,const u8 opcode,const unsigned int addr)444 static int cqspi_command_write_addr(struct spi_nor *nor,
445 				    const u8 opcode, const unsigned int addr)
446 {
447 	struct cqspi_flash_pdata *f_pdata = nor->priv;
448 	struct cqspi_st *cqspi = f_pdata->cqspi;
449 	void __iomem *reg_base = cqspi->iobase;
450 	unsigned int reg;
451 
452 	reg = opcode << CQSPI_REG_CMDCTRL_OPCODE_LSB;
453 	reg |= (0x1 << CQSPI_REG_CMDCTRL_ADDR_EN_LSB);
454 	reg |= ((nor->addr_width - 1) & CQSPI_REG_CMDCTRL_ADD_BYTES_MASK)
455 		<< CQSPI_REG_CMDCTRL_ADD_BYTES_LSB;
456 
457 	writel(addr, reg_base + CQSPI_REG_CMDADDRESS);
458 
459 	return cqspi_exec_flash_cmd(cqspi, reg);
460 }
461 
cqspi_read_setup(struct spi_nor * nor)462 static int cqspi_read_setup(struct spi_nor *nor)
463 {
464 	struct cqspi_flash_pdata *f_pdata = nor->priv;
465 	struct cqspi_st *cqspi = f_pdata->cqspi;
466 	void __iomem *reg_base = cqspi->iobase;
467 	unsigned int dummy_clk = 0;
468 	unsigned int reg;
469 
470 	reg = nor->read_opcode << CQSPI_REG_RD_INSTR_OPCODE_LSB;
471 	reg |= cqspi_calc_rdreg(nor, nor->read_opcode);
472 
473 	/* Setup dummy clock cycles */
474 	dummy_clk = nor->read_dummy;
475 	if (dummy_clk > CQSPI_DUMMY_CLKS_MAX)
476 		dummy_clk = CQSPI_DUMMY_CLKS_MAX;
477 
478 	if (dummy_clk / 8) {
479 		reg |= (1 << CQSPI_REG_RD_INSTR_MODE_EN_LSB);
480 		/* Set mode bits high to ensure chip doesn't enter XIP */
481 		writel(0xFF, reg_base + CQSPI_REG_MODE_BIT);
482 
483 		/* Need to subtract the mode byte (8 clocks). */
484 		if (f_pdata->inst_width != CQSPI_INST_TYPE_QUAD)
485 			dummy_clk -= 8;
486 
487 		if (dummy_clk)
488 			reg |= (dummy_clk & CQSPI_REG_RD_INSTR_DUMMY_MASK)
489 			       << CQSPI_REG_RD_INSTR_DUMMY_LSB;
490 	}
491 
492 	writel(reg, reg_base + CQSPI_REG_RD_INSTR);
493 
494 	/* Set address width */
495 	reg = readl(reg_base + CQSPI_REG_SIZE);
496 	reg &= ~CQSPI_REG_SIZE_ADDRESS_MASK;
497 	reg |= (nor->addr_width - 1);
498 	writel(reg, reg_base + CQSPI_REG_SIZE);
499 	return 0;
500 }
501 
cqspi_indirect_read_execute(struct spi_nor * nor,u8 * rxbuf,loff_t from_addr,const size_t n_rx)502 static int cqspi_indirect_read_execute(struct spi_nor *nor, u8 *rxbuf,
503 				       loff_t from_addr, const size_t n_rx)
504 {
505 	struct cqspi_flash_pdata *f_pdata = nor->priv;
506 	struct cqspi_st *cqspi = f_pdata->cqspi;
507 	void __iomem *reg_base = cqspi->iobase;
508 	void __iomem *ahb_base = cqspi->ahb_base;
509 	unsigned int remaining = n_rx;
510 	unsigned int mod_bytes = n_rx % 4;
511 	unsigned int bytes_to_read = 0;
512 	u8 *rxbuf_end = rxbuf + n_rx;
513 	int ret = 0;
514 
515 	writel(from_addr, reg_base + CQSPI_REG_INDIRECTRDSTARTADDR);
516 	writel(remaining, reg_base + CQSPI_REG_INDIRECTRDBYTES);
517 
518 	/* Clear all interrupts. */
519 	writel(CQSPI_IRQ_STATUS_MASK, reg_base + CQSPI_REG_IRQSTATUS);
520 
521 	writel(CQSPI_IRQ_MASK_RD, reg_base + CQSPI_REG_IRQMASK);
522 
523 	reinit_completion(&cqspi->transfer_complete);
524 	writel(CQSPI_REG_INDIRECTRD_START_MASK,
525 	       reg_base + CQSPI_REG_INDIRECTRD);
526 
527 	while (remaining > 0) {
528 		if (!wait_for_completion_timeout(&cqspi->transfer_complete,
529 				msecs_to_jiffies(CQSPI_READ_TIMEOUT_MS)))
530 			ret = -ETIMEDOUT;
531 
532 		bytes_to_read = cqspi_get_rd_sram_level(cqspi);
533 
534 		if (ret && bytes_to_read == 0) {
535 			dev_err(nor->dev, "Indirect read timeout, no bytes\n");
536 			goto failrd;
537 		}
538 
539 		while (bytes_to_read != 0) {
540 			unsigned int word_remain = round_down(remaining, 4);
541 
542 			bytes_to_read *= cqspi->fifo_width;
543 			bytes_to_read = bytes_to_read > remaining ?
544 					remaining : bytes_to_read;
545 			bytes_to_read = round_down(bytes_to_read, 4);
546 			/* Read 4 byte word chunks then single bytes */
547 			if (bytes_to_read) {
548 				ioread32_rep(ahb_base, rxbuf,
549 					     (bytes_to_read / 4));
550 			} else if (!word_remain && mod_bytes) {
551 				unsigned int temp = ioread32(ahb_base);
552 
553 				bytes_to_read = mod_bytes;
554 				memcpy(rxbuf, &temp, min((unsigned int)
555 							 (rxbuf_end - rxbuf),
556 							 bytes_to_read));
557 			}
558 			rxbuf += bytes_to_read;
559 			remaining -= bytes_to_read;
560 			bytes_to_read = cqspi_get_rd_sram_level(cqspi);
561 		}
562 
563 		if (remaining > 0)
564 			reinit_completion(&cqspi->transfer_complete);
565 	}
566 
567 	/* Check indirect done status */
568 	ret = cqspi_wait_for_bit(reg_base + CQSPI_REG_INDIRECTRD,
569 				 CQSPI_REG_INDIRECTRD_DONE_MASK, 0);
570 	if (ret) {
571 		dev_err(nor->dev,
572 			"Indirect read completion error (%i)\n", ret);
573 		goto failrd;
574 	}
575 
576 	/* Disable interrupt */
577 	writel(0, reg_base + CQSPI_REG_IRQMASK);
578 
579 	/* Clear indirect completion status */
580 	writel(CQSPI_REG_INDIRECTRD_DONE_MASK, reg_base + CQSPI_REG_INDIRECTRD);
581 
582 	return 0;
583 
584 failrd:
585 	/* Disable interrupt */
586 	writel(0, reg_base + CQSPI_REG_IRQMASK);
587 
588 	/* Cancel the indirect read */
589 	writel(CQSPI_REG_INDIRECTWR_CANCEL_MASK,
590 	       reg_base + CQSPI_REG_INDIRECTRD);
591 	return ret;
592 }
593 
cqspi_write_setup(struct spi_nor * nor)594 static int cqspi_write_setup(struct spi_nor *nor)
595 {
596 	unsigned int reg;
597 	struct cqspi_flash_pdata *f_pdata = nor->priv;
598 	struct cqspi_st *cqspi = f_pdata->cqspi;
599 	void __iomem *reg_base = cqspi->iobase;
600 
601 	/* Set opcode. */
602 	reg = nor->program_opcode << CQSPI_REG_WR_INSTR_OPCODE_LSB;
603 	writel(reg, reg_base + CQSPI_REG_WR_INSTR);
604 	reg = cqspi_calc_rdreg(nor, nor->program_opcode);
605 	writel(reg, reg_base + CQSPI_REG_RD_INSTR);
606 
607 	reg = readl(reg_base + CQSPI_REG_SIZE);
608 	reg &= ~CQSPI_REG_SIZE_ADDRESS_MASK;
609 	reg |= (nor->addr_width - 1);
610 	writel(reg, reg_base + CQSPI_REG_SIZE);
611 	return 0;
612 }
613 
cqspi_indirect_write_execute(struct spi_nor * nor,loff_t to_addr,const u8 * txbuf,const size_t n_tx)614 static int cqspi_indirect_write_execute(struct spi_nor *nor, loff_t to_addr,
615 					const u8 *txbuf, const size_t n_tx)
616 {
617 	const unsigned int page_size = nor->page_size;
618 	struct cqspi_flash_pdata *f_pdata = nor->priv;
619 	struct cqspi_st *cqspi = f_pdata->cqspi;
620 	void __iomem *reg_base = cqspi->iobase;
621 	unsigned int remaining = n_tx;
622 	unsigned int write_bytes;
623 	int ret;
624 
625 	writel(to_addr, reg_base + CQSPI_REG_INDIRECTWRSTARTADDR);
626 	writel(remaining, reg_base + CQSPI_REG_INDIRECTWRBYTES);
627 
628 	/* Clear all interrupts. */
629 	writel(CQSPI_IRQ_STATUS_MASK, reg_base + CQSPI_REG_IRQSTATUS);
630 
631 	writel(CQSPI_IRQ_MASK_WR, reg_base + CQSPI_REG_IRQMASK);
632 
633 	reinit_completion(&cqspi->transfer_complete);
634 	writel(CQSPI_REG_INDIRECTWR_START_MASK,
635 	       reg_base + CQSPI_REG_INDIRECTWR);
636 	/*
637 	 * As per 66AK2G02 TRM SPRUHY8F section 11.15.5.3 Indirect Access
638 	 * Controller programming sequence, couple of cycles of
639 	 * QSPI_REF_CLK delay is required for the above bit to
640 	 * be internally synchronized by the QSPI module. Provide 5
641 	 * cycles of delay.
642 	 */
643 	if (cqspi->wr_delay)
644 		ndelay(cqspi->wr_delay);
645 
646 	while (remaining > 0) {
647 		size_t write_words, mod_bytes;
648 
649 		write_bytes = remaining > page_size ? page_size : remaining;
650 		write_words = write_bytes / 4;
651 		mod_bytes = write_bytes % 4;
652 		/* Write 4 bytes at a time then single bytes. */
653 		if (write_words) {
654 			iowrite32_rep(cqspi->ahb_base, txbuf, write_words);
655 			txbuf += (write_words * 4);
656 		}
657 		if (mod_bytes) {
658 			unsigned int temp = 0xFFFFFFFF;
659 
660 			memcpy(&temp, txbuf, mod_bytes);
661 			iowrite32(temp, cqspi->ahb_base);
662 			txbuf += mod_bytes;
663 		}
664 
665 		if (!wait_for_completion_timeout(&cqspi->transfer_complete,
666 					msecs_to_jiffies(CQSPI_TIMEOUT_MS))) {
667 			dev_err(nor->dev, "Indirect write timeout\n");
668 			ret = -ETIMEDOUT;
669 			goto failwr;
670 		}
671 
672 		remaining -= write_bytes;
673 
674 		if (remaining > 0)
675 			reinit_completion(&cqspi->transfer_complete);
676 	}
677 
678 	/* Check indirect done status */
679 	ret = cqspi_wait_for_bit(reg_base + CQSPI_REG_INDIRECTWR,
680 				 CQSPI_REG_INDIRECTWR_DONE_MASK, 0);
681 	if (ret) {
682 		dev_err(nor->dev,
683 			"Indirect write completion error (%i)\n", ret);
684 		goto failwr;
685 	}
686 
687 	/* Disable interrupt. */
688 	writel(0, reg_base + CQSPI_REG_IRQMASK);
689 
690 	/* Clear indirect completion status */
691 	writel(CQSPI_REG_INDIRECTWR_DONE_MASK, reg_base + CQSPI_REG_INDIRECTWR);
692 
693 	cqspi_wait_idle(cqspi);
694 
695 	return 0;
696 
697 failwr:
698 	/* Disable interrupt. */
699 	writel(0, reg_base + CQSPI_REG_IRQMASK);
700 
701 	/* Cancel the indirect write */
702 	writel(CQSPI_REG_INDIRECTWR_CANCEL_MASK,
703 	       reg_base + CQSPI_REG_INDIRECTWR);
704 	return ret;
705 }
706 
cqspi_chipselect(struct spi_nor * nor)707 static void cqspi_chipselect(struct spi_nor *nor)
708 {
709 	struct cqspi_flash_pdata *f_pdata = nor->priv;
710 	struct cqspi_st *cqspi = f_pdata->cqspi;
711 	void __iomem *reg_base = cqspi->iobase;
712 	unsigned int chip_select = f_pdata->cs;
713 	unsigned int reg;
714 
715 	reg = readl(reg_base + CQSPI_REG_CONFIG);
716 	if (cqspi->is_decoded_cs) {
717 		reg |= CQSPI_REG_CONFIG_DECODE_MASK;
718 	} else {
719 		reg &= ~CQSPI_REG_CONFIG_DECODE_MASK;
720 
721 		/* Convert CS if without decoder.
722 		 * CS0 to 4b'1110
723 		 * CS1 to 4b'1101
724 		 * CS2 to 4b'1011
725 		 * CS3 to 4b'0111
726 		 */
727 		chip_select = 0xF & ~(1 << chip_select);
728 	}
729 
730 	reg &= ~(CQSPI_REG_CONFIG_CHIPSELECT_MASK
731 		 << CQSPI_REG_CONFIG_CHIPSELECT_LSB);
732 	reg |= (chip_select & CQSPI_REG_CONFIG_CHIPSELECT_MASK)
733 	    << CQSPI_REG_CONFIG_CHIPSELECT_LSB;
734 	writel(reg, reg_base + CQSPI_REG_CONFIG);
735 }
736 
cqspi_configure_cs_and_sizes(struct spi_nor * nor)737 static void cqspi_configure_cs_and_sizes(struct spi_nor *nor)
738 {
739 	struct cqspi_flash_pdata *f_pdata = nor->priv;
740 	struct cqspi_st *cqspi = f_pdata->cqspi;
741 	void __iomem *iobase = cqspi->iobase;
742 	unsigned int reg;
743 
744 	/* configure page size and block size. */
745 	reg = readl(iobase + CQSPI_REG_SIZE);
746 	reg &= ~(CQSPI_REG_SIZE_PAGE_MASK << CQSPI_REG_SIZE_PAGE_LSB);
747 	reg &= ~(CQSPI_REG_SIZE_BLOCK_MASK << CQSPI_REG_SIZE_BLOCK_LSB);
748 	reg &= ~CQSPI_REG_SIZE_ADDRESS_MASK;
749 	reg |= (nor->page_size << CQSPI_REG_SIZE_PAGE_LSB);
750 	reg |= (ilog2(nor->mtd.erasesize) << CQSPI_REG_SIZE_BLOCK_LSB);
751 	reg |= (nor->addr_width - 1);
752 	writel(reg, iobase + CQSPI_REG_SIZE);
753 
754 	/* configure the chip select */
755 	cqspi_chipselect(nor);
756 
757 	/* Store the new configuration of the controller */
758 	cqspi->current_page_size = nor->page_size;
759 	cqspi->current_erase_size = nor->mtd.erasesize;
760 	cqspi->current_addr_width = nor->addr_width;
761 }
762 
calculate_ticks_for_ns(const unsigned int ref_clk_hz,const unsigned int ns_val)763 static unsigned int calculate_ticks_for_ns(const unsigned int ref_clk_hz,
764 					   const unsigned int ns_val)
765 {
766 	unsigned int ticks;
767 
768 	ticks = ref_clk_hz / 1000;	/* kHz */
769 	ticks = DIV_ROUND_UP(ticks * ns_val, 1000000);
770 
771 	return ticks;
772 }
773 
cqspi_delay(struct spi_nor * nor)774 static void cqspi_delay(struct spi_nor *nor)
775 {
776 	struct cqspi_flash_pdata *f_pdata = nor->priv;
777 	struct cqspi_st *cqspi = f_pdata->cqspi;
778 	void __iomem *iobase = cqspi->iobase;
779 	const unsigned int ref_clk_hz = cqspi->master_ref_clk_hz;
780 	unsigned int tshsl, tchsh, tslch, tsd2d;
781 	unsigned int reg;
782 	unsigned int tsclk;
783 
784 	/* calculate the number of ref ticks for one sclk tick */
785 	tsclk = DIV_ROUND_UP(ref_clk_hz, cqspi->sclk);
786 
787 	tshsl = calculate_ticks_for_ns(ref_clk_hz, f_pdata->tshsl_ns);
788 	/* this particular value must be at least one sclk */
789 	if (tshsl < tsclk)
790 		tshsl = tsclk;
791 
792 	tchsh = calculate_ticks_for_ns(ref_clk_hz, f_pdata->tchsh_ns);
793 	tslch = calculate_ticks_for_ns(ref_clk_hz, f_pdata->tslch_ns);
794 	tsd2d = calculate_ticks_for_ns(ref_clk_hz, f_pdata->tsd2d_ns);
795 
796 	reg = (tshsl & CQSPI_REG_DELAY_TSHSL_MASK)
797 	       << CQSPI_REG_DELAY_TSHSL_LSB;
798 	reg |= (tchsh & CQSPI_REG_DELAY_TCHSH_MASK)
799 		<< CQSPI_REG_DELAY_TCHSH_LSB;
800 	reg |= (tslch & CQSPI_REG_DELAY_TSLCH_MASK)
801 		<< CQSPI_REG_DELAY_TSLCH_LSB;
802 	reg |= (tsd2d & CQSPI_REG_DELAY_TSD2D_MASK)
803 		<< CQSPI_REG_DELAY_TSD2D_LSB;
804 	writel(reg, iobase + CQSPI_REG_DELAY);
805 }
806 
cqspi_config_baudrate_div(struct cqspi_st * cqspi)807 static void cqspi_config_baudrate_div(struct cqspi_st *cqspi)
808 {
809 	const unsigned int ref_clk_hz = cqspi->master_ref_clk_hz;
810 	void __iomem *reg_base = cqspi->iobase;
811 	u32 reg, div;
812 
813 	/* Recalculate the baudrate divisor based on QSPI specification. */
814 	div = DIV_ROUND_UP(ref_clk_hz, 2 * cqspi->sclk) - 1;
815 
816 	reg = readl(reg_base + CQSPI_REG_CONFIG);
817 	reg &= ~(CQSPI_REG_CONFIG_BAUD_MASK << CQSPI_REG_CONFIG_BAUD_LSB);
818 	reg |= (div & CQSPI_REG_CONFIG_BAUD_MASK) << CQSPI_REG_CONFIG_BAUD_LSB;
819 	writel(reg, reg_base + CQSPI_REG_CONFIG);
820 }
821 
cqspi_readdata_capture(struct cqspi_st * cqspi,const bool bypass,const unsigned int delay)822 static void cqspi_readdata_capture(struct cqspi_st *cqspi,
823 				   const bool bypass,
824 				   const unsigned int delay)
825 {
826 	void __iomem *reg_base = cqspi->iobase;
827 	unsigned int reg;
828 
829 	reg = readl(reg_base + CQSPI_REG_READCAPTURE);
830 
831 	if (bypass)
832 		reg |= (1 << CQSPI_REG_READCAPTURE_BYPASS_LSB);
833 	else
834 		reg &= ~(1 << CQSPI_REG_READCAPTURE_BYPASS_LSB);
835 
836 	reg &= ~(CQSPI_REG_READCAPTURE_DELAY_MASK
837 		 << CQSPI_REG_READCAPTURE_DELAY_LSB);
838 
839 	reg |= (delay & CQSPI_REG_READCAPTURE_DELAY_MASK)
840 		<< CQSPI_REG_READCAPTURE_DELAY_LSB;
841 
842 	writel(reg, reg_base + CQSPI_REG_READCAPTURE);
843 }
844 
cqspi_controller_enable(struct cqspi_st * cqspi,bool enable)845 static void cqspi_controller_enable(struct cqspi_st *cqspi, bool enable)
846 {
847 	void __iomem *reg_base = cqspi->iobase;
848 	unsigned int reg;
849 
850 	reg = readl(reg_base + CQSPI_REG_CONFIG);
851 
852 	if (enable)
853 		reg |= CQSPI_REG_CONFIG_ENABLE_MASK;
854 	else
855 		reg &= ~CQSPI_REG_CONFIG_ENABLE_MASK;
856 
857 	writel(reg, reg_base + CQSPI_REG_CONFIG);
858 }
859 
cqspi_configure(struct spi_nor * nor)860 static void cqspi_configure(struct spi_nor *nor)
861 {
862 	struct cqspi_flash_pdata *f_pdata = nor->priv;
863 	struct cqspi_st *cqspi = f_pdata->cqspi;
864 	const unsigned int sclk = f_pdata->clk_rate;
865 	int switch_cs = (cqspi->current_cs != f_pdata->cs);
866 	int switch_ck = (cqspi->sclk != sclk);
867 
868 	if ((cqspi->current_page_size != nor->page_size) ||
869 	    (cqspi->current_erase_size != nor->mtd.erasesize) ||
870 	    (cqspi->current_addr_width != nor->addr_width))
871 		switch_cs = 1;
872 
873 	if (switch_cs || switch_ck)
874 		cqspi_controller_enable(cqspi, 0);
875 
876 	/* Switch chip select. */
877 	if (switch_cs) {
878 		cqspi->current_cs = f_pdata->cs;
879 		cqspi_configure_cs_and_sizes(nor);
880 	}
881 
882 	/* Setup baudrate divisor and delays */
883 	if (switch_ck) {
884 		cqspi->sclk = sclk;
885 		cqspi_config_baudrate_div(cqspi);
886 		cqspi_delay(nor);
887 		cqspi_readdata_capture(cqspi, !cqspi->rclk_en,
888 				       f_pdata->read_delay);
889 	}
890 
891 	if (switch_cs || switch_ck)
892 		cqspi_controller_enable(cqspi, 1);
893 }
894 
cqspi_set_protocol(struct spi_nor * nor,const int read)895 static int cqspi_set_protocol(struct spi_nor *nor, const int read)
896 {
897 	struct cqspi_flash_pdata *f_pdata = nor->priv;
898 
899 	f_pdata->inst_width = CQSPI_INST_TYPE_SINGLE;
900 	f_pdata->addr_width = CQSPI_INST_TYPE_SINGLE;
901 	f_pdata->data_width = CQSPI_INST_TYPE_SINGLE;
902 
903 	if (read) {
904 		switch (nor->read_proto) {
905 		case SNOR_PROTO_1_1_1:
906 			f_pdata->data_width = CQSPI_INST_TYPE_SINGLE;
907 			break;
908 		case SNOR_PROTO_1_1_2:
909 			f_pdata->data_width = CQSPI_INST_TYPE_DUAL;
910 			break;
911 		case SNOR_PROTO_1_1_4:
912 			f_pdata->data_width = CQSPI_INST_TYPE_QUAD;
913 			break;
914 		default:
915 			return -EINVAL;
916 		}
917 	}
918 
919 	cqspi_configure(nor);
920 
921 	return 0;
922 }
923 
cqspi_write(struct spi_nor * nor,loff_t to,size_t len,const u_char * buf)924 static ssize_t cqspi_write(struct spi_nor *nor, loff_t to,
925 			   size_t len, const u_char *buf)
926 {
927 	struct cqspi_flash_pdata *f_pdata = nor->priv;
928 	struct cqspi_st *cqspi = f_pdata->cqspi;
929 	int ret;
930 
931 	ret = cqspi_set_protocol(nor, 0);
932 	if (ret)
933 		return ret;
934 
935 	ret = cqspi_write_setup(nor);
936 	if (ret)
937 		return ret;
938 
939 	if (f_pdata->use_direct_mode) {
940 		memcpy_toio(cqspi->ahb_base + to, buf, len);
941 		ret = cqspi_wait_idle(cqspi);
942 	} else {
943 		ret = cqspi_indirect_write_execute(nor, to, buf, len);
944 	}
945 	if (ret)
946 		return ret;
947 
948 	return len;
949 }
950 
cqspi_rx_dma_callback(void * param)951 static void cqspi_rx_dma_callback(void *param)
952 {
953 	struct cqspi_st *cqspi = param;
954 
955 	complete(&cqspi->rx_dma_complete);
956 }
957 
cqspi_direct_read_execute(struct spi_nor * nor,u_char * buf,loff_t from,size_t len)958 static int cqspi_direct_read_execute(struct spi_nor *nor, u_char *buf,
959 				     loff_t from, size_t len)
960 {
961 	struct cqspi_flash_pdata *f_pdata = nor->priv;
962 	struct cqspi_st *cqspi = f_pdata->cqspi;
963 	enum dma_ctrl_flags flags = DMA_CTRL_ACK | DMA_PREP_INTERRUPT;
964 	dma_addr_t dma_src = (dma_addr_t)cqspi->mmap_phys_base + from;
965 	int ret = 0;
966 	struct dma_async_tx_descriptor *tx;
967 	dma_cookie_t cookie;
968 	dma_addr_t dma_dst;
969 
970 	if (!cqspi->rx_chan || !virt_addr_valid(buf)) {
971 		memcpy_fromio(buf, cqspi->ahb_base + from, len);
972 		return 0;
973 	}
974 
975 	dma_dst = dma_map_single(nor->dev, buf, len, DMA_FROM_DEVICE);
976 	if (dma_mapping_error(nor->dev, dma_dst)) {
977 		dev_err(nor->dev, "dma mapping failed\n");
978 		return -ENOMEM;
979 	}
980 	tx = dmaengine_prep_dma_memcpy(cqspi->rx_chan, dma_dst, dma_src,
981 				       len, flags);
982 	if (!tx) {
983 		dev_err(nor->dev, "device_prep_dma_memcpy error\n");
984 		ret = -EIO;
985 		goto err_unmap;
986 	}
987 
988 	tx->callback = cqspi_rx_dma_callback;
989 	tx->callback_param = cqspi;
990 	cookie = tx->tx_submit(tx);
991 	reinit_completion(&cqspi->rx_dma_complete);
992 
993 	ret = dma_submit_error(cookie);
994 	if (ret) {
995 		dev_err(nor->dev, "dma_submit_error %d\n", cookie);
996 		ret = -EIO;
997 		goto err_unmap;
998 	}
999 
1000 	dma_async_issue_pending(cqspi->rx_chan);
1001 	if (!wait_for_completion_timeout(&cqspi->rx_dma_complete,
1002 					 msecs_to_jiffies(len))) {
1003 		dmaengine_terminate_sync(cqspi->rx_chan);
1004 		dev_err(nor->dev, "DMA wait_for_completion_timeout\n");
1005 		ret = -ETIMEDOUT;
1006 		goto err_unmap;
1007 	}
1008 
1009 err_unmap:
1010 	dma_unmap_single(nor->dev, dma_dst, len, DMA_FROM_DEVICE);
1011 
1012 	return ret;
1013 }
1014 
cqspi_read(struct spi_nor * nor,loff_t from,size_t len,u_char * buf)1015 static ssize_t cqspi_read(struct spi_nor *nor, loff_t from,
1016 			  size_t len, u_char *buf)
1017 {
1018 	struct cqspi_flash_pdata *f_pdata = nor->priv;
1019 	int ret;
1020 
1021 	ret = cqspi_set_protocol(nor, 1);
1022 	if (ret)
1023 		return ret;
1024 
1025 	ret = cqspi_read_setup(nor);
1026 	if (ret)
1027 		return ret;
1028 
1029 	if (f_pdata->use_direct_mode)
1030 		ret = cqspi_direct_read_execute(nor, buf, from, len);
1031 	else
1032 		ret = cqspi_indirect_read_execute(nor, buf, from, len);
1033 	if (ret)
1034 		return ret;
1035 
1036 	return len;
1037 }
1038 
cqspi_erase(struct spi_nor * nor,loff_t offs)1039 static int cqspi_erase(struct spi_nor *nor, loff_t offs)
1040 {
1041 	int ret;
1042 
1043 	ret = cqspi_set_protocol(nor, 0);
1044 	if (ret)
1045 		return ret;
1046 
1047 	/* Send write enable, then erase commands. */
1048 	ret = nor->write_reg(nor, SPINOR_OP_WREN, NULL, 0);
1049 	if (ret)
1050 		return ret;
1051 
1052 	/* Set up command buffer. */
1053 	ret = cqspi_command_write_addr(nor, nor->erase_opcode, offs);
1054 	if (ret)
1055 		return ret;
1056 
1057 	return 0;
1058 }
1059 
cqspi_prep(struct spi_nor * nor,enum spi_nor_ops ops)1060 static int cqspi_prep(struct spi_nor *nor, enum spi_nor_ops ops)
1061 {
1062 	struct cqspi_flash_pdata *f_pdata = nor->priv;
1063 	struct cqspi_st *cqspi = f_pdata->cqspi;
1064 
1065 	mutex_lock(&cqspi->bus_mutex);
1066 
1067 	return 0;
1068 }
1069 
cqspi_unprep(struct spi_nor * nor,enum spi_nor_ops ops)1070 static void cqspi_unprep(struct spi_nor *nor, enum spi_nor_ops ops)
1071 {
1072 	struct cqspi_flash_pdata *f_pdata = nor->priv;
1073 	struct cqspi_st *cqspi = f_pdata->cqspi;
1074 
1075 	mutex_unlock(&cqspi->bus_mutex);
1076 }
1077 
cqspi_read_reg(struct spi_nor * nor,u8 opcode,u8 * buf,int len)1078 static int cqspi_read_reg(struct spi_nor *nor, u8 opcode, u8 *buf, int len)
1079 {
1080 	int ret;
1081 
1082 	ret = cqspi_set_protocol(nor, 0);
1083 	if (!ret)
1084 		ret = cqspi_command_read(nor, &opcode, 1, buf, len);
1085 
1086 	return ret;
1087 }
1088 
cqspi_write_reg(struct spi_nor * nor,u8 opcode,u8 * buf,int len)1089 static int cqspi_write_reg(struct spi_nor *nor, u8 opcode, u8 *buf, int len)
1090 {
1091 	int ret;
1092 
1093 	ret = cqspi_set_protocol(nor, 0);
1094 	if (!ret)
1095 		ret = cqspi_command_write(nor, opcode, buf, len);
1096 
1097 	return ret;
1098 }
1099 
cqspi_of_get_flash_pdata(struct platform_device * pdev,struct cqspi_flash_pdata * f_pdata,struct device_node * np)1100 static int cqspi_of_get_flash_pdata(struct platform_device *pdev,
1101 				    struct cqspi_flash_pdata *f_pdata,
1102 				    struct device_node *np)
1103 {
1104 	if (of_property_read_u32(np, "cdns,read-delay", &f_pdata->read_delay)) {
1105 		dev_err(&pdev->dev, "couldn't determine read-delay\n");
1106 		return -ENXIO;
1107 	}
1108 
1109 	if (of_property_read_u32(np, "cdns,tshsl-ns", &f_pdata->tshsl_ns)) {
1110 		dev_err(&pdev->dev, "couldn't determine tshsl-ns\n");
1111 		return -ENXIO;
1112 	}
1113 
1114 	if (of_property_read_u32(np, "cdns,tsd2d-ns", &f_pdata->tsd2d_ns)) {
1115 		dev_err(&pdev->dev, "couldn't determine tsd2d-ns\n");
1116 		return -ENXIO;
1117 	}
1118 
1119 	if (of_property_read_u32(np, "cdns,tchsh-ns", &f_pdata->tchsh_ns)) {
1120 		dev_err(&pdev->dev, "couldn't determine tchsh-ns\n");
1121 		return -ENXIO;
1122 	}
1123 
1124 	if (of_property_read_u32(np, "cdns,tslch-ns", &f_pdata->tslch_ns)) {
1125 		dev_err(&pdev->dev, "couldn't determine tslch-ns\n");
1126 		return -ENXIO;
1127 	}
1128 
1129 	if (of_property_read_u32(np, "spi-max-frequency", &f_pdata->clk_rate)) {
1130 		dev_err(&pdev->dev, "couldn't determine spi-max-frequency\n");
1131 		return -ENXIO;
1132 	}
1133 
1134 	return 0;
1135 }
1136 
cqspi_of_get_pdata(struct platform_device * pdev)1137 static int cqspi_of_get_pdata(struct platform_device *pdev)
1138 {
1139 	struct device_node *np = pdev->dev.of_node;
1140 	struct cqspi_st *cqspi = platform_get_drvdata(pdev);
1141 
1142 	cqspi->is_decoded_cs = of_property_read_bool(np, "cdns,is-decoded-cs");
1143 
1144 	if (of_property_read_u32(np, "cdns,fifo-depth", &cqspi->fifo_depth)) {
1145 		dev_err(&pdev->dev, "couldn't determine fifo-depth\n");
1146 		return -ENXIO;
1147 	}
1148 
1149 	if (of_property_read_u32(np, "cdns,fifo-width", &cqspi->fifo_width)) {
1150 		dev_err(&pdev->dev, "couldn't determine fifo-width\n");
1151 		return -ENXIO;
1152 	}
1153 
1154 	if (of_property_read_u32(np, "cdns,trigger-address",
1155 				 &cqspi->trigger_address)) {
1156 		dev_err(&pdev->dev, "couldn't determine trigger-address\n");
1157 		return -ENXIO;
1158 	}
1159 
1160 	cqspi->rclk_en = of_property_read_bool(np, "cdns,rclk-en");
1161 
1162 	return 0;
1163 }
1164 
cqspi_controller_init(struct cqspi_st * cqspi)1165 static void cqspi_controller_init(struct cqspi_st *cqspi)
1166 {
1167 	u32 reg;
1168 
1169 	cqspi_controller_enable(cqspi, 0);
1170 
1171 	/* Configure the remap address register, no remap */
1172 	writel(0, cqspi->iobase + CQSPI_REG_REMAP);
1173 
1174 	/* Disable all interrupts. */
1175 	writel(0, cqspi->iobase + CQSPI_REG_IRQMASK);
1176 
1177 	/* Configure the SRAM split to 1:1 . */
1178 	writel(cqspi->fifo_depth / 2, cqspi->iobase + CQSPI_REG_SRAMPARTITION);
1179 
1180 	/* Load indirect trigger address. */
1181 	writel(cqspi->trigger_address,
1182 	       cqspi->iobase + CQSPI_REG_INDIRECTTRIGGER);
1183 
1184 	/* Program read watermark -- 1/2 of the FIFO. */
1185 	writel(cqspi->fifo_depth * cqspi->fifo_width / 2,
1186 	       cqspi->iobase + CQSPI_REG_INDIRECTRDWATERMARK);
1187 	/* Program write watermark -- 1/8 of the FIFO. */
1188 	writel(cqspi->fifo_depth * cqspi->fifo_width / 8,
1189 	       cqspi->iobase + CQSPI_REG_INDIRECTWRWATERMARK);
1190 
1191 	/* Enable Direct Access Controller */
1192 	reg = readl(cqspi->iobase + CQSPI_REG_CONFIG);
1193 	reg |= CQSPI_REG_CONFIG_ENB_DIR_ACC_CTRL;
1194 	writel(reg, cqspi->iobase + CQSPI_REG_CONFIG);
1195 
1196 	cqspi_controller_enable(cqspi, 1);
1197 }
1198 
cqspi_request_mmap_dma(struct cqspi_st * cqspi)1199 static void cqspi_request_mmap_dma(struct cqspi_st *cqspi)
1200 {
1201 	dma_cap_mask_t mask;
1202 
1203 	dma_cap_zero(mask);
1204 	dma_cap_set(DMA_MEMCPY, mask);
1205 
1206 	cqspi->rx_chan = dma_request_chan_by_mask(&mask);
1207 	if (IS_ERR(cqspi->rx_chan)) {
1208 		dev_err(&cqspi->pdev->dev, "No Rx DMA available\n");
1209 		cqspi->rx_chan = NULL;
1210 	}
1211 	init_completion(&cqspi->rx_dma_complete);
1212 }
1213 
cqspi_setup_flash(struct cqspi_st * cqspi,struct device_node * np)1214 static int cqspi_setup_flash(struct cqspi_st *cqspi, struct device_node *np)
1215 {
1216 	const struct spi_nor_hwcaps hwcaps = {
1217 		.mask = SNOR_HWCAPS_READ |
1218 			SNOR_HWCAPS_READ_FAST |
1219 			SNOR_HWCAPS_READ_1_1_2 |
1220 			SNOR_HWCAPS_READ_1_1_4 |
1221 			SNOR_HWCAPS_PP,
1222 	};
1223 	struct platform_device *pdev = cqspi->pdev;
1224 	struct device *dev = &pdev->dev;
1225 	struct cqspi_flash_pdata *f_pdata;
1226 	struct spi_nor *nor;
1227 	struct mtd_info *mtd;
1228 	unsigned int cs;
1229 	int i, ret;
1230 
1231 	/* Get flash device data */
1232 	for_each_available_child_of_node(dev->of_node, np) {
1233 		ret = of_property_read_u32(np, "reg", &cs);
1234 		if (ret) {
1235 			dev_err(dev, "Couldn't determine chip select.\n");
1236 			goto err;
1237 		}
1238 
1239 		if (cs >= CQSPI_MAX_CHIPSELECT) {
1240 			ret = -EINVAL;
1241 			dev_err(dev, "Chip select %d out of range.\n", cs);
1242 			goto err;
1243 		}
1244 
1245 		f_pdata = &cqspi->f_pdata[cs];
1246 		f_pdata->cqspi = cqspi;
1247 		f_pdata->cs = cs;
1248 
1249 		ret = cqspi_of_get_flash_pdata(pdev, f_pdata, np);
1250 		if (ret)
1251 			goto err;
1252 
1253 		nor = &f_pdata->nor;
1254 		mtd = &nor->mtd;
1255 
1256 		mtd->priv = nor;
1257 
1258 		nor->dev = dev;
1259 		spi_nor_set_flash_node(nor, np);
1260 		nor->priv = f_pdata;
1261 
1262 		nor->read_reg = cqspi_read_reg;
1263 		nor->write_reg = cqspi_write_reg;
1264 		nor->read = cqspi_read;
1265 		nor->write = cqspi_write;
1266 		nor->erase = cqspi_erase;
1267 		nor->prepare = cqspi_prep;
1268 		nor->unprepare = cqspi_unprep;
1269 
1270 		mtd->name = devm_kasprintf(dev, GFP_KERNEL, "%s.%d",
1271 					   dev_name(dev), cs);
1272 		if (!mtd->name) {
1273 			ret = -ENOMEM;
1274 			goto err;
1275 		}
1276 
1277 		ret = spi_nor_scan(nor, NULL, &hwcaps);
1278 		if (ret)
1279 			goto err;
1280 
1281 		ret = mtd_device_register(mtd, NULL, 0);
1282 		if (ret)
1283 			goto err;
1284 
1285 		f_pdata->registered = true;
1286 
1287 		if (mtd->size <= cqspi->ahb_size) {
1288 			f_pdata->use_direct_mode = true;
1289 			dev_dbg(nor->dev, "using direct mode for %s\n",
1290 				mtd->name);
1291 
1292 			if (!cqspi->rx_chan)
1293 				cqspi_request_mmap_dma(cqspi);
1294 		}
1295 	}
1296 
1297 	return 0;
1298 
1299 err:
1300 	for (i = 0; i < CQSPI_MAX_CHIPSELECT; i++)
1301 		if (cqspi->f_pdata[i].registered)
1302 			mtd_device_unregister(&cqspi->f_pdata[i].nor.mtd);
1303 	return ret;
1304 }
1305 
cqspi_probe(struct platform_device * pdev)1306 static int cqspi_probe(struct platform_device *pdev)
1307 {
1308 	struct device_node *np = pdev->dev.of_node;
1309 	struct device *dev = &pdev->dev;
1310 	struct cqspi_st *cqspi;
1311 	struct resource *res;
1312 	struct resource *res_ahb;
1313 	unsigned long data;
1314 	int ret;
1315 	int irq;
1316 
1317 	cqspi = devm_kzalloc(dev, sizeof(*cqspi), GFP_KERNEL);
1318 	if (!cqspi)
1319 		return -ENOMEM;
1320 
1321 	mutex_init(&cqspi->bus_mutex);
1322 	cqspi->pdev = pdev;
1323 	platform_set_drvdata(pdev, cqspi);
1324 
1325 	/* Obtain configuration from OF. */
1326 	ret = cqspi_of_get_pdata(pdev);
1327 	if (ret) {
1328 		dev_err(dev, "Cannot get mandatory OF data.\n");
1329 		return -ENODEV;
1330 	}
1331 
1332 	/* Obtain QSPI clock. */
1333 	cqspi->clk = devm_clk_get(dev, NULL);
1334 	if (IS_ERR(cqspi->clk)) {
1335 		dev_err(dev, "Cannot claim QSPI clock.\n");
1336 		return PTR_ERR(cqspi->clk);
1337 	}
1338 
1339 	/* Obtain and remap controller address. */
1340 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1341 	cqspi->iobase = devm_ioremap_resource(dev, res);
1342 	if (IS_ERR(cqspi->iobase)) {
1343 		dev_err(dev, "Cannot remap controller address.\n");
1344 		return PTR_ERR(cqspi->iobase);
1345 	}
1346 
1347 	/* Obtain and remap AHB address. */
1348 	res_ahb = platform_get_resource(pdev, IORESOURCE_MEM, 1);
1349 	cqspi->ahb_base = devm_ioremap_resource(dev, res_ahb);
1350 	if (IS_ERR(cqspi->ahb_base)) {
1351 		dev_err(dev, "Cannot remap AHB address.\n");
1352 		return PTR_ERR(cqspi->ahb_base);
1353 	}
1354 	cqspi->mmap_phys_base = (dma_addr_t)res_ahb->start;
1355 	cqspi->ahb_size = resource_size(res_ahb);
1356 
1357 	init_completion(&cqspi->transfer_complete);
1358 
1359 	/* Obtain IRQ line. */
1360 	irq = platform_get_irq(pdev, 0);
1361 	if (irq < 0) {
1362 		dev_err(dev, "Cannot obtain IRQ.\n");
1363 		return -ENXIO;
1364 	}
1365 
1366 	pm_runtime_enable(dev);
1367 	ret = pm_runtime_get_sync(dev);
1368 	if (ret < 0) {
1369 		pm_runtime_put_noidle(dev);
1370 		return ret;
1371 	}
1372 
1373 	ret = clk_prepare_enable(cqspi->clk);
1374 	if (ret) {
1375 		dev_err(dev, "Cannot enable QSPI clock.\n");
1376 		goto probe_clk_failed;
1377 	}
1378 
1379 	cqspi->master_ref_clk_hz = clk_get_rate(cqspi->clk);
1380 	data  = (unsigned long)of_device_get_match_data(dev);
1381 	if (data & CQSPI_NEEDS_WR_DELAY)
1382 		cqspi->wr_delay = 5 * DIV_ROUND_UP(NSEC_PER_SEC,
1383 						   cqspi->master_ref_clk_hz);
1384 
1385 	ret = devm_request_irq(dev, irq, cqspi_irq_handler, 0,
1386 			       pdev->name, cqspi);
1387 	if (ret) {
1388 		dev_err(dev, "Cannot request IRQ.\n");
1389 		goto probe_irq_failed;
1390 	}
1391 
1392 	cqspi_wait_idle(cqspi);
1393 	cqspi_controller_init(cqspi);
1394 	cqspi->current_cs = -1;
1395 	cqspi->sclk = 0;
1396 
1397 	ret = cqspi_setup_flash(cqspi, np);
1398 	if (ret) {
1399 		dev_err(dev, "Cadence QSPI NOR probe failed %d\n", ret);
1400 		goto probe_setup_failed;
1401 	}
1402 
1403 	return ret;
1404 probe_setup_failed:
1405 	cqspi_controller_enable(cqspi, 0);
1406 probe_irq_failed:
1407 	clk_disable_unprepare(cqspi->clk);
1408 probe_clk_failed:
1409 	pm_runtime_put_sync(dev);
1410 	pm_runtime_disable(dev);
1411 	return ret;
1412 }
1413 
cqspi_remove(struct platform_device * pdev)1414 static int cqspi_remove(struct platform_device *pdev)
1415 {
1416 	struct cqspi_st *cqspi = platform_get_drvdata(pdev);
1417 	int i;
1418 
1419 	for (i = 0; i < CQSPI_MAX_CHIPSELECT; i++)
1420 		if (cqspi->f_pdata[i].registered)
1421 			mtd_device_unregister(&cqspi->f_pdata[i].nor.mtd);
1422 
1423 	cqspi_controller_enable(cqspi, 0);
1424 
1425 	if (cqspi->rx_chan)
1426 		dma_release_channel(cqspi->rx_chan);
1427 
1428 	clk_disable_unprepare(cqspi->clk);
1429 
1430 	pm_runtime_put_sync(&pdev->dev);
1431 	pm_runtime_disable(&pdev->dev);
1432 
1433 	return 0;
1434 }
1435 
1436 #ifdef CONFIG_PM_SLEEP
cqspi_suspend(struct device * dev)1437 static int cqspi_suspend(struct device *dev)
1438 {
1439 	struct cqspi_st *cqspi = dev_get_drvdata(dev);
1440 
1441 	cqspi_controller_enable(cqspi, 0);
1442 	return 0;
1443 }
1444 
cqspi_resume(struct device * dev)1445 static int cqspi_resume(struct device *dev)
1446 {
1447 	struct cqspi_st *cqspi = dev_get_drvdata(dev);
1448 
1449 	cqspi_controller_enable(cqspi, 1);
1450 	return 0;
1451 }
1452 
1453 static const struct dev_pm_ops cqspi__dev_pm_ops = {
1454 	.suspend = cqspi_suspend,
1455 	.resume = cqspi_resume,
1456 };
1457 
1458 #define CQSPI_DEV_PM_OPS	(&cqspi__dev_pm_ops)
1459 #else
1460 #define CQSPI_DEV_PM_OPS	NULL
1461 #endif
1462 
1463 static const struct of_device_id cqspi_dt_ids[] = {
1464 	{
1465 		.compatible = "cdns,qspi-nor",
1466 		.data = (void *)0,
1467 	},
1468 	{
1469 		.compatible = "ti,k2g-qspi",
1470 		.data = (void *)CQSPI_NEEDS_WR_DELAY,
1471 	},
1472 	{ /* end of table */ }
1473 };
1474 
1475 MODULE_DEVICE_TABLE(of, cqspi_dt_ids);
1476 
1477 static struct platform_driver cqspi_platform_driver = {
1478 	.probe = cqspi_probe,
1479 	.remove = cqspi_remove,
1480 	.driver = {
1481 		.name = CQSPI_NAME,
1482 		.pm = CQSPI_DEV_PM_OPS,
1483 		.of_match_table = cqspi_dt_ids,
1484 	},
1485 };
1486 
1487 module_platform_driver(cqspi_platform_driver);
1488 
1489 MODULE_DESCRIPTION("Cadence QSPI Controller Driver");
1490 MODULE_LICENSE("GPL v2");
1491 MODULE_ALIAS("platform:" CQSPI_NAME);
1492 MODULE_AUTHOR("Ley Foon Tan <lftan@altera.com>");
1493 MODULE_AUTHOR("Graham Moore <grmoore@opensource.altera.com>");
1494