• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Driver for BCM963xx builtin Ethernet mac
3  *
4  * Copyright (C) 2008 Maxime Bizon <mbizon@freebox.fr>
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License as published by
8  * the Free Software Foundation; either version 2 of the License, or
9  * (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program; if not, write to the Free Software
18  * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19  */
20 #include <linux/init.h>
21 #include <linux/interrupt.h>
22 #include <linux/module.h>
23 #include <linux/clk.h>
24 #include <linux/etherdevice.h>
25 #include <linux/slab.h>
26 #include <linux/delay.h>
27 #include <linux/ethtool.h>
28 #include <linux/crc32.h>
29 #include <linux/err.h>
30 #include <linux/dma-mapping.h>
31 #include <linux/platform_device.h>
32 #include <linux/if_vlan.h>
33 
34 #include <bcm63xx_dev_enet.h>
35 #include "bcm63xx_enet.h"
36 
37 static char bcm_enet_driver_name[] = "bcm63xx_enet";
38 static char bcm_enet_driver_version[] = "1.0";
39 
40 static int copybreak __read_mostly = 128;
41 module_param(copybreak, int, 0);
42 MODULE_PARM_DESC(copybreak, "Receive copy threshold");
43 
44 /* io registers memory shared between all devices */
45 static void __iomem *bcm_enet_shared_base[3];
46 
47 /*
48  * io helpers to access mac registers
49  */
enet_readl(struct bcm_enet_priv * priv,u32 off)50 static inline u32 enet_readl(struct bcm_enet_priv *priv, u32 off)
51 {
52 	return bcm_readl(priv->base + off);
53 }
54 
enet_writel(struct bcm_enet_priv * priv,u32 val,u32 off)55 static inline void enet_writel(struct bcm_enet_priv *priv,
56 			       u32 val, u32 off)
57 {
58 	bcm_writel(val, priv->base + off);
59 }
60 
61 /*
62  * io helpers to access switch registers
63  */
enetsw_readl(struct bcm_enet_priv * priv,u32 off)64 static inline u32 enetsw_readl(struct bcm_enet_priv *priv, u32 off)
65 {
66 	return bcm_readl(priv->base + off);
67 }
68 
enetsw_writel(struct bcm_enet_priv * priv,u32 val,u32 off)69 static inline void enetsw_writel(struct bcm_enet_priv *priv,
70 				 u32 val, u32 off)
71 {
72 	bcm_writel(val, priv->base + off);
73 }
74 
enetsw_readw(struct bcm_enet_priv * priv,u32 off)75 static inline u16 enetsw_readw(struct bcm_enet_priv *priv, u32 off)
76 {
77 	return bcm_readw(priv->base + off);
78 }
79 
enetsw_writew(struct bcm_enet_priv * priv,u16 val,u32 off)80 static inline void enetsw_writew(struct bcm_enet_priv *priv,
81 				 u16 val, u32 off)
82 {
83 	bcm_writew(val, priv->base + off);
84 }
85 
enetsw_readb(struct bcm_enet_priv * priv,u32 off)86 static inline u8 enetsw_readb(struct bcm_enet_priv *priv, u32 off)
87 {
88 	return bcm_readb(priv->base + off);
89 }
90 
enetsw_writeb(struct bcm_enet_priv * priv,u8 val,u32 off)91 static inline void enetsw_writeb(struct bcm_enet_priv *priv,
92 				 u8 val, u32 off)
93 {
94 	bcm_writeb(val, priv->base + off);
95 }
96 
97 
98 /* io helpers to access shared registers */
enet_dma_readl(struct bcm_enet_priv * priv,u32 off)99 static inline u32 enet_dma_readl(struct bcm_enet_priv *priv, u32 off)
100 {
101 	return bcm_readl(bcm_enet_shared_base[0] + off);
102 }
103 
enet_dma_writel(struct bcm_enet_priv * priv,u32 val,u32 off)104 static inline void enet_dma_writel(struct bcm_enet_priv *priv,
105 				       u32 val, u32 off)
106 {
107 	bcm_writel(val, bcm_enet_shared_base[0] + off);
108 }
109 
enet_dmac_readl(struct bcm_enet_priv * priv,u32 off,int chan)110 static inline u32 enet_dmac_readl(struct bcm_enet_priv *priv, u32 off, int chan)
111 {
112 	return bcm_readl(bcm_enet_shared_base[1] +
113 		bcm63xx_enetdmacreg(off) + chan * priv->dma_chan_width);
114 }
115 
enet_dmac_writel(struct bcm_enet_priv * priv,u32 val,u32 off,int chan)116 static inline void enet_dmac_writel(struct bcm_enet_priv *priv,
117 				       u32 val, u32 off, int chan)
118 {
119 	bcm_writel(val, bcm_enet_shared_base[1] +
120 		bcm63xx_enetdmacreg(off) + chan * priv->dma_chan_width);
121 }
122 
enet_dmas_readl(struct bcm_enet_priv * priv,u32 off,int chan)123 static inline u32 enet_dmas_readl(struct bcm_enet_priv *priv, u32 off, int chan)
124 {
125 	return bcm_readl(bcm_enet_shared_base[2] + off + chan * priv->dma_chan_width);
126 }
127 
enet_dmas_writel(struct bcm_enet_priv * priv,u32 val,u32 off,int chan)128 static inline void enet_dmas_writel(struct bcm_enet_priv *priv,
129 				       u32 val, u32 off, int chan)
130 {
131 	bcm_writel(val, bcm_enet_shared_base[2] + off + chan * priv->dma_chan_width);
132 }
133 
134 /*
135  * write given data into mii register and wait for transfer to end
136  * with timeout (average measured transfer time is 25us)
137  */
do_mdio_op(struct bcm_enet_priv * priv,unsigned int data)138 static int do_mdio_op(struct bcm_enet_priv *priv, unsigned int data)
139 {
140 	int limit;
141 
142 	/* make sure mii interrupt status is cleared */
143 	enet_writel(priv, ENET_IR_MII, ENET_IR_REG);
144 
145 	enet_writel(priv, data, ENET_MIIDATA_REG);
146 	wmb();
147 
148 	/* busy wait on mii interrupt bit, with timeout */
149 	limit = 1000;
150 	do {
151 		if (enet_readl(priv, ENET_IR_REG) & ENET_IR_MII)
152 			break;
153 		udelay(1);
154 	} while (limit-- > 0);
155 
156 	return (limit < 0) ? 1 : 0;
157 }
158 
159 /*
160  * MII internal read callback
161  */
bcm_enet_mdio_read(struct bcm_enet_priv * priv,int mii_id,int regnum)162 static int bcm_enet_mdio_read(struct bcm_enet_priv *priv, int mii_id,
163 			      int regnum)
164 {
165 	u32 tmp, val;
166 
167 	tmp = regnum << ENET_MIIDATA_REG_SHIFT;
168 	tmp |= 0x2 << ENET_MIIDATA_TA_SHIFT;
169 	tmp |= mii_id << ENET_MIIDATA_PHYID_SHIFT;
170 	tmp |= ENET_MIIDATA_OP_READ_MASK;
171 
172 	if (do_mdio_op(priv, tmp))
173 		return -1;
174 
175 	val = enet_readl(priv, ENET_MIIDATA_REG);
176 	val &= 0xffff;
177 	return val;
178 }
179 
180 /*
181  * MII internal write callback
182  */
bcm_enet_mdio_write(struct bcm_enet_priv * priv,int mii_id,int regnum,u16 value)183 static int bcm_enet_mdio_write(struct bcm_enet_priv *priv, int mii_id,
184 			       int regnum, u16 value)
185 {
186 	u32 tmp;
187 
188 	tmp = (value & 0xffff) << ENET_MIIDATA_DATA_SHIFT;
189 	tmp |= 0x2 << ENET_MIIDATA_TA_SHIFT;
190 	tmp |= regnum << ENET_MIIDATA_REG_SHIFT;
191 	tmp |= mii_id << ENET_MIIDATA_PHYID_SHIFT;
192 	tmp |= ENET_MIIDATA_OP_WRITE_MASK;
193 
194 	(void)do_mdio_op(priv, tmp);
195 	return 0;
196 }
197 
198 /*
199  * MII read callback from phylib
200  */
bcm_enet_mdio_read_phylib(struct mii_bus * bus,int mii_id,int regnum)201 static int bcm_enet_mdio_read_phylib(struct mii_bus *bus, int mii_id,
202 				     int regnum)
203 {
204 	return bcm_enet_mdio_read(bus->priv, mii_id, regnum);
205 }
206 
207 /*
208  * MII write callback from phylib
209  */
bcm_enet_mdio_write_phylib(struct mii_bus * bus,int mii_id,int regnum,u16 value)210 static int bcm_enet_mdio_write_phylib(struct mii_bus *bus, int mii_id,
211 				      int regnum, u16 value)
212 {
213 	return bcm_enet_mdio_write(bus->priv, mii_id, regnum, value);
214 }
215 
216 /*
217  * MII read callback from mii core
218  */
bcm_enet_mdio_read_mii(struct net_device * dev,int mii_id,int regnum)219 static int bcm_enet_mdio_read_mii(struct net_device *dev, int mii_id,
220 				  int regnum)
221 {
222 	return bcm_enet_mdio_read(netdev_priv(dev), mii_id, regnum);
223 }
224 
225 /*
226  * MII write callback from mii core
227  */
bcm_enet_mdio_write_mii(struct net_device * dev,int mii_id,int regnum,int value)228 static void bcm_enet_mdio_write_mii(struct net_device *dev, int mii_id,
229 				    int regnum, int value)
230 {
231 	bcm_enet_mdio_write(netdev_priv(dev), mii_id, regnum, value);
232 }
233 
234 /*
235  * refill rx queue
236  */
bcm_enet_refill_rx(struct net_device * dev)237 static int bcm_enet_refill_rx(struct net_device *dev)
238 {
239 	struct bcm_enet_priv *priv;
240 
241 	priv = netdev_priv(dev);
242 
243 	while (priv->rx_desc_count < priv->rx_ring_size) {
244 		struct bcm_enet_desc *desc;
245 		struct sk_buff *skb;
246 		dma_addr_t p;
247 		int desc_idx;
248 		u32 len_stat;
249 
250 		desc_idx = priv->rx_dirty_desc;
251 		desc = &priv->rx_desc_cpu[desc_idx];
252 
253 		if (!priv->rx_skb[desc_idx]) {
254 			skb = netdev_alloc_skb(dev, priv->rx_skb_size);
255 			if (!skb)
256 				break;
257 			priv->rx_skb[desc_idx] = skb;
258 			p = dma_map_single(&priv->pdev->dev, skb->data,
259 					   priv->rx_skb_size,
260 					   DMA_FROM_DEVICE);
261 			desc->address = p;
262 		}
263 
264 		len_stat = priv->rx_skb_size << DMADESC_LENGTH_SHIFT;
265 		len_stat |= DMADESC_OWNER_MASK;
266 		if (priv->rx_dirty_desc == priv->rx_ring_size - 1) {
267 			len_stat |= (DMADESC_WRAP_MASK >> priv->dma_desc_shift);
268 			priv->rx_dirty_desc = 0;
269 		} else {
270 			priv->rx_dirty_desc++;
271 		}
272 		wmb();
273 		desc->len_stat = len_stat;
274 
275 		priv->rx_desc_count++;
276 
277 		/* tell dma engine we allocated one buffer */
278 		if (priv->dma_has_sram)
279 			enet_dma_writel(priv, 1, ENETDMA_BUFALLOC_REG(priv->rx_chan));
280 		else
281 			enet_dmac_writel(priv, 1, ENETDMAC_BUFALLOC, priv->rx_chan);
282 	}
283 
284 	/* If rx ring is still empty, set a timer to try allocating
285 	 * again at a later time. */
286 	if (priv->rx_desc_count == 0 && netif_running(dev)) {
287 		dev_warn(&priv->pdev->dev, "unable to refill rx ring\n");
288 		priv->rx_timeout.expires = jiffies + HZ;
289 		add_timer(&priv->rx_timeout);
290 	}
291 
292 	return 0;
293 }
294 
295 /*
296  * timer callback to defer refill rx queue in case we're OOM
297  */
bcm_enet_refill_rx_timer(struct timer_list * t)298 static void bcm_enet_refill_rx_timer(struct timer_list *t)
299 {
300 	struct bcm_enet_priv *priv = from_timer(priv, t, rx_timeout);
301 	struct net_device *dev = priv->net_dev;
302 
303 	spin_lock(&priv->rx_lock);
304 	bcm_enet_refill_rx(dev);
305 	spin_unlock(&priv->rx_lock);
306 }
307 
308 /*
309  * extract packet from rx queue
310  */
bcm_enet_receive_queue(struct net_device * dev,int budget)311 static int bcm_enet_receive_queue(struct net_device *dev, int budget)
312 {
313 	struct bcm_enet_priv *priv;
314 	struct device *kdev;
315 	int processed;
316 
317 	priv = netdev_priv(dev);
318 	kdev = &priv->pdev->dev;
319 	processed = 0;
320 
321 	/* don't scan ring further than number of refilled
322 	 * descriptor */
323 	if (budget > priv->rx_desc_count)
324 		budget = priv->rx_desc_count;
325 
326 	do {
327 		struct bcm_enet_desc *desc;
328 		struct sk_buff *skb;
329 		int desc_idx;
330 		u32 len_stat;
331 		unsigned int len;
332 
333 		desc_idx = priv->rx_curr_desc;
334 		desc = &priv->rx_desc_cpu[desc_idx];
335 
336 		/* make sure we actually read the descriptor status at
337 		 * each loop */
338 		rmb();
339 
340 		len_stat = desc->len_stat;
341 
342 		/* break if dma ownership belongs to hw */
343 		if (len_stat & DMADESC_OWNER_MASK)
344 			break;
345 
346 		processed++;
347 		priv->rx_curr_desc++;
348 		if (priv->rx_curr_desc == priv->rx_ring_size)
349 			priv->rx_curr_desc = 0;
350 		priv->rx_desc_count--;
351 
352 		/* if the packet does not have start of packet _and_
353 		 * end of packet flag set, then just recycle it */
354 		if ((len_stat & (DMADESC_ESOP_MASK >> priv->dma_desc_shift)) !=
355 			(DMADESC_ESOP_MASK >> priv->dma_desc_shift)) {
356 			dev->stats.rx_dropped++;
357 			continue;
358 		}
359 
360 		/* recycle packet if it's marked as bad */
361 		if (!priv->enet_is_sw &&
362 		    unlikely(len_stat & DMADESC_ERR_MASK)) {
363 			dev->stats.rx_errors++;
364 
365 			if (len_stat & DMADESC_OVSIZE_MASK)
366 				dev->stats.rx_length_errors++;
367 			if (len_stat & DMADESC_CRC_MASK)
368 				dev->stats.rx_crc_errors++;
369 			if (len_stat & DMADESC_UNDER_MASK)
370 				dev->stats.rx_frame_errors++;
371 			if (len_stat & DMADESC_OV_MASK)
372 				dev->stats.rx_fifo_errors++;
373 			continue;
374 		}
375 
376 		/* valid packet */
377 		skb = priv->rx_skb[desc_idx];
378 		len = (len_stat & DMADESC_LENGTH_MASK) >> DMADESC_LENGTH_SHIFT;
379 		/* don't include FCS */
380 		len -= 4;
381 
382 		if (len < copybreak) {
383 			struct sk_buff *nskb;
384 
385 			nskb = napi_alloc_skb(&priv->napi, len);
386 			if (!nskb) {
387 				/* forget packet, just rearm desc */
388 				dev->stats.rx_dropped++;
389 				continue;
390 			}
391 
392 			dma_sync_single_for_cpu(kdev, desc->address,
393 						len, DMA_FROM_DEVICE);
394 			memcpy(nskb->data, skb->data, len);
395 			dma_sync_single_for_device(kdev, desc->address,
396 						   len, DMA_FROM_DEVICE);
397 			skb = nskb;
398 		} else {
399 			dma_unmap_single(&priv->pdev->dev, desc->address,
400 					 priv->rx_skb_size, DMA_FROM_DEVICE);
401 			priv->rx_skb[desc_idx] = NULL;
402 		}
403 
404 		skb_put(skb, len);
405 		skb->protocol = eth_type_trans(skb, dev);
406 		dev->stats.rx_packets++;
407 		dev->stats.rx_bytes += len;
408 		netif_receive_skb(skb);
409 
410 	} while (--budget > 0);
411 
412 	if (processed || !priv->rx_desc_count) {
413 		bcm_enet_refill_rx(dev);
414 
415 		/* kick rx dma */
416 		enet_dmac_writel(priv, priv->dma_chan_en_mask,
417 					 ENETDMAC_CHANCFG, priv->rx_chan);
418 	}
419 
420 	return processed;
421 }
422 
423 
424 /*
425  * try to or force reclaim of transmitted buffers
426  */
bcm_enet_tx_reclaim(struct net_device * dev,int force)427 static int bcm_enet_tx_reclaim(struct net_device *dev, int force)
428 {
429 	struct bcm_enet_priv *priv;
430 	int released;
431 
432 	priv = netdev_priv(dev);
433 	released = 0;
434 
435 	while (priv->tx_desc_count < priv->tx_ring_size) {
436 		struct bcm_enet_desc *desc;
437 		struct sk_buff *skb;
438 
439 		/* We run in a bh and fight against start_xmit, which
440 		 * is called with bh disabled  */
441 		spin_lock(&priv->tx_lock);
442 
443 		desc = &priv->tx_desc_cpu[priv->tx_dirty_desc];
444 
445 		if (!force && (desc->len_stat & DMADESC_OWNER_MASK)) {
446 			spin_unlock(&priv->tx_lock);
447 			break;
448 		}
449 
450 		/* ensure other field of the descriptor were not read
451 		 * before we checked ownership */
452 		rmb();
453 
454 		skb = priv->tx_skb[priv->tx_dirty_desc];
455 		priv->tx_skb[priv->tx_dirty_desc] = NULL;
456 		dma_unmap_single(&priv->pdev->dev, desc->address, skb->len,
457 				 DMA_TO_DEVICE);
458 
459 		priv->tx_dirty_desc++;
460 		if (priv->tx_dirty_desc == priv->tx_ring_size)
461 			priv->tx_dirty_desc = 0;
462 		priv->tx_desc_count++;
463 
464 		spin_unlock(&priv->tx_lock);
465 
466 		if (desc->len_stat & DMADESC_UNDER_MASK)
467 			dev->stats.tx_errors++;
468 
469 		dev_kfree_skb(skb);
470 		released++;
471 	}
472 
473 	if (netif_queue_stopped(dev) && released)
474 		netif_wake_queue(dev);
475 
476 	return released;
477 }
478 
479 /*
480  * poll func, called by network core
481  */
bcm_enet_poll(struct napi_struct * napi,int budget)482 static int bcm_enet_poll(struct napi_struct *napi, int budget)
483 {
484 	struct bcm_enet_priv *priv;
485 	struct net_device *dev;
486 	int rx_work_done;
487 
488 	priv = container_of(napi, struct bcm_enet_priv, napi);
489 	dev = priv->net_dev;
490 
491 	/* ack interrupts */
492 	enet_dmac_writel(priv, priv->dma_chan_int_mask,
493 			 ENETDMAC_IR, priv->rx_chan);
494 	enet_dmac_writel(priv, priv->dma_chan_int_mask,
495 			 ENETDMAC_IR, priv->tx_chan);
496 
497 	/* reclaim sent skb */
498 	bcm_enet_tx_reclaim(dev, 0);
499 
500 	spin_lock(&priv->rx_lock);
501 	rx_work_done = bcm_enet_receive_queue(dev, budget);
502 	spin_unlock(&priv->rx_lock);
503 
504 	if (rx_work_done >= budget) {
505 		/* rx queue is not yet empty/clean */
506 		return rx_work_done;
507 	}
508 
509 	/* no more packet in rx/tx queue, remove device from poll
510 	 * queue */
511 	napi_complete_done(napi, rx_work_done);
512 
513 	/* restore rx/tx interrupt */
514 	enet_dmac_writel(priv, priv->dma_chan_int_mask,
515 			 ENETDMAC_IRMASK, priv->rx_chan);
516 	enet_dmac_writel(priv, priv->dma_chan_int_mask,
517 			 ENETDMAC_IRMASK, priv->tx_chan);
518 
519 	return rx_work_done;
520 }
521 
522 /*
523  * mac interrupt handler
524  */
bcm_enet_isr_mac(int irq,void * dev_id)525 static irqreturn_t bcm_enet_isr_mac(int irq, void *dev_id)
526 {
527 	struct net_device *dev;
528 	struct bcm_enet_priv *priv;
529 	u32 stat;
530 
531 	dev = dev_id;
532 	priv = netdev_priv(dev);
533 
534 	stat = enet_readl(priv, ENET_IR_REG);
535 	if (!(stat & ENET_IR_MIB))
536 		return IRQ_NONE;
537 
538 	/* clear & mask interrupt */
539 	enet_writel(priv, ENET_IR_MIB, ENET_IR_REG);
540 	enet_writel(priv, 0, ENET_IRMASK_REG);
541 
542 	/* read mib registers in workqueue */
543 	schedule_work(&priv->mib_update_task);
544 
545 	return IRQ_HANDLED;
546 }
547 
548 /*
549  * rx/tx dma interrupt handler
550  */
bcm_enet_isr_dma(int irq,void * dev_id)551 static irqreturn_t bcm_enet_isr_dma(int irq, void *dev_id)
552 {
553 	struct net_device *dev;
554 	struct bcm_enet_priv *priv;
555 
556 	dev = dev_id;
557 	priv = netdev_priv(dev);
558 
559 	/* mask rx/tx interrupts */
560 	enet_dmac_writel(priv, 0, ENETDMAC_IRMASK, priv->rx_chan);
561 	enet_dmac_writel(priv, 0, ENETDMAC_IRMASK, priv->tx_chan);
562 
563 	napi_schedule(&priv->napi);
564 
565 	return IRQ_HANDLED;
566 }
567 
568 /*
569  * tx request callback
570  */
571 static netdev_tx_t
bcm_enet_start_xmit(struct sk_buff * skb,struct net_device * dev)572 bcm_enet_start_xmit(struct sk_buff *skb, struct net_device *dev)
573 {
574 	struct bcm_enet_priv *priv;
575 	struct bcm_enet_desc *desc;
576 	u32 len_stat;
577 	netdev_tx_t ret;
578 
579 	priv = netdev_priv(dev);
580 
581 	/* lock against tx reclaim */
582 	spin_lock(&priv->tx_lock);
583 
584 	/* make sure  the tx hw queue  is not full,  should not happen
585 	 * since we stop queue before it's the case */
586 	if (unlikely(!priv->tx_desc_count)) {
587 		netif_stop_queue(dev);
588 		dev_err(&priv->pdev->dev, "xmit called with no tx desc "
589 			"available?\n");
590 		ret = NETDEV_TX_BUSY;
591 		goto out_unlock;
592 	}
593 
594 	/* pad small packets sent on a switch device */
595 	if (priv->enet_is_sw && skb->len < 64) {
596 		int needed = 64 - skb->len;
597 		char *data;
598 
599 		if (unlikely(skb_tailroom(skb) < needed)) {
600 			struct sk_buff *nskb;
601 
602 			nskb = skb_copy_expand(skb, 0, needed, GFP_ATOMIC);
603 			if (!nskb) {
604 				ret = NETDEV_TX_BUSY;
605 				goto out_unlock;
606 			}
607 			dev_kfree_skb(skb);
608 			skb = nskb;
609 		}
610 		data = skb_put_zero(skb, needed);
611 	}
612 
613 	/* point to the next available desc */
614 	desc = &priv->tx_desc_cpu[priv->tx_curr_desc];
615 	priv->tx_skb[priv->tx_curr_desc] = skb;
616 
617 	/* fill descriptor */
618 	desc->address = dma_map_single(&priv->pdev->dev, skb->data, skb->len,
619 				       DMA_TO_DEVICE);
620 
621 	len_stat = (skb->len << DMADESC_LENGTH_SHIFT) & DMADESC_LENGTH_MASK;
622 	len_stat |= (DMADESC_ESOP_MASK >> priv->dma_desc_shift) |
623 		DMADESC_APPEND_CRC |
624 		DMADESC_OWNER_MASK;
625 
626 	priv->tx_curr_desc++;
627 	if (priv->tx_curr_desc == priv->tx_ring_size) {
628 		priv->tx_curr_desc = 0;
629 		len_stat |= (DMADESC_WRAP_MASK >> priv->dma_desc_shift);
630 	}
631 	priv->tx_desc_count--;
632 
633 	/* dma might be already polling, make sure we update desc
634 	 * fields in correct order */
635 	wmb();
636 	desc->len_stat = len_stat;
637 	wmb();
638 
639 	/* kick tx dma */
640 	enet_dmac_writel(priv, priv->dma_chan_en_mask,
641 				 ENETDMAC_CHANCFG, priv->tx_chan);
642 
643 	/* stop queue if no more desc available */
644 	if (!priv->tx_desc_count)
645 		netif_stop_queue(dev);
646 
647 	dev->stats.tx_bytes += skb->len;
648 	dev->stats.tx_packets++;
649 	ret = NETDEV_TX_OK;
650 
651 out_unlock:
652 	spin_unlock(&priv->tx_lock);
653 	return ret;
654 }
655 
656 /*
657  * Change the interface's mac address.
658  */
bcm_enet_set_mac_address(struct net_device * dev,void * p)659 static int bcm_enet_set_mac_address(struct net_device *dev, void *p)
660 {
661 	struct bcm_enet_priv *priv;
662 	struct sockaddr *addr = p;
663 	u32 val;
664 
665 	priv = netdev_priv(dev);
666 	memcpy(dev->dev_addr, addr->sa_data, ETH_ALEN);
667 
668 	/* use perfect match register 0 to store my mac address */
669 	val = (dev->dev_addr[2] << 24) | (dev->dev_addr[3] << 16) |
670 		(dev->dev_addr[4] << 8) | dev->dev_addr[5];
671 	enet_writel(priv, val, ENET_PML_REG(0));
672 
673 	val = (dev->dev_addr[0] << 8 | dev->dev_addr[1]);
674 	val |= ENET_PMH_DATAVALID_MASK;
675 	enet_writel(priv, val, ENET_PMH_REG(0));
676 
677 	return 0;
678 }
679 
680 /*
681  * Change rx mode (promiscuous/allmulti) and update multicast list
682  */
bcm_enet_set_multicast_list(struct net_device * dev)683 static void bcm_enet_set_multicast_list(struct net_device *dev)
684 {
685 	struct bcm_enet_priv *priv;
686 	struct netdev_hw_addr *ha;
687 	u32 val;
688 	int i;
689 
690 	priv = netdev_priv(dev);
691 
692 	val = enet_readl(priv, ENET_RXCFG_REG);
693 
694 	if (dev->flags & IFF_PROMISC)
695 		val |= ENET_RXCFG_PROMISC_MASK;
696 	else
697 		val &= ~ENET_RXCFG_PROMISC_MASK;
698 
699 	/* only 3 perfect match registers left, first one is used for
700 	 * own mac address */
701 	if ((dev->flags & IFF_ALLMULTI) || netdev_mc_count(dev) > 3)
702 		val |= ENET_RXCFG_ALLMCAST_MASK;
703 	else
704 		val &= ~ENET_RXCFG_ALLMCAST_MASK;
705 
706 	/* no need to set perfect match registers if we catch all
707 	 * multicast */
708 	if (val & ENET_RXCFG_ALLMCAST_MASK) {
709 		enet_writel(priv, val, ENET_RXCFG_REG);
710 		return;
711 	}
712 
713 	i = 0;
714 	netdev_for_each_mc_addr(ha, dev) {
715 		u8 *dmi_addr;
716 		u32 tmp;
717 
718 		if (i == 3)
719 			break;
720 		/* update perfect match registers */
721 		dmi_addr = ha->addr;
722 		tmp = (dmi_addr[2] << 24) | (dmi_addr[3] << 16) |
723 			(dmi_addr[4] << 8) | dmi_addr[5];
724 		enet_writel(priv, tmp, ENET_PML_REG(i + 1));
725 
726 		tmp = (dmi_addr[0] << 8 | dmi_addr[1]);
727 		tmp |= ENET_PMH_DATAVALID_MASK;
728 		enet_writel(priv, tmp, ENET_PMH_REG(i++ + 1));
729 	}
730 
731 	for (; i < 3; i++) {
732 		enet_writel(priv, 0, ENET_PML_REG(i + 1));
733 		enet_writel(priv, 0, ENET_PMH_REG(i + 1));
734 	}
735 
736 	enet_writel(priv, val, ENET_RXCFG_REG);
737 }
738 
739 /*
740  * set mac duplex parameters
741  */
bcm_enet_set_duplex(struct bcm_enet_priv * priv,int fullduplex)742 static void bcm_enet_set_duplex(struct bcm_enet_priv *priv, int fullduplex)
743 {
744 	u32 val;
745 
746 	val = enet_readl(priv, ENET_TXCTL_REG);
747 	if (fullduplex)
748 		val |= ENET_TXCTL_FD_MASK;
749 	else
750 		val &= ~ENET_TXCTL_FD_MASK;
751 	enet_writel(priv, val, ENET_TXCTL_REG);
752 }
753 
754 /*
755  * set mac flow control parameters
756  */
bcm_enet_set_flow(struct bcm_enet_priv * priv,int rx_en,int tx_en)757 static void bcm_enet_set_flow(struct bcm_enet_priv *priv, int rx_en, int tx_en)
758 {
759 	u32 val;
760 
761 	/* rx flow control (pause frame handling) */
762 	val = enet_readl(priv, ENET_RXCFG_REG);
763 	if (rx_en)
764 		val |= ENET_RXCFG_ENFLOW_MASK;
765 	else
766 		val &= ~ENET_RXCFG_ENFLOW_MASK;
767 	enet_writel(priv, val, ENET_RXCFG_REG);
768 
769 	if (!priv->dma_has_sram)
770 		return;
771 
772 	/* tx flow control (pause frame generation) */
773 	val = enet_dma_readl(priv, ENETDMA_CFG_REG);
774 	if (tx_en)
775 		val |= ENETDMA_CFG_FLOWCH_MASK(priv->rx_chan);
776 	else
777 		val &= ~ENETDMA_CFG_FLOWCH_MASK(priv->rx_chan);
778 	enet_dma_writel(priv, val, ENETDMA_CFG_REG);
779 }
780 
781 /*
782  * link changed callback (from phylib)
783  */
bcm_enet_adjust_phy_link(struct net_device * dev)784 static void bcm_enet_adjust_phy_link(struct net_device *dev)
785 {
786 	struct bcm_enet_priv *priv;
787 	struct phy_device *phydev;
788 	int status_changed;
789 
790 	priv = netdev_priv(dev);
791 	phydev = dev->phydev;
792 	status_changed = 0;
793 
794 	if (priv->old_link != phydev->link) {
795 		status_changed = 1;
796 		priv->old_link = phydev->link;
797 	}
798 
799 	/* reflect duplex change in mac configuration */
800 	if (phydev->link && phydev->duplex != priv->old_duplex) {
801 		bcm_enet_set_duplex(priv,
802 				    (phydev->duplex == DUPLEX_FULL) ? 1 : 0);
803 		status_changed = 1;
804 		priv->old_duplex = phydev->duplex;
805 	}
806 
807 	/* enable flow control if remote advertise it (trust phylib to
808 	 * check that duplex is full */
809 	if (phydev->link && phydev->pause != priv->old_pause) {
810 		int rx_pause_en, tx_pause_en;
811 
812 		if (phydev->pause) {
813 			/* pause was advertised by lpa and us */
814 			rx_pause_en = 1;
815 			tx_pause_en = 1;
816 		} else if (!priv->pause_auto) {
817 			/* pause setting overridden by user */
818 			rx_pause_en = priv->pause_rx;
819 			tx_pause_en = priv->pause_tx;
820 		} else {
821 			rx_pause_en = 0;
822 			tx_pause_en = 0;
823 		}
824 
825 		bcm_enet_set_flow(priv, rx_pause_en, tx_pause_en);
826 		status_changed = 1;
827 		priv->old_pause = phydev->pause;
828 	}
829 
830 	if (status_changed) {
831 		pr_info("%s: link %s", dev->name, phydev->link ?
832 			"UP" : "DOWN");
833 		if (phydev->link)
834 			pr_cont(" - %d/%s - flow control %s", phydev->speed,
835 			       DUPLEX_FULL == phydev->duplex ? "full" : "half",
836 			       phydev->pause == 1 ? "rx&tx" : "off");
837 
838 		pr_cont("\n");
839 	}
840 }
841 
842 /*
843  * link changed callback (if phylib is not used)
844  */
bcm_enet_adjust_link(struct net_device * dev)845 static void bcm_enet_adjust_link(struct net_device *dev)
846 {
847 	struct bcm_enet_priv *priv;
848 
849 	priv = netdev_priv(dev);
850 	bcm_enet_set_duplex(priv, priv->force_duplex_full);
851 	bcm_enet_set_flow(priv, priv->pause_rx, priv->pause_tx);
852 	netif_carrier_on(dev);
853 
854 	pr_info("%s: link forced UP - %d/%s - flow control %s/%s\n",
855 		dev->name,
856 		priv->force_speed_100 ? 100 : 10,
857 		priv->force_duplex_full ? "full" : "half",
858 		priv->pause_rx ? "rx" : "off",
859 		priv->pause_tx ? "tx" : "off");
860 }
861 
862 /*
863  * open callback, allocate dma rings & buffers and start rx operation
864  */
bcm_enet_open(struct net_device * dev)865 static int bcm_enet_open(struct net_device *dev)
866 {
867 	struct bcm_enet_priv *priv;
868 	struct sockaddr addr;
869 	struct device *kdev;
870 	struct phy_device *phydev;
871 	int i, ret;
872 	unsigned int size;
873 	char phy_id[MII_BUS_ID_SIZE + 3];
874 	void *p;
875 	u32 val;
876 
877 	priv = netdev_priv(dev);
878 	kdev = &priv->pdev->dev;
879 
880 	if (priv->has_phy) {
881 		/* connect to PHY */
882 		snprintf(phy_id, sizeof(phy_id), PHY_ID_FMT,
883 			 priv->mii_bus->id, priv->phy_id);
884 
885 		phydev = phy_connect(dev, phy_id, bcm_enet_adjust_phy_link,
886 				     PHY_INTERFACE_MODE_MII);
887 
888 		if (IS_ERR(phydev)) {
889 			dev_err(kdev, "could not attach to PHY\n");
890 			return PTR_ERR(phydev);
891 		}
892 
893 		/* mask with MAC supported features */
894 		phydev->supported &= (SUPPORTED_10baseT_Half |
895 				      SUPPORTED_10baseT_Full |
896 				      SUPPORTED_100baseT_Half |
897 				      SUPPORTED_100baseT_Full |
898 				      SUPPORTED_Autoneg |
899 				      SUPPORTED_Pause |
900 				      SUPPORTED_MII);
901 		phydev->advertising = phydev->supported;
902 
903 		if (priv->pause_auto && priv->pause_rx && priv->pause_tx)
904 			phydev->advertising |= SUPPORTED_Pause;
905 		else
906 			phydev->advertising &= ~SUPPORTED_Pause;
907 
908 		phy_attached_info(phydev);
909 
910 		priv->old_link = 0;
911 		priv->old_duplex = -1;
912 		priv->old_pause = -1;
913 	} else {
914 		phydev = NULL;
915 	}
916 
917 	/* mask all interrupts and request them */
918 	enet_writel(priv, 0, ENET_IRMASK_REG);
919 	enet_dmac_writel(priv, 0, ENETDMAC_IRMASK, priv->rx_chan);
920 	enet_dmac_writel(priv, 0, ENETDMAC_IRMASK, priv->tx_chan);
921 
922 	ret = request_irq(dev->irq, bcm_enet_isr_mac, 0, dev->name, dev);
923 	if (ret)
924 		goto out_phy_disconnect;
925 
926 	ret = request_irq(priv->irq_rx, bcm_enet_isr_dma, 0,
927 			  dev->name, dev);
928 	if (ret)
929 		goto out_freeirq;
930 
931 	ret = request_irq(priv->irq_tx, bcm_enet_isr_dma,
932 			  0, dev->name, dev);
933 	if (ret)
934 		goto out_freeirq_rx;
935 
936 	/* initialize perfect match registers */
937 	for (i = 0; i < 4; i++) {
938 		enet_writel(priv, 0, ENET_PML_REG(i));
939 		enet_writel(priv, 0, ENET_PMH_REG(i));
940 	}
941 
942 	/* write device mac address */
943 	memcpy(addr.sa_data, dev->dev_addr, ETH_ALEN);
944 	bcm_enet_set_mac_address(dev, &addr);
945 
946 	/* allocate rx dma ring */
947 	size = priv->rx_ring_size * sizeof(struct bcm_enet_desc);
948 	p = dma_zalloc_coherent(kdev, size, &priv->rx_desc_dma, GFP_KERNEL);
949 	if (!p) {
950 		ret = -ENOMEM;
951 		goto out_freeirq_tx;
952 	}
953 
954 	priv->rx_desc_alloc_size = size;
955 	priv->rx_desc_cpu = p;
956 
957 	/* allocate tx dma ring */
958 	size = priv->tx_ring_size * sizeof(struct bcm_enet_desc);
959 	p = dma_zalloc_coherent(kdev, size, &priv->tx_desc_dma, GFP_KERNEL);
960 	if (!p) {
961 		ret = -ENOMEM;
962 		goto out_free_rx_ring;
963 	}
964 
965 	priv->tx_desc_alloc_size = size;
966 	priv->tx_desc_cpu = p;
967 
968 	priv->tx_skb = kcalloc(priv->tx_ring_size, sizeof(struct sk_buff *),
969 			       GFP_KERNEL);
970 	if (!priv->tx_skb) {
971 		ret = -ENOMEM;
972 		goto out_free_tx_ring;
973 	}
974 
975 	priv->tx_desc_count = priv->tx_ring_size;
976 	priv->tx_dirty_desc = 0;
977 	priv->tx_curr_desc = 0;
978 	spin_lock_init(&priv->tx_lock);
979 
980 	/* init & fill rx ring with skbs */
981 	priv->rx_skb = kcalloc(priv->rx_ring_size, sizeof(struct sk_buff *),
982 			       GFP_KERNEL);
983 	if (!priv->rx_skb) {
984 		ret = -ENOMEM;
985 		goto out_free_tx_skb;
986 	}
987 
988 	priv->rx_desc_count = 0;
989 	priv->rx_dirty_desc = 0;
990 	priv->rx_curr_desc = 0;
991 
992 	/* initialize flow control buffer allocation */
993 	if (priv->dma_has_sram)
994 		enet_dma_writel(priv, ENETDMA_BUFALLOC_FORCE_MASK | 0,
995 				ENETDMA_BUFALLOC_REG(priv->rx_chan));
996 	else
997 		enet_dmac_writel(priv, ENETDMA_BUFALLOC_FORCE_MASK | 0,
998 				ENETDMAC_BUFALLOC, priv->rx_chan);
999 
1000 	if (bcm_enet_refill_rx(dev)) {
1001 		dev_err(kdev, "cannot allocate rx skb queue\n");
1002 		ret = -ENOMEM;
1003 		goto out;
1004 	}
1005 
1006 	/* write rx & tx ring addresses */
1007 	if (priv->dma_has_sram) {
1008 		enet_dmas_writel(priv, priv->rx_desc_dma,
1009 				 ENETDMAS_RSTART_REG, priv->rx_chan);
1010 		enet_dmas_writel(priv, priv->tx_desc_dma,
1011 			 ENETDMAS_RSTART_REG, priv->tx_chan);
1012 	} else {
1013 		enet_dmac_writel(priv, priv->rx_desc_dma,
1014 				ENETDMAC_RSTART, priv->rx_chan);
1015 		enet_dmac_writel(priv, priv->tx_desc_dma,
1016 				ENETDMAC_RSTART, priv->tx_chan);
1017 	}
1018 
1019 	/* clear remaining state ram for rx & tx channel */
1020 	if (priv->dma_has_sram) {
1021 		enet_dmas_writel(priv, 0, ENETDMAS_SRAM2_REG, priv->rx_chan);
1022 		enet_dmas_writel(priv, 0, ENETDMAS_SRAM2_REG, priv->tx_chan);
1023 		enet_dmas_writel(priv, 0, ENETDMAS_SRAM3_REG, priv->rx_chan);
1024 		enet_dmas_writel(priv, 0, ENETDMAS_SRAM3_REG, priv->tx_chan);
1025 		enet_dmas_writel(priv, 0, ENETDMAS_SRAM4_REG, priv->rx_chan);
1026 		enet_dmas_writel(priv, 0, ENETDMAS_SRAM4_REG, priv->tx_chan);
1027 	} else {
1028 		enet_dmac_writel(priv, 0, ENETDMAC_FC, priv->rx_chan);
1029 		enet_dmac_writel(priv, 0, ENETDMAC_FC, priv->tx_chan);
1030 	}
1031 
1032 	/* set max rx/tx length */
1033 	enet_writel(priv, priv->hw_mtu, ENET_RXMAXLEN_REG);
1034 	enet_writel(priv, priv->hw_mtu, ENET_TXMAXLEN_REG);
1035 
1036 	/* set dma maximum burst len */
1037 	enet_dmac_writel(priv, priv->dma_maxburst,
1038 			 ENETDMAC_MAXBURST, priv->rx_chan);
1039 	enet_dmac_writel(priv, priv->dma_maxburst,
1040 			 ENETDMAC_MAXBURST, priv->tx_chan);
1041 
1042 	/* set correct transmit fifo watermark */
1043 	enet_writel(priv, BCMENET_TX_FIFO_TRESH, ENET_TXWMARK_REG);
1044 
1045 	/* set flow control low/high threshold to 1/3 / 2/3 */
1046 	if (priv->dma_has_sram) {
1047 		val = priv->rx_ring_size / 3;
1048 		enet_dma_writel(priv, val, ENETDMA_FLOWCL_REG(priv->rx_chan));
1049 		val = (priv->rx_ring_size * 2) / 3;
1050 		enet_dma_writel(priv, val, ENETDMA_FLOWCH_REG(priv->rx_chan));
1051 	} else {
1052 		enet_dmac_writel(priv, 5, ENETDMAC_FC, priv->rx_chan);
1053 		enet_dmac_writel(priv, priv->rx_ring_size, ENETDMAC_LEN, priv->rx_chan);
1054 		enet_dmac_writel(priv, priv->tx_ring_size, ENETDMAC_LEN, priv->tx_chan);
1055 	}
1056 
1057 	/* all set, enable mac and interrupts, start dma engine and
1058 	 * kick rx dma channel */
1059 	wmb();
1060 	val = enet_readl(priv, ENET_CTL_REG);
1061 	val |= ENET_CTL_ENABLE_MASK;
1062 	enet_writel(priv, val, ENET_CTL_REG);
1063 	if (priv->dma_has_sram)
1064 		enet_dma_writel(priv, ENETDMA_CFG_EN_MASK, ENETDMA_CFG_REG);
1065 	enet_dmac_writel(priv, priv->dma_chan_en_mask,
1066 			 ENETDMAC_CHANCFG, priv->rx_chan);
1067 
1068 	/* watch "mib counters about to overflow" interrupt */
1069 	enet_writel(priv, ENET_IR_MIB, ENET_IR_REG);
1070 	enet_writel(priv, ENET_IR_MIB, ENET_IRMASK_REG);
1071 
1072 	/* watch "packet transferred" interrupt in rx and tx */
1073 	enet_dmac_writel(priv, priv->dma_chan_int_mask,
1074 			 ENETDMAC_IR, priv->rx_chan);
1075 	enet_dmac_writel(priv, priv->dma_chan_int_mask,
1076 			 ENETDMAC_IR, priv->tx_chan);
1077 
1078 	/* make sure we enable napi before rx interrupt  */
1079 	napi_enable(&priv->napi);
1080 
1081 	enet_dmac_writel(priv, priv->dma_chan_int_mask,
1082 			 ENETDMAC_IRMASK, priv->rx_chan);
1083 	enet_dmac_writel(priv, priv->dma_chan_int_mask,
1084 			 ENETDMAC_IRMASK, priv->tx_chan);
1085 
1086 	if (phydev)
1087 		phy_start(phydev);
1088 	else
1089 		bcm_enet_adjust_link(dev);
1090 
1091 	netif_start_queue(dev);
1092 	return 0;
1093 
1094 out:
1095 	for (i = 0; i < priv->rx_ring_size; i++) {
1096 		struct bcm_enet_desc *desc;
1097 
1098 		if (!priv->rx_skb[i])
1099 			continue;
1100 
1101 		desc = &priv->rx_desc_cpu[i];
1102 		dma_unmap_single(kdev, desc->address, priv->rx_skb_size,
1103 				 DMA_FROM_DEVICE);
1104 		kfree_skb(priv->rx_skb[i]);
1105 	}
1106 	kfree(priv->rx_skb);
1107 
1108 out_free_tx_skb:
1109 	kfree(priv->tx_skb);
1110 
1111 out_free_tx_ring:
1112 	dma_free_coherent(kdev, priv->tx_desc_alloc_size,
1113 			  priv->tx_desc_cpu, priv->tx_desc_dma);
1114 
1115 out_free_rx_ring:
1116 	dma_free_coherent(kdev, priv->rx_desc_alloc_size,
1117 			  priv->rx_desc_cpu, priv->rx_desc_dma);
1118 
1119 out_freeirq_tx:
1120 	free_irq(priv->irq_tx, dev);
1121 
1122 out_freeirq_rx:
1123 	free_irq(priv->irq_rx, dev);
1124 
1125 out_freeirq:
1126 	free_irq(dev->irq, dev);
1127 
1128 out_phy_disconnect:
1129 	if (phydev)
1130 		phy_disconnect(phydev);
1131 
1132 	return ret;
1133 }
1134 
1135 /*
1136  * disable mac
1137  */
bcm_enet_disable_mac(struct bcm_enet_priv * priv)1138 static void bcm_enet_disable_mac(struct bcm_enet_priv *priv)
1139 {
1140 	int limit;
1141 	u32 val;
1142 
1143 	val = enet_readl(priv, ENET_CTL_REG);
1144 	val |= ENET_CTL_DISABLE_MASK;
1145 	enet_writel(priv, val, ENET_CTL_REG);
1146 
1147 	limit = 1000;
1148 	do {
1149 		u32 val;
1150 
1151 		val = enet_readl(priv, ENET_CTL_REG);
1152 		if (!(val & ENET_CTL_DISABLE_MASK))
1153 			break;
1154 		udelay(1);
1155 	} while (limit--);
1156 }
1157 
1158 /*
1159  * disable dma in given channel
1160  */
bcm_enet_disable_dma(struct bcm_enet_priv * priv,int chan)1161 static void bcm_enet_disable_dma(struct bcm_enet_priv *priv, int chan)
1162 {
1163 	int limit;
1164 
1165 	enet_dmac_writel(priv, 0, ENETDMAC_CHANCFG, chan);
1166 
1167 	limit = 1000;
1168 	do {
1169 		u32 val;
1170 
1171 		val = enet_dmac_readl(priv, ENETDMAC_CHANCFG, chan);
1172 		if (!(val & ENETDMAC_CHANCFG_EN_MASK))
1173 			break;
1174 		udelay(1);
1175 	} while (limit--);
1176 }
1177 
1178 /*
1179  * stop callback
1180  */
bcm_enet_stop(struct net_device * dev)1181 static int bcm_enet_stop(struct net_device *dev)
1182 {
1183 	struct bcm_enet_priv *priv;
1184 	struct device *kdev;
1185 	int i;
1186 
1187 	priv = netdev_priv(dev);
1188 	kdev = &priv->pdev->dev;
1189 
1190 	netif_stop_queue(dev);
1191 	napi_disable(&priv->napi);
1192 	if (priv->has_phy)
1193 		phy_stop(dev->phydev);
1194 	del_timer_sync(&priv->rx_timeout);
1195 
1196 	/* mask all interrupts */
1197 	enet_writel(priv, 0, ENET_IRMASK_REG);
1198 	enet_dmac_writel(priv, 0, ENETDMAC_IRMASK, priv->rx_chan);
1199 	enet_dmac_writel(priv, 0, ENETDMAC_IRMASK, priv->tx_chan);
1200 
1201 	/* make sure no mib update is scheduled */
1202 	cancel_work_sync(&priv->mib_update_task);
1203 
1204 	/* disable dma & mac */
1205 	bcm_enet_disable_dma(priv, priv->tx_chan);
1206 	bcm_enet_disable_dma(priv, priv->rx_chan);
1207 	bcm_enet_disable_mac(priv);
1208 
1209 	/* force reclaim of all tx buffers */
1210 	bcm_enet_tx_reclaim(dev, 1);
1211 
1212 	/* free the rx skb ring */
1213 	for (i = 0; i < priv->rx_ring_size; i++) {
1214 		struct bcm_enet_desc *desc;
1215 
1216 		if (!priv->rx_skb[i])
1217 			continue;
1218 
1219 		desc = &priv->rx_desc_cpu[i];
1220 		dma_unmap_single(kdev, desc->address, priv->rx_skb_size,
1221 				 DMA_FROM_DEVICE);
1222 		kfree_skb(priv->rx_skb[i]);
1223 	}
1224 
1225 	/* free remaining allocated memory */
1226 	kfree(priv->rx_skb);
1227 	kfree(priv->tx_skb);
1228 	dma_free_coherent(kdev, priv->rx_desc_alloc_size,
1229 			  priv->rx_desc_cpu, priv->rx_desc_dma);
1230 	dma_free_coherent(kdev, priv->tx_desc_alloc_size,
1231 			  priv->tx_desc_cpu, priv->tx_desc_dma);
1232 	free_irq(priv->irq_tx, dev);
1233 	free_irq(priv->irq_rx, dev);
1234 	free_irq(dev->irq, dev);
1235 
1236 	/* release phy */
1237 	if (priv->has_phy)
1238 		phy_disconnect(dev->phydev);
1239 
1240 	return 0;
1241 }
1242 
1243 /*
1244  * ethtool callbacks
1245  */
1246 struct bcm_enet_stats {
1247 	char stat_string[ETH_GSTRING_LEN];
1248 	int sizeof_stat;
1249 	int stat_offset;
1250 	int mib_reg;
1251 };
1252 
1253 #define GEN_STAT(m) sizeof(((struct bcm_enet_priv *)0)->m),		\
1254 		     offsetof(struct bcm_enet_priv, m)
1255 #define DEV_STAT(m) sizeof(((struct net_device_stats *)0)->m),		\
1256 		     offsetof(struct net_device_stats, m)
1257 
1258 static const struct bcm_enet_stats bcm_enet_gstrings_stats[] = {
1259 	{ "rx_packets", DEV_STAT(rx_packets), -1 },
1260 	{ "tx_packets",	DEV_STAT(tx_packets), -1 },
1261 	{ "rx_bytes", DEV_STAT(rx_bytes), -1 },
1262 	{ "tx_bytes", DEV_STAT(tx_bytes), -1 },
1263 	{ "rx_errors", DEV_STAT(rx_errors), -1 },
1264 	{ "tx_errors", DEV_STAT(tx_errors), -1 },
1265 	{ "rx_dropped",	DEV_STAT(rx_dropped), -1 },
1266 	{ "tx_dropped",	DEV_STAT(tx_dropped), -1 },
1267 
1268 	{ "rx_good_octets", GEN_STAT(mib.rx_gd_octets), ETH_MIB_RX_GD_OCTETS},
1269 	{ "rx_good_pkts", GEN_STAT(mib.rx_gd_pkts), ETH_MIB_RX_GD_PKTS },
1270 	{ "rx_broadcast", GEN_STAT(mib.rx_brdcast), ETH_MIB_RX_BRDCAST },
1271 	{ "rx_multicast", GEN_STAT(mib.rx_mult), ETH_MIB_RX_MULT },
1272 	{ "rx_64_octets", GEN_STAT(mib.rx_64), ETH_MIB_RX_64 },
1273 	{ "rx_65_127_oct", GEN_STAT(mib.rx_65_127), ETH_MIB_RX_65_127 },
1274 	{ "rx_128_255_oct", GEN_STAT(mib.rx_128_255), ETH_MIB_RX_128_255 },
1275 	{ "rx_256_511_oct", GEN_STAT(mib.rx_256_511), ETH_MIB_RX_256_511 },
1276 	{ "rx_512_1023_oct", GEN_STAT(mib.rx_512_1023), ETH_MIB_RX_512_1023 },
1277 	{ "rx_1024_max_oct", GEN_STAT(mib.rx_1024_max), ETH_MIB_RX_1024_MAX },
1278 	{ "rx_jabber", GEN_STAT(mib.rx_jab), ETH_MIB_RX_JAB },
1279 	{ "rx_oversize", GEN_STAT(mib.rx_ovr), ETH_MIB_RX_OVR },
1280 	{ "rx_fragment", GEN_STAT(mib.rx_frag), ETH_MIB_RX_FRAG },
1281 	{ "rx_dropped",	GEN_STAT(mib.rx_drop), ETH_MIB_RX_DROP },
1282 	{ "rx_crc_align", GEN_STAT(mib.rx_crc_align), ETH_MIB_RX_CRC_ALIGN },
1283 	{ "rx_undersize", GEN_STAT(mib.rx_und), ETH_MIB_RX_UND },
1284 	{ "rx_crc", GEN_STAT(mib.rx_crc), ETH_MIB_RX_CRC },
1285 	{ "rx_align", GEN_STAT(mib.rx_align), ETH_MIB_RX_ALIGN },
1286 	{ "rx_symbol_error", GEN_STAT(mib.rx_sym), ETH_MIB_RX_SYM },
1287 	{ "rx_pause", GEN_STAT(mib.rx_pause), ETH_MIB_RX_PAUSE },
1288 	{ "rx_control", GEN_STAT(mib.rx_cntrl), ETH_MIB_RX_CNTRL },
1289 
1290 	{ "tx_good_octets", GEN_STAT(mib.tx_gd_octets), ETH_MIB_TX_GD_OCTETS },
1291 	{ "tx_good_pkts", GEN_STAT(mib.tx_gd_pkts), ETH_MIB_TX_GD_PKTS },
1292 	{ "tx_broadcast", GEN_STAT(mib.tx_brdcast), ETH_MIB_TX_BRDCAST },
1293 	{ "tx_multicast", GEN_STAT(mib.tx_mult), ETH_MIB_TX_MULT },
1294 	{ "tx_64_oct", GEN_STAT(mib.tx_64), ETH_MIB_TX_64 },
1295 	{ "tx_65_127_oct", GEN_STAT(mib.tx_65_127), ETH_MIB_TX_65_127 },
1296 	{ "tx_128_255_oct", GEN_STAT(mib.tx_128_255), ETH_MIB_TX_128_255 },
1297 	{ "tx_256_511_oct", GEN_STAT(mib.tx_256_511), ETH_MIB_TX_256_511 },
1298 	{ "tx_512_1023_oct", GEN_STAT(mib.tx_512_1023), ETH_MIB_TX_512_1023},
1299 	{ "tx_1024_max_oct", GEN_STAT(mib.tx_1024_max), ETH_MIB_TX_1024_MAX },
1300 	{ "tx_jabber", GEN_STAT(mib.tx_jab), ETH_MIB_TX_JAB },
1301 	{ "tx_oversize", GEN_STAT(mib.tx_ovr), ETH_MIB_TX_OVR },
1302 	{ "tx_fragment", GEN_STAT(mib.tx_frag), ETH_MIB_TX_FRAG },
1303 	{ "tx_underrun", GEN_STAT(mib.tx_underrun), ETH_MIB_TX_UNDERRUN },
1304 	{ "tx_collisions", GEN_STAT(mib.tx_col), ETH_MIB_TX_COL },
1305 	{ "tx_single_collision", GEN_STAT(mib.tx_1_col), ETH_MIB_TX_1_COL },
1306 	{ "tx_multiple_collision", GEN_STAT(mib.tx_m_col), ETH_MIB_TX_M_COL },
1307 	{ "tx_excess_collision", GEN_STAT(mib.tx_ex_col), ETH_MIB_TX_EX_COL },
1308 	{ "tx_late_collision", GEN_STAT(mib.tx_late), ETH_MIB_TX_LATE },
1309 	{ "tx_deferred", GEN_STAT(mib.tx_def), ETH_MIB_TX_DEF },
1310 	{ "tx_carrier_sense", GEN_STAT(mib.tx_crs), ETH_MIB_TX_CRS },
1311 	{ "tx_pause", GEN_STAT(mib.tx_pause), ETH_MIB_TX_PAUSE },
1312 
1313 };
1314 
1315 #define BCM_ENET_STATS_LEN	ARRAY_SIZE(bcm_enet_gstrings_stats)
1316 
1317 static const u32 unused_mib_regs[] = {
1318 	ETH_MIB_TX_ALL_OCTETS,
1319 	ETH_MIB_TX_ALL_PKTS,
1320 	ETH_MIB_RX_ALL_OCTETS,
1321 	ETH_MIB_RX_ALL_PKTS,
1322 };
1323 
1324 
bcm_enet_get_drvinfo(struct net_device * netdev,struct ethtool_drvinfo * drvinfo)1325 static void bcm_enet_get_drvinfo(struct net_device *netdev,
1326 				 struct ethtool_drvinfo *drvinfo)
1327 {
1328 	strlcpy(drvinfo->driver, bcm_enet_driver_name, sizeof(drvinfo->driver));
1329 	strlcpy(drvinfo->version, bcm_enet_driver_version,
1330 		sizeof(drvinfo->version));
1331 	strlcpy(drvinfo->fw_version, "N/A", sizeof(drvinfo->fw_version));
1332 	strlcpy(drvinfo->bus_info, "bcm63xx", sizeof(drvinfo->bus_info));
1333 }
1334 
bcm_enet_get_sset_count(struct net_device * netdev,int string_set)1335 static int bcm_enet_get_sset_count(struct net_device *netdev,
1336 					int string_set)
1337 {
1338 	switch (string_set) {
1339 	case ETH_SS_STATS:
1340 		return BCM_ENET_STATS_LEN;
1341 	default:
1342 		return -EINVAL;
1343 	}
1344 }
1345 
bcm_enet_get_strings(struct net_device * netdev,u32 stringset,u8 * data)1346 static void bcm_enet_get_strings(struct net_device *netdev,
1347 				 u32 stringset, u8 *data)
1348 {
1349 	int i;
1350 
1351 	switch (stringset) {
1352 	case ETH_SS_STATS:
1353 		for (i = 0; i < BCM_ENET_STATS_LEN; i++) {
1354 			memcpy(data + i * ETH_GSTRING_LEN,
1355 			       bcm_enet_gstrings_stats[i].stat_string,
1356 			       ETH_GSTRING_LEN);
1357 		}
1358 		break;
1359 	}
1360 }
1361 
update_mib_counters(struct bcm_enet_priv * priv)1362 static void update_mib_counters(struct bcm_enet_priv *priv)
1363 {
1364 	int i;
1365 
1366 	for (i = 0; i < BCM_ENET_STATS_LEN; i++) {
1367 		const struct bcm_enet_stats *s;
1368 		u32 val;
1369 		char *p;
1370 
1371 		s = &bcm_enet_gstrings_stats[i];
1372 		if (s->mib_reg == -1)
1373 			continue;
1374 
1375 		val = enet_readl(priv, ENET_MIB_REG(s->mib_reg));
1376 		p = (char *)priv + s->stat_offset;
1377 
1378 		if (s->sizeof_stat == sizeof(u64))
1379 			*(u64 *)p += val;
1380 		else
1381 			*(u32 *)p += val;
1382 	}
1383 
1384 	/* also empty unused mib counters to make sure mib counter
1385 	 * overflow interrupt is cleared */
1386 	for (i = 0; i < ARRAY_SIZE(unused_mib_regs); i++)
1387 		(void)enet_readl(priv, ENET_MIB_REG(unused_mib_regs[i]));
1388 }
1389 
bcm_enet_update_mib_counters_defer(struct work_struct * t)1390 static void bcm_enet_update_mib_counters_defer(struct work_struct *t)
1391 {
1392 	struct bcm_enet_priv *priv;
1393 
1394 	priv = container_of(t, struct bcm_enet_priv, mib_update_task);
1395 	mutex_lock(&priv->mib_update_lock);
1396 	update_mib_counters(priv);
1397 	mutex_unlock(&priv->mib_update_lock);
1398 
1399 	/* reenable mib interrupt */
1400 	if (netif_running(priv->net_dev))
1401 		enet_writel(priv, ENET_IR_MIB, ENET_IRMASK_REG);
1402 }
1403 
bcm_enet_get_ethtool_stats(struct net_device * netdev,struct ethtool_stats * stats,u64 * data)1404 static void bcm_enet_get_ethtool_stats(struct net_device *netdev,
1405 				       struct ethtool_stats *stats,
1406 				       u64 *data)
1407 {
1408 	struct bcm_enet_priv *priv;
1409 	int i;
1410 
1411 	priv = netdev_priv(netdev);
1412 
1413 	mutex_lock(&priv->mib_update_lock);
1414 	update_mib_counters(priv);
1415 
1416 	for (i = 0; i < BCM_ENET_STATS_LEN; i++) {
1417 		const struct bcm_enet_stats *s;
1418 		char *p;
1419 
1420 		s = &bcm_enet_gstrings_stats[i];
1421 		if (s->mib_reg == -1)
1422 			p = (char *)&netdev->stats;
1423 		else
1424 			p = (char *)priv;
1425 		p += s->stat_offset;
1426 		data[i] = (s->sizeof_stat == sizeof(u64)) ?
1427 			*(u64 *)p : *(u32 *)p;
1428 	}
1429 	mutex_unlock(&priv->mib_update_lock);
1430 }
1431 
bcm_enet_nway_reset(struct net_device * dev)1432 static int bcm_enet_nway_reset(struct net_device *dev)
1433 {
1434 	struct bcm_enet_priv *priv;
1435 
1436 	priv = netdev_priv(dev);
1437 	if (priv->has_phy)
1438 		return phy_ethtool_nway_reset(dev);
1439 
1440 	return -EOPNOTSUPP;
1441 }
1442 
bcm_enet_get_link_ksettings(struct net_device * dev,struct ethtool_link_ksettings * cmd)1443 static int bcm_enet_get_link_ksettings(struct net_device *dev,
1444 				       struct ethtool_link_ksettings *cmd)
1445 {
1446 	struct bcm_enet_priv *priv;
1447 	u32 supported, advertising;
1448 
1449 	priv = netdev_priv(dev);
1450 
1451 	if (priv->has_phy) {
1452 		if (!dev->phydev)
1453 			return -ENODEV;
1454 
1455 		phy_ethtool_ksettings_get(dev->phydev, cmd);
1456 
1457 		return 0;
1458 	} else {
1459 		cmd->base.autoneg = 0;
1460 		cmd->base.speed = (priv->force_speed_100) ?
1461 			SPEED_100 : SPEED_10;
1462 		cmd->base.duplex = (priv->force_duplex_full) ?
1463 			DUPLEX_FULL : DUPLEX_HALF;
1464 		supported = ADVERTISED_10baseT_Half |
1465 			ADVERTISED_10baseT_Full |
1466 			ADVERTISED_100baseT_Half |
1467 			ADVERTISED_100baseT_Full;
1468 		advertising = 0;
1469 		ethtool_convert_legacy_u32_to_link_mode(
1470 			cmd->link_modes.supported, supported);
1471 		ethtool_convert_legacy_u32_to_link_mode(
1472 			cmd->link_modes.advertising, advertising);
1473 		cmd->base.port = PORT_MII;
1474 	}
1475 	return 0;
1476 }
1477 
bcm_enet_set_link_ksettings(struct net_device * dev,const struct ethtool_link_ksettings * cmd)1478 static int bcm_enet_set_link_ksettings(struct net_device *dev,
1479 				       const struct ethtool_link_ksettings *cmd)
1480 {
1481 	struct bcm_enet_priv *priv;
1482 
1483 	priv = netdev_priv(dev);
1484 	if (priv->has_phy) {
1485 		if (!dev->phydev)
1486 			return -ENODEV;
1487 		return phy_ethtool_ksettings_set(dev->phydev, cmd);
1488 	} else {
1489 
1490 		if (cmd->base.autoneg ||
1491 		    (cmd->base.speed != SPEED_100 &&
1492 		     cmd->base.speed != SPEED_10) ||
1493 		    cmd->base.port != PORT_MII)
1494 			return -EINVAL;
1495 
1496 		priv->force_speed_100 =
1497 			(cmd->base.speed == SPEED_100) ? 1 : 0;
1498 		priv->force_duplex_full =
1499 			(cmd->base.duplex == DUPLEX_FULL) ? 1 : 0;
1500 
1501 		if (netif_running(dev))
1502 			bcm_enet_adjust_link(dev);
1503 		return 0;
1504 	}
1505 }
1506 
bcm_enet_get_ringparam(struct net_device * dev,struct ethtool_ringparam * ering)1507 static void bcm_enet_get_ringparam(struct net_device *dev,
1508 				   struct ethtool_ringparam *ering)
1509 {
1510 	struct bcm_enet_priv *priv;
1511 
1512 	priv = netdev_priv(dev);
1513 
1514 	/* rx/tx ring is actually only limited by memory */
1515 	ering->rx_max_pending = 8192;
1516 	ering->tx_max_pending = 8192;
1517 	ering->rx_pending = priv->rx_ring_size;
1518 	ering->tx_pending = priv->tx_ring_size;
1519 }
1520 
bcm_enet_set_ringparam(struct net_device * dev,struct ethtool_ringparam * ering)1521 static int bcm_enet_set_ringparam(struct net_device *dev,
1522 				  struct ethtool_ringparam *ering)
1523 {
1524 	struct bcm_enet_priv *priv;
1525 	int was_running;
1526 
1527 	priv = netdev_priv(dev);
1528 
1529 	was_running = 0;
1530 	if (netif_running(dev)) {
1531 		bcm_enet_stop(dev);
1532 		was_running = 1;
1533 	}
1534 
1535 	priv->rx_ring_size = ering->rx_pending;
1536 	priv->tx_ring_size = ering->tx_pending;
1537 
1538 	if (was_running) {
1539 		int err;
1540 
1541 		err = bcm_enet_open(dev);
1542 		if (err)
1543 			dev_close(dev);
1544 		else
1545 			bcm_enet_set_multicast_list(dev);
1546 	}
1547 	return 0;
1548 }
1549 
bcm_enet_get_pauseparam(struct net_device * dev,struct ethtool_pauseparam * ecmd)1550 static void bcm_enet_get_pauseparam(struct net_device *dev,
1551 				    struct ethtool_pauseparam *ecmd)
1552 {
1553 	struct bcm_enet_priv *priv;
1554 
1555 	priv = netdev_priv(dev);
1556 	ecmd->autoneg = priv->pause_auto;
1557 	ecmd->rx_pause = priv->pause_rx;
1558 	ecmd->tx_pause = priv->pause_tx;
1559 }
1560 
bcm_enet_set_pauseparam(struct net_device * dev,struct ethtool_pauseparam * ecmd)1561 static int bcm_enet_set_pauseparam(struct net_device *dev,
1562 				   struct ethtool_pauseparam *ecmd)
1563 {
1564 	struct bcm_enet_priv *priv;
1565 
1566 	priv = netdev_priv(dev);
1567 
1568 	if (priv->has_phy) {
1569 		if (ecmd->autoneg && (ecmd->rx_pause != ecmd->tx_pause)) {
1570 			/* asymetric pause mode not supported,
1571 			 * actually possible but integrated PHY has RO
1572 			 * asym_pause bit */
1573 			return -EINVAL;
1574 		}
1575 	} else {
1576 		/* no pause autoneg on direct mii connection */
1577 		if (ecmd->autoneg)
1578 			return -EINVAL;
1579 	}
1580 
1581 	priv->pause_auto = ecmd->autoneg;
1582 	priv->pause_rx = ecmd->rx_pause;
1583 	priv->pause_tx = ecmd->tx_pause;
1584 
1585 	return 0;
1586 }
1587 
1588 static const struct ethtool_ops bcm_enet_ethtool_ops = {
1589 	.get_strings		= bcm_enet_get_strings,
1590 	.get_sset_count		= bcm_enet_get_sset_count,
1591 	.get_ethtool_stats      = bcm_enet_get_ethtool_stats,
1592 	.nway_reset		= bcm_enet_nway_reset,
1593 	.get_drvinfo		= bcm_enet_get_drvinfo,
1594 	.get_link		= ethtool_op_get_link,
1595 	.get_ringparam		= bcm_enet_get_ringparam,
1596 	.set_ringparam		= bcm_enet_set_ringparam,
1597 	.get_pauseparam		= bcm_enet_get_pauseparam,
1598 	.set_pauseparam		= bcm_enet_set_pauseparam,
1599 	.get_link_ksettings	= bcm_enet_get_link_ksettings,
1600 	.set_link_ksettings	= bcm_enet_set_link_ksettings,
1601 };
1602 
bcm_enet_ioctl(struct net_device * dev,struct ifreq * rq,int cmd)1603 static int bcm_enet_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
1604 {
1605 	struct bcm_enet_priv *priv;
1606 
1607 	priv = netdev_priv(dev);
1608 	if (priv->has_phy) {
1609 		if (!dev->phydev)
1610 			return -ENODEV;
1611 		return phy_mii_ioctl(dev->phydev, rq, cmd);
1612 	} else {
1613 		struct mii_if_info mii;
1614 
1615 		mii.dev = dev;
1616 		mii.mdio_read = bcm_enet_mdio_read_mii;
1617 		mii.mdio_write = bcm_enet_mdio_write_mii;
1618 		mii.phy_id = 0;
1619 		mii.phy_id_mask = 0x3f;
1620 		mii.reg_num_mask = 0x1f;
1621 		return generic_mii_ioctl(&mii, if_mii(rq), cmd, NULL);
1622 	}
1623 }
1624 
1625 /*
1626  * adjust mtu, can't be called while device is running
1627  */
bcm_enet_change_mtu(struct net_device * dev,int new_mtu)1628 static int bcm_enet_change_mtu(struct net_device *dev, int new_mtu)
1629 {
1630 	struct bcm_enet_priv *priv = netdev_priv(dev);
1631 	int actual_mtu = new_mtu;
1632 
1633 	if (netif_running(dev))
1634 		return -EBUSY;
1635 
1636 	/* add ethernet header + vlan tag size */
1637 	actual_mtu += VLAN_ETH_HLEN;
1638 
1639 	/*
1640 	 * setup maximum size before we get overflow mark in
1641 	 * descriptor, note that this will not prevent reception of
1642 	 * big frames, they will be split into multiple buffers
1643 	 * anyway
1644 	 */
1645 	priv->hw_mtu = actual_mtu;
1646 
1647 	/*
1648 	 * align rx buffer size to dma burst len, account FCS since
1649 	 * it's appended
1650 	 */
1651 	priv->rx_skb_size = ALIGN(actual_mtu + ETH_FCS_LEN,
1652 				  priv->dma_maxburst * 4);
1653 
1654 	dev->mtu = new_mtu;
1655 	return 0;
1656 }
1657 
1658 /*
1659  * preinit hardware to allow mii operation while device is down
1660  */
bcm_enet_hw_preinit(struct bcm_enet_priv * priv)1661 static void bcm_enet_hw_preinit(struct bcm_enet_priv *priv)
1662 {
1663 	u32 val;
1664 	int limit;
1665 
1666 	/* make sure mac is disabled */
1667 	bcm_enet_disable_mac(priv);
1668 
1669 	/* soft reset mac */
1670 	val = ENET_CTL_SRESET_MASK;
1671 	enet_writel(priv, val, ENET_CTL_REG);
1672 	wmb();
1673 
1674 	limit = 1000;
1675 	do {
1676 		val = enet_readl(priv, ENET_CTL_REG);
1677 		if (!(val & ENET_CTL_SRESET_MASK))
1678 			break;
1679 		udelay(1);
1680 	} while (limit--);
1681 
1682 	/* select correct mii interface */
1683 	val = enet_readl(priv, ENET_CTL_REG);
1684 	if (priv->use_external_mii)
1685 		val |= ENET_CTL_EPHYSEL_MASK;
1686 	else
1687 		val &= ~ENET_CTL_EPHYSEL_MASK;
1688 	enet_writel(priv, val, ENET_CTL_REG);
1689 
1690 	/* turn on mdc clock */
1691 	enet_writel(priv, (0x1f << ENET_MIISC_MDCFREQDIV_SHIFT) |
1692 		    ENET_MIISC_PREAMBLEEN_MASK, ENET_MIISC_REG);
1693 
1694 	/* set mib counters to self-clear when read */
1695 	val = enet_readl(priv, ENET_MIBCTL_REG);
1696 	val |= ENET_MIBCTL_RDCLEAR_MASK;
1697 	enet_writel(priv, val, ENET_MIBCTL_REG);
1698 }
1699 
1700 static const struct net_device_ops bcm_enet_ops = {
1701 	.ndo_open		= bcm_enet_open,
1702 	.ndo_stop		= bcm_enet_stop,
1703 	.ndo_start_xmit		= bcm_enet_start_xmit,
1704 	.ndo_set_mac_address	= bcm_enet_set_mac_address,
1705 	.ndo_set_rx_mode	= bcm_enet_set_multicast_list,
1706 	.ndo_do_ioctl		= bcm_enet_ioctl,
1707 	.ndo_change_mtu		= bcm_enet_change_mtu,
1708 };
1709 
1710 /*
1711  * allocate netdevice, request register memory and register device.
1712  */
bcm_enet_probe(struct platform_device * pdev)1713 static int bcm_enet_probe(struct platform_device *pdev)
1714 {
1715 	struct bcm_enet_priv *priv;
1716 	struct net_device *dev;
1717 	struct bcm63xx_enet_platform_data *pd;
1718 	struct resource *res_mem, *res_irq, *res_irq_rx, *res_irq_tx;
1719 	struct mii_bus *bus;
1720 	int i, ret;
1721 
1722 	if (!bcm_enet_shared_base[0])
1723 		return -EPROBE_DEFER;
1724 
1725 	res_irq = platform_get_resource(pdev, IORESOURCE_IRQ, 0);
1726 	res_irq_rx = platform_get_resource(pdev, IORESOURCE_IRQ, 1);
1727 	res_irq_tx = platform_get_resource(pdev, IORESOURCE_IRQ, 2);
1728 	if (!res_irq || !res_irq_rx || !res_irq_tx)
1729 		return -ENODEV;
1730 
1731 	ret = 0;
1732 	dev = alloc_etherdev(sizeof(*priv));
1733 	if (!dev)
1734 		return -ENOMEM;
1735 	priv = netdev_priv(dev);
1736 
1737 	priv->enet_is_sw = false;
1738 	priv->dma_maxburst = BCMENET_DMA_MAXBURST;
1739 
1740 	ret = bcm_enet_change_mtu(dev, dev->mtu);
1741 	if (ret)
1742 		goto out;
1743 
1744 	res_mem = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1745 	priv->base = devm_ioremap_resource(&pdev->dev, res_mem);
1746 	if (IS_ERR(priv->base)) {
1747 		ret = PTR_ERR(priv->base);
1748 		goto out;
1749 	}
1750 
1751 	dev->irq = priv->irq = res_irq->start;
1752 	priv->irq_rx = res_irq_rx->start;
1753 	priv->irq_tx = res_irq_tx->start;
1754 
1755 	priv->mac_clk = devm_clk_get(&pdev->dev, "enet");
1756 	if (IS_ERR(priv->mac_clk)) {
1757 		ret = PTR_ERR(priv->mac_clk);
1758 		goto out;
1759 	}
1760 	ret = clk_prepare_enable(priv->mac_clk);
1761 	if (ret)
1762 		goto out;
1763 
1764 	/* initialize default and fetch platform data */
1765 	priv->rx_ring_size = BCMENET_DEF_RX_DESC;
1766 	priv->tx_ring_size = BCMENET_DEF_TX_DESC;
1767 
1768 	pd = dev_get_platdata(&pdev->dev);
1769 	if (pd) {
1770 		memcpy(dev->dev_addr, pd->mac_addr, ETH_ALEN);
1771 		priv->has_phy = pd->has_phy;
1772 		priv->phy_id = pd->phy_id;
1773 		priv->has_phy_interrupt = pd->has_phy_interrupt;
1774 		priv->phy_interrupt = pd->phy_interrupt;
1775 		priv->use_external_mii = !pd->use_internal_phy;
1776 		priv->pause_auto = pd->pause_auto;
1777 		priv->pause_rx = pd->pause_rx;
1778 		priv->pause_tx = pd->pause_tx;
1779 		priv->force_duplex_full = pd->force_duplex_full;
1780 		priv->force_speed_100 = pd->force_speed_100;
1781 		priv->dma_chan_en_mask = pd->dma_chan_en_mask;
1782 		priv->dma_chan_int_mask = pd->dma_chan_int_mask;
1783 		priv->dma_chan_width = pd->dma_chan_width;
1784 		priv->dma_has_sram = pd->dma_has_sram;
1785 		priv->dma_desc_shift = pd->dma_desc_shift;
1786 		priv->rx_chan = pd->rx_chan;
1787 		priv->tx_chan = pd->tx_chan;
1788 	}
1789 
1790 	if (priv->has_phy && !priv->use_external_mii) {
1791 		/* using internal PHY, enable clock */
1792 		priv->phy_clk = devm_clk_get(&pdev->dev, "ephy");
1793 		if (IS_ERR(priv->phy_clk)) {
1794 			ret = PTR_ERR(priv->phy_clk);
1795 			priv->phy_clk = NULL;
1796 			goto out_disable_clk_mac;
1797 		}
1798 		ret = clk_prepare_enable(priv->phy_clk);
1799 		if (ret)
1800 			goto out_disable_clk_mac;
1801 	}
1802 
1803 	/* do minimal hardware init to be able to probe mii bus */
1804 	bcm_enet_hw_preinit(priv);
1805 
1806 	/* MII bus registration */
1807 	if (priv->has_phy) {
1808 
1809 		priv->mii_bus = mdiobus_alloc();
1810 		if (!priv->mii_bus) {
1811 			ret = -ENOMEM;
1812 			goto out_uninit_hw;
1813 		}
1814 
1815 		bus = priv->mii_bus;
1816 		bus->name = "bcm63xx_enet MII bus";
1817 		bus->parent = &pdev->dev;
1818 		bus->priv = priv;
1819 		bus->read = bcm_enet_mdio_read_phylib;
1820 		bus->write = bcm_enet_mdio_write_phylib;
1821 		sprintf(bus->id, "%s-%d", pdev->name, pdev->id);
1822 
1823 		/* only probe bus where we think the PHY is, because
1824 		 * the mdio read operation return 0 instead of 0xffff
1825 		 * if a slave is not present on hw */
1826 		bus->phy_mask = ~(1 << priv->phy_id);
1827 
1828 		if (priv->has_phy_interrupt)
1829 			bus->irq[priv->phy_id] = priv->phy_interrupt;
1830 
1831 		ret = mdiobus_register(bus);
1832 		if (ret) {
1833 			dev_err(&pdev->dev, "unable to register mdio bus\n");
1834 			goto out_free_mdio;
1835 		}
1836 	} else {
1837 
1838 		/* run platform code to initialize PHY device */
1839 		if (pd && pd->mii_config &&
1840 		    pd->mii_config(dev, 1, bcm_enet_mdio_read_mii,
1841 				   bcm_enet_mdio_write_mii)) {
1842 			dev_err(&pdev->dev, "unable to configure mdio bus\n");
1843 			goto out_uninit_hw;
1844 		}
1845 	}
1846 
1847 	spin_lock_init(&priv->rx_lock);
1848 
1849 	/* init rx timeout (used for oom) */
1850 	timer_setup(&priv->rx_timeout, bcm_enet_refill_rx_timer, 0);
1851 
1852 	/* init the mib update lock&work */
1853 	mutex_init(&priv->mib_update_lock);
1854 	INIT_WORK(&priv->mib_update_task, bcm_enet_update_mib_counters_defer);
1855 
1856 	/* zero mib counters */
1857 	for (i = 0; i < ENET_MIB_REG_COUNT; i++)
1858 		enet_writel(priv, 0, ENET_MIB_REG(i));
1859 
1860 	/* register netdevice */
1861 	dev->netdev_ops = &bcm_enet_ops;
1862 	netif_napi_add(dev, &priv->napi, bcm_enet_poll, 16);
1863 
1864 	dev->ethtool_ops = &bcm_enet_ethtool_ops;
1865 	/* MTU range: 46 - 2028 */
1866 	dev->min_mtu = ETH_ZLEN - ETH_HLEN;
1867 	dev->max_mtu = BCMENET_MAX_MTU - VLAN_ETH_HLEN;
1868 	SET_NETDEV_DEV(dev, &pdev->dev);
1869 
1870 	ret = register_netdev(dev);
1871 	if (ret)
1872 		goto out_unregister_mdio;
1873 
1874 	netif_carrier_off(dev);
1875 	platform_set_drvdata(pdev, dev);
1876 	priv->pdev = pdev;
1877 	priv->net_dev = dev;
1878 
1879 	return 0;
1880 
1881 out_unregister_mdio:
1882 	if (priv->mii_bus)
1883 		mdiobus_unregister(priv->mii_bus);
1884 
1885 out_free_mdio:
1886 	if (priv->mii_bus)
1887 		mdiobus_free(priv->mii_bus);
1888 
1889 out_uninit_hw:
1890 	/* turn off mdc clock */
1891 	enet_writel(priv, 0, ENET_MIISC_REG);
1892 	clk_disable_unprepare(priv->phy_clk);
1893 
1894 out_disable_clk_mac:
1895 	clk_disable_unprepare(priv->mac_clk);
1896 out:
1897 	free_netdev(dev);
1898 	return ret;
1899 }
1900 
1901 
1902 /*
1903  * exit func, stops hardware and unregisters netdevice
1904  */
bcm_enet_remove(struct platform_device * pdev)1905 static int bcm_enet_remove(struct platform_device *pdev)
1906 {
1907 	struct bcm_enet_priv *priv;
1908 	struct net_device *dev;
1909 
1910 	/* stop netdevice */
1911 	dev = platform_get_drvdata(pdev);
1912 	priv = netdev_priv(dev);
1913 	unregister_netdev(dev);
1914 
1915 	/* turn off mdc clock */
1916 	enet_writel(priv, 0, ENET_MIISC_REG);
1917 
1918 	if (priv->has_phy) {
1919 		mdiobus_unregister(priv->mii_bus);
1920 		mdiobus_free(priv->mii_bus);
1921 	} else {
1922 		struct bcm63xx_enet_platform_data *pd;
1923 
1924 		pd = dev_get_platdata(&pdev->dev);
1925 		if (pd && pd->mii_config)
1926 			pd->mii_config(dev, 0, bcm_enet_mdio_read_mii,
1927 				       bcm_enet_mdio_write_mii);
1928 	}
1929 
1930 	/* disable hw block clocks */
1931 	clk_disable_unprepare(priv->phy_clk);
1932 	clk_disable_unprepare(priv->mac_clk);
1933 
1934 	free_netdev(dev);
1935 	return 0;
1936 }
1937 
1938 struct platform_driver bcm63xx_enet_driver = {
1939 	.probe	= bcm_enet_probe,
1940 	.remove	= bcm_enet_remove,
1941 	.driver	= {
1942 		.name	= "bcm63xx_enet",
1943 		.owner  = THIS_MODULE,
1944 	},
1945 };
1946 
1947 /*
1948  * switch mii access callbacks
1949  */
bcmenet_sw_mdio_read(struct bcm_enet_priv * priv,int ext,int phy_id,int location)1950 static int bcmenet_sw_mdio_read(struct bcm_enet_priv *priv,
1951 				int ext, int phy_id, int location)
1952 {
1953 	u32 reg;
1954 	int ret;
1955 
1956 	spin_lock_bh(&priv->enetsw_mdio_lock);
1957 	enetsw_writel(priv, 0, ENETSW_MDIOC_REG);
1958 
1959 	reg = ENETSW_MDIOC_RD_MASK |
1960 		(phy_id << ENETSW_MDIOC_PHYID_SHIFT) |
1961 		(location << ENETSW_MDIOC_REG_SHIFT);
1962 
1963 	if (ext)
1964 		reg |= ENETSW_MDIOC_EXT_MASK;
1965 
1966 	enetsw_writel(priv, reg, ENETSW_MDIOC_REG);
1967 	udelay(50);
1968 	ret = enetsw_readw(priv, ENETSW_MDIOD_REG);
1969 	spin_unlock_bh(&priv->enetsw_mdio_lock);
1970 	return ret;
1971 }
1972 
bcmenet_sw_mdio_write(struct bcm_enet_priv * priv,int ext,int phy_id,int location,uint16_t data)1973 static void bcmenet_sw_mdio_write(struct bcm_enet_priv *priv,
1974 				 int ext, int phy_id, int location,
1975 				 uint16_t data)
1976 {
1977 	u32 reg;
1978 
1979 	spin_lock_bh(&priv->enetsw_mdio_lock);
1980 	enetsw_writel(priv, 0, ENETSW_MDIOC_REG);
1981 
1982 	reg = ENETSW_MDIOC_WR_MASK |
1983 		(phy_id << ENETSW_MDIOC_PHYID_SHIFT) |
1984 		(location << ENETSW_MDIOC_REG_SHIFT);
1985 
1986 	if (ext)
1987 		reg |= ENETSW_MDIOC_EXT_MASK;
1988 
1989 	reg |= data;
1990 
1991 	enetsw_writel(priv, reg, ENETSW_MDIOC_REG);
1992 	udelay(50);
1993 	spin_unlock_bh(&priv->enetsw_mdio_lock);
1994 }
1995 
bcm_enet_port_is_rgmii(int portid)1996 static inline int bcm_enet_port_is_rgmii(int portid)
1997 {
1998 	return portid >= ENETSW_RGMII_PORT0;
1999 }
2000 
2001 /*
2002  * enet sw PHY polling
2003  */
swphy_poll_timer(struct timer_list * t)2004 static void swphy_poll_timer(struct timer_list *t)
2005 {
2006 	struct bcm_enet_priv *priv = from_timer(priv, t, swphy_poll);
2007 	unsigned int i;
2008 
2009 	for (i = 0; i < priv->num_ports; i++) {
2010 		struct bcm63xx_enetsw_port *port;
2011 		int val, j, up, advertise, lpa, speed, duplex, media;
2012 		int external_phy = bcm_enet_port_is_rgmii(i);
2013 		u8 override;
2014 
2015 		port = &priv->used_ports[i];
2016 		if (!port->used)
2017 			continue;
2018 
2019 		if (port->bypass_link)
2020 			continue;
2021 
2022 		/* dummy read to clear */
2023 		for (j = 0; j < 2; j++)
2024 			val = bcmenet_sw_mdio_read(priv, external_phy,
2025 						   port->phy_id, MII_BMSR);
2026 
2027 		if (val == 0xffff)
2028 			continue;
2029 
2030 		up = (val & BMSR_LSTATUS) ? 1 : 0;
2031 		if (!(up ^ priv->sw_port_link[i]))
2032 			continue;
2033 
2034 		priv->sw_port_link[i] = up;
2035 
2036 		/* link changed */
2037 		if (!up) {
2038 			dev_info(&priv->pdev->dev, "link DOWN on %s\n",
2039 				 port->name);
2040 			enetsw_writeb(priv, ENETSW_PORTOV_ENABLE_MASK,
2041 				      ENETSW_PORTOV_REG(i));
2042 			enetsw_writeb(priv, ENETSW_PTCTRL_RXDIS_MASK |
2043 				      ENETSW_PTCTRL_TXDIS_MASK,
2044 				      ENETSW_PTCTRL_REG(i));
2045 			continue;
2046 		}
2047 
2048 		advertise = bcmenet_sw_mdio_read(priv, external_phy,
2049 						 port->phy_id, MII_ADVERTISE);
2050 
2051 		lpa = bcmenet_sw_mdio_read(priv, external_phy, port->phy_id,
2052 					   MII_LPA);
2053 
2054 		/* figure out media and duplex from advertise and LPA values */
2055 		media = mii_nway_result(lpa & advertise);
2056 		duplex = (media & ADVERTISE_FULL) ? 1 : 0;
2057 
2058 		if (media & (ADVERTISE_100FULL | ADVERTISE_100HALF))
2059 			speed = 100;
2060 		else
2061 			speed = 10;
2062 
2063 		if (val & BMSR_ESTATEN) {
2064 			advertise = bcmenet_sw_mdio_read(priv, external_phy,
2065 						port->phy_id, MII_CTRL1000);
2066 
2067 			lpa = bcmenet_sw_mdio_read(priv, external_phy,
2068 						port->phy_id, MII_STAT1000);
2069 
2070 			if (advertise & (ADVERTISE_1000FULL | ADVERTISE_1000HALF)
2071 					&& lpa & (LPA_1000FULL | LPA_1000HALF)) {
2072 				speed = 1000;
2073 				duplex = (lpa & LPA_1000FULL);
2074 			}
2075 		}
2076 
2077 		dev_info(&priv->pdev->dev,
2078 			 "link UP on %s, %dMbps, %s-duplex\n",
2079 			 port->name, speed, duplex ? "full" : "half");
2080 
2081 		override = ENETSW_PORTOV_ENABLE_MASK |
2082 			ENETSW_PORTOV_LINKUP_MASK;
2083 
2084 		if (speed == 1000)
2085 			override |= ENETSW_IMPOV_1000_MASK;
2086 		else if (speed == 100)
2087 			override |= ENETSW_IMPOV_100_MASK;
2088 		if (duplex)
2089 			override |= ENETSW_IMPOV_FDX_MASK;
2090 
2091 		enetsw_writeb(priv, override, ENETSW_PORTOV_REG(i));
2092 		enetsw_writeb(priv, 0, ENETSW_PTCTRL_REG(i));
2093 	}
2094 
2095 	priv->swphy_poll.expires = jiffies + HZ;
2096 	add_timer(&priv->swphy_poll);
2097 }
2098 
2099 /*
2100  * open callback, allocate dma rings & buffers and start rx operation
2101  */
bcm_enetsw_open(struct net_device * dev)2102 static int bcm_enetsw_open(struct net_device *dev)
2103 {
2104 	struct bcm_enet_priv *priv;
2105 	struct device *kdev;
2106 	int i, ret;
2107 	unsigned int size;
2108 	void *p;
2109 	u32 val;
2110 
2111 	priv = netdev_priv(dev);
2112 	kdev = &priv->pdev->dev;
2113 
2114 	/* mask all interrupts and request them */
2115 	enet_dmac_writel(priv, 0, ENETDMAC_IRMASK, priv->rx_chan);
2116 	enet_dmac_writel(priv, 0, ENETDMAC_IRMASK, priv->tx_chan);
2117 
2118 	ret = request_irq(priv->irq_rx, bcm_enet_isr_dma,
2119 			  0, dev->name, dev);
2120 	if (ret)
2121 		goto out_freeirq;
2122 
2123 	if (priv->irq_tx != -1) {
2124 		ret = request_irq(priv->irq_tx, bcm_enet_isr_dma,
2125 				  0, dev->name, dev);
2126 		if (ret)
2127 			goto out_freeirq_rx;
2128 	}
2129 
2130 	/* allocate rx dma ring */
2131 	size = priv->rx_ring_size * sizeof(struct bcm_enet_desc);
2132 	p = dma_zalloc_coherent(kdev, size, &priv->rx_desc_dma, GFP_KERNEL);
2133 	if (!p) {
2134 		dev_err(kdev, "cannot allocate rx ring %u\n", size);
2135 		ret = -ENOMEM;
2136 		goto out_freeirq_tx;
2137 	}
2138 
2139 	priv->rx_desc_alloc_size = size;
2140 	priv->rx_desc_cpu = p;
2141 
2142 	/* allocate tx dma ring */
2143 	size = priv->tx_ring_size * sizeof(struct bcm_enet_desc);
2144 	p = dma_zalloc_coherent(kdev, size, &priv->tx_desc_dma, GFP_KERNEL);
2145 	if (!p) {
2146 		dev_err(kdev, "cannot allocate tx ring\n");
2147 		ret = -ENOMEM;
2148 		goto out_free_rx_ring;
2149 	}
2150 
2151 	priv->tx_desc_alloc_size = size;
2152 	priv->tx_desc_cpu = p;
2153 
2154 	priv->tx_skb = kcalloc(priv->tx_ring_size, sizeof(struct sk_buff *),
2155 			       GFP_KERNEL);
2156 	if (!priv->tx_skb) {
2157 		dev_err(kdev, "cannot allocate rx skb queue\n");
2158 		ret = -ENOMEM;
2159 		goto out_free_tx_ring;
2160 	}
2161 
2162 	priv->tx_desc_count = priv->tx_ring_size;
2163 	priv->tx_dirty_desc = 0;
2164 	priv->tx_curr_desc = 0;
2165 	spin_lock_init(&priv->tx_lock);
2166 
2167 	/* init & fill rx ring with skbs */
2168 	priv->rx_skb = kcalloc(priv->rx_ring_size, sizeof(struct sk_buff *),
2169 			       GFP_KERNEL);
2170 	if (!priv->rx_skb) {
2171 		dev_err(kdev, "cannot allocate rx skb queue\n");
2172 		ret = -ENOMEM;
2173 		goto out_free_tx_skb;
2174 	}
2175 
2176 	priv->rx_desc_count = 0;
2177 	priv->rx_dirty_desc = 0;
2178 	priv->rx_curr_desc = 0;
2179 
2180 	/* disable all ports */
2181 	for (i = 0; i < priv->num_ports; i++) {
2182 		enetsw_writeb(priv, ENETSW_PORTOV_ENABLE_MASK,
2183 			      ENETSW_PORTOV_REG(i));
2184 		enetsw_writeb(priv, ENETSW_PTCTRL_RXDIS_MASK |
2185 			      ENETSW_PTCTRL_TXDIS_MASK,
2186 			      ENETSW_PTCTRL_REG(i));
2187 
2188 		priv->sw_port_link[i] = 0;
2189 	}
2190 
2191 	/* reset mib */
2192 	val = enetsw_readb(priv, ENETSW_GMCR_REG);
2193 	val |= ENETSW_GMCR_RST_MIB_MASK;
2194 	enetsw_writeb(priv, val, ENETSW_GMCR_REG);
2195 	mdelay(1);
2196 	val &= ~ENETSW_GMCR_RST_MIB_MASK;
2197 	enetsw_writeb(priv, val, ENETSW_GMCR_REG);
2198 	mdelay(1);
2199 
2200 	/* force CPU port state */
2201 	val = enetsw_readb(priv, ENETSW_IMPOV_REG);
2202 	val |= ENETSW_IMPOV_FORCE_MASK | ENETSW_IMPOV_LINKUP_MASK;
2203 	enetsw_writeb(priv, val, ENETSW_IMPOV_REG);
2204 
2205 	/* enable switch forward engine */
2206 	val = enetsw_readb(priv, ENETSW_SWMODE_REG);
2207 	val |= ENETSW_SWMODE_FWD_EN_MASK;
2208 	enetsw_writeb(priv, val, ENETSW_SWMODE_REG);
2209 
2210 	/* enable jumbo on all ports */
2211 	enetsw_writel(priv, 0x1ff, ENETSW_JMBCTL_PORT_REG);
2212 	enetsw_writew(priv, 9728, ENETSW_JMBCTL_MAXSIZE_REG);
2213 
2214 	/* initialize flow control buffer allocation */
2215 	enet_dma_writel(priv, ENETDMA_BUFALLOC_FORCE_MASK | 0,
2216 			ENETDMA_BUFALLOC_REG(priv->rx_chan));
2217 
2218 	if (bcm_enet_refill_rx(dev)) {
2219 		dev_err(kdev, "cannot allocate rx skb queue\n");
2220 		ret = -ENOMEM;
2221 		goto out;
2222 	}
2223 
2224 	/* write rx & tx ring addresses */
2225 	enet_dmas_writel(priv, priv->rx_desc_dma,
2226 			 ENETDMAS_RSTART_REG, priv->rx_chan);
2227 	enet_dmas_writel(priv, priv->tx_desc_dma,
2228 			 ENETDMAS_RSTART_REG, priv->tx_chan);
2229 
2230 	/* clear remaining state ram for rx & tx channel */
2231 	enet_dmas_writel(priv, 0, ENETDMAS_SRAM2_REG, priv->rx_chan);
2232 	enet_dmas_writel(priv, 0, ENETDMAS_SRAM2_REG, priv->tx_chan);
2233 	enet_dmas_writel(priv, 0, ENETDMAS_SRAM3_REG, priv->rx_chan);
2234 	enet_dmas_writel(priv, 0, ENETDMAS_SRAM3_REG, priv->tx_chan);
2235 	enet_dmas_writel(priv, 0, ENETDMAS_SRAM4_REG, priv->rx_chan);
2236 	enet_dmas_writel(priv, 0, ENETDMAS_SRAM4_REG, priv->tx_chan);
2237 
2238 	/* set dma maximum burst len */
2239 	enet_dmac_writel(priv, priv->dma_maxburst,
2240 			 ENETDMAC_MAXBURST, priv->rx_chan);
2241 	enet_dmac_writel(priv, priv->dma_maxburst,
2242 			 ENETDMAC_MAXBURST, priv->tx_chan);
2243 
2244 	/* set flow control low/high threshold to 1/3 / 2/3 */
2245 	val = priv->rx_ring_size / 3;
2246 	enet_dma_writel(priv, val, ENETDMA_FLOWCL_REG(priv->rx_chan));
2247 	val = (priv->rx_ring_size * 2) / 3;
2248 	enet_dma_writel(priv, val, ENETDMA_FLOWCH_REG(priv->rx_chan));
2249 
2250 	/* all set, enable mac and interrupts, start dma engine and
2251 	 * kick rx dma channel
2252 	 */
2253 	wmb();
2254 	enet_dma_writel(priv, ENETDMA_CFG_EN_MASK, ENETDMA_CFG_REG);
2255 	enet_dmac_writel(priv, ENETDMAC_CHANCFG_EN_MASK,
2256 			 ENETDMAC_CHANCFG, priv->rx_chan);
2257 
2258 	/* watch "packet transferred" interrupt in rx and tx */
2259 	enet_dmac_writel(priv, ENETDMAC_IR_PKTDONE_MASK,
2260 			 ENETDMAC_IR, priv->rx_chan);
2261 	enet_dmac_writel(priv, ENETDMAC_IR_PKTDONE_MASK,
2262 			 ENETDMAC_IR, priv->tx_chan);
2263 
2264 	/* make sure we enable napi before rx interrupt  */
2265 	napi_enable(&priv->napi);
2266 
2267 	enet_dmac_writel(priv, ENETDMAC_IR_PKTDONE_MASK,
2268 			 ENETDMAC_IRMASK, priv->rx_chan);
2269 	enet_dmac_writel(priv, ENETDMAC_IR_PKTDONE_MASK,
2270 			 ENETDMAC_IRMASK, priv->tx_chan);
2271 
2272 	netif_carrier_on(dev);
2273 	netif_start_queue(dev);
2274 
2275 	/* apply override config for bypass_link ports here. */
2276 	for (i = 0; i < priv->num_ports; i++) {
2277 		struct bcm63xx_enetsw_port *port;
2278 		u8 override;
2279 		port = &priv->used_ports[i];
2280 		if (!port->used)
2281 			continue;
2282 
2283 		if (!port->bypass_link)
2284 			continue;
2285 
2286 		override = ENETSW_PORTOV_ENABLE_MASK |
2287 			ENETSW_PORTOV_LINKUP_MASK;
2288 
2289 		switch (port->force_speed) {
2290 		case 1000:
2291 			override |= ENETSW_IMPOV_1000_MASK;
2292 			break;
2293 		case 100:
2294 			override |= ENETSW_IMPOV_100_MASK;
2295 			break;
2296 		case 10:
2297 			break;
2298 		default:
2299 			pr_warn("invalid forced speed on port %s: assume 10\n",
2300 			       port->name);
2301 			break;
2302 		}
2303 
2304 		if (port->force_duplex_full)
2305 			override |= ENETSW_IMPOV_FDX_MASK;
2306 
2307 
2308 		enetsw_writeb(priv, override, ENETSW_PORTOV_REG(i));
2309 		enetsw_writeb(priv, 0, ENETSW_PTCTRL_REG(i));
2310 	}
2311 
2312 	/* start phy polling timer */
2313 	timer_setup(&priv->swphy_poll, swphy_poll_timer, 0);
2314 	mod_timer(&priv->swphy_poll, jiffies);
2315 	return 0;
2316 
2317 out:
2318 	for (i = 0; i < priv->rx_ring_size; i++) {
2319 		struct bcm_enet_desc *desc;
2320 
2321 		if (!priv->rx_skb[i])
2322 			continue;
2323 
2324 		desc = &priv->rx_desc_cpu[i];
2325 		dma_unmap_single(kdev, desc->address, priv->rx_skb_size,
2326 				 DMA_FROM_DEVICE);
2327 		kfree_skb(priv->rx_skb[i]);
2328 	}
2329 	kfree(priv->rx_skb);
2330 
2331 out_free_tx_skb:
2332 	kfree(priv->tx_skb);
2333 
2334 out_free_tx_ring:
2335 	dma_free_coherent(kdev, priv->tx_desc_alloc_size,
2336 			  priv->tx_desc_cpu, priv->tx_desc_dma);
2337 
2338 out_free_rx_ring:
2339 	dma_free_coherent(kdev, priv->rx_desc_alloc_size,
2340 			  priv->rx_desc_cpu, priv->rx_desc_dma);
2341 
2342 out_freeirq_tx:
2343 	if (priv->irq_tx != -1)
2344 		free_irq(priv->irq_tx, dev);
2345 
2346 out_freeirq_rx:
2347 	free_irq(priv->irq_rx, dev);
2348 
2349 out_freeirq:
2350 	return ret;
2351 }
2352 
2353 /* stop callback */
bcm_enetsw_stop(struct net_device * dev)2354 static int bcm_enetsw_stop(struct net_device *dev)
2355 {
2356 	struct bcm_enet_priv *priv;
2357 	struct device *kdev;
2358 	int i;
2359 
2360 	priv = netdev_priv(dev);
2361 	kdev = &priv->pdev->dev;
2362 
2363 	del_timer_sync(&priv->swphy_poll);
2364 	netif_stop_queue(dev);
2365 	napi_disable(&priv->napi);
2366 	del_timer_sync(&priv->rx_timeout);
2367 
2368 	/* mask all interrupts */
2369 	enet_dmac_writel(priv, 0, ENETDMAC_IRMASK, priv->rx_chan);
2370 	enet_dmac_writel(priv, 0, ENETDMAC_IRMASK, priv->tx_chan);
2371 
2372 	/* disable dma & mac */
2373 	bcm_enet_disable_dma(priv, priv->tx_chan);
2374 	bcm_enet_disable_dma(priv, priv->rx_chan);
2375 
2376 	/* force reclaim of all tx buffers */
2377 	bcm_enet_tx_reclaim(dev, 1);
2378 
2379 	/* free the rx skb ring */
2380 	for (i = 0; i < priv->rx_ring_size; i++) {
2381 		struct bcm_enet_desc *desc;
2382 
2383 		if (!priv->rx_skb[i])
2384 			continue;
2385 
2386 		desc = &priv->rx_desc_cpu[i];
2387 		dma_unmap_single(kdev, desc->address, priv->rx_skb_size,
2388 				 DMA_FROM_DEVICE);
2389 		kfree_skb(priv->rx_skb[i]);
2390 	}
2391 
2392 	/* free remaining allocated memory */
2393 	kfree(priv->rx_skb);
2394 	kfree(priv->tx_skb);
2395 	dma_free_coherent(kdev, priv->rx_desc_alloc_size,
2396 			  priv->rx_desc_cpu, priv->rx_desc_dma);
2397 	dma_free_coherent(kdev, priv->tx_desc_alloc_size,
2398 			  priv->tx_desc_cpu, priv->tx_desc_dma);
2399 	if (priv->irq_tx != -1)
2400 		free_irq(priv->irq_tx, dev);
2401 	free_irq(priv->irq_rx, dev);
2402 
2403 	return 0;
2404 }
2405 
2406 /* try to sort out phy external status by walking the used_port field
2407  * in the bcm_enet_priv structure. in case the phy address is not
2408  * assigned to any physical port on the switch, assume it is external
2409  * (and yell at the user).
2410  */
bcm_enetsw_phy_is_external(struct bcm_enet_priv * priv,int phy_id)2411 static int bcm_enetsw_phy_is_external(struct bcm_enet_priv *priv, int phy_id)
2412 {
2413 	int i;
2414 
2415 	for (i = 0; i < priv->num_ports; ++i) {
2416 		if (!priv->used_ports[i].used)
2417 			continue;
2418 		if (priv->used_ports[i].phy_id == phy_id)
2419 			return bcm_enet_port_is_rgmii(i);
2420 	}
2421 
2422 	printk_once(KERN_WARNING  "bcm63xx_enet: could not find a used port with phy_id %i, assuming phy is external\n",
2423 		    phy_id);
2424 	return 1;
2425 }
2426 
2427 /* can't use bcmenet_sw_mdio_read directly as we need to sort out
2428  * external/internal status of the given phy_id first.
2429  */
bcm_enetsw_mii_mdio_read(struct net_device * dev,int phy_id,int location)2430 static int bcm_enetsw_mii_mdio_read(struct net_device *dev, int phy_id,
2431 				    int location)
2432 {
2433 	struct bcm_enet_priv *priv;
2434 
2435 	priv = netdev_priv(dev);
2436 	return bcmenet_sw_mdio_read(priv,
2437 				    bcm_enetsw_phy_is_external(priv, phy_id),
2438 				    phy_id, location);
2439 }
2440 
2441 /* can't use bcmenet_sw_mdio_write directly as we need to sort out
2442  * external/internal status of the given phy_id first.
2443  */
bcm_enetsw_mii_mdio_write(struct net_device * dev,int phy_id,int location,int val)2444 static void bcm_enetsw_mii_mdio_write(struct net_device *dev, int phy_id,
2445 				      int location,
2446 				      int val)
2447 {
2448 	struct bcm_enet_priv *priv;
2449 
2450 	priv = netdev_priv(dev);
2451 	bcmenet_sw_mdio_write(priv, bcm_enetsw_phy_is_external(priv, phy_id),
2452 			      phy_id, location, val);
2453 }
2454 
bcm_enetsw_ioctl(struct net_device * dev,struct ifreq * rq,int cmd)2455 static int bcm_enetsw_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
2456 {
2457 	struct mii_if_info mii;
2458 
2459 	mii.dev = dev;
2460 	mii.mdio_read = bcm_enetsw_mii_mdio_read;
2461 	mii.mdio_write = bcm_enetsw_mii_mdio_write;
2462 	mii.phy_id = 0;
2463 	mii.phy_id_mask = 0x3f;
2464 	mii.reg_num_mask = 0x1f;
2465 	return generic_mii_ioctl(&mii, if_mii(rq), cmd, NULL);
2466 
2467 }
2468 
2469 static const struct net_device_ops bcm_enetsw_ops = {
2470 	.ndo_open		= bcm_enetsw_open,
2471 	.ndo_stop		= bcm_enetsw_stop,
2472 	.ndo_start_xmit		= bcm_enet_start_xmit,
2473 	.ndo_change_mtu		= bcm_enet_change_mtu,
2474 	.ndo_do_ioctl		= bcm_enetsw_ioctl,
2475 };
2476 
2477 
2478 static const struct bcm_enet_stats bcm_enetsw_gstrings_stats[] = {
2479 	{ "rx_packets", DEV_STAT(rx_packets), -1 },
2480 	{ "tx_packets",	DEV_STAT(tx_packets), -1 },
2481 	{ "rx_bytes", DEV_STAT(rx_bytes), -1 },
2482 	{ "tx_bytes", DEV_STAT(tx_bytes), -1 },
2483 	{ "rx_errors", DEV_STAT(rx_errors), -1 },
2484 	{ "tx_errors", DEV_STAT(tx_errors), -1 },
2485 	{ "rx_dropped",	DEV_STAT(rx_dropped), -1 },
2486 	{ "tx_dropped",	DEV_STAT(tx_dropped), -1 },
2487 
2488 	{ "tx_good_octets", GEN_STAT(mib.tx_gd_octets), ETHSW_MIB_RX_GD_OCT },
2489 	{ "tx_unicast", GEN_STAT(mib.tx_unicast), ETHSW_MIB_RX_BRDCAST },
2490 	{ "tx_broadcast", GEN_STAT(mib.tx_brdcast), ETHSW_MIB_RX_BRDCAST },
2491 	{ "tx_multicast", GEN_STAT(mib.tx_mult), ETHSW_MIB_RX_MULT },
2492 	{ "tx_64_octets", GEN_STAT(mib.tx_64), ETHSW_MIB_RX_64 },
2493 	{ "tx_65_127_oct", GEN_STAT(mib.tx_65_127), ETHSW_MIB_RX_65_127 },
2494 	{ "tx_128_255_oct", GEN_STAT(mib.tx_128_255), ETHSW_MIB_RX_128_255 },
2495 	{ "tx_256_511_oct", GEN_STAT(mib.tx_256_511), ETHSW_MIB_RX_256_511 },
2496 	{ "tx_512_1023_oct", GEN_STAT(mib.tx_512_1023), ETHSW_MIB_RX_512_1023},
2497 	{ "tx_1024_1522_oct", GEN_STAT(mib.tx_1024_max),
2498 	  ETHSW_MIB_RX_1024_1522 },
2499 	{ "tx_1523_2047_oct", GEN_STAT(mib.tx_1523_2047),
2500 	  ETHSW_MIB_RX_1523_2047 },
2501 	{ "tx_2048_4095_oct", GEN_STAT(mib.tx_2048_4095),
2502 	  ETHSW_MIB_RX_2048_4095 },
2503 	{ "tx_4096_8191_oct", GEN_STAT(mib.tx_4096_8191),
2504 	  ETHSW_MIB_RX_4096_8191 },
2505 	{ "tx_8192_9728_oct", GEN_STAT(mib.tx_8192_9728),
2506 	  ETHSW_MIB_RX_8192_9728 },
2507 	{ "tx_oversize", GEN_STAT(mib.tx_ovr), ETHSW_MIB_RX_OVR },
2508 	{ "tx_oversize_drop", GEN_STAT(mib.tx_ovr), ETHSW_MIB_RX_OVR_DISC },
2509 	{ "tx_dropped",	GEN_STAT(mib.tx_drop), ETHSW_MIB_RX_DROP },
2510 	{ "tx_undersize", GEN_STAT(mib.tx_underrun), ETHSW_MIB_RX_UND },
2511 	{ "tx_pause", GEN_STAT(mib.tx_pause), ETHSW_MIB_RX_PAUSE },
2512 
2513 	{ "rx_good_octets", GEN_STAT(mib.rx_gd_octets), ETHSW_MIB_TX_ALL_OCT },
2514 	{ "rx_broadcast", GEN_STAT(mib.rx_brdcast), ETHSW_MIB_TX_BRDCAST },
2515 	{ "rx_multicast", GEN_STAT(mib.rx_mult), ETHSW_MIB_TX_MULT },
2516 	{ "rx_unicast", GEN_STAT(mib.rx_unicast), ETHSW_MIB_TX_MULT },
2517 	{ "rx_pause", GEN_STAT(mib.rx_pause), ETHSW_MIB_TX_PAUSE },
2518 	{ "rx_dropped", GEN_STAT(mib.rx_drop), ETHSW_MIB_TX_DROP_PKTS },
2519 
2520 };
2521 
2522 #define BCM_ENETSW_STATS_LEN	\
2523 	(sizeof(bcm_enetsw_gstrings_stats) / sizeof(struct bcm_enet_stats))
2524 
bcm_enetsw_get_strings(struct net_device * netdev,u32 stringset,u8 * data)2525 static void bcm_enetsw_get_strings(struct net_device *netdev,
2526 				   u32 stringset, u8 *data)
2527 {
2528 	int i;
2529 
2530 	switch (stringset) {
2531 	case ETH_SS_STATS:
2532 		for (i = 0; i < BCM_ENETSW_STATS_LEN; i++) {
2533 			memcpy(data + i * ETH_GSTRING_LEN,
2534 			       bcm_enetsw_gstrings_stats[i].stat_string,
2535 			       ETH_GSTRING_LEN);
2536 		}
2537 		break;
2538 	}
2539 }
2540 
bcm_enetsw_get_sset_count(struct net_device * netdev,int string_set)2541 static int bcm_enetsw_get_sset_count(struct net_device *netdev,
2542 				     int string_set)
2543 {
2544 	switch (string_set) {
2545 	case ETH_SS_STATS:
2546 		return BCM_ENETSW_STATS_LEN;
2547 	default:
2548 		return -EINVAL;
2549 	}
2550 }
2551 
bcm_enetsw_get_drvinfo(struct net_device * netdev,struct ethtool_drvinfo * drvinfo)2552 static void bcm_enetsw_get_drvinfo(struct net_device *netdev,
2553 				   struct ethtool_drvinfo *drvinfo)
2554 {
2555 	strncpy(drvinfo->driver, bcm_enet_driver_name, 32);
2556 	strncpy(drvinfo->version, bcm_enet_driver_version, 32);
2557 	strncpy(drvinfo->fw_version, "N/A", 32);
2558 	strncpy(drvinfo->bus_info, "bcm63xx", 32);
2559 }
2560 
bcm_enetsw_get_ethtool_stats(struct net_device * netdev,struct ethtool_stats * stats,u64 * data)2561 static void bcm_enetsw_get_ethtool_stats(struct net_device *netdev,
2562 					 struct ethtool_stats *stats,
2563 					 u64 *data)
2564 {
2565 	struct bcm_enet_priv *priv;
2566 	int i;
2567 
2568 	priv = netdev_priv(netdev);
2569 
2570 	for (i = 0; i < BCM_ENETSW_STATS_LEN; i++) {
2571 		const struct bcm_enet_stats *s;
2572 		u32 lo, hi;
2573 		char *p;
2574 		int reg;
2575 
2576 		s = &bcm_enetsw_gstrings_stats[i];
2577 
2578 		reg = s->mib_reg;
2579 		if (reg == -1)
2580 			continue;
2581 
2582 		lo = enetsw_readl(priv, ENETSW_MIB_REG(reg));
2583 		p = (char *)priv + s->stat_offset;
2584 
2585 		if (s->sizeof_stat == sizeof(u64)) {
2586 			hi = enetsw_readl(priv, ENETSW_MIB_REG(reg + 1));
2587 			*(u64 *)p = ((u64)hi << 32 | lo);
2588 		} else {
2589 			*(u32 *)p = lo;
2590 		}
2591 	}
2592 
2593 	for (i = 0; i < BCM_ENETSW_STATS_LEN; i++) {
2594 		const struct bcm_enet_stats *s;
2595 		char *p;
2596 
2597 		s = &bcm_enetsw_gstrings_stats[i];
2598 
2599 		if (s->mib_reg == -1)
2600 			p = (char *)&netdev->stats + s->stat_offset;
2601 		else
2602 			p = (char *)priv + s->stat_offset;
2603 
2604 		data[i] = (s->sizeof_stat == sizeof(u64)) ?
2605 			*(u64 *)p : *(u32 *)p;
2606 	}
2607 }
2608 
bcm_enetsw_get_ringparam(struct net_device * dev,struct ethtool_ringparam * ering)2609 static void bcm_enetsw_get_ringparam(struct net_device *dev,
2610 				     struct ethtool_ringparam *ering)
2611 {
2612 	struct bcm_enet_priv *priv;
2613 
2614 	priv = netdev_priv(dev);
2615 
2616 	/* rx/tx ring is actually only limited by memory */
2617 	ering->rx_max_pending = 8192;
2618 	ering->tx_max_pending = 8192;
2619 	ering->rx_mini_max_pending = 0;
2620 	ering->rx_jumbo_max_pending = 0;
2621 	ering->rx_pending = priv->rx_ring_size;
2622 	ering->tx_pending = priv->tx_ring_size;
2623 }
2624 
bcm_enetsw_set_ringparam(struct net_device * dev,struct ethtool_ringparam * ering)2625 static int bcm_enetsw_set_ringparam(struct net_device *dev,
2626 				    struct ethtool_ringparam *ering)
2627 {
2628 	struct bcm_enet_priv *priv;
2629 	int was_running;
2630 
2631 	priv = netdev_priv(dev);
2632 
2633 	was_running = 0;
2634 	if (netif_running(dev)) {
2635 		bcm_enetsw_stop(dev);
2636 		was_running = 1;
2637 	}
2638 
2639 	priv->rx_ring_size = ering->rx_pending;
2640 	priv->tx_ring_size = ering->tx_pending;
2641 
2642 	if (was_running) {
2643 		int err;
2644 
2645 		err = bcm_enetsw_open(dev);
2646 		if (err)
2647 			dev_close(dev);
2648 	}
2649 	return 0;
2650 }
2651 
2652 static const struct ethtool_ops bcm_enetsw_ethtool_ops = {
2653 	.get_strings		= bcm_enetsw_get_strings,
2654 	.get_sset_count		= bcm_enetsw_get_sset_count,
2655 	.get_ethtool_stats      = bcm_enetsw_get_ethtool_stats,
2656 	.get_drvinfo		= bcm_enetsw_get_drvinfo,
2657 	.get_ringparam		= bcm_enetsw_get_ringparam,
2658 	.set_ringparam		= bcm_enetsw_set_ringparam,
2659 };
2660 
2661 /* allocate netdevice, request register memory and register device. */
bcm_enetsw_probe(struct platform_device * pdev)2662 static int bcm_enetsw_probe(struct platform_device *pdev)
2663 {
2664 	struct bcm_enet_priv *priv;
2665 	struct net_device *dev;
2666 	struct bcm63xx_enetsw_platform_data *pd;
2667 	struct resource *res_mem;
2668 	int ret, irq_rx, irq_tx;
2669 
2670 	if (!bcm_enet_shared_base[0])
2671 		return -EPROBE_DEFER;
2672 
2673 	res_mem = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2674 	irq_rx = platform_get_irq(pdev, 0);
2675 	irq_tx = platform_get_irq(pdev, 1);
2676 	if (!res_mem || irq_rx < 0)
2677 		return -ENODEV;
2678 
2679 	ret = 0;
2680 	dev = alloc_etherdev(sizeof(*priv));
2681 	if (!dev)
2682 		return -ENOMEM;
2683 	priv = netdev_priv(dev);
2684 	memset(priv, 0, sizeof(*priv));
2685 
2686 	/* initialize default and fetch platform data */
2687 	priv->enet_is_sw = true;
2688 	priv->irq_rx = irq_rx;
2689 	priv->irq_tx = irq_tx;
2690 	priv->rx_ring_size = BCMENET_DEF_RX_DESC;
2691 	priv->tx_ring_size = BCMENET_DEF_TX_DESC;
2692 	priv->dma_maxburst = BCMENETSW_DMA_MAXBURST;
2693 
2694 	pd = dev_get_platdata(&pdev->dev);
2695 	if (pd) {
2696 		memcpy(dev->dev_addr, pd->mac_addr, ETH_ALEN);
2697 		memcpy(priv->used_ports, pd->used_ports,
2698 		       sizeof(pd->used_ports));
2699 		priv->num_ports = pd->num_ports;
2700 		priv->dma_has_sram = pd->dma_has_sram;
2701 		priv->dma_chan_en_mask = pd->dma_chan_en_mask;
2702 		priv->dma_chan_int_mask = pd->dma_chan_int_mask;
2703 		priv->dma_chan_width = pd->dma_chan_width;
2704 	}
2705 
2706 	ret = bcm_enet_change_mtu(dev, dev->mtu);
2707 	if (ret)
2708 		goto out;
2709 
2710 	priv->base = devm_ioremap_resource(&pdev->dev, res_mem);
2711 	if (IS_ERR(priv->base)) {
2712 		ret = PTR_ERR(priv->base);
2713 		goto out;
2714 	}
2715 
2716 	priv->mac_clk = devm_clk_get(&pdev->dev, "enetsw");
2717 	if (IS_ERR(priv->mac_clk)) {
2718 		ret = PTR_ERR(priv->mac_clk);
2719 		goto out;
2720 	}
2721 	ret = clk_prepare_enable(priv->mac_clk);
2722 	if (ret)
2723 		goto out;
2724 
2725 	priv->rx_chan = 0;
2726 	priv->tx_chan = 1;
2727 	spin_lock_init(&priv->rx_lock);
2728 
2729 	/* init rx timeout (used for oom) */
2730 	timer_setup(&priv->rx_timeout, bcm_enet_refill_rx_timer, 0);
2731 
2732 	/* register netdevice */
2733 	dev->netdev_ops = &bcm_enetsw_ops;
2734 	netif_napi_add(dev, &priv->napi, bcm_enet_poll, 16);
2735 	dev->ethtool_ops = &bcm_enetsw_ethtool_ops;
2736 	SET_NETDEV_DEV(dev, &pdev->dev);
2737 
2738 	spin_lock_init(&priv->enetsw_mdio_lock);
2739 
2740 	ret = register_netdev(dev);
2741 	if (ret)
2742 		goto out_disable_clk;
2743 
2744 	netif_carrier_off(dev);
2745 	platform_set_drvdata(pdev, dev);
2746 	priv->pdev = pdev;
2747 	priv->net_dev = dev;
2748 
2749 	return 0;
2750 
2751 out_disable_clk:
2752 	clk_disable_unprepare(priv->mac_clk);
2753 out:
2754 	free_netdev(dev);
2755 	return ret;
2756 }
2757 
2758 
2759 /* exit func, stops hardware and unregisters netdevice */
bcm_enetsw_remove(struct platform_device * pdev)2760 static int bcm_enetsw_remove(struct platform_device *pdev)
2761 {
2762 	struct bcm_enet_priv *priv;
2763 	struct net_device *dev;
2764 
2765 	/* stop netdevice */
2766 	dev = platform_get_drvdata(pdev);
2767 	priv = netdev_priv(dev);
2768 	unregister_netdev(dev);
2769 
2770 	clk_disable_unprepare(priv->mac_clk);
2771 
2772 	free_netdev(dev);
2773 	return 0;
2774 }
2775 
2776 struct platform_driver bcm63xx_enetsw_driver = {
2777 	.probe	= bcm_enetsw_probe,
2778 	.remove	= bcm_enetsw_remove,
2779 	.driver	= {
2780 		.name	= "bcm63xx_enetsw",
2781 		.owner  = THIS_MODULE,
2782 	},
2783 };
2784 
2785 /* reserve & remap memory space shared between all macs */
bcm_enet_shared_probe(struct platform_device * pdev)2786 static int bcm_enet_shared_probe(struct platform_device *pdev)
2787 {
2788 	struct resource *res;
2789 	void __iomem *p[3];
2790 	unsigned int i;
2791 
2792 	memset(bcm_enet_shared_base, 0, sizeof(bcm_enet_shared_base));
2793 
2794 	for (i = 0; i < 3; i++) {
2795 		res = platform_get_resource(pdev, IORESOURCE_MEM, i);
2796 		p[i] = devm_ioremap_resource(&pdev->dev, res);
2797 		if (IS_ERR(p[i]))
2798 			return PTR_ERR(p[i]);
2799 	}
2800 
2801 	memcpy(bcm_enet_shared_base, p, sizeof(bcm_enet_shared_base));
2802 
2803 	return 0;
2804 }
2805 
bcm_enet_shared_remove(struct platform_device * pdev)2806 static int bcm_enet_shared_remove(struct platform_device *pdev)
2807 {
2808 	return 0;
2809 }
2810 
2811 /* this "shared" driver is needed because both macs share a single
2812  * address space
2813  */
2814 struct platform_driver bcm63xx_enet_shared_driver = {
2815 	.probe	= bcm_enet_shared_probe,
2816 	.remove	= bcm_enet_shared_remove,
2817 	.driver	= {
2818 		.name	= "bcm63xx_enet_shared",
2819 		.owner  = THIS_MODULE,
2820 	},
2821 };
2822 
2823 static struct platform_driver * const drivers[] = {
2824 	&bcm63xx_enet_shared_driver,
2825 	&bcm63xx_enet_driver,
2826 	&bcm63xx_enetsw_driver,
2827 };
2828 
2829 /* entry point */
bcm_enet_init(void)2830 static int __init bcm_enet_init(void)
2831 {
2832 	return platform_register_drivers(drivers, ARRAY_SIZE(drivers));
2833 }
2834 
bcm_enet_exit(void)2835 static void __exit bcm_enet_exit(void)
2836 {
2837 	platform_unregister_drivers(drivers, ARRAY_SIZE(drivers));
2838 }
2839 
2840 
2841 module_init(bcm_enet_init);
2842 module_exit(bcm_enet_exit);
2843 
2844 MODULE_DESCRIPTION("BCM63xx internal ethernet mac driver");
2845 MODULE_AUTHOR("Maxime Bizon <mbizon@freebox.fr>");
2846 MODULE_LICENSE("GPL");
2847