1 /*
2 * This file is part of the Chelsio T4 Ethernet driver for Linux.
3 *
4 * Copyright (c) 2003-2016 Chelsio Communications, Inc. All rights reserved.
5 *
6 * This software is available to you under a choice of one of two
7 * licenses. You may choose to be licensed under the terms of the GNU
8 * General Public License (GPL) Version 2, available from the file
9 * COPYING in the main directory of this source tree, or the
10 * OpenIB.org BSD license below:
11 *
12 * Redistribution and use in source and binary forms, with or
13 * without modification, are permitted provided that the following
14 * conditions are met:
15 *
16 * - Redistributions of source code must retain the above
17 * copyright notice, this list of conditions and the following
18 * disclaimer.
19 *
20 * - Redistributions in binary form must reproduce the above
21 * copyright notice, this list of conditions and the following
22 * disclaimer in the documentation and/or other materials
23 * provided with the distribution.
24 *
25 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
26 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
27 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
28 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
29 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
30 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
31 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
32 * SOFTWARE.
33 */
34
35 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
36
37 #include <linux/bitmap.h>
38 #include <linux/crc32.h>
39 #include <linux/ctype.h>
40 #include <linux/debugfs.h>
41 #include <linux/err.h>
42 #include <linux/etherdevice.h>
43 #include <linux/firmware.h>
44 #include <linux/if.h>
45 #include <linux/if_vlan.h>
46 #include <linux/init.h>
47 #include <linux/log2.h>
48 #include <linux/mdio.h>
49 #include <linux/module.h>
50 #include <linux/moduleparam.h>
51 #include <linux/mutex.h>
52 #include <linux/netdevice.h>
53 #include <linux/pci.h>
54 #include <linux/aer.h>
55 #include <linux/rtnetlink.h>
56 #include <linux/sched.h>
57 #include <linux/seq_file.h>
58 #include <linux/sockios.h>
59 #include <linux/vmalloc.h>
60 #include <linux/workqueue.h>
61 #include <net/neighbour.h>
62 #include <net/netevent.h>
63 #include <net/addrconf.h>
64 #include <net/bonding.h>
65 #include <net/addrconf.h>
66 #include <linux/uaccess.h>
67 #include <linux/crash_dump.h>
68 #include <net/udp_tunnel.h>
69
70 #include "cxgb4.h"
71 #include "cxgb4_filter.h"
72 #include "t4_regs.h"
73 #include "t4_values.h"
74 #include "t4_msg.h"
75 #include "t4fw_api.h"
76 #include "t4fw_version.h"
77 #include "cxgb4_dcb.h"
78 #include "srq.h"
79 #include "cxgb4_debugfs.h"
80 #include "clip_tbl.h"
81 #include "l2t.h"
82 #include "smt.h"
83 #include "sched.h"
84 #include "cxgb4_tc_u32.h"
85 #include "cxgb4_tc_flower.h"
86 #include "cxgb4_ptp.h"
87 #include "cxgb4_cudbg.h"
88
89 char cxgb4_driver_name[] = KBUILD_MODNAME;
90
91 #ifdef DRV_VERSION
92 #undef DRV_VERSION
93 #endif
94 #define DRV_VERSION "2.0.0-ko"
95 const char cxgb4_driver_version[] = DRV_VERSION;
96 #define DRV_DESC "Chelsio T4/T5/T6 Network Driver"
97
98 #define DFLT_MSG_ENABLE (NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK | \
99 NETIF_MSG_TIMER | NETIF_MSG_IFDOWN | NETIF_MSG_IFUP |\
100 NETIF_MSG_RX_ERR | NETIF_MSG_TX_ERR)
101
102 /* Macros needed to support the PCI Device ID Table ...
103 */
104 #define CH_PCI_DEVICE_ID_TABLE_DEFINE_BEGIN \
105 static const struct pci_device_id cxgb4_pci_tbl[] = {
106 #define CXGB4_UNIFIED_PF 0x4
107
108 #define CH_PCI_DEVICE_ID_FUNCTION CXGB4_UNIFIED_PF
109
110 /* Include PCI Device IDs for both PF4 and PF0-3 so our PCI probe() routine is
111 * called for both.
112 */
113 #define CH_PCI_DEVICE_ID_FUNCTION2 0x0
114
115 #define CH_PCI_ID_TABLE_ENTRY(devid) \
116 {PCI_VDEVICE(CHELSIO, (devid)), CXGB4_UNIFIED_PF}
117
118 #define CH_PCI_DEVICE_ID_TABLE_DEFINE_END \
119 { 0, } \
120 }
121
122 #include "t4_pci_id_tbl.h"
123
124 #define FW4_FNAME "cxgb4/t4fw.bin"
125 #define FW5_FNAME "cxgb4/t5fw.bin"
126 #define FW6_FNAME "cxgb4/t6fw.bin"
127 #define FW4_CFNAME "cxgb4/t4-config.txt"
128 #define FW5_CFNAME "cxgb4/t5-config.txt"
129 #define FW6_CFNAME "cxgb4/t6-config.txt"
130 #define PHY_AQ1202_FIRMWARE "cxgb4/aq1202_fw.cld"
131 #define PHY_BCM84834_FIRMWARE "cxgb4/bcm8483.bin"
132 #define PHY_AQ1202_DEVICEID 0x4409
133 #define PHY_BCM84834_DEVICEID 0x4486
134
135 MODULE_DESCRIPTION(DRV_DESC);
136 MODULE_AUTHOR("Chelsio Communications");
137 MODULE_LICENSE("Dual BSD/GPL");
138 MODULE_VERSION(DRV_VERSION);
139 MODULE_DEVICE_TABLE(pci, cxgb4_pci_tbl);
140 MODULE_FIRMWARE(FW4_FNAME);
141 MODULE_FIRMWARE(FW5_FNAME);
142 MODULE_FIRMWARE(FW6_FNAME);
143
144 /*
145 * The driver uses the best interrupt scheme available on a platform in the
146 * order MSI-X, MSI, legacy INTx interrupts. This parameter determines which
147 * of these schemes the driver may consider as follows:
148 *
149 * msi = 2: choose from among all three options
150 * msi = 1: only consider MSI and INTx interrupts
151 * msi = 0: force INTx interrupts
152 */
153 static int msi = 2;
154
155 module_param(msi, int, 0644);
156 MODULE_PARM_DESC(msi, "whether to use INTx (0), MSI (1) or MSI-X (2)");
157
158 /*
159 * Normally we tell the chip to deliver Ingress Packets into our DMA buffers
160 * offset by 2 bytes in order to have the IP headers line up on 4-byte
161 * boundaries. This is a requirement for many architectures which will throw
162 * a machine check fault if an attempt is made to access one of the 4-byte IP
163 * header fields on a non-4-byte boundary. And it's a major performance issue
164 * even on some architectures which allow it like some implementations of the
165 * x86 ISA. However, some architectures don't mind this and for some very
166 * edge-case performance sensitive applications (like forwarding large volumes
167 * of small packets), setting this DMA offset to 0 will decrease the number of
168 * PCI-E Bus transfers enough to measurably affect performance.
169 */
170 static int rx_dma_offset = 2;
171
172 /* TX Queue select used to determine what algorithm to use for selecting TX
173 * queue. Select between the kernel provided function (select_queue=0) or user
174 * cxgb_select_queue function (select_queue=1)
175 *
176 * Default: select_queue=0
177 */
178 static int select_queue;
179 module_param(select_queue, int, 0644);
180 MODULE_PARM_DESC(select_queue,
181 "Select between kernel provided method of selecting or driver method of selecting TX queue. Default is kernel method.");
182
183 static struct dentry *cxgb4_debugfs_root;
184
185 LIST_HEAD(adapter_list);
186 DEFINE_MUTEX(uld_mutex);
187
link_report(struct net_device * dev)188 static void link_report(struct net_device *dev)
189 {
190 if (!netif_carrier_ok(dev))
191 netdev_info(dev, "link down\n");
192 else {
193 static const char *fc[] = { "no", "Rx", "Tx", "Tx/Rx" };
194
195 const char *s;
196 const struct port_info *p = netdev_priv(dev);
197
198 switch (p->link_cfg.speed) {
199 case 100:
200 s = "100Mbps";
201 break;
202 case 1000:
203 s = "1Gbps";
204 break;
205 case 10000:
206 s = "10Gbps";
207 break;
208 case 25000:
209 s = "25Gbps";
210 break;
211 case 40000:
212 s = "40Gbps";
213 break;
214 case 50000:
215 s = "50Gbps";
216 break;
217 case 100000:
218 s = "100Gbps";
219 break;
220 default:
221 pr_info("%s: unsupported speed: %d\n",
222 dev->name, p->link_cfg.speed);
223 return;
224 }
225
226 netdev_info(dev, "link up, %s, full-duplex, %s PAUSE\n", s,
227 fc[p->link_cfg.fc]);
228 }
229 }
230
231 #ifdef CONFIG_CHELSIO_T4_DCB
232 /* Set up/tear down Data Center Bridging Priority mapping for a net device. */
dcb_tx_queue_prio_enable(struct net_device * dev,int enable)233 static void dcb_tx_queue_prio_enable(struct net_device *dev, int enable)
234 {
235 struct port_info *pi = netdev_priv(dev);
236 struct adapter *adap = pi->adapter;
237 struct sge_eth_txq *txq = &adap->sge.ethtxq[pi->first_qset];
238 int i;
239
240 /* We use a simple mapping of Port TX Queue Index to DCB
241 * Priority when we're enabling DCB.
242 */
243 for (i = 0; i < pi->nqsets; i++, txq++) {
244 u32 name, value;
245 int err;
246
247 name = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DMAQ) |
248 FW_PARAMS_PARAM_X_V(
249 FW_PARAMS_PARAM_DMAQ_EQ_DCBPRIO_ETH) |
250 FW_PARAMS_PARAM_YZ_V(txq->q.cntxt_id));
251 value = enable ? i : 0xffffffff;
252
253 /* Since we can be called while atomic (from "interrupt
254 * level") we need to issue the Set Parameters Commannd
255 * without sleeping (timeout < 0).
256 */
257 err = t4_set_params_timeout(adap, adap->mbox, adap->pf, 0, 1,
258 &name, &value,
259 -FW_CMD_MAX_TIMEOUT);
260
261 if (err)
262 dev_err(adap->pdev_dev,
263 "Can't %s DCB Priority on port %d, TX Queue %d: err=%d\n",
264 enable ? "set" : "unset", pi->port_id, i, -err);
265 else
266 txq->dcb_prio = enable ? value : 0;
267 }
268 }
269
cxgb4_dcb_enabled(const struct net_device * dev)270 int cxgb4_dcb_enabled(const struct net_device *dev)
271 {
272 struct port_info *pi = netdev_priv(dev);
273
274 if (!pi->dcb.enabled)
275 return 0;
276
277 return ((pi->dcb.state == CXGB4_DCB_STATE_FW_ALLSYNCED) ||
278 (pi->dcb.state == CXGB4_DCB_STATE_HOST));
279 }
280 #endif /* CONFIG_CHELSIO_T4_DCB */
281
t4_os_link_changed(struct adapter * adapter,int port_id,int link_stat)282 void t4_os_link_changed(struct adapter *adapter, int port_id, int link_stat)
283 {
284 struct net_device *dev = adapter->port[port_id];
285
286 /* Skip changes from disabled ports. */
287 if (netif_running(dev) && link_stat != netif_carrier_ok(dev)) {
288 if (link_stat)
289 netif_carrier_on(dev);
290 else {
291 #ifdef CONFIG_CHELSIO_T4_DCB
292 if (cxgb4_dcb_enabled(dev)) {
293 cxgb4_dcb_reset(dev);
294 dcb_tx_queue_prio_enable(dev, false);
295 }
296 #endif /* CONFIG_CHELSIO_T4_DCB */
297 netif_carrier_off(dev);
298 }
299
300 link_report(dev);
301 }
302 }
303
t4_os_portmod_changed(struct adapter * adap,int port_id)304 void t4_os_portmod_changed(struct adapter *adap, int port_id)
305 {
306 static const char *mod_str[] = {
307 NULL, "LR", "SR", "ER", "passive DA", "active DA", "LRM"
308 };
309
310 struct net_device *dev = adap->port[port_id];
311 struct port_info *pi = netdev_priv(dev);
312
313 if (pi->mod_type == FW_PORT_MOD_TYPE_NONE)
314 netdev_info(dev, "port module unplugged\n");
315 else if (pi->mod_type < ARRAY_SIZE(mod_str))
316 netdev_info(dev, "%s module inserted\n", mod_str[pi->mod_type]);
317 else if (pi->mod_type == FW_PORT_MOD_TYPE_NOTSUPPORTED)
318 netdev_info(dev, "%s: unsupported port module inserted\n",
319 dev->name);
320 else if (pi->mod_type == FW_PORT_MOD_TYPE_UNKNOWN)
321 netdev_info(dev, "%s: unknown port module inserted\n",
322 dev->name);
323 else if (pi->mod_type == FW_PORT_MOD_TYPE_ERROR)
324 netdev_info(dev, "%s: transceiver module error\n", dev->name);
325 else
326 netdev_info(dev, "%s: unknown module type %d inserted\n",
327 dev->name, pi->mod_type);
328
329 /* If the interface is running, then we'll need any "sticky" Link
330 * Parameters redone with a new Transceiver Module.
331 */
332 pi->link_cfg.redo_l1cfg = netif_running(dev);
333 }
334
335 int dbfifo_int_thresh = 10; /* 10 == 640 entry threshold */
336 module_param(dbfifo_int_thresh, int, 0644);
337 MODULE_PARM_DESC(dbfifo_int_thresh, "doorbell fifo interrupt threshold");
338
339 /*
340 * usecs to sleep while draining the dbfifo
341 */
342 static int dbfifo_drain_delay = 1000;
343 module_param(dbfifo_drain_delay, int, 0644);
344 MODULE_PARM_DESC(dbfifo_drain_delay,
345 "usecs to sleep while draining the dbfifo");
346
cxgb4_set_addr_hash(struct port_info * pi)347 static inline int cxgb4_set_addr_hash(struct port_info *pi)
348 {
349 struct adapter *adap = pi->adapter;
350 u64 vec = 0;
351 bool ucast = false;
352 struct hash_mac_addr *entry;
353
354 /* Calculate the hash vector for the updated list and program it */
355 list_for_each_entry(entry, &adap->mac_hlist, list) {
356 ucast |= is_unicast_ether_addr(entry->addr);
357 vec |= (1ULL << hash_mac_addr(entry->addr));
358 }
359 return t4_set_addr_hash(adap, adap->mbox, pi->viid, ucast,
360 vec, false);
361 }
362
cxgb4_mac_sync(struct net_device * netdev,const u8 * mac_addr)363 static int cxgb4_mac_sync(struct net_device *netdev, const u8 *mac_addr)
364 {
365 struct port_info *pi = netdev_priv(netdev);
366 struct adapter *adap = pi->adapter;
367 int ret;
368 u64 mhash = 0;
369 u64 uhash = 0;
370 bool free = false;
371 bool ucast = is_unicast_ether_addr(mac_addr);
372 const u8 *maclist[1] = {mac_addr};
373 struct hash_mac_addr *new_entry;
374
375 ret = t4_alloc_mac_filt(adap, adap->mbox, pi->viid, free, 1, maclist,
376 NULL, ucast ? &uhash : &mhash, false);
377 if (ret < 0)
378 goto out;
379 /* if hash != 0, then add the addr to hash addr list
380 * so on the end we will calculate the hash for the
381 * list and program it
382 */
383 if (uhash || mhash) {
384 new_entry = kzalloc(sizeof(*new_entry), GFP_ATOMIC);
385 if (!new_entry)
386 return -ENOMEM;
387 ether_addr_copy(new_entry->addr, mac_addr);
388 list_add_tail(&new_entry->list, &adap->mac_hlist);
389 ret = cxgb4_set_addr_hash(pi);
390 }
391 out:
392 return ret < 0 ? ret : 0;
393 }
394
cxgb4_mac_unsync(struct net_device * netdev,const u8 * mac_addr)395 static int cxgb4_mac_unsync(struct net_device *netdev, const u8 *mac_addr)
396 {
397 struct port_info *pi = netdev_priv(netdev);
398 struct adapter *adap = pi->adapter;
399 int ret;
400 const u8 *maclist[1] = {mac_addr};
401 struct hash_mac_addr *entry, *tmp;
402
403 /* If the MAC address to be removed is in the hash addr
404 * list, delete it from the list and update hash vector
405 */
406 list_for_each_entry_safe(entry, tmp, &adap->mac_hlist, list) {
407 if (ether_addr_equal(entry->addr, mac_addr)) {
408 list_del(&entry->list);
409 kfree(entry);
410 return cxgb4_set_addr_hash(pi);
411 }
412 }
413
414 ret = t4_free_mac_filt(adap, adap->mbox, pi->viid, 1, maclist, false);
415 return ret < 0 ? -EINVAL : 0;
416 }
417
418 /*
419 * Set Rx properties of a port, such as promiscruity, address filters, and MTU.
420 * If @mtu is -1 it is left unchanged.
421 */
set_rxmode(struct net_device * dev,int mtu,bool sleep_ok)422 static int set_rxmode(struct net_device *dev, int mtu, bool sleep_ok)
423 {
424 struct port_info *pi = netdev_priv(dev);
425 struct adapter *adapter = pi->adapter;
426
427 __dev_uc_sync(dev, cxgb4_mac_sync, cxgb4_mac_unsync);
428 __dev_mc_sync(dev, cxgb4_mac_sync, cxgb4_mac_unsync);
429
430 return t4_set_rxmode(adapter, adapter->mbox, pi->viid, mtu,
431 (dev->flags & IFF_PROMISC) ? 1 : 0,
432 (dev->flags & IFF_ALLMULTI) ? 1 : 0, 1, -1,
433 sleep_ok);
434 }
435
436 /**
437 * link_start - enable a port
438 * @dev: the port to enable
439 *
440 * Performs the MAC and PHY actions needed to enable a port.
441 */
link_start(struct net_device * dev)442 static int link_start(struct net_device *dev)
443 {
444 int ret;
445 struct port_info *pi = netdev_priv(dev);
446 unsigned int mb = pi->adapter->pf;
447
448 /*
449 * We do not set address filters and promiscuity here, the stack does
450 * that step explicitly.
451 */
452 ret = t4_set_rxmode(pi->adapter, mb, pi->viid, dev->mtu, -1, -1, -1,
453 !!(dev->features & NETIF_F_HW_VLAN_CTAG_RX), true);
454 if (ret == 0) {
455 ret = t4_change_mac(pi->adapter, mb, pi->viid,
456 pi->xact_addr_filt, dev->dev_addr, true,
457 true);
458 if (ret >= 0) {
459 pi->xact_addr_filt = ret;
460 ret = 0;
461 }
462 }
463 if (ret == 0)
464 ret = t4_link_l1cfg(pi->adapter, mb, pi->tx_chan,
465 &pi->link_cfg);
466 if (ret == 0) {
467 local_bh_disable();
468 ret = t4_enable_pi_params(pi->adapter, mb, pi, true,
469 true, CXGB4_DCB_ENABLED);
470 local_bh_enable();
471 }
472
473 return ret;
474 }
475
476 #ifdef CONFIG_CHELSIO_T4_DCB
477 /* Handle a Data Center Bridging update message from the firmware. */
dcb_rpl(struct adapter * adap,const struct fw_port_cmd * pcmd)478 static void dcb_rpl(struct adapter *adap, const struct fw_port_cmd *pcmd)
479 {
480 int port = FW_PORT_CMD_PORTID_G(ntohl(pcmd->op_to_portid));
481 struct net_device *dev = adap->port[adap->chan_map[port]];
482 int old_dcb_enabled = cxgb4_dcb_enabled(dev);
483 int new_dcb_enabled;
484
485 cxgb4_dcb_handle_fw_update(adap, pcmd);
486 new_dcb_enabled = cxgb4_dcb_enabled(dev);
487
488 /* If the DCB has become enabled or disabled on the port then we're
489 * going to need to set up/tear down DCB Priority parameters for the
490 * TX Queues associated with the port.
491 */
492 if (new_dcb_enabled != old_dcb_enabled)
493 dcb_tx_queue_prio_enable(dev, new_dcb_enabled);
494 }
495 #endif /* CONFIG_CHELSIO_T4_DCB */
496
497 /* Response queue handler for the FW event queue.
498 */
fwevtq_handler(struct sge_rspq * q,const __be64 * rsp,const struct pkt_gl * gl)499 static int fwevtq_handler(struct sge_rspq *q, const __be64 *rsp,
500 const struct pkt_gl *gl)
501 {
502 u8 opcode = ((const struct rss_header *)rsp)->opcode;
503
504 rsp++; /* skip RSS header */
505
506 /* FW can send EGR_UPDATEs encapsulated in a CPL_FW4_MSG.
507 */
508 if (unlikely(opcode == CPL_FW4_MSG &&
509 ((const struct cpl_fw4_msg *)rsp)->type == FW_TYPE_RSSCPL)) {
510 rsp++;
511 opcode = ((const struct rss_header *)rsp)->opcode;
512 rsp++;
513 if (opcode != CPL_SGE_EGR_UPDATE) {
514 dev_err(q->adap->pdev_dev, "unexpected FW4/CPL %#x on FW event queue\n"
515 , opcode);
516 goto out;
517 }
518 }
519
520 if (likely(opcode == CPL_SGE_EGR_UPDATE)) {
521 const struct cpl_sge_egr_update *p = (void *)rsp;
522 unsigned int qid = EGR_QID_G(ntohl(p->opcode_qid));
523 struct sge_txq *txq;
524
525 txq = q->adap->sge.egr_map[qid - q->adap->sge.egr_start];
526 txq->restarts++;
527 if (txq->q_type == CXGB4_TXQ_ETH) {
528 struct sge_eth_txq *eq;
529
530 eq = container_of(txq, struct sge_eth_txq, q);
531 netif_tx_wake_queue(eq->txq);
532 } else {
533 struct sge_uld_txq *oq;
534
535 oq = container_of(txq, struct sge_uld_txq, q);
536 tasklet_schedule(&oq->qresume_tsk);
537 }
538 } else if (opcode == CPL_FW6_MSG || opcode == CPL_FW4_MSG) {
539 const struct cpl_fw6_msg *p = (void *)rsp;
540
541 #ifdef CONFIG_CHELSIO_T4_DCB
542 const struct fw_port_cmd *pcmd = (const void *)p->data;
543 unsigned int cmd = FW_CMD_OP_G(ntohl(pcmd->op_to_portid));
544 unsigned int action =
545 FW_PORT_CMD_ACTION_G(ntohl(pcmd->action_to_len16));
546
547 if (cmd == FW_PORT_CMD &&
548 (action == FW_PORT_ACTION_GET_PORT_INFO ||
549 action == FW_PORT_ACTION_GET_PORT_INFO32)) {
550 int port = FW_PORT_CMD_PORTID_G(
551 be32_to_cpu(pcmd->op_to_portid));
552 struct net_device *dev;
553 int dcbxdis, state_input;
554
555 dev = q->adap->port[q->adap->chan_map[port]];
556 dcbxdis = (action == FW_PORT_ACTION_GET_PORT_INFO
557 ? !!(pcmd->u.info.dcbxdis_pkd & FW_PORT_CMD_DCBXDIS_F)
558 : !!(be32_to_cpu(pcmd->u.info32.lstatus32_to_cbllen32)
559 & FW_PORT_CMD_DCBXDIS32_F));
560 state_input = (dcbxdis
561 ? CXGB4_DCB_INPUT_FW_DISABLED
562 : CXGB4_DCB_INPUT_FW_ENABLED);
563
564 cxgb4_dcb_state_fsm(dev, state_input);
565 }
566
567 if (cmd == FW_PORT_CMD &&
568 action == FW_PORT_ACTION_L2_DCB_CFG)
569 dcb_rpl(q->adap, pcmd);
570 else
571 #endif
572 if (p->type == 0)
573 t4_handle_fw_rpl(q->adap, p->data);
574 } else if (opcode == CPL_L2T_WRITE_RPL) {
575 const struct cpl_l2t_write_rpl *p = (void *)rsp;
576
577 do_l2t_write_rpl(q->adap, p);
578 } else if (opcode == CPL_SMT_WRITE_RPL) {
579 const struct cpl_smt_write_rpl *p = (void *)rsp;
580
581 do_smt_write_rpl(q->adap, p);
582 } else if (opcode == CPL_SET_TCB_RPL) {
583 const struct cpl_set_tcb_rpl *p = (void *)rsp;
584
585 filter_rpl(q->adap, p);
586 } else if (opcode == CPL_ACT_OPEN_RPL) {
587 const struct cpl_act_open_rpl *p = (void *)rsp;
588
589 hash_filter_rpl(q->adap, p);
590 } else if (opcode == CPL_ABORT_RPL_RSS) {
591 const struct cpl_abort_rpl_rss *p = (void *)rsp;
592
593 hash_del_filter_rpl(q->adap, p);
594 } else if (opcode == CPL_SRQ_TABLE_RPL) {
595 const struct cpl_srq_table_rpl *p = (void *)rsp;
596
597 do_srq_table_rpl(q->adap, p);
598 } else
599 dev_err(q->adap->pdev_dev,
600 "unexpected CPL %#x on FW event queue\n", opcode);
601 out:
602 return 0;
603 }
604
disable_msi(struct adapter * adapter)605 static void disable_msi(struct adapter *adapter)
606 {
607 if (adapter->flags & USING_MSIX) {
608 pci_disable_msix(adapter->pdev);
609 adapter->flags &= ~USING_MSIX;
610 } else if (adapter->flags & USING_MSI) {
611 pci_disable_msi(adapter->pdev);
612 adapter->flags &= ~USING_MSI;
613 }
614 }
615
616 /*
617 * Interrupt handler for non-data events used with MSI-X.
618 */
t4_nondata_intr(int irq,void * cookie)619 static irqreturn_t t4_nondata_intr(int irq, void *cookie)
620 {
621 struct adapter *adap = cookie;
622 u32 v = t4_read_reg(adap, MYPF_REG(PL_PF_INT_CAUSE_A));
623
624 if (v & PFSW_F) {
625 adap->swintr = 1;
626 t4_write_reg(adap, MYPF_REG(PL_PF_INT_CAUSE_A), v);
627 }
628 if (adap->flags & MASTER_PF)
629 t4_slow_intr_handler(adap);
630 return IRQ_HANDLED;
631 }
632
633 /*
634 * Name the MSI-X interrupts.
635 */
name_msix_vecs(struct adapter * adap)636 static void name_msix_vecs(struct adapter *adap)
637 {
638 int i, j, msi_idx = 2, n = sizeof(adap->msix_info[0].desc);
639
640 /* non-data interrupts */
641 snprintf(adap->msix_info[0].desc, n, "%s", adap->port[0]->name);
642
643 /* FW events */
644 snprintf(adap->msix_info[1].desc, n, "%s-FWeventq",
645 adap->port[0]->name);
646
647 /* Ethernet queues */
648 for_each_port(adap, j) {
649 struct net_device *d = adap->port[j];
650 const struct port_info *pi = netdev_priv(d);
651
652 for (i = 0; i < pi->nqsets; i++, msi_idx++)
653 snprintf(adap->msix_info[msi_idx].desc, n, "%s-Rx%d",
654 d->name, i);
655 }
656 }
657
request_msix_queue_irqs(struct adapter * adap)658 static int request_msix_queue_irqs(struct adapter *adap)
659 {
660 struct sge *s = &adap->sge;
661 int err, ethqidx;
662 int msi_index = 2;
663
664 err = request_irq(adap->msix_info[1].vec, t4_sge_intr_msix, 0,
665 adap->msix_info[1].desc, &s->fw_evtq);
666 if (err)
667 return err;
668
669 for_each_ethrxq(s, ethqidx) {
670 err = request_irq(adap->msix_info[msi_index].vec,
671 t4_sge_intr_msix, 0,
672 adap->msix_info[msi_index].desc,
673 &s->ethrxq[ethqidx].rspq);
674 if (err)
675 goto unwind;
676 msi_index++;
677 }
678 return 0;
679
680 unwind:
681 while (--ethqidx >= 0)
682 free_irq(adap->msix_info[--msi_index].vec,
683 &s->ethrxq[ethqidx].rspq);
684 free_irq(adap->msix_info[1].vec, &s->fw_evtq);
685 return err;
686 }
687
free_msix_queue_irqs(struct adapter * adap)688 static void free_msix_queue_irqs(struct adapter *adap)
689 {
690 int i, msi_index = 2;
691 struct sge *s = &adap->sge;
692
693 free_irq(adap->msix_info[1].vec, &s->fw_evtq);
694 for_each_ethrxq(s, i)
695 free_irq(adap->msix_info[msi_index++].vec, &s->ethrxq[i].rspq);
696 }
697
698 /**
699 * cxgb4_write_rss - write the RSS table for a given port
700 * @pi: the port
701 * @queues: array of queue indices for RSS
702 *
703 * Sets up the portion of the HW RSS table for the port's VI to distribute
704 * packets to the Rx queues in @queues.
705 * Should never be called before setting up sge eth rx queues
706 */
cxgb4_write_rss(const struct port_info * pi,const u16 * queues)707 int cxgb4_write_rss(const struct port_info *pi, const u16 *queues)
708 {
709 u16 *rss;
710 int i, err;
711 struct adapter *adapter = pi->adapter;
712 const struct sge_eth_rxq *rxq;
713
714 rxq = &adapter->sge.ethrxq[pi->first_qset];
715 rss = kmalloc_array(pi->rss_size, sizeof(u16), GFP_KERNEL);
716 if (!rss)
717 return -ENOMEM;
718
719 /* map the queue indices to queue ids */
720 for (i = 0; i < pi->rss_size; i++, queues++)
721 rss[i] = rxq[*queues].rspq.abs_id;
722
723 err = t4_config_rss_range(adapter, adapter->pf, pi->viid, 0,
724 pi->rss_size, rss, pi->rss_size);
725 /* If Tunnel All Lookup isn't specified in the global RSS
726 * Configuration, then we need to specify a default Ingress
727 * Queue for any ingress packets which aren't hashed. We'll
728 * use our first ingress queue ...
729 */
730 if (!err)
731 err = t4_config_vi_rss(adapter, adapter->mbox, pi->viid,
732 FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN_F |
733 FW_RSS_VI_CONFIG_CMD_IP6TWOTUPEN_F |
734 FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN_F |
735 FW_RSS_VI_CONFIG_CMD_IP4TWOTUPEN_F |
736 FW_RSS_VI_CONFIG_CMD_UDPEN_F,
737 rss[0]);
738 kfree(rss);
739 return err;
740 }
741
742 /**
743 * setup_rss - configure RSS
744 * @adap: the adapter
745 *
746 * Sets up RSS for each port.
747 */
setup_rss(struct adapter * adap)748 static int setup_rss(struct adapter *adap)
749 {
750 int i, j, err;
751
752 for_each_port(adap, i) {
753 const struct port_info *pi = adap2pinfo(adap, i);
754
755 /* Fill default values with equal distribution */
756 for (j = 0; j < pi->rss_size; j++)
757 pi->rss[j] = j % pi->nqsets;
758
759 err = cxgb4_write_rss(pi, pi->rss);
760 if (err)
761 return err;
762 }
763 return 0;
764 }
765
766 /*
767 * Return the channel of the ingress queue with the given qid.
768 */
rxq_to_chan(const struct sge * p,unsigned int qid)769 static unsigned int rxq_to_chan(const struct sge *p, unsigned int qid)
770 {
771 qid -= p->ingr_start;
772 return netdev2pinfo(p->ingr_map[qid]->netdev)->tx_chan;
773 }
774
775 /*
776 * Wait until all NAPI handlers are descheduled.
777 */
quiesce_rx(struct adapter * adap)778 static void quiesce_rx(struct adapter *adap)
779 {
780 int i;
781
782 for (i = 0; i < adap->sge.ingr_sz; i++) {
783 struct sge_rspq *q = adap->sge.ingr_map[i];
784
785 if (q && q->handler)
786 napi_disable(&q->napi);
787 }
788 }
789
790 /* Disable interrupt and napi handler */
disable_interrupts(struct adapter * adap)791 static void disable_interrupts(struct adapter *adap)
792 {
793 if (adap->flags & FULL_INIT_DONE) {
794 t4_intr_disable(adap);
795 if (adap->flags & USING_MSIX) {
796 free_msix_queue_irqs(adap);
797 free_irq(adap->msix_info[0].vec, adap);
798 } else {
799 free_irq(adap->pdev->irq, adap);
800 }
801 quiesce_rx(adap);
802 }
803 }
804
805 /*
806 * Enable NAPI scheduling and interrupt generation for all Rx queues.
807 */
enable_rx(struct adapter * adap)808 static void enable_rx(struct adapter *adap)
809 {
810 int i;
811
812 for (i = 0; i < adap->sge.ingr_sz; i++) {
813 struct sge_rspq *q = adap->sge.ingr_map[i];
814
815 if (!q)
816 continue;
817 if (q->handler)
818 napi_enable(&q->napi);
819
820 /* 0-increment GTS to start the timer and enable interrupts */
821 t4_write_reg(adap, MYPF_REG(SGE_PF_GTS_A),
822 SEINTARM_V(q->intr_params) |
823 INGRESSQID_V(q->cntxt_id));
824 }
825 }
826
827
setup_fw_sge_queues(struct adapter * adap)828 static int setup_fw_sge_queues(struct adapter *adap)
829 {
830 struct sge *s = &adap->sge;
831 int err = 0;
832
833 bitmap_zero(s->starving_fl, s->egr_sz);
834 bitmap_zero(s->txq_maperr, s->egr_sz);
835
836 if (adap->flags & USING_MSIX)
837 adap->msi_idx = 1; /* vector 0 is for non-queue interrupts */
838 else {
839 err = t4_sge_alloc_rxq(adap, &s->intrq, false, adap->port[0], 0,
840 NULL, NULL, NULL, -1);
841 if (err)
842 return err;
843 adap->msi_idx = -((int)s->intrq.abs_id + 1);
844 }
845
846 err = t4_sge_alloc_rxq(adap, &s->fw_evtq, true, adap->port[0],
847 adap->msi_idx, NULL, fwevtq_handler, NULL, -1);
848 return err;
849 }
850
851 /**
852 * setup_sge_queues - configure SGE Tx/Rx/response queues
853 * @adap: the adapter
854 *
855 * Determines how many sets of SGE queues to use and initializes them.
856 * We support multiple queue sets per port if we have MSI-X, otherwise
857 * just one queue set per port.
858 */
setup_sge_queues(struct adapter * adap)859 static int setup_sge_queues(struct adapter *adap)
860 {
861 int err, i, j;
862 struct sge *s = &adap->sge;
863 struct sge_uld_rxq_info *rxq_info = NULL;
864 unsigned int cmplqid = 0;
865
866 if (is_uld(adap))
867 rxq_info = s->uld_rxq_info[CXGB4_ULD_RDMA];
868
869 for_each_port(adap, i) {
870 struct net_device *dev = adap->port[i];
871 struct port_info *pi = netdev_priv(dev);
872 struct sge_eth_rxq *q = &s->ethrxq[pi->first_qset];
873 struct sge_eth_txq *t = &s->ethtxq[pi->first_qset];
874
875 for (j = 0; j < pi->nqsets; j++, q++) {
876 if (adap->msi_idx > 0)
877 adap->msi_idx++;
878 err = t4_sge_alloc_rxq(adap, &q->rspq, false, dev,
879 adap->msi_idx, &q->fl,
880 t4_ethrx_handler,
881 NULL,
882 t4_get_tp_ch_map(adap,
883 pi->tx_chan));
884 if (err)
885 goto freeout;
886 q->rspq.idx = j;
887 memset(&q->stats, 0, sizeof(q->stats));
888 }
889 for (j = 0; j < pi->nqsets; j++, t++) {
890 err = t4_sge_alloc_eth_txq(adap, t, dev,
891 netdev_get_tx_queue(dev, j),
892 s->fw_evtq.cntxt_id);
893 if (err)
894 goto freeout;
895 }
896 }
897
898 for_each_port(adap, i) {
899 /* Note that cmplqid below is 0 if we don't
900 * have RDMA queues, and that's the right value.
901 */
902 if (rxq_info)
903 cmplqid = rxq_info->uldrxq[i].rspq.cntxt_id;
904
905 err = t4_sge_alloc_ctrl_txq(adap, &s->ctrlq[i], adap->port[i],
906 s->fw_evtq.cntxt_id, cmplqid);
907 if (err)
908 goto freeout;
909 }
910
911 if (!is_t4(adap->params.chip)) {
912 err = t4_sge_alloc_eth_txq(adap, &s->ptptxq, adap->port[0],
913 netdev_get_tx_queue(adap->port[0], 0)
914 , s->fw_evtq.cntxt_id);
915 if (err)
916 goto freeout;
917 }
918
919 t4_write_reg(adap, is_t4(adap->params.chip) ?
920 MPS_TRC_RSS_CONTROL_A :
921 MPS_T5_TRC_RSS_CONTROL_A,
922 RSSCONTROL_V(netdev2pinfo(adap->port[0])->tx_chan) |
923 QUEUENUMBER_V(s->ethrxq[0].rspq.abs_id));
924 return 0;
925 freeout:
926 dev_err(adap->pdev_dev, "Can't allocate queues, err=%d\n", -err);
927 t4_free_sge_resources(adap);
928 return err;
929 }
930
cxgb_select_queue(struct net_device * dev,struct sk_buff * skb,struct net_device * sb_dev,select_queue_fallback_t fallback)931 static u16 cxgb_select_queue(struct net_device *dev, struct sk_buff *skb,
932 struct net_device *sb_dev,
933 select_queue_fallback_t fallback)
934 {
935 int txq;
936
937 #ifdef CONFIG_CHELSIO_T4_DCB
938 /* If a Data Center Bridging has been successfully negotiated on this
939 * link then we'll use the skb's priority to map it to a TX Queue.
940 * The skb's priority is determined via the VLAN Tag Priority Code
941 * Point field.
942 */
943 if (cxgb4_dcb_enabled(dev) && !is_kdump_kernel()) {
944 u16 vlan_tci;
945 int err;
946
947 err = vlan_get_tag(skb, &vlan_tci);
948 if (unlikely(err)) {
949 if (net_ratelimit())
950 netdev_warn(dev,
951 "TX Packet without VLAN Tag on DCB Link\n");
952 txq = 0;
953 } else {
954 txq = (vlan_tci & VLAN_PRIO_MASK) >> VLAN_PRIO_SHIFT;
955 #ifdef CONFIG_CHELSIO_T4_FCOE
956 if (skb->protocol == htons(ETH_P_FCOE))
957 txq = skb->priority & 0x7;
958 #endif /* CONFIG_CHELSIO_T4_FCOE */
959 }
960 return txq;
961 }
962 #endif /* CONFIG_CHELSIO_T4_DCB */
963
964 if (select_queue) {
965 txq = (skb_rx_queue_recorded(skb)
966 ? skb_get_rx_queue(skb)
967 : smp_processor_id());
968
969 while (unlikely(txq >= dev->real_num_tx_queues))
970 txq -= dev->real_num_tx_queues;
971
972 return txq;
973 }
974
975 return fallback(dev, skb, NULL) % dev->real_num_tx_queues;
976 }
977
closest_timer(const struct sge * s,int time)978 static int closest_timer(const struct sge *s, int time)
979 {
980 int i, delta, match = 0, min_delta = INT_MAX;
981
982 for (i = 0; i < ARRAY_SIZE(s->timer_val); i++) {
983 delta = time - s->timer_val[i];
984 if (delta < 0)
985 delta = -delta;
986 if (delta < min_delta) {
987 min_delta = delta;
988 match = i;
989 }
990 }
991 return match;
992 }
993
closest_thres(const struct sge * s,int thres)994 static int closest_thres(const struct sge *s, int thres)
995 {
996 int i, delta, match = 0, min_delta = INT_MAX;
997
998 for (i = 0; i < ARRAY_SIZE(s->counter_val); i++) {
999 delta = thres - s->counter_val[i];
1000 if (delta < 0)
1001 delta = -delta;
1002 if (delta < min_delta) {
1003 min_delta = delta;
1004 match = i;
1005 }
1006 }
1007 return match;
1008 }
1009
1010 /**
1011 * cxgb4_set_rspq_intr_params - set a queue's interrupt holdoff parameters
1012 * @q: the Rx queue
1013 * @us: the hold-off time in us, or 0 to disable timer
1014 * @cnt: the hold-off packet count, or 0 to disable counter
1015 *
1016 * Sets an Rx queue's interrupt hold-off time and packet count. At least
1017 * one of the two needs to be enabled for the queue to generate interrupts.
1018 */
cxgb4_set_rspq_intr_params(struct sge_rspq * q,unsigned int us,unsigned int cnt)1019 int cxgb4_set_rspq_intr_params(struct sge_rspq *q,
1020 unsigned int us, unsigned int cnt)
1021 {
1022 struct adapter *adap = q->adap;
1023
1024 if ((us | cnt) == 0)
1025 cnt = 1;
1026
1027 if (cnt) {
1028 int err;
1029 u32 v, new_idx;
1030
1031 new_idx = closest_thres(&adap->sge, cnt);
1032 if (q->desc && q->pktcnt_idx != new_idx) {
1033 /* the queue has already been created, update it */
1034 v = FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DMAQ) |
1035 FW_PARAMS_PARAM_X_V(
1036 FW_PARAMS_PARAM_DMAQ_IQ_INTCNTTHRESH) |
1037 FW_PARAMS_PARAM_YZ_V(q->cntxt_id);
1038 err = t4_set_params(adap, adap->mbox, adap->pf, 0, 1,
1039 &v, &new_idx);
1040 if (err)
1041 return err;
1042 }
1043 q->pktcnt_idx = new_idx;
1044 }
1045
1046 us = us == 0 ? 6 : closest_timer(&adap->sge, us);
1047 q->intr_params = QINTR_TIMER_IDX_V(us) | QINTR_CNT_EN_V(cnt > 0);
1048 return 0;
1049 }
1050
cxgb_set_features(struct net_device * dev,netdev_features_t features)1051 static int cxgb_set_features(struct net_device *dev, netdev_features_t features)
1052 {
1053 const struct port_info *pi = netdev_priv(dev);
1054 netdev_features_t changed = dev->features ^ features;
1055 int err;
1056
1057 if (!(changed & NETIF_F_HW_VLAN_CTAG_RX))
1058 return 0;
1059
1060 err = t4_set_rxmode(pi->adapter, pi->adapter->pf, pi->viid, -1,
1061 -1, -1, -1,
1062 !!(features & NETIF_F_HW_VLAN_CTAG_RX), true);
1063 if (unlikely(err))
1064 dev->features = features ^ NETIF_F_HW_VLAN_CTAG_RX;
1065 return err;
1066 }
1067
setup_debugfs(struct adapter * adap)1068 static int setup_debugfs(struct adapter *adap)
1069 {
1070 if (IS_ERR_OR_NULL(adap->debugfs_root))
1071 return -1;
1072
1073 #ifdef CONFIG_DEBUG_FS
1074 t4_setup_debugfs(adap);
1075 #endif
1076 return 0;
1077 }
1078
1079 /*
1080 * upper-layer driver support
1081 */
1082
1083 /*
1084 * Allocate an active-open TID and set it to the supplied value.
1085 */
cxgb4_alloc_atid(struct tid_info * t,void * data)1086 int cxgb4_alloc_atid(struct tid_info *t, void *data)
1087 {
1088 int atid = -1;
1089
1090 spin_lock_bh(&t->atid_lock);
1091 if (t->afree) {
1092 union aopen_entry *p = t->afree;
1093
1094 atid = (p - t->atid_tab) + t->atid_base;
1095 t->afree = p->next;
1096 p->data = data;
1097 t->atids_in_use++;
1098 }
1099 spin_unlock_bh(&t->atid_lock);
1100 return atid;
1101 }
1102 EXPORT_SYMBOL(cxgb4_alloc_atid);
1103
1104 /*
1105 * Release an active-open TID.
1106 */
cxgb4_free_atid(struct tid_info * t,unsigned int atid)1107 void cxgb4_free_atid(struct tid_info *t, unsigned int atid)
1108 {
1109 union aopen_entry *p = &t->atid_tab[atid - t->atid_base];
1110
1111 spin_lock_bh(&t->atid_lock);
1112 p->next = t->afree;
1113 t->afree = p;
1114 t->atids_in_use--;
1115 spin_unlock_bh(&t->atid_lock);
1116 }
1117 EXPORT_SYMBOL(cxgb4_free_atid);
1118
1119 /*
1120 * Allocate a server TID and set it to the supplied value.
1121 */
cxgb4_alloc_stid(struct tid_info * t,int family,void * data)1122 int cxgb4_alloc_stid(struct tid_info *t, int family, void *data)
1123 {
1124 int stid;
1125
1126 spin_lock_bh(&t->stid_lock);
1127 if (family == PF_INET) {
1128 stid = find_first_zero_bit(t->stid_bmap, t->nstids);
1129 if (stid < t->nstids)
1130 __set_bit(stid, t->stid_bmap);
1131 else
1132 stid = -1;
1133 } else {
1134 stid = bitmap_find_free_region(t->stid_bmap, t->nstids, 1);
1135 if (stid < 0)
1136 stid = -1;
1137 }
1138 if (stid >= 0) {
1139 t->stid_tab[stid].data = data;
1140 stid += t->stid_base;
1141 /* IPv6 requires max of 520 bits or 16 cells in TCAM
1142 * This is equivalent to 4 TIDs. With CLIP enabled it
1143 * needs 2 TIDs.
1144 */
1145 if (family == PF_INET6) {
1146 t->stids_in_use += 2;
1147 t->v6_stids_in_use += 2;
1148 } else {
1149 t->stids_in_use++;
1150 }
1151 }
1152 spin_unlock_bh(&t->stid_lock);
1153 return stid;
1154 }
1155 EXPORT_SYMBOL(cxgb4_alloc_stid);
1156
1157 /* Allocate a server filter TID and set it to the supplied value.
1158 */
cxgb4_alloc_sftid(struct tid_info * t,int family,void * data)1159 int cxgb4_alloc_sftid(struct tid_info *t, int family, void *data)
1160 {
1161 int stid;
1162
1163 spin_lock_bh(&t->stid_lock);
1164 if (family == PF_INET) {
1165 stid = find_next_zero_bit(t->stid_bmap,
1166 t->nstids + t->nsftids, t->nstids);
1167 if (stid < (t->nstids + t->nsftids))
1168 __set_bit(stid, t->stid_bmap);
1169 else
1170 stid = -1;
1171 } else {
1172 stid = -1;
1173 }
1174 if (stid >= 0) {
1175 t->stid_tab[stid].data = data;
1176 stid -= t->nstids;
1177 stid += t->sftid_base;
1178 t->sftids_in_use++;
1179 }
1180 spin_unlock_bh(&t->stid_lock);
1181 return stid;
1182 }
1183 EXPORT_SYMBOL(cxgb4_alloc_sftid);
1184
1185 /* Release a server TID.
1186 */
cxgb4_free_stid(struct tid_info * t,unsigned int stid,int family)1187 void cxgb4_free_stid(struct tid_info *t, unsigned int stid, int family)
1188 {
1189 /* Is it a server filter TID? */
1190 if (t->nsftids && (stid >= t->sftid_base)) {
1191 stid -= t->sftid_base;
1192 stid += t->nstids;
1193 } else {
1194 stid -= t->stid_base;
1195 }
1196
1197 spin_lock_bh(&t->stid_lock);
1198 if (family == PF_INET)
1199 __clear_bit(stid, t->stid_bmap);
1200 else
1201 bitmap_release_region(t->stid_bmap, stid, 1);
1202 t->stid_tab[stid].data = NULL;
1203 if (stid < t->nstids) {
1204 if (family == PF_INET6) {
1205 t->stids_in_use -= 2;
1206 t->v6_stids_in_use -= 2;
1207 } else {
1208 t->stids_in_use--;
1209 }
1210 } else {
1211 t->sftids_in_use--;
1212 }
1213
1214 spin_unlock_bh(&t->stid_lock);
1215 }
1216 EXPORT_SYMBOL(cxgb4_free_stid);
1217
1218 /*
1219 * Populate a TID_RELEASE WR. Caller must properly size the skb.
1220 */
mk_tid_release(struct sk_buff * skb,unsigned int chan,unsigned int tid)1221 static void mk_tid_release(struct sk_buff *skb, unsigned int chan,
1222 unsigned int tid)
1223 {
1224 struct cpl_tid_release *req;
1225
1226 set_wr_txq(skb, CPL_PRIORITY_SETUP, chan);
1227 req = __skb_put(skb, sizeof(*req));
1228 INIT_TP_WR(req, tid);
1229 OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_TID_RELEASE, tid));
1230 }
1231
1232 /*
1233 * Queue a TID release request and if necessary schedule a work queue to
1234 * process it.
1235 */
cxgb4_queue_tid_release(struct tid_info * t,unsigned int chan,unsigned int tid)1236 static void cxgb4_queue_tid_release(struct tid_info *t, unsigned int chan,
1237 unsigned int tid)
1238 {
1239 void **p = &t->tid_tab[tid];
1240 struct adapter *adap = container_of(t, struct adapter, tids);
1241
1242 spin_lock_bh(&adap->tid_release_lock);
1243 *p = adap->tid_release_head;
1244 /* Low 2 bits encode the Tx channel number */
1245 adap->tid_release_head = (void **)((uintptr_t)p | chan);
1246 if (!adap->tid_release_task_busy) {
1247 adap->tid_release_task_busy = true;
1248 queue_work(adap->workq, &adap->tid_release_task);
1249 }
1250 spin_unlock_bh(&adap->tid_release_lock);
1251 }
1252
1253 /*
1254 * Process the list of pending TID release requests.
1255 */
process_tid_release_list(struct work_struct * work)1256 static void process_tid_release_list(struct work_struct *work)
1257 {
1258 struct sk_buff *skb;
1259 struct adapter *adap;
1260
1261 adap = container_of(work, struct adapter, tid_release_task);
1262
1263 spin_lock_bh(&adap->tid_release_lock);
1264 while (adap->tid_release_head) {
1265 void **p = adap->tid_release_head;
1266 unsigned int chan = (uintptr_t)p & 3;
1267 p = (void *)p - chan;
1268
1269 adap->tid_release_head = *p;
1270 *p = NULL;
1271 spin_unlock_bh(&adap->tid_release_lock);
1272
1273 while (!(skb = alloc_skb(sizeof(struct cpl_tid_release),
1274 GFP_KERNEL)))
1275 schedule_timeout_uninterruptible(1);
1276
1277 mk_tid_release(skb, chan, p - adap->tids.tid_tab);
1278 t4_ofld_send(adap, skb);
1279 spin_lock_bh(&adap->tid_release_lock);
1280 }
1281 adap->tid_release_task_busy = false;
1282 spin_unlock_bh(&adap->tid_release_lock);
1283 }
1284
1285 /*
1286 * Release a TID and inform HW. If we are unable to allocate the release
1287 * message we defer to a work queue.
1288 */
cxgb4_remove_tid(struct tid_info * t,unsigned int chan,unsigned int tid,unsigned short family)1289 void cxgb4_remove_tid(struct tid_info *t, unsigned int chan, unsigned int tid,
1290 unsigned short family)
1291 {
1292 struct sk_buff *skb;
1293 struct adapter *adap = container_of(t, struct adapter, tids);
1294
1295 WARN_ON(tid >= t->ntids);
1296
1297 if (t->tid_tab[tid]) {
1298 t->tid_tab[tid] = NULL;
1299 atomic_dec(&t->conns_in_use);
1300 if (t->hash_base && (tid >= t->hash_base)) {
1301 if (family == AF_INET6)
1302 atomic_sub(2, &t->hash_tids_in_use);
1303 else
1304 atomic_dec(&t->hash_tids_in_use);
1305 } else {
1306 if (family == AF_INET6)
1307 atomic_sub(2, &t->tids_in_use);
1308 else
1309 atomic_dec(&t->tids_in_use);
1310 }
1311 }
1312
1313 skb = alloc_skb(sizeof(struct cpl_tid_release), GFP_ATOMIC);
1314 if (likely(skb)) {
1315 mk_tid_release(skb, chan, tid);
1316 t4_ofld_send(adap, skb);
1317 } else
1318 cxgb4_queue_tid_release(t, chan, tid);
1319 }
1320 EXPORT_SYMBOL(cxgb4_remove_tid);
1321
1322 /*
1323 * Allocate and initialize the TID tables. Returns 0 on success.
1324 */
tid_init(struct tid_info * t)1325 static int tid_init(struct tid_info *t)
1326 {
1327 struct adapter *adap = container_of(t, struct adapter, tids);
1328 unsigned int max_ftids = t->nftids + t->nsftids;
1329 unsigned int natids = t->natids;
1330 unsigned int stid_bmap_size;
1331 unsigned int ftid_bmap_size;
1332 size_t size;
1333
1334 stid_bmap_size = BITS_TO_LONGS(t->nstids + t->nsftids);
1335 ftid_bmap_size = BITS_TO_LONGS(t->nftids);
1336 size = t->ntids * sizeof(*t->tid_tab) +
1337 natids * sizeof(*t->atid_tab) +
1338 t->nstids * sizeof(*t->stid_tab) +
1339 t->nsftids * sizeof(*t->stid_tab) +
1340 stid_bmap_size * sizeof(long) +
1341 max_ftids * sizeof(*t->ftid_tab) +
1342 ftid_bmap_size * sizeof(long);
1343
1344 t->tid_tab = kvzalloc(size, GFP_KERNEL);
1345 if (!t->tid_tab)
1346 return -ENOMEM;
1347
1348 t->atid_tab = (union aopen_entry *)&t->tid_tab[t->ntids];
1349 t->stid_tab = (struct serv_entry *)&t->atid_tab[natids];
1350 t->stid_bmap = (unsigned long *)&t->stid_tab[t->nstids + t->nsftids];
1351 t->ftid_tab = (struct filter_entry *)&t->stid_bmap[stid_bmap_size];
1352 t->ftid_bmap = (unsigned long *)&t->ftid_tab[max_ftids];
1353 spin_lock_init(&t->stid_lock);
1354 spin_lock_init(&t->atid_lock);
1355 spin_lock_init(&t->ftid_lock);
1356
1357 t->stids_in_use = 0;
1358 t->v6_stids_in_use = 0;
1359 t->sftids_in_use = 0;
1360 t->afree = NULL;
1361 t->atids_in_use = 0;
1362 atomic_set(&t->tids_in_use, 0);
1363 atomic_set(&t->conns_in_use, 0);
1364 atomic_set(&t->hash_tids_in_use, 0);
1365
1366 /* Setup the free list for atid_tab and clear the stid bitmap. */
1367 if (natids) {
1368 while (--natids)
1369 t->atid_tab[natids - 1].next = &t->atid_tab[natids];
1370 t->afree = t->atid_tab;
1371 }
1372
1373 if (is_offload(adap)) {
1374 bitmap_zero(t->stid_bmap, t->nstids + t->nsftids);
1375 /* Reserve stid 0 for T4/T5 adapters */
1376 if (!t->stid_base &&
1377 CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5)
1378 __set_bit(0, t->stid_bmap);
1379 }
1380
1381 bitmap_zero(t->ftid_bmap, t->nftids);
1382 return 0;
1383 }
1384
1385 /**
1386 * cxgb4_create_server - create an IP server
1387 * @dev: the device
1388 * @stid: the server TID
1389 * @sip: local IP address to bind server to
1390 * @sport: the server's TCP port
1391 * @queue: queue to direct messages from this server to
1392 *
1393 * Create an IP server for the given port and address.
1394 * Returns <0 on error and one of the %NET_XMIT_* values on success.
1395 */
cxgb4_create_server(const struct net_device * dev,unsigned int stid,__be32 sip,__be16 sport,__be16 vlan,unsigned int queue)1396 int cxgb4_create_server(const struct net_device *dev, unsigned int stid,
1397 __be32 sip, __be16 sport, __be16 vlan,
1398 unsigned int queue)
1399 {
1400 unsigned int chan;
1401 struct sk_buff *skb;
1402 struct adapter *adap;
1403 struct cpl_pass_open_req *req;
1404 int ret;
1405
1406 skb = alloc_skb(sizeof(*req), GFP_KERNEL);
1407 if (!skb)
1408 return -ENOMEM;
1409
1410 adap = netdev2adap(dev);
1411 req = __skb_put(skb, sizeof(*req));
1412 INIT_TP_WR(req, 0);
1413 OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_PASS_OPEN_REQ, stid));
1414 req->local_port = sport;
1415 req->peer_port = htons(0);
1416 req->local_ip = sip;
1417 req->peer_ip = htonl(0);
1418 chan = rxq_to_chan(&adap->sge, queue);
1419 req->opt0 = cpu_to_be64(TX_CHAN_V(chan));
1420 req->opt1 = cpu_to_be64(CONN_POLICY_V(CPL_CONN_POLICY_ASK) |
1421 SYN_RSS_ENABLE_F | SYN_RSS_QUEUE_V(queue));
1422 ret = t4_mgmt_tx(adap, skb);
1423 return net_xmit_eval(ret);
1424 }
1425 EXPORT_SYMBOL(cxgb4_create_server);
1426
1427 /* cxgb4_create_server6 - create an IPv6 server
1428 * @dev: the device
1429 * @stid: the server TID
1430 * @sip: local IPv6 address to bind server to
1431 * @sport: the server's TCP port
1432 * @queue: queue to direct messages from this server to
1433 *
1434 * Create an IPv6 server for the given port and address.
1435 * Returns <0 on error and one of the %NET_XMIT_* values on success.
1436 */
cxgb4_create_server6(const struct net_device * dev,unsigned int stid,const struct in6_addr * sip,__be16 sport,unsigned int queue)1437 int cxgb4_create_server6(const struct net_device *dev, unsigned int stid,
1438 const struct in6_addr *sip, __be16 sport,
1439 unsigned int queue)
1440 {
1441 unsigned int chan;
1442 struct sk_buff *skb;
1443 struct adapter *adap;
1444 struct cpl_pass_open_req6 *req;
1445 int ret;
1446
1447 skb = alloc_skb(sizeof(*req), GFP_KERNEL);
1448 if (!skb)
1449 return -ENOMEM;
1450
1451 adap = netdev2adap(dev);
1452 req = __skb_put(skb, sizeof(*req));
1453 INIT_TP_WR(req, 0);
1454 OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_PASS_OPEN_REQ6, stid));
1455 req->local_port = sport;
1456 req->peer_port = htons(0);
1457 req->local_ip_hi = *(__be64 *)(sip->s6_addr);
1458 req->local_ip_lo = *(__be64 *)(sip->s6_addr + 8);
1459 req->peer_ip_hi = cpu_to_be64(0);
1460 req->peer_ip_lo = cpu_to_be64(0);
1461 chan = rxq_to_chan(&adap->sge, queue);
1462 req->opt0 = cpu_to_be64(TX_CHAN_V(chan));
1463 req->opt1 = cpu_to_be64(CONN_POLICY_V(CPL_CONN_POLICY_ASK) |
1464 SYN_RSS_ENABLE_F | SYN_RSS_QUEUE_V(queue));
1465 ret = t4_mgmt_tx(adap, skb);
1466 return net_xmit_eval(ret);
1467 }
1468 EXPORT_SYMBOL(cxgb4_create_server6);
1469
cxgb4_remove_server(const struct net_device * dev,unsigned int stid,unsigned int queue,bool ipv6)1470 int cxgb4_remove_server(const struct net_device *dev, unsigned int stid,
1471 unsigned int queue, bool ipv6)
1472 {
1473 struct sk_buff *skb;
1474 struct adapter *adap;
1475 struct cpl_close_listsvr_req *req;
1476 int ret;
1477
1478 adap = netdev2adap(dev);
1479
1480 skb = alloc_skb(sizeof(*req), GFP_KERNEL);
1481 if (!skb)
1482 return -ENOMEM;
1483
1484 req = __skb_put(skb, sizeof(*req));
1485 INIT_TP_WR(req, 0);
1486 OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_CLOSE_LISTSRV_REQ, stid));
1487 req->reply_ctrl = htons(NO_REPLY_V(0) | (ipv6 ? LISTSVR_IPV6_V(1) :
1488 LISTSVR_IPV6_V(0)) | QUEUENO_V(queue));
1489 ret = t4_mgmt_tx(adap, skb);
1490 return net_xmit_eval(ret);
1491 }
1492 EXPORT_SYMBOL(cxgb4_remove_server);
1493
1494 /**
1495 * cxgb4_best_mtu - find the entry in the MTU table closest to an MTU
1496 * @mtus: the HW MTU table
1497 * @mtu: the target MTU
1498 * @idx: index of selected entry in the MTU table
1499 *
1500 * Returns the index and the value in the HW MTU table that is closest to
1501 * but does not exceed @mtu, unless @mtu is smaller than any value in the
1502 * table, in which case that smallest available value is selected.
1503 */
cxgb4_best_mtu(const unsigned short * mtus,unsigned short mtu,unsigned int * idx)1504 unsigned int cxgb4_best_mtu(const unsigned short *mtus, unsigned short mtu,
1505 unsigned int *idx)
1506 {
1507 unsigned int i = 0;
1508
1509 while (i < NMTUS - 1 && mtus[i + 1] <= mtu)
1510 ++i;
1511 if (idx)
1512 *idx = i;
1513 return mtus[i];
1514 }
1515 EXPORT_SYMBOL(cxgb4_best_mtu);
1516
1517 /**
1518 * cxgb4_best_aligned_mtu - find best MTU, [hopefully] data size aligned
1519 * @mtus: the HW MTU table
1520 * @header_size: Header Size
1521 * @data_size_max: maximum Data Segment Size
1522 * @data_size_align: desired Data Segment Size Alignment (2^N)
1523 * @mtu_idxp: HW MTU Table Index return value pointer (possibly NULL)
1524 *
1525 * Similar to cxgb4_best_mtu() but instead of searching the Hardware
1526 * MTU Table based solely on a Maximum MTU parameter, we break that
1527 * parameter up into a Header Size and Maximum Data Segment Size, and
1528 * provide a desired Data Segment Size Alignment. If we find an MTU in
1529 * the Hardware MTU Table which will result in a Data Segment Size with
1530 * the requested alignment _and_ that MTU isn't "too far" from the
1531 * closest MTU, then we'll return that rather than the closest MTU.
1532 */
cxgb4_best_aligned_mtu(const unsigned short * mtus,unsigned short header_size,unsigned short data_size_max,unsigned short data_size_align,unsigned int * mtu_idxp)1533 unsigned int cxgb4_best_aligned_mtu(const unsigned short *mtus,
1534 unsigned short header_size,
1535 unsigned short data_size_max,
1536 unsigned short data_size_align,
1537 unsigned int *mtu_idxp)
1538 {
1539 unsigned short max_mtu = header_size + data_size_max;
1540 unsigned short data_size_align_mask = data_size_align - 1;
1541 int mtu_idx, aligned_mtu_idx;
1542
1543 /* Scan the MTU Table till we find an MTU which is larger than our
1544 * Maximum MTU or we reach the end of the table. Along the way,
1545 * record the last MTU found, if any, which will result in a Data
1546 * Segment Length matching the requested alignment.
1547 */
1548 for (mtu_idx = 0, aligned_mtu_idx = -1; mtu_idx < NMTUS; mtu_idx++) {
1549 unsigned short data_size = mtus[mtu_idx] - header_size;
1550
1551 /* If this MTU minus the Header Size would result in a
1552 * Data Segment Size of the desired alignment, remember it.
1553 */
1554 if ((data_size & data_size_align_mask) == 0)
1555 aligned_mtu_idx = mtu_idx;
1556
1557 /* If we're not at the end of the Hardware MTU Table and the
1558 * next element is larger than our Maximum MTU, drop out of
1559 * the loop.
1560 */
1561 if (mtu_idx+1 < NMTUS && mtus[mtu_idx+1] > max_mtu)
1562 break;
1563 }
1564
1565 /* If we fell out of the loop because we ran to the end of the table,
1566 * then we just have to use the last [largest] entry.
1567 */
1568 if (mtu_idx == NMTUS)
1569 mtu_idx--;
1570
1571 /* If we found an MTU which resulted in the requested Data Segment
1572 * Length alignment and that's "not far" from the largest MTU which is
1573 * less than or equal to the maximum MTU, then use that.
1574 */
1575 if (aligned_mtu_idx >= 0 &&
1576 mtu_idx - aligned_mtu_idx <= 1)
1577 mtu_idx = aligned_mtu_idx;
1578
1579 /* If the caller has passed in an MTU Index pointer, pass the
1580 * MTU Index back. Return the MTU value.
1581 */
1582 if (mtu_idxp)
1583 *mtu_idxp = mtu_idx;
1584 return mtus[mtu_idx];
1585 }
1586 EXPORT_SYMBOL(cxgb4_best_aligned_mtu);
1587
1588 /**
1589 * cxgb4_tp_smt_idx - Get the Source Mac Table index for this VI
1590 * @chip: chip type
1591 * @viid: VI id of the given port
1592 *
1593 * Return the SMT index for this VI.
1594 */
cxgb4_tp_smt_idx(enum chip_type chip,unsigned int viid)1595 unsigned int cxgb4_tp_smt_idx(enum chip_type chip, unsigned int viid)
1596 {
1597 /* In T4/T5, SMT contains 256 SMAC entries organized in
1598 * 128 rows of 2 entries each.
1599 * In T6, SMT contains 256 SMAC entries in 256 rows.
1600 * TODO: The below code needs to be updated when we add support
1601 * for 256 VFs.
1602 */
1603 if (CHELSIO_CHIP_VERSION(chip) <= CHELSIO_T5)
1604 return ((viid & 0x7f) << 1);
1605 else
1606 return (viid & 0x7f);
1607 }
1608 EXPORT_SYMBOL(cxgb4_tp_smt_idx);
1609
1610 /**
1611 * cxgb4_port_chan - get the HW channel of a port
1612 * @dev: the net device for the port
1613 *
1614 * Return the HW Tx channel of the given port.
1615 */
cxgb4_port_chan(const struct net_device * dev)1616 unsigned int cxgb4_port_chan(const struct net_device *dev)
1617 {
1618 return netdev2pinfo(dev)->tx_chan;
1619 }
1620 EXPORT_SYMBOL(cxgb4_port_chan);
1621
cxgb4_dbfifo_count(const struct net_device * dev,int lpfifo)1622 unsigned int cxgb4_dbfifo_count(const struct net_device *dev, int lpfifo)
1623 {
1624 struct adapter *adap = netdev2adap(dev);
1625 u32 v1, v2, lp_count, hp_count;
1626
1627 v1 = t4_read_reg(adap, SGE_DBFIFO_STATUS_A);
1628 v2 = t4_read_reg(adap, SGE_DBFIFO_STATUS2_A);
1629 if (is_t4(adap->params.chip)) {
1630 lp_count = LP_COUNT_G(v1);
1631 hp_count = HP_COUNT_G(v1);
1632 } else {
1633 lp_count = LP_COUNT_T5_G(v1);
1634 hp_count = HP_COUNT_T5_G(v2);
1635 }
1636 return lpfifo ? lp_count : hp_count;
1637 }
1638 EXPORT_SYMBOL(cxgb4_dbfifo_count);
1639
1640 /**
1641 * cxgb4_port_viid - get the VI id of a port
1642 * @dev: the net device for the port
1643 *
1644 * Return the VI id of the given port.
1645 */
cxgb4_port_viid(const struct net_device * dev)1646 unsigned int cxgb4_port_viid(const struct net_device *dev)
1647 {
1648 return netdev2pinfo(dev)->viid;
1649 }
1650 EXPORT_SYMBOL(cxgb4_port_viid);
1651
1652 /**
1653 * cxgb4_port_idx - get the index of a port
1654 * @dev: the net device for the port
1655 *
1656 * Return the index of the given port.
1657 */
cxgb4_port_idx(const struct net_device * dev)1658 unsigned int cxgb4_port_idx(const struct net_device *dev)
1659 {
1660 return netdev2pinfo(dev)->port_id;
1661 }
1662 EXPORT_SYMBOL(cxgb4_port_idx);
1663
cxgb4_get_tcp_stats(struct pci_dev * pdev,struct tp_tcp_stats * v4,struct tp_tcp_stats * v6)1664 void cxgb4_get_tcp_stats(struct pci_dev *pdev, struct tp_tcp_stats *v4,
1665 struct tp_tcp_stats *v6)
1666 {
1667 struct adapter *adap = pci_get_drvdata(pdev);
1668
1669 spin_lock(&adap->stats_lock);
1670 t4_tp_get_tcp_stats(adap, v4, v6, false);
1671 spin_unlock(&adap->stats_lock);
1672 }
1673 EXPORT_SYMBOL(cxgb4_get_tcp_stats);
1674
cxgb4_iscsi_init(struct net_device * dev,unsigned int tag_mask,const unsigned int * pgsz_order)1675 void cxgb4_iscsi_init(struct net_device *dev, unsigned int tag_mask,
1676 const unsigned int *pgsz_order)
1677 {
1678 struct adapter *adap = netdev2adap(dev);
1679
1680 t4_write_reg(adap, ULP_RX_ISCSI_TAGMASK_A, tag_mask);
1681 t4_write_reg(adap, ULP_RX_ISCSI_PSZ_A, HPZ0_V(pgsz_order[0]) |
1682 HPZ1_V(pgsz_order[1]) | HPZ2_V(pgsz_order[2]) |
1683 HPZ3_V(pgsz_order[3]));
1684 }
1685 EXPORT_SYMBOL(cxgb4_iscsi_init);
1686
cxgb4_flush_eq_cache(struct net_device * dev)1687 int cxgb4_flush_eq_cache(struct net_device *dev)
1688 {
1689 struct adapter *adap = netdev2adap(dev);
1690
1691 return t4_sge_ctxt_flush(adap, adap->mbox, CTXT_EGRESS);
1692 }
1693 EXPORT_SYMBOL(cxgb4_flush_eq_cache);
1694
read_eq_indices(struct adapter * adap,u16 qid,u16 * pidx,u16 * cidx)1695 static int read_eq_indices(struct adapter *adap, u16 qid, u16 *pidx, u16 *cidx)
1696 {
1697 u32 addr = t4_read_reg(adap, SGE_DBQ_CTXT_BADDR_A) + 24 * qid + 8;
1698 __be64 indices;
1699 int ret;
1700
1701 spin_lock(&adap->win0_lock);
1702 ret = t4_memory_rw(adap, 0, MEM_EDC0, addr,
1703 sizeof(indices), (__be32 *)&indices,
1704 T4_MEMORY_READ);
1705 spin_unlock(&adap->win0_lock);
1706 if (!ret) {
1707 *cidx = (be64_to_cpu(indices) >> 25) & 0xffff;
1708 *pidx = (be64_to_cpu(indices) >> 9) & 0xffff;
1709 }
1710 return ret;
1711 }
1712
cxgb4_sync_txq_pidx(struct net_device * dev,u16 qid,u16 pidx,u16 size)1713 int cxgb4_sync_txq_pidx(struct net_device *dev, u16 qid, u16 pidx,
1714 u16 size)
1715 {
1716 struct adapter *adap = netdev2adap(dev);
1717 u16 hw_pidx, hw_cidx;
1718 int ret;
1719
1720 ret = read_eq_indices(adap, qid, &hw_pidx, &hw_cidx);
1721 if (ret)
1722 goto out;
1723
1724 if (pidx != hw_pidx) {
1725 u16 delta;
1726 u32 val;
1727
1728 if (pidx >= hw_pidx)
1729 delta = pidx - hw_pidx;
1730 else
1731 delta = size - hw_pidx + pidx;
1732
1733 if (is_t4(adap->params.chip))
1734 val = PIDX_V(delta);
1735 else
1736 val = PIDX_T5_V(delta);
1737 wmb();
1738 t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL_A),
1739 QID_V(qid) | val);
1740 }
1741 out:
1742 return ret;
1743 }
1744 EXPORT_SYMBOL(cxgb4_sync_txq_pidx);
1745
cxgb4_read_tpte(struct net_device * dev,u32 stag,__be32 * tpte)1746 int cxgb4_read_tpte(struct net_device *dev, u32 stag, __be32 *tpte)
1747 {
1748 u32 edc0_size, edc1_size, mc0_size, mc1_size, size;
1749 u32 edc0_end, edc1_end, mc0_end, mc1_end;
1750 u32 offset, memtype, memaddr;
1751 struct adapter *adap;
1752 u32 hma_size = 0;
1753 int ret;
1754
1755 adap = netdev2adap(dev);
1756
1757 offset = ((stag >> 8) * 32) + adap->vres.stag.start;
1758
1759 /* Figure out where the offset lands in the Memory Type/Address scheme.
1760 * This code assumes that the memory is laid out starting at offset 0
1761 * with no breaks as: EDC0, EDC1, MC0, MC1. All cards have both EDC0
1762 * and EDC1. Some cards will have neither MC0 nor MC1, most cards have
1763 * MC0, and some have both MC0 and MC1.
1764 */
1765 size = t4_read_reg(adap, MA_EDRAM0_BAR_A);
1766 edc0_size = EDRAM0_SIZE_G(size) << 20;
1767 size = t4_read_reg(adap, MA_EDRAM1_BAR_A);
1768 edc1_size = EDRAM1_SIZE_G(size) << 20;
1769 size = t4_read_reg(adap, MA_EXT_MEMORY0_BAR_A);
1770 mc0_size = EXT_MEM0_SIZE_G(size) << 20;
1771
1772 if (t4_read_reg(adap, MA_TARGET_MEM_ENABLE_A) & HMA_MUX_F) {
1773 size = t4_read_reg(adap, MA_EXT_MEMORY1_BAR_A);
1774 hma_size = EXT_MEM1_SIZE_G(size) << 20;
1775 }
1776 edc0_end = edc0_size;
1777 edc1_end = edc0_end + edc1_size;
1778 mc0_end = edc1_end + mc0_size;
1779
1780 if (offset < edc0_end) {
1781 memtype = MEM_EDC0;
1782 memaddr = offset;
1783 } else if (offset < edc1_end) {
1784 memtype = MEM_EDC1;
1785 memaddr = offset - edc0_end;
1786 } else {
1787 if (hma_size && (offset < (edc1_end + hma_size))) {
1788 memtype = MEM_HMA;
1789 memaddr = offset - edc1_end;
1790 } else if (offset < mc0_end) {
1791 memtype = MEM_MC0;
1792 memaddr = offset - edc1_end;
1793 } else if (is_t5(adap->params.chip)) {
1794 size = t4_read_reg(adap, MA_EXT_MEMORY1_BAR_A);
1795 mc1_size = EXT_MEM1_SIZE_G(size) << 20;
1796 mc1_end = mc0_end + mc1_size;
1797 if (offset < mc1_end) {
1798 memtype = MEM_MC1;
1799 memaddr = offset - mc0_end;
1800 } else {
1801 /* offset beyond the end of any memory */
1802 goto err;
1803 }
1804 } else {
1805 /* T4/T6 only has a single memory channel */
1806 goto err;
1807 }
1808 }
1809
1810 spin_lock(&adap->win0_lock);
1811 ret = t4_memory_rw(adap, 0, memtype, memaddr, 32, tpte, T4_MEMORY_READ);
1812 spin_unlock(&adap->win0_lock);
1813 return ret;
1814
1815 err:
1816 dev_err(adap->pdev_dev, "stag %#x, offset %#x out of range\n",
1817 stag, offset);
1818 return -EINVAL;
1819 }
1820 EXPORT_SYMBOL(cxgb4_read_tpte);
1821
cxgb4_read_sge_timestamp(struct net_device * dev)1822 u64 cxgb4_read_sge_timestamp(struct net_device *dev)
1823 {
1824 u32 hi, lo;
1825 struct adapter *adap;
1826
1827 adap = netdev2adap(dev);
1828 lo = t4_read_reg(adap, SGE_TIMESTAMP_LO_A);
1829 hi = TSVAL_G(t4_read_reg(adap, SGE_TIMESTAMP_HI_A));
1830
1831 return ((u64)hi << 32) | (u64)lo;
1832 }
1833 EXPORT_SYMBOL(cxgb4_read_sge_timestamp);
1834
cxgb4_bar2_sge_qregs(struct net_device * dev,unsigned int qid,enum cxgb4_bar2_qtype qtype,int user,u64 * pbar2_qoffset,unsigned int * pbar2_qid)1835 int cxgb4_bar2_sge_qregs(struct net_device *dev,
1836 unsigned int qid,
1837 enum cxgb4_bar2_qtype qtype,
1838 int user,
1839 u64 *pbar2_qoffset,
1840 unsigned int *pbar2_qid)
1841 {
1842 return t4_bar2_sge_qregs(netdev2adap(dev),
1843 qid,
1844 (qtype == CXGB4_BAR2_QTYPE_EGRESS
1845 ? T4_BAR2_QTYPE_EGRESS
1846 : T4_BAR2_QTYPE_INGRESS),
1847 user,
1848 pbar2_qoffset,
1849 pbar2_qid);
1850 }
1851 EXPORT_SYMBOL(cxgb4_bar2_sge_qregs);
1852
1853 static struct pci_driver cxgb4_driver;
1854
check_neigh_update(struct neighbour * neigh)1855 static void check_neigh_update(struct neighbour *neigh)
1856 {
1857 const struct device *parent;
1858 const struct net_device *netdev = neigh->dev;
1859
1860 if (is_vlan_dev(netdev))
1861 netdev = vlan_dev_real_dev(netdev);
1862 parent = netdev->dev.parent;
1863 if (parent && parent->driver == &cxgb4_driver.driver)
1864 t4_l2t_update(dev_get_drvdata(parent), neigh);
1865 }
1866
netevent_cb(struct notifier_block * nb,unsigned long event,void * data)1867 static int netevent_cb(struct notifier_block *nb, unsigned long event,
1868 void *data)
1869 {
1870 switch (event) {
1871 case NETEVENT_NEIGH_UPDATE:
1872 check_neigh_update(data);
1873 break;
1874 case NETEVENT_REDIRECT:
1875 default:
1876 break;
1877 }
1878 return 0;
1879 }
1880
1881 static bool netevent_registered;
1882 static struct notifier_block cxgb4_netevent_nb = {
1883 .notifier_call = netevent_cb
1884 };
1885
drain_db_fifo(struct adapter * adap,int usecs)1886 static void drain_db_fifo(struct adapter *adap, int usecs)
1887 {
1888 u32 v1, v2, lp_count, hp_count;
1889
1890 do {
1891 v1 = t4_read_reg(adap, SGE_DBFIFO_STATUS_A);
1892 v2 = t4_read_reg(adap, SGE_DBFIFO_STATUS2_A);
1893 if (is_t4(adap->params.chip)) {
1894 lp_count = LP_COUNT_G(v1);
1895 hp_count = HP_COUNT_G(v1);
1896 } else {
1897 lp_count = LP_COUNT_T5_G(v1);
1898 hp_count = HP_COUNT_T5_G(v2);
1899 }
1900
1901 if (lp_count == 0 && hp_count == 0)
1902 break;
1903 set_current_state(TASK_UNINTERRUPTIBLE);
1904 schedule_timeout(usecs_to_jiffies(usecs));
1905 } while (1);
1906 }
1907
disable_txq_db(struct sge_txq * q)1908 static void disable_txq_db(struct sge_txq *q)
1909 {
1910 unsigned long flags;
1911
1912 spin_lock_irqsave(&q->db_lock, flags);
1913 q->db_disabled = 1;
1914 spin_unlock_irqrestore(&q->db_lock, flags);
1915 }
1916
enable_txq_db(struct adapter * adap,struct sge_txq * q)1917 static void enable_txq_db(struct adapter *adap, struct sge_txq *q)
1918 {
1919 spin_lock_irq(&q->db_lock);
1920 if (q->db_pidx_inc) {
1921 /* Make sure that all writes to the TX descriptors
1922 * are committed before we tell HW about them.
1923 */
1924 wmb();
1925 t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL_A),
1926 QID_V(q->cntxt_id) | PIDX_V(q->db_pidx_inc));
1927 q->db_pidx_inc = 0;
1928 }
1929 q->db_disabled = 0;
1930 spin_unlock_irq(&q->db_lock);
1931 }
1932
disable_dbs(struct adapter * adap)1933 static void disable_dbs(struct adapter *adap)
1934 {
1935 int i;
1936
1937 for_each_ethrxq(&adap->sge, i)
1938 disable_txq_db(&adap->sge.ethtxq[i].q);
1939 if (is_offload(adap)) {
1940 struct sge_uld_txq_info *txq_info =
1941 adap->sge.uld_txq_info[CXGB4_TX_OFLD];
1942
1943 if (txq_info) {
1944 for_each_ofldtxq(&adap->sge, i) {
1945 struct sge_uld_txq *txq = &txq_info->uldtxq[i];
1946
1947 disable_txq_db(&txq->q);
1948 }
1949 }
1950 }
1951 for_each_port(adap, i)
1952 disable_txq_db(&adap->sge.ctrlq[i].q);
1953 }
1954
enable_dbs(struct adapter * adap)1955 static void enable_dbs(struct adapter *adap)
1956 {
1957 int i;
1958
1959 for_each_ethrxq(&adap->sge, i)
1960 enable_txq_db(adap, &adap->sge.ethtxq[i].q);
1961 if (is_offload(adap)) {
1962 struct sge_uld_txq_info *txq_info =
1963 adap->sge.uld_txq_info[CXGB4_TX_OFLD];
1964
1965 if (txq_info) {
1966 for_each_ofldtxq(&adap->sge, i) {
1967 struct sge_uld_txq *txq = &txq_info->uldtxq[i];
1968
1969 enable_txq_db(adap, &txq->q);
1970 }
1971 }
1972 }
1973 for_each_port(adap, i)
1974 enable_txq_db(adap, &adap->sge.ctrlq[i].q);
1975 }
1976
notify_rdma_uld(struct adapter * adap,enum cxgb4_control cmd)1977 static void notify_rdma_uld(struct adapter *adap, enum cxgb4_control cmd)
1978 {
1979 enum cxgb4_uld type = CXGB4_ULD_RDMA;
1980
1981 if (adap->uld && adap->uld[type].handle)
1982 adap->uld[type].control(adap->uld[type].handle, cmd);
1983 }
1984
process_db_full(struct work_struct * work)1985 static void process_db_full(struct work_struct *work)
1986 {
1987 struct adapter *adap;
1988
1989 adap = container_of(work, struct adapter, db_full_task);
1990
1991 drain_db_fifo(adap, dbfifo_drain_delay);
1992 enable_dbs(adap);
1993 notify_rdma_uld(adap, CXGB4_CONTROL_DB_EMPTY);
1994 if (CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5)
1995 t4_set_reg_field(adap, SGE_INT_ENABLE3_A,
1996 DBFIFO_HP_INT_F | DBFIFO_LP_INT_F,
1997 DBFIFO_HP_INT_F | DBFIFO_LP_INT_F);
1998 else
1999 t4_set_reg_field(adap, SGE_INT_ENABLE3_A,
2000 DBFIFO_LP_INT_F, DBFIFO_LP_INT_F);
2001 }
2002
sync_txq_pidx(struct adapter * adap,struct sge_txq * q)2003 static void sync_txq_pidx(struct adapter *adap, struct sge_txq *q)
2004 {
2005 u16 hw_pidx, hw_cidx;
2006 int ret;
2007
2008 spin_lock_irq(&q->db_lock);
2009 ret = read_eq_indices(adap, (u16)q->cntxt_id, &hw_pidx, &hw_cidx);
2010 if (ret)
2011 goto out;
2012 if (q->db_pidx != hw_pidx) {
2013 u16 delta;
2014 u32 val;
2015
2016 if (q->db_pidx >= hw_pidx)
2017 delta = q->db_pidx - hw_pidx;
2018 else
2019 delta = q->size - hw_pidx + q->db_pidx;
2020
2021 if (is_t4(adap->params.chip))
2022 val = PIDX_V(delta);
2023 else
2024 val = PIDX_T5_V(delta);
2025 wmb();
2026 t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL_A),
2027 QID_V(q->cntxt_id) | val);
2028 }
2029 out:
2030 q->db_disabled = 0;
2031 q->db_pidx_inc = 0;
2032 spin_unlock_irq(&q->db_lock);
2033 if (ret)
2034 CH_WARN(adap, "DB drop recovery failed.\n");
2035 }
2036
recover_all_queues(struct adapter * adap)2037 static void recover_all_queues(struct adapter *adap)
2038 {
2039 int i;
2040
2041 for_each_ethrxq(&adap->sge, i)
2042 sync_txq_pidx(adap, &adap->sge.ethtxq[i].q);
2043 if (is_offload(adap)) {
2044 struct sge_uld_txq_info *txq_info =
2045 adap->sge.uld_txq_info[CXGB4_TX_OFLD];
2046 if (txq_info) {
2047 for_each_ofldtxq(&adap->sge, i) {
2048 struct sge_uld_txq *txq = &txq_info->uldtxq[i];
2049
2050 sync_txq_pidx(adap, &txq->q);
2051 }
2052 }
2053 }
2054 for_each_port(adap, i)
2055 sync_txq_pidx(adap, &adap->sge.ctrlq[i].q);
2056 }
2057
process_db_drop(struct work_struct * work)2058 static void process_db_drop(struct work_struct *work)
2059 {
2060 struct adapter *adap;
2061
2062 adap = container_of(work, struct adapter, db_drop_task);
2063
2064 if (is_t4(adap->params.chip)) {
2065 drain_db_fifo(adap, dbfifo_drain_delay);
2066 notify_rdma_uld(adap, CXGB4_CONTROL_DB_DROP);
2067 drain_db_fifo(adap, dbfifo_drain_delay);
2068 recover_all_queues(adap);
2069 drain_db_fifo(adap, dbfifo_drain_delay);
2070 enable_dbs(adap);
2071 notify_rdma_uld(adap, CXGB4_CONTROL_DB_EMPTY);
2072 } else if (is_t5(adap->params.chip)) {
2073 u32 dropped_db = t4_read_reg(adap, 0x010ac);
2074 u16 qid = (dropped_db >> 15) & 0x1ffff;
2075 u16 pidx_inc = dropped_db & 0x1fff;
2076 u64 bar2_qoffset;
2077 unsigned int bar2_qid;
2078 int ret;
2079
2080 ret = t4_bar2_sge_qregs(adap, qid, T4_BAR2_QTYPE_EGRESS,
2081 0, &bar2_qoffset, &bar2_qid);
2082 if (ret)
2083 dev_err(adap->pdev_dev, "doorbell drop recovery: "
2084 "qid=%d, pidx_inc=%d\n", qid, pidx_inc);
2085 else
2086 writel(PIDX_T5_V(pidx_inc) | QID_V(bar2_qid),
2087 adap->bar2 + bar2_qoffset + SGE_UDB_KDOORBELL);
2088
2089 /* Re-enable BAR2 WC */
2090 t4_set_reg_field(adap, 0x10b0, 1<<15, 1<<15);
2091 }
2092
2093 if (CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5)
2094 t4_set_reg_field(adap, SGE_DOORBELL_CONTROL_A, DROPPED_DB_F, 0);
2095 }
2096
t4_db_full(struct adapter * adap)2097 void t4_db_full(struct adapter *adap)
2098 {
2099 if (is_t4(adap->params.chip)) {
2100 disable_dbs(adap);
2101 notify_rdma_uld(adap, CXGB4_CONTROL_DB_FULL);
2102 t4_set_reg_field(adap, SGE_INT_ENABLE3_A,
2103 DBFIFO_HP_INT_F | DBFIFO_LP_INT_F, 0);
2104 queue_work(adap->workq, &adap->db_full_task);
2105 }
2106 }
2107
t4_db_dropped(struct adapter * adap)2108 void t4_db_dropped(struct adapter *adap)
2109 {
2110 if (is_t4(adap->params.chip)) {
2111 disable_dbs(adap);
2112 notify_rdma_uld(adap, CXGB4_CONTROL_DB_FULL);
2113 }
2114 queue_work(adap->workq, &adap->db_drop_task);
2115 }
2116
t4_register_netevent_notifier(void)2117 void t4_register_netevent_notifier(void)
2118 {
2119 if (!netevent_registered) {
2120 register_netevent_notifier(&cxgb4_netevent_nb);
2121 netevent_registered = true;
2122 }
2123 }
2124
detach_ulds(struct adapter * adap)2125 static void detach_ulds(struct adapter *adap)
2126 {
2127 unsigned int i;
2128
2129 mutex_lock(&uld_mutex);
2130 list_del(&adap->list_node);
2131
2132 for (i = 0; i < CXGB4_ULD_MAX; i++)
2133 if (adap->uld && adap->uld[i].handle)
2134 adap->uld[i].state_change(adap->uld[i].handle,
2135 CXGB4_STATE_DETACH);
2136
2137 if (netevent_registered && list_empty(&adapter_list)) {
2138 unregister_netevent_notifier(&cxgb4_netevent_nb);
2139 netevent_registered = false;
2140 }
2141 mutex_unlock(&uld_mutex);
2142 }
2143
notify_ulds(struct adapter * adap,enum cxgb4_state new_state)2144 static void notify_ulds(struct adapter *adap, enum cxgb4_state new_state)
2145 {
2146 unsigned int i;
2147
2148 mutex_lock(&uld_mutex);
2149 for (i = 0; i < CXGB4_ULD_MAX; i++)
2150 if (adap->uld && adap->uld[i].handle)
2151 adap->uld[i].state_change(adap->uld[i].handle,
2152 new_state);
2153 mutex_unlock(&uld_mutex);
2154 }
2155
2156 #if IS_ENABLED(CONFIG_IPV6)
cxgb4_inet6addr_handler(struct notifier_block * this,unsigned long event,void * data)2157 static int cxgb4_inet6addr_handler(struct notifier_block *this,
2158 unsigned long event, void *data)
2159 {
2160 struct inet6_ifaddr *ifa = data;
2161 struct net_device *event_dev = ifa->idev->dev;
2162 const struct device *parent = NULL;
2163 #if IS_ENABLED(CONFIG_BONDING)
2164 struct adapter *adap;
2165 #endif
2166 if (is_vlan_dev(event_dev))
2167 event_dev = vlan_dev_real_dev(event_dev);
2168 #if IS_ENABLED(CONFIG_BONDING)
2169 if (event_dev->flags & IFF_MASTER) {
2170 list_for_each_entry(adap, &adapter_list, list_node) {
2171 switch (event) {
2172 case NETDEV_UP:
2173 cxgb4_clip_get(adap->port[0],
2174 (const u32 *)ifa, 1);
2175 break;
2176 case NETDEV_DOWN:
2177 cxgb4_clip_release(adap->port[0],
2178 (const u32 *)ifa, 1);
2179 break;
2180 default:
2181 break;
2182 }
2183 }
2184 return NOTIFY_OK;
2185 }
2186 #endif
2187
2188 if (event_dev)
2189 parent = event_dev->dev.parent;
2190
2191 if (parent && parent->driver == &cxgb4_driver.driver) {
2192 switch (event) {
2193 case NETDEV_UP:
2194 cxgb4_clip_get(event_dev, (const u32 *)ifa, 1);
2195 break;
2196 case NETDEV_DOWN:
2197 cxgb4_clip_release(event_dev, (const u32 *)ifa, 1);
2198 break;
2199 default:
2200 break;
2201 }
2202 }
2203 return NOTIFY_OK;
2204 }
2205
2206 static bool inet6addr_registered;
2207 static struct notifier_block cxgb4_inet6addr_notifier = {
2208 .notifier_call = cxgb4_inet6addr_handler
2209 };
2210
update_clip(const struct adapter * adap)2211 static void update_clip(const struct adapter *adap)
2212 {
2213 int i;
2214 struct net_device *dev;
2215 int ret;
2216
2217 rcu_read_lock();
2218
2219 for (i = 0; i < MAX_NPORTS; i++) {
2220 dev = adap->port[i];
2221 ret = 0;
2222
2223 if (dev)
2224 ret = cxgb4_update_root_dev_clip(dev);
2225
2226 if (ret < 0)
2227 break;
2228 }
2229 rcu_read_unlock();
2230 }
2231 #endif /* IS_ENABLED(CONFIG_IPV6) */
2232
2233 /**
2234 * cxgb_up - enable the adapter
2235 * @adap: adapter being enabled
2236 *
2237 * Called when the first port is enabled, this function performs the
2238 * actions necessary to make an adapter operational, such as completing
2239 * the initialization of HW modules, and enabling interrupts.
2240 *
2241 * Must be called with the rtnl lock held.
2242 */
cxgb_up(struct adapter * adap)2243 static int cxgb_up(struct adapter *adap)
2244 {
2245 int err;
2246
2247 mutex_lock(&uld_mutex);
2248 err = setup_sge_queues(adap);
2249 if (err)
2250 goto rel_lock;
2251 err = setup_rss(adap);
2252 if (err)
2253 goto freeq;
2254
2255 if (adap->flags & USING_MSIX) {
2256 name_msix_vecs(adap);
2257 err = request_irq(adap->msix_info[0].vec, t4_nondata_intr, 0,
2258 adap->msix_info[0].desc, adap);
2259 if (err)
2260 goto irq_err;
2261 err = request_msix_queue_irqs(adap);
2262 if (err) {
2263 free_irq(adap->msix_info[0].vec, adap);
2264 goto irq_err;
2265 }
2266 } else {
2267 err = request_irq(adap->pdev->irq, t4_intr_handler(adap),
2268 (adap->flags & USING_MSI) ? 0 : IRQF_SHARED,
2269 adap->port[0]->name, adap);
2270 if (err)
2271 goto irq_err;
2272 }
2273
2274 enable_rx(adap);
2275 t4_sge_start(adap);
2276 t4_intr_enable(adap);
2277 adap->flags |= FULL_INIT_DONE;
2278 mutex_unlock(&uld_mutex);
2279
2280 notify_ulds(adap, CXGB4_STATE_UP);
2281 #if IS_ENABLED(CONFIG_IPV6)
2282 update_clip(adap);
2283 #endif
2284 return err;
2285
2286 irq_err:
2287 dev_err(adap->pdev_dev, "request_irq failed, err %d\n", err);
2288 freeq:
2289 t4_free_sge_resources(adap);
2290 rel_lock:
2291 mutex_unlock(&uld_mutex);
2292 return err;
2293 }
2294
cxgb_down(struct adapter * adapter)2295 static void cxgb_down(struct adapter *adapter)
2296 {
2297 cancel_work_sync(&adapter->tid_release_task);
2298 cancel_work_sync(&adapter->db_full_task);
2299 cancel_work_sync(&adapter->db_drop_task);
2300 adapter->tid_release_task_busy = false;
2301 adapter->tid_release_head = NULL;
2302
2303 t4_sge_stop(adapter);
2304 t4_free_sge_resources(adapter);
2305
2306 adapter->flags &= ~FULL_INIT_DONE;
2307 }
2308
2309 /*
2310 * net_device operations
2311 */
cxgb_open(struct net_device * dev)2312 static int cxgb_open(struct net_device *dev)
2313 {
2314 int err;
2315 struct port_info *pi = netdev_priv(dev);
2316 struct adapter *adapter = pi->adapter;
2317
2318 netif_carrier_off(dev);
2319
2320 if (!(adapter->flags & FULL_INIT_DONE)) {
2321 err = cxgb_up(adapter);
2322 if (err < 0)
2323 return err;
2324 }
2325
2326 /* It's possible that the basic port information could have
2327 * changed since we first read it.
2328 */
2329 err = t4_update_port_info(pi);
2330 if (err < 0)
2331 return err;
2332
2333 err = link_start(dev);
2334 if (!err)
2335 netif_tx_start_all_queues(dev);
2336 return err;
2337 }
2338
cxgb_close(struct net_device * dev)2339 static int cxgb_close(struct net_device *dev)
2340 {
2341 struct port_info *pi = netdev_priv(dev);
2342 struct adapter *adapter = pi->adapter;
2343 int ret;
2344
2345 netif_tx_stop_all_queues(dev);
2346 netif_carrier_off(dev);
2347 ret = t4_enable_pi_params(adapter, adapter->pf, pi,
2348 false, false, false);
2349 #ifdef CONFIG_CHELSIO_T4_DCB
2350 cxgb4_dcb_reset(dev);
2351 dcb_tx_queue_prio_enable(dev, false);
2352 #endif
2353 return ret;
2354 }
2355
cxgb4_create_server_filter(const struct net_device * dev,unsigned int stid,__be32 sip,__be16 sport,__be16 vlan,unsigned int queue,unsigned char port,unsigned char mask)2356 int cxgb4_create_server_filter(const struct net_device *dev, unsigned int stid,
2357 __be32 sip, __be16 sport, __be16 vlan,
2358 unsigned int queue, unsigned char port, unsigned char mask)
2359 {
2360 int ret;
2361 struct filter_entry *f;
2362 struct adapter *adap;
2363 int i;
2364 u8 *val;
2365
2366 adap = netdev2adap(dev);
2367
2368 /* Adjust stid to correct filter index */
2369 stid -= adap->tids.sftid_base;
2370 stid += adap->tids.nftids;
2371
2372 /* Check to make sure the filter requested is writable ...
2373 */
2374 f = &adap->tids.ftid_tab[stid];
2375 ret = writable_filter(f);
2376 if (ret)
2377 return ret;
2378
2379 /* Clear out any old resources being used by the filter before
2380 * we start constructing the new filter.
2381 */
2382 if (f->valid)
2383 clear_filter(adap, f);
2384
2385 /* Clear out filter specifications */
2386 memset(&f->fs, 0, sizeof(struct ch_filter_specification));
2387 f->fs.val.lport = cpu_to_be16(sport);
2388 f->fs.mask.lport = ~0;
2389 val = (u8 *)&sip;
2390 if ((val[0] | val[1] | val[2] | val[3]) != 0) {
2391 for (i = 0; i < 4; i++) {
2392 f->fs.val.lip[i] = val[i];
2393 f->fs.mask.lip[i] = ~0;
2394 }
2395 if (adap->params.tp.vlan_pri_map & PORT_F) {
2396 f->fs.val.iport = port;
2397 f->fs.mask.iport = mask;
2398 }
2399 }
2400
2401 if (adap->params.tp.vlan_pri_map & PROTOCOL_F) {
2402 f->fs.val.proto = IPPROTO_TCP;
2403 f->fs.mask.proto = ~0;
2404 }
2405
2406 f->fs.dirsteer = 1;
2407 f->fs.iq = queue;
2408 /* Mark filter as locked */
2409 f->locked = 1;
2410 f->fs.rpttid = 1;
2411
2412 /* Save the actual tid. We need this to get the corresponding
2413 * filter entry structure in filter_rpl.
2414 */
2415 f->tid = stid + adap->tids.ftid_base;
2416 ret = set_filter_wr(adap, stid);
2417 if (ret) {
2418 clear_filter(adap, f);
2419 return ret;
2420 }
2421
2422 return 0;
2423 }
2424 EXPORT_SYMBOL(cxgb4_create_server_filter);
2425
cxgb4_remove_server_filter(const struct net_device * dev,unsigned int stid,unsigned int queue,bool ipv6)2426 int cxgb4_remove_server_filter(const struct net_device *dev, unsigned int stid,
2427 unsigned int queue, bool ipv6)
2428 {
2429 struct filter_entry *f;
2430 struct adapter *adap;
2431
2432 adap = netdev2adap(dev);
2433
2434 /* Adjust stid to correct filter index */
2435 stid -= adap->tids.sftid_base;
2436 stid += adap->tids.nftids;
2437
2438 f = &adap->tids.ftid_tab[stid];
2439 /* Unlock the filter */
2440 f->locked = 0;
2441
2442 return delete_filter(adap, stid);
2443 }
2444 EXPORT_SYMBOL(cxgb4_remove_server_filter);
2445
cxgb_get_stats(struct net_device * dev,struct rtnl_link_stats64 * ns)2446 static void cxgb_get_stats(struct net_device *dev,
2447 struct rtnl_link_stats64 *ns)
2448 {
2449 struct port_stats stats;
2450 struct port_info *p = netdev_priv(dev);
2451 struct adapter *adapter = p->adapter;
2452
2453 /* Block retrieving statistics during EEH error
2454 * recovery. Otherwise, the recovery might fail
2455 * and the PCI device will be removed permanently
2456 */
2457 spin_lock(&adapter->stats_lock);
2458 if (!netif_device_present(dev)) {
2459 spin_unlock(&adapter->stats_lock);
2460 return;
2461 }
2462 t4_get_port_stats_offset(adapter, p->tx_chan, &stats,
2463 &p->stats_base);
2464 spin_unlock(&adapter->stats_lock);
2465
2466 ns->tx_bytes = stats.tx_octets;
2467 ns->tx_packets = stats.tx_frames;
2468 ns->rx_bytes = stats.rx_octets;
2469 ns->rx_packets = stats.rx_frames;
2470 ns->multicast = stats.rx_mcast_frames;
2471
2472 /* detailed rx_errors */
2473 ns->rx_length_errors = stats.rx_jabber + stats.rx_too_long +
2474 stats.rx_runt;
2475 ns->rx_over_errors = 0;
2476 ns->rx_crc_errors = stats.rx_fcs_err;
2477 ns->rx_frame_errors = stats.rx_symbol_err;
2478 ns->rx_dropped = stats.rx_ovflow0 + stats.rx_ovflow1 +
2479 stats.rx_ovflow2 + stats.rx_ovflow3 +
2480 stats.rx_trunc0 + stats.rx_trunc1 +
2481 stats.rx_trunc2 + stats.rx_trunc3;
2482 ns->rx_missed_errors = 0;
2483
2484 /* detailed tx_errors */
2485 ns->tx_aborted_errors = 0;
2486 ns->tx_carrier_errors = 0;
2487 ns->tx_fifo_errors = 0;
2488 ns->tx_heartbeat_errors = 0;
2489 ns->tx_window_errors = 0;
2490
2491 ns->tx_errors = stats.tx_error_frames;
2492 ns->rx_errors = stats.rx_symbol_err + stats.rx_fcs_err +
2493 ns->rx_length_errors + stats.rx_len_err + ns->rx_fifo_errors;
2494 }
2495
cxgb_ioctl(struct net_device * dev,struct ifreq * req,int cmd)2496 static int cxgb_ioctl(struct net_device *dev, struct ifreq *req, int cmd)
2497 {
2498 unsigned int mbox;
2499 int ret = 0, prtad, devad;
2500 struct port_info *pi = netdev_priv(dev);
2501 struct adapter *adapter = pi->adapter;
2502 struct mii_ioctl_data *data = (struct mii_ioctl_data *)&req->ifr_data;
2503
2504 switch (cmd) {
2505 case SIOCGMIIPHY:
2506 if (pi->mdio_addr < 0)
2507 return -EOPNOTSUPP;
2508 data->phy_id = pi->mdio_addr;
2509 break;
2510 case SIOCGMIIREG:
2511 case SIOCSMIIREG:
2512 if (mdio_phy_id_is_c45(data->phy_id)) {
2513 prtad = mdio_phy_id_prtad(data->phy_id);
2514 devad = mdio_phy_id_devad(data->phy_id);
2515 } else if (data->phy_id < 32) {
2516 prtad = data->phy_id;
2517 devad = 0;
2518 data->reg_num &= 0x1f;
2519 } else
2520 return -EINVAL;
2521
2522 mbox = pi->adapter->pf;
2523 if (cmd == SIOCGMIIREG)
2524 ret = t4_mdio_rd(pi->adapter, mbox, prtad, devad,
2525 data->reg_num, &data->val_out);
2526 else
2527 ret = t4_mdio_wr(pi->adapter, mbox, prtad, devad,
2528 data->reg_num, data->val_in);
2529 break;
2530 case SIOCGHWTSTAMP:
2531 return copy_to_user(req->ifr_data, &pi->tstamp_config,
2532 sizeof(pi->tstamp_config)) ?
2533 -EFAULT : 0;
2534 case SIOCSHWTSTAMP:
2535 if (copy_from_user(&pi->tstamp_config, req->ifr_data,
2536 sizeof(pi->tstamp_config)))
2537 return -EFAULT;
2538
2539 if (!is_t4(adapter->params.chip)) {
2540 switch (pi->tstamp_config.tx_type) {
2541 case HWTSTAMP_TX_OFF:
2542 case HWTSTAMP_TX_ON:
2543 break;
2544 default:
2545 return -ERANGE;
2546 }
2547
2548 switch (pi->tstamp_config.rx_filter) {
2549 case HWTSTAMP_FILTER_NONE:
2550 pi->rxtstamp = false;
2551 break;
2552 case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
2553 case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
2554 cxgb4_ptprx_timestamping(pi, pi->port_id,
2555 PTP_TS_L4);
2556 break;
2557 case HWTSTAMP_FILTER_PTP_V2_EVENT:
2558 cxgb4_ptprx_timestamping(pi, pi->port_id,
2559 PTP_TS_L2_L4);
2560 break;
2561 case HWTSTAMP_FILTER_ALL:
2562 case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
2563 case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
2564 case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
2565 case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
2566 pi->rxtstamp = true;
2567 break;
2568 default:
2569 pi->tstamp_config.rx_filter =
2570 HWTSTAMP_FILTER_NONE;
2571 return -ERANGE;
2572 }
2573
2574 if ((pi->tstamp_config.tx_type == HWTSTAMP_TX_OFF) &&
2575 (pi->tstamp_config.rx_filter ==
2576 HWTSTAMP_FILTER_NONE)) {
2577 if (cxgb4_ptp_txtype(adapter, pi->port_id) >= 0)
2578 pi->ptp_enable = false;
2579 }
2580
2581 if (pi->tstamp_config.rx_filter !=
2582 HWTSTAMP_FILTER_NONE) {
2583 if (cxgb4_ptp_redirect_rx_packet(adapter,
2584 pi) >= 0)
2585 pi->ptp_enable = true;
2586 }
2587 } else {
2588 /* For T4 Adapters */
2589 switch (pi->tstamp_config.rx_filter) {
2590 case HWTSTAMP_FILTER_NONE:
2591 pi->rxtstamp = false;
2592 break;
2593 case HWTSTAMP_FILTER_ALL:
2594 pi->rxtstamp = true;
2595 break;
2596 default:
2597 pi->tstamp_config.rx_filter =
2598 HWTSTAMP_FILTER_NONE;
2599 return -ERANGE;
2600 }
2601 }
2602 return copy_to_user(req->ifr_data, &pi->tstamp_config,
2603 sizeof(pi->tstamp_config)) ?
2604 -EFAULT : 0;
2605 default:
2606 return -EOPNOTSUPP;
2607 }
2608 return ret;
2609 }
2610
cxgb_set_rxmode(struct net_device * dev)2611 static void cxgb_set_rxmode(struct net_device *dev)
2612 {
2613 /* unfortunately we can't return errors to the stack */
2614 set_rxmode(dev, -1, false);
2615 }
2616
cxgb_change_mtu(struct net_device * dev,int new_mtu)2617 static int cxgb_change_mtu(struct net_device *dev, int new_mtu)
2618 {
2619 int ret;
2620 struct port_info *pi = netdev_priv(dev);
2621
2622 ret = t4_set_rxmode(pi->adapter, pi->adapter->pf, pi->viid, new_mtu, -1,
2623 -1, -1, -1, true);
2624 if (!ret)
2625 dev->mtu = new_mtu;
2626 return ret;
2627 }
2628
2629 #ifdef CONFIG_PCI_IOV
cxgb4_mgmt_open(struct net_device * dev)2630 static int cxgb4_mgmt_open(struct net_device *dev)
2631 {
2632 /* Turn carrier off since we don't have to transmit anything on this
2633 * interface.
2634 */
2635 netif_carrier_off(dev);
2636 return 0;
2637 }
2638
2639 /* Fill MAC address that will be assigned by the FW */
cxgb4_mgmt_fill_vf_station_mac_addr(struct adapter * adap)2640 static void cxgb4_mgmt_fill_vf_station_mac_addr(struct adapter *adap)
2641 {
2642 u8 hw_addr[ETH_ALEN], macaddr[ETH_ALEN];
2643 unsigned int i, vf, nvfs;
2644 u16 a, b;
2645 int err;
2646 u8 *na;
2647
2648 adap->params.pci.vpd_cap_addr = pci_find_capability(adap->pdev,
2649 PCI_CAP_ID_VPD);
2650 err = t4_get_raw_vpd_params(adap, &adap->params.vpd);
2651 if (err)
2652 return;
2653
2654 na = adap->params.vpd.na;
2655 for (i = 0; i < ETH_ALEN; i++)
2656 hw_addr[i] = (hex2val(na[2 * i + 0]) * 16 +
2657 hex2val(na[2 * i + 1]));
2658
2659 a = (hw_addr[0] << 8) | hw_addr[1];
2660 b = (hw_addr[1] << 8) | hw_addr[2];
2661 a ^= b;
2662 a |= 0x0200; /* locally assigned Ethernet MAC address */
2663 a &= ~0x0100; /* not a multicast Ethernet MAC address */
2664 macaddr[0] = a >> 8;
2665 macaddr[1] = a & 0xff;
2666
2667 for (i = 2; i < 5; i++)
2668 macaddr[i] = hw_addr[i + 1];
2669
2670 for (vf = 0, nvfs = pci_sriov_get_totalvfs(adap->pdev);
2671 vf < nvfs; vf++) {
2672 macaddr[5] = adap->pf * 16 + vf;
2673 ether_addr_copy(adap->vfinfo[vf].vf_mac_addr, macaddr);
2674 }
2675 }
2676
cxgb4_mgmt_set_vf_mac(struct net_device * dev,int vf,u8 * mac)2677 static int cxgb4_mgmt_set_vf_mac(struct net_device *dev, int vf, u8 *mac)
2678 {
2679 struct port_info *pi = netdev_priv(dev);
2680 struct adapter *adap = pi->adapter;
2681 int ret;
2682
2683 /* verify MAC addr is valid */
2684 if (!is_valid_ether_addr(mac)) {
2685 dev_err(pi->adapter->pdev_dev,
2686 "Invalid Ethernet address %pM for VF %d\n",
2687 mac, vf);
2688 return -EINVAL;
2689 }
2690
2691 dev_info(pi->adapter->pdev_dev,
2692 "Setting MAC %pM on VF %d\n", mac, vf);
2693 ret = t4_set_vf_mac_acl(adap, vf + 1, 1, mac);
2694 if (!ret)
2695 ether_addr_copy(adap->vfinfo[vf].vf_mac_addr, mac);
2696 return ret;
2697 }
2698
cxgb4_mgmt_get_vf_config(struct net_device * dev,int vf,struct ifla_vf_info * ivi)2699 static int cxgb4_mgmt_get_vf_config(struct net_device *dev,
2700 int vf, struct ifla_vf_info *ivi)
2701 {
2702 struct port_info *pi = netdev_priv(dev);
2703 struct adapter *adap = pi->adapter;
2704 struct vf_info *vfinfo;
2705
2706 if (vf >= adap->num_vfs)
2707 return -EINVAL;
2708 vfinfo = &adap->vfinfo[vf];
2709
2710 ivi->vf = vf;
2711 ivi->max_tx_rate = vfinfo->tx_rate;
2712 ivi->min_tx_rate = 0;
2713 ether_addr_copy(ivi->mac, vfinfo->vf_mac_addr);
2714 ivi->vlan = vfinfo->vlan;
2715 return 0;
2716 }
2717
cxgb4_mgmt_get_phys_port_id(struct net_device * dev,struct netdev_phys_item_id * ppid)2718 static int cxgb4_mgmt_get_phys_port_id(struct net_device *dev,
2719 struct netdev_phys_item_id *ppid)
2720 {
2721 struct port_info *pi = netdev_priv(dev);
2722 unsigned int phy_port_id;
2723
2724 phy_port_id = pi->adapter->adap_idx * 10 + pi->port_id;
2725 ppid->id_len = sizeof(phy_port_id);
2726 memcpy(ppid->id, &phy_port_id, ppid->id_len);
2727 return 0;
2728 }
2729
cxgb4_mgmt_set_vf_rate(struct net_device * dev,int vf,int min_tx_rate,int max_tx_rate)2730 static int cxgb4_mgmt_set_vf_rate(struct net_device *dev, int vf,
2731 int min_tx_rate, int max_tx_rate)
2732 {
2733 struct port_info *pi = netdev_priv(dev);
2734 struct adapter *adap = pi->adapter;
2735 unsigned int link_ok, speed, mtu;
2736 u32 fw_pfvf, fw_class;
2737 int class_id = vf;
2738 int ret;
2739 u16 pktsize;
2740
2741 if (vf >= adap->num_vfs)
2742 return -EINVAL;
2743
2744 if (min_tx_rate) {
2745 dev_err(adap->pdev_dev,
2746 "Min tx rate (%d) (> 0) for VF %d is Invalid.\n",
2747 min_tx_rate, vf);
2748 return -EINVAL;
2749 }
2750
2751 ret = t4_get_link_params(pi, &link_ok, &speed, &mtu);
2752 if (ret != FW_SUCCESS) {
2753 dev_err(adap->pdev_dev,
2754 "Failed to get link information for VF %d\n", vf);
2755 return -EINVAL;
2756 }
2757
2758 if (!link_ok) {
2759 dev_err(adap->pdev_dev, "Link down for VF %d\n", vf);
2760 return -EINVAL;
2761 }
2762
2763 if (max_tx_rate > speed) {
2764 dev_err(adap->pdev_dev,
2765 "Max tx rate %d for VF %d can't be > link-speed %u",
2766 max_tx_rate, vf, speed);
2767 return -EINVAL;
2768 }
2769
2770 pktsize = mtu;
2771 /* subtract ethhdr size and 4 bytes crc since, f/w appends it */
2772 pktsize = pktsize - sizeof(struct ethhdr) - 4;
2773 /* subtract ipv4 hdr size, tcp hdr size to get typical IPv4 MSS size */
2774 pktsize = pktsize - sizeof(struct iphdr) - sizeof(struct tcphdr);
2775 /* configure Traffic Class for rate-limiting */
2776 ret = t4_sched_params(adap, SCHED_CLASS_TYPE_PACKET,
2777 SCHED_CLASS_LEVEL_CL_RL,
2778 SCHED_CLASS_MODE_CLASS,
2779 SCHED_CLASS_RATEUNIT_BITS,
2780 SCHED_CLASS_RATEMODE_ABS,
2781 pi->tx_chan, class_id, 0,
2782 max_tx_rate * 1000, 0, pktsize);
2783 if (ret) {
2784 dev_err(adap->pdev_dev, "Err %d for Traffic Class config\n",
2785 ret);
2786 return -EINVAL;
2787 }
2788 dev_info(adap->pdev_dev,
2789 "Class %d with MSS %u configured with rate %u\n",
2790 class_id, pktsize, max_tx_rate);
2791
2792 /* bind VF to configured Traffic Class */
2793 fw_pfvf = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_PFVF) |
2794 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_PFVF_SCHEDCLASS_ETH));
2795 fw_class = class_id;
2796 ret = t4_set_params(adap, adap->mbox, adap->pf, vf + 1, 1, &fw_pfvf,
2797 &fw_class);
2798 if (ret) {
2799 dev_err(adap->pdev_dev,
2800 "Err %d in binding VF %d to Traffic Class %d\n",
2801 ret, vf, class_id);
2802 return -EINVAL;
2803 }
2804 dev_info(adap->pdev_dev, "PF %d VF %d is bound to Class %d\n",
2805 adap->pf, vf, class_id);
2806 adap->vfinfo[vf].tx_rate = max_tx_rate;
2807 return 0;
2808 }
2809
cxgb4_mgmt_set_vf_vlan(struct net_device * dev,int vf,u16 vlan,u8 qos,__be16 vlan_proto)2810 static int cxgb4_mgmt_set_vf_vlan(struct net_device *dev, int vf,
2811 u16 vlan, u8 qos, __be16 vlan_proto)
2812 {
2813 struct port_info *pi = netdev_priv(dev);
2814 struct adapter *adap = pi->adapter;
2815 int ret;
2816
2817 if (vf >= adap->num_vfs || vlan > 4095 || qos > 7)
2818 return -EINVAL;
2819
2820 if (vlan_proto != htons(ETH_P_8021Q) || qos != 0)
2821 return -EPROTONOSUPPORT;
2822
2823 ret = t4_set_vlan_acl(adap, adap->mbox, vf + 1, vlan);
2824 if (!ret) {
2825 adap->vfinfo[vf].vlan = vlan;
2826 return 0;
2827 }
2828
2829 dev_err(adap->pdev_dev, "Err %d %s VLAN ACL for PF/VF %d/%d\n",
2830 ret, (vlan ? "setting" : "clearing"), adap->pf, vf);
2831 return ret;
2832 }
2833 #endif /* CONFIG_PCI_IOV */
2834
cxgb_set_mac_addr(struct net_device * dev,void * p)2835 static int cxgb_set_mac_addr(struct net_device *dev, void *p)
2836 {
2837 int ret;
2838 struct sockaddr *addr = p;
2839 struct port_info *pi = netdev_priv(dev);
2840
2841 if (!is_valid_ether_addr(addr->sa_data))
2842 return -EADDRNOTAVAIL;
2843
2844 ret = t4_change_mac(pi->adapter, pi->adapter->pf, pi->viid,
2845 pi->xact_addr_filt, addr->sa_data, true, true);
2846 if (ret < 0)
2847 return ret;
2848
2849 memcpy(dev->dev_addr, addr->sa_data, dev->addr_len);
2850 pi->xact_addr_filt = ret;
2851 return 0;
2852 }
2853
2854 #ifdef CONFIG_NET_POLL_CONTROLLER
cxgb_netpoll(struct net_device * dev)2855 static void cxgb_netpoll(struct net_device *dev)
2856 {
2857 struct port_info *pi = netdev_priv(dev);
2858 struct adapter *adap = pi->adapter;
2859
2860 if (adap->flags & USING_MSIX) {
2861 int i;
2862 struct sge_eth_rxq *rx = &adap->sge.ethrxq[pi->first_qset];
2863
2864 for (i = pi->nqsets; i; i--, rx++)
2865 t4_sge_intr_msix(0, &rx->rspq);
2866 } else
2867 t4_intr_handler(adap)(0, adap);
2868 }
2869 #endif
2870
cxgb_set_tx_maxrate(struct net_device * dev,int index,u32 rate)2871 static int cxgb_set_tx_maxrate(struct net_device *dev, int index, u32 rate)
2872 {
2873 struct port_info *pi = netdev_priv(dev);
2874 struct adapter *adap = pi->adapter;
2875 struct sched_class *e;
2876 struct ch_sched_params p;
2877 struct ch_sched_queue qe;
2878 u32 req_rate;
2879 int err = 0;
2880
2881 if (!can_sched(dev))
2882 return -ENOTSUPP;
2883
2884 if (index < 0 || index > pi->nqsets - 1)
2885 return -EINVAL;
2886
2887 if (!(adap->flags & FULL_INIT_DONE)) {
2888 dev_err(adap->pdev_dev,
2889 "Failed to rate limit on queue %d. Link Down?\n",
2890 index);
2891 return -EINVAL;
2892 }
2893
2894 /* Convert from Mbps to Kbps */
2895 req_rate = rate * 1000;
2896
2897 /* Max rate is 100 Gbps */
2898 if (req_rate > SCHED_MAX_RATE_KBPS) {
2899 dev_err(adap->pdev_dev,
2900 "Invalid rate %u Mbps, Max rate is %u Mbps\n",
2901 rate, SCHED_MAX_RATE_KBPS / 1000);
2902 return -ERANGE;
2903 }
2904
2905 /* First unbind the queue from any existing class */
2906 memset(&qe, 0, sizeof(qe));
2907 qe.queue = index;
2908 qe.class = SCHED_CLS_NONE;
2909
2910 err = cxgb4_sched_class_unbind(dev, (void *)(&qe), SCHED_QUEUE);
2911 if (err) {
2912 dev_err(adap->pdev_dev,
2913 "Unbinding Queue %d on port %d fail. Err: %d\n",
2914 index, pi->port_id, err);
2915 return err;
2916 }
2917
2918 /* Queue already unbound */
2919 if (!req_rate)
2920 return 0;
2921
2922 /* Fetch any available unused or matching scheduling class */
2923 memset(&p, 0, sizeof(p));
2924 p.type = SCHED_CLASS_TYPE_PACKET;
2925 p.u.params.level = SCHED_CLASS_LEVEL_CL_RL;
2926 p.u.params.mode = SCHED_CLASS_MODE_CLASS;
2927 p.u.params.rateunit = SCHED_CLASS_RATEUNIT_BITS;
2928 p.u.params.ratemode = SCHED_CLASS_RATEMODE_ABS;
2929 p.u.params.channel = pi->tx_chan;
2930 p.u.params.class = SCHED_CLS_NONE;
2931 p.u.params.minrate = 0;
2932 p.u.params.maxrate = req_rate;
2933 p.u.params.weight = 0;
2934 p.u.params.pktsize = dev->mtu;
2935
2936 e = cxgb4_sched_class_alloc(dev, &p);
2937 if (!e)
2938 return -ENOMEM;
2939
2940 /* Bind the queue to a scheduling class */
2941 memset(&qe, 0, sizeof(qe));
2942 qe.queue = index;
2943 qe.class = e->idx;
2944
2945 err = cxgb4_sched_class_bind(dev, (void *)(&qe), SCHED_QUEUE);
2946 if (err)
2947 dev_err(adap->pdev_dev,
2948 "Queue rate limiting failed. Err: %d\n", err);
2949 return err;
2950 }
2951
cxgb_setup_tc_flower(struct net_device * dev,struct tc_cls_flower_offload * cls_flower)2952 static int cxgb_setup_tc_flower(struct net_device *dev,
2953 struct tc_cls_flower_offload *cls_flower)
2954 {
2955 switch (cls_flower->command) {
2956 case TC_CLSFLOWER_REPLACE:
2957 return cxgb4_tc_flower_replace(dev, cls_flower);
2958 case TC_CLSFLOWER_DESTROY:
2959 return cxgb4_tc_flower_destroy(dev, cls_flower);
2960 case TC_CLSFLOWER_STATS:
2961 return cxgb4_tc_flower_stats(dev, cls_flower);
2962 default:
2963 return -EOPNOTSUPP;
2964 }
2965 }
2966
cxgb_setup_tc_cls_u32(struct net_device * dev,struct tc_cls_u32_offload * cls_u32)2967 static int cxgb_setup_tc_cls_u32(struct net_device *dev,
2968 struct tc_cls_u32_offload *cls_u32)
2969 {
2970 switch (cls_u32->command) {
2971 case TC_CLSU32_NEW_KNODE:
2972 case TC_CLSU32_REPLACE_KNODE:
2973 return cxgb4_config_knode(dev, cls_u32);
2974 case TC_CLSU32_DELETE_KNODE:
2975 return cxgb4_delete_knode(dev, cls_u32);
2976 default:
2977 return -EOPNOTSUPP;
2978 }
2979 }
2980
cxgb_setup_tc_block_cb(enum tc_setup_type type,void * type_data,void * cb_priv)2981 static int cxgb_setup_tc_block_cb(enum tc_setup_type type, void *type_data,
2982 void *cb_priv)
2983 {
2984 struct net_device *dev = cb_priv;
2985 struct port_info *pi = netdev2pinfo(dev);
2986 struct adapter *adap = netdev2adap(dev);
2987
2988 if (!(adap->flags & FULL_INIT_DONE)) {
2989 dev_err(adap->pdev_dev,
2990 "Failed to setup tc on port %d. Link Down?\n",
2991 pi->port_id);
2992 return -EINVAL;
2993 }
2994
2995 if (!tc_cls_can_offload_and_chain0(dev, type_data))
2996 return -EOPNOTSUPP;
2997
2998 switch (type) {
2999 case TC_SETUP_CLSU32:
3000 return cxgb_setup_tc_cls_u32(dev, type_data);
3001 case TC_SETUP_CLSFLOWER:
3002 return cxgb_setup_tc_flower(dev, type_data);
3003 default:
3004 return -EOPNOTSUPP;
3005 }
3006 }
3007
cxgb_setup_tc_block(struct net_device * dev,struct tc_block_offload * f)3008 static int cxgb_setup_tc_block(struct net_device *dev,
3009 struct tc_block_offload *f)
3010 {
3011 struct port_info *pi = netdev2pinfo(dev);
3012
3013 if (f->binder_type != TCF_BLOCK_BINDER_TYPE_CLSACT_INGRESS)
3014 return -EOPNOTSUPP;
3015
3016 switch (f->command) {
3017 case TC_BLOCK_BIND:
3018 return tcf_block_cb_register(f->block, cxgb_setup_tc_block_cb,
3019 pi, dev, f->extack);
3020 case TC_BLOCK_UNBIND:
3021 tcf_block_cb_unregister(f->block, cxgb_setup_tc_block_cb, pi);
3022 return 0;
3023 default:
3024 return -EOPNOTSUPP;
3025 }
3026 }
3027
cxgb_setup_tc(struct net_device * dev,enum tc_setup_type type,void * type_data)3028 static int cxgb_setup_tc(struct net_device *dev, enum tc_setup_type type,
3029 void *type_data)
3030 {
3031 switch (type) {
3032 case TC_SETUP_BLOCK:
3033 return cxgb_setup_tc_block(dev, type_data);
3034 default:
3035 return -EOPNOTSUPP;
3036 }
3037 }
3038
cxgb_del_udp_tunnel(struct net_device * netdev,struct udp_tunnel_info * ti)3039 static void cxgb_del_udp_tunnel(struct net_device *netdev,
3040 struct udp_tunnel_info *ti)
3041 {
3042 struct port_info *pi = netdev_priv(netdev);
3043 struct adapter *adapter = pi->adapter;
3044 unsigned int chip_ver = CHELSIO_CHIP_VERSION(adapter->params.chip);
3045 u8 match_all_mac[] = { 0, 0, 0, 0, 0, 0 };
3046 int ret = 0, i;
3047
3048 if (chip_ver < CHELSIO_T6)
3049 return;
3050
3051 switch (ti->type) {
3052 case UDP_TUNNEL_TYPE_VXLAN:
3053 if (!adapter->vxlan_port_cnt ||
3054 adapter->vxlan_port != ti->port)
3055 return; /* Invalid VxLAN destination port */
3056
3057 adapter->vxlan_port_cnt--;
3058 if (adapter->vxlan_port_cnt)
3059 return;
3060
3061 adapter->vxlan_port = 0;
3062 t4_write_reg(adapter, MPS_RX_VXLAN_TYPE_A, 0);
3063 break;
3064 case UDP_TUNNEL_TYPE_GENEVE:
3065 if (!adapter->geneve_port_cnt ||
3066 adapter->geneve_port != ti->port)
3067 return; /* Invalid GENEVE destination port */
3068
3069 adapter->geneve_port_cnt--;
3070 if (adapter->geneve_port_cnt)
3071 return;
3072
3073 adapter->geneve_port = 0;
3074 t4_write_reg(adapter, MPS_RX_GENEVE_TYPE_A, 0);
3075 break;
3076 default:
3077 return;
3078 }
3079
3080 /* Matchall mac entries can be deleted only after all tunnel ports
3081 * are brought down or removed.
3082 */
3083 if (!adapter->rawf_cnt)
3084 return;
3085 for_each_port(adapter, i) {
3086 pi = adap2pinfo(adapter, i);
3087 ret = t4_free_raw_mac_filt(adapter, pi->viid,
3088 match_all_mac, match_all_mac,
3089 adapter->rawf_start +
3090 pi->port_id,
3091 1, pi->port_id, false);
3092 if (ret < 0) {
3093 netdev_info(netdev, "Failed to free mac filter entry, for port %d\n",
3094 i);
3095 return;
3096 }
3097 atomic_dec(&adapter->mps_encap[adapter->rawf_start +
3098 pi->port_id].refcnt);
3099 }
3100 }
3101
cxgb_add_udp_tunnel(struct net_device * netdev,struct udp_tunnel_info * ti)3102 static void cxgb_add_udp_tunnel(struct net_device *netdev,
3103 struct udp_tunnel_info *ti)
3104 {
3105 struct port_info *pi = netdev_priv(netdev);
3106 struct adapter *adapter = pi->adapter;
3107 unsigned int chip_ver = CHELSIO_CHIP_VERSION(adapter->params.chip);
3108 u8 match_all_mac[] = { 0, 0, 0, 0, 0, 0 };
3109 int i, ret;
3110
3111 if (chip_ver < CHELSIO_T6 || !adapter->rawf_cnt)
3112 return;
3113
3114 switch (ti->type) {
3115 case UDP_TUNNEL_TYPE_VXLAN:
3116 /* Callback for adding vxlan port can be called with the same
3117 * port for both IPv4 and IPv6. We should not disable the
3118 * offloading when the same port for both protocols is added
3119 * and later one of them is removed.
3120 */
3121 if (adapter->vxlan_port_cnt &&
3122 adapter->vxlan_port == ti->port) {
3123 adapter->vxlan_port_cnt++;
3124 return;
3125 }
3126
3127 /* We will support only one VxLAN port */
3128 if (adapter->vxlan_port_cnt) {
3129 netdev_info(netdev, "UDP port %d already offloaded, not adding port %d\n",
3130 be16_to_cpu(adapter->vxlan_port),
3131 be16_to_cpu(ti->port));
3132 return;
3133 }
3134
3135 adapter->vxlan_port = ti->port;
3136 adapter->vxlan_port_cnt = 1;
3137
3138 t4_write_reg(adapter, MPS_RX_VXLAN_TYPE_A,
3139 VXLAN_V(be16_to_cpu(ti->port)) | VXLAN_EN_F);
3140 break;
3141 case UDP_TUNNEL_TYPE_GENEVE:
3142 if (adapter->geneve_port_cnt &&
3143 adapter->geneve_port == ti->port) {
3144 adapter->geneve_port_cnt++;
3145 return;
3146 }
3147
3148 /* We will support only one GENEVE port */
3149 if (adapter->geneve_port_cnt) {
3150 netdev_info(netdev, "UDP port %d already offloaded, not adding port %d\n",
3151 be16_to_cpu(adapter->geneve_port),
3152 be16_to_cpu(ti->port));
3153 return;
3154 }
3155
3156 adapter->geneve_port = ti->port;
3157 adapter->geneve_port_cnt = 1;
3158
3159 t4_write_reg(adapter, MPS_RX_GENEVE_TYPE_A,
3160 GENEVE_V(be16_to_cpu(ti->port)) | GENEVE_EN_F);
3161 break;
3162 default:
3163 return;
3164 }
3165
3166 /* Create a 'match all' mac filter entry for inner mac,
3167 * if raw mac interface is supported. Once the linux kernel provides
3168 * driver entry points for adding/deleting the inner mac addresses,
3169 * we will remove this 'match all' entry and fallback to adding
3170 * exact match filters.
3171 */
3172 for_each_port(adapter, i) {
3173 pi = adap2pinfo(adapter, i);
3174
3175 ret = t4_alloc_raw_mac_filt(adapter, pi->viid,
3176 match_all_mac,
3177 match_all_mac,
3178 adapter->rawf_start +
3179 pi->port_id,
3180 1, pi->port_id, false);
3181 if (ret < 0) {
3182 netdev_info(netdev, "Failed to allocate a mac filter entry, not adding port %d\n",
3183 be16_to_cpu(ti->port));
3184 cxgb_del_udp_tunnel(netdev, ti);
3185 return;
3186 }
3187 atomic_inc(&adapter->mps_encap[ret].refcnt);
3188 }
3189 }
3190
cxgb_features_check(struct sk_buff * skb,struct net_device * dev,netdev_features_t features)3191 static netdev_features_t cxgb_features_check(struct sk_buff *skb,
3192 struct net_device *dev,
3193 netdev_features_t features)
3194 {
3195 struct port_info *pi = netdev_priv(dev);
3196 struct adapter *adapter = pi->adapter;
3197
3198 if (CHELSIO_CHIP_VERSION(adapter->params.chip) < CHELSIO_T6)
3199 return features;
3200
3201 /* Check if hw supports offload for this packet */
3202 if (!skb->encapsulation || cxgb_encap_offload_supported(skb))
3203 return features;
3204
3205 /* Offload is not supported for this encapsulated packet */
3206 return features & ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
3207 }
3208
cxgb_fix_features(struct net_device * dev,netdev_features_t features)3209 static netdev_features_t cxgb_fix_features(struct net_device *dev,
3210 netdev_features_t features)
3211 {
3212 /* Disable GRO, if RX_CSUM is disabled */
3213 if (!(features & NETIF_F_RXCSUM))
3214 features &= ~NETIF_F_GRO;
3215
3216 return features;
3217 }
3218
3219 static const struct net_device_ops cxgb4_netdev_ops = {
3220 .ndo_open = cxgb_open,
3221 .ndo_stop = cxgb_close,
3222 .ndo_start_xmit = t4_start_xmit,
3223 .ndo_select_queue = cxgb_select_queue,
3224 .ndo_get_stats64 = cxgb_get_stats,
3225 .ndo_set_rx_mode = cxgb_set_rxmode,
3226 .ndo_set_mac_address = cxgb_set_mac_addr,
3227 .ndo_set_features = cxgb_set_features,
3228 .ndo_validate_addr = eth_validate_addr,
3229 .ndo_do_ioctl = cxgb_ioctl,
3230 .ndo_change_mtu = cxgb_change_mtu,
3231 #ifdef CONFIG_NET_POLL_CONTROLLER
3232 .ndo_poll_controller = cxgb_netpoll,
3233 #endif
3234 #ifdef CONFIG_CHELSIO_T4_FCOE
3235 .ndo_fcoe_enable = cxgb_fcoe_enable,
3236 .ndo_fcoe_disable = cxgb_fcoe_disable,
3237 #endif /* CONFIG_CHELSIO_T4_FCOE */
3238 .ndo_set_tx_maxrate = cxgb_set_tx_maxrate,
3239 .ndo_setup_tc = cxgb_setup_tc,
3240 .ndo_udp_tunnel_add = cxgb_add_udp_tunnel,
3241 .ndo_udp_tunnel_del = cxgb_del_udp_tunnel,
3242 .ndo_features_check = cxgb_features_check,
3243 .ndo_fix_features = cxgb_fix_features,
3244 };
3245
3246 #ifdef CONFIG_PCI_IOV
3247 static const struct net_device_ops cxgb4_mgmt_netdev_ops = {
3248 .ndo_open = cxgb4_mgmt_open,
3249 .ndo_set_vf_mac = cxgb4_mgmt_set_vf_mac,
3250 .ndo_get_vf_config = cxgb4_mgmt_get_vf_config,
3251 .ndo_set_vf_rate = cxgb4_mgmt_set_vf_rate,
3252 .ndo_get_phys_port_id = cxgb4_mgmt_get_phys_port_id,
3253 .ndo_set_vf_vlan = cxgb4_mgmt_set_vf_vlan,
3254 };
3255 #endif
3256
cxgb4_mgmt_get_drvinfo(struct net_device * dev,struct ethtool_drvinfo * info)3257 static void cxgb4_mgmt_get_drvinfo(struct net_device *dev,
3258 struct ethtool_drvinfo *info)
3259 {
3260 struct adapter *adapter = netdev2adap(dev);
3261
3262 strlcpy(info->driver, cxgb4_driver_name, sizeof(info->driver));
3263 strlcpy(info->version, cxgb4_driver_version,
3264 sizeof(info->version));
3265 strlcpy(info->bus_info, pci_name(adapter->pdev),
3266 sizeof(info->bus_info));
3267 }
3268
3269 static const struct ethtool_ops cxgb4_mgmt_ethtool_ops = {
3270 .get_drvinfo = cxgb4_mgmt_get_drvinfo,
3271 };
3272
notify_fatal_err(struct work_struct * work)3273 static void notify_fatal_err(struct work_struct *work)
3274 {
3275 struct adapter *adap;
3276
3277 adap = container_of(work, struct adapter, fatal_err_notify_task);
3278 notify_ulds(adap, CXGB4_STATE_FATAL_ERROR);
3279 }
3280
t4_fatal_err(struct adapter * adap)3281 void t4_fatal_err(struct adapter *adap)
3282 {
3283 int port;
3284
3285 if (pci_channel_offline(adap->pdev))
3286 return;
3287
3288 /* Disable the SGE since ULDs are going to free resources that
3289 * could be exposed to the adapter. RDMA MWs for example...
3290 */
3291 t4_shutdown_adapter(adap);
3292 for_each_port(adap, port) {
3293 struct net_device *dev = adap->port[port];
3294
3295 /* If we get here in very early initialization the network
3296 * devices may not have been set up yet.
3297 */
3298 if (!dev)
3299 continue;
3300
3301 netif_tx_stop_all_queues(dev);
3302 netif_carrier_off(dev);
3303 }
3304 dev_alert(adap->pdev_dev, "encountered fatal error, adapter stopped\n");
3305 queue_work(adap->workq, &adap->fatal_err_notify_task);
3306 }
3307
setup_memwin(struct adapter * adap)3308 static void setup_memwin(struct adapter *adap)
3309 {
3310 u32 nic_win_base = t4_get_util_window(adap);
3311
3312 t4_setup_memwin(adap, nic_win_base, MEMWIN_NIC);
3313 }
3314
setup_memwin_rdma(struct adapter * adap)3315 static void setup_memwin_rdma(struct adapter *adap)
3316 {
3317 if (adap->vres.ocq.size) {
3318 u32 start;
3319 unsigned int sz_kb;
3320
3321 start = t4_read_pcie_cfg4(adap, PCI_BASE_ADDRESS_2);
3322 start &= PCI_BASE_ADDRESS_MEM_MASK;
3323 start += OCQ_WIN_OFFSET(adap->pdev, &adap->vres);
3324 sz_kb = roundup_pow_of_two(adap->vres.ocq.size) >> 10;
3325 t4_write_reg(adap,
3326 PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN_A, 3),
3327 start | BIR_V(1) | WINDOW_V(ilog2(sz_kb)));
3328 t4_write_reg(adap,
3329 PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET_A, 3),
3330 adap->vres.ocq.start);
3331 t4_read_reg(adap,
3332 PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET_A, 3));
3333 }
3334 }
3335
3336 /* HMA Definitions */
3337
3338 /* The maximum number of address that can be send in a single FW cmd */
3339 #define HMA_MAX_ADDR_IN_CMD 5
3340
3341 #define HMA_PAGE_SIZE PAGE_SIZE
3342
3343 #define HMA_MAX_NO_FW_ADDRESS (16 << 10) /* FW supports 16K addresses */
3344
3345 #define HMA_PAGE_ORDER \
3346 ((HMA_PAGE_SIZE < HMA_MAX_NO_FW_ADDRESS) ? \
3347 ilog2(HMA_MAX_NO_FW_ADDRESS / HMA_PAGE_SIZE) : 0)
3348
3349 /* The minimum and maximum possible HMA sizes that can be specified in the FW
3350 * configuration(in units of MB).
3351 */
3352 #define HMA_MIN_TOTAL_SIZE 1
3353 #define HMA_MAX_TOTAL_SIZE \
3354 (((HMA_PAGE_SIZE << HMA_PAGE_ORDER) * \
3355 HMA_MAX_NO_FW_ADDRESS) >> 20)
3356
adap_free_hma_mem(struct adapter * adapter)3357 static void adap_free_hma_mem(struct adapter *adapter)
3358 {
3359 struct scatterlist *iter;
3360 struct page *page;
3361 int i;
3362
3363 if (!adapter->hma.sgt)
3364 return;
3365
3366 if (adapter->hma.flags & HMA_DMA_MAPPED_FLAG) {
3367 dma_unmap_sg(adapter->pdev_dev, adapter->hma.sgt->sgl,
3368 adapter->hma.sgt->nents, PCI_DMA_BIDIRECTIONAL);
3369 adapter->hma.flags &= ~HMA_DMA_MAPPED_FLAG;
3370 }
3371
3372 for_each_sg(adapter->hma.sgt->sgl, iter,
3373 adapter->hma.sgt->orig_nents, i) {
3374 page = sg_page(iter);
3375 if (page)
3376 __free_pages(page, HMA_PAGE_ORDER);
3377 }
3378
3379 kfree(adapter->hma.phy_addr);
3380 sg_free_table(adapter->hma.sgt);
3381 kfree(adapter->hma.sgt);
3382 adapter->hma.sgt = NULL;
3383 }
3384
adap_config_hma(struct adapter * adapter)3385 static int adap_config_hma(struct adapter *adapter)
3386 {
3387 struct scatterlist *sgl, *iter;
3388 struct sg_table *sgt;
3389 struct page *newpage;
3390 unsigned int i, j, k;
3391 u32 param, hma_size;
3392 unsigned int ncmds;
3393 size_t page_size;
3394 u32 page_order;
3395 int node, ret;
3396
3397 /* HMA is supported only for T6+ cards.
3398 * Avoid initializing HMA in kdump kernels.
3399 */
3400 if (is_kdump_kernel() ||
3401 CHELSIO_CHIP_VERSION(adapter->params.chip) < CHELSIO_T6)
3402 return 0;
3403
3404 /* Get the HMA region size required by fw */
3405 param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
3406 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_HMA_SIZE));
3407 ret = t4_query_params(adapter, adapter->mbox, adapter->pf, 0,
3408 1, ¶m, &hma_size);
3409 /* An error means card has its own memory or HMA is not supported by
3410 * the firmware. Return without any errors.
3411 */
3412 if (ret || !hma_size)
3413 return 0;
3414
3415 if (hma_size < HMA_MIN_TOTAL_SIZE ||
3416 hma_size > HMA_MAX_TOTAL_SIZE) {
3417 dev_err(adapter->pdev_dev,
3418 "HMA size %uMB beyond bounds(%u-%lu)MB\n",
3419 hma_size, HMA_MIN_TOTAL_SIZE, HMA_MAX_TOTAL_SIZE);
3420 return -EINVAL;
3421 }
3422
3423 page_size = HMA_PAGE_SIZE;
3424 page_order = HMA_PAGE_ORDER;
3425 adapter->hma.sgt = kzalloc(sizeof(*adapter->hma.sgt), GFP_KERNEL);
3426 if (unlikely(!adapter->hma.sgt)) {
3427 dev_err(adapter->pdev_dev, "HMA SG table allocation failed\n");
3428 return -ENOMEM;
3429 }
3430 sgt = adapter->hma.sgt;
3431 /* FW returned value will be in MB's
3432 */
3433 sgt->orig_nents = (hma_size << 20) / (page_size << page_order);
3434 if (sg_alloc_table(sgt, sgt->orig_nents, GFP_KERNEL)) {
3435 dev_err(adapter->pdev_dev, "HMA SGL allocation failed\n");
3436 kfree(adapter->hma.sgt);
3437 adapter->hma.sgt = NULL;
3438 return -ENOMEM;
3439 }
3440
3441 sgl = adapter->hma.sgt->sgl;
3442 node = dev_to_node(adapter->pdev_dev);
3443 for_each_sg(sgl, iter, sgt->orig_nents, i) {
3444 newpage = alloc_pages_node(node, __GFP_NOWARN | GFP_KERNEL |
3445 __GFP_ZERO, page_order);
3446 if (!newpage) {
3447 dev_err(adapter->pdev_dev,
3448 "Not enough memory for HMA page allocation\n");
3449 ret = -ENOMEM;
3450 goto free_hma;
3451 }
3452 sg_set_page(iter, newpage, page_size << page_order, 0);
3453 }
3454
3455 sgt->nents = dma_map_sg(adapter->pdev_dev, sgl, sgt->orig_nents,
3456 DMA_BIDIRECTIONAL);
3457 if (!sgt->nents) {
3458 dev_err(adapter->pdev_dev,
3459 "Not enough memory for HMA DMA mapping");
3460 ret = -ENOMEM;
3461 goto free_hma;
3462 }
3463 adapter->hma.flags |= HMA_DMA_MAPPED_FLAG;
3464
3465 adapter->hma.phy_addr = kcalloc(sgt->nents, sizeof(dma_addr_t),
3466 GFP_KERNEL);
3467 if (unlikely(!adapter->hma.phy_addr))
3468 goto free_hma;
3469
3470 for_each_sg(sgl, iter, sgt->nents, i) {
3471 newpage = sg_page(iter);
3472 adapter->hma.phy_addr[i] = sg_dma_address(iter);
3473 }
3474
3475 ncmds = DIV_ROUND_UP(sgt->nents, HMA_MAX_ADDR_IN_CMD);
3476 /* Pass on the addresses to firmware */
3477 for (i = 0, k = 0; i < ncmds; i++, k += HMA_MAX_ADDR_IN_CMD) {
3478 struct fw_hma_cmd hma_cmd;
3479 u8 naddr = HMA_MAX_ADDR_IN_CMD;
3480 u8 soc = 0, eoc = 0;
3481 u8 hma_mode = 1; /* Presently we support only Page table mode */
3482
3483 soc = (i == 0) ? 1 : 0;
3484 eoc = (i == ncmds - 1) ? 1 : 0;
3485
3486 /* For last cmd, set naddr corresponding to remaining
3487 * addresses
3488 */
3489 if (i == ncmds - 1) {
3490 naddr = sgt->nents % HMA_MAX_ADDR_IN_CMD;
3491 naddr = naddr ? naddr : HMA_MAX_ADDR_IN_CMD;
3492 }
3493 memset(&hma_cmd, 0, sizeof(hma_cmd));
3494 hma_cmd.op_pkd = htonl(FW_CMD_OP_V(FW_HMA_CMD) |
3495 FW_CMD_REQUEST_F | FW_CMD_WRITE_F);
3496 hma_cmd.retval_len16 = htonl(FW_LEN16(hma_cmd));
3497
3498 hma_cmd.mode_to_pcie_params =
3499 htonl(FW_HMA_CMD_MODE_V(hma_mode) |
3500 FW_HMA_CMD_SOC_V(soc) | FW_HMA_CMD_EOC_V(eoc));
3501
3502 /* HMA cmd size specified in MB's */
3503 hma_cmd.naddr_size =
3504 htonl(FW_HMA_CMD_SIZE_V(hma_size) |
3505 FW_HMA_CMD_NADDR_V(naddr));
3506
3507 /* Total Page size specified in units of 4K */
3508 hma_cmd.addr_size_pkd =
3509 htonl(FW_HMA_CMD_ADDR_SIZE_V
3510 ((page_size << page_order) >> 12));
3511
3512 /* Fill the 5 addresses */
3513 for (j = 0; j < naddr; j++) {
3514 hma_cmd.phy_address[j] =
3515 cpu_to_be64(adapter->hma.phy_addr[j + k]);
3516 }
3517 ret = t4_wr_mbox(adapter, adapter->mbox, &hma_cmd,
3518 sizeof(hma_cmd), &hma_cmd);
3519 if (ret) {
3520 dev_err(adapter->pdev_dev,
3521 "HMA FW command failed with err %d\n", ret);
3522 goto free_hma;
3523 }
3524 }
3525
3526 if (!ret)
3527 dev_info(adapter->pdev_dev,
3528 "Reserved %uMB host memory for HMA\n", hma_size);
3529 return ret;
3530
3531 free_hma:
3532 adap_free_hma_mem(adapter);
3533 return ret;
3534 }
3535
adap_init1(struct adapter * adap,struct fw_caps_config_cmd * c)3536 static int adap_init1(struct adapter *adap, struct fw_caps_config_cmd *c)
3537 {
3538 u32 v;
3539 int ret;
3540
3541 /* Now that we've successfully configured and initialized the adapter
3542 * can ask the Firmware what resources it has provisioned for us.
3543 */
3544 ret = t4_get_pfres(adap);
3545 if (ret) {
3546 dev_err(adap->pdev_dev,
3547 "Unable to retrieve resource provisioning information\n");
3548 return ret;
3549 }
3550
3551 /* get device capabilities */
3552 memset(c, 0, sizeof(*c));
3553 c->op_to_write = htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
3554 FW_CMD_REQUEST_F | FW_CMD_READ_F);
3555 c->cfvalid_to_len16 = htonl(FW_LEN16(*c));
3556 ret = t4_wr_mbox(adap, adap->mbox, c, sizeof(*c), c);
3557 if (ret < 0)
3558 return ret;
3559
3560 c->op_to_write = htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
3561 FW_CMD_REQUEST_F | FW_CMD_WRITE_F);
3562 ret = t4_wr_mbox(adap, adap->mbox, c, sizeof(*c), NULL);
3563 if (ret < 0)
3564 return ret;
3565
3566 ret = t4_config_glbl_rss(adap, adap->pf,
3567 FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL,
3568 FW_RSS_GLB_CONFIG_CMD_TNLMAPEN_F |
3569 FW_RSS_GLB_CONFIG_CMD_TNLALLLKP_F);
3570 if (ret < 0)
3571 return ret;
3572
3573 ret = t4_cfg_pfvf(adap, adap->mbox, adap->pf, 0, adap->sge.egr_sz, 64,
3574 MAX_INGQ, 0, 0, 4, 0xf, 0xf, 16, FW_CMD_CAP_PF,
3575 FW_CMD_CAP_PF);
3576 if (ret < 0)
3577 return ret;
3578
3579 t4_sge_init(adap);
3580
3581 /* tweak some settings */
3582 t4_write_reg(adap, TP_SHIFT_CNT_A, 0x64f8849);
3583 t4_write_reg(adap, ULP_RX_TDDP_PSZ_A, HPZ0_V(PAGE_SHIFT - 12));
3584 t4_write_reg(adap, TP_PIO_ADDR_A, TP_INGRESS_CONFIG_A);
3585 v = t4_read_reg(adap, TP_PIO_DATA_A);
3586 t4_write_reg(adap, TP_PIO_DATA_A, v & ~CSUM_HAS_PSEUDO_HDR_F);
3587
3588 /* first 4 Tx modulation queues point to consecutive Tx channels */
3589 adap->params.tp.tx_modq_map = 0xE4;
3590 t4_write_reg(adap, TP_TX_MOD_QUEUE_REQ_MAP_A,
3591 TX_MOD_QUEUE_REQ_MAP_V(adap->params.tp.tx_modq_map));
3592
3593 /* associate each Tx modulation queue with consecutive Tx channels */
3594 v = 0x84218421;
3595 t4_write_indirect(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A,
3596 &v, 1, TP_TX_SCHED_HDR_A);
3597 t4_write_indirect(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A,
3598 &v, 1, TP_TX_SCHED_FIFO_A);
3599 t4_write_indirect(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A,
3600 &v, 1, TP_TX_SCHED_PCMD_A);
3601
3602 #define T4_TX_MODQ_10G_WEIGHT_DEFAULT 16 /* in KB units */
3603 if (is_offload(adap)) {
3604 t4_write_reg(adap, TP_TX_MOD_QUEUE_WEIGHT0_A,
3605 TX_MODQ_WEIGHT0_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
3606 TX_MODQ_WEIGHT1_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
3607 TX_MODQ_WEIGHT2_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
3608 TX_MODQ_WEIGHT3_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT));
3609 t4_write_reg(adap, TP_TX_MOD_CHANNEL_WEIGHT_A,
3610 TX_MODQ_WEIGHT0_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
3611 TX_MODQ_WEIGHT1_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
3612 TX_MODQ_WEIGHT2_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
3613 TX_MODQ_WEIGHT3_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT));
3614 }
3615
3616 /* get basic stuff going */
3617 return t4_early_init(adap, adap->pf);
3618 }
3619
3620 /*
3621 * Max # of ATIDs. The absolute HW max is 16K but we keep it lower.
3622 */
3623 #define MAX_ATIDS 8192U
3624
3625 /*
3626 * Phase 0 of initialization: contact FW, obtain config, perform basic init.
3627 *
3628 * If the firmware we're dealing with has Configuration File support, then
3629 * we use that to perform all configuration
3630 */
3631
3632 /*
3633 * Tweak configuration based on module parameters, etc. Most of these have
3634 * defaults assigned to them by Firmware Configuration Files (if we're using
3635 * them) but need to be explicitly set if we're using hard-coded
3636 * initialization. But even in the case of using Firmware Configuration
3637 * Files, we'd like to expose the ability to change these via module
3638 * parameters so these are essentially common tweaks/settings for
3639 * Configuration Files and hard-coded initialization ...
3640 */
adap_init0_tweaks(struct adapter * adapter)3641 static int adap_init0_tweaks(struct adapter *adapter)
3642 {
3643 /*
3644 * Fix up various Host-Dependent Parameters like Page Size, Cache
3645 * Line Size, etc. The firmware default is for a 4KB Page Size and
3646 * 64B Cache Line Size ...
3647 */
3648 t4_fixup_host_params(adapter, PAGE_SIZE, L1_CACHE_BYTES);
3649
3650 /*
3651 * Process module parameters which affect early initialization.
3652 */
3653 if (rx_dma_offset != 2 && rx_dma_offset != 0) {
3654 dev_err(&adapter->pdev->dev,
3655 "Ignoring illegal rx_dma_offset=%d, using 2\n",
3656 rx_dma_offset);
3657 rx_dma_offset = 2;
3658 }
3659 t4_set_reg_field(adapter, SGE_CONTROL_A,
3660 PKTSHIFT_V(PKTSHIFT_M),
3661 PKTSHIFT_V(rx_dma_offset));
3662
3663 /*
3664 * Don't include the "IP Pseudo Header" in CPL_RX_PKT checksums: Linux
3665 * adds the pseudo header itself.
3666 */
3667 t4_tp_wr_bits_indirect(adapter, TP_INGRESS_CONFIG_A,
3668 CSUM_HAS_PSEUDO_HDR_F, 0);
3669
3670 return 0;
3671 }
3672
3673 /* 10Gb/s-BT PHY Support. chip-external 10Gb/s-BT PHYs are complex chips
3674 * unto themselves and they contain their own firmware to perform their
3675 * tasks ...
3676 */
phy_aq1202_version(const u8 * phy_fw_data,size_t phy_fw_size)3677 static int phy_aq1202_version(const u8 *phy_fw_data,
3678 size_t phy_fw_size)
3679 {
3680 int offset;
3681
3682 /* At offset 0x8 you're looking for the primary image's
3683 * starting offset which is 3 Bytes wide
3684 *
3685 * At offset 0xa of the primary image, you look for the offset
3686 * of the DRAM segment which is 3 Bytes wide.
3687 *
3688 * The FW version is at offset 0x27e of the DRAM and is 2 Bytes
3689 * wide
3690 */
3691 #define be16(__p) (((__p)[0] << 8) | (__p)[1])
3692 #define le16(__p) ((__p)[0] | ((__p)[1] << 8))
3693 #define le24(__p) (le16(__p) | ((__p)[2] << 16))
3694
3695 offset = le24(phy_fw_data + 0x8) << 12;
3696 offset = le24(phy_fw_data + offset + 0xa);
3697 return be16(phy_fw_data + offset + 0x27e);
3698
3699 #undef be16
3700 #undef le16
3701 #undef le24
3702 }
3703
3704 static struct info_10gbt_phy_fw {
3705 unsigned int phy_fw_id; /* PCI Device ID */
3706 char *phy_fw_file; /* /lib/firmware/ PHY Firmware file */
3707 int (*phy_fw_version)(const u8 *phy_fw_data, size_t phy_fw_size);
3708 int phy_flash; /* Has FLASH for PHY Firmware */
3709 } phy_info_array[] = {
3710 {
3711 PHY_AQ1202_DEVICEID,
3712 PHY_AQ1202_FIRMWARE,
3713 phy_aq1202_version,
3714 1,
3715 },
3716 {
3717 PHY_BCM84834_DEVICEID,
3718 PHY_BCM84834_FIRMWARE,
3719 NULL,
3720 0,
3721 },
3722 { 0, NULL, NULL },
3723 };
3724
find_phy_info(int devid)3725 static struct info_10gbt_phy_fw *find_phy_info(int devid)
3726 {
3727 int i;
3728
3729 for (i = 0; i < ARRAY_SIZE(phy_info_array); i++) {
3730 if (phy_info_array[i].phy_fw_id == devid)
3731 return &phy_info_array[i];
3732 }
3733 return NULL;
3734 }
3735
3736 /* Handle updating of chip-external 10Gb/s-BT PHY firmware. This needs to
3737 * happen after the FW_RESET_CMD but before the FW_INITIALIZE_CMD. On error
3738 * we return a negative error number. If we transfer new firmware we return 1
3739 * (from t4_load_phy_fw()). If we don't do anything we return 0.
3740 */
adap_init0_phy(struct adapter * adap)3741 static int adap_init0_phy(struct adapter *adap)
3742 {
3743 const struct firmware *phyf;
3744 int ret;
3745 struct info_10gbt_phy_fw *phy_info;
3746
3747 /* Use the device ID to determine which PHY file to flash.
3748 */
3749 phy_info = find_phy_info(adap->pdev->device);
3750 if (!phy_info) {
3751 dev_warn(adap->pdev_dev,
3752 "No PHY Firmware file found for this PHY\n");
3753 return -EOPNOTSUPP;
3754 }
3755
3756 /* If we have a T4 PHY firmware file under /lib/firmware/cxgb4/, then
3757 * use that. The adapter firmware provides us with a memory buffer
3758 * where we can load a PHY firmware file from the host if we want to
3759 * override the PHY firmware File in flash.
3760 */
3761 ret = request_firmware_direct(&phyf, phy_info->phy_fw_file,
3762 adap->pdev_dev);
3763 if (ret < 0) {
3764 /* For adapters without FLASH attached to PHY for their
3765 * firmware, it's obviously a fatal error if we can't get the
3766 * firmware to the adapter. For adapters with PHY firmware
3767 * FLASH storage, it's worth a warning if we can't find the
3768 * PHY Firmware but we'll neuter the error ...
3769 */
3770 dev_err(adap->pdev_dev, "unable to find PHY Firmware image "
3771 "/lib/firmware/%s, error %d\n",
3772 phy_info->phy_fw_file, -ret);
3773 if (phy_info->phy_flash) {
3774 int cur_phy_fw_ver = 0;
3775
3776 t4_phy_fw_ver(adap, &cur_phy_fw_ver);
3777 dev_warn(adap->pdev_dev, "continuing with, on-adapter "
3778 "FLASH copy, version %#x\n", cur_phy_fw_ver);
3779 ret = 0;
3780 }
3781
3782 return ret;
3783 }
3784
3785 /* Load PHY Firmware onto adapter.
3786 */
3787 ret = t4_load_phy_fw(adap, MEMWIN_NIC, &adap->win0_lock,
3788 phy_info->phy_fw_version,
3789 (u8 *)phyf->data, phyf->size);
3790 if (ret < 0)
3791 dev_err(adap->pdev_dev, "PHY Firmware transfer error %d\n",
3792 -ret);
3793 else if (ret > 0) {
3794 int new_phy_fw_ver = 0;
3795
3796 if (phy_info->phy_fw_version)
3797 new_phy_fw_ver = phy_info->phy_fw_version(phyf->data,
3798 phyf->size);
3799 dev_info(adap->pdev_dev, "Successfully transferred PHY "
3800 "Firmware /lib/firmware/%s, version %#x\n",
3801 phy_info->phy_fw_file, new_phy_fw_ver);
3802 }
3803
3804 release_firmware(phyf);
3805
3806 return ret;
3807 }
3808
3809 /*
3810 * Attempt to initialize the adapter via a Firmware Configuration File.
3811 */
adap_init0_config(struct adapter * adapter,int reset)3812 static int adap_init0_config(struct adapter *adapter, int reset)
3813 {
3814 struct fw_caps_config_cmd caps_cmd;
3815 const struct firmware *cf;
3816 unsigned long mtype = 0, maddr = 0;
3817 u32 finiver, finicsum, cfcsum;
3818 int ret;
3819 int config_issued = 0;
3820 char *fw_config_file, fw_config_file_path[256];
3821 char *config_name = NULL;
3822
3823 /*
3824 * Reset device if necessary.
3825 */
3826 if (reset) {
3827 ret = t4_fw_reset(adapter, adapter->mbox,
3828 PIORSTMODE_F | PIORST_F);
3829 if (ret < 0)
3830 goto bye;
3831 }
3832
3833 /* If this is a 10Gb/s-BT adapter make sure the chip-external
3834 * 10Gb/s-BT PHYs have up-to-date firmware. Note that this step needs
3835 * to be performed after any global adapter RESET above since some
3836 * PHYs only have local RAM copies of the PHY firmware.
3837 */
3838 if (is_10gbt_device(adapter->pdev->device)) {
3839 ret = adap_init0_phy(adapter);
3840 if (ret < 0)
3841 goto bye;
3842 }
3843 /*
3844 * If we have a T4 configuration file under /lib/firmware/cxgb4/,
3845 * then use that. Otherwise, use the configuration file stored
3846 * in the adapter flash ...
3847 */
3848 switch (CHELSIO_CHIP_VERSION(adapter->params.chip)) {
3849 case CHELSIO_T4:
3850 fw_config_file = FW4_CFNAME;
3851 break;
3852 case CHELSIO_T5:
3853 fw_config_file = FW5_CFNAME;
3854 break;
3855 case CHELSIO_T6:
3856 fw_config_file = FW6_CFNAME;
3857 break;
3858 default:
3859 dev_err(adapter->pdev_dev, "Device %d is not supported\n",
3860 adapter->pdev->device);
3861 ret = -EINVAL;
3862 goto bye;
3863 }
3864
3865 ret = request_firmware(&cf, fw_config_file, adapter->pdev_dev);
3866 if (ret < 0) {
3867 config_name = "On FLASH";
3868 mtype = FW_MEMTYPE_CF_FLASH;
3869 maddr = t4_flash_cfg_addr(adapter);
3870 } else {
3871 u32 params[7], val[7];
3872
3873 sprintf(fw_config_file_path,
3874 "/lib/firmware/%s", fw_config_file);
3875 config_name = fw_config_file_path;
3876
3877 if (cf->size >= FLASH_CFG_MAX_SIZE)
3878 ret = -ENOMEM;
3879 else {
3880 params[0] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
3881 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_CF));
3882 ret = t4_query_params(adapter, adapter->mbox,
3883 adapter->pf, 0, 1, params, val);
3884 if (ret == 0) {
3885 /*
3886 * For t4_memory_rw() below addresses and
3887 * sizes have to be in terms of multiples of 4
3888 * bytes. So, if the Configuration File isn't
3889 * a multiple of 4 bytes in length we'll have
3890 * to write that out separately since we can't
3891 * guarantee that the bytes following the
3892 * residual byte in the buffer returned by
3893 * request_firmware() are zeroed out ...
3894 */
3895 size_t resid = cf->size & 0x3;
3896 size_t size = cf->size & ~0x3;
3897 __be32 *data = (__be32 *)cf->data;
3898
3899 mtype = FW_PARAMS_PARAM_Y_G(val[0]);
3900 maddr = FW_PARAMS_PARAM_Z_G(val[0]) << 16;
3901
3902 spin_lock(&adapter->win0_lock);
3903 ret = t4_memory_rw(adapter, 0, mtype, maddr,
3904 size, data, T4_MEMORY_WRITE);
3905 if (ret == 0 && resid != 0) {
3906 union {
3907 __be32 word;
3908 char buf[4];
3909 } last;
3910 int i;
3911
3912 last.word = data[size >> 2];
3913 for (i = resid; i < 4; i++)
3914 last.buf[i] = 0;
3915 ret = t4_memory_rw(adapter, 0, mtype,
3916 maddr + size,
3917 4, &last.word,
3918 T4_MEMORY_WRITE);
3919 }
3920 spin_unlock(&adapter->win0_lock);
3921 }
3922 }
3923
3924 release_firmware(cf);
3925 if (ret)
3926 goto bye;
3927 }
3928
3929 /*
3930 * Issue a Capability Configuration command to the firmware to get it
3931 * to parse the Configuration File. We don't use t4_fw_config_file()
3932 * because we want the ability to modify various features after we've
3933 * processed the configuration file ...
3934 */
3935 memset(&caps_cmd, 0, sizeof(caps_cmd));
3936 caps_cmd.op_to_write =
3937 htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
3938 FW_CMD_REQUEST_F |
3939 FW_CMD_READ_F);
3940 caps_cmd.cfvalid_to_len16 =
3941 htonl(FW_CAPS_CONFIG_CMD_CFVALID_F |
3942 FW_CAPS_CONFIG_CMD_MEMTYPE_CF_V(mtype) |
3943 FW_CAPS_CONFIG_CMD_MEMADDR64K_CF_V(maddr >> 16) |
3944 FW_LEN16(caps_cmd));
3945 ret = t4_wr_mbox(adapter, adapter->mbox, &caps_cmd, sizeof(caps_cmd),
3946 &caps_cmd);
3947
3948 /* If the CAPS_CONFIG failed with an ENOENT (for a Firmware
3949 * Configuration File in FLASH), our last gasp effort is to use the
3950 * Firmware Configuration File which is embedded in the firmware. A
3951 * very few early versions of the firmware didn't have one embedded
3952 * but we can ignore those.
3953 */
3954 if (ret == -ENOENT) {
3955 memset(&caps_cmd, 0, sizeof(caps_cmd));
3956 caps_cmd.op_to_write =
3957 htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
3958 FW_CMD_REQUEST_F |
3959 FW_CMD_READ_F);
3960 caps_cmd.cfvalid_to_len16 = htonl(FW_LEN16(caps_cmd));
3961 ret = t4_wr_mbox(adapter, adapter->mbox, &caps_cmd,
3962 sizeof(caps_cmd), &caps_cmd);
3963 config_name = "Firmware Default";
3964 }
3965
3966 config_issued = 1;
3967 if (ret < 0)
3968 goto bye;
3969
3970 finiver = ntohl(caps_cmd.finiver);
3971 finicsum = ntohl(caps_cmd.finicsum);
3972 cfcsum = ntohl(caps_cmd.cfcsum);
3973 if (finicsum != cfcsum)
3974 dev_warn(adapter->pdev_dev, "Configuration File checksum "\
3975 "mismatch: [fini] csum=%#x, computed csum=%#x\n",
3976 finicsum, cfcsum);
3977
3978 /*
3979 * And now tell the firmware to use the configuration we just loaded.
3980 */
3981 caps_cmd.op_to_write =
3982 htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
3983 FW_CMD_REQUEST_F |
3984 FW_CMD_WRITE_F);
3985 caps_cmd.cfvalid_to_len16 = htonl(FW_LEN16(caps_cmd));
3986 ret = t4_wr_mbox(adapter, adapter->mbox, &caps_cmd, sizeof(caps_cmd),
3987 NULL);
3988 if (ret < 0)
3989 goto bye;
3990
3991 /*
3992 * Tweak configuration based on system architecture, module
3993 * parameters, etc.
3994 */
3995 ret = adap_init0_tweaks(adapter);
3996 if (ret < 0)
3997 goto bye;
3998
3999 /* We will proceed even if HMA init fails. */
4000 ret = adap_config_hma(adapter);
4001 if (ret)
4002 dev_err(adapter->pdev_dev,
4003 "HMA configuration failed with error %d\n", ret);
4004
4005 /*
4006 * And finally tell the firmware to initialize itself using the
4007 * parameters from the Configuration File.
4008 */
4009 ret = t4_fw_initialize(adapter, adapter->mbox);
4010 if (ret < 0)
4011 goto bye;
4012
4013 /* Emit Firmware Configuration File information and return
4014 * successfully.
4015 */
4016 dev_info(adapter->pdev_dev, "Successfully configured using Firmware "\
4017 "Configuration File \"%s\", version %#x, computed checksum %#x\n",
4018 config_name, finiver, cfcsum);
4019 return 0;
4020
4021 /*
4022 * Something bad happened. Return the error ... (If the "error"
4023 * is that there's no Configuration File on the adapter we don't
4024 * want to issue a warning since this is fairly common.)
4025 */
4026 bye:
4027 if (config_issued && ret != -ENOENT)
4028 dev_warn(adapter->pdev_dev, "\"%s\" configuration file error %d\n",
4029 config_name, -ret);
4030 return ret;
4031 }
4032
4033 static struct fw_info fw_info_array[] = {
4034 {
4035 .chip = CHELSIO_T4,
4036 .fs_name = FW4_CFNAME,
4037 .fw_mod_name = FW4_FNAME,
4038 .fw_hdr = {
4039 .chip = FW_HDR_CHIP_T4,
4040 .fw_ver = __cpu_to_be32(FW_VERSION(T4)),
4041 .intfver_nic = FW_INTFVER(T4, NIC),
4042 .intfver_vnic = FW_INTFVER(T4, VNIC),
4043 .intfver_ri = FW_INTFVER(T4, RI),
4044 .intfver_iscsi = FW_INTFVER(T4, ISCSI),
4045 .intfver_fcoe = FW_INTFVER(T4, FCOE),
4046 },
4047 }, {
4048 .chip = CHELSIO_T5,
4049 .fs_name = FW5_CFNAME,
4050 .fw_mod_name = FW5_FNAME,
4051 .fw_hdr = {
4052 .chip = FW_HDR_CHIP_T5,
4053 .fw_ver = __cpu_to_be32(FW_VERSION(T5)),
4054 .intfver_nic = FW_INTFVER(T5, NIC),
4055 .intfver_vnic = FW_INTFVER(T5, VNIC),
4056 .intfver_ri = FW_INTFVER(T5, RI),
4057 .intfver_iscsi = FW_INTFVER(T5, ISCSI),
4058 .intfver_fcoe = FW_INTFVER(T5, FCOE),
4059 },
4060 }, {
4061 .chip = CHELSIO_T6,
4062 .fs_name = FW6_CFNAME,
4063 .fw_mod_name = FW6_FNAME,
4064 .fw_hdr = {
4065 .chip = FW_HDR_CHIP_T6,
4066 .fw_ver = __cpu_to_be32(FW_VERSION(T6)),
4067 .intfver_nic = FW_INTFVER(T6, NIC),
4068 .intfver_vnic = FW_INTFVER(T6, VNIC),
4069 .intfver_ofld = FW_INTFVER(T6, OFLD),
4070 .intfver_ri = FW_INTFVER(T6, RI),
4071 .intfver_iscsipdu = FW_INTFVER(T6, ISCSIPDU),
4072 .intfver_iscsi = FW_INTFVER(T6, ISCSI),
4073 .intfver_fcoepdu = FW_INTFVER(T6, FCOEPDU),
4074 .intfver_fcoe = FW_INTFVER(T6, FCOE),
4075 },
4076 }
4077
4078 };
4079
find_fw_info(int chip)4080 static struct fw_info *find_fw_info(int chip)
4081 {
4082 int i;
4083
4084 for (i = 0; i < ARRAY_SIZE(fw_info_array); i++) {
4085 if (fw_info_array[i].chip == chip)
4086 return &fw_info_array[i];
4087 }
4088 return NULL;
4089 }
4090
4091 /*
4092 * Phase 0 of initialization: contact FW, obtain config, perform basic init.
4093 */
adap_init0(struct adapter * adap)4094 static int adap_init0(struct adapter *adap)
4095 {
4096 int ret;
4097 u32 v, port_vec;
4098 enum dev_state state;
4099 u32 params[7], val[7];
4100 struct fw_caps_config_cmd caps_cmd;
4101 int reset = 1;
4102
4103 /* Grab Firmware Device Log parameters as early as possible so we have
4104 * access to it for debugging, etc.
4105 */
4106 ret = t4_init_devlog_params(adap);
4107 if (ret < 0)
4108 return ret;
4109
4110 /* Contact FW, advertising Master capability */
4111 ret = t4_fw_hello(adap, adap->mbox, adap->mbox,
4112 is_kdump_kernel() ? MASTER_MUST : MASTER_MAY, &state);
4113 if (ret < 0) {
4114 dev_err(adap->pdev_dev, "could not connect to FW, error %d\n",
4115 ret);
4116 return ret;
4117 }
4118 if (ret == adap->mbox)
4119 adap->flags |= MASTER_PF;
4120
4121 /*
4122 * If we're the Master PF Driver and the device is uninitialized,
4123 * then let's consider upgrading the firmware ... (We always want
4124 * to check the firmware version number in order to A. get it for
4125 * later reporting and B. to warn if the currently loaded firmware
4126 * is excessively mismatched relative to the driver.)
4127 */
4128
4129 t4_get_version_info(adap);
4130 ret = t4_check_fw_version(adap);
4131 /* If firmware is too old (not supported by driver) force an update. */
4132 if (ret)
4133 state = DEV_STATE_UNINIT;
4134 if ((adap->flags & MASTER_PF) && state != DEV_STATE_INIT) {
4135 struct fw_info *fw_info;
4136 struct fw_hdr *card_fw;
4137 const struct firmware *fw;
4138 const u8 *fw_data = NULL;
4139 unsigned int fw_size = 0;
4140
4141 /* This is the firmware whose headers the driver was compiled
4142 * against
4143 */
4144 fw_info = find_fw_info(CHELSIO_CHIP_VERSION(adap->params.chip));
4145 if (fw_info == NULL) {
4146 dev_err(adap->pdev_dev,
4147 "unable to get firmware info for chip %d.\n",
4148 CHELSIO_CHIP_VERSION(adap->params.chip));
4149 return -EINVAL;
4150 }
4151
4152 /* allocate memory to read the header of the firmware on the
4153 * card
4154 */
4155 card_fw = kvzalloc(sizeof(*card_fw), GFP_KERNEL);
4156 if (!card_fw) {
4157 ret = -ENOMEM;
4158 goto bye;
4159 }
4160
4161 /* Get FW from from /lib/firmware/ */
4162 ret = request_firmware(&fw, fw_info->fw_mod_name,
4163 adap->pdev_dev);
4164 if (ret < 0) {
4165 dev_err(adap->pdev_dev,
4166 "unable to load firmware image %s, error %d\n",
4167 fw_info->fw_mod_name, ret);
4168 } else {
4169 fw_data = fw->data;
4170 fw_size = fw->size;
4171 }
4172
4173 /* upgrade FW logic */
4174 ret = t4_prep_fw(adap, fw_info, fw_data, fw_size, card_fw,
4175 state, &reset);
4176
4177 /* Cleaning up */
4178 release_firmware(fw);
4179 kvfree(card_fw);
4180
4181 if (ret < 0)
4182 goto bye;
4183 }
4184
4185 /* If the firmware is initialized already, emit a simply note to that
4186 * effect. Otherwise, it's time to try initializing the adapter.
4187 */
4188 if (state == DEV_STATE_INIT) {
4189 ret = adap_config_hma(adap);
4190 if (ret)
4191 dev_err(adap->pdev_dev,
4192 "HMA configuration failed with error %d\n",
4193 ret);
4194 dev_info(adap->pdev_dev, "Coming up as %s: "\
4195 "Adapter already initialized\n",
4196 adap->flags & MASTER_PF ? "MASTER" : "SLAVE");
4197 } else {
4198 dev_info(adap->pdev_dev, "Coming up as MASTER: "\
4199 "Initializing adapter\n");
4200
4201 /* Find out whether we're dealing with a version of the
4202 * firmware which has configuration file support.
4203 */
4204 params[0] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
4205 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_CF));
4206 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1,
4207 params, val);
4208
4209 /* If the firmware doesn't support Configuration Files,
4210 * return an error.
4211 */
4212 if (ret < 0) {
4213 dev_err(adap->pdev_dev, "firmware doesn't support "
4214 "Firmware Configuration Files\n");
4215 goto bye;
4216 }
4217
4218 /* The firmware provides us with a memory buffer where we can
4219 * load a Configuration File from the host if we want to
4220 * override the Configuration File in flash.
4221 */
4222 ret = adap_init0_config(adap, reset);
4223 if (ret == -ENOENT) {
4224 dev_err(adap->pdev_dev, "no Configuration File "
4225 "present on adapter.\n");
4226 goto bye;
4227 }
4228 if (ret < 0) {
4229 dev_err(adap->pdev_dev, "could not initialize "
4230 "adapter, error %d\n", -ret);
4231 goto bye;
4232 }
4233 }
4234
4235 /* Now that we've successfully configured and initialized the adapter
4236 * (or found it already initialized), we can ask the Firmware what
4237 * resources it has provisioned for us.
4238 */
4239 ret = t4_get_pfres(adap);
4240 if (ret) {
4241 dev_err(adap->pdev_dev,
4242 "Unable to retrieve resource provisioning information\n");
4243 goto bye;
4244 }
4245
4246 /* Grab VPD parameters. This should be done after we establish a
4247 * connection to the firmware since some of the VPD parameters
4248 * (notably the Core Clock frequency) are retrieved via requests to
4249 * the firmware. On the other hand, we need these fairly early on
4250 * so we do this right after getting ahold of the firmware.
4251 *
4252 * We need to do this after initializing the adapter because someone
4253 * could have FLASHed a new VPD which won't be read by the firmware
4254 * until we do the RESET ...
4255 */
4256 ret = t4_get_vpd_params(adap, &adap->params.vpd);
4257 if (ret < 0)
4258 goto bye;
4259
4260 /* Find out what ports are available to us. Note that we need to do
4261 * this before calling adap_init0_no_config() since it needs nports
4262 * and portvec ...
4263 */
4264 v =
4265 FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
4266 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_PORTVEC);
4267 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1, &v, &port_vec);
4268 if (ret < 0)
4269 goto bye;
4270
4271 adap->params.nports = hweight32(port_vec);
4272 adap->params.portvec = port_vec;
4273
4274 /* Give the SGE code a chance to pull in anything that it needs ...
4275 * Note that this must be called after we retrieve our VPD parameters
4276 * in order to know how to convert core ticks to seconds, etc.
4277 */
4278 ret = t4_sge_init(adap);
4279 if (ret < 0)
4280 goto bye;
4281
4282 if (is_bypass_device(adap->pdev->device))
4283 adap->params.bypass = 1;
4284
4285 /*
4286 * Grab some of our basic fundamental operating parameters.
4287 */
4288 #define FW_PARAM_DEV(param) \
4289 (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) | \
4290 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_##param))
4291
4292 #define FW_PARAM_PFVF(param) \
4293 FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_PFVF) | \
4294 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_PFVF_##param)| \
4295 FW_PARAMS_PARAM_Y_V(0) | \
4296 FW_PARAMS_PARAM_Z_V(0)
4297
4298 params[0] = FW_PARAM_PFVF(EQ_START);
4299 params[1] = FW_PARAM_PFVF(L2T_START);
4300 params[2] = FW_PARAM_PFVF(L2T_END);
4301 params[3] = FW_PARAM_PFVF(FILTER_START);
4302 params[4] = FW_PARAM_PFVF(FILTER_END);
4303 params[5] = FW_PARAM_PFVF(IQFLINT_START);
4304 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 6, params, val);
4305 if (ret < 0)
4306 goto bye;
4307 adap->sge.egr_start = val[0];
4308 adap->l2t_start = val[1];
4309 adap->l2t_end = val[2];
4310 adap->tids.ftid_base = val[3];
4311 adap->tids.nftids = val[4] - val[3] + 1;
4312 adap->sge.ingr_start = val[5];
4313
4314 if (CHELSIO_CHIP_VERSION(adap->params.chip) > CHELSIO_T5) {
4315 /* Read the raw mps entries. In T6, the last 2 tcam entries
4316 * are reserved for raw mac addresses (rawf = 2, one per port).
4317 */
4318 params[0] = FW_PARAM_PFVF(RAWF_START);
4319 params[1] = FW_PARAM_PFVF(RAWF_END);
4320 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2,
4321 params, val);
4322 if (ret == 0) {
4323 adap->rawf_start = val[0];
4324 adap->rawf_cnt = val[1] - val[0] + 1;
4325 }
4326 }
4327
4328 /* qids (ingress/egress) returned from firmware can be anywhere
4329 * in the range from EQ(IQFLINT)_START to EQ(IQFLINT)_END.
4330 * Hence driver needs to allocate memory for this range to
4331 * store the queue info. Get the highest IQFLINT/EQ index returned
4332 * in FW_EQ_*_CMD.alloc command.
4333 */
4334 params[0] = FW_PARAM_PFVF(EQ_END);
4335 params[1] = FW_PARAM_PFVF(IQFLINT_END);
4336 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2, params, val);
4337 if (ret < 0)
4338 goto bye;
4339 adap->sge.egr_sz = val[0] - adap->sge.egr_start + 1;
4340 adap->sge.ingr_sz = val[1] - adap->sge.ingr_start + 1;
4341
4342 adap->sge.egr_map = kcalloc(adap->sge.egr_sz,
4343 sizeof(*adap->sge.egr_map), GFP_KERNEL);
4344 if (!adap->sge.egr_map) {
4345 ret = -ENOMEM;
4346 goto bye;
4347 }
4348
4349 adap->sge.ingr_map = kcalloc(adap->sge.ingr_sz,
4350 sizeof(*adap->sge.ingr_map), GFP_KERNEL);
4351 if (!adap->sge.ingr_map) {
4352 ret = -ENOMEM;
4353 goto bye;
4354 }
4355
4356 /* Allocate the memory for the vaious egress queue bitmaps
4357 * ie starving_fl, txq_maperr and blocked_fl.
4358 */
4359 adap->sge.starving_fl = kcalloc(BITS_TO_LONGS(adap->sge.egr_sz),
4360 sizeof(long), GFP_KERNEL);
4361 if (!adap->sge.starving_fl) {
4362 ret = -ENOMEM;
4363 goto bye;
4364 }
4365
4366 adap->sge.txq_maperr = kcalloc(BITS_TO_LONGS(adap->sge.egr_sz),
4367 sizeof(long), GFP_KERNEL);
4368 if (!adap->sge.txq_maperr) {
4369 ret = -ENOMEM;
4370 goto bye;
4371 }
4372
4373 #ifdef CONFIG_DEBUG_FS
4374 adap->sge.blocked_fl = kcalloc(BITS_TO_LONGS(adap->sge.egr_sz),
4375 sizeof(long), GFP_KERNEL);
4376 if (!adap->sge.blocked_fl) {
4377 ret = -ENOMEM;
4378 goto bye;
4379 }
4380 #endif
4381
4382 params[0] = FW_PARAM_PFVF(CLIP_START);
4383 params[1] = FW_PARAM_PFVF(CLIP_END);
4384 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2, params, val);
4385 if (ret < 0)
4386 goto bye;
4387 adap->clipt_start = val[0];
4388 adap->clipt_end = val[1];
4389
4390 /* We don't yet have a PARAMs calls to retrieve the number of Traffic
4391 * Classes supported by the hardware/firmware so we hard code it here
4392 * for now.
4393 */
4394 adap->params.nsched_cls = is_t4(adap->params.chip) ? 15 : 16;
4395
4396 /* query params related to active filter region */
4397 params[0] = FW_PARAM_PFVF(ACTIVE_FILTER_START);
4398 params[1] = FW_PARAM_PFVF(ACTIVE_FILTER_END);
4399 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2, params, val);
4400 /* If Active filter size is set we enable establishing
4401 * offload connection through firmware work request
4402 */
4403 if ((val[0] != val[1]) && (ret >= 0)) {
4404 adap->flags |= FW_OFLD_CONN;
4405 adap->tids.aftid_base = val[0];
4406 adap->tids.aftid_end = val[1];
4407 }
4408
4409 /* If we're running on newer firmware, let it know that we're
4410 * prepared to deal with encapsulated CPL messages. Older
4411 * firmware won't understand this and we'll just get
4412 * unencapsulated messages ...
4413 */
4414 params[0] = FW_PARAM_PFVF(CPLFW4MSG_ENCAP);
4415 val[0] = 1;
4416 (void)t4_set_params(adap, adap->mbox, adap->pf, 0, 1, params, val);
4417
4418 /*
4419 * Find out whether we're allowed to use the T5+ ULPTX MEMWRITE DSGL
4420 * capability. Earlier versions of the firmware didn't have the
4421 * ULPTX_MEMWRITE_DSGL so we'll interpret a query failure as no
4422 * permission to use ULPTX MEMWRITE DSGL.
4423 */
4424 if (is_t4(adap->params.chip)) {
4425 adap->params.ulptx_memwrite_dsgl = false;
4426 } else {
4427 params[0] = FW_PARAM_DEV(ULPTX_MEMWRITE_DSGL);
4428 ret = t4_query_params(adap, adap->mbox, adap->pf, 0,
4429 1, params, val);
4430 adap->params.ulptx_memwrite_dsgl = (ret == 0 && val[0] != 0);
4431 }
4432
4433 /* See if FW supports FW_RI_FR_NSMR_TPTE_WR work request */
4434 params[0] = FW_PARAM_DEV(RI_FR_NSMR_TPTE_WR);
4435 ret = t4_query_params(adap, adap->mbox, adap->pf, 0,
4436 1, params, val);
4437 adap->params.fr_nsmr_tpte_wr_support = (ret == 0 && val[0] != 0);
4438
4439 /* See if FW supports FW_FILTER2 work request */
4440 if (is_t4(adap->params.chip)) {
4441 adap->params.filter2_wr_support = 0;
4442 } else {
4443 params[0] = FW_PARAM_DEV(FILTER2_WR);
4444 ret = t4_query_params(adap, adap->mbox, adap->pf, 0,
4445 1, params, val);
4446 adap->params.filter2_wr_support = (ret == 0 && val[0] != 0);
4447 }
4448
4449 /*
4450 * Get device capabilities so we can determine what resources we need
4451 * to manage.
4452 */
4453 memset(&caps_cmd, 0, sizeof(caps_cmd));
4454 caps_cmd.op_to_write = htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
4455 FW_CMD_REQUEST_F | FW_CMD_READ_F);
4456 caps_cmd.cfvalid_to_len16 = htonl(FW_LEN16(caps_cmd));
4457 ret = t4_wr_mbox(adap, adap->mbox, &caps_cmd, sizeof(caps_cmd),
4458 &caps_cmd);
4459 if (ret < 0)
4460 goto bye;
4461
4462 if (caps_cmd.ofldcaps ||
4463 (caps_cmd.niccaps & htons(FW_CAPS_CONFIG_NIC_HASHFILTER))) {
4464 /* query offload-related parameters */
4465 params[0] = FW_PARAM_DEV(NTID);
4466 params[1] = FW_PARAM_PFVF(SERVER_START);
4467 params[2] = FW_PARAM_PFVF(SERVER_END);
4468 params[3] = FW_PARAM_PFVF(TDDP_START);
4469 params[4] = FW_PARAM_PFVF(TDDP_END);
4470 params[5] = FW_PARAM_DEV(FLOWC_BUFFIFO_SZ);
4471 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 6,
4472 params, val);
4473 if (ret < 0)
4474 goto bye;
4475 adap->tids.ntids = val[0];
4476 adap->tids.natids = min(adap->tids.ntids / 2, MAX_ATIDS);
4477 adap->tids.stid_base = val[1];
4478 adap->tids.nstids = val[2] - val[1] + 1;
4479 /*
4480 * Setup server filter region. Divide the available filter
4481 * region into two parts. Regular filters get 1/3rd and server
4482 * filters get 2/3rd part. This is only enabled if workarond
4483 * path is enabled.
4484 * 1. For regular filters.
4485 * 2. Server filter: This are special filters which are used
4486 * to redirect SYN packets to offload queue.
4487 */
4488 if (adap->flags & FW_OFLD_CONN && !is_bypass(adap)) {
4489 adap->tids.sftid_base = adap->tids.ftid_base +
4490 DIV_ROUND_UP(adap->tids.nftids, 3);
4491 adap->tids.nsftids = adap->tids.nftids -
4492 DIV_ROUND_UP(adap->tids.nftids, 3);
4493 adap->tids.nftids = adap->tids.sftid_base -
4494 adap->tids.ftid_base;
4495 }
4496 adap->vres.ddp.start = val[3];
4497 adap->vres.ddp.size = val[4] - val[3] + 1;
4498 adap->params.ofldq_wr_cred = val[5];
4499
4500 if (caps_cmd.niccaps & htons(FW_CAPS_CONFIG_NIC_HASHFILTER)) {
4501 ret = init_hash_filter(adap);
4502 if (ret < 0)
4503 goto bye;
4504 } else {
4505 adap->params.offload = 1;
4506 adap->num_ofld_uld += 1;
4507 }
4508 }
4509 if (caps_cmd.rdmacaps) {
4510 params[0] = FW_PARAM_PFVF(STAG_START);
4511 params[1] = FW_PARAM_PFVF(STAG_END);
4512 params[2] = FW_PARAM_PFVF(RQ_START);
4513 params[3] = FW_PARAM_PFVF(RQ_END);
4514 params[4] = FW_PARAM_PFVF(PBL_START);
4515 params[5] = FW_PARAM_PFVF(PBL_END);
4516 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 6,
4517 params, val);
4518 if (ret < 0)
4519 goto bye;
4520 adap->vres.stag.start = val[0];
4521 adap->vres.stag.size = val[1] - val[0] + 1;
4522 adap->vres.rq.start = val[2];
4523 adap->vres.rq.size = val[3] - val[2] + 1;
4524 adap->vres.pbl.start = val[4];
4525 adap->vres.pbl.size = val[5] - val[4] + 1;
4526
4527 params[0] = FW_PARAM_PFVF(SRQ_START);
4528 params[1] = FW_PARAM_PFVF(SRQ_END);
4529 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2,
4530 params, val);
4531 if (!ret) {
4532 adap->vres.srq.start = val[0];
4533 adap->vres.srq.size = val[1] - val[0] + 1;
4534 }
4535 if (adap->vres.srq.size) {
4536 adap->srq = t4_init_srq(adap->vres.srq.size);
4537 if (!adap->srq)
4538 dev_warn(&adap->pdev->dev, "could not allocate SRQ, continuing\n");
4539 }
4540
4541 params[0] = FW_PARAM_PFVF(SQRQ_START);
4542 params[1] = FW_PARAM_PFVF(SQRQ_END);
4543 params[2] = FW_PARAM_PFVF(CQ_START);
4544 params[3] = FW_PARAM_PFVF(CQ_END);
4545 params[4] = FW_PARAM_PFVF(OCQ_START);
4546 params[5] = FW_PARAM_PFVF(OCQ_END);
4547 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 6, params,
4548 val);
4549 if (ret < 0)
4550 goto bye;
4551 adap->vres.qp.start = val[0];
4552 adap->vres.qp.size = val[1] - val[0] + 1;
4553 adap->vres.cq.start = val[2];
4554 adap->vres.cq.size = val[3] - val[2] + 1;
4555 adap->vres.ocq.start = val[4];
4556 adap->vres.ocq.size = val[5] - val[4] + 1;
4557
4558 params[0] = FW_PARAM_DEV(MAXORDIRD_QP);
4559 params[1] = FW_PARAM_DEV(MAXIRD_ADAPTER);
4560 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2, params,
4561 val);
4562 if (ret < 0) {
4563 adap->params.max_ordird_qp = 8;
4564 adap->params.max_ird_adapter = 32 * adap->tids.ntids;
4565 ret = 0;
4566 } else {
4567 adap->params.max_ordird_qp = val[0];
4568 adap->params.max_ird_adapter = val[1];
4569 }
4570 dev_info(adap->pdev_dev,
4571 "max_ordird_qp %d max_ird_adapter %d\n",
4572 adap->params.max_ordird_qp,
4573 adap->params.max_ird_adapter);
4574
4575 /* Enable write_with_immediate if FW supports it */
4576 params[0] = FW_PARAM_DEV(RDMA_WRITE_WITH_IMM);
4577 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1, params,
4578 val);
4579 adap->params.write_w_imm_support = (ret == 0 && val[0] != 0);
4580
4581 /* Enable write_cmpl if FW supports it */
4582 params[0] = FW_PARAM_DEV(RI_WRITE_CMPL_WR);
4583 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1, params,
4584 val);
4585 adap->params.write_cmpl_support = (ret == 0 && val[0] != 0);
4586 adap->num_ofld_uld += 2;
4587 }
4588 if (caps_cmd.iscsicaps) {
4589 params[0] = FW_PARAM_PFVF(ISCSI_START);
4590 params[1] = FW_PARAM_PFVF(ISCSI_END);
4591 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2,
4592 params, val);
4593 if (ret < 0)
4594 goto bye;
4595 adap->vres.iscsi.start = val[0];
4596 adap->vres.iscsi.size = val[1] - val[0] + 1;
4597 /* LIO target and cxgb4i initiaitor */
4598 adap->num_ofld_uld += 2;
4599 }
4600 if (caps_cmd.cryptocaps) {
4601 if (ntohs(caps_cmd.cryptocaps) &
4602 FW_CAPS_CONFIG_CRYPTO_LOOKASIDE) {
4603 params[0] = FW_PARAM_PFVF(NCRYPTO_LOOKASIDE);
4604 ret = t4_query_params(adap, adap->mbox, adap->pf, 0,
4605 2, params, val);
4606 if (ret < 0) {
4607 if (ret != -EINVAL)
4608 goto bye;
4609 } else {
4610 adap->vres.ncrypto_fc = val[0];
4611 }
4612 adap->num_ofld_uld += 1;
4613 }
4614 if (ntohs(caps_cmd.cryptocaps) &
4615 FW_CAPS_CONFIG_TLS_INLINE) {
4616 params[0] = FW_PARAM_PFVF(TLS_START);
4617 params[1] = FW_PARAM_PFVF(TLS_END);
4618 ret = t4_query_params(adap, adap->mbox, adap->pf, 0,
4619 2, params, val);
4620 if (ret < 0)
4621 goto bye;
4622 adap->vres.key.start = val[0];
4623 adap->vres.key.size = val[1] - val[0] + 1;
4624 adap->num_uld += 1;
4625 }
4626 adap->params.crypto = ntohs(caps_cmd.cryptocaps);
4627 }
4628 #undef FW_PARAM_PFVF
4629 #undef FW_PARAM_DEV
4630
4631 /* The MTU/MSS Table is initialized by now, so load their values. If
4632 * we're initializing the adapter, then we'll make any modifications
4633 * we want to the MTU/MSS Table and also initialize the congestion
4634 * parameters.
4635 */
4636 t4_read_mtu_tbl(adap, adap->params.mtus, NULL);
4637 if (state != DEV_STATE_INIT) {
4638 int i;
4639
4640 /* The default MTU Table contains values 1492 and 1500.
4641 * However, for TCP, it's better to have two values which are
4642 * a multiple of 8 +/- 4 bytes apart near this popular MTU.
4643 * This allows us to have a TCP Data Payload which is a
4644 * multiple of 8 regardless of what combination of TCP Options
4645 * are in use (always a multiple of 4 bytes) which is
4646 * important for performance reasons. For instance, if no
4647 * options are in use, then we have a 20-byte IP header and a
4648 * 20-byte TCP header. In this case, a 1500-byte MSS would
4649 * result in a TCP Data Payload of 1500 - 40 == 1460 bytes
4650 * which is not a multiple of 8. So using an MSS of 1488 in
4651 * this case results in a TCP Data Payload of 1448 bytes which
4652 * is a multiple of 8. On the other hand, if 12-byte TCP Time
4653 * Stamps have been negotiated, then an MTU of 1500 bytes
4654 * results in a TCP Data Payload of 1448 bytes which, as
4655 * above, is a multiple of 8 bytes ...
4656 */
4657 for (i = 0; i < NMTUS; i++)
4658 if (adap->params.mtus[i] == 1492) {
4659 adap->params.mtus[i] = 1488;
4660 break;
4661 }
4662
4663 t4_load_mtus(adap, adap->params.mtus, adap->params.a_wnd,
4664 adap->params.b_wnd);
4665 }
4666 t4_init_sge_params(adap);
4667 adap->flags |= FW_OK;
4668 t4_init_tp_params(adap, true);
4669 return 0;
4670
4671 /*
4672 * Something bad happened. If a command timed out or failed with EIO
4673 * FW does not operate within its spec or something catastrophic
4674 * happened to HW/FW, stop issuing commands.
4675 */
4676 bye:
4677 adap_free_hma_mem(adap);
4678 kfree(adap->sge.egr_map);
4679 kfree(adap->sge.ingr_map);
4680 kfree(adap->sge.starving_fl);
4681 kfree(adap->sge.txq_maperr);
4682 #ifdef CONFIG_DEBUG_FS
4683 kfree(adap->sge.blocked_fl);
4684 #endif
4685 if (ret != -ETIMEDOUT && ret != -EIO)
4686 t4_fw_bye(adap, adap->mbox);
4687 return ret;
4688 }
4689
4690 /* EEH callbacks */
4691
eeh_err_detected(struct pci_dev * pdev,pci_channel_state_t state)4692 static pci_ers_result_t eeh_err_detected(struct pci_dev *pdev,
4693 pci_channel_state_t state)
4694 {
4695 int i;
4696 struct adapter *adap = pci_get_drvdata(pdev);
4697
4698 if (!adap)
4699 goto out;
4700
4701 rtnl_lock();
4702 adap->flags &= ~FW_OK;
4703 notify_ulds(adap, CXGB4_STATE_START_RECOVERY);
4704 spin_lock(&adap->stats_lock);
4705 for_each_port(adap, i) {
4706 struct net_device *dev = adap->port[i];
4707 if (dev) {
4708 netif_device_detach(dev);
4709 netif_carrier_off(dev);
4710 }
4711 }
4712 spin_unlock(&adap->stats_lock);
4713 disable_interrupts(adap);
4714 if (adap->flags & FULL_INIT_DONE)
4715 cxgb_down(adap);
4716 rtnl_unlock();
4717 if ((adap->flags & DEV_ENABLED)) {
4718 pci_disable_device(pdev);
4719 adap->flags &= ~DEV_ENABLED;
4720 }
4721 out: return state == pci_channel_io_perm_failure ?
4722 PCI_ERS_RESULT_DISCONNECT : PCI_ERS_RESULT_NEED_RESET;
4723 }
4724
eeh_slot_reset(struct pci_dev * pdev)4725 static pci_ers_result_t eeh_slot_reset(struct pci_dev *pdev)
4726 {
4727 int i, ret;
4728 struct fw_caps_config_cmd c;
4729 struct adapter *adap = pci_get_drvdata(pdev);
4730
4731 if (!adap) {
4732 pci_restore_state(pdev);
4733 pci_save_state(pdev);
4734 return PCI_ERS_RESULT_RECOVERED;
4735 }
4736
4737 if (!(adap->flags & DEV_ENABLED)) {
4738 if (pci_enable_device(pdev)) {
4739 dev_err(&pdev->dev, "Cannot reenable PCI "
4740 "device after reset\n");
4741 return PCI_ERS_RESULT_DISCONNECT;
4742 }
4743 adap->flags |= DEV_ENABLED;
4744 }
4745
4746 pci_set_master(pdev);
4747 pci_restore_state(pdev);
4748 pci_save_state(pdev);
4749 pci_cleanup_aer_uncorrect_error_status(pdev);
4750
4751 if (t4_wait_dev_ready(adap->regs) < 0)
4752 return PCI_ERS_RESULT_DISCONNECT;
4753 if (t4_fw_hello(adap, adap->mbox, adap->pf, MASTER_MUST, NULL) < 0)
4754 return PCI_ERS_RESULT_DISCONNECT;
4755 adap->flags |= FW_OK;
4756 if (adap_init1(adap, &c))
4757 return PCI_ERS_RESULT_DISCONNECT;
4758
4759 for_each_port(adap, i) {
4760 struct port_info *p = adap2pinfo(adap, i);
4761
4762 ret = t4_alloc_vi(adap, adap->mbox, p->tx_chan, adap->pf, 0, 1,
4763 NULL, NULL);
4764 if (ret < 0)
4765 return PCI_ERS_RESULT_DISCONNECT;
4766 p->viid = ret;
4767 p->xact_addr_filt = -1;
4768 }
4769
4770 t4_load_mtus(adap, adap->params.mtus, adap->params.a_wnd,
4771 adap->params.b_wnd);
4772 setup_memwin(adap);
4773 if (cxgb_up(adap))
4774 return PCI_ERS_RESULT_DISCONNECT;
4775 return PCI_ERS_RESULT_RECOVERED;
4776 }
4777
eeh_resume(struct pci_dev * pdev)4778 static void eeh_resume(struct pci_dev *pdev)
4779 {
4780 int i;
4781 struct adapter *adap = pci_get_drvdata(pdev);
4782
4783 if (!adap)
4784 return;
4785
4786 rtnl_lock();
4787 for_each_port(adap, i) {
4788 struct net_device *dev = adap->port[i];
4789 if (dev) {
4790 if (netif_running(dev)) {
4791 link_start(dev);
4792 cxgb_set_rxmode(dev);
4793 }
4794 netif_device_attach(dev);
4795 }
4796 }
4797 rtnl_unlock();
4798 }
4799
4800 static const struct pci_error_handlers cxgb4_eeh = {
4801 .error_detected = eeh_err_detected,
4802 .slot_reset = eeh_slot_reset,
4803 .resume = eeh_resume,
4804 };
4805
4806 /* Return true if the Link Configuration supports "High Speeds" (those greater
4807 * than 1Gb/s).
4808 */
is_x_10g_port(const struct link_config * lc)4809 static inline bool is_x_10g_port(const struct link_config *lc)
4810 {
4811 unsigned int speeds, high_speeds;
4812
4813 speeds = FW_PORT_CAP32_SPEED_V(FW_PORT_CAP32_SPEED_G(lc->pcaps));
4814 high_speeds = speeds &
4815 ~(FW_PORT_CAP32_SPEED_100M | FW_PORT_CAP32_SPEED_1G);
4816
4817 return high_speeds != 0;
4818 }
4819
4820 /*
4821 * Perform default configuration of DMA queues depending on the number and type
4822 * of ports we found and the number of available CPUs. Most settings can be
4823 * modified by the admin prior to actual use.
4824 */
cfg_queues(struct adapter * adap)4825 static int cfg_queues(struct adapter *adap)
4826 {
4827 struct sge *s = &adap->sge;
4828 int i, n10g = 0, qidx = 0;
4829 int niqflint, neq, avail_eth_qsets;
4830 int max_eth_qsets = 32;
4831 #ifndef CONFIG_CHELSIO_T4_DCB
4832 int q10g = 0;
4833 #endif
4834
4835 /* Reduce memory usage in kdump environment, disable all offload.
4836 */
4837 if (is_kdump_kernel() || (is_uld(adap) && t4_uld_mem_alloc(adap))) {
4838 adap->params.offload = 0;
4839 adap->params.crypto = 0;
4840 }
4841
4842 /* Calculate the number of Ethernet Queue Sets available based on
4843 * resources provisioned for us. We always have an Asynchronous
4844 * Firmware Event Ingress Queue. If we're operating in MSI or Legacy
4845 * IRQ Pin Interrupt mode, then we'll also have a Forwarded Interrupt
4846 * Ingress Queue. Meanwhile, we need two Egress Queues for each
4847 * Queue Set: one for the Free List and one for the Ethernet TX Queue.
4848 *
4849 * Note that we should also take into account all of the various
4850 * Offload Queues. But, in any situation where we're operating in
4851 * a Resource Constrained Provisioning environment, doing any Offload
4852 * at all is problematic ...
4853 */
4854 niqflint = adap->params.pfres.niqflint - 1;
4855 if (!(adap->flags & USING_MSIX))
4856 niqflint--;
4857 neq = adap->params.pfres.neq / 2;
4858 avail_eth_qsets = min(niqflint, neq);
4859
4860 if (avail_eth_qsets > max_eth_qsets)
4861 avail_eth_qsets = max_eth_qsets;
4862
4863 if (avail_eth_qsets < adap->params.nports) {
4864 dev_err(adap->pdev_dev, "avail_eth_qsets=%d < nports=%d\n",
4865 avail_eth_qsets, adap->params.nports);
4866 return -ENOMEM;
4867 }
4868
4869 /* Count the number of 10Gb/s or better ports */
4870 for_each_port(adap, i)
4871 n10g += is_x_10g_port(&adap2pinfo(adap, i)->link_cfg);
4872
4873 #ifdef CONFIG_CHELSIO_T4_DCB
4874 /* For Data Center Bridging support we need to be able to support up
4875 * to 8 Traffic Priorities; each of which will be assigned to its
4876 * own TX Queue in order to prevent Head-Of-Line Blocking.
4877 */
4878 if (adap->params.nports * 8 > avail_eth_qsets) {
4879 dev_err(adap->pdev_dev, "DCB avail_eth_qsets=%d < %d!\n",
4880 avail_eth_qsets, adap->params.nports * 8);
4881 return -ENOMEM;
4882 }
4883
4884 for_each_port(adap, i) {
4885 struct port_info *pi = adap2pinfo(adap, i);
4886
4887 pi->first_qset = qidx;
4888 pi->nqsets = is_kdump_kernel() ? 1 : 8;
4889 qidx += pi->nqsets;
4890 }
4891 #else /* !CONFIG_CHELSIO_T4_DCB */
4892 /*
4893 * We default to 1 queue per non-10G port and up to # of cores queues
4894 * per 10G port.
4895 */
4896 if (n10g)
4897 q10g = (avail_eth_qsets - (adap->params.nports - n10g)) / n10g;
4898 if (q10g > netif_get_num_default_rss_queues())
4899 q10g = netif_get_num_default_rss_queues();
4900
4901 if (is_kdump_kernel())
4902 q10g = 1;
4903
4904 for_each_port(adap, i) {
4905 struct port_info *pi = adap2pinfo(adap, i);
4906
4907 pi->first_qset = qidx;
4908 pi->nqsets = is_x_10g_port(&pi->link_cfg) ? q10g : 1;
4909 qidx += pi->nqsets;
4910 }
4911 #endif /* !CONFIG_CHELSIO_T4_DCB */
4912
4913 s->ethqsets = qidx;
4914 s->max_ethqsets = qidx; /* MSI-X may lower it later */
4915
4916 if (is_uld(adap)) {
4917 /*
4918 * For offload we use 1 queue/channel if all ports are up to 1G,
4919 * otherwise we divide all available queues amongst the channels
4920 * capped by the number of available cores.
4921 */
4922 if (n10g) {
4923 i = min_t(int, MAX_OFLD_QSETS, num_online_cpus());
4924 s->ofldqsets = roundup(i, adap->params.nports);
4925 } else {
4926 s->ofldqsets = adap->params.nports;
4927 }
4928 }
4929
4930 for (i = 0; i < ARRAY_SIZE(s->ethrxq); i++) {
4931 struct sge_eth_rxq *r = &s->ethrxq[i];
4932
4933 init_rspq(adap, &r->rspq, 5, 10, 1024, 64);
4934 r->fl.size = 72;
4935 }
4936
4937 for (i = 0; i < ARRAY_SIZE(s->ethtxq); i++)
4938 s->ethtxq[i].q.size = 1024;
4939
4940 for (i = 0; i < ARRAY_SIZE(s->ctrlq); i++)
4941 s->ctrlq[i].q.size = 512;
4942
4943 if (!is_t4(adap->params.chip))
4944 s->ptptxq.q.size = 8;
4945
4946 init_rspq(adap, &s->fw_evtq, 0, 1, 1024, 64);
4947 init_rspq(adap, &s->intrq, 0, 1, 512, 64);
4948
4949 return 0;
4950 }
4951
4952 /*
4953 * Reduce the number of Ethernet queues across all ports to at most n.
4954 * n provides at least one queue per port.
4955 */
reduce_ethqs(struct adapter * adap,int n)4956 static void reduce_ethqs(struct adapter *adap, int n)
4957 {
4958 int i;
4959 struct port_info *pi;
4960
4961 while (n < adap->sge.ethqsets)
4962 for_each_port(adap, i) {
4963 pi = adap2pinfo(adap, i);
4964 if (pi->nqsets > 1) {
4965 pi->nqsets--;
4966 adap->sge.ethqsets--;
4967 if (adap->sge.ethqsets <= n)
4968 break;
4969 }
4970 }
4971
4972 n = 0;
4973 for_each_port(adap, i) {
4974 pi = adap2pinfo(adap, i);
4975 pi->first_qset = n;
4976 n += pi->nqsets;
4977 }
4978 }
4979
get_msix_info(struct adapter * adap)4980 static int get_msix_info(struct adapter *adap)
4981 {
4982 struct uld_msix_info *msix_info;
4983 unsigned int max_ingq = 0;
4984
4985 if (is_offload(adap))
4986 max_ingq += MAX_OFLD_QSETS * adap->num_ofld_uld;
4987 if (is_pci_uld(adap))
4988 max_ingq += MAX_OFLD_QSETS * adap->num_uld;
4989
4990 if (!max_ingq)
4991 goto out;
4992
4993 msix_info = kcalloc(max_ingq, sizeof(*msix_info), GFP_KERNEL);
4994 if (!msix_info)
4995 return -ENOMEM;
4996
4997 adap->msix_bmap_ulds.msix_bmap = kcalloc(BITS_TO_LONGS(max_ingq),
4998 sizeof(long), GFP_KERNEL);
4999 if (!adap->msix_bmap_ulds.msix_bmap) {
5000 kfree(msix_info);
5001 return -ENOMEM;
5002 }
5003 spin_lock_init(&adap->msix_bmap_ulds.lock);
5004 adap->msix_info_ulds = msix_info;
5005 out:
5006 return 0;
5007 }
5008
free_msix_info(struct adapter * adap)5009 static void free_msix_info(struct adapter *adap)
5010 {
5011 if (!(adap->num_uld && adap->num_ofld_uld))
5012 return;
5013
5014 kfree(adap->msix_info_ulds);
5015 kfree(adap->msix_bmap_ulds.msix_bmap);
5016 }
5017
5018 /* 2 MSI-X vectors needed for the FW queue and non-data interrupts */
5019 #define EXTRA_VECS 2
5020
enable_msix(struct adapter * adap)5021 static int enable_msix(struct adapter *adap)
5022 {
5023 int ofld_need = 0, uld_need = 0;
5024 int i, j, want, need, allocated;
5025 struct sge *s = &adap->sge;
5026 unsigned int nchan = adap->params.nports;
5027 struct msix_entry *entries;
5028 int max_ingq = MAX_INGQ;
5029
5030 if (is_pci_uld(adap))
5031 max_ingq += (MAX_OFLD_QSETS * adap->num_uld);
5032 if (is_offload(adap))
5033 max_ingq += (MAX_OFLD_QSETS * adap->num_ofld_uld);
5034 entries = kmalloc_array(max_ingq + 1, sizeof(*entries),
5035 GFP_KERNEL);
5036 if (!entries)
5037 return -ENOMEM;
5038
5039 /* map for msix */
5040 if (get_msix_info(adap)) {
5041 adap->params.offload = 0;
5042 adap->params.crypto = 0;
5043 }
5044
5045 for (i = 0; i < max_ingq + 1; ++i)
5046 entries[i].entry = i;
5047
5048 want = s->max_ethqsets + EXTRA_VECS;
5049 if (is_offload(adap)) {
5050 want += adap->num_ofld_uld * s->ofldqsets;
5051 ofld_need = adap->num_ofld_uld * nchan;
5052 }
5053 if (is_pci_uld(adap)) {
5054 want += adap->num_uld * s->ofldqsets;
5055 uld_need = adap->num_uld * nchan;
5056 }
5057 #ifdef CONFIG_CHELSIO_T4_DCB
5058 /* For Data Center Bridging we need 8 Ethernet TX Priority Queues for
5059 * each port.
5060 */
5061 need = 8 * adap->params.nports + EXTRA_VECS + ofld_need + uld_need;
5062 #else
5063 need = adap->params.nports + EXTRA_VECS + ofld_need + uld_need;
5064 #endif
5065 allocated = pci_enable_msix_range(adap->pdev, entries, need, want);
5066 if (allocated < 0) {
5067 dev_info(adap->pdev_dev, "not enough MSI-X vectors left,"
5068 " not using MSI-X\n");
5069 kfree(entries);
5070 return allocated;
5071 }
5072
5073 /* Distribute available vectors to the various queue groups.
5074 * Every group gets its minimum requirement and NIC gets top
5075 * priority for leftovers.
5076 */
5077 i = allocated - EXTRA_VECS - ofld_need - uld_need;
5078 if (i < s->max_ethqsets) {
5079 s->max_ethqsets = i;
5080 if (i < s->ethqsets)
5081 reduce_ethqs(adap, i);
5082 }
5083 if (is_uld(adap)) {
5084 if (allocated < want)
5085 s->nqs_per_uld = nchan;
5086 else
5087 s->nqs_per_uld = s->ofldqsets;
5088 }
5089
5090 for (i = 0; i < (s->max_ethqsets + EXTRA_VECS); ++i)
5091 adap->msix_info[i].vec = entries[i].vector;
5092 if (is_uld(adap)) {
5093 for (j = 0 ; i < allocated; ++i, j++) {
5094 adap->msix_info_ulds[j].vec = entries[i].vector;
5095 adap->msix_info_ulds[j].idx = i;
5096 }
5097 adap->msix_bmap_ulds.mapsize = j;
5098 }
5099 dev_info(adap->pdev_dev, "%d MSI-X vectors allocated, "
5100 "nic %d per uld %d\n",
5101 allocated, s->max_ethqsets, s->nqs_per_uld);
5102
5103 kfree(entries);
5104 return 0;
5105 }
5106
5107 #undef EXTRA_VECS
5108
init_rss(struct adapter * adap)5109 static int init_rss(struct adapter *adap)
5110 {
5111 unsigned int i;
5112 int err;
5113
5114 err = t4_init_rss_mode(adap, adap->mbox);
5115 if (err)
5116 return err;
5117
5118 for_each_port(adap, i) {
5119 struct port_info *pi = adap2pinfo(adap, i);
5120
5121 pi->rss = kcalloc(pi->rss_size, sizeof(u16), GFP_KERNEL);
5122 if (!pi->rss)
5123 return -ENOMEM;
5124 }
5125 return 0;
5126 }
5127
5128 /* Dump basic information about the adapter */
print_adapter_info(struct adapter * adapter)5129 static void print_adapter_info(struct adapter *adapter)
5130 {
5131 /* Hardware/Firmware/etc. Version/Revision IDs */
5132 t4_dump_version_info(adapter);
5133
5134 /* Software/Hardware configuration */
5135 dev_info(adapter->pdev_dev, "Configuration: %sNIC %s, %s capable\n",
5136 is_offload(adapter) ? "R" : "",
5137 ((adapter->flags & USING_MSIX) ? "MSI-X" :
5138 (adapter->flags & USING_MSI) ? "MSI" : ""),
5139 is_offload(adapter) ? "Offload" : "non-Offload");
5140 }
5141
print_port_info(const struct net_device * dev)5142 static void print_port_info(const struct net_device *dev)
5143 {
5144 char buf[80];
5145 char *bufp = buf;
5146 const struct port_info *pi = netdev_priv(dev);
5147 const struct adapter *adap = pi->adapter;
5148
5149 if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_100M)
5150 bufp += sprintf(bufp, "100M/");
5151 if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_1G)
5152 bufp += sprintf(bufp, "1G/");
5153 if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_10G)
5154 bufp += sprintf(bufp, "10G/");
5155 if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_25G)
5156 bufp += sprintf(bufp, "25G/");
5157 if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_40G)
5158 bufp += sprintf(bufp, "40G/");
5159 if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_50G)
5160 bufp += sprintf(bufp, "50G/");
5161 if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_100G)
5162 bufp += sprintf(bufp, "100G/");
5163 if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_200G)
5164 bufp += sprintf(bufp, "200G/");
5165 if (pi->link_cfg.pcaps & FW_PORT_CAP32_SPEED_400G)
5166 bufp += sprintf(bufp, "400G/");
5167 if (bufp != buf)
5168 --bufp;
5169 sprintf(bufp, "BASE-%s", t4_get_port_type_description(pi->port_type));
5170
5171 netdev_info(dev, "%s: Chelsio %s (%s) %s\n",
5172 dev->name, adap->params.vpd.id, adap->name, buf);
5173 }
5174
5175 /*
5176 * Free the following resources:
5177 * - memory used for tables
5178 * - MSI/MSI-X
5179 * - net devices
5180 * - resources FW is holding for us
5181 */
free_some_resources(struct adapter * adapter)5182 static void free_some_resources(struct adapter *adapter)
5183 {
5184 unsigned int i;
5185
5186 kvfree(adapter->mps_encap);
5187 kvfree(adapter->smt);
5188 kvfree(adapter->l2t);
5189 kvfree(adapter->srq);
5190 t4_cleanup_sched(adapter);
5191 kvfree(adapter->tids.tid_tab);
5192 cxgb4_cleanup_tc_flower(adapter);
5193 cxgb4_cleanup_tc_u32(adapter);
5194 kfree(adapter->sge.egr_map);
5195 kfree(adapter->sge.ingr_map);
5196 kfree(adapter->sge.starving_fl);
5197 kfree(adapter->sge.txq_maperr);
5198 #ifdef CONFIG_DEBUG_FS
5199 kfree(adapter->sge.blocked_fl);
5200 #endif
5201 disable_msi(adapter);
5202
5203 for_each_port(adapter, i)
5204 if (adapter->port[i]) {
5205 struct port_info *pi = adap2pinfo(adapter, i);
5206
5207 if (pi->viid != 0)
5208 t4_free_vi(adapter, adapter->mbox, adapter->pf,
5209 0, pi->viid);
5210 kfree(adap2pinfo(adapter, i)->rss);
5211 free_netdev(adapter->port[i]);
5212 }
5213 if (adapter->flags & FW_OK)
5214 t4_fw_bye(adapter, adapter->pf);
5215 }
5216
5217 #define TSO_FLAGS (NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_TSO_ECN)
5218 #define VLAN_FEAT (NETIF_F_SG | NETIF_F_IP_CSUM | TSO_FLAGS | \
5219 NETIF_F_IPV6_CSUM | NETIF_F_HIGHDMA)
5220 #define SEGMENT_SIZE 128
5221
t4_get_chip_type(struct adapter * adap,int ver)5222 static int t4_get_chip_type(struct adapter *adap, int ver)
5223 {
5224 u32 pl_rev = REV_G(t4_read_reg(adap, PL_REV_A));
5225
5226 switch (ver) {
5227 case CHELSIO_T4:
5228 return CHELSIO_CHIP_CODE(CHELSIO_T4, pl_rev);
5229 case CHELSIO_T5:
5230 return CHELSIO_CHIP_CODE(CHELSIO_T5, pl_rev);
5231 case CHELSIO_T6:
5232 return CHELSIO_CHIP_CODE(CHELSIO_T6, pl_rev);
5233 default:
5234 break;
5235 }
5236 return -EINVAL;
5237 }
5238
5239 #ifdef CONFIG_PCI_IOV
cxgb4_mgmt_setup(struct net_device * dev)5240 static void cxgb4_mgmt_setup(struct net_device *dev)
5241 {
5242 dev->type = ARPHRD_NONE;
5243 dev->mtu = 0;
5244 dev->hard_header_len = 0;
5245 dev->addr_len = 0;
5246 dev->tx_queue_len = 0;
5247 dev->flags |= IFF_NOARP;
5248 dev->priv_flags |= IFF_NO_QUEUE;
5249
5250 /* Initialize the device structure. */
5251 dev->netdev_ops = &cxgb4_mgmt_netdev_ops;
5252 dev->ethtool_ops = &cxgb4_mgmt_ethtool_ops;
5253 }
5254
cxgb4_iov_configure(struct pci_dev * pdev,int num_vfs)5255 static int cxgb4_iov_configure(struct pci_dev *pdev, int num_vfs)
5256 {
5257 struct adapter *adap = pci_get_drvdata(pdev);
5258 int err = 0;
5259 int current_vfs = pci_num_vf(pdev);
5260 u32 pcie_fw;
5261
5262 pcie_fw = readl(adap->regs + PCIE_FW_A);
5263 /* Check if fw is initialized */
5264 if (!(pcie_fw & PCIE_FW_INIT_F)) {
5265 dev_warn(&pdev->dev, "Device not initialized\n");
5266 return -EOPNOTSUPP;
5267 }
5268
5269 /* If any of the VF's is already assigned to Guest OS, then
5270 * SRIOV for the same cannot be modified
5271 */
5272 if (current_vfs && pci_vfs_assigned(pdev)) {
5273 dev_err(&pdev->dev,
5274 "Cannot modify SR-IOV while VFs are assigned\n");
5275 return current_vfs;
5276 }
5277 /* Note that the upper-level code ensures that we're never called with
5278 * a non-zero "num_vfs" when we already have VFs instantiated. But
5279 * it never hurts to code defensively.
5280 */
5281 if (num_vfs != 0 && current_vfs != 0)
5282 return -EBUSY;
5283
5284 /* Nothing to do for no change. */
5285 if (num_vfs == current_vfs)
5286 return num_vfs;
5287
5288 /* Disable SRIOV when zero is passed. */
5289 if (!num_vfs) {
5290 pci_disable_sriov(pdev);
5291 /* free VF Management Interface */
5292 unregister_netdev(adap->port[0]);
5293 free_netdev(adap->port[0]);
5294 adap->port[0] = NULL;
5295
5296 /* free VF resources */
5297 adap->num_vfs = 0;
5298 kfree(adap->vfinfo);
5299 adap->vfinfo = NULL;
5300 return 0;
5301 }
5302
5303 if (!current_vfs) {
5304 struct fw_pfvf_cmd port_cmd, port_rpl;
5305 struct net_device *netdev;
5306 unsigned int pmask, port;
5307 struct pci_dev *pbridge;
5308 struct port_info *pi;
5309 char name[IFNAMSIZ];
5310 u32 devcap2;
5311 u16 flags;
5312 int pos;
5313
5314 /* If we want to instantiate Virtual Functions, then our
5315 * parent bridge's PCI-E needs to support Alternative Routing
5316 * ID (ARI) because our VFs will show up at function offset 8
5317 * and above.
5318 */
5319 pbridge = pdev->bus->self;
5320 pos = pci_find_capability(pbridge, PCI_CAP_ID_EXP);
5321 pci_read_config_word(pbridge, pos + PCI_EXP_FLAGS, &flags);
5322 pci_read_config_dword(pbridge, pos + PCI_EXP_DEVCAP2, &devcap2);
5323
5324 if ((flags & PCI_EXP_FLAGS_VERS) < 2 ||
5325 !(devcap2 & PCI_EXP_DEVCAP2_ARI)) {
5326 /* Our parent bridge does not support ARI so issue a
5327 * warning and skip instantiating the VFs. They
5328 * won't be reachable.
5329 */
5330 dev_warn(&pdev->dev, "Parent bridge %02x:%02x.%x doesn't support ARI; can't instantiate Virtual Functions\n",
5331 pbridge->bus->number, PCI_SLOT(pbridge->devfn),
5332 PCI_FUNC(pbridge->devfn));
5333 return -ENOTSUPP;
5334 }
5335 memset(&port_cmd, 0, sizeof(port_cmd));
5336 port_cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_PFVF_CMD) |
5337 FW_CMD_REQUEST_F |
5338 FW_CMD_READ_F |
5339 FW_PFVF_CMD_PFN_V(adap->pf) |
5340 FW_PFVF_CMD_VFN_V(0));
5341 port_cmd.retval_len16 = cpu_to_be32(FW_LEN16(port_cmd));
5342 err = t4_wr_mbox(adap, adap->mbox, &port_cmd, sizeof(port_cmd),
5343 &port_rpl);
5344 if (err)
5345 return err;
5346 pmask = FW_PFVF_CMD_PMASK_G(be32_to_cpu(port_rpl.type_to_neq));
5347 port = ffs(pmask) - 1;
5348 /* Allocate VF Management Interface. */
5349 snprintf(name, IFNAMSIZ, "mgmtpf%d,%d", adap->adap_idx,
5350 adap->pf);
5351 netdev = alloc_netdev(sizeof(struct port_info),
5352 name, NET_NAME_UNKNOWN, cxgb4_mgmt_setup);
5353 if (!netdev)
5354 return -ENOMEM;
5355
5356 pi = netdev_priv(netdev);
5357 pi->adapter = adap;
5358 pi->lport = port;
5359 pi->tx_chan = port;
5360 SET_NETDEV_DEV(netdev, &pdev->dev);
5361
5362 adap->port[0] = netdev;
5363 pi->port_id = 0;
5364
5365 err = register_netdev(adap->port[0]);
5366 if (err) {
5367 pr_info("Unable to register VF mgmt netdev %s\n", name);
5368 free_netdev(adap->port[0]);
5369 adap->port[0] = NULL;
5370 return err;
5371 }
5372 /* Allocate and set up VF Information. */
5373 adap->vfinfo = kcalloc(pci_sriov_get_totalvfs(pdev),
5374 sizeof(struct vf_info), GFP_KERNEL);
5375 if (!adap->vfinfo) {
5376 unregister_netdev(adap->port[0]);
5377 free_netdev(adap->port[0]);
5378 adap->port[0] = NULL;
5379 return -ENOMEM;
5380 }
5381 cxgb4_mgmt_fill_vf_station_mac_addr(adap);
5382 }
5383 /* Instantiate the requested number of VFs. */
5384 err = pci_enable_sriov(pdev, num_vfs);
5385 if (err) {
5386 pr_info("Unable to instantiate %d VFs\n", num_vfs);
5387 if (!current_vfs) {
5388 unregister_netdev(adap->port[0]);
5389 free_netdev(adap->port[0]);
5390 adap->port[0] = NULL;
5391 kfree(adap->vfinfo);
5392 adap->vfinfo = NULL;
5393 }
5394 return err;
5395 }
5396
5397 adap->num_vfs = num_vfs;
5398 return num_vfs;
5399 }
5400 #endif /* CONFIG_PCI_IOV */
5401
init_one(struct pci_dev * pdev,const struct pci_device_id * ent)5402 static int init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
5403 {
5404 struct net_device *netdev;
5405 struct adapter *adapter;
5406 static int adap_idx = 1;
5407 int s_qpp, qpp, num_seg;
5408 struct port_info *pi;
5409 bool highdma = false;
5410 enum chip_type chip;
5411 void __iomem *regs;
5412 int func, chip_ver;
5413 u16 device_id;
5414 int i, err;
5415 u32 whoami;
5416
5417 printk_once(KERN_INFO "%s - version %s\n", DRV_DESC, DRV_VERSION);
5418
5419 err = pci_request_regions(pdev, KBUILD_MODNAME);
5420 if (err) {
5421 /* Just info, some other driver may have claimed the device. */
5422 dev_info(&pdev->dev, "cannot obtain PCI resources\n");
5423 return err;
5424 }
5425
5426 err = pci_enable_device(pdev);
5427 if (err) {
5428 dev_err(&pdev->dev, "cannot enable PCI device\n");
5429 goto out_release_regions;
5430 }
5431
5432 regs = pci_ioremap_bar(pdev, 0);
5433 if (!regs) {
5434 dev_err(&pdev->dev, "cannot map device registers\n");
5435 err = -ENOMEM;
5436 goto out_disable_device;
5437 }
5438
5439 adapter = kzalloc(sizeof(*adapter), GFP_KERNEL);
5440 if (!adapter) {
5441 err = -ENOMEM;
5442 goto out_unmap_bar0;
5443 }
5444
5445 adapter->regs = regs;
5446 err = t4_wait_dev_ready(regs);
5447 if (err < 0)
5448 goto out_free_adapter;
5449
5450 /* We control everything through one PF */
5451 whoami = t4_read_reg(adapter, PL_WHOAMI_A);
5452 pci_read_config_word(pdev, PCI_DEVICE_ID, &device_id);
5453 chip = t4_get_chip_type(adapter, CHELSIO_PCI_ID_VER(device_id));
5454 if ((int)chip < 0) {
5455 dev_err(&pdev->dev, "Device %d is not supported\n", device_id);
5456 err = chip;
5457 goto out_free_adapter;
5458 }
5459 chip_ver = CHELSIO_CHIP_VERSION(chip);
5460 func = chip_ver <= CHELSIO_T5 ?
5461 SOURCEPF_G(whoami) : T6_SOURCEPF_G(whoami);
5462
5463 adapter->pdev = pdev;
5464 adapter->pdev_dev = &pdev->dev;
5465 adapter->name = pci_name(pdev);
5466 adapter->mbox = func;
5467 adapter->pf = func;
5468 adapter->params.chip = chip;
5469 adapter->adap_idx = adap_idx;
5470 adapter->msg_enable = DFLT_MSG_ENABLE;
5471 adapter->mbox_log = kzalloc(sizeof(*adapter->mbox_log) +
5472 (sizeof(struct mbox_cmd) *
5473 T4_OS_LOG_MBOX_CMDS),
5474 GFP_KERNEL);
5475 if (!adapter->mbox_log) {
5476 err = -ENOMEM;
5477 goto out_free_adapter;
5478 }
5479 spin_lock_init(&adapter->mbox_lock);
5480 INIT_LIST_HEAD(&adapter->mlist.list);
5481 adapter->mbox_log->size = T4_OS_LOG_MBOX_CMDS;
5482 pci_set_drvdata(pdev, adapter);
5483
5484 if (func != ent->driver_data) {
5485 pci_disable_device(pdev);
5486 pci_save_state(pdev); /* to restore SR-IOV later */
5487 return 0;
5488 }
5489
5490 if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(64))) {
5491 highdma = true;
5492 err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64));
5493 if (err) {
5494 dev_err(&pdev->dev, "unable to obtain 64-bit DMA for "
5495 "coherent allocations\n");
5496 goto out_free_adapter;
5497 }
5498 } else {
5499 err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
5500 if (err) {
5501 dev_err(&pdev->dev, "no usable DMA configuration\n");
5502 goto out_free_adapter;
5503 }
5504 }
5505
5506 pci_enable_pcie_error_reporting(pdev);
5507 pci_set_master(pdev);
5508 pci_save_state(pdev);
5509 adap_idx++;
5510 adapter->workq = create_singlethread_workqueue("cxgb4");
5511 if (!adapter->workq) {
5512 err = -ENOMEM;
5513 goto out_free_adapter;
5514 }
5515
5516 /* PCI device has been enabled */
5517 adapter->flags |= DEV_ENABLED;
5518 memset(adapter->chan_map, 0xff, sizeof(adapter->chan_map));
5519
5520 /* If possible, we use PCIe Relaxed Ordering Attribute to deliver
5521 * Ingress Packet Data to Free List Buffers in order to allow for
5522 * chipset performance optimizations between the Root Complex and
5523 * Memory Controllers. (Messages to the associated Ingress Queue
5524 * notifying new Packet Placement in the Free Lists Buffers will be
5525 * send without the Relaxed Ordering Attribute thus guaranteeing that
5526 * all preceding PCIe Transaction Layer Packets will be processed
5527 * first.) But some Root Complexes have various issues with Upstream
5528 * Transaction Layer Packets with the Relaxed Ordering Attribute set.
5529 * The PCIe devices which under the Root Complexes will be cleared the
5530 * Relaxed Ordering bit in the configuration space, So we check our
5531 * PCIe configuration space to see if it's flagged with advice against
5532 * using Relaxed Ordering.
5533 */
5534 if (!pcie_relaxed_ordering_enabled(pdev))
5535 adapter->flags |= ROOT_NO_RELAXED_ORDERING;
5536
5537 spin_lock_init(&adapter->stats_lock);
5538 spin_lock_init(&adapter->tid_release_lock);
5539 spin_lock_init(&adapter->win0_lock);
5540
5541 INIT_WORK(&adapter->tid_release_task, process_tid_release_list);
5542 INIT_WORK(&adapter->db_full_task, process_db_full);
5543 INIT_WORK(&adapter->db_drop_task, process_db_drop);
5544 INIT_WORK(&adapter->fatal_err_notify_task, notify_fatal_err);
5545
5546 err = t4_prep_adapter(adapter);
5547 if (err)
5548 goto out_free_adapter;
5549
5550 if (is_kdump_kernel()) {
5551 /* Collect hardware state and append to /proc/vmcore */
5552 err = cxgb4_cudbg_vmcore_add_dump(adapter);
5553 if (err) {
5554 dev_warn(adapter->pdev_dev,
5555 "Fail collecting vmcore device dump, err: %d. Continuing\n",
5556 err);
5557 err = 0;
5558 }
5559 }
5560
5561 if (!is_t4(adapter->params.chip)) {
5562 s_qpp = (QUEUESPERPAGEPF0_S +
5563 (QUEUESPERPAGEPF1_S - QUEUESPERPAGEPF0_S) *
5564 adapter->pf);
5565 qpp = 1 << QUEUESPERPAGEPF0_G(t4_read_reg(adapter,
5566 SGE_EGRESS_QUEUES_PER_PAGE_PF_A) >> s_qpp);
5567 num_seg = PAGE_SIZE / SEGMENT_SIZE;
5568
5569 /* Each segment size is 128B. Write coalescing is enabled only
5570 * when SGE_EGRESS_QUEUES_PER_PAGE_PF reg value for the
5571 * queue is less no of segments that can be accommodated in
5572 * a page size.
5573 */
5574 if (qpp > num_seg) {
5575 dev_err(&pdev->dev,
5576 "Incorrect number of egress queues per page\n");
5577 err = -EINVAL;
5578 goto out_free_adapter;
5579 }
5580 adapter->bar2 = ioremap_wc(pci_resource_start(pdev, 2),
5581 pci_resource_len(pdev, 2));
5582 if (!adapter->bar2) {
5583 dev_err(&pdev->dev, "cannot map device bar2 region\n");
5584 err = -ENOMEM;
5585 goto out_free_adapter;
5586 }
5587 }
5588
5589 setup_memwin(adapter);
5590 err = adap_init0(adapter);
5591 #ifdef CONFIG_DEBUG_FS
5592 bitmap_zero(adapter->sge.blocked_fl, adapter->sge.egr_sz);
5593 #endif
5594 setup_memwin_rdma(adapter);
5595 if (err)
5596 goto out_unmap_bar;
5597
5598 /* configure SGE_STAT_CFG_A to read WC stats */
5599 if (!is_t4(adapter->params.chip))
5600 t4_write_reg(adapter, SGE_STAT_CFG_A, STATSOURCE_T5_V(7) |
5601 (is_t5(adapter->params.chip) ? STATMODE_V(0) :
5602 T6_STATMODE_V(0)));
5603
5604 /* Initialize hash mac addr list */
5605 INIT_LIST_HEAD(&adapter->mac_hlist);
5606
5607 for_each_port(adapter, i) {
5608 netdev = alloc_etherdev_mq(sizeof(struct port_info),
5609 MAX_ETH_QSETS);
5610 if (!netdev) {
5611 err = -ENOMEM;
5612 goto out_free_dev;
5613 }
5614
5615 SET_NETDEV_DEV(netdev, &pdev->dev);
5616
5617 adapter->port[i] = netdev;
5618 pi = netdev_priv(netdev);
5619 pi->adapter = adapter;
5620 pi->xact_addr_filt = -1;
5621 pi->port_id = i;
5622 netdev->irq = pdev->irq;
5623
5624 netdev->hw_features = NETIF_F_SG | TSO_FLAGS |
5625 NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
5626 NETIF_F_RXCSUM | NETIF_F_RXHASH |
5627 NETIF_F_HW_VLAN_CTAG_TX | NETIF_F_HW_VLAN_CTAG_RX |
5628 NETIF_F_HW_TC;
5629
5630 if (chip_ver > CHELSIO_T5) {
5631 netdev->hw_enc_features |= NETIF_F_IP_CSUM |
5632 NETIF_F_IPV6_CSUM |
5633 NETIF_F_RXCSUM |
5634 NETIF_F_GSO_UDP_TUNNEL |
5635 NETIF_F_TSO | NETIF_F_TSO6;
5636
5637 netdev->hw_features |= NETIF_F_GSO_UDP_TUNNEL;
5638 }
5639
5640 if (highdma)
5641 netdev->hw_features |= NETIF_F_HIGHDMA;
5642 netdev->features |= netdev->hw_features;
5643 netdev->vlan_features = netdev->features & VLAN_FEAT;
5644
5645 netdev->priv_flags |= IFF_UNICAST_FLT;
5646
5647 /* MTU range: 81 - 9600 */
5648 netdev->min_mtu = 81; /* accommodate SACK */
5649 netdev->max_mtu = MAX_MTU;
5650
5651 netdev->netdev_ops = &cxgb4_netdev_ops;
5652 #ifdef CONFIG_CHELSIO_T4_DCB
5653 netdev->dcbnl_ops = &cxgb4_dcb_ops;
5654 cxgb4_dcb_state_init(netdev);
5655 cxgb4_dcb_version_init(netdev);
5656 #endif
5657 cxgb4_set_ethtool_ops(netdev);
5658 }
5659
5660 cxgb4_init_ethtool_dump(adapter);
5661
5662 pci_set_drvdata(pdev, adapter);
5663
5664 if (adapter->flags & FW_OK) {
5665 err = t4_port_init(adapter, func, func, 0);
5666 if (err)
5667 goto out_free_dev;
5668 } else if (adapter->params.nports == 1) {
5669 /* If we don't have a connection to the firmware -- possibly
5670 * because of an error -- grab the raw VPD parameters so we
5671 * can set the proper MAC Address on the debug network
5672 * interface that we've created.
5673 */
5674 u8 hw_addr[ETH_ALEN];
5675 u8 *na = adapter->params.vpd.na;
5676
5677 err = t4_get_raw_vpd_params(adapter, &adapter->params.vpd);
5678 if (!err) {
5679 for (i = 0; i < ETH_ALEN; i++)
5680 hw_addr[i] = (hex2val(na[2 * i + 0]) * 16 +
5681 hex2val(na[2 * i + 1]));
5682 t4_set_hw_addr(adapter, 0, hw_addr);
5683 }
5684 }
5685
5686 if (!(adapter->flags & FW_OK))
5687 goto fw_attach_fail;
5688
5689 /* Configure queues and allocate tables now, they can be needed as
5690 * soon as the first register_netdev completes.
5691 */
5692 err = cfg_queues(adapter);
5693 if (err)
5694 goto out_free_dev;
5695
5696 adapter->smt = t4_init_smt();
5697 if (!adapter->smt) {
5698 /* We tolerate a lack of SMT, giving up some functionality */
5699 dev_warn(&pdev->dev, "could not allocate SMT, continuing\n");
5700 }
5701
5702 adapter->l2t = t4_init_l2t(adapter->l2t_start, adapter->l2t_end);
5703 if (!adapter->l2t) {
5704 /* We tolerate a lack of L2T, giving up some functionality */
5705 dev_warn(&pdev->dev, "could not allocate L2T, continuing\n");
5706 adapter->params.offload = 0;
5707 }
5708
5709 adapter->mps_encap = kvcalloc(adapter->params.arch.mps_tcam_size,
5710 sizeof(struct mps_encap_entry),
5711 GFP_KERNEL);
5712 if (!adapter->mps_encap)
5713 dev_warn(&pdev->dev, "could not allocate MPS Encap entries, continuing\n");
5714
5715 #if IS_ENABLED(CONFIG_IPV6)
5716 if (chip_ver <= CHELSIO_T5 &&
5717 (!(t4_read_reg(adapter, LE_DB_CONFIG_A) & ASLIPCOMPEN_F))) {
5718 /* CLIP functionality is not present in hardware,
5719 * hence disable all offload features
5720 */
5721 dev_warn(&pdev->dev,
5722 "CLIP not enabled in hardware, continuing\n");
5723 adapter->params.offload = 0;
5724 } else {
5725 adapter->clipt = t4_init_clip_tbl(adapter->clipt_start,
5726 adapter->clipt_end);
5727 if (!adapter->clipt) {
5728 /* We tolerate a lack of clip_table, giving up
5729 * some functionality
5730 */
5731 dev_warn(&pdev->dev,
5732 "could not allocate Clip table, continuing\n");
5733 adapter->params.offload = 0;
5734 }
5735 }
5736 #endif
5737
5738 for_each_port(adapter, i) {
5739 pi = adap2pinfo(adapter, i);
5740 pi->sched_tbl = t4_init_sched(adapter->params.nsched_cls);
5741 if (!pi->sched_tbl)
5742 dev_warn(&pdev->dev,
5743 "could not activate scheduling on port %d\n",
5744 i);
5745 }
5746
5747 if (tid_init(&adapter->tids) < 0) {
5748 dev_warn(&pdev->dev, "could not allocate TID table, "
5749 "continuing\n");
5750 adapter->params.offload = 0;
5751 } else {
5752 adapter->tc_u32 = cxgb4_init_tc_u32(adapter);
5753 if (!adapter->tc_u32)
5754 dev_warn(&pdev->dev,
5755 "could not offload tc u32, continuing\n");
5756
5757 if (cxgb4_init_tc_flower(adapter))
5758 dev_warn(&pdev->dev,
5759 "could not offload tc flower, continuing\n");
5760 }
5761
5762 if (is_offload(adapter) || is_hashfilter(adapter)) {
5763 if (t4_read_reg(adapter, LE_DB_CONFIG_A) & HASHEN_F) {
5764 u32 hash_base, hash_reg;
5765
5766 if (chip_ver <= CHELSIO_T5) {
5767 hash_reg = LE_DB_TID_HASHBASE_A;
5768 hash_base = t4_read_reg(adapter, hash_reg);
5769 adapter->tids.hash_base = hash_base / 4;
5770 } else {
5771 hash_reg = T6_LE_DB_HASH_TID_BASE_A;
5772 hash_base = t4_read_reg(adapter, hash_reg);
5773 adapter->tids.hash_base = hash_base;
5774 }
5775 }
5776 }
5777
5778 /* See what interrupts we'll be using */
5779 if (msi > 1 && enable_msix(adapter) == 0)
5780 adapter->flags |= USING_MSIX;
5781 else if (msi > 0 && pci_enable_msi(pdev) == 0) {
5782 adapter->flags |= USING_MSI;
5783 if (msi > 1)
5784 free_msix_info(adapter);
5785 }
5786
5787 /* check for PCI Express bandwidth capabiltites */
5788 pcie_print_link_status(pdev);
5789
5790 err = init_rss(adapter);
5791 if (err)
5792 goto out_free_dev;
5793
5794 err = setup_fw_sge_queues(adapter);
5795 if (err) {
5796 dev_err(adapter->pdev_dev,
5797 "FW sge queue allocation failed, err %d", err);
5798 goto out_free_dev;
5799 }
5800
5801 fw_attach_fail:
5802 /*
5803 * The card is now ready to go. If any errors occur during device
5804 * registration we do not fail the whole card but rather proceed only
5805 * with the ports we manage to register successfully. However we must
5806 * register at least one net device.
5807 */
5808 for_each_port(adapter, i) {
5809 pi = adap2pinfo(adapter, i);
5810 adapter->port[i]->dev_port = pi->lport;
5811 netif_set_real_num_tx_queues(adapter->port[i], pi->nqsets);
5812 netif_set_real_num_rx_queues(adapter->port[i], pi->nqsets);
5813
5814 netif_carrier_off(adapter->port[i]);
5815
5816 err = register_netdev(adapter->port[i]);
5817 if (err)
5818 break;
5819 adapter->chan_map[pi->tx_chan] = i;
5820 print_port_info(adapter->port[i]);
5821 }
5822 if (i == 0) {
5823 dev_err(&pdev->dev, "could not register any net devices\n");
5824 goto out_free_dev;
5825 }
5826 if (err) {
5827 dev_warn(&pdev->dev, "only %d net devices registered\n", i);
5828 err = 0;
5829 }
5830
5831 if (cxgb4_debugfs_root) {
5832 adapter->debugfs_root = debugfs_create_dir(pci_name(pdev),
5833 cxgb4_debugfs_root);
5834 setup_debugfs(adapter);
5835 }
5836
5837 /* PCIe EEH recovery on powerpc platforms needs fundamental reset */
5838 pdev->needs_freset = 1;
5839
5840 if (is_uld(adapter)) {
5841 mutex_lock(&uld_mutex);
5842 list_add_tail(&adapter->list_node, &adapter_list);
5843 mutex_unlock(&uld_mutex);
5844 }
5845
5846 if (!is_t4(adapter->params.chip))
5847 cxgb4_ptp_init(adapter);
5848
5849 print_adapter_info(adapter);
5850 return 0;
5851
5852 out_free_dev:
5853 t4_free_sge_resources(adapter);
5854 free_some_resources(adapter);
5855 if (adapter->flags & USING_MSIX)
5856 free_msix_info(adapter);
5857 if (adapter->num_uld || adapter->num_ofld_uld)
5858 t4_uld_mem_free(adapter);
5859 out_unmap_bar:
5860 if (!is_t4(adapter->params.chip))
5861 iounmap(adapter->bar2);
5862 out_free_adapter:
5863 if (adapter->workq)
5864 destroy_workqueue(adapter->workq);
5865
5866 kfree(adapter->mbox_log);
5867 kfree(adapter);
5868 out_unmap_bar0:
5869 iounmap(regs);
5870 out_disable_device:
5871 pci_disable_pcie_error_reporting(pdev);
5872 pci_disable_device(pdev);
5873 out_release_regions:
5874 pci_release_regions(pdev);
5875 return err;
5876 }
5877
remove_one(struct pci_dev * pdev)5878 static void remove_one(struct pci_dev *pdev)
5879 {
5880 struct adapter *adapter = pci_get_drvdata(pdev);
5881 struct hash_mac_addr *entry, *tmp;
5882
5883 if (!adapter) {
5884 pci_release_regions(pdev);
5885 return;
5886 }
5887
5888 adapter->flags |= SHUTTING_DOWN;
5889
5890 if (adapter->pf == 4) {
5891 int i;
5892
5893 /* Tear down per-adapter Work Queue first since it can contain
5894 * references to our adapter data structure.
5895 */
5896 destroy_workqueue(adapter->workq);
5897
5898 if (is_uld(adapter)) {
5899 detach_ulds(adapter);
5900 t4_uld_clean_up(adapter);
5901 }
5902
5903 adap_free_hma_mem(adapter);
5904
5905 disable_interrupts(adapter);
5906
5907 for_each_port(adapter, i)
5908 if (adapter->port[i]->reg_state == NETREG_REGISTERED)
5909 unregister_netdev(adapter->port[i]);
5910
5911 debugfs_remove_recursive(adapter->debugfs_root);
5912
5913 if (!is_t4(adapter->params.chip))
5914 cxgb4_ptp_stop(adapter);
5915
5916 /* If we allocated filters, free up state associated with any
5917 * valid filters ...
5918 */
5919 clear_all_filters(adapter);
5920
5921 if (adapter->flags & FULL_INIT_DONE)
5922 cxgb_down(adapter);
5923
5924 if (adapter->flags & USING_MSIX)
5925 free_msix_info(adapter);
5926 if (adapter->num_uld || adapter->num_ofld_uld)
5927 t4_uld_mem_free(adapter);
5928 free_some_resources(adapter);
5929 list_for_each_entry_safe(entry, tmp, &adapter->mac_hlist,
5930 list) {
5931 list_del(&entry->list);
5932 kfree(entry);
5933 }
5934
5935 #if IS_ENABLED(CONFIG_IPV6)
5936 t4_cleanup_clip_tbl(adapter);
5937 #endif
5938 if (!is_t4(adapter->params.chip))
5939 iounmap(adapter->bar2);
5940 }
5941 #ifdef CONFIG_PCI_IOV
5942 else {
5943 cxgb4_iov_configure(adapter->pdev, 0);
5944 }
5945 #endif
5946 iounmap(adapter->regs);
5947 pci_disable_pcie_error_reporting(pdev);
5948 if ((adapter->flags & DEV_ENABLED)) {
5949 pci_disable_device(pdev);
5950 adapter->flags &= ~DEV_ENABLED;
5951 }
5952 pci_release_regions(pdev);
5953 kfree(adapter->mbox_log);
5954 synchronize_rcu();
5955 kfree(adapter);
5956 }
5957
5958 /* "Shutdown" quiesces the device, stopping Ingress Packet and Interrupt
5959 * delivery. This is essentially a stripped down version of the PCI remove()
5960 * function where we do the minimal amount of work necessary to shutdown any
5961 * further activity.
5962 */
shutdown_one(struct pci_dev * pdev)5963 static void shutdown_one(struct pci_dev *pdev)
5964 {
5965 struct adapter *adapter = pci_get_drvdata(pdev);
5966
5967 /* As with remove_one() above (see extended comment), we only want do
5968 * do cleanup on PCI Devices which went all the way through init_one()
5969 * ...
5970 */
5971 if (!adapter) {
5972 pci_release_regions(pdev);
5973 return;
5974 }
5975
5976 adapter->flags |= SHUTTING_DOWN;
5977
5978 if (adapter->pf == 4) {
5979 int i;
5980
5981 for_each_port(adapter, i)
5982 if (adapter->port[i]->reg_state == NETREG_REGISTERED)
5983 cxgb_close(adapter->port[i]);
5984
5985 if (is_uld(adapter)) {
5986 detach_ulds(adapter);
5987 t4_uld_clean_up(adapter);
5988 }
5989
5990 disable_interrupts(adapter);
5991 disable_msi(adapter);
5992
5993 t4_sge_stop(adapter);
5994 if (adapter->flags & FW_OK)
5995 t4_fw_bye(adapter, adapter->mbox);
5996 }
5997 }
5998
5999 static struct pci_driver cxgb4_driver = {
6000 .name = KBUILD_MODNAME,
6001 .id_table = cxgb4_pci_tbl,
6002 .probe = init_one,
6003 .remove = remove_one,
6004 .shutdown = shutdown_one,
6005 #ifdef CONFIG_PCI_IOV
6006 .sriov_configure = cxgb4_iov_configure,
6007 #endif
6008 .err_handler = &cxgb4_eeh,
6009 };
6010
cxgb4_init_module(void)6011 static int __init cxgb4_init_module(void)
6012 {
6013 int ret;
6014
6015 /* Debugfs support is optional, just warn if this fails */
6016 cxgb4_debugfs_root = debugfs_create_dir(KBUILD_MODNAME, NULL);
6017 if (!cxgb4_debugfs_root)
6018 pr_warn("could not create debugfs entry, continuing\n");
6019
6020 ret = pci_register_driver(&cxgb4_driver);
6021 if (ret < 0)
6022 goto err_pci;
6023
6024 #if IS_ENABLED(CONFIG_IPV6)
6025 if (!inet6addr_registered) {
6026 ret = register_inet6addr_notifier(&cxgb4_inet6addr_notifier);
6027 if (ret)
6028 pci_unregister_driver(&cxgb4_driver);
6029 else
6030 inet6addr_registered = true;
6031 }
6032 #endif
6033
6034 if (ret == 0)
6035 return ret;
6036
6037 err_pci:
6038 debugfs_remove(cxgb4_debugfs_root);
6039
6040 return ret;
6041 }
6042
cxgb4_cleanup_module(void)6043 static void __exit cxgb4_cleanup_module(void)
6044 {
6045 #if IS_ENABLED(CONFIG_IPV6)
6046 if (inet6addr_registered) {
6047 unregister_inet6addr_notifier(&cxgb4_inet6addr_notifier);
6048 inet6addr_registered = false;
6049 }
6050 #endif
6051 pci_unregister_driver(&cxgb4_driver);
6052 debugfs_remove(cxgb4_debugfs_root); /* NULL ok */
6053 }
6054
6055 module_init(cxgb4_init_module);
6056 module_exit(cxgb4_cleanup_module);
6057