1 /* drivers/net/ethernet/freescale/gianfar.c
2 *
3 * Gianfar Ethernet Driver
4 * This driver is designed for the non-CPM ethernet controllers
5 * on the 85xx and 83xx family of integrated processors
6 * Based on 8260_io/fcc_enet.c
7 *
8 * Author: Andy Fleming
9 * Maintainer: Kumar Gala
10 * Modifier: Sandeep Gopalpet <sandeep.kumar@freescale.com>
11 *
12 * Copyright 2002-2009, 2011-2013 Freescale Semiconductor, Inc.
13 * Copyright 2007 MontaVista Software, Inc.
14 *
15 * This program is free software; you can redistribute it and/or modify it
16 * under the terms of the GNU General Public License as published by the
17 * Free Software Foundation; either version 2 of the License, or (at your
18 * option) any later version.
19 *
20 * Gianfar: AKA Lambda Draconis, "Dragon"
21 * RA 11 31 24.2
22 * Dec +69 19 52
23 * V 3.84
24 * B-V +1.62
25 *
26 * Theory of operation
27 *
28 * The driver is initialized through of_device. Configuration information
29 * is therefore conveyed through an OF-style device tree.
30 *
31 * The Gianfar Ethernet Controller uses a ring of buffer
32 * descriptors. The beginning is indicated by a register
33 * pointing to the physical address of the start of the ring.
34 * The end is determined by a "wrap" bit being set in the
35 * last descriptor of the ring.
36 *
37 * When a packet is received, the RXF bit in the
38 * IEVENT register is set, triggering an interrupt when the
39 * corresponding bit in the IMASK register is also set (if
40 * interrupt coalescing is active, then the interrupt may not
41 * happen immediately, but will wait until either a set number
42 * of frames or amount of time have passed). In NAPI, the
43 * interrupt handler will signal there is work to be done, and
44 * exit. This method will start at the last known empty
45 * descriptor, and process every subsequent descriptor until there
46 * are none left with data (NAPI will stop after a set number of
47 * packets to give time to other tasks, but will eventually
48 * process all the packets). The data arrives inside a
49 * pre-allocated skb, and so after the skb is passed up to the
50 * stack, a new skb must be allocated, and the address field in
51 * the buffer descriptor must be updated to indicate this new
52 * skb.
53 *
54 * When the kernel requests that a packet be transmitted, the
55 * driver starts where it left off last time, and points the
56 * descriptor at the buffer which was passed in. The driver
57 * then informs the DMA engine that there are packets ready to
58 * be transmitted. Once the controller is finished transmitting
59 * the packet, an interrupt may be triggered (under the same
60 * conditions as for reception, but depending on the TXF bit).
61 * The driver then cleans up the buffer.
62 */
63
64 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
65 #define DEBUG
66
67 #include <linux/kernel.h>
68 #include <linux/string.h>
69 #include <linux/errno.h>
70 #include <linux/unistd.h>
71 #include <linux/slab.h>
72 #include <linux/interrupt.h>
73 #include <linux/delay.h>
74 #include <linux/netdevice.h>
75 #include <linux/etherdevice.h>
76 #include <linux/skbuff.h>
77 #include <linux/if_vlan.h>
78 #include <linux/spinlock.h>
79 #include <linux/mm.h>
80 #include <linux/of_address.h>
81 #include <linux/of_irq.h>
82 #include <linux/of_mdio.h>
83 #include <linux/of_platform.h>
84 #include <linux/ip.h>
85 #include <linux/tcp.h>
86 #include <linux/udp.h>
87 #include <linux/in.h>
88 #include <linux/net_tstamp.h>
89
90 #include <asm/io.h>
91 #ifdef CONFIG_PPC
92 #include <asm/reg.h>
93 #include <asm/mpc85xx.h>
94 #endif
95 #include <asm/irq.h>
96 #include <linux/uaccess.h>
97 #include <linux/module.h>
98 #include <linux/dma-mapping.h>
99 #include <linux/crc32.h>
100 #include <linux/mii.h>
101 #include <linux/phy.h>
102 #include <linux/phy_fixed.h>
103 #include <linux/of.h>
104 #include <linux/of_net.h>
105 #include <linux/of_address.h>
106 #include <linux/of_irq.h>
107
108 #include "gianfar.h"
109
110 #define TX_TIMEOUT (5*HZ)
111
112 const char gfar_driver_version[] = "2.0";
113
114 static int gfar_enet_open(struct net_device *dev);
115 static netdev_tx_t gfar_start_xmit(struct sk_buff *skb, struct net_device *dev);
116 static void gfar_reset_task(struct work_struct *work);
117 static void gfar_timeout(struct net_device *dev);
118 static int gfar_close(struct net_device *dev);
119 static void gfar_alloc_rx_buffs(struct gfar_priv_rx_q *rx_queue,
120 int alloc_cnt);
121 static int gfar_set_mac_address(struct net_device *dev);
122 static int gfar_change_mtu(struct net_device *dev, int new_mtu);
123 static irqreturn_t gfar_error(int irq, void *dev_id);
124 static irqreturn_t gfar_transmit(int irq, void *dev_id);
125 static irqreturn_t gfar_interrupt(int irq, void *dev_id);
126 static void adjust_link(struct net_device *dev);
127 static noinline void gfar_update_link_state(struct gfar_private *priv);
128 static int init_phy(struct net_device *dev);
129 static int gfar_probe(struct platform_device *ofdev);
130 static int gfar_remove(struct platform_device *ofdev);
131 static void free_skb_resources(struct gfar_private *priv);
132 static void gfar_set_multi(struct net_device *dev);
133 static void gfar_set_hash_for_addr(struct net_device *dev, u8 *addr);
134 static void gfar_configure_serdes(struct net_device *dev);
135 static int gfar_poll_rx(struct napi_struct *napi, int budget);
136 static int gfar_poll_tx(struct napi_struct *napi, int budget);
137 static int gfar_poll_rx_sq(struct napi_struct *napi, int budget);
138 static int gfar_poll_tx_sq(struct napi_struct *napi, int budget);
139 #ifdef CONFIG_NET_POLL_CONTROLLER
140 static void gfar_netpoll(struct net_device *dev);
141 #endif
142 int gfar_clean_rx_ring(struct gfar_priv_rx_q *rx_queue, int rx_work_limit);
143 static void gfar_clean_tx_ring(struct gfar_priv_tx_q *tx_queue);
144 static void gfar_process_frame(struct net_device *ndev, struct sk_buff *skb);
145 static void gfar_halt_nodisable(struct gfar_private *priv);
146 static void gfar_clear_exact_match(struct net_device *dev);
147 static void gfar_set_mac_for_addr(struct net_device *dev, int num,
148 const u8 *addr);
149 static int gfar_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
150
151 MODULE_AUTHOR("Freescale Semiconductor, Inc");
152 MODULE_DESCRIPTION("Gianfar Ethernet Driver");
153 MODULE_LICENSE("GPL");
154
gfar_init_rxbdp(struct gfar_priv_rx_q * rx_queue,struct rxbd8 * bdp,dma_addr_t buf)155 static void gfar_init_rxbdp(struct gfar_priv_rx_q *rx_queue, struct rxbd8 *bdp,
156 dma_addr_t buf)
157 {
158 u32 lstatus;
159
160 bdp->bufPtr = cpu_to_be32(buf);
161
162 lstatus = BD_LFLAG(RXBD_EMPTY | RXBD_INTERRUPT);
163 if (bdp == rx_queue->rx_bd_base + rx_queue->rx_ring_size - 1)
164 lstatus |= BD_LFLAG(RXBD_WRAP);
165
166 gfar_wmb();
167
168 bdp->lstatus = cpu_to_be32(lstatus);
169 }
170
gfar_init_bds(struct net_device * ndev)171 static void gfar_init_bds(struct net_device *ndev)
172 {
173 struct gfar_private *priv = netdev_priv(ndev);
174 struct gfar __iomem *regs = priv->gfargrp[0].regs;
175 struct gfar_priv_tx_q *tx_queue = NULL;
176 struct gfar_priv_rx_q *rx_queue = NULL;
177 struct txbd8 *txbdp;
178 u32 __iomem *rfbptr;
179 int i, j;
180
181 for (i = 0; i < priv->num_tx_queues; i++) {
182 tx_queue = priv->tx_queue[i];
183 /* Initialize some variables in our dev structure */
184 tx_queue->num_txbdfree = tx_queue->tx_ring_size;
185 tx_queue->dirty_tx = tx_queue->tx_bd_base;
186 tx_queue->cur_tx = tx_queue->tx_bd_base;
187 tx_queue->skb_curtx = 0;
188 tx_queue->skb_dirtytx = 0;
189
190 /* Initialize Transmit Descriptor Ring */
191 txbdp = tx_queue->tx_bd_base;
192 for (j = 0; j < tx_queue->tx_ring_size; j++) {
193 txbdp->lstatus = 0;
194 txbdp->bufPtr = 0;
195 txbdp++;
196 }
197
198 /* Set the last descriptor in the ring to indicate wrap */
199 txbdp--;
200 txbdp->status = cpu_to_be16(be16_to_cpu(txbdp->status) |
201 TXBD_WRAP);
202 }
203
204 rfbptr = ®s->rfbptr0;
205 for (i = 0; i < priv->num_rx_queues; i++) {
206 rx_queue = priv->rx_queue[i];
207
208 rx_queue->next_to_clean = 0;
209 rx_queue->next_to_use = 0;
210 rx_queue->next_to_alloc = 0;
211
212 /* make sure next_to_clean != next_to_use after this
213 * by leaving at least 1 unused descriptor
214 */
215 gfar_alloc_rx_buffs(rx_queue, gfar_rxbd_unused(rx_queue));
216
217 rx_queue->rfbptr = rfbptr;
218 rfbptr += 2;
219 }
220 }
221
gfar_alloc_skb_resources(struct net_device * ndev)222 static int gfar_alloc_skb_resources(struct net_device *ndev)
223 {
224 void *vaddr;
225 dma_addr_t addr;
226 int i, j;
227 struct gfar_private *priv = netdev_priv(ndev);
228 struct device *dev = priv->dev;
229 struct gfar_priv_tx_q *tx_queue = NULL;
230 struct gfar_priv_rx_q *rx_queue = NULL;
231
232 priv->total_tx_ring_size = 0;
233 for (i = 0; i < priv->num_tx_queues; i++)
234 priv->total_tx_ring_size += priv->tx_queue[i]->tx_ring_size;
235
236 priv->total_rx_ring_size = 0;
237 for (i = 0; i < priv->num_rx_queues; i++)
238 priv->total_rx_ring_size += priv->rx_queue[i]->rx_ring_size;
239
240 /* Allocate memory for the buffer descriptors */
241 vaddr = dma_alloc_coherent(dev,
242 (priv->total_tx_ring_size *
243 sizeof(struct txbd8)) +
244 (priv->total_rx_ring_size *
245 sizeof(struct rxbd8)),
246 &addr, GFP_KERNEL);
247 if (!vaddr)
248 return -ENOMEM;
249
250 for (i = 0; i < priv->num_tx_queues; i++) {
251 tx_queue = priv->tx_queue[i];
252 tx_queue->tx_bd_base = vaddr;
253 tx_queue->tx_bd_dma_base = addr;
254 tx_queue->dev = ndev;
255 /* enet DMA only understands physical addresses */
256 addr += sizeof(struct txbd8) * tx_queue->tx_ring_size;
257 vaddr += sizeof(struct txbd8) * tx_queue->tx_ring_size;
258 }
259
260 /* Start the rx descriptor ring where the tx ring leaves off */
261 for (i = 0; i < priv->num_rx_queues; i++) {
262 rx_queue = priv->rx_queue[i];
263 rx_queue->rx_bd_base = vaddr;
264 rx_queue->rx_bd_dma_base = addr;
265 rx_queue->ndev = ndev;
266 rx_queue->dev = dev;
267 addr += sizeof(struct rxbd8) * rx_queue->rx_ring_size;
268 vaddr += sizeof(struct rxbd8) * rx_queue->rx_ring_size;
269 }
270
271 /* Setup the skbuff rings */
272 for (i = 0; i < priv->num_tx_queues; i++) {
273 tx_queue = priv->tx_queue[i];
274 tx_queue->tx_skbuff =
275 kmalloc_array(tx_queue->tx_ring_size,
276 sizeof(*tx_queue->tx_skbuff),
277 GFP_KERNEL);
278 if (!tx_queue->tx_skbuff)
279 goto cleanup;
280
281 for (j = 0; j < tx_queue->tx_ring_size; j++)
282 tx_queue->tx_skbuff[j] = NULL;
283 }
284
285 for (i = 0; i < priv->num_rx_queues; i++) {
286 rx_queue = priv->rx_queue[i];
287 rx_queue->rx_buff = kcalloc(rx_queue->rx_ring_size,
288 sizeof(*rx_queue->rx_buff),
289 GFP_KERNEL);
290 if (!rx_queue->rx_buff)
291 goto cleanup;
292 }
293
294 gfar_init_bds(ndev);
295
296 return 0;
297
298 cleanup:
299 free_skb_resources(priv);
300 return -ENOMEM;
301 }
302
gfar_init_tx_rx_base(struct gfar_private * priv)303 static void gfar_init_tx_rx_base(struct gfar_private *priv)
304 {
305 struct gfar __iomem *regs = priv->gfargrp[0].regs;
306 u32 __iomem *baddr;
307 int i;
308
309 baddr = ®s->tbase0;
310 for (i = 0; i < priv->num_tx_queues; i++) {
311 gfar_write(baddr, priv->tx_queue[i]->tx_bd_dma_base);
312 baddr += 2;
313 }
314
315 baddr = ®s->rbase0;
316 for (i = 0; i < priv->num_rx_queues; i++) {
317 gfar_write(baddr, priv->rx_queue[i]->rx_bd_dma_base);
318 baddr += 2;
319 }
320 }
321
gfar_init_rqprm(struct gfar_private * priv)322 static void gfar_init_rqprm(struct gfar_private *priv)
323 {
324 struct gfar __iomem *regs = priv->gfargrp[0].regs;
325 u32 __iomem *baddr;
326 int i;
327
328 baddr = ®s->rqprm0;
329 for (i = 0; i < priv->num_rx_queues; i++) {
330 gfar_write(baddr, priv->rx_queue[i]->rx_ring_size |
331 (DEFAULT_RX_LFC_THR << FBTHR_SHIFT));
332 baddr++;
333 }
334 }
335
gfar_rx_offload_en(struct gfar_private * priv)336 static void gfar_rx_offload_en(struct gfar_private *priv)
337 {
338 /* set this when rx hw offload (TOE) functions are being used */
339 priv->uses_rxfcb = 0;
340
341 if (priv->ndev->features & (NETIF_F_RXCSUM | NETIF_F_HW_VLAN_CTAG_RX))
342 priv->uses_rxfcb = 1;
343
344 if (priv->hwts_rx_en || priv->rx_filer_enable)
345 priv->uses_rxfcb = 1;
346 }
347
gfar_mac_rx_config(struct gfar_private * priv)348 static void gfar_mac_rx_config(struct gfar_private *priv)
349 {
350 struct gfar __iomem *regs = priv->gfargrp[0].regs;
351 u32 rctrl = 0;
352
353 if (priv->rx_filer_enable) {
354 rctrl |= RCTRL_FILREN | RCTRL_PRSDEP_INIT;
355 /* Program the RIR0 reg with the required distribution */
356 if (priv->poll_mode == GFAR_SQ_POLLING)
357 gfar_write(®s->rir0, DEFAULT_2RXQ_RIR0);
358 else /* GFAR_MQ_POLLING */
359 gfar_write(®s->rir0, DEFAULT_8RXQ_RIR0);
360 }
361
362 /* Restore PROMISC mode */
363 if (priv->ndev->flags & IFF_PROMISC)
364 rctrl |= RCTRL_PROM;
365
366 if (priv->ndev->features & NETIF_F_RXCSUM)
367 rctrl |= RCTRL_CHECKSUMMING;
368
369 if (priv->extended_hash)
370 rctrl |= RCTRL_EXTHASH | RCTRL_EMEN;
371
372 if (priv->padding) {
373 rctrl &= ~RCTRL_PAL_MASK;
374 rctrl |= RCTRL_PADDING(priv->padding);
375 }
376
377 /* Enable HW time stamping if requested from user space */
378 if (priv->hwts_rx_en)
379 rctrl |= RCTRL_PRSDEP_INIT | RCTRL_TS_ENABLE;
380
381 if (priv->ndev->features & NETIF_F_HW_VLAN_CTAG_RX)
382 rctrl |= RCTRL_VLEX | RCTRL_PRSDEP_INIT;
383
384 /* Clear the LFC bit */
385 gfar_write(®s->rctrl, rctrl);
386 /* Init flow control threshold values */
387 gfar_init_rqprm(priv);
388 gfar_write(®s->ptv, DEFAULT_LFC_PTVVAL);
389 rctrl |= RCTRL_LFC;
390
391 /* Init rctrl based on our settings */
392 gfar_write(®s->rctrl, rctrl);
393 }
394
gfar_mac_tx_config(struct gfar_private * priv)395 static void gfar_mac_tx_config(struct gfar_private *priv)
396 {
397 struct gfar __iomem *regs = priv->gfargrp[0].regs;
398 u32 tctrl = 0;
399
400 if (priv->ndev->features & NETIF_F_IP_CSUM)
401 tctrl |= TCTRL_INIT_CSUM;
402
403 if (priv->prio_sched_en)
404 tctrl |= TCTRL_TXSCHED_PRIO;
405 else {
406 tctrl |= TCTRL_TXSCHED_WRRS;
407 gfar_write(®s->tr03wt, DEFAULT_WRRS_WEIGHT);
408 gfar_write(®s->tr47wt, DEFAULT_WRRS_WEIGHT);
409 }
410
411 if (priv->ndev->features & NETIF_F_HW_VLAN_CTAG_TX)
412 tctrl |= TCTRL_VLINS;
413
414 gfar_write(®s->tctrl, tctrl);
415 }
416
gfar_configure_coalescing(struct gfar_private * priv,unsigned long tx_mask,unsigned long rx_mask)417 static void gfar_configure_coalescing(struct gfar_private *priv,
418 unsigned long tx_mask, unsigned long rx_mask)
419 {
420 struct gfar __iomem *regs = priv->gfargrp[0].regs;
421 u32 __iomem *baddr;
422
423 if (priv->mode == MQ_MG_MODE) {
424 int i = 0;
425
426 baddr = ®s->txic0;
427 for_each_set_bit(i, &tx_mask, priv->num_tx_queues) {
428 gfar_write(baddr + i, 0);
429 if (likely(priv->tx_queue[i]->txcoalescing))
430 gfar_write(baddr + i, priv->tx_queue[i]->txic);
431 }
432
433 baddr = ®s->rxic0;
434 for_each_set_bit(i, &rx_mask, priv->num_rx_queues) {
435 gfar_write(baddr + i, 0);
436 if (likely(priv->rx_queue[i]->rxcoalescing))
437 gfar_write(baddr + i, priv->rx_queue[i]->rxic);
438 }
439 } else {
440 /* Backward compatible case -- even if we enable
441 * multiple queues, there's only single reg to program
442 */
443 gfar_write(®s->txic, 0);
444 if (likely(priv->tx_queue[0]->txcoalescing))
445 gfar_write(®s->txic, priv->tx_queue[0]->txic);
446
447 gfar_write(®s->rxic, 0);
448 if (unlikely(priv->rx_queue[0]->rxcoalescing))
449 gfar_write(®s->rxic, priv->rx_queue[0]->rxic);
450 }
451 }
452
gfar_configure_coalescing_all(struct gfar_private * priv)453 void gfar_configure_coalescing_all(struct gfar_private *priv)
454 {
455 gfar_configure_coalescing(priv, 0xFF, 0xFF);
456 }
457
gfar_get_stats(struct net_device * dev)458 static struct net_device_stats *gfar_get_stats(struct net_device *dev)
459 {
460 struct gfar_private *priv = netdev_priv(dev);
461 unsigned long rx_packets = 0, rx_bytes = 0, rx_dropped = 0;
462 unsigned long tx_packets = 0, tx_bytes = 0;
463 int i;
464
465 for (i = 0; i < priv->num_rx_queues; i++) {
466 rx_packets += priv->rx_queue[i]->stats.rx_packets;
467 rx_bytes += priv->rx_queue[i]->stats.rx_bytes;
468 rx_dropped += priv->rx_queue[i]->stats.rx_dropped;
469 }
470
471 dev->stats.rx_packets = rx_packets;
472 dev->stats.rx_bytes = rx_bytes;
473 dev->stats.rx_dropped = rx_dropped;
474
475 for (i = 0; i < priv->num_tx_queues; i++) {
476 tx_bytes += priv->tx_queue[i]->stats.tx_bytes;
477 tx_packets += priv->tx_queue[i]->stats.tx_packets;
478 }
479
480 dev->stats.tx_bytes = tx_bytes;
481 dev->stats.tx_packets = tx_packets;
482
483 return &dev->stats;
484 }
485
gfar_set_mac_addr(struct net_device * dev,void * p)486 static int gfar_set_mac_addr(struct net_device *dev, void *p)
487 {
488 eth_mac_addr(dev, p);
489
490 gfar_set_mac_for_addr(dev, 0, dev->dev_addr);
491
492 return 0;
493 }
494
495 static const struct net_device_ops gfar_netdev_ops = {
496 .ndo_open = gfar_enet_open,
497 .ndo_start_xmit = gfar_start_xmit,
498 .ndo_stop = gfar_close,
499 .ndo_change_mtu = gfar_change_mtu,
500 .ndo_set_features = gfar_set_features,
501 .ndo_set_rx_mode = gfar_set_multi,
502 .ndo_tx_timeout = gfar_timeout,
503 .ndo_do_ioctl = gfar_ioctl,
504 .ndo_get_stats = gfar_get_stats,
505 .ndo_set_mac_address = gfar_set_mac_addr,
506 .ndo_validate_addr = eth_validate_addr,
507 #ifdef CONFIG_NET_POLL_CONTROLLER
508 .ndo_poll_controller = gfar_netpoll,
509 #endif
510 };
511
gfar_ints_disable(struct gfar_private * priv)512 static void gfar_ints_disable(struct gfar_private *priv)
513 {
514 int i;
515 for (i = 0; i < priv->num_grps; i++) {
516 struct gfar __iomem *regs = priv->gfargrp[i].regs;
517 /* Clear IEVENT */
518 gfar_write(®s->ievent, IEVENT_INIT_CLEAR);
519
520 /* Initialize IMASK */
521 gfar_write(®s->imask, IMASK_INIT_CLEAR);
522 }
523 }
524
gfar_ints_enable(struct gfar_private * priv)525 static void gfar_ints_enable(struct gfar_private *priv)
526 {
527 int i;
528 for (i = 0; i < priv->num_grps; i++) {
529 struct gfar __iomem *regs = priv->gfargrp[i].regs;
530 /* Unmask the interrupts we look for */
531 gfar_write(®s->imask, IMASK_DEFAULT);
532 }
533 }
534
gfar_alloc_tx_queues(struct gfar_private * priv)535 static int gfar_alloc_tx_queues(struct gfar_private *priv)
536 {
537 int i;
538
539 for (i = 0; i < priv->num_tx_queues; i++) {
540 priv->tx_queue[i] = kzalloc(sizeof(struct gfar_priv_tx_q),
541 GFP_KERNEL);
542 if (!priv->tx_queue[i])
543 return -ENOMEM;
544
545 priv->tx_queue[i]->tx_skbuff = NULL;
546 priv->tx_queue[i]->qindex = i;
547 priv->tx_queue[i]->dev = priv->ndev;
548 spin_lock_init(&(priv->tx_queue[i]->txlock));
549 }
550 return 0;
551 }
552
gfar_alloc_rx_queues(struct gfar_private * priv)553 static int gfar_alloc_rx_queues(struct gfar_private *priv)
554 {
555 int i;
556
557 for (i = 0; i < priv->num_rx_queues; i++) {
558 priv->rx_queue[i] = kzalloc(sizeof(struct gfar_priv_rx_q),
559 GFP_KERNEL);
560 if (!priv->rx_queue[i])
561 return -ENOMEM;
562
563 priv->rx_queue[i]->qindex = i;
564 priv->rx_queue[i]->ndev = priv->ndev;
565 }
566 return 0;
567 }
568
gfar_free_tx_queues(struct gfar_private * priv)569 static void gfar_free_tx_queues(struct gfar_private *priv)
570 {
571 int i;
572
573 for (i = 0; i < priv->num_tx_queues; i++)
574 kfree(priv->tx_queue[i]);
575 }
576
gfar_free_rx_queues(struct gfar_private * priv)577 static void gfar_free_rx_queues(struct gfar_private *priv)
578 {
579 int i;
580
581 for (i = 0; i < priv->num_rx_queues; i++)
582 kfree(priv->rx_queue[i]);
583 }
584
unmap_group_regs(struct gfar_private * priv)585 static void unmap_group_regs(struct gfar_private *priv)
586 {
587 int i;
588
589 for (i = 0; i < MAXGROUPS; i++)
590 if (priv->gfargrp[i].regs)
591 iounmap(priv->gfargrp[i].regs);
592 }
593
free_gfar_dev(struct gfar_private * priv)594 static void free_gfar_dev(struct gfar_private *priv)
595 {
596 int i, j;
597
598 for (i = 0; i < priv->num_grps; i++)
599 for (j = 0; j < GFAR_NUM_IRQS; j++) {
600 kfree(priv->gfargrp[i].irqinfo[j]);
601 priv->gfargrp[i].irqinfo[j] = NULL;
602 }
603
604 free_netdev(priv->ndev);
605 }
606
disable_napi(struct gfar_private * priv)607 static void disable_napi(struct gfar_private *priv)
608 {
609 int i;
610
611 for (i = 0; i < priv->num_grps; i++) {
612 napi_disable(&priv->gfargrp[i].napi_rx);
613 napi_disable(&priv->gfargrp[i].napi_tx);
614 }
615 }
616
enable_napi(struct gfar_private * priv)617 static void enable_napi(struct gfar_private *priv)
618 {
619 int i;
620
621 for (i = 0; i < priv->num_grps; i++) {
622 napi_enable(&priv->gfargrp[i].napi_rx);
623 napi_enable(&priv->gfargrp[i].napi_tx);
624 }
625 }
626
gfar_parse_group(struct device_node * np,struct gfar_private * priv,const char * model)627 static int gfar_parse_group(struct device_node *np,
628 struct gfar_private *priv, const char *model)
629 {
630 struct gfar_priv_grp *grp = &priv->gfargrp[priv->num_grps];
631 int i;
632
633 for (i = 0; i < GFAR_NUM_IRQS; i++) {
634 grp->irqinfo[i] = kzalloc(sizeof(struct gfar_irqinfo),
635 GFP_KERNEL);
636 if (!grp->irqinfo[i])
637 return -ENOMEM;
638 }
639
640 grp->regs = of_iomap(np, 0);
641 if (!grp->regs)
642 return -ENOMEM;
643
644 gfar_irq(grp, TX)->irq = irq_of_parse_and_map(np, 0);
645
646 /* If we aren't the FEC we have multiple interrupts */
647 if (model && strcasecmp(model, "FEC")) {
648 gfar_irq(grp, RX)->irq = irq_of_parse_and_map(np, 1);
649 gfar_irq(grp, ER)->irq = irq_of_parse_and_map(np, 2);
650 if (!gfar_irq(grp, TX)->irq ||
651 !gfar_irq(grp, RX)->irq ||
652 !gfar_irq(grp, ER)->irq)
653 return -EINVAL;
654 }
655
656 grp->priv = priv;
657 spin_lock_init(&grp->grplock);
658 if (priv->mode == MQ_MG_MODE) {
659 u32 rxq_mask, txq_mask;
660 int ret;
661
662 grp->rx_bit_map = (DEFAULT_MAPPING >> priv->num_grps);
663 grp->tx_bit_map = (DEFAULT_MAPPING >> priv->num_grps);
664
665 ret = of_property_read_u32(np, "fsl,rx-bit-map", &rxq_mask);
666 if (!ret) {
667 grp->rx_bit_map = rxq_mask ?
668 rxq_mask : (DEFAULT_MAPPING >> priv->num_grps);
669 }
670
671 ret = of_property_read_u32(np, "fsl,tx-bit-map", &txq_mask);
672 if (!ret) {
673 grp->tx_bit_map = txq_mask ?
674 txq_mask : (DEFAULT_MAPPING >> priv->num_grps);
675 }
676
677 if (priv->poll_mode == GFAR_SQ_POLLING) {
678 /* One Q per interrupt group: Q0 to G0, Q1 to G1 */
679 grp->rx_bit_map = (DEFAULT_MAPPING >> priv->num_grps);
680 grp->tx_bit_map = (DEFAULT_MAPPING >> priv->num_grps);
681 }
682 } else {
683 grp->rx_bit_map = 0xFF;
684 grp->tx_bit_map = 0xFF;
685 }
686
687 /* bit_map's MSB is q0 (from q0 to q7) but, for_each_set_bit parses
688 * right to left, so we need to revert the 8 bits to get the q index
689 */
690 grp->rx_bit_map = bitrev8(grp->rx_bit_map);
691 grp->tx_bit_map = bitrev8(grp->tx_bit_map);
692
693 /* Calculate RSTAT, TSTAT, RQUEUE and TQUEUE values,
694 * also assign queues to groups
695 */
696 for_each_set_bit(i, &grp->rx_bit_map, priv->num_rx_queues) {
697 if (!grp->rx_queue)
698 grp->rx_queue = priv->rx_queue[i];
699 grp->num_rx_queues++;
700 grp->rstat |= (RSTAT_CLEAR_RHALT >> i);
701 priv->rqueue |= ((RQUEUE_EN0 | RQUEUE_EX0) >> i);
702 priv->rx_queue[i]->grp = grp;
703 }
704
705 for_each_set_bit(i, &grp->tx_bit_map, priv->num_tx_queues) {
706 if (!grp->tx_queue)
707 grp->tx_queue = priv->tx_queue[i];
708 grp->num_tx_queues++;
709 grp->tstat |= (TSTAT_CLEAR_THALT >> i);
710 priv->tqueue |= (TQUEUE_EN0 >> i);
711 priv->tx_queue[i]->grp = grp;
712 }
713
714 priv->num_grps++;
715
716 return 0;
717 }
718
gfar_of_group_count(struct device_node * np)719 static int gfar_of_group_count(struct device_node *np)
720 {
721 struct device_node *child;
722 int num = 0;
723
724 for_each_available_child_of_node(np, child)
725 if (!of_node_cmp(child->name, "queue-group"))
726 num++;
727
728 return num;
729 }
730
gfar_of_init(struct platform_device * ofdev,struct net_device ** pdev)731 static int gfar_of_init(struct platform_device *ofdev, struct net_device **pdev)
732 {
733 const char *model;
734 const char *ctype;
735 const void *mac_addr;
736 int err = 0, i;
737 struct net_device *dev = NULL;
738 struct gfar_private *priv = NULL;
739 struct device_node *np = ofdev->dev.of_node;
740 struct device_node *child = NULL;
741 u32 stash_len = 0;
742 u32 stash_idx = 0;
743 unsigned int num_tx_qs, num_rx_qs;
744 unsigned short mode, poll_mode;
745
746 if (!np)
747 return -ENODEV;
748
749 if (of_device_is_compatible(np, "fsl,etsec2")) {
750 mode = MQ_MG_MODE;
751 poll_mode = GFAR_SQ_POLLING;
752 } else {
753 mode = SQ_SG_MODE;
754 poll_mode = GFAR_SQ_POLLING;
755 }
756
757 if (mode == SQ_SG_MODE) {
758 num_tx_qs = 1;
759 num_rx_qs = 1;
760 } else { /* MQ_MG_MODE */
761 /* get the actual number of supported groups */
762 unsigned int num_grps = gfar_of_group_count(np);
763
764 if (num_grps == 0 || num_grps > MAXGROUPS) {
765 dev_err(&ofdev->dev, "Invalid # of int groups(%d)\n",
766 num_grps);
767 pr_err("Cannot do alloc_etherdev, aborting\n");
768 return -EINVAL;
769 }
770
771 if (poll_mode == GFAR_SQ_POLLING) {
772 num_tx_qs = num_grps; /* one txq per int group */
773 num_rx_qs = num_grps; /* one rxq per int group */
774 } else { /* GFAR_MQ_POLLING */
775 u32 tx_queues, rx_queues;
776 int ret;
777
778 /* parse the num of HW tx and rx queues */
779 ret = of_property_read_u32(np, "fsl,num_tx_queues",
780 &tx_queues);
781 num_tx_qs = ret ? 1 : tx_queues;
782
783 ret = of_property_read_u32(np, "fsl,num_rx_queues",
784 &rx_queues);
785 num_rx_qs = ret ? 1 : rx_queues;
786 }
787 }
788
789 if (num_tx_qs > MAX_TX_QS) {
790 pr_err("num_tx_qs(=%d) greater than MAX_TX_QS(=%d)\n",
791 num_tx_qs, MAX_TX_QS);
792 pr_err("Cannot do alloc_etherdev, aborting\n");
793 return -EINVAL;
794 }
795
796 if (num_rx_qs > MAX_RX_QS) {
797 pr_err("num_rx_qs(=%d) greater than MAX_RX_QS(=%d)\n",
798 num_rx_qs, MAX_RX_QS);
799 pr_err("Cannot do alloc_etherdev, aborting\n");
800 return -EINVAL;
801 }
802
803 *pdev = alloc_etherdev_mq(sizeof(*priv), num_tx_qs);
804 dev = *pdev;
805 if (NULL == dev)
806 return -ENOMEM;
807
808 priv = netdev_priv(dev);
809 priv->ndev = dev;
810
811 priv->mode = mode;
812 priv->poll_mode = poll_mode;
813
814 priv->num_tx_queues = num_tx_qs;
815 netif_set_real_num_rx_queues(dev, num_rx_qs);
816 priv->num_rx_queues = num_rx_qs;
817
818 err = gfar_alloc_tx_queues(priv);
819 if (err)
820 goto tx_alloc_failed;
821
822 err = gfar_alloc_rx_queues(priv);
823 if (err)
824 goto rx_alloc_failed;
825
826 err = of_property_read_string(np, "model", &model);
827 if (err) {
828 pr_err("Device model property missing, aborting\n");
829 goto rx_alloc_failed;
830 }
831
832 /* Init Rx queue filer rule set linked list */
833 INIT_LIST_HEAD(&priv->rx_list.list);
834 priv->rx_list.count = 0;
835 mutex_init(&priv->rx_queue_access);
836
837 for (i = 0; i < MAXGROUPS; i++)
838 priv->gfargrp[i].regs = NULL;
839
840 /* Parse and initialize group specific information */
841 if (priv->mode == MQ_MG_MODE) {
842 for_each_available_child_of_node(np, child) {
843 if (of_node_cmp(child->name, "queue-group"))
844 continue;
845
846 err = gfar_parse_group(child, priv, model);
847 if (err) {
848 of_node_put(child);
849 goto err_grp_init;
850 }
851 }
852 } else { /* SQ_SG_MODE */
853 err = gfar_parse_group(np, priv, model);
854 if (err)
855 goto err_grp_init;
856 }
857
858 if (of_property_read_bool(np, "bd-stash")) {
859 priv->device_flags |= FSL_GIANFAR_DEV_HAS_BD_STASHING;
860 priv->bd_stash_en = 1;
861 }
862
863 err = of_property_read_u32(np, "rx-stash-len", &stash_len);
864
865 if (err == 0)
866 priv->rx_stash_size = stash_len;
867
868 err = of_property_read_u32(np, "rx-stash-idx", &stash_idx);
869
870 if (err == 0)
871 priv->rx_stash_index = stash_idx;
872
873 if (stash_len || stash_idx)
874 priv->device_flags |= FSL_GIANFAR_DEV_HAS_BUF_STASHING;
875
876 mac_addr = of_get_mac_address(np);
877
878 if (mac_addr)
879 memcpy(dev->dev_addr, mac_addr, ETH_ALEN);
880
881 if (model && !strcasecmp(model, "TSEC"))
882 priv->device_flags |= FSL_GIANFAR_DEV_HAS_GIGABIT |
883 FSL_GIANFAR_DEV_HAS_COALESCE |
884 FSL_GIANFAR_DEV_HAS_RMON |
885 FSL_GIANFAR_DEV_HAS_MULTI_INTR;
886
887 if (model && !strcasecmp(model, "eTSEC"))
888 priv->device_flags |= FSL_GIANFAR_DEV_HAS_GIGABIT |
889 FSL_GIANFAR_DEV_HAS_COALESCE |
890 FSL_GIANFAR_DEV_HAS_RMON |
891 FSL_GIANFAR_DEV_HAS_MULTI_INTR |
892 FSL_GIANFAR_DEV_HAS_CSUM |
893 FSL_GIANFAR_DEV_HAS_VLAN |
894 FSL_GIANFAR_DEV_HAS_MAGIC_PACKET |
895 FSL_GIANFAR_DEV_HAS_EXTENDED_HASH |
896 FSL_GIANFAR_DEV_HAS_TIMER |
897 FSL_GIANFAR_DEV_HAS_RX_FILER;
898
899 err = of_property_read_string(np, "phy-connection-type", &ctype);
900
901 /* We only care about rgmii-id. The rest are autodetected */
902 if (err == 0 && !strcmp(ctype, "rgmii-id"))
903 priv->interface = PHY_INTERFACE_MODE_RGMII_ID;
904 else
905 priv->interface = PHY_INTERFACE_MODE_MII;
906
907 if (of_find_property(np, "fsl,magic-packet", NULL))
908 priv->device_flags |= FSL_GIANFAR_DEV_HAS_MAGIC_PACKET;
909
910 if (of_get_property(np, "fsl,wake-on-filer", NULL))
911 priv->device_flags |= FSL_GIANFAR_DEV_HAS_WAKE_ON_FILER;
912
913 priv->phy_node = of_parse_phandle(np, "phy-handle", 0);
914
915 /* In the case of a fixed PHY, the DT node associated
916 * to the PHY is the Ethernet MAC DT node.
917 */
918 if (!priv->phy_node && of_phy_is_fixed_link(np)) {
919 err = of_phy_register_fixed_link(np);
920 if (err)
921 goto err_grp_init;
922
923 priv->phy_node = of_node_get(np);
924 }
925
926 /* Find the TBI PHY. If it's not there, we don't support SGMII */
927 priv->tbi_node = of_parse_phandle(np, "tbi-handle", 0);
928
929 return 0;
930
931 err_grp_init:
932 unmap_group_regs(priv);
933 rx_alloc_failed:
934 gfar_free_rx_queues(priv);
935 tx_alloc_failed:
936 gfar_free_tx_queues(priv);
937 free_gfar_dev(priv);
938 return err;
939 }
940
gfar_hwtstamp_set(struct net_device * netdev,struct ifreq * ifr)941 static int gfar_hwtstamp_set(struct net_device *netdev, struct ifreq *ifr)
942 {
943 struct hwtstamp_config config;
944 struct gfar_private *priv = netdev_priv(netdev);
945
946 if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
947 return -EFAULT;
948
949 /* reserved for future extensions */
950 if (config.flags)
951 return -EINVAL;
952
953 switch (config.tx_type) {
954 case HWTSTAMP_TX_OFF:
955 priv->hwts_tx_en = 0;
956 break;
957 case HWTSTAMP_TX_ON:
958 if (!(priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER))
959 return -ERANGE;
960 priv->hwts_tx_en = 1;
961 break;
962 default:
963 return -ERANGE;
964 }
965
966 switch (config.rx_filter) {
967 case HWTSTAMP_FILTER_NONE:
968 if (priv->hwts_rx_en) {
969 priv->hwts_rx_en = 0;
970 reset_gfar(netdev);
971 }
972 break;
973 default:
974 if (!(priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER))
975 return -ERANGE;
976 if (!priv->hwts_rx_en) {
977 priv->hwts_rx_en = 1;
978 reset_gfar(netdev);
979 }
980 config.rx_filter = HWTSTAMP_FILTER_ALL;
981 break;
982 }
983
984 return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
985 -EFAULT : 0;
986 }
987
gfar_hwtstamp_get(struct net_device * netdev,struct ifreq * ifr)988 static int gfar_hwtstamp_get(struct net_device *netdev, struct ifreq *ifr)
989 {
990 struct hwtstamp_config config;
991 struct gfar_private *priv = netdev_priv(netdev);
992
993 config.flags = 0;
994 config.tx_type = priv->hwts_tx_en ? HWTSTAMP_TX_ON : HWTSTAMP_TX_OFF;
995 config.rx_filter = (priv->hwts_rx_en ?
996 HWTSTAMP_FILTER_ALL : HWTSTAMP_FILTER_NONE);
997
998 return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
999 -EFAULT : 0;
1000 }
1001
gfar_ioctl(struct net_device * dev,struct ifreq * rq,int cmd)1002 static int gfar_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
1003 {
1004 struct phy_device *phydev = dev->phydev;
1005
1006 if (!netif_running(dev))
1007 return -EINVAL;
1008
1009 if (cmd == SIOCSHWTSTAMP)
1010 return gfar_hwtstamp_set(dev, rq);
1011 if (cmd == SIOCGHWTSTAMP)
1012 return gfar_hwtstamp_get(dev, rq);
1013
1014 if (!phydev)
1015 return -ENODEV;
1016
1017 return phy_mii_ioctl(phydev, rq, cmd);
1018 }
1019
cluster_entry_per_class(struct gfar_private * priv,u32 rqfar,u32 class)1020 static u32 cluster_entry_per_class(struct gfar_private *priv, u32 rqfar,
1021 u32 class)
1022 {
1023 u32 rqfpr = FPR_FILER_MASK;
1024 u32 rqfcr = 0x0;
1025
1026 rqfar--;
1027 rqfcr = RQFCR_CLE | RQFCR_PID_MASK | RQFCR_CMP_EXACT;
1028 priv->ftp_rqfpr[rqfar] = rqfpr;
1029 priv->ftp_rqfcr[rqfar] = rqfcr;
1030 gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
1031
1032 rqfar--;
1033 rqfcr = RQFCR_CMP_NOMATCH;
1034 priv->ftp_rqfpr[rqfar] = rqfpr;
1035 priv->ftp_rqfcr[rqfar] = rqfcr;
1036 gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
1037
1038 rqfar--;
1039 rqfcr = RQFCR_CMP_EXACT | RQFCR_PID_PARSE | RQFCR_CLE | RQFCR_AND;
1040 rqfpr = class;
1041 priv->ftp_rqfcr[rqfar] = rqfcr;
1042 priv->ftp_rqfpr[rqfar] = rqfpr;
1043 gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
1044
1045 rqfar--;
1046 rqfcr = RQFCR_CMP_EXACT | RQFCR_PID_MASK | RQFCR_AND;
1047 rqfpr = class;
1048 priv->ftp_rqfcr[rqfar] = rqfcr;
1049 priv->ftp_rqfpr[rqfar] = rqfpr;
1050 gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
1051
1052 return rqfar;
1053 }
1054
gfar_init_filer_table(struct gfar_private * priv)1055 static void gfar_init_filer_table(struct gfar_private *priv)
1056 {
1057 int i = 0x0;
1058 u32 rqfar = MAX_FILER_IDX;
1059 u32 rqfcr = 0x0;
1060 u32 rqfpr = FPR_FILER_MASK;
1061
1062 /* Default rule */
1063 rqfcr = RQFCR_CMP_MATCH;
1064 priv->ftp_rqfcr[rqfar] = rqfcr;
1065 priv->ftp_rqfpr[rqfar] = rqfpr;
1066 gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
1067
1068 rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV6);
1069 rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV6 | RQFPR_UDP);
1070 rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV6 | RQFPR_TCP);
1071 rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV4);
1072 rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV4 | RQFPR_UDP);
1073 rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV4 | RQFPR_TCP);
1074
1075 /* cur_filer_idx indicated the first non-masked rule */
1076 priv->cur_filer_idx = rqfar;
1077
1078 /* Rest are masked rules */
1079 rqfcr = RQFCR_CMP_NOMATCH;
1080 for (i = 0; i < rqfar; i++) {
1081 priv->ftp_rqfcr[i] = rqfcr;
1082 priv->ftp_rqfpr[i] = rqfpr;
1083 gfar_write_filer(priv, i, rqfcr, rqfpr);
1084 }
1085 }
1086
1087 #ifdef CONFIG_PPC
__gfar_detect_errata_83xx(struct gfar_private * priv)1088 static void __gfar_detect_errata_83xx(struct gfar_private *priv)
1089 {
1090 unsigned int pvr = mfspr(SPRN_PVR);
1091 unsigned int svr = mfspr(SPRN_SVR);
1092 unsigned int mod = (svr >> 16) & 0xfff6; /* w/o E suffix */
1093 unsigned int rev = svr & 0xffff;
1094
1095 /* MPC8313 Rev 2.0 and higher; All MPC837x */
1096 if ((pvr == 0x80850010 && mod == 0x80b0 && rev >= 0x0020) ||
1097 (pvr == 0x80861010 && (mod & 0xfff9) == 0x80c0))
1098 priv->errata |= GFAR_ERRATA_74;
1099
1100 /* MPC8313 and MPC837x all rev */
1101 if ((pvr == 0x80850010 && mod == 0x80b0) ||
1102 (pvr == 0x80861010 && (mod & 0xfff9) == 0x80c0))
1103 priv->errata |= GFAR_ERRATA_76;
1104
1105 /* MPC8313 Rev < 2.0 */
1106 if (pvr == 0x80850010 && mod == 0x80b0 && rev < 0x0020)
1107 priv->errata |= GFAR_ERRATA_12;
1108 }
1109
__gfar_detect_errata_85xx(struct gfar_private * priv)1110 static void __gfar_detect_errata_85xx(struct gfar_private *priv)
1111 {
1112 unsigned int svr = mfspr(SPRN_SVR);
1113
1114 if ((SVR_SOC_VER(svr) == SVR_8548) && (SVR_REV(svr) == 0x20))
1115 priv->errata |= GFAR_ERRATA_12;
1116 /* P2020/P1010 Rev 1; MPC8548 Rev 2 */
1117 if (((SVR_SOC_VER(svr) == SVR_P2020) && (SVR_REV(svr) < 0x20)) ||
1118 ((SVR_SOC_VER(svr) == SVR_P2010) && (SVR_REV(svr) < 0x20)) ||
1119 ((SVR_SOC_VER(svr) == SVR_8548) && (SVR_REV(svr) < 0x31)))
1120 priv->errata |= GFAR_ERRATA_76; /* aka eTSEC 20 */
1121 }
1122 #endif
1123
gfar_detect_errata(struct gfar_private * priv)1124 static void gfar_detect_errata(struct gfar_private *priv)
1125 {
1126 struct device *dev = &priv->ofdev->dev;
1127
1128 /* no plans to fix */
1129 priv->errata |= GFAR_ERRATA_A002;
1130
1131 #ifdef CONFIG_PPC
1132 if (pvr_version_is(PVR_VER_E500V1) || pvr_version_is(PVR_VER_E500V2))
1133 __gfar_detect_errata_85xx(priv);
1134 else /* non-mpc85xx parts, i.e. e300 core based */
1135 __gfar_detect_errata_83xx(priv);
1136 #endif
1137
1138 if (priv->errata)
1139 dev_info(dev, "enabled errata workarounds, flags: 0x%x\n",
1140 priv->errata);
1141 }
1142
gfar_mac_reset(struct gfar_private * priv)1143 void gfar_mac_reset(struct gfar_private *priv)
1144 {
1145 struct gfar __iomem *regs = priv->gfargrp[0].regs;
1146 u32 tempval;
1147
1148 /* Reset MAC layer */
1149 gfar_write(®s->maccfg1, MACCFG1_SOFT_RESET);
1150
1151 /* We need to delay at least 3 TX clocks */
1152 udelay(3);
1153
1154 /* the soft reset bit is not self-resetting, so we need to
1155 * clear it before resuming normal operation
1156 */
1157 gfar_write(®s->maccfg1, 0);
1158
1159 udelay(3);
1160
1161 gfar_rx_offload_en(priv);
1162
1163 /* Initialize the max receive frame/buffer lengths */
1164 gfar_write(®s->maxfrm, GFAR_JUMBO_FRAME_SIZE);
1165 gfar_write(®s->mrblr, GFAR_RXB_SIZE);
1166
1167 /* Initialize the Minimum Frame Length Register */
1168 gfar_write(®s->minflr, MINFLR_INIT_SETTINGS);
1169
1170 /* Initialize MACCFG2. */
1171 tempval = MACCFG2_INIT_SETTINGS;
1172
1173 /* eTSEC74 erratum: Rx frames of length MAXFRM or MAXFRM-1
1174 * are marked as truncated. Avoid this by MACCFG2[Huge Frame]=1,
1175 * and by checking RxBD[LG] and discarding larger than MAXFRM.
1176 */
1177 if (gfar_has_errata(priv, GFAR_ERRATA_74))
1178 tempval |= MACCFG2_HUGEFRAME | MACCFG2_LENGTHCHECK;
1179
1180 gfar_write(®s->maccfg2, tempval);
1181
1182 /* Clear mac addr hash registers */
1183 gfar_write(®s->igaddr0, 0);
1184 gfar_write(®s->igaddr1, 0);
1185 gfar_write(®s->igaddr2, 0);
1186 gfar_write(®s->igaddr3, 0);
1187 gfar_write(®s->igaddr4, 0);
1188 gfar_write(®s->igaddr5, 0);
1189 gfar_write(®s->igaddr6, 0);
1190 gfar_write(®s->igaddr7, 0);
1191
1192 gfar_write(®s->gaddr0, 0);
1193 gfar_write(®s->gaddr1, 0);
1194 gfar_write(®s->gaddr2, 0);
1195 gfar_write(®s->gaddr3, 0);
1196 gfar_write(®s->gaddr4, 0);
1197 gfar_write(®s->gaddr5, 0);
1198 gfar_write(®s->gaddr6, 0);
1199 gfar_write(®s->gaddr7, 0);
1200
1201 if (priv->extended_hash)
1202 gfar_clear_exact_match(priv->ndev);
1203
1204 gfar_mac_rx_config(priv);
1205
1206 gfar_mac_tx_config(priv);
1207
1208 gfar_set_mac_address(priv->ndev);
1209
1210 gfar_set_multi(priv->ndev);
1211
1212 /* clear ievent and imask before configuring coalescing */
1213 gfar_ints_disable(priv);
1214
1215 /* Configure the coalescing support */
1216 gfar_configure_coalescing_all(priv);
1217 }
1218
gfar_hw_init(struct gfar_private * priv)1219 static void gfar_hw_init(struct gfar_private *priv)
1220 {
1221 struct gfar __iomem *regs = priv->gfargrp[0].regs;
1222 u32 attrs;
1223
1224 /* Stop the DMA engine now, in case it was running before
1225 * (The firmware could have used it, and left it running).
1226 */
1227 gfar_halt(priv);
1228
1229 gfar_mac_reset(priv);
1230
1231 /* Zero out the rmon mib registers if it has them */
1232 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_RMON) {
1233 memset_io(&(regs->rmon), 0, sizeof(struct rmon_mib));
1234
1235 /* Mask off the CAM interrupts */
1236 gfar_write(®s->rmon.cam1, 0xffffffff);
1237 gfar_write(®s->rmon.cam2, 0xffffffff);
1238 }
1239
1240 /* Initialize ECNTRL */
1241 gfar_write(®s->ecntrl, ECNTRL_INIT_SETTINGS);
1242
1243 /* Set the extraction length and index */
1244 attrs = ATTRELI_EL(priv->rx_stash_size) |
1245 ATTRELI_EI(priv->rx_stash_index);
1246
1247 gfar_write(®s->attreli, attrs);
1248
1249 /* Start with defaults, and add stashing
1250 * depending on driver parameters
1251 */
1252 attrs = ATTR_INIT_SETTINGS;
1253
1254 if (priv->bd_stash_en)
1255 attrs |= ATTR_BDSTASH;
1256
1257 if (priv->rx_stash_size != 0)
1258 attrs |= ATTR_BUFSTASH;
1259
1260 gfar_write(®s->attr, attrs);
1261
1262 /* FIFO configs */
1263 gfar_write(®s->fifo_tx_thr, DEFAULT_FIFO_TX_THR);
1264 gfar_write(®s->fifo_tx_starve, DEFAULT_FIFO_TX_STARVE);
1265 gfar_write(®s->fifo_tx_starve_shutoff, DEFAULT_FIFO_TX_STARVE_OFF);
1266
1267 /* Program the interrupt steering regs, only for MG devices */
1268 if (priv->num_grps > 1)
1269 gfar_write_isrg(priv);
1270 }
1271
gfar_init_addr_hash_table(struct gfar_private * priv)1272 static void gfar_init_addr_hash_table(struct gfar_private *priv)
1273 {
1274 struct gfar __iomem *regs = priv->gfargrp[0].regs;
1275
1276 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_EXTENDED_HASH) {
1277 priv->extended_hash = 1;
1278 priv->hash_width = 9;
1279
1280 priv->hash_regs[0] = ®s->igaddr0;
1281 priv->hash_regs[1] = ®s->igaddr1;
1282 priv->hash_regs[2] = ®s->igaddr2;
1283 priv->hash_regs[3] = ®s->igaddr3;
1284 priv->hash_regs[4] = ®s->igaddr4;
1285 priv->hash_regs[5] = ®s->igaddr5;
1286 priv->hash_regs[6] = ®s->igaddr6;
1287 priv->hash_regs[7] = ®s->igaddr7;
1288 priv->hash_regs[8] = ®s->gaddr0;
1289 priv->hash_regs[9] = ®s->gaddr1;
1290 priv->hash_regs[10] = ®s->gaddr2;
1291 priv->hash_regs[11] = ®s->gaddr3;
1292 priv->hash_regs[12] = ®s->gaddr4;
1293 priv->hash_regs[13] = ®s->gaddr5;
1294 priv->hash_regs[14] = ®s->gaddr6;
1295 priv->hash_regs[15] = ®s->gaddr7;
1296
1297 } else {
1298 priv->extended_hash = 0;
1299 priv->hash_width = 8;
1300
1301 priv->hash_regs[0] = ®s->gaddr0;
1302 priv->hash_regs[1] = ®s->gaddr1;
1303 priv->hash_regs[2] = ®s->gaddr2;
1304 priv->hash_regs[3] = ®s->gaddr3;
1305 priv->hash_regs[4] = ®s->gaddr4;
1306 priv->hash_regs[5] = ®s->gaddr5;
1307 priv->hash_regs[6] = ®s->gaddr6;
1308 priv->hash_regs[7] = ®s->gaddr7;
1309 }
1310 }
1311
1312 /* Set up the ethernet device structure, private data,
1313 * and anything else we need before we start
1314 */
gfar_probe(struct platform_device * ofdev)1315 static int gfar_probe(struct platform_device *ofdev)
1316 {
1317 struct device_node *np = ofdev->dev.of_node;
1318 struct net_device *dev = NULL;
1319 struct gfar_private *priv = NULL;
1320 int err = 0, i;
1321
1322 err = gfar_of_init(ofdev, &dev);
1323
1324 if (err)
1325 return err;
1326
1327 priv = netdev_priv(dev);
1328 priv->ndev = dev;
1329 priv->ofdev = ofdev;
1330 priv->dev = &ofdev->dev;
1331 SET_NETDEV_DEV(dev, &ofdev->dev);
1332
1333 INIT_WORK(&priv->reset_task, gfar_reset_task);
1334
1335 platform_set_drvdata(ofdev, priv);
1336
1337 gfar_detect_errata(priv);
1338
1339 /* Set the dev->base_addr to the gfar reg region */
1340 dev->base_addr = (unsigned long) priv->gfargrp[0].regs;
1341
1342 /* Fill in the dev structure */
1343 dev->watchdog_timeo = TX_TIMEOUT;
1344 /* MTU range: 50 - 9586 */
1345 dev->mtu = 1500;
1346 dev->min_mtu = 50;
1347 dev->max_mtu = GFAR_JUMBO_FRAME_SIZE - ETH_HLEN;
1348 dev->netdev_ops = &gfar_netdev_ops;
1349 dev->ethtool_ops = &gfar_ethtool_ops;
1350
1351 /* Register for napi ...We are registering NAPI for each grp */
1352 for (i = 0; i < priv->num_grps; i++) {
1353 if (priv->poll_mode == GFAR_SQ_POLLING) {
1354 netif_napi_add(dev, &priv->gfargrp[i].napi_rx,
1355 gfar_poll_rx_sq, GFAR_DEV_WEIGHT);
1356 netif_tx_napi_add(dev, &priv->gfargrp[i].napi_tx,
1357 gfar_poll_tx_sq, 2);
1358 } else {
1359 netif_napi_add(dev, &priv->gfargrp[i].napi_rx,
1360 gfar_poll_rx, GFAR_DEV_WEIGHT);
1361 netif_tx_napi_add(dev, &priv->gfargrp[i].napi_tx,
1362 gfar_poll_tx, 2);
1363 }
1364 }
1365
1366 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_CSUM) {
1367 dev->hw_features = NETIF_F_IP_CSUM | NETIF_F_SG |
1368 NETIF_F_RXCSUM;
1369 dev->features |= NETIF_F_IP_CSUM | NETIF_F_SG |
1370 NETIF_F_RXCSUM | NETIF_F_HIGHDMA;
1371 }
1372
1373 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_VLAN) {
1374 dev->hw_features |= NETIF_F_HW_VLAN_CTAG_TX |
1375 NETIF_F_HW_VLAN_CTAG_RX;
1376 dev->features |= NETIF_F_HW_VLAN_CTAG_RX;
1377 }
1378
1379 dev->priv_flags |= IFF_LIVE_ADDR_CHANGE;
1380
1381 gfar_init_addr_hash_table(priv);
1382
1383 /* Insert receive time stamps into padding alignment bytes, and
1384 * plus 2 bytes padding to ensure the cpu alignment.
1385 */
1386 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER)
1387 priv->padding = 8 + DEFAULT_PADDING;
1388
1389 if (dev->features & NETIF_F_IP_CSUM ||
1390 priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER)
1391 dev->needed_headroom = GMAC_FCB_LEN;
1392
1393 /* Initializing some of the rx/tx queue level parameters */
1394 for (i = 0; i < priv->num_tx_queues; i++) {
1395 priv->tx_queue[i]->tx_ring_size = DEFAULT_TX_RING_SIZE;
1396 priv->tx_queue[i]->num_txbdfree = DEFAULT_TX_RING_SIZE;
1397 priv->tx_queue[i]->txcoalescing = DEFAULT_TX_COALESCE;
1398 priv->tx_queue[i]->txic = DEFAULT_TXIC;
1399 }
1400
1401 for (i = 0; i < priv->num_rx_queues; i++) {
1402 priv->rx_queue[i]->rx_ring_size = DEFAULT_RX_RING_SIZE;
1403 priv->rx_queue[i]->rxcoalescing = DEFAULT_RX_COALESCE;
1404 priv->rx_queue[i]->rxic = DEFAULT_RXIC;
1405 }
1406
1407 /* Always enable rx filer if available */
1408 priv->rx_filer_enable =
1409 (priv->device_flags & FSL_GIANFAR_DEV_HAS_RX_FILER) ? 1 : 0;
1410 /* Enable most messages by default */
1411 priv->msg_enable = (NETIF_MSG_IFUP << 1 ) - 1;
1412 /* use pritority h/w tx queue scheduling for single queue devices */
1413 if (priv->num_tx_queues == 1)
1414 priv->prio_sched_en = 1;
1415
1416 set_bit(GFAR_DOWN, &priv->state);
1417
1418 gfar_hw_init(priv);
1419
1420 /* Carrier starts down, phylib will bring it up */
1421 netif_carrier_off(dev);
1422
1423 err = register_netdev(dev);
1424
1425 if (err) {
1426 pr_err("%s: Cannot register net device, aborting\n", dev->name);
1427 goto register_fail;
1428 }
1429
1430 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MAGIC_PACKET)
1431 priv->wol_supported |= GFAR_WOL_MAGIC;
1432
1433 if ((priv->device_flags & FSL_GIANFAR_DEV_HAS_WAKE_ON_FILER) &&
1434 priv->rx_filer_enable)
1435 priv->wol_supported |= GFAR_WOL_FILER_UCAST;
1436
1437 device_set_wakeup_capable(&ofdev->dev, priv->wol_supported);
1438
1439 /* fill out IRQ number and name fields */
1440 for (i = 0; i < priv->num_grps; i++) {
1441 struct gfar_priv_grp *grp = &priv->gfargrp[i];
1442 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
1443 sprintf(gfar_irq(grp, TX)->name, "%s%s%c%s",
1444 dev->name, "_g", '0' + i, "_tx");
1445 sprintf(gfar_irq(grp, RX)->name, "%s%s%c%s",
1446 dev->name, "_g", '0' + i, "_rx");
1447 sprintf(gfar_irq(grp, ER)->name, "%s%s%c%s",
1448 dev->name, "_g", '0' + i, "_er");
1449 } else
1450 strcpy(gfar_irq(grp, TX)->name, dev->name);
1451 }
1452
1453 /* Initialize the filer table */
1454 gfar_init_filer_table(priv);
1455
1456 /* Print out the device info */
1457 netdev_info(dev, "mac: %pM\n", dev->dev_addr);
1458
1459 /* Even more device info helps when determining which kernel
1460 * provided which set of benchmarks.
1461 */
1462 netdev_info(dev, "Running with NAPI enabled\n");
1463 for (i = 0; i < priv->num_rx_queues; i++)
1464 netdev_info(dev, "RX BD ring size for Q[%d]: %d\n",
1465 i, priv->rx_queue[i]->rx_ring_size);
1466 for (i = 0; i < priv->num_tx_queues; i++)
1467 netdev_info(dev, "TX BD ring size for Q[%d]: %d\n",
1468 i, priv->tx_queue[i]->tx_ring_size);
1469
1470 return 0;
1471
1472 register_fail:
1473 if (of_phy_is_fixed_link(np))
1474 of_phy_deregister_fixed_link(np);
1475 unmap_group_regs(priv);
1476 gfar_free_rx_queues(priv);
1477 gfar_free_tx_queues(priv);
1478 of_node_put(priv->phy_node);
1479 of_node_put(priv->tbi_node);
1480 free_gfar_dev(priv);
1481 return err;
1482 }
1483
gfar_remove(struct platform_device * ofdev)1484 static int gfar_remove(struct platform_device *ofdev)
1485 {
1486 struct gfar_private *priv = platform_get_drvdata(ofdev);
1487 struct device_node *np = ofdev->dev.of_node;
1488
1489 of_node_put(priv->phy_node);
1490 of_node_put(priv->tbi_node);
1491
1492 unregister_netdev(priv->ndev);
1493
1494 if (of_phy_is_fixed_link(np))
1495 of_phy_deregister_fixed_link(np);
1496
1497 unmap_group_regs(priv);
1498 gfar_free_rx_queues(priv);
1499 gfar_free_tx_queues(priv);
1500 free_gfar_dev(priv);
1501
1502 return 0;
1503 }
1504
1505 #ifdef CONFIG_PM
1506
__gfar_filer_disable(struct gfar_private * priv)1507 static void __gfar_filer_disable(struct gfar_private *priv)
1508 {
1509 struct gfar __iomem *regs = priv->gfargrp[0].regs;
1510 u32 temp;
1511
1512 temp = gfar_read(®s->rctrl);
1513 temp &= ~(RCTRL_FILREN | RCTRL_PRSDEP_INIT);
1514 gfar_write(®s->rctrl, temp);
1515 }
1516
__gfar_filer_enable(struct gfar_private * priv)1517 static void __gfar_filer_enable(struct gfar_private *priv)
1518 {
1519 struct gfar __iomem *regs = priv->gfargrp[0].regs;
1520 u32 temp;
1521
1522 temp = gfar_read(®s->rctrl);
1523 temp |= RCTRL_FILREN | RCTRL_PRSDEP_INIT;
1524 gfar_write(®s->rctrl, temp);
1525 }
1526
1527 /* Filer rules implementing wol capabilities */
gfar_filer_config_wol(struct gfar_private * priv)1528 static void gfar_filer_config_wol(struct gfar_private *priv)
1529 {
1530 unsigned int i;
1531 u32 rqfcr;
1532
1533 __gfar_filer_disable(priv);
1534
1535 /* clear the filer table, reject any packet by default */
1536 rqfcr = RQFCR_RJE | RQFCR_CMP_MATCH;
1537 for (i = 0; i <= MAX_FILER_IDX; i++)
1538 gfar_write_filer(priv, i, rqfcr, 0);
1539
1540 i = 0;
1541 if (priv->wol_opts & GFAR_WOL_FILER_UCAST) {
1542 /* unicast packet, accept it */
1543 struct net_device *ndev = priv->ndev;
1544 /* get the default rx queue index */
1545 u8 qindex = (u8)priv->gfargrp[0].rx_queue->qindex;
1546 u32 dest_mac_addr = (ndev->dev_addr[0] << 16) |
1547 (ndev->dev_addr[1] << 8) |
1548 ndev->dev_addr[2];
1549
1550 rqfcr = (qindex << 10) | RQFCR_AND |
1551 RQFCR_CMP_EXACT | RQFCR_PID_DAH;
1552
1553 gfar_write_filer(priv, i++, rqfcr, dest_mac_addr);
1554
1555 dest_mac_addr = (ndev->dev_addr[3] << 16) |
1556 (ndev->dev_addr[4] << 8) |
1557 ndev->dev_addr[5];
1558 rqfcr = (qindex << 10) | RQFCR_GPI |
1559 RQFCR_CMP_EXACT | RQFCR_PID_DAL;
1560 gfar_write_filer(priv, i++, rqfcr, dest_mac_addr);
1561 }
1562
1563 __gfar_filer_enable(priv);
1564 }
1565
gfar_filer_restore_table(struct gfar_private * priv)1566 static void gfar_filer_restore_table(struct gfar_private *priv)
1567 {
1568 u32 rqfcr, rqfpr;
1569 unsigned int i;
1570
1571 __gfar_filer_disable(priv);
1572
1573 for (i = 0; i <= MAX_FILER_IDX; i++) {
1574 rqfcr = priv->ftp_rqfcr[i];
1575 rqfpr = priv->ftp_rqfpr[i];
1576 gfar_write_filer(priv, i, rqfcr, rqfpr);
1577 }
1578
1579 __gfar_filer_enable(priv);
1580 }
1581
1582 /* gfar_start() for Rx only and with the FGPI filer interrupt enabled */
gfar_start_wol_filer(struct gfar_private * priv)1583 static void gfar_start_wol_filer(struct gfar_private *priv)
1584 {
1585 struct gfar __iomem *regs = priv->gfargrp[0].regs;
1586 u32 tempval;
1587 int i = 0;
1588
1589 /* Enable Rx hw queues */
1590 gfar_write(®s->rqueue, priv->rqueue);
1591
1592 /* Initialize DMACTRL to have WWR and WOP */
1593 tempval = gfar_read(®s->dmactrl);
1594 tempval |= DMACTRL_INIT_SETTINGS;
1595 gfar_write(®s->dmactrl, tempval);
1596
1597 /* Make sure we aren't stopped */
1598 tempval = gfar_read(®s->dmactrl);
1599 tempval &= ~DMACTRL_GRS;
1600 gfar_write(®s->dmactrl, tempval);
1601
1602 for (i = 0; i < priv->num_grps; i++) {
1603 regs = priv->gfargrp[i].regs;
1604 /* Clear RHLT, so that the DMA starts polling now */
1605 gfar_write(®s->rstat, priv->gfargrp[i].rstat);
1606 /* enable the Filer General Purpose Interrupt */
1607 gfar_write(®s->imask, IMASK_FGPI);
1608 }
1609
1610 /* Enable Rx DMA */
1611 tempval = gfar_read(®s->maccfg1);
1612 tempval |= MACCFG1_RX_EN;
1613 gfar_write(®s->maccfg1, tempval);
1614 }
1615
gfar_suspend(struct device * dev)1616 static int gfar_suspend(struct device *dev)
1617 {
1618 struct gfar_private *priv = dev_get_drvdata(dev);
1619 struct net_device *ndev = priv->ndev;
1620 struct gfar __iomem *regs = priv->gfargrp[0].regs;
1621 u32 tempval;
1622 u16 wol = priv->wol_opts;
1623
1624 if (!netif_running(ndev))
1625 return 0;
1626
1627 disable_napi(priv);
1628 netif_tx_lock(ndev);
1629 netif_device_detach(ndev);
1630 netif_tx_unlock(ndev);
1631
1632 gfar_halt(priv);
1633
1634 if (wol & GFAR_WOL_MAGIC) {
1635 /* Enable interrupt on Magic Packet */
1636 gfar_write(®s->imask, IMASK_MAG);
1637
1638 /* Enable Magic Packet mode */
1639 tempval = gfar_read(®s->maccfg2);
1640 tempval |= MACCFG2_MPEN;
1641 gfar_write(®s->maccfg2, tempval);
1642
1643 /* re-enable the Rx block */
1644 tempval = gfar_read(®s->maccfg1);
1645 tempval |= MACCFG1_RX_EN;
1646 gfar_write(®s->maccfg1, tempval);
1647
1648 } else if (wol & GFAR_WOL_FILER_UCAST) {
1649 gfar_filer_config_wol(priv);
1650 gfar_start_wol_filer(priv);
1651
1652 } else {
1653 phy_stop(ndev->phydev);
1654 }
1655
1656 return 0;
1657 }
1658
gfar_resume(struct device * dev)1659 static int gfar_resume(struct device *dev)
1660 {
1661 struct gfar_private *priv = dev_get_drvdata(dev);
1662 struct net_device *ndev = priv->ndev;
1663 struct gfar __iomem *regs = priv->gfargrp[0].regs;
1664 u32 tempval;
1665 u16 wol = priv->wol_opts;
1666
1667 if (!netif_running(ndev))
1668 return 0;
1669
1670 if (wol & GFAR_WOL_MAGIC) {
1671 /* Disable Magic Packet mode */
1672 tempval = gfar_read(®s->maccfg2);
1673 tempval &= ~MACCFG2_MPEN;
1674 gfar_write(®s->maccfg2, tempval);
1675
1676 } else if (wol & GFAR_WOL_FILER_UCAST) {
1677 /* need to stop rx only, tx is already down */
1678 gfar_halt(priv);
1679 gfar_filer_restore_table(priv);
1680
1681 } else {
1682 phy_start(ndev->phydev);
1683 }
1684
1685 gfar_start(priv);
1686
1687 netif_device_attach(ndev);
1688 enable_napi(priv);
1689
1690 return 0;
1691 }
1692
gfar_restore(struct device * dev)1693 static int gfar_restore(struct device *dev)
1694 {
1695 struct gfar_private *priv = dev_get_drvdata(dev);
1696 struct net_device *ndev = priv->ndev;
1697
1698 if (!netif_running(ndev)) {
1699 netif_device_attach(ndev);
1700
1701 return 0;
1702 }
1703
1704 gfar_init_bds(ndev);
1705
1706 gfar_mac_reset(priv);
1707
1708 gfar_init_tx_rx_base(priv);
1709
1710 gfar_start(priv);
1711
1712 priv->oldlink = 0;
1713 priv->oldspeed = 0;
1714 priv->oldduplex = -1;
1715
1716 if (ndev->phydev)
1717 phy_start(ndev->phydev);
1718
1719 netif_device_attach(ndev);
1720 enable_napi(priv);
1721
1722 return 0;
1723 }
1724
1725 static const struct dev_pm_ops gfar_pm_ops = {
1726 .suspend = gfar_suspend,
1727 .resume = gfar_resume,
1728 .freeze = gfar_suspend,
1729 .thaw = gfar_resume,
1730 .restore = gfar_restore,
1731 };
1732
1733 #define GFAR_PM_OPS (&gfar_pm_ops)
1734
1735 #else
1736
1737 #define GFAR_PM_OPS NULL
1738
1739 #endif
1740
1741 /* Reads the controller's registers to determine what interface
1742 * connects it to the PHY.
1743 */
gfar_get_interface(struct net_device * dev)1744 static phy_interface_t gfar_get_interface(struct net_device *dev)
1745 {
1746 struct gfar_private *priv = netdev_priv(dev);
1747 struct gfar __iomem *regs = priv->gfargrp[0].regs;
1748 u32 ecntrl;
1749
1750 ecntrl = gfar_read(®s->ecntrl);
1751
1752 if (ecntrl & ECNTRL_SGMII_MODE)
1753 return PHY_INTERFACE_MODE_SGMII;
1754
1755 if (ecntrl & ECNTRL_TBI_MODE) {
1756 if (ecntrl & ECNTRL_REDUCED_MODE)
1757 return PHY_INTERFACE_MODE_RTBI;
1758 else
1759 return PHY_INTERFACE_MODE_TBI;
1760 }
1761
1762 if (ecntrl & ECNTRL_REDUCED_MODE) {
1763 if (ecntrl & ECNTRL_REDUCED_MII_MODE) {
1764 return PHY_INTERFACE_MODE_RMII;
1765 }
1766 else {
1767 phy_interface_t interface = priv->interface;
1768
1769 /* This isn't autodetected right now, so it must
1770 * be set by the device tree or platform code.
1771 */
1772 if (interface == PHY_INTERFACE_MODE_RGMII_ID)
1773 return PHY_INTERFACE_MODE_RGMII_ID;
1774
1775 return PHY_INTERFACE_MODE_RGMII;
1776 }
1777 }
1778
1779 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_GIGABIT)
1780 return PHY_INTERFACE_MODE_GMII;
1781
1782 return PHY_INTERFACE_MODE_MII;
1783 }
1784
1785
1786 /* Initializes driver's PHY state, and attaches to the PHY.
1787 * Returns 0 on success.
1788 */
init_phy(struct net_device * dev)1789 static int init_phy(struct net_device *dev)
1790 {
1791 struct gfar_private *priv = netdev_priv(dev);
1792 uint gigabit_support =
1793 priv->device_flags & FSL_GIANFAR_DEV_HAS_GIGABIT ?
1794 GFAR_SUPPORTED_GBIT : 0;
1795 phy_interface_t interface;
1796 struct phy_device *phydev;
1797 struct ethtool_eee edata;
1798
1799 priv->oldlink = 0;
1800 priv->oldspeed = 0;
1801 priv->oldduplex = -1;
1802
1803 interface = gfar_get_interface(dev);
1804
1805 phydev = of_phy_connect(dev, priv->phy_node, &adjust_link, 0,
1806 interface);
1807 if (!phydev) {
1808 dev_err(&dev->dev, "could not attach to PHY\n");
1809 return -ENODEV;
1810 }
1811
1812 if (interface == PHY_INTERFACE_MODE_SGMII)
1813 gfar_configure_serdes(dev);
1814
1815 /* Remove any features not supported by the controller */
1816 phydev->supported &= (GFAR_SUPPORTED | gigabit_support);
1817 phydev->advertising = phydev->supported;
1818
1819 /* Add support for flow control, but don't advertise it by default */
1820 phydev->supported |= (SUPPORTED_Pause | SUPPORTED_Asym_Pause);
1821
1822 /* disable EEE autoneg, EEE not supported by eTSEC */
1823 memset(&edata, 0, sizeof(struct ethtool_eee));
1824 phy_ethtool_set_eee(phydev, &edata);
1825
1826 return 0;
1827 }
1828
1829 /* Initialize TBI PHY interface for communicating with the
1830 * SERDES lynx PHY on the chip. We communicate with this PHY
1831 * through the MDIO bus on each controller, treating it as a
1832 * "normal" PHY at the address found in the TBIPA register. We assume
1833 * that the TBIPA register is valid. Either the MDIO bus code will set
1834 * it to a value that doesn't conflict with other PHYs on the bus, or the
1835 * value doesn't matter, as there are no other PHYs on the bus.
1836 */
gfar_configure_serdes(struct net_device * dev)1837 static void gfar_configure_serdes(struct net_device *dev)
1838 {
1839 struct gfar_private *priv = netdev_priv(dev);
1840 struct phy_device *tbiphy;
1841
1842 if (!priv->tbi_node) {
1843 dev_warn(&dev->dev, "error: SGMII mode requires that the "
1844 "device tree specify a tbi-handle\n");
1845 return;
1846 }
1847
1848 tbiphy = of_phy_find_device(priv->tbi_node);
1849 if (!tbiphy) {
1850 dev_err(&dev->dev, "error: Could not get TBI device\n");
1851 return;
1852 }
1853
1854 /* If the link is already up, we must already be ok, and don't need to
1855 * configure and reset the TBI<->SerDes link. Maybe U-Boot configured
1856 * everything for us? Resetting it takes the link down and requires
1857 * several seconds for it to come back.
1858 */
1859 if (phy_read(tbiphy, MII_BMSR) & BMSR_LSTATUS) {
1860 put_device(&tbiphy->mdio.dev);
1861 return;
1862 }
1863
1864 /* Single clk mode, mii mode off(for serdes communication) */
1865 phy_write(tbiphy, MII_TBICON, TBICON_CLK_SELECT);
1866
1867 phy_write(tbiphy, MII_ADVERTISE,
1868 ADVERTISE_1000XFULL | ADVERTISE_1000XPAUSE |
1869 ADVERTISE_1000XPSE_ASYM);
1870
1871 phy_write(tbiphy, MII_BMCR,
1872 BMCR_ANENABLE | BMCR_ANRESTART | BMCR_FULLDPLX |
1873 BMCR_SPEED1000);
1874
1875 put_device(&tbiphy->mdio.dev);
1876 }
1877
__gfar_is_rx_idle(struct gfar_private * priv)1878 static int __gfar_is_rx_idle(struct gfar_private *priv)
1879 {
1880 u32 res;
1881
1882 /* Normaly TSEC should not hang on GRS commands, so we should
1883 * actually wait for IEVENT_GRSC flag.
1884 */
1885 if (!gfar_has_errata(priv, GFAR_ERRATA_A002))
1886 return 0;
1887
1888 /* Read the eTSEC register at offset 0xD1C. If bits 7-14 are
1889 * the same as bits 23-30, the eTSEC Rx is assumed to be idle
1890 * and the Rx can be safely reset.
1891 */
1892 res = gfar_read((void __iomem *)priv->gfargrp[0].regs + 0xd1c);
1893 res &= 0x7f807f80;
1894 if ((res & 0xffff) == (res >> 16))
1895 return 1;
1896
1897 return 0;
1898 }
1899
1900 /* Halt the receive and transmit queues */
gfar_halt_nodisable(struct gfar_private * priv)1901 static void gfar_halt_nodisable(struct gfar_private *priv)
1902 {
1903 struct gfar __iomem *regs = priv->gfargrp[0].regs;
1904 u32 tempval;
1905 unsigned int timeout;
1906 int stopped;
1907
1908 gfar_ints_disable(priv);
1909
1910 if (gfar_is_dma_stopped(priv))
1911 return;
1912
1913 /* Stop the DMA, and wait for it to stop */
1914 tempval = gfar_read(®s->dmactrl);
1915 tempval |= (DMACTRL_GRS | DMACTRL_GTS);
1916 gfar_write(®s->dmactrl, tempval);
1917
1918 retry:
1919 timeout = 1000;
1920 while (!(stopped = gfar_is_dma_stopped(priv)) && timeout) {
1921 cpu_relax();
1922 timeout--;
1923 }
1924
1925 if (!timeout)
1926 stopped = gfar_is_dma_stopped(priv);
1927
1928 if (!stopped && !gfar_is_rx_dma_stopped(priv) &&
1929 !__gfar_is_rx_idle(priv))
1930 goto retry;
1931 }
1932
1933 /* Halt the receive and transmit queues */
gfar_halt(struct gfar_private * priv)1934 void gfar_halt(struct gfar_private *priv)
1935 {
1936 struct gfar __iomem *regs = priv->gfargrp[0].regs;
1937 u32 tempval;
1938
1939 /* Dissable the Rx/Tx hw queues */
1940 gfar_write(®s->rqueue, 0);
1941 gfar_write(®s->tqueue, 0);
1942
1943 mdelay(10);
1944
1945 gfar_halt_nodisable(priv);
1946
1947 /* Disable Rx/Tx DMA */
1948 tempval = gfar_read(®s->maccfg1);
1949 tempval &= ~(MACCFG1_RX_EN | MACCFG1_TX_EN);
1950 gfar_write(®s->maccfg1, tempval);
1951 }
1952
stop_gfar(struct net_device * dev)1953 void stop_gfar(struct net_device *dev)
1954 {
1955 struct gfar_private *priv = netdev_priv(dev);
1956
1957 netif_tx_stop_all_queues(dev);
1958
1959 smp_mb__before_atomic();
1960 set_bit(GFAR_DOWN, &priv->state);
1961 smp_mb__after_atomic();
1962
1963 disable_napi(priv);
1964
1965 /* disable ints and gracefully shut down Rx/Tx DMA */
1966 gfar_halt(priv);
1967
1968 phy_stop(dev->phydev);
1969
1970 free_skb_resources(priv);
1971 }
1972
free_skb_tx_queue(struct gfar_priv_tx_q * tx_queue)1973 static void free_skb_tx_queue(struct gfar_priv_tx_q *tx_queue)
1974 {
1975 struct txbd8 *txbdp;
1976 struct gfar_private *priv = netdev_priv(tx_queue->dev);
1977 int i, j;
1978
1979 txbdp = tx_queue->tx_bd_base;
1980
1981 for (i = 0; i < tx_queue->tx_ring_size; i++) {
1982 if (!tx_queue->tx_skbuff[i])
1983 continue;
1984
1985 dma_unmap_single(priv->dev, be32_to_cpu(txbdp->bufPtr),
1986 be16_to_cpu(txbdp->length), DMA_TO_DEVICE);
1987 txbdp->lstatus = 0;
1988 for (j = 0; j < skb_shinfo(tx_queue->tx_skbuff[i])->nr_frags;
1989 j++) {
1990 txbdp++;
1991 dma_unmap_page(priv->dev, be32_to_cpu(txbdp->bufPtr),
1992 be16_to_cpu(txbdp->length),
1993 DMA_TO_DEVICE);
1994 }
1995 txbdp++;
1996 dev_kfree_skb_any(tx_queue->tx_skbuff[i]);
1997 tx_queue->tx_skbuff[i] = NULL;
1998 }
1999 kfree(tx_queue->tx_skbuff);
2000 tx_queue->tx_skbuff = NULL;
2001 }
2002
free_skb_rx_queue(struct gfar_priv_rx_q * rx_queue)2003 static void free_skb_rx_queue(struct gfar_priv_rx_q *rx_queue)
2004 {
2005 int i;
2006
2007 struct rxbd8 *rxbdp = rx_queue->rx_bd_base;
2008
2009 if (rx_queue->skb)
2010 dev_kfree_skb(rx_queue->skb);
2011
2012 for (i = 0; i < rx_queue->rx_ring_size; i++) {
2013 struct gfar_rx_buff *rxb = &rx_queue->rx_buff[i];
2014
2015 rxbdp->lstatus = 0;
2016 rxbdp->bufPtr = 0;
2017 rxbdp++;
2018
2019 if (!rxb->page)
2020 continue;
2021
2022 dma_unmap_page(rx_queue->dev, rxb->dma,
2023 PAGE_SIZE, DMA_FROM_DEVICE);
2024 __free_page(rxb->page);
2025
2026 rxb->page = NULL;
2027 }
2028
2029 kfree(rx_queue->rx_buff);
2030 rx_queue->rx_buff = NULL;
2031 }
2032
2033 /* If there are any tx skbs or rx skbs still around, free them.
2034 * Then free tx_skbuff and rx_skbuff
2035 */
free_skb_resources(struct gfar_private * priv)2036 static void free_skb_resources(struct gfar_private *priv)
2037 {
2038 struct gfar_priv_tx_q *tx_queue = NULL;
2039 struct gfar_priv_rx_q *rx_queue = NULL;
2040 int i;
2041
2042 /* Go through all the buffer descriptors and free their data buffers */
2043 for (i = 0; i < priv->num_tx_queues; i++) {
2044 struct netdev_queue *txq;
2045
2046 tx_queue = priv->tx_queue[i];
2047 txq = netdev_get_tx_queue(tx_queue->dev, tx_queue->qindex);
2048 if (tx_queue->tx_skbuff)
2049 free_skb_tx_queue(tx_queue);
2050 netdev_tx_reset_queue(txq);
2051 }
2052
2053 for (i = 0; i < priv->num_rx_queues; i++) {
2054 rx_queue = priv->rx_queue[i];
2055 if (rx_queue->rx_buff)
2056 free_skb_rx_queue(rx_queue);
2057 }
2058
2059 dma_free_coherent(priv->dev,
2060 sizeof(struct txbd8) * priv->total_tx_ring_size +
2061 sizeof(struct rxbd8) * priv->total_rx_ring_size,
2062 priv->tx_queue[0]->tx_bd_base,
2063 priv->tx_queue[0]->tx_bd_dma_base);
2064 }
2065
gfar_start(struct gfar_private * priv)2066 void gfar_start(struct gfar_private *priv)
2067 {
2068 struct gfar __iomem *regs = priv->gfargrp[0].regs;
2069 u32 tempval;
2070 int i = 0;
2071
2072 /* Enable Rx/Tx hw queues */
2073 gfar_write(®s->rqueue, priv->rqueue);
2074 gfar_write(®s->tqueue, priv->tqueue);
2075
2076 /* Initialize DMACTRL to have WWR and WOP */
2077 tempval = gfar_read(®s->dmactrl);
2078 tempval |= DMACTRL_INIT_SETTINGS;
2079 gfar_write(®s->dmactrl, tempval);
2080
2081 /* Make sure we aren't stopped */
2082 tempval = gfar_read(®s->dmactrl);
2083 tempval &= ~(DMACTRL_GRS | DMACTRL_GTS);
2084 gfar_write(®s->dmactrl, tempval);
2085
2086 for (i = 0; i < priv->num_grps; i++) {
2087 regs = priv->gfargrp[i].regs;
2088 /* Clear THLT/RHLT, so that the DMA starts polling now */
2089 gfar_write(®s->tstat, priv->gfargrp[i].tstat);
2090 gfar_write(®s->rstat, priv->gfargrp[i].rstat);
2091 }
2092
2093 /* Enable Rx/Tx DMA */
2094 tempval = gfar_read(®s->maccfg1);
2095 tempval |= (MACCFG1_RX_EN | MACCFG1_TX_EN);
2096 gfar_write(®s->maccfg1, tempval);
2097
2098 gfar_ints_enable(priv);
2099
2100 netif_trans_update(priv->ndev); /* prevent tx timeout */
2101 }
2102
free_grp_irqs(struct gfar_priv_grp * grp)2103 static void free_grp_irqs(struct gfar_priv_grp *grp)
2104 {
2105 free_irq(gfar_irq(grp, TX)->irq, grp);
2106 free_irq(gfar_irq(grp, RX)->irq, grp);
2107 free_irq(gfar_irq(grp, ER)->irq, grp);
2108 }
2109
register_grp_irqs(struct gfar_priv_grp * grp)2110 static int register_grp_irqs(struct gfar_priv_grp *grp)
2111 {
2112 struct gfar_private *priv = grp->priv;
2113 struct net_device *dev = priv->ndev;
2114 int err;
2115
2116 /* If the device has multiple interrupts, register for
2117 * them. Otherwise, only register for the one
2118 */
2119 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
2120 /* Install our interrupt handlers for Error,
2121 * Transmit, and Receive
2122 */
2123 err = request_irq(gfar_irq(grp, ER)->irq, gfar_error, 0,
2124 gfar_irq(grp, ER)->name, grp);
2125 if (err < 0) {
2126 netif_err(priv, intr, dev, "Can't get IRQ %d\n",
2127 gfar_irq(grp, ER)->irq);
2128
2129 goto err_irq_fail;
2130 }
2131 enable_irq_wake(gfar_irq(grp, ER)->irq);
2132
2133 err = request_irq(gfar_irq(grp, TX)->irq, gfar_transmit, 0,
2134 gfar_irq(grp, TX)->name, grp);
2135 if (err < 0) {
2136 netif_err(priv, intr, dev, "Can't get IRQ %d\n",
2137 gfar_irq(grp, TX)->irq);
2138 goto tx_irq_fail;
2139 }
2140 err = request_irq(gfar_irq(grp, RX)->irq, gfar_receive, 0,
2141 gfar_irq(grp, RX)->name, grp);
2142 if (err < 0) {
2143 netif_err(priv, intr, dev, "Can't get IRQ %d\n",
2144 gfar_irq(grp, RX)->irq);
2145 goto rx_irq_fail;
2146 }
2147 enable_irq_wake(gfar_irq(grp, RX)->irq);
2148
2149 } else {
2150 err = request_irq(gfar_irq(grp, TX)->irq, gfar_interrupt, 0,
2151 gfar_irq(grp, TX)->name, grp);
2152 if (err < 0) {
2153 netif_err(priv, intr, dev, "Can't get IRQ %d\n",
2154 gfar_irq(grp, TX)->irq);
2155 goto err_irq_fail;
2156 }
2157 enable_irq_wake(gfar_irq(grp, TX)->irq);
2158 }
2159
2160 return 0;
2161
2162 rx_irq_fail:
2163 free_irq(gfar_irq(grp, TX)->irq, grp);
2164 tx_irq_fail:
2165 free_irq(gfar_irq(grp, ER)->irq, grp);
2166 err_irq_fail:
2167 return err;
2168
2169 }
2170
gfar_free_irq(struct gfar_private * priv)2171 static void gfar_free_irq(struct gfar_private *priv)
2172 {
2173 int i;
2174
2175 /* Free the IRQs */
2176 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
2177 for (i = 0; i < priv->num_grps; i++)
2178 free_grp_irqs(&priv->gfargrp[i]);
2179 } else {
2180 for (i = 0; i < priv->num_grps; i++)
2181 free_irq(gfar_irq(&priv->gfargrp[i], TX)->irq,
2182 &priv->gfargrp[i]);
2183 }
2184 }
2185
gfar_request_irq(struct gfar_private * priv)2186 static int gfar_request_irq(struct gfar_private *priv)
2187 {
2188 int err, i, j;
2189
2190 for (i = 0; i < priv->num_grps; i++) {
2191 err = register_grp_irqs(&priv->gfargrp[i]);
2192 if (err) {
2193 for (j = 0; j < i; j++)
2194 free_grp_irqs(&priv->gfargrp[j]);
2195 return err;
2196 }
2197 }
2198
2199 return 0;
2200 }
2201
2202 /* Bring the controller up and running */
startup_gfar(struct net_device * ndev)2203 int startup_gfar(struct net_device *ndev)
2204 {
2205 struct gfar_private *priv = netdev_priv(ndev);
2206 int err;
2207
2208 gfar_mac_reset(priv);
2209
2210 err = gfar_alloc_skb_resources(ndev);
2211 if (err)
2212 return err;
2213
2214 gfar_init_tx_rx_base(priv);
2215
2216 smp_mb__before_atomic();
2217 clear_bit(GFAR_DOWN, &priv->state);
2218 smp_mb__after_atomic();
2219
2220 /* Start Rx/Tx DMA and enable the interrupts */
2221 gfar_start(priv);
2222
2223 /* force link state update after mac reset */
2224 priv->oldlink = 0;
2225 priv->oldspeed = 0;
2226 priv->oldduplex = -1;
2227
2228 phy_start(ndev->phydev);
2229
2230 enable_napi(priv);
2231
2232 netif_tx_wake_all_queues(ndev);
2233
2234 return 0;
2235 }
2236
2237 /* Called when something needs to use the ethernet device
2238 * Returns 0 for success.
2239 */
gfar_enet_open(struct net_device * dev)2240 static int gfar_enet_open(struct net_device *dev)
2241 {
2242 struct gfar_private *priv = netdev_priv(dev);
2243 int err;
2244
2245 err = init_phy(dev);
2246 if (err)
2247 return err;
2248
2249 err = gfar_request_irq(priv);
2250 if (err)
2251 return err;
2252
2253 err = startup_gfar(dev);
2254 if (err)
2255 return err;
2256
2257 return err;
2258 }
2259
gfar_add_fcb(struct sk_buff * skb)2260 static inline struct txfcb *gfar_add_fcb(struct sk_buff *skb)
2261 {
2262 struct txfcb *fcb = skb_push(skb, GMAC_FCB_LEN);
2263
2264 memset(fcb, 0, GMAC_FCB_LEN);
2265
2266 return fcb;
2267 }
2268
gfar_tx_checksum(struct sk_buff * skb,struct txfcb * fcb,int fcb_length)2269 static inline void gfar_tx_checksum(struct sk_buff *skb, struct txfcb *fcb,
2270 int fcb_length)
2271 {
2272 /* If we're here, it's a IP packet with a TCP or UDP
2273 * payload. We set it to checksum, using a pseudo-header
2274 * we provide
2275 */
2276 u8 flags = TXFCB_DEFAULT;
2277
2278 /* Tell the controller what the protocol is
2279 * And provide the already calculated phcs
2280 */
2281 if (ip_hdr(skb)->protocol == IPPROTO_UDP) {
2282 flags |= TXFCB_UDP;
2283 fcb->phcs = (__force __be16)(udp_hdr(skb)->check);
2284 } else
2285 fcb->phcs = (__force __be16)(tcp_hdr(skb)->check);
2286
2287 /* l3os is the distance between the start of the
2288 * frame (skb->data) and the start of the IP hdr.
2289 * l4os is the distance between the start of the
2290 * l3 hdr and the l4 hdr
2291 */
2292 fcb->l3os = (u8)(skb_network_offset(skb) - fcb_length);
2293 fcb->l4os = skb_network_header_len(skb);
2294
2295 fcb->flags = flags;
2296 }
2297
gfar_tx_vlan(struct sk_buff * skb,struct txfcb * fcb)2298 static inline void gfar_tx_vlan(struct sk_buff *skb, struct txfcb *fcb)
2299 {
2300 fcb->flags |= TXFCB_VLN;
2301 fcb->vlctl = cpu_to_be16(skb_vlan_tag_get(skb));
2302 }
2303
skip_txbd(struct txbd8 * bdp,int stride,struct txbd8 * base,int ring_size)2304 static inline struct txbd8 *skip_txbd(struct txbd8 *bdp, int stride,
2305 struct txbd8 *base, int ring_size)
2306 {
2307 struct txbd8 *new_bd = bdp + stride;
2308
2309 return (new_bd >= (base + ring_size)) ? (new_bd - ring_size) : new_bd;
2310 }
2311
next_txbd(struct txbd8 * bdp,struct txbd8 * base,int ring_size)2312 static inline struct txbd8 *next_txbd(struct txbd8 *bdp, struct txbd8 *base,
2313 int ring_size)
2314 {
2315 return skip_txbd(bdp, 1, base, ring_size);
2316 }
2317
2318 /* eTSEC12: csum generation not supported for some fcb offsets */
gfar_csum_errata_12(struct gfar_private * priv,unsigned long fcb_addr)2319 static inline bool gfar_csum_errata_12(struct gfar_private *priv,
2320 unsigned long fcb_addr)
2321 {
2322 return (gfar_has_errata(priv, GFAR_ERRATA_12) &&
2323 (fcb_addr % 0x20) > 0x18);
2324 }
2325
2326 /* eTSEC76: csum generation for frames larger than 2500 may
2327 * cause excess delays before start of transmission
2328 */
gfar_csum_errata_76(struct gfar_private * priv,unsigned int len)2329 static inline bool gfar_csum_errata_76(struct gfar_private *priv,
2330 unsigned int len)
2331 {
2332 return (gfar_has_errata(priv, GFAR_ERRATA_76) &&
2333 (len > 2500));
2334 }
2335
2336 /* This is called by the kernel when a frame is ready for transmission.
2337 * It is pointed to by the dev->hard_start_xmit function pointer
2338 */
gfar_start_xmit(struct sk_buff * skb,struct net_device * dev)2339 static netdev_tx_t gfar_start_xmit(struct sk_buff *skb, struct net_device *dev)
2340 {
2341 struct gfar_private *priv = netdev_priv(dev);
2342 struct gfar_priv_tx_q *tx_queue = NULL;
2343 struct netdev_queue *txq;
2344 struct gfar __iomem *regs = NULL;
2345 struct txfcb *fcb = NULL;
2346 struct txbd8 *txbdp, *txbdp_start, *base, *txbdp_tstamp = NULL;
2347 u32 lstatus;
2348 skb_frag_t *frag;
2349 int i, rq = 0;
2350 int do_tstamp, do_csum, do_vlan;
2351 u32 bufaddr;
2352 unsigned int nr_frags, nr_txbds, bytes_sent, fcb_len = 0;
2353
2354 rq = skb->queue_mapping;
2355 tx_queue = priv->tx_queue[rq];
2356 txq = netdev_get_tx_queue(dev, rq);
2357 base = tx_queue->tx_bd_base;
2358 regs = tx_queue->grp->regs;
2359
2360 do_csum = (CHECKSUM_PARTIAL == skb->ip_summed);
2361 do_vlan = skb_vlan_tag_present(skb);
2362 do_tstamp = (skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) &&
2363 priv->hwts_tx_en;
2364
2365 if (do_csum || do_vlan)
2366 fcb_len = GMAC_FCB_LEN;
2367
2368 /* check if time stamp should be generated */
2369 if (unlikely(do_tstamp))
2370 fcb_len = GMAC_FCB_LEN + GMAC_TXPAL_LEN;
2371
2372 /* make space for additional header when fcb is needed */
2373 if (fcb_len && unlikely(skb_headroom(skb) < fcb_len)) {
2374 struct sk_buff *skb_new;
2375
2376 skb_new = skb_realloc_headroom(skb, fcb_len);
2377 if (!skb_new) {
2378 dev->stats.tx_errors++;
2379 dev_kfree_skb_any(skb);
2380 return NETDEV_TX_OK;
2381 }
2382
2383 if (skb->sk)
2384 skb_set_owner_w(skb_new, skb->sk);
2385 dev_consume_skb_any(skb);
2386 skb = skb_new;
2387 }
2388
2389 /* total number of fragments in the SKB */
2390 nr_frags = skb_shinfo(skb)->nr_frags;
2391
2392 /* calculate the required number of TxBDs for this skb */
2393 if (unlikely(do_tstamp))
2394 nr_txbds = nr_frags + 2;
2395 else
2396 nr_txbds = nr_frags + 1;
2397
2398 /* check if there is space to queue this packet */
2399 if (nr_txbds > tx_queue->num_txbdfree) {
2400 /* no space, stop the queue */
2401 netif_tx_stop_queue(txq);
2402 dev->stats.tx_fifo_errors++;
2403 return NETDEV_TX_BUSY;
2404 }
2405
2406 /* Update transmit stats */
2407 bytes_sent = skb->len;
2408 tx_queue->stats.tx_bytes += bytes_sent;
2409 /* keep Tx bytes on wire for BQL accounting */
2410 GFAR_CB(skb)->bytes_sent = bytes_sent;
2411 tx_queue->stats.tx_packets++;
2412
2413 txbdp = txbdp_start = tx_queue->cur_tx;
2414 lstatus = be32_to_cpu(txbdp->lstatus);
2415
2416 /* Add TxPAL between FCB and frame if required */
2417 if (unlikely(do_tstamp)) {
2418 skb_push(skb, GMAC_TXPAL_LEN);
2419 memset(skb->data, 0, GMAC_TXPAL_LEN);
2420 }
2421
2422 /* Add TxFCB if required */
2423 if (fcb_len) {
2424 fcb = gfar_add_fcb(skb);
2425 lstatus |= BD_LFLAG(TXBD_TOE);
2426 }
2427
2428 /* Set up checksumming */
2429 if (do_csum) {
2430 gfar_tx_checksum(skb, fcb, fcb_len);
2431
2432 if (unlikely(gfar_csum_errata_12(priv, (unsigned long)fcb)) ||
2433 unlikely(gfar_csum_errata_76(priv, skb->len))) {
2434 __skb_pull(skb, GMAC_FCB_LEN);
2435 skb_checksum_help(skb);
2436 if (do_vlan || do_tstamp) {
2437 /* put back a new fcb for vlan/tstamp TOE */
2438 fcb = gfar_add_fcb(skb);
2439 } else {
2440 /* Tx TOE not used */
2441 lstatus &= ~(BD_LFLAG(TXBD_TOE));
2442 fcb = NULL;
2443 }
2444 }
2445 }
2446
2447 if (do_vlan)
2448 gfar_tx_vlan(skb, fcb);
2449
2450 bufaddr = dma_map_single(priv->dev, skb->data, skb_headlen(skb),
2451 DMA_TO_DEVICE);
2452 if (unlikely(dma_mapping_error(priv->dev, bufaddr)))
2453 goto dma_map_err;
2454
2455 txbdp_start->bufPtr = cpu_to_be32(bufaddr);
2456
2457 /* Time stamp insertion requires one additional TxBD */
2458 if (unlikely(do_tstamp))
2459 txbdp_tstamp = txbdp = next_txbd(txbdp, base,
2460 tx_queue->tx_ring_size);
2461
2462 if (likely(!nr_frags)) {
2463 if (likely(!do_tstamp))
2464 lstatus |= BD_LFLAG(TXBD_LAST | TXBD_INTERRUPT);
2465 } else {
2466 u32 lstatus_start = lstatus;
2467
2468 /* Place the fragment addresses and lengths into the TxBDs */
2469 frag = &skb_shinfo(skb)->frags[0];
2470 for (i = 0; i < nr_frags; i++, frag++) {
2471 unsigned int size;
2472
2473 /* Point at the next BD, wrapping as needed */
2474 txbdp = next_txbd(txbdp, base, tx_queue->tx_ring_size);
2475
2476 size = skb_frag_size(frag);
2477
2478 lstatus = be32_to_cpu(txbdp->lstatus) | size |
2479 BD_LFLAG(TXBD_READY);
2480
2481 /* Handle the last BD specially */
2482 if (i == nr_frags - 1)
2483 lstatus |= BD_LFLAG(TXBD_LAST | TXBD_INTERRUPT);
2484
2485 bufaddr = skb_frag_dma_map(priv->dev, frag, 0,
2486 size, DMA_TO_DEVICE);
2487 if (unlikely(dma_mapping_error(priv->dev, bufaddr)))
2488 goto dma_map_err;
2489
2490 /* set the TxBD length and buffer pointer */
2491 txbdp->bufPtr = cpu_to_be32(bufaddr);
2492 txbdp->lstatus = cpu_to_be32(lstatus);
2493 }
2494
2495 lstatus = lstatus_start;
2496 }
2497
2498 /* If time stamping is requested one additional TxBD must be set up. The
2499 * first TxBD points to the FCB and must have a data length of
2500 * GMAC_FCB_LEN. The second TxBD points to the actual frame data with
2501 * the full frame length.
2502 */
2503 if (unlikely(do_tstamp)) {
2504 u32 lstatus_ts = be32_to_cpu(txbdp_tstamp->lstatus);
2505
2506 bufaddr = be32_to_cpu(txbdp_start->bufPtr);
2507 bufaddr += fcb_len;
2508
2509 lstatus_ts |= BD_LFLAG(TXBD_READY) |
2510 (skb_headlen(skb) - fcb_len);
2511 if (!nr_frags)
2512 lstatus_ts |= BD_LFLAG(TXBD_LAST | TXBD_INTERRUPT);
2513
2514 txbdp_tstamp->bufPtr = cpu_to_be32(bufaddr);
2515 txbdp_tstamp->lstatus = cpu_to_be32(lstatus_ts);
2516 lstatus |= BD_LFLAG(TXBD_CRC | TXBD_READY) | GMAC_FCB_LEN;
2517
2518 /* Setup tx hardware time stamping */
2519 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
2520 fcb->ptp = 1;
2521 } else {
2522 lstatus |= BD_LFLAG(TXBD_CRC | TXBD_READY) | skb_headlen(skb);
2523 }
2524
2525 netdev_tx_sent_queue(txq, bytes_sent);
2526
2527 gfar_wmb();
2528
2529 txbdp_start->lstatus = cpu_to_be32(lstatus);
2530
2531 gfar_wmb(); /* force lstatus write before tx_skbuff */
2532
2533 tx_queue->tx_skbuff[tx_queue->skb_curtx] = skb;
2534
2535 /* Update the current skb pointer to the next entry we will use
2536 * (wrapping if necessary)
2537 */
2538 tx_queue->skb_curtx = (tx_queue->skb_curtx + 1) &
2539 TX_RING_MOD_MASK(tx_queue->tx_ring_size);
2540
2541 tx_queue->cur_tx = next_txbd(txbdp, base, tx_queue->tx_ring_size);
2542
2543 /* We can work in parallel with gfar_clean_tx_ring(), except
2544 * when modifying num_txbdfree. Note that we didn't grab the lock
2545 * when we were reading the num_txbdfree and checking for available
2546 * space, that's because outside of this function it can only grow.
2547 */
2548 spin_lock_bh(&tx_queue->txlock);
2549 /* reduce TxBD free count */
2550 tx_queue->num_txbdfree -= (nr_txbds);
2551 spin_unlock_bh(&tx_queue->txlock);
2552
2553 /* If the next BD still needs to be cleaned up, then the bds
2554 * are full. We need to tell the kernel to stop sending us stuff.
2555 */
2556 if (!tx_queue->num_txbdfree) {
2557 netif_tx_stop_queue(txq);
2558
2559 dev->stats.tx_fifo_errors++;
2560 }
2561
2562 /* Tell the DMA to go go go */
2563 gfar_write(®s->tstat, TSTAT_CLEAR_THALT >> tx_queue->qindex);
2564
2565 return NETDEV_TX_OK;
2566
2567 dma_map_err:
2568 txbdp = next_txbd(txbdp_start, base, tx_queue->tx_ring_size);
2569 if (do_tstamp)
2570 txbdp = next_txbd(txbdp, base, tx_queue->tx_ring_size);
2571 for (i = 0; i < nr_frags; i++) {
2572 lstatus = be32_to_cpu(txbdp->lstatus);
2573 if (!(lstatus & BD_LFLAG(TXBD_READY)))
2574 break;
2575
2576 lstatus &= ~BD_LFLAG(TXBD_READY);
2577 txbdp->lstatus = cpu_to_be32(lstatus);
2578 bufaddr = be32_to_cpu(txbdp->bufPtr);
2579 dma_unmap_page(priv->dev, bufaddr, be16_to_cpu(txbdp->length),
2580 DMA_TO_DEVICE);
2581 txbdp = next_txbd(txbdp, base, tx_queue->tx_ring_size);
2582 }
2583 gfar_wmb();
2584 dev_kfree_skb_any(skb);
2585 return NETDEV_TX_OK;
2586 }
2587
2588 /* Stops the kernel queue, and halts the controller */
gfar_close(struct net_device * dev)2589 static int gfar_close(struct net_device *dev)
2590 {
2591 struct gfar_private *priv = netdev_priv(dev);
2592
2593 cancel_work_sync(&priv->reset_task);
2594 stop_gfar(dev);
2595
2596 /* Disconnect from the PHY */
2597 phy_disconnect(dev->phydev);
2598
2599 gfar_free_irq(priv);
2600
2601 return 0;
2602 }
2603
2604 /* Changes the mac address if the controller is not running. */
gfar_set_mac_address(struct net_device * dev)2605 static int gfar_set_mac_address(struct net_device *dev)
2606 {
2607 gfar_set_mac_for_addr(dev, 0, dev->dev_addr);
2608
2609 return 0;
2610 }
2611
gfar_change_mtu(struct net_device * dev,int new_mtu)2612 static int gfar_change_mtu(struct net_device *dev, int new_mtu)
2613 {
2614 struct gfar_private *priv = netdev_priv(dev);
2615
2616 while (test_and_set_bit_lock(GFAR_RESETTING, &priv->state))
2617 cpu_relax();
2618
2619 if (dev->flags & IFF_UP)
2620 stop_gfar(dev);
2621
2622 dev->mtu = new_mtu;
2623
2624 if (dev->flags & IFF_UP)
2625 startup_gfar(dev);
2626
2627 clear_bit_unlock(GFAR_RESETTING, &priv->state);
2628
2629 return 0;
2630 }
2631
reset_gfar(struct net_device * ndev)2632 void reset_gfar(struct net_device *ndev)
2633 {
2634 struct gfar_private *priv = netdev_priv(ndev);
2635
2636 while (test_and_set_bit_lock(GFAR_RESETTING, &priv->state))
2637 cpu_relax();
2638
2639 stop_gfar(ndev);
2640 startup_gfar(ndev);
2641
2642 clear_bit_unlock(GFAR_RESETTING, &priv->state);
2643 }
2644
2645 /* gfar_reset_task gets scheduled when a packet has not been
2646 * transmitted after a set amount of time.
2647 * For now, assume that clearing out all the structures, and
2648 * starting over will fix the problem.
2649 */
gfar_reset_task(struct work_struct * work)2650 static void gfar_reset_task(struct work_struct *work)
2651 {
2652 struct gfar_private *priv = container_of(work, struct gfar_private,
2653 reset_task);
2654 reset_gfar(priv->ndev);
2655 }
2656
gfar_timeout(struct net_device * dev)2657 static void gfar_timeout(struct net_device *dev)
2658 {
2659 struct gfar_private *priv = netdev_priv(dev);
2660
2661 dev->stats.tx_errors++;
2662 schedule_work(&priv->reset_task);
2663 }
2664
2665 /* Interrupt Handler for Transmit complete */
gfar_clean_tx_ring(struct gfar_priv_tx_q * tx_queue)2666 static void gfar_clean_tx_ring(struct gfar_priv_tx_q *tx_queue)
2667 {
2668 struct net_device *dev = tx_queue->dev;
2669 struct netdev_queue *txq;
2670 struct gfar_private *priv = netdev_priv(dev);
2671 struct txbd8 *bdp, *next = NULL;
2672 struct txbd8 *lbdp = NULL;
2673 struct txbd8 *base = tx_queue->tx_bd_base;
2674 struct sk_buff *skb;
2675 int skb_dirtytx;
2676 int tx_ring_size = tx_queue->tx_ring_size;
2677 int frags = 0, nr_txbds = 0;
2678 int i;
2679 int howmany = 0;
2680 int tqi = tx_queue->qindex;
2681 unsigned int bytes_sent = 0;
2682 u32 lstatus;
2683 size_t buflen;
2684
2685 txq = netdev_get_tx_queue(dev, tqi);
2686 bdp = tx_queue->dirty_tx;
2687 skb_dirtytx = tx_queue->skb_dirtytx;
2688
2689 while ((skb = tx_queue->tx_skbuff[skb_dirtytx])) {
2690 bool do_tstamp;
2691
2692 do_tstamp = (skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) &&
2693 priv->hwts_tx_en;
2694
2695 frags = skb_shinfo(skb)->nr_frags;
2696
2697 /* When time stamping, one additional TxBD must be freed.
2698 * Also, we need to dma_unmap_single() the TxPAL.
2699 */
2700 if (unlikely(do_tstamp))
2701 nr_txbds = frags + 2;
2702 else
2703 nr_txbds = frags + 1;
2704
2705 lbdp = skip_txbd(bdp, nr_txbds - 1, base, tx_ring_size);
2706
2707 lstatus = be32_to_cpu(lbdp->lstatus);
2708
2709 /* Only clean completed frames */
2710 if ((lstatus & BD_LFLAG(TXBD_READY)) &&
2711 (lstatus & BD_LENGTH_MASK))
2712 break;
2713
2714 if (unlikely(do_tstamp)) {
2715 next = next_txbd(bdp, base, tx_ring_size);
2716 buflen = be16_to_cpu(next->length) +
2717 GMAC_FCB_LEN + GMAC_TXPAL_LEN;
2718 } else
2719 buflen = be16_to_cpu(bdp->length);
2720
2721 dma_unmap_single(priv->dev, be32_to_cpu(bdp->bufPtr),
2722 buflen, DMA_TO_DEVICE);
2723
2724 if (unlikely(do_tstamp)) {
2725 struct skb_shared_hwtstamps shhwtstamps;
2726 u64 *ns = (u64 *)(((uintptr_t)skb->data + 0x10) &
2727 ~0x7UL);
2728
2729 memset(&shhwtstamps, 0, sizeof(shhwtstamps));
2730 shhwtstamps.hwtstamp = ns_to_ktime(be64_to_cpu(*ns));
2731 skb_pull(skb, GMAC_FCB_LEN + GMAC_TXPAL_LEN);
2732 skb_tstamp_tx(skb, &shhwtstamps);
2733 gfar_clear_txbd_status(bdp);
2734 bdp = next;
2735 }
2736
2737 gfar_clear_txbd_status(bdp);
2738 bdp = next_txbd(bdp, base, tx_ring_size);
2739
2740 for (i = 0; i < frags; i++) {
2741 dma_unmap_page(priv->dev, be32_to_cpu(bdp->bufPtr),
2742 be16_to_cpu(bdp->length),
2743 DMA_TO_DEVICE);
2744 gfar_clear_txbd_status(bdp);
2745 bdp = next_txbd(bdp, base, tx_ring_size);
2746 }
2747
2748 bytes_sent += GFAR_CB(skb)->bytes_sent;
2749
2750 dev_kfree_skb_any(skb);
2751
2752 tx_queue->tx_skbuff[skb_dirtytx] = NULL;
2753
2754 skb_dirtytx = (skb_dirtytx + 1) &
2755 TX_RING_MOD_MASK(tx_ring_size);
2756
2757 howmany++;
2758 spin_lock(&tx_queue->txlock);
2759 tx_queue->num_txbdfree += nr_txbds;
2760 spin_unlock(&tx_queue->txlock);
2761 }
2762
2763 /* If we freed a buffer, we can restart transmission, if necessary */
2764 if (tx_queue->num_txbdfree &&
2765 netif_tx_queue_stopped(txq) &&
2766 !(test_bit(GFAR_DOWN, &priv->state)))
2767 netif_wake_subqueue(priv->ndev, tqi);
2768
2769 /* Update dirty indicators */
2770 tx_queue->skb_dirtytx = skb_dirtytx;
2771 tx_queue->dirty_tx = bdp;
2772
2773 netdev_tx_completed_queue(txq, howmany, bytes_sent);
2774 }
2775
gfar_new_page(struct gfar_priv_rx_q * rxq,struct gfar_rx_buff * rxb)2776 static bool gfar_new_page(struct gfar_priv_rx_q *rxq, struct gfar_rx_buff *rxb)
2777 {
2778 struct page *page;
2779 dma_addr_t addr;
2780
2781 page = dev_alloc_page();
2782 if (unlikely(!page))
2783 return false;
2784
2785 addr = dma_map_page(rxq->dev, page, 0, PAGE_SIZE, DMA_FROM_DEVICE);
2786 if (unlikely(dma_mapping_error(rxq->dev, addr))) {
2787 __free_page(page);
2788
2789 return false;
2790 }
2791
2792 rxb->dma = addr;
2793 rxb->page = page;
2794 rxb->page_offset = 0;
2795
2796 return true;
2797 }
2798
gfar_rx_alloc_err(struct gfar_priv_rx_q * rx_queue)2799 static void gfar_rx_alloc_err(struct gfar_priv_rx_q *rx_queue)
2800 {
2801 struct gfar_private *priv = netdev_priv(rx_queue->ndev);
2802 struct gfar_extra_stats *estats = &priv->extra_stats;
2803
2804 netdev_err(rx_queue->ndev, "Can't alloc RX buffers\n");
2805 atomic64_inc(&estats->rx_alloc_err);
2806 }
2807
gfar_alloc_rx_buffs(struct gfar_priv_rx_q * rx_queue,int alloc_cnt)2808 static void gfar_alloc_rx_buffs(struct gfar_priv_rx_q *rx_queue,
2809 int alloc_cnt)
2810 {
2811 struct rxbd8 *bdp;
2812 struct gfar_rx_buff *rxb;
2813 int i;
2814
2815 i = rx_queue->next_to_use;
2816 bdp = &rx_queue->rx_bd_base[i];
2817 rxb = &rx_queue->rx_buff[i];
2818
2819 while (alloc_cnt--) {
2820 /* try reuse page */
2821 if (unlikely(!rxb->page)) {
2822 if (unlikely(!gfar_new_page(rx_queue, rxb))) {
2823 gfar_rx_alloc_err(rx_queue);
2824 break;
2825 }
2826 }
2827
2828 /* Setup the new RxBD */
2829 gfar_init_rxbdp(rx_queue, bdp,
2830 rxb->dma + rxb->page_offset + RXBUF_ALIGNMENT);
2831
2832 /* Update to the next pointer */
2833 bdp++;
2834 rxb++;
2835
2836 if (unlikely(++i == rx_queue->rx_ring_size)) {
2837 i = 0;
2838 bdp = rx_queue->rx_bd_base;
2839 rxb = rx_queue->rx_buff;
2840 }
2841 }
2842
2843 rx_queue->next_to_use = i;
2844 rx_queue->next_to_alloc = i;
2845 }
2846
count_errors(u32 lstatus,struct net_device * ndev)2847 static void count_errors(u32 lstatus, struct net_device *ndev)
2848 {
2849 struct gfar_private *priv = netdev_priv(ndev);
2850 struct net_device_stats *stats = &ndev->stats;
2851 struct gfar_extra_stats *estats = &priv->extra_stats;
2852
2853 /* If the packet was truncated, none of the other errors matter */
2854 if (lstatus & BD_LFLAG(RXBD_TRUNCATED)) {
2855 stats->rx_length_errors++;
2856
2857 atomic64_inc(&estats->rx_trunc);
2858
2859 return;
2860 }
2861 /* Count the errors, if there were any */
2862 if (lstatus & BD_LFLAG(RXBD_LARGE | RXBD_SHORT)) {
2863 stats->rx_length_errors++;
2864
2865 if (lstatus & BD_LFLAG(RXBD_LARGE))
2866 atomic64_inc(&estats->rx_large);
2867 else
2868 atomic64_inc(&estats->rx_short);
2869 }
2870 if (lstatus & BD_LFLAG(RXBD_NONOCTET)) {
2871 stats->rx_frame_errors++;
2872 atomic64_inc(&estats->rx_nonoctet);
2873 }
2874 if (lstatus & BD_LFLAG(RXBD_CRCERR)) {
2875 atomic64_inc(&estats->rx_crcerr);
2876 stats->rx_crc_errors++;
2877 }
2878 if (lstatus & BD_LFLAG(RXBD_OVERRUN)) {
2879 atomic64_inc(&estats->rx_overrun);
2880 stats->rx_over_errors++;
2881 }
2882 }
2883
gfar_receive(int irq,void * grp_id)2884 irqreturn_t gfar_receive(int irq, void *grp_id)
2885 {
2886 struct gfar_priv_grp *grp = (struct gfar_priv_grp *)grp_id;
2887 unsigned long flags;
2888 u32 imask, ievent;
2889
2890 ievent = gfar_read(&grp->regs->ievent);
2891
2892 if (unlikely(ievent & IEVENT_FGPI)) {
2893 gfar_write(&grp->regs->ievent, IEVENT_FGPI);
2894 return IRQ_HANDLED;
2895 }
2896
2897 if (likely(napi_schedule_prep(&grp->napi_rx))) {
2898 spin_lock_irqsave(&grp->grplock, flags);
2899 imask = gfar_read(&grp->regs->imask);
2900 imask &= IMASK_RX_DISABLED;
2901 gfar_write(&grp->regs->imask, imask);
2902 spin_unlock_irqrestore(&grp->grplock, flags);
2903 __napi_schedule(&grp->napi_rx);
2904 } else {
2905 /* Clear IEVENT, so interrupts aren't called again
2906 * because of the packets that have already arrived.
2907 */
2908 gfar_write(&grp->regs->ievent, IEVENT_RX_MASK);
2909 }
2910
2911 return IRQ_HANDLED;
2912 }
2913
2914 /* Interrupt Handler for Transmit complete */
gfar_transmit(int irq,void * grp_id)2915 static irqreturn_t gfar_transmit(int irq, void *grp_id)
2916 {
2917 struct gfar_priv_grp *grp = (struct gfar_priv_grp *)grp_id;
2918 unsigned long flags;
2919 u32 imask;
2920
2921 if (likely(napi_schedule_prep(&grp->napi_tx))) {
2922 spin_lock_irqsave(&grp->grplock, flags);
2923 imask = gfar_read(&grp->regs->imask);
2924 imask &= IMASK_TX_DISABLED;
2925 gfar_write(&grp->regs->imask, imask);
2926 spin_unlock_irqrestore(&grp->grplock, flags);
2927 __napi_schedule(&grp->napi_tx);
2928 } else {
2929 /* Clear IEVENT, so interrupts aren't called again
2930 * because of the packets that have already arrived.
2931 */
2932 gfar_write(&grp->regs->ievent, IEVENT_TX_MASK);
2933 }
2934
2935 return IRQ_HANDLED;
2936 }
2937
gfar_add_rx_frag(struct gfar_rx_buff * rxb,u32 lstatus,struct sk_buff * skb,bool first)2938 static bool gfar_add_rx_frag(struct gfar_rx_buff *rxb, u32 lstatus,
2939 struct sk_buff *skb, bool first)
2940 {
2941 int size = lstatus & BD_LENGTH_MASK;
2942 struct page *page = rxb->page;
2943
2944 if (likely(first)) {
2945 skb_put(skb, size);
2946 } else {
2947 /* the last fragments' length contains the full frame length */
2948 if (lstatus & BD_LFLAG(RXBD_LAST))
2949 size -= skb->len;
2950
2951 WARN(size < 0, "gianfar: rx fragment size underflow");
2952 if (size < 0)
2953 return false;
2954
2955 skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, page,
2956 rxb->page_offset + RXBUF_ALIGNMENT,
2957 size, GFAR_RXB_TRUESIZE);
2958 }
2959
2960 /* try reuse page */
2961 if (unlikely(page_count(page) != 1 || page_is_pfmemalloc(page)))
2962 return false;
2963
2964 /* change offset to the other half */
2965 rxb->page_offset ^= GFAR_RXB_TRUESIZE;
2966
2967 page_ref_inc(page);
2968
2969 return true;
2970 }
2971
gfar_reuse_rx_page(struct gfar_priv_rx_q * rxq,struct gfar_rx_buff * old_rxb)2972 static void gfar_reuse_rx_page(struct gfar_priv_rx_q *rxq,
2973 struct gfar_rx_buff *old_rxb)
2974 {
2975 struct gfar_rx_buff *new_rxb;
2976 u16 nta = rxq->next_to_alloc;
2977
2978 new_rxb = &rxq->rx_buff[nta];
2979
2980 /* find next buf that can reuse a page */
2981 nta++;
2982 rxq->next_to_alloc = (nta < rxq->rx_ring_size) ? nta : 0;
2983
2984 /* copy page reference */
2985 *new_rxb = *old_rxb;
2986
2987 /* sync for use by the device */
2988 dma_sync_single_range_for_device(rxq->dev, old_rxb->dma,
2989 old_rxb->page_offset,
2990 GFAR_RXB_TRUESIZE, DMA_FROM_DEVICE);
2991 }
2992
gfar_get_next_rxbuff(struct gfar_priv_rx_q * rx_queue,u32 lstatus,struct sk_buff * skb)2993 static struct sk_buff *gfar_get_next_rxbuff(struct gfar_priv_rx_q *rx_queue,
2994 u32 lstatus, struct sk_buff *skb)
2995 {
2996 struct gfar_rx_buff *rxb = &rx_queue->rx_buff[rx_queue->next_to_clean];
2997 struct page *page = rxb->page;
2998 bool first = false;
2999
3000 if (likely(!skb)) {
3001 void *buff_addr = page_address(page) + rxb->page_offset;
3002
3003 skb = build_skb(buff_addr, GFAR_SKBFRAG_SIZE);
3004 if (unlikely(!skb)) {
3005 gfar_rx_alloc_err(rx_queue);
3006 return NULL;
3007 }
3008 skb_reserve(skb, RXBUF_ALIGNMENT);
3009 first = true;
3010 }
3011
3012 dma_sync_single_range_for_cpu(rx_queue->dev, rxb->dma, rxb->page_offset,
3013 GFAR_RXB_TRUESIZE, DMA_FROM_DEVICE);
3014
3015 if (gfar_add_rx_frag(rxb, lstatus, skb, first)) {
3016 /* reuse the free half of the page */
3017 gfar_reuse_rx_page(rx_queue, rxb);
3018 } else {
3019 /* page cannot be reused, unmap it */
3020 dma_unmap_page(rx_queue->dev, rxb->dma,
3021 PAGE_SIZE, DMA_FROM_DEVICE);
3022 }
3023
3024 /* clear rxb content */
3025 rxb->page = NULL;
3026
3027 return skb;
3028 }
3029
gfar_rx_checksum(struct sk_buff * skb,struct rxfcb * fcb)3030 static inline void gfar_rx_checksum(struct sk_buff *skb, struct rxfcb *fcb)
3031 {
3032 /* If valid headers were found, and valid sums
3033 * were verified, then we tell the kernel that no
3034 * checksumming is necessary. Otherwise, it is [FIXME]
3035 */
3036 if ((be16_to_cpu(fcb->flags) & RXFCB_CSUM_MASK) ==
3037 (RXFCB_CIP | RXFCB_CTU))
3038 skb->ip_summed = CHECKSUM_UNNECESSARY;
3039 else
3040 skb_checksum_none_assert(skb);
3041 }
3042
3043 /* gfar_process_frame() -- handle one incoming packet if skb isn't NULL. */
gfar_process_frame(struct net_device * ndev,struct sk_buff * skb)3044 static void gfar_process_frame(struct net_device *ndev, struct sk_buff *skb)
3045 {
3046 struct gfar_private *priv = netdev_priv(ndev);
3047 struct rxfcb *fcb = NULL;
3048
3049 /* fcb is at the beginning if exists */
3050 fcb = (struct rxfcb *)skb->data;
3051
3052 /* Remove the FCB from the skb
3053 * Remove the padded bytes, if there are any
3054 */
3055 if (priv->uses_rxfcb)
3056 skb_pull(skb, GMAC_FCB_LEN);
3057
3058 /* Get receive timestamp from the skb */
3059 if (priv->hwts_rx_en) {
3060 struct skb_shared_hwtstamps *shhwtstamps = skb_hwtstamps(skb);
3061 u64 *ns = (u64 *) skb->data;
3062
3063 memset(shhwtstamps, 0, sizeof(*shhwtstamps));
3064 shhwtstamps->hwtstamp = ns_to_ktime(be64_to_cpu(*ns));
3065 }
3066
3067 if (priv->padding)
3068 skb_pull(skb, priv->padding);
3069
3070 /* Trim off the FCS */
3071 pskb_trim(skb, skb->len - ETH_FCS_LEN);
3072
3073 if (ndev->features & NETIF_F_RXCSUM)
3074 gfar_rx_checksum(skb, fcb);
3075
3076 /* There's need to check for NETIF_F_HW_VLAN_CTAG_RX here.
3077 * Even if vlan rx accel is disabled, on some chips
3078 * RXFCB_VLN is pseudo randomly set.
3079 */
3080 if (ndev->features & NETIF_F_HW_VLAN_CTAG_RX &&
3081 be16_to_cpu(fcb->flags) & RXFCB_VLN)
3082 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q),
3083 be16_to_cpu(fcb->vlctl));
3084 }
3085
3086 /* gfar_clean_rx_ring() -- Processes each frame in the rx ring
3087 * until the budget/quota has been reached. Returns the number
3088 * of frames handled
3089 */
gfar_clean_rx_ring(struct gfar_priv_rx_q * rx_queue,int rx_work_limit)3090 int gfar_clean_rx_ring(struct gfar_priv_rx_q *rx_queue, int rx_work_limit)
3091 {
3092 struct net_device *ndev = rx_queue->ndev;
3093 struct gfar_private *priv = netdev_priv(ndev);
3094 struct rxbd8 *bdp;
3095 int i, howmany = 0;
3096 struct sk_buff *skb = rx_queue->skb;
3097 int cleaned_cnt = gfar_rxbd_unused(rx_queue);
3098 unsigned int total_bytes = 0, total_pkts = 0;
3099
3100 /* Get the first full descriptor */
3101 i = rx_queue->next_to_clean;
3102
3103 while (rx_work_limit--) {
3104 u32 lstatus;
3105
3106 if (cleaned_cnt >= GFAR_RX_BUFF_ALLOC) {
3107 gfar_alloc_rx_buffs(rx_queue, cleaned_cnt);
3108 cleaned_cnt = 0;
3109 }
3110
3111 bdp = &rx_queue->rx_bd_base[i];
3112 lstatus = be32_to_cpu(bdp->lstatus);
3113 if (lstatus & BD_LFLAG(RXBD_EMPTY))
3114 break;
3115
3116 /* lost RXBD_LAST descriptor due to overrun */
3117 if (skb &&
3118 (lstatus & BD_LFLAG(RXBD_FIRST))) {
3119 /* discard faulty buffer */
3120 dev_kfree_skb(skb);
3121 skb = NULL;
3122 rx_queue->stats.rx_dropped++;
3123
3124 /* can continue normally */
3125 }
3126
3127 /* order rx buffer descriptor reads */
3128 rmb();
3129
3130 /* fetch next to clean buffer from the ring */
3131 skb = gfar_get_next_rxbuff(rx_queue, lstatus, skb);
3132 if (unlikely(!skb))
3133 break;
3134
3135 cleaned_cnt++;
3136 howmany++;
3137
3138 if (unlikely(++i == rx_queue->rx_ring_size))
3139 i = 0;
3140
3141 rx_queue->next_to_clean = i;
3142
3143 /* fetch next buffer if not the last in frame */
3144 if (!(lstatus & BD_LFLAG(RXBD_LAST)))
3145 continue;
3146
3147 if (unlikely(lstatus & BD_LFLAG(RXBD_ERR))) {
3148 count_errors(lstatus, ndev);
3149
3150 /* discard faulty buffer */
3151 dev_kfree_skb(skb);
3152 skb = NULL;
3153 rx_queue->stats.rx_dropped++;
3154 continue;
3155 }
3156
3157 gfar_process_frame(ndev, skb);
3158
3159 /* Increment the number of packets */
3160 total_pkts++;
3161 total_bytes += skb->len;
3162
3163 skb_record_rx_queue(skb, rx_queue->qindex);
3164
3165 skb->protocol = eth_type_trans(skb, ndev);
3166
3167 /* Send the packet up the stack */
3168 napi_gro_receive(&rx_queue->grp->napi_rx, skb);
3169
3170 skb = NULL;
3171 }
3172
3173 /* Store incomplete frames for completion */
3174 rx_queue->skb = skb;
3175
3176 rx_queue->stats.rx_packets += total_pkts;
3177 rx_queue->stats.rx_bytes += total_bytes;
3178
3179 if (cleaned_cnt)
3180 gfar_alloc_rx_buffs(rx_queue, cleaned_cnt);
3181
3182 /* Update Last Free RxBD pointer for LFC */
3183 if (unlikely(priv->tx_actual_en)) {
3184 u32 bdp_dma = gfar_rxbd_dma_lastfree(rx_queue);
3185
3186 gfar_write(rx_queue->rfbptr, bdp_dma);
3187 }
3188
3189 return howmany;
3190 }
3191
gfar_poll_rx_sq(struct napi_struct * napi,int budget)3192 static int gfar_poll_rx_sq(struct napi_struct *napi, int budget)
3193 {
3194 struct gfar_priv_grp *gfargrp =
3195 container_of(napi, struct gfar_priv_grp, napi_rx);
3196 struct gfar __iomem *regs = gfargrp->regs;
3197 struct gfar_priv_rx_q *rx_queue = gfargrp->rx_queue;
3198 int work_done = 0;
3199
3200 /* Clear IEVENT, so interrupts aren't called again
3201 * because of the packets that have already arrived
3202 */
3203 gfar_write(®s->ievent, IEVENT_RX_MASK);
3204
3205 work_done = gfar_clean_rx_ring(rx_queue, budget);
3206
3207 if (work_done < budget) {
3208 u32 imask;
3209 napi_complete_done(napi, work_done);
3210 /* Clear the halt bit in RSTAT */
3211 gfar_write(®s->rstat, gfargrp->rstat);
3212
3213 spin_lock_irq(&gfargrp->grplock);
3214 imask = gfar_read(®s->imask);
3215 imask |= IMASK_RX_DEFAULT;
3216 gfar_write(®s->imask, imask);
3217 spin_unlock_irq(&gfargrp->grplock);
3218 }
3219
3220 return work_done;
3221 }
3222
gfar_poll_tx_sq(struct napi_struct * napi,int budget)3223 static int gfar_poll_tx_sq(struct napi_struct *napi, int budget)
3224 {
3225 struct gfar_priv_grp *gfargrp =
3226 container_of(napi, struct gfar_priv_grp, napi_tx);
3227 struct gfar __iomem *regs = gfargrp->regs;
3228 struct gfar_priv_tx_q *tx_queue = gfargrp->tx_queue;
3229 u32 imask;
3230
3231 /* Clear IEVENT, so interrupts aren't called again
3232 * because of the packets that have already arrived
3233 */
3234 gfar_write(®s->ievent, IEVENT_TX_MASK);
3235
3236 /* run Tx cleanup to completion */
3237 if (tx_queue->tx_skbuff[tx_queue->skb_dirtytx])
3238 gfar_clean_tx_ring(tx_queue);
3239
3240 napi_complete(napi);
3241
3242 spin_lock_irq(&gfargrp->grplock);
3243 imask = gfar_read(®s->imask);
3244 imask |= IMASK_TX_DEFAULT;
3245 gfar_write(®s->imask, imask);
3246 spin_unlock_irq(&gfargrp->grplock);
3247
3248 return 0;
3249 }
3250
gfar_poll_rx(struct napi_struct * napi,int budget)3251 static int gfar_poll_rx(struct napi_struct *napi, int budget)
3252 {
3253 struct gfar_priv_grp *gfargrp =
3254 container_of(napi, struct gfar_priv_grp, napi_rx);
3255 struct gfar_private *priv = gfargrp->priv;
3256 struct gfar __iomem *regs = gfargrp->regs;
3257 struct gfar_priv_rx_q *rx_queue = NULL;
3258 int work_done = 0, work_done_per_q = 0;
3259 int i, budget_per_q = 0;
3260 unsigned long rstat_rxf;
3261 int num_act_queues;
3262
3263 /* Clear IEVENT, so interrupts aren't called again
3264 * because of the packets that have already arrived
3265 */
3266 gfar_write(®s->ievent, IEVENT_RX_MASK);
3267
3268 rstat_rxf = gfar_read(®s->rstat) & RSTAT_RXF_MASK;
3269
3270 num_act_queues = bitmap_weight(&rstat_rxf, MAX_RX_QS);
3271 if (num_act_queues)
3272 budget_per_q = budget/num_act_queues;
3273
3274 for_each_set_bit(i, &gfargrp->rx_bit_map, priv->num_rx_queues) {
3275 /* skip queue if not active */
3276 if (!(rstat_rxf & (RSTAT_CLEAR_RXF0 >> i)))
3277 continue;
3278
3279 rx_queue = priv->rx_queue[i];
3280 work_done_per_q =
3281 gfar_clean_rx_ring(rx_queue, budget_per_q);
3282 work_done += work_done_per_q;
3283
3284 /* finished processing this queue */
3285 if (work_done_per_q < budget_per_q) {
3286 /* clear active queue hw indication */
3287 gfar_write(®s->rstat,
3288 RSTAT_CLEAR_RXF0 >> i);
3289 num_act_queues--;
3290
3291 if (!num_act_queues)
3292 break;
3293 }
3294 }
3295
3296 if (!num_act_queues) {
3297 u32 imask;
3298 napi_complete_done(napi, work_done);
3299
3300 /* Clear the halt bit in RSTAT */
3301 gfar_write(®s->rstat, gfargrp->rstat);
3302
3303 spin_lock_irq(&gfargrp->grplock);
3304 imask = gfar_read(®s->imask);
3305 imask |= IMASK_RX_DEFAULT;
3306 gfar_write(®s->imask, imask);
3307 spin_unlock_irq(&gfargrp->grplock);
3308 }
3309
3310 return work_done;
3311 }
3312
gfar_poll_tx(struct napi_struct * napi,int budget)3313 static int gfar_poll_tx(struct napi_struct *napi, int budget)
3314 {
3315 struct gfar_priv_grp *gfargrp =
3316 container_of(napi, struct gfar_priv_grp, napi_tx);
3317 struct gfar_private *priv = gfargrp->priv;
3318 struct gfar __iomem *regs = gfargrp->regs;
3319 struct gfar_priv_tx_q *tx_queue = NULL;
3320 int has_tx_work = 0;
3321 int i;
3322
3323 /* Clear IEVENT, so interrupts aren't called again
3324 * because of the packets that have already arrived
3325 */
3326 gfar_write(®s->ievent, IEVENT_TX_MASK);
3327
3328 for_each_set_bit(i, &gfargrp->tx_bit_map, priv->num_tx_queues) {
3329 tx_queue = priv->tx_queue[i];
3330 /* run Tx cleanup to completion */
3331 if (tx_queue->tx_skbuff[tx_queue->skb_dirtytx]) {
3332 gfar_clean_tx_ring(tx_queue);
3333 has_tx_work = 1;
3334 }
3335 }
3336
3337 if (!has_tx_work) {
3338 u32 imask;
3339 napi_complete(napi);
3340
3341 spin_lock_irq(&gfargrp->grplock);
3342 imask = gfar_read(®s->imask);
3343 imask |= IMASK_TX_DEFAULT;
3344 gfar_write(®s->imask, imask);
3345 spin_unlock_irq(&gfargrp->grplock);
3346 }
3347
3348 return 0;
3349 }
3350
3351
3352 #ifdef CONFIG_NET_POLL_CONTROLLER
3353 /* Polling 'interrupt' - used by things like netconsole to send skbs
3354 * without having to re-enable interrupts. It's not called while
3355 * the interrupt routine is executing.
3356 */
gfar_netpoll(struct net_device * dev)3357 static void gfar_netpoll(struct net_device *dev)
3358 {
3359 struct gfar_private *priv = netdev_priv(dev);
3360 int i;
3361
3362 /* If the device has multiple interrupts, run tx/rx */
3363 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
3364 for (i = 0; i < priv->num_grps; i++) {
3365 struct gfar_priv_grp *grp = &priv->gfargrp[i];
3366
3367 disable_irq(gfar_irq(grp, TX)->irq);
3368 disable_irq(gfar_irq(grp, RX)->irq);
3369 disable_irq(gfar_irq(grp, ER)->irq);
3370 gfar_interrupt(gfar_irq(grp, TX)->irq, grp);
3371 enable_irq(gfar_irq(grp, ER)->irq);
3372 enable_irq(gfar_irq(grp, RX)->irq);
3373 enable_irq(gfar_irq(grp, TX)->irq);
3374 }
3375 } else {
3376 for (i = 0; i < priv->num_grps; i++) {
3377 struct gfar_priv_grp *grp = &priv->gfargrp[i];
3378
3379 disable_irq(gfar_irq(grp, TX)->irq);
3380 gfar_interrupt(gfar_irq(grp, TX)->irq, grp);
3381 enable_irq(gfar_irq(grp, TX)->irq);
3382 }
3383 }
3384 }
3385 #endif
3386
3387 /* The interrupt handler for devices with one interrupt */
gfar_interrupt(int irq,void * grp_id)3388 static irqreturn_t gfar_interrupt(int irq, void *grp_id)
3389 {
3390 struct gfar_priv_grp *gfargrp = grp_id;
3391
3392 /* Save ievent for future reference */
3393 u32 events = gfar_read(&gfargrp->regs->ievent);
3394
3395 /* Check for reception */
3396 if (events & IEVENT_RX_MASK)
3397 gfar_receive(irq, grp_id);
3398
3399 /* Check for transmit completion */
3400 if (events & IEVENT_TX_MASK)
3401 gfar_transmit(irq, grp_id);
3402
3403 /* Check for errors */
3404 if (events & IEVENT_ERR_MASK)
3405 gfar_error(irq, grp_id);
3406
3407 return IRQ_HANDLED;
3408 }
3409
3410 /* Called every time the controller might need to be made
3411 * aware of new link state. The PHY code conveys this
3412 * information through variables in the phydev structure, and this
3413 * function converts those variables into the appropriate
3414 * register values, and can bring down the device if needed.
3415 */
adjust_link(struct net_device * dev)3416 static void adjust_link(struct net_device *dev)
3417 {
3418 struct gfar_private *priv = netdev_priv(dev);
3419 struct phy_device *phydev = dev->phydev;
3420
3421 if (unlikely(phydev->link != priv->oldlink ||
3422 (phydev->link && (phydev->duplex != priv->oldduplex ||
3423 phydev->speed != priv->oldspeed))))
3424 gfar_update_link_state(priv);
3425 }
3426
3427 /* Update the hash table based on the current list of multicast
3428 * addresses we subscribe to. Also, change the promiscuity of
3429 * the device based on the flags (this function is called
3430 * whenever dev->flags is changed
3431 */
gfar_set_multi(struct net_device * dev)3432 static void gfar_set_multi(struct net_device *dev)
3433 {
3434 struct netdev_hw_addr *ha;
3435 struct gfar_private *priv = netdev_priv(dev);
3436 struct gfar __iomem *regs = priv->gfargrp[0].regs;
3437 u32 tempval;
3438
3439 if (dev->flags & IFF_PROMISC) {
3440 /* Set RCTRL to PROM */
3441 tempval = gfar_read(®s->rctrl);
3442 tempval |= RCTRL_PROM;
3443 gfar_write(®s->rctrl, tempval);
3444 } else {
3445 /* Set RCTRL to not PROM */
3446 tempval = gfar_read(®s->rctrl);
3447 tempval &= ~(RCTRL_PROM);
3448 gfar_write(®s->rctrl, tempval);
3449 }
3450
3451 if (dev->flags & IFF_ALLMULTI) {
3452 /* Set the hash to rx all multicast frames */
3453 gfar_write(®s->igaddr0, 0xffffffff);
3454 gfar_write(®s->igaddr1, 0xffffffff);
3455 gfar_write(®s->igaddr2, 0xffffffff);
3456 gfar_write(®s->igaddr3, 0xffffffff);
3457 gfar_write(®s->igaddr4, 0xffffffff);
3458 gfar_write(®s->igaddr5, 0xffffffff);
3459 gfar_write(®s->igaddr6, 0xffffffff);
3460 gfar_write(®s->igaddr7, 0xffffffff);
3461 gfar_write(®s->gaddr0, 0xffffffff);
3462 gfar_write(®s->gaddr1, 0xffffffff);
3463 gfar_write(®s->gaddr2, 0xffffffff);
3464 gfar_write(®s->gaddr3, 0xffffffff);
3465 gfar_write(®s->gaddr4, 0xffffffff);
3466 gfar_write(®s->gaddr5, 0xffffffff);
3467 gfar_write(®s->gaddr6, 0xffffffff);
3468 gfar_write(®s->gaddr7, 0xffffffff);
3469 } else {
3470 int em_num;
3471 int idx;
3472
3473 /* zero out the hash */
3474 gfar_write(®s->igaddr0, 0x0);
3475 gfar_write(®s->igaddr1, 0x0);
3476 gfar_write(®s->igaddr2, 0x0);
3477 gfar_write(®s->igaddr3, 0x0);
3478 gfar_write(®s->igaddr4, 0x0);
3479 gfar_write(®s->igaddr5, 0x0);
3480 gfar_write(®s->igaddr6, 0x0);
3481 gfar_write(®s->igaddr7, 0x0);
3482 gfar_write(®s->gaddr0, 0x0);
3483 gfar_write(®s->gaddr1, 0x0);
3484 gfar_write(®s->gaddr2, 0x0);
3485 gfar_write(®s->gaddr3, 0x0);
3486 gfar_write(®s->gaddr4, 0x0);
3487 gfar_write(®s->gaddr5, 0x0);
3488 gfar_write(®s->gaddr6, 0x0);
3489 gfar_write(®s->gaddr7, 0x0);
3490
3491 /* If we have extended hash tables, we need to
3492 * clear the exact match registers to prepare for
3493 * setting them
3494 */
3495 if (priv->extended_hash) {
3496 em_num = GFAR_EM_NUM + 1;
3497 gfar_clear_exact_match(dev);
3498 idx = 1;
3499 } else {
3500 idx = 0;
3501 em_num = 0;
3502 }
3503
3504 if (netdev_mc_empty(dev))
3505 return;
3506
3507 /* Parse the list, and set the appropriate bits */
3508 netdev_for_each_mc_addr(ha, dev) {
3509 if (idx < em_num) {
3510 gfar_set_mac_for_addr(dev, idx, ha->addr);
3511 idx++;
3512 } else
3513 gfar_set_hash_for_addr(dev, ha->addr);
3514 }
3515 }
3516 }
3517
3518
3519 /* Clears each of the exact match registers to zero, so they
3520 * don't interfere with normal reception
3521 */
gfar_clear_exact_match(struct net_device * dev)3522 static void gfar_clear_exact_match(struct net_device *dev)
3523 {
3524 int idx;
3525 static const u8 zero_arr[ETH_ALEN] = {0, 0, 0, 0, 0, 0};
3526
3527 for (idx = 1; idx < GFAR_EM_NUM + 1; idx++)
3528 gfar_set_mac_for_addr(dev, idx, zero_arr);
3529 }
3530
3531 /* Set the appropriate hash bit for the given addr */
3532 /* The algorithm works like so:
3533 * 1) Take the Destination Address (ie the multicast address), and
3534 * do a CRC on it (little endian), and reverse the bits of the
3535 * result.
3536 * 2) Use the 8 most significant bits as a hash into a 256-entry
3537 * table. The table is controlled through 8 32-bit registers:
3538 * gaddr0-7. gaddr0's MSB is entry 0, and gaddr7's LSB is
3539 * gaddr7. This means that the 3 most significant bits in the
3540 * hash index which gaddr register to use, and the 5 other bits
3541 * indicate which bit (assuming an IBM numbering scheme, which
3542 * for PowerPC (tm) is usually the case) in the register holds
3543 * the entry.
3544 */
gfar_set_hash_for_addr(struct net_device * dev,u8 * addr)3545 static void gfar_set_hash_for_addr(struct net_device *dev, u8 *addr)
3546 {
3547 u32 tempval;
3548 struct gfar_private *priv = netdev_priv(dev);
3549 u32 result = ether_crc(ETH_ALEN, addr);
3550 int width = priv->hash_width;
3551 u8 whichbit = (result >> (32 - width)) & 0x1f;
3552 u8 whichreg = result >> (32 - width + 5);
3553 u32 value = (1 << (31-whichbit));
3554
3555 tempval = gfar_read(priv->hash_regs[whichreg]);
3556 tempval |= value;
3557 gfar_write(priv->hash_regs[whichreg], tempval);
3558 }
3559
3560
3561 /* There are multiple MAC Address register pairs on some controllers
3562 * This function sets the numth pair to a given address
3563 */
gfar_set_mac_for_addr(struct net_device * dev,int num,const u8 * addr)3564 static void gfar_set_mac_for_addr(struct net_device *dev, int num,
3565 const u8 *addr)
3566 {
3567 struct gfar_private *priv = netdev_priv(dev);
3568 struct gfar __iomem *regs = priv->gfargrp[0].regs;
3569 u32 tempval;
3570 u32 __iomem *macptr = ®s->macstnaddr1;
3571
3572 macptr += num*2;
3573
3574 /* For a station address of 0x12345678ABCD in transmission
3575 * order (BE), MACnADDR1 is set to 0xCDAB7856 and
3576 * MACnADDR2 is set to 0x34120000.
3577 */
3578 tempval = (addr[5] << 24) | (addr[4] << 16) |
3579 (addr[3] << 8) | addr[2];
3580
3581 gfar_write(macptr, tempval);
3582
3583 tempval = (addr[1] << 24) | (addr[0] << 16);
3584
3585 gfar_write(macptr+1, tempval);
3586 }
3587
3588 /* GFAR error interrupt handler */
gfar_error(int irq,void * grp_id)3589 static irqreturn_t gfar_error(int irq, void *grp_id)
3590 {
3591 struct gfar_priv_grp *gfargrp = grp_id;
3592 struct gfar __iomem *regs = gfargrp->regs;
3593 struct gfar_private *priv= gfargrp->priv;
3594 struct net_device *dev = priv->ndev;
3595
3596 /* Save ievent for future reference */
3597 u32 events = gfar_read(®s->ievent);
3598
3599 /* Clear IEVENT */
3600 gfar_write(®s->ievent, events & IEVENT_ERR_MASK);
3601
3602 /* Magic Packet is not an error. */
3603 if ((priv->device_flags & FSL_GIANFAR_DEV_HAS_MAGIC_PACKET) &&
3604 (events & IEVENT_MAG))
3605 events &= ~IEVENT_MAG;
3606
3607 /* Hmm... */
3608 if (netif_msg_rx_err(priv) || netif_msg_tx_err(priv))
3609 netdev_dbg(dev,
3610 "error interrupt (ievent=0x%08x imask=0x%08x)\n",
3611 events, gfar_read(®s->imask));
3612
3613 /* Update the error counters */
3614 if (events & IEVENT_TXE) {
3615 dev->stats.tx_errors++;
3616
3617 if (events & IEVENT_LC)
3618 dev->stats.tx_window_errors++;
3619 if (events & IEVENT_CRL)
3620 dev->stats.tx_aborted_errors++;
3621 if (events & IEVENT_XFUN) {
3622 netif_dbg(priv, tx_err, dev,
3623 "TX FIFO underrun, packet dropped\n");
3624 dev->stats.tx_dropped++;
3625 atomic64_inc(&priv->extra_stats.tx_underrun);
3626
3627 schedule_work(&priv->reset_task);
3628 }
3629 netif_dbg(priv, tx_err, dev, "Transmit Error\n");
3630 }
3631 if (events & IEVENT_BSY) {
3632 dev->stats.rx_over_errors++;
3633 atomic64_inc(&priv->extra_stats.rx_bsy);
3634
3635 netif_dbg(priv, rx_err, dev, "busy error (rstat: %x)\n",
3636 gfar_read(®s->rstat));
3637 }
3638 if (events & IEVENT_BABR) {
3639 dev->stats.rx_errors++;
3640 atomic64_inc(&priv->extra_stats.rx_babr);
3641
3642 netif_dbg(priv, rx_err, dev, "babbling RX error\n");
3643 }
3644 if (events & IEVENT_EBERR) {
3645 atomic64_inc(&priv->extra_stats.eberr);
3646 netif_dbg(priv, rx_err, dev, "bus error\n");
3647 }
3648 if (events & IEVENT_RXC)
3649 netif_dbg(priv, rx_status, dev, "control frame\n");
3650
3651 if (events & IEVENT_BABT) {
3652 atomic64_inc(&priv->extra_stats.tx_babt);
3653 netif_dbg(priv, tx_err, dev, "babbling TX error\n");
3654 }
3655 return IRQ_HANDLED;
3656 }
3657
gfar_get_flowctrl_cfg(struct gfar_private * priv)3658 static u32 gfar_get_flowctrl_cfg(struct gfar_private *priv)
3659 {
3660 struct net_device *ndev = priv->ndev;
3661 struct phy_device *phydev = ndev->phydev;
3662 u32 val = 0;
3663
3664 if (!phydev->duplex)
3665 return val;
3666
3667 if (!priv->pause_aneg_en) {
3668 if (priv->tx_pause_en)
3669 val |= MACCFG1_TX_FLOW;
3670 if (priv->rx_pause_en)
3671 val |= MACCFG1_RX_FLOW;
3672 } else {
3673 u16 lcl_adv, rmt_adv;
3674 u8 flowctrl;
3675 /* get link partner capabilities */
3676 rmt_adv = 0;
3677 if (phydev->pause)
3678 rmt_adv = LPA_PAUSE_CAP;
3679 if (phydev->asym_pause)
3680 rmt_adv |= LPA_PAUSE_ASYM;
3681
3682 lcl_adv = 0;
3683 if (phydev->advertising & ADVERTISED_Pause)
3684 lcl_adv |= ADVERTISE_PAUSE_CAP;
3685 if (phydev->advertising & ADVERTISED_Asym_Pause)
3686 lcl_adv |= ADVERTISE_PAUSE_ASYM;
3687
3688 flowctrl = mii_resolve_flowctrl_fdx(lcl_adv, rmt_adv);
3689 if (flowctrl & FLOW_CTRL_TX)
3690 val |= MACCFG1_TX_FLOW;
3691 if (flowctrl & FLOW_CTRL_RX)
3692 val |= MACCFG1_RX_FLOW;
3693 }
3694
3695 return val;
3696 }
3697
gfar_update_link_state(struct gfar_private * priv)3698 static noinline void gfar_update_link_state(struct gfar_private *priv)
3699 {
3700 struct gfar __iomem *regs = priv->gfargrp[0].regs;
3701 struct net_device *ndev = priv->ndev;
3702 struct phy_device *phydev = ndev->phydev;
3703 struct gfar_priv_rx_q *rx_queue = NULL;
3704 int i;
3705
3706 if (unlikely(test_bit(GFAR_RESETTING, &priv->state)))
3707 return;
3708
3709 if (phydev->link) {
3710 u32 tempval1 = gfar_read(®s->maccfg1);
3711 u32 tempval = gfar_read(®s->maccfg2);
3712 u32 ecntrl = gfar_read(®s->ecntrl);
3713 u32 tx_flow_oldval = (tempval1 & MACCFG1_TX_FLOW);
3714
3715 if (phydev->duplex != priv->oldduplex) {
3716 if (!(phydev->duplex))
3717 tempval &= ~(MACCFG2_FULL_DUPLEX);
3718 else
3719 tempval |= MACCFG2_FULL_DUPLEX;
3720
3721 priv->oldduplex = phydev->duplex;
3722 }
3723
3724 if (phydev->speed != priv->oldspeed) {
3725 switch (phydev->speed) {
3726 case 1000:
3727 tempval =
3728 ((tempval & ~(MACCFG2_IF)) | MACCFG2_GMII);
3729
3730 ecntrl &= ~(ECNTRL_R100);
3731 break;
3732 case 100:
3733 case 10:
3734 tempval =
3735 ((tempval & ~(MACCFG2_IF)) | MACCFG2_MII);
3736
3737 /* Reduced mode distinguishes
3738 * between 10 and 100
3739 */
3740 if (phydev->speed == SPEED_100)
3741 ecntrl |= ECNTRL_R100;
3742 else
3743 ecntrl &= ~(ECNTRL_R100);
3744 break;
3745 default:
3746 netif_warn(priv, link, priv->ndev,
3747 "Ack! Speed (%d) is not 10/100/1000!\n",
3748 phydev->speed);
3749 break;
3750 }
3751
3752 priv->oldspeed = phydev->speed;
3753 }
3754
3755 tempval1 &= ~(MACCFG1_TX_FLOW | MACCFG1_RX_FLOW);
3756 tempval1 |= gfar_get_flowctrl_cfg(priv);
3757
3758 /* Turn last free buffer recording on */
3759 if ((tempval1 & MACCFG1_TX_FLOW) && !tx_flow_oldval) {
3760 for (i = 0; i < priv->num_rx_queues; i++) {
3761 u32 bdp_dma;
3762
3763 rx_queue = priv->rx_queue[i];
3764 bdp_dma = gfar_rxbd_dma_lastfree(rx_queue);
3765 gfar_write(rx_queue->rfbptr, bdp_dma);
3766 }
3767
3768 priv->tx_actual_en = 1;
3769 }
3770
3771 if (unlikely(!(tempval1 & MACCFG1_TX_FLOW) && tx_flow_oldval))
3772 priv->tx_actual_en = 0;
3773
3774 gfar_write(®s->maccfg1, tempval1);
3775 gfar_write(®s->maccfg2, tempval);
3776 gfar_write(®s->ecntrl, ecntrl);
3777
3778 if (!priv->oldlink)
3779 priv->oldlink = 1;
3780
3781 } else if (priv->oldlink) {
3782 priv->oldlink = 0;
3783 priv->oldspeed = 0;
3784 priv->oldduplex = -1;
3785 }
3786
3787 if (netif_msg_link(priv))
3788 phy_print_status(phydev);
3789 }
3790
3791 static const struct of_device_id gfar_match[] =
3792 {
3793 {
3794 .type = "network",
3795 .compatible = "gianfar",
3796 },
3797 {
3798 .compatible = "fsl,etsec2",
3799 },
3800 {},
3801 };
3802 MODULE_DEVICE_TABLE(of, gfar_match);
3803
3804 /* Structure for a device driver */
3805 static struct platform_driver gfar_driver = {
3806 .driver = {
3807 .name = "fsl-gianfar",
3808 .pm = GFAR_PM_OPS,
3809 .of_match_table = gfar_match,
3810 },
3811 .probe = gfar_probe,
3812 .remove = gfar_remove,
3813 };
3814
3815 module_platform_driver(gfar_driver);
3816