• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /* drivers/net/ethernet/freescale/gianfar.c
2  *
3  * Gianfar Ethernet Driver
4  * This driver is designed for the non-CPM ethernet controllers
5  * on the 85xx and 83xx family of integrated processors
6  * Based on 8260_io/fcc_enet.c
7  *
8  * Author: Andy Fleming
9  * Maintainer: Kumar Gala
10  * Modifier: Sandeep Gopalpet <sandeep.kumar@freescale.com>
11  *
12  * Copyright 2002-2009, 2011-2013 Freescale Semiconductor, Inc.
13  * Copyright 2007 MontaVista Software, Inc.
14  *
15  * This program is free software; you can redistribute  it and/or modify it
16  * under  the terms of  the GNU General  Public License as published by the
17  * Free Software Foundation;  either version 2 of the  License, or (at your
18  * option) any later version.
19  *
20  *  Gianfar:  AKA Lambda Draconis, "Dragon"
21  *  RA 11 31 24.2
22  *  Dec +69 19 52
23  *  V 3.84
24  *  B-V +1.62
25  *
26  *  Theory of operation
27  *
28  *  The driver is initialized through of_device. Configuration information
29  *  is therefore conveyed through an OF-style device tree.
30  *
31  *  The Gianfar Ethernet Controller uses a ring of buffer
32  *  descriptors.  The beginning is indicated by a register
33  *  pointing to the physical address of the start of the ring.
34  *  The end is determined by a "wrap" bit being set in the
35  *  last descriptor of the ring.
36  *
37  *  When a packet is received, the RXF bit in the
38  *  IEVENT register is set, triggering an interrupt when the
39  *  corresponding bit in the IMASK register is also set (if
40  *  interrupt coalescing is active, then the interrupt may not
41  *  happen immediately, but will wait until either a set number
42  *  of frames or amount of time have passed).  In NAPI, the
43  *  interrupt handler will signal there is work to be done, and
44  *  exit. This method will start at the last known empty
45  *  descriptor, and process every subsequent descriptor until there
46  *  are none left with data (NAPI will stop after a set number of
47  *  packets to give time to other tasks, but will eventually
48  *  process all the packets).  The data arrives inside a
49  *  pre-allocated skb, and so after the skb is passed up to the
50  *  stack, a new skb must be allocated, and the address field in
51  *  the buffer descriptor must be updated to indicate this new
52  *  skb.
53  *
54  *  When the kernel requests that a packet be transmitted, the
55  *  driver starts where it left off last time, and points the
56  *  descriptor at the buffer which was passed in.  The driver
57  *  then informs the DMA engine that there are packets ready to
58  *  be transmitted.  Once the controller is finished transmitting
59  *  the packet, an interrupt may be triggered (under the same
60  *  conditions as for reception, but depending on the TXF bit).
61  *  The driver then cleans up the buffer.
62  */
63 
64 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
65 #define DEBUG
66 
67 #include <linux/kernel.h>
68 #include <linux/string.h>
69 #include <linux/errno.h>
70 #include <linux/unistd.h>
71 #include <linux/slab.h>
72 #include <linux/interrupt.h>
73 #include <linux/delay.h>
74 #include <linux/netdevice.h>
75 #include <linux/etherdevice.h>
76 #include <linux/skbuff.h>
77 #include <linux/if_vlan.h>
78 #include <linux/spinlock.h>
79 #include <linux/mm.h>
80 #include <linux/of_address.h>
81 #include <linux/of_irq.h>
82 #include <linux/of_mdio.h>
83 #include <linux/of_platform.h>
84 #include <linux/ip.h>
85 #include <linux/tcp.h>
86 #include <linux/udp.h>
87 #include <linux/in.h>
88 #include <linux/net_tstamp.h>
89 
90 #include <asm/io.h>
91 #ifdef CONFIG_PPC
92 #include <asm/reg.h>
93 #include <asm/mpc85xx.h>
94 #endif
95 #include <asm/irq.h>
96 #include <linux/uaccess.h>
97 #include <linux/module.h>
98 #include <linux/dma-mapping.h>
99 #include <linux/crc32.h>
100 #include <linux/mii.h>
101 #include <linux/phy.h>
102 #include <linux/phy_fixed.h>
103 #include <linux/of.h>
104 #include <linux/of_net.h>
105 #include <linux/of_address.h>
106 #include <linux/of_irq.h>
107 
108 #include "gianfar.h"
109 
110 #define TX_TIMEOUT      (5*HZ)
111 
112 const char gfar_driver_version[] = "2.0";
113 
114 static int gfar_enet_open(struct net_device *dev);
115 static netdev_tx_t gfar_start_xmit(struct sk_buff *skb, struct net_device *dev);
116 static void gfar_reset_task(struct work_struct *work);
117 static void gfar_timeout(struct net_device *dev);
118 static int gfar_close(struct net_device *dev);
119 static void gfar_alloc_rx_buffs(struct gfar_priv_rx_q *rx_queue,
120 				int alloc_cnt);
121 static int gfar_set_mac_address(struct net_device *dev);
122 static int gfar_change_mtu(struct net_device *dev, int new_mtu);
123 static irqreturn_t gfar_error(int irq, void *dev_id);
124 static irqreturn_t gfar_transmit(int irq, void *dev_id);
125 static irqreturn_t gfar_interrupt(int irq, void *dev_id);
126 static void adjust_link(struct net_device *dev);
127 static noinline void gfar_update_link_state(struct gfar_private *priv);
128 static int init_phy(struct net_device *dev);
129 static int gfar_probe(struct platform_device *ofdev);
130 static int gfar_remove(struct platform_device *ofdev);
131 static void free_skb_resources(struct gfar_private *priv);
132 static void gfar_set_multi(struct net_device *dev);
133 static void gfar_set_hash_for_addr(struct net_device *dev, u8 *addr);
134 static void gfar_configure_serdes(struct net_device *dev);
135 static int gfar_poll_rx(struct napi_struct *napi, int budget);
136 static int gfar_poll_tx(struct napi_struct *napi, int budget);
137 static int gfar_poll_rx_sq(struct napi_struct *napi, int budget);
138 static int gfar_poll_tx_sq(struct napi_struct *napi, int budget);
139 #ifdef CONFIG_NET_POLL_CONTROLLER
140 static void gfar_netpoll(struct net_device *dev);
141 #endif
142 int gfar_clean_rx_ring(struct gfar_priv_rx_q *rx_queue, int rx_work_limit);
143 static void gfar_clean_tx_ring(struct gfar_priv_tx_q *tx_queue);
144 static void gfar_process_frame(struct net_device *ndev, struct sk_buff *skb);
145 static void gfar_halt_nodisable(struct gfar_private *priv);
146 static void gfar_clear_exact_match(struct net_device *dev);
147 static void gfar_set_mac_for_addr(struct net_device *dev, int num,
148 				  const u8 *addr);
149 static int gfar_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
150 
151 MODULE_AUTHOR("Freescale Semiconductor, Inc");
152 MODULE_DESCRIPTION("Gianfar Ethernet Driver");
153 MODULE_LICENSE("GPL");
154 
gfar_init_rxbdp(struct gfar_priv_rx_q * rx_queue,struct rxbd8 * bdp,dma_addr_t buf)155 static void gfar_init_rxbdp(struct gfar_priv_rx_q *rx_queue, struct rxbd8 *bdp,
156 			    dma_addr_t buf)
157 {
158 	u32 lstatus;
159 
160 	bdp->bufPtr = cpu_to_be32(buf);
161 
162 	lstatus = BD_LFLAG(RXBD_EMPTY | RXBD_INTERRUPT);
163 	if (bdp == rx_queue->rx_bd_base + rx_queue->rx_ring_size - 1)
164 		lstatus |= BD_LFLAG(RXBD_WRAP);
165 
166 	gfar_wmb();
167 
168 	bdp->lstatus = cpu_to_be32(lstatus);
169 }
170 
gfar_init_bds(struct net_device * ndev)171 static void gfar_init_bds(struct net_device *ndev)
172 {
173 	struct gfar_private *priv = netdev_priv(ndev);
174 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
175 	struct gfar_priv_tx_q *tx_queue = NULL;
176 	struct gfar_priv_rx_q *rx_queue = NULL;
177 	struct txbd8 *txbdp;
178 	u32 __iomem *rfbptr;
179 	int i, j;
180 
181 	for (i = 0; i < priv->num_tx_queues; i++) {
182 		tx_queue = priv->tx_queue[i];
183 		/* Initialize some variables in our dev structure */
184 		tx_queue->num_txbdfree = tx_queue->tx_ring_size;
185 		tx_queue->dirty_tx = tx_queue->tx_bd_base;
186 		tx_queue->cur_tx = tx_queue->tx_bd_base;
187 		tx_queue->skb_curtx = 0;
188 		tx_queue->skb_dirtytx = 0;
189 
190 		/* Initialize Transmit Descriptor Ring */
191 		txbdp = tx_queue->tx_bd_base;
192 		for (j = 0; j < tx_queue->tx_ring_size; j++) {
193 			txbdp->lstatus = 0;
194 			txbdp->bufPtr = 0;
195 			txbdp++;
196 		}
197 
198 		/* Set the last descriptor in the ring to indicate wrap */
199 		txbdp--;
200 		txbdp->status = cpu_to_be16(be16_to_cpu(txbdp->status) |
201 					    TXBD_WRAP);
202 	}
203 
204 	rfbptr = &regs->rfbptr0;
205 	for (i = 0; i < priv->num_rx_queues; i++) {
206 		rx_queue = priv->rx_queue[i];
207 
208 		rx_queue->next_to_clean = 0;
209 		rx_queue->next_to_use = 0;
210 		rx_queue->next_to_alloc = 0;
211 
212 		/* make sure next_to_clean != next_to_use after this
213 		 * by leaving at least 1 unused descriptor
214 		 */
215 		gfar_alloc_rx_buffs(rx_queue, gfar_rxbd_unused(rx_queue));
216 
217 		rx_queue->rfbptr = rfbptr;
218 		rfbptr += 2;
219 	}
220 }
221 
gfar_alloc_skb_resources(struct net_device * ndev)222 static int gfar_alloc_skb_resources(struct net_device *ndev)
223 {
224 	void *vaddr;
225 	dma_addr_t addr;
226 	int i, j;
227 	struct gfar_private *priv = netdev_priv(ndev);
228 	struct device *dev = priv->dev;
229 	struct gfar_priv_tx_q *tx_queue = NULL;
230 	struct gfar_priv_rx_q *rx_queue = NULL;
231 
232 	priv->total_tx_ring_size = 0;
233 	for (i = 0; i < priv->num_tx_queues; i++)
234 		priv->total_tx_ring_size += priv->tx_queue[i]->tx_ring_size;
235 
236 	priv->total_rx_ring_size = 0;
237 	for (i = 0; i < priv->num_rx_queues; i++)
238 		priv->total_rx_ring_size += priv->rx_queue[i]->rx_ring_size;
239 
240 	/* Allocate memory for the buffer descriptors */
241 	vaddr = dma_alloc_coherent(dev,
242 				   (priv->total_tx_ring_size *
243 				    sizeof(struct txbd8)) +
244 				   (priv->total_rx_ring_size *
245 				    sizeof(struct rxbd8)),
246 				   &addr, GFP_KERNEL);
247 	if (!vaddr)
248 		return -ENOMEM;
249 
250 	for (i = 0; i < priv->num_tx_queues; i++) {
251 		tx_queue = priv->tx_queue[i];
252 		tx_queue->tx_bd_base = vaddr;
253 		tx_queue->tx_bd_dma_base = addr;
254 		tx_queue->dev = ndev;
255 		/* enet DMA only understands physical addresses */
256 		addr  += sizeof(struct txbd8) * tx_queue->tx_ring_size;
257 		vaddr += sizeof(struct txbd8) * tx_queue->tx_ring_size;
258 	}
259 
260 	/* Start the rx descriptor ring where the tx ring leaves off */
261 	for (i = 0; i < priv->num_rx_queues; i++) {
262 		rx_queue = priv->rx_queue[i];
263 		rx_queue->rx_bd_base = vaddr;
264 		rx_queue->rx_bd_dma_base = addr;
265 		rx_queue->ndev = ndev;
266 		rx_queue->dev = dev;
267 		addr  += sizeof(struct rxbd8) * rx_queue->rx_ring_size;
268 		vaddr += sizeof(struct rxbd8) * rx_queue->rx_ring_size;
269 	}
270 
271 	/* Setup the skbuff rings */
272 	for (i = 0; i < priv->num_tx_queues; i++) {
273 		tx_queue = priv->tx_queue[i];
274 		tx_queue->tx_skbuff =
275 			kmalloc_array(tx_queue->tx_ring_size,
276 				      sizeof(*tx_queue->tx_skbuff),
277 				      GFP_KERNEL);
278 		if (!tx_queue->tx_skbuff)
279 			goto cleanup;
280 
281 		for (j = 0; j < tx_queue->tx_ring_size; j++)
282 			tx_queue->tx_skbuff[j] = NULL;
283 	}
284 
285 	for (i = 0; i < priv->num_rx_queues; i++) {
286 		rx_queue = priv->rx_queue[i];
287 		rx_queue->rx_buff = kcalloc(rx_queue->rx_ring_size,
288 					    sizeof(*rx_queue->rx_buff),
289 					    GFP_KERNEL);
290 		if (!rx_queue->rx_buff)
291 			goto cleanup;
292 	}
293 
294 	gfar_init_bds(ndev);
295 
296 	return 0;
297 
298 cleanup:
299 	free_skb_resources(priv);
300 	return -ENOMEM;
301 }
302 
gfar_init_tx_rx_base(struct gfar_private * priv)303 static void gfar_init_tx_rx_base(struct gfar_private *priv)
304 {
305 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
306 	u32 __iomem *baddr;
307 	int i;
308 
309 	baddr = &regs->tbase0;
310 	for (i = 0; i < priv->num_tx_queues; i++) {
311 		gfar_write(baddr, priv->tx_queue[i]->tx_bd_dma_base);
312 		baddr += 2;
313 	}
314 
315 	baddr = &regs->rbase0;
316 	for (i = 0; i < priv->num_rx_queues; i++) {
317 		gfar_write(baddr, priv->rx_queue[i]->rx_bd_dma_base);
318 		baddr += 2;
319 	}
320 }
321 
gfar_init_rqprm(struct gfar_private * priv)322 static void gfar_init_rqprm(struct gfar_private *priv)
323 {
324 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
325 	u32 __iomem *baddr;
326 	int i;
327 
328 	baddr = &regs->rqprm0;
329 	for (i = 0; i < priv->num_rx_queues; i++) {
330 		gfar_write(baddr, priv->rx_queue[i]->rx_ring_size |
331 			   (DEFAULT_RX_LFC_THR << FBTHR_SHIFT));
332 		baddr++;
333 	}
334 }
335 
gfar_rx_offload_en(struct gfar_private * priv)336 static void gfar_rx_offload_en(struct gfar_private *priv)
337 {
338 	/* set this when rx hw offload (TOE) functions are being used */
339 	priv->uses_rxfcb = 0;
340 
341 	if (priv->ndev->features & (NETIF_F_RXCSUM | NETIF_F_HW_VLAN_CTAG_RX))
342 		priv->uses_rxfcb = 1;
343 
344 	if (priv->hwts_rx_en || priv->rx_filer_enable)
345 		priv->uses_rxfcb = 1;
346 }
347 
gfar_mac_rx_config(struct gfar_private * priv)348 static void gfar_mac_rx_config(struct gfar_private *priv)
349 {
350 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
351 	u32 rctrl = 0;
352 
353 	if (priv->rx_filer_enable) {
354 		rctrl |= RCTRL_FILREN | RCTRL_PRSDEP_INIT;
355 		/* Program the RIR0 reg with the required distribution */
356 		if (priv->poll_mode == GFAR_SQ_POLLING)
357 			gfar_write(&regs->rir0, DEFAULT_2RXQ_RIR0);
358 		else /* GFAR_MQ_POLLING */
359 			gfar_write(&regs->rir0, DEFAULT_8RXQ_RIR0);
360 	}
361 
362 	/* Restore PROMISC mode */
363 	if (priv->ndev->flags & IFF_PROMISC)
364 		rctrl |= RCTRL_PROM;
365 
366 	if (priv->ndev->features & NETIF_F_RXCSUM)
367 		rctrl |= RCTRL_CHECKSUMMING;
368 
369 	if (priv->extended_hash)
370 		rctrl |= RCTRL_EXTHASH | RCTRL_EMEN;
371 
372 	if (priv->padding) {
373 		rctrl &= ~RCTRL_PAL_MASK;
374 		rctrl |= RCTRL_PADDING(priv->padding);
375 	}
376 
377 	/* Enable HW time stamping if requested from user space */
378 	if (priv->hwts_rx_en)
379 		rctrl |= RCTRL_PRSDEP_INIT | RCTRL_TS_ENABLE;
380 
381 	if (priv->ndev->features & NETIF_F_HW_VLAN_CTAG_RX)
382 		rctrl |= RCTRL_VLEX | RCTRL_PRSDEP_INIT;
383 
384 	/* Clear the LFC bit */
385 	gfar_write(&regs->rctrl, rctrl);
386 	/* Init flow control threshold values */
387 	gfar_init_rqprm(priv);
388 	gfar_write(&regs->ptv, DEFAULT_LFC_PTVVAL);
389 	rctrl |= RCTRL_LFC;
390 
391 	/* Init rctrl based on our settings */
392 	gfar_write(&regs->rctrl, rctrl);
393 }
394 
gfar_mac_tx_config(struct gfar_private * priv)395 static void gfar_mac_tx_config(struct gfar_private *priv)
396 {
397 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
398 	u32 tctrl = 0;
399 
400 	if (priv->ndev->features & NETIF_F_IP_CSUM)
401 		tctrl |= TCTRL_INIT_CSUM;
402 
403 	if (priv->prio_sched_en)
404 		tctrl |= TCTRL_TXSCHED_PRIO;
405 	else {
406 		tctrl |= TCTRL_TXSCHED_WRRS;
407 		gfar_write(&regs->tr03wt, DEFAULT_WRRS_WEIGHT);
408 		gfar_write(&regs->tr47wt, DEFAULT_WRRS_WEIGHT);
409 	}
410 
411 	if (priv->ndev->features & NETIF_F_HW_VLAN_CTAG_TX)
412 		tctrl |= TCTRL_VLINS;
413 
414 	gfar_write(&regs->tctrl, tctrl);
415 }
416 
gfar_configure_coalescing(struct gfar_private * priv,unsigned long tx_mask,unsigned long rx_mask)417 static void gfar_configure_coalescing(struct gfar_private *priv,
418 			       unsigned long tx_mask, unsigned long rx_mask)
419 {
420 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
421 	u32 __iomem *baddr;
422 
423 	if (priv->mode == MQ_MG_MODE) {
424 		int i = 0;
425 
426 		baddr = &regs->txic0;
427 		for_each_set_bit(i, &tx_mask, priv->num_tx_queues) {
428 			gfar_write(baddr + i, 0);
429 			if (likely(priv->tx_queue[i]->txcoalescing))
430 				gfar_write(baddr + i, priv->tx_queue[i]->txic);
431 		}
432 
433 		baddr = &regs->rxic0;
434 		for_each_set_bit(i, &rx_mask, priv->num_rx_queues) {
435 			gfar_write(baddr + i, 0);
436 			if (likely(priv->rx_queue[i]->rxcoalescing))
437 				gfar_write(baddr + i, priv->rx_queue[i]->rxic);
438 		}
439 	} else {
440 		/* Backward compatible case -- even if we enable
441 		 * multiple queues, there's only single reg to program
442 		 */
443 		gfar_write(&regs->txic, 0);
444 		if (likely(priv->tx_queue[0]->txcoalescing))
445 			gfar_write(&regs->txic, priv->tx_queue[0]->txic);
446 
447 		gfar_write(&regs->rxic, 0);
448 		if (unlikely(priv->rx_queue[0]->rxcoalescing))
449 			gfar_write(&regs->rxic, priv->rx_queue[0]->rxic);
450 	}
451 }
452 
gfar_configure_coalescing_all(struct gfar_private * priv)453 void gfar_configure_coalescing_all(struct gfar_private *priv)
454 {
455 	gfar_configure_coalescing(priv, 0xFF, 0xFF);
456 }
457 
gfar_get_stats(struct net_device * dev)458 static struct net_device_stats *gfar_get_stats(struct net_device *dev)
459 {
460 	struct gfar_private *priv = netdev_priv(dev);
461 	unsigned long rx_packets = 0, rx_bytes = 0, rx_dropped = 0;
462 	unsigned long tx_packets = 0, tx_bytes = 0;
463 	int i;
464 
465 	for (i = 0; i < priv->num_rx_queues; i++) {
466 		rx_packets += priv->rx_queue[i]->stats.rx_packets;
467 		rx_bytes   += priv->rx_queue[i]->stats.rx_bytes;
468 		rx_dropped += priv->rx_queue[i]->stats.rx_dropped;
469 	}
470 
471 	dev->stats.rx_packets = rx_packets;
472 	dev->stats.rx_bytes   = rx_bytes;
473 	dev->stats.rx_dropped = rx_dropped;
474 
475 	for (i = 0; i < priv->num_tx_queues; i++) {
476 		tx_bytes += priv->tx_queue[i]->stats.tx_bytes;
477 		tx_packets += priv->tx_queue[i]->stats.tx_packets;
478 	}
479 
480 	dev->stats.tx_bytes   = tx_bytes;
481 	dev->stats.tx_packets = tx_packets;
482 
483 	return &dev->stats;
484 }
485 
gfar_set_mac_addr(struct net_device * dev,void * p)486 static int gfar_set_mac_addr(struct net_device *dev, void *p)
487 {
488 	eth_mac_addr(dev, p);
489 
490 	gfar_set_mac_for_addr(dev, 0, dev->dev_addr);
491 
492 	return 0;
493 }
494 
495 static const struct net_device_ops gfar_netdev_ops = {
496 	.ndo_open = gfar_enet_open,
497 	.ndo_start_xmit = gfar_start_xmit,
498 	.ndo_stop = gfar_close,
499 	.ndo_change_mtu = gfar_change_mtu,
500 	.ndo_set_features = gfar_set_features,
501 	.ndo_set_rx_mode = gfar_set_multi,
502 	.ndo_tx_timeout = gfar_timeout,
503 	.ndo_do_ioctl = gfar_ioctl,
504 	.ndo_get_stats = gfar_get_stats,
505 	.ndo_set_mac_address = gfar_set_mac_addr,
506 	.ndo_validate_addr = eth_validate_addr,
507 #ifdef CONFIG_NET_POLL_CONTROLLER
508 	.ndo_poll_controller = gfar_netpoll,
509 #endif
510 };
511 
gfar_ints_disable(struct gfar_private * priv)512 static void gfar_ints_disable(struct gfar_private *priv)
513 {
514 	int i;
515 	for (i = 0; i < priv->num_grps; i++) {
516 		struct gfar __iomem *regs = priv->gfargrp[i].regs;
517 		/* Clear IEVENT */
518 		gfar_write(&regs->ievent, IEVENT_INIT_CLEAR);
519 
520 		/* Initialize IMASK */
521 		gfar_write(&regs->imask, IMASK_INIT_CLEAR);
522 	}
523 }
524 
gfar_ints_enable(struct gfar_private * priv)525 static void gfar_ints_enable(struct gfar_private *priv)
526 {
527 	int i;
528 	for (i = 0; i < priv->num_grps; i++) {
529 		struct gfar __iomem *regs = priv->gfargrp[i].regs;
530 		/* Unmask the interrupts we look for */
531 		gfar_write(&regs->imask, IMASK_DEFAULT);
532 	}
533 }
534 
gfar_alloc_tx_queues(struct gfar_private * priv)535 static int gfar_alloc_tx_queues(struct gfar_private *priv)
536 {
537 	int i;
538 
539 	for (i = 0; i < priv->num_tx_queues; i++) {
540 		priv->tx_queue[i] = kzalloc(sizeof(struct gfar_priv_tx_q),
541 					    GFP_KERNEL);
542 		if (!priv->tx_queue[i])
543 			return -ENOMEM;
544 
545 		priv->tx_queue[i]->tx_skbuff = NULL;
546 		priv->tx_queue[i]->qindex = i;
547 		priv->tx_queue[i]->dev = priv->ndev;
548 		spin_lock_init(&(priv->tx_queue[i]->txlock));
549 	}
550 	return 0;
551 }
552 
gfar_alloc_rx_queues(struct gfar_private * priv)553 static int gfar_alloc_rx_queues(struct gfar_private *priv)
554 {
555 	int i;
556 
557 	for (i = 0; i < priv->num_rx_queues; i++) {
558 		priv->rx_queue[i] = kzalloc(sizeof(struct gfar_priv_rx_q),
559 					    GFP_KERNEL);
560 		if (!priv->rx_queue[i])
561 			return -ENOMEM;
562 
563 		priv->rx_queue[i]->qindex = i;
564 		priv->rx_queue[i]->ndev = priv->ndev;
565 	}
566 	return 0;
567 }
568 
gfar_free_tx_queues(struct gfar_private * priv)569 static void gfar_free_tx_queues(struct gfar_private *priv)
570 {
571 	int i;
572 
573 	for (i = 0; i < priv->num_tx_queues; i++)
574 		kfree(priv->tx_queue[i]);
575 }
576 
gfar_free_rx_queues(struct gfar_private * priv)577 static void gfar_free_rx_queues(struct gfar_private *priv)
578 {
579 	int i;
580 
581 	for (i = 0; i < priv->num_rx_queues; i++)
582 		kfree(priv->rx_queue[i]);
583 }
584 
unmap_group_regs(struct gfar_private * priv)585 static void unmap_group_regs(struct gfar_private *priv)
586 {
587 	int i;
588 
589 	for (i = 0; i < MAXGROUPS; i++)
590 		if (priv->gfargrp[i].regs)
591 			iounmap(priv->gfargrp[i].regs);
592 }
593 
free_gfar_dev(struct gfar_private * priv)594 static void free_gfar_dev(struct gfar_private *priv)
595 {
596 	int i, j;
597 
598 	for (i = 0; i < priv->num_grps; i++)
599 		for (j = 0; j < GFAR_NUM_IRQS; j++) {
600 			kfree(priv->gfargrp[i].irqinfo[j]);
601 			priv->gfargrp[i].irqinfo[j] = NULL;
602 		}
603 
604 	free_netdev(priv->ndev);
605 }
606 
disable_napi(struct gfar_private * priv)607 static void disable_napi(struct gfar_private *priv)
608 {
609 	int i;
610 
611 	for (i = 0; i < priv->num_grps; i++) {
612 		napi_disable(&priv->gfargrp[i].napi_rx);
613 		napi_disable(&priv->gfargrp[i].napi_tx);
614 	}
615 }
616 
enable_napi(struct gfar_private * priv)617 static void enable_napi(struct gfar_private *priv)
618 {
619 	int i;
620 
621 	for (i = 0; i < priv->num_grps; i++) {
622 		napi_enable(&priv->gfargrp[i].napi_rx);
623 		napi_enable(&priv->gfargrp[i].napi_tx);
624 	}
625 }
626 
gfar_parse_group(struct device_node * np,struct gfar_private * priv,const char * model)627 static int gfar_parse_group(struct device_node *np,
628 			    struct gfar_private *priv, const char *model)
629 {
630 	struct gfar_priv_grp *grp = &priv->gfargrp[priv->num_grps];
631 	int i;
632 
633 	for (i = 0; i < GFAR_NUM_IRQS; i++) {
634 		grp->irqinfo[i] = kzalloc(sizeof(struct gfar_irqinfo),
635 					  GFP_KERNEL);
636 		if (!grp->irqinfo[i])
637 			return -ENOMEM;
638 	}
639 
640 	grp->regs = of_iomap(np, 0);
641 	if (!grp->regs)
642 		return -ENOMEM;
643 
644 	gfar_irq(grp, TX)->irq = irq_of_parse_and_map(np, 0);
645 
646 	/* If we aren't the FEC we have multiple interrupts */
647 	if (model && strcasecmp(model, "FEC")) {
648 		gfar_irq(grp, RX)->irq = irq_of_parse_and_map(np, 1);
649 		gfar_irq(grp, ER)->irq = irq_of_parse_and_map(np, 2);
650 		if (!gfar_irq(grp, TX)->irq ||
651 		    !gfar_irq(grp, RX)->irq ||
652 		    !gfar_irq(grp, ER)->irq)
653 			return -EINVAL;
654 	}
655 
656 	grp->priv = priv;
657 	spin_lock_init(&grp->grplock);
658 	if (priv->mode == MQ_MG_MODE) {
659 		u32 rxq_mask, txq_mask;
660 		int ret;
661 
662 		grp->rx_bit_map = (DEFAULT_MAPPING >> priv->num_grps);
663 		grp->tx_bit_map = (DEFAULT_MAPPING >> priv->num_grps);
664 
665 		ret = of_property_read_u32(np, "fsl,rx-bit-map", &rxq_mask);
666 		if (!ret) {
667 			grp->rx_bit_map = rxq_mask ?
668 			rxq_mask : (DEFAULT_MAPPING >> priv->num_grps);
669 		}
670 
671 		ret = of_property_read_u32(np, "fsl,tx-bit-map", &txq_mask);
672 		if (!ret) {
673 			grp->tx_bit_map = txq_mask ?
674 			txq_mask : (DEFAULT_MAPPING >> priv->num_grps);
675 		}
676 
677 		if (priv->poll_mode == GFAR_SQ_POLLING) {
678 			/* One Q per interrupt group: Q0 to G0, Q1 to G1 */
679 			grp->rx_bit_map = (DEFAULT_MAPPING >> priv->num_grps);
680 			grp->tx_bit_map = (DEFAULT_MAPPING >> priv->num_grps);
681 		}
682 	} else {
683 		grp->rx_bit_map = 0xFF;
684 		grp->tx_bit_map = 0xFF;
685 	}
686 
687 	/* bit_map's MSB is q0 (from q0 to q7) but, for_each_set_bit parses
688 	 * right to left, so we need to revert the 8 bits to get the q index
689 	 */
690 	grp->rx_bit_map = bitrev8(grp->rx_bit_map);
691 	grp->tx_bit_map = bitrev8(grp->tx_bit_map);
692 
693 	/* Calculate RSTAT, TSTAT, RQUEUE and TQUEUE values,
694 	 * also assign queues to groups
695 	 */
696 	for_each_set_bit(i, &grp->rx_bit_map, priv->num_rx_queues) {
697 		if (!grp->rx_queue)
698 			grp->rx_queue = priv->rx_queue[i];
699 		grp->num_rx_queues++;
700 		grp->rstat |= (RSTAT_CLEAR_RHALT >> i);
701 		priv->rqueue |= ((RQUEUE_EN0 | RQUEUE_EX0) >> i);
702 		priv->rx_queue[i]->grp = grp;
703 	}
704 
705 	for_each_set_bit(i, &grp->tx_bit_map, priv->num_tx_queues) {
706 		if (!grp->tx_queue)
707 			grp->tx_queue = priv->tx_queue[i];
708 		grp->num_tx_queues++;
709 		grp->tstat |= (TSTAT_CLEAR_THALT >> i);
710 		priv->tqueue |= (TQUEUE_EN0 >> i);
711 		priv->tx_queue[i]->grp = grp;
712 	}
713 
714 	priv->num_grps++;
715 
716 	return 0;
717 }
718 
gfar_of_group_count(struct device_node * np)719 static int gfar_of_group_count(struct device_node *np)
720 {
721 	struct device_node *child;
722 	int num = 0;
723 
724 	for_each_available_child_of_node(np, child)
725 		if (!of_node_cmp(child->name, "queue-group"))
726 			num++;
727 
728 	return num;
729 }
730 
gfar_of_init(struct platform_device * ofdev,struct net_device ** pdev)731 static int gfar_of_init(struct platform_device *ofdev, struct net_device **pdev)
732 {
733 	const char *model;
734 	const char *ctype;
735 	const void *mac_addr;
736 	int err = 0, i;
737 	struct net_device *dev = NULL;
738 	struct gfar_private *priv = NULL;
739 	struct device_node *np = ofdev->dev.of_node;
740 	struct device_node *child = NULL;
741 	u32 stash_len = 0;
742 	u32 stash_idx = 0;
743 	unsigned int num_tx_qs, num_rx_qs;
744 	unsigned short mode, poll_mode;
745 
746 	if (!np)
747 		return -ENODEV;
748 
749 	if (of_device_is_compatible(np, "fsl,etsec2")) {
750 		mode = MQ_MG_MODE;
751 		poll_mode = GFAR_SQ_POLLING;
752 	} else {
753 		mode = SQ_SG_MODE;
754 		poll_mode = GFAR_SQ_POLLING;
755 	}
756 
757 	if (mode == SQ_SG_MODE) {
758 		num_tx_qs = 1;
759 		num_rx_qs = 1;
760 	} else { /* MQ_MG_MODE */
761 		/* get the actual number of supported groups */
762 		unsigned int num_grps = gfar_of_group_count(np);
763 
764 		if (num_grps == 0 || num_grps > MAXGROUPS) {
765 			dev_err(&ofdev->dev, "Invalid # of int groups(%d)\n",
766 				num_grps);
767 			pr_err("Cannot do alloc_etherdev, aborting\n");
768 			return -EINVAL;
769 		}
770 
771 		if (poll_mode == GFAR_SQ_POLLING) {
772 			num_tx_qs = num_grps; /* one txq per int group */
773 			num_rx_qs = num_grps; /* one rxq per int group */
774 		} else { /* GFAR_MQ_POLLING */
775 			u32 tx_queues, rx_queues;
776 			int ret;
777 
778 			/* parse the num of HW tx and rx queues */
779 			ret = of_property_read_u32(np, "fsl,num_tx_queues",
780 						   &tx_queues);
781 			num_tx_qs = ret ? 1 : tx_queues;
782 
783 			ret = of_property_read_u32(np, "fsl,num_rx_queues",
784 						   &rx_queues);
785 			num_rx_qs = ret ? 1 : rx_queues;
786 		}
787 	}
788 
789 	if (num_tx_qs > MAX_TX_QS) {
790 		pr_err("num_tx_qs(=%d) greater than MAX_TX_QS(=%d)\n",
791 		       num_tx_qs, MAX_TX_QS);
792 		pr_err("Cannot do alloc_etherdev, aborting\n");
793 		return -EINVAL;
794 	}
795 
796 	if (num_rx_qs > MAX_RX_QS) {
797 		pr_err("num_rx_qs(=%d) greater than MAX_RX_QS(=%d)\n",
798 		       num_rx_qs, MAX_RX_QS);
799 		pr_err("Cannot do alloc_etherdev, aborting\n");
800 		return -EINVAL;
801 	}
802 
803 	*pdev = alloc_etherdev_mq(sizeof(*priv), num_tx_qs);
804 	dev = *pdev;
805 	if (NULL == dev)
806 		return -ENOMEM;
807 
808 	priv = netdev_priv(dev);
809 	priv->ndev = dev;
810 
811 	priv->mode = mode;
812 	priv->poll_mode = poll_mode;
813 
814 	priv->num_tx_queues = num_tx_qs;
815 	netif_set_real_num_rx_queues(dev, num_rx_qs);
816 	priv->num_rx_queues = num_rx_qs;
817 
818 	err = gfar_alloc_tx_queues(priv);
819 	if (err)
820 		goto tx_alloc_failed;
821 
822 	err = gfar_alloc_rx_queues(priv);
823 	if (err)
824 		goto rx_alloc_failed;
825 
826 	err = of_property_read_string(np, "model", &model);
827 	if (err) {
828 		pr_err("Device model property missing, aborting\n");
829 		goto rx_alloc_failed;
830 	}
831 
832 	/* Init Rx queue filer rule set linked list */
833 	INIT_LIST_HEAD(&priv->rx_list.list);
834 	priv->rx_list.count = 0;
835 	mutex_init(&priv->rx_queue_access);
836 
837 	for (i = 0; i < MAXGROUPS; i++)
838 		priv->gfargrp[i].regs = NULL;
839 
840 	/* Parse and initialize group specific information */
841 	if (priv->mode == MQ_MG_MODE) {
842 		for_each_available_child_of_node(np, child) {
843 			if (of_node_cmp(child->name, "queue-group"))
844 				continue;
845 
846 			err = gfar_parse_group(child, priv, model);
847 			if (err) {
848 				of_node_put(child);
849 				goto err_grp_init;
850 			}
851 		}
852 	} else { /* SQ_SG_MODE */
853 		err = gfar_parse_group(np, priv, model);
854 		if (err)
855 			goto err_grp_init;
856 	}
857 
858 	if (of_property_read_bool(np, "bd-stash")) {
859 		priv->device_flags |= FSL_GIANFAR_DEV_HAS_BD_STASHING;
860 		priv->bd_stash_en = 1;
861 	}
862 
863 	err = of_property_read_u32(np, "rx-stash-len", &stash_len);
864 
865 	if (err == 0)
866 		priv->rx_stash_size = stash_len;
867 
868 	err = of_property_read_u32(np, "rx-stash-idx", &stash_idx);
869 
870 	if (err == 0)
871 		priv->rx_stash_index = stash_idx;
872 
873 	if (stash_len || stash_idx)
874 		priv->device_flags |= FSL_GIANFAR_DEV_HAS_BUF_STASHING;
875 
876 	mac_addr = of_get_mac_address(np);
877 
878 	if (mac_addr)
879 		memcpy(dev->dev_addr, mac_addr, ETH_ALEN);
880 
881 	if (model && !strcasecmp(model, "TSEC"))
882 		priv->device_flags |= FSL_GIANFAR_DEV_HAS_GIGABIT |
883 				     FSL_GIANFAR_DEV_HAS_COALESCE |
884 				     FSL_GIANFAR_DEV_HAS_RMON |
885 				     FSL_GIANFAR_DEV_HAS_MULTI_INTR;
886 
887 	if (model && !strcasecmp(model, "eTSEC"))
888 		priv->device_flags |= FSL_GIANFAR_DEV_HAS_GIGABIT |
889 				     FSL_GIANFAR_DEV_HAS_COALESCE |
890 				     FSL_GIANFAR_DEV_HAS_RMON |
891 				     FSL_GIANFAR_DEV_HAS_MULTI_INTR |
892 				     FSL_GIANFAR_DEV_HAS_CSUM |
893 				     FSL_GIANFAR_DEV_HAS_VLAN |
894 				     FSL_GIANFAR_DEV_HAS_MAGIC_PACKET |
895 				     FSL_GIANFAR_DEV_HAS_EXTENDED_HASH |
896 				     FSL_GIANFAR_DEV_HAS_TIMER |
897 				     FSL_GIANFAR_DEV_HAS_RX_FILER;
898 
899 	err = of_property_read_string(np, "phy-connection-type", &ctype);
900 
901 	/* We only care about rgmii-id.  The rest are autodetected */
902 	if (err == 0 && !strcmp(ctype, "rgmii-id"))
903 		priv->interface = PHY_INTERFACE_MODE_RGMII_ID;
904 	else
905 		priv->interface = PHY_INTERFACE_MODE_MII;
906 
907 	if (of_find_property(np, "fsl,magic-packet", NULL))
908 		priv->device_flags |= FSL_GIANFAR_DEV_HAS_MAGIC_PACKET;
909 
910 	if (of_get_property(np, "fsl,wake-on-filer", NULL))
911 		priv->device_flags |= FSL_GIANFAR_DEV_HAS_WAKE_ON_FILER;
912 
913 	priv->phy_node = of_parse_phandle(np, "phy-handle", 0);
914 
915 	/* In the case of a fixed PHY, the DT node associated
916 	 * to the PHY is the Ethernet MAC DT node.
917 	 */
918 	if (!priv->phy_node && of_phy_is_fixed_link(np)) {
919 		err = of_phy_register_fixed_link(np);
920 		if (err)
921 			goto err_grp_init;
922 
923 		priv->phy_node = of_node_get(np);
924 	}
925 
926 	/* Find the TBI PHY.  If it's not there, we don't support SGMII */
927 	priv->tbi_node = of_parse_phandle(np, "tbi-handle", 0);
928 
929 	return 0;
930 
931 err_grp_init:
932 	unmap_group_regs(priv);
933 rx_alloc_failed:
934 	gfar_free_rx_queues(priv);
935 tx_alloc_failed:
936 	gfar_free_tx_queues(priv);
937 	free_gfar_dev(priv);
938 	return err;
939 }
940 
gfar_hwtstamp_set(struct net_device * netdev,struct ifreq * ifr)941 static int gfar_hwtstamp_set(struct net_device *netdev, struct ifreq *ifr)
942 {
943 	struct hwtstamp_config config;
944 	struct gfar_private *priv = netdev_priv(netdev);
945 
946 	if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
947 		return -EFAULT;
948 
949 	/* reserved for future extensions */
950 	if (config.flags)
951 		return -EINVAL;
952 
953 	switch (config.tx_type) {
954 	case HWTSTAMP_TX_OFF:
955 		priv->hwts_tx_en = 0;
956 		break;
957 	case HWTSTAMP_TX_ON:
958 		if (!(priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER))
959 			return -ERANGE;
960 		priv->hwts_tx_en = 1;
961 		break;
962 	default:
963 		return -ERANGE;
964 	}
965 
966 	switch (config.rx_filter) {
967 	case HWTSTAMP_FILTER_NONE:
968 		if (priv->hwts_rx_en) {
969 			priv->hwts_rx_en = 0;
970 			reset_gfar(netdev);
971 		}
972 		break;
973 	default:
974 		if (!(priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER))
975 			return -ERANGE;
976 		if (!priv->hwts_rx_en) {
977 			priv->hwts_rx_en = 1;
978 			reset_gfar(netdev);
979 		}
980 		config.rx_filter = HWTSTAMP_FILTER_ALL;
981 		break;
982 	}
983 
984 	return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
985 		-EFAULT : 0;
986 }
987 
gfar_hwtstamp_get(struct net_device * netdev,struct ifreq * ifr)988 static int gfar_hwtstamp_get(struct net_device *netdev, struct ifreq *ifr)
989 {
990 	struct hwtstamp_config config;
991 	struct gfar_private *priv = netdev_priv(netdev);
992 
993 	config.flags = 0;
994 	config.tx_type = priv->hwts_tx_en ? HWTSTAMP_TX_ON : HWTSTAMP_TX_OFF;
995 	config.rx_filter = (priv->hwts_rx_en ?
996 			    HWTSTAMP_FILTER_ALL : HWTSTAMP_FILTER_NONE);
997 
998 	return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
999 		-EFAULT : 0;
1000 }
1001 
gfar_ioctl(struct net_device * dev,struct ifreq * rq,int cmd)1002 static int gfar_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
1003 {
1004 	struct phy_device *phydev = dev->phydev;
1005 
1006 	if (!netif_running(dev))
1007 		return -EINVAL;
1008 
1009 	if (cmd == SIOCSHWTSTAMP)
1010 		return gfar_hwtstamp_set(dev, rq);
1011 	if (cmd == SIOCGHWTSTAMP)
1012 		return gfar_hwtstamp_get(dev, rq);
1013 
1014 	if (!phydev)
1015 		return -ENODEV;
1016 
1017 	return phy_mii_ioctl(phydev, rq, cmd);
1018 }
1019 
cluster_entry_per_class(struct gfar_private * priv,u32 rqfar,u32 class)1020 static u32 cluster_entry_per_class(struct gfar_private *priv, u32 rqfar,
1021 				   u32 class)
1022 {
1023 	u32 rqfpr = FPR_FILER_MASK;
1024 	u32 rqfcr = 0x0;
1025 
1026 	rqfar--;
1027 	rqfcr = RQFCR_CLE | RQFCR_PID_MASK | RQFCR_CMP_EXACT;
1028 	priv->ftp_rqfpr[rqfar] = rqfpr;
1029 	priv->ftp_rqfcr[rqfar] = rqfcr;
1030 	gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
1031 
1032 	rqfar--;
1033 	rqfcr = RQFCR_CMP_NOMATCH;
1034 	priv->ftp_rqfpr[rqfar] = rqfpr;
1035 	priv->ftp_rqfcr[rqfar] = rqfcr;
1036 	gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
1037 
1038 	rqfar--;
1039 	rqfcr = RQFCR_CMP_EXACT | RQFCR_PID_PARSE | RQFCR_CLE | RQFCR_AND;
1040 	rqfpr = class;
1041 	priv->ftp_rqfcr[rqfar] = rqfcr;
1042 	priv->ftp_rqfpr[rqfar] = rqfpr;
1043 	gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
1044 
1045 	rqfar--;
1046 	rqfcr = RQFCR_CMP_EXACT | RQFCR_PID_MASK | RQFCR_AND;
1047 	rqfpr = class;
1048 	priv->ftp_rqfcr[rqfar] = rqfcr;
1049 	priv->ftp_rqfpr[rqfar] = rqfpr;
1050 	gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
1051 
1052 	return rqfar;
1053 }
1054 
gfar_init_filer_table(struct gfar_private * priv)1055 static void gfar_init_filer_table(struct gfar_private *priv)
1056 {
1057 	int i = 0x0;
1058 	u32 rqfar = MAX_FILER_IDX;
1059 	u32 rqfcr = 0x0;
1060 	u32 rqfpr = FPR_FILER_MASK;
1061 
1062 	/* Default rule */
1063 	rqfcr = RQFCR_CMP_MATCH;
1064 	priv->ftp_rqfcr[rqfar] = rqfcr;
1065 	priv->ftp_rqfpr[rqfar] = rqfpr;
1066 	gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
1067 
1068 	rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV6);
1069 	rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV6 | RQFPR_UDP);
1070 	rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV6 | RQFPR_TCP);
1071 	rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV4);
1072 	rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV4 | RQFPR_UDP);
1073 	rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV4 | RQFPR_TCP);
1074 
1075 	/* cur_filer_idx indicated the first non-masked rule */
1076 	priv->cur_filer_idx = rqfar;
1077 
1078 	/* Rest are masked rules */
1079 	rqfcr = RQFCR_CMP_NOMATCH;
1080 	for (i = 0; i < rqfar; i++) {
1081 		priv->ftp_rqfcr[i] = rqfcr;
1082 		priv->ftp_rqfpr[i] = rqfpr;
1083 		gfar_write_filer(priv, i, rqfcr, rqfpr);
1084 	}
1085 }
1086 
1087 #ifdef CONFIG_PPC
__gfar_detect_errata_83xx(struct gfar_private * priv)1088 static void __gfar_detect_errata_83xx(struct gfar_private *priv)
1089 {
1090 	unsigned int pvr = mfspr(SPRN_PVR);
1091 	unsigned int svr = mfspr(SPRN_SVR);
1092 	unsigned int mod = (svr >> 16) & 0xfff6; /* w/o E suffix */
1093 	unsigned int rev = svr & 0xffff;
1094 
1095 	/* MPC8313 Rev 2.0 and higher; All MPC837x */
1096 	if ((pvr == 0x80850010 && mod == 0x80b0 && rev >= 0x0020) ||
1097 	    (pvr == 0x80861010 && (mod & 0xfff9) == 0x80c0))
1098 		priv->errata |= GFAR_ERRATA_74;
1099 
1100 	/* MPC8313 and MPC837x all rev */
1101 	if ((pvr == 0x80850010 && mod == 0x80b0) ||
1102 	    (pvr == 0x80861010 && (mod & 0xfff9) == 0x80c0))
1103 		priv->errata |= GFAR_ERRATA_76;
1104 
1105 	/* MPC8313 Rev < 2.0 */
1106 	if (pvr == 0x80850010 && mod == 0x80b0 && rev < 0x0020)
1107 		priv->errata |= GFAR_ERRATA_12;
1108 }
1109 
__gfar_detect_errata_85xx(struct gfar_private * priv)1110 static void __gfar_detect_errata_85xx(struct gfar_private *priv)
1111 {
1112 	unsigned int svr = mfspr(SPRN_SVR);
1113 
1114 	if ((SVR_SOC_VER(svr) == SVR_8548) && (SVR_REV(svr) == 0x20))
1115 		priv->errata |= GFAR_ERRATA_12;
1116 	/* P2020/P1010 Rev 1; MPC8548 Rev 2 */
1117 	if (((SVR_SOC_VER(svr) == SVR_P2020) && (SVR_REV(svr) < 0x20)) ||
1118 	    ((SVR_SOC_VER(svr) == SVR_P2010) && (SVR_REV(svr) < 0x20)) ||
1119 	    ((SVR_SOC_VER(svr) == SVR_8548) && (SVR_REV(svr) < 0x31)))
1120 		priv->errata |= GFAR_ERRATA_76; /* aka eTSEC 20 */
1121 }
1122 #endif
1123 
gfar_detect_errata(struct gfar_private * priv)1124 static void gfar_detect_errata(struct gfar_private *priv)
1125 {
1126 	struct device *dev = &priv->ofdev->dev;
1127 
1128 	/* no plans to fix */
1129 	priv->errata |= GFAR_ERRATA_A002;
1130 
1131 #ifdef CONFIG_PPC
1132 	if (pvr_version_is(PVR_VER_E500V1) || pvr_version_is(PVR_VER_E500V2))
1133 		__gfar_detect_errata_85xx(priv);
1134 	else /* non-mpc85xx parts, i.e. e300 core based */
1135 		__gfar_detect_errata_83xx(priv);
1136 #endif
1137 
1138 	if (priv->errata)
1139 		dev_info(dev, "enabled errata workarounds, flags: 0x%x\n",
1140 			 priv->errata);
1141 }
1142 
gfar_mac_reset(struct gfar_private * priv)1143 void gfar_mac_reset(struct gfar_private *priv)
1144 {
1145 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
1146 	u32 tempval;
1147 
1148 	/* Reset MAC layer */
1149 	gfar_write(&regs->maccfg1, MACCFG1_SOFT_RESET);
1150 
1151 	/* We need to delay at least 3 TX clocks */
1152 	udelay(3);
1153 
1154 	/* the soft reset bit is not self-resetting, so we need to
1155 	 * clear it before resuming normal operation
1156 	 */
1157 	gfar_write(&regs->maccfg1, 0);
1158 
1159 	udelay(3);
1160 
1161 	gfar_rx_offload_en(priv);
1162 
1163 	/* Initialize the max receive frame/buffer lengths */
1164 	gfar_write(&regs->maxfrm, GFAR_JUMBO_FRAME_SIZE);
1165 	gfar_write(&regs->mrblr, GFAR_RXB_SIZE);
1166 
1167 	/* Initialize the Minimum Frame Length Register */
1168 	gfar_write(&regs->minflr, MINFLR_INIT_SETTINGS);
1169 
1170 	/* Initialize MACCFG2. */
1171 	tempval = MACCFG2_INIT_SETTINGS;
1172 
1173 	/* eTSEC74 erratum: Rx frames of length MAXFRM or MAXFRM-1
1174 	 * are marked as truncated.  Avoid this by MACCFG2[Huge Frame]=1,
1175 	 * and by checking RxBD[LG] and discarding larger than MAXFRM.
1176 	 */
1177 	if (gfar_has_errata(priv, GFAR_ERRATA_74))
1178 		tempval |= MACCFG2_HUGEFRAME | MACCFG2_LENGTHCHECK;
1179 
1180 	gfar_write(&regs->maccfg2, tempval);
1181 
1182 	/* Clear mac addr hash registers */
1183 	gfar_write(&regs->igaddr0, 0);
1184 	gfar_write(&regs->igaddr1, 0);
1185 	gfar_write(&regs->igaddr2, 0);
1186 	gfar_write(&regs->igaddr3, 0);
1187 	gfar_write(&regs->igaddr4, 0);
1188 	gfar_write(&regs->igaddr5, 0);
1189 	gfar_write(&regs->igaddr6, 0);
1190 	gfar_write(&regs->igaddr7, 0);
1191 
1192 	gfar_write(&regs->gaddr0, 0);
1193 	gfar_write(&regs->gaddr1, 0);
1194 	gfar_write(&regs->gaddr2, 0);
1195 	gfar_write(&regs->gaddr3, 0);
1196 	gfar_write(&regs->gaddr4, 0);
1197 	gfar_write(&regs->gaddr5, 0);
1198 	gfar_write(&regs->gaddr6, 0);
1199 	gfar_write(&regs->gaddr7, 0);
1200 
1201 	if (priv->extended_hash)
1202 		gfar_clear_exact_match(priv->ndev);
1203 
1204 	gfar_mac_rx_config(priv);
1205 
1206 	gfar_mac_tx_config(priv);
1207 
1208 	gfar_set_mac_address(priv->ndev);
1209 
1210 	gfar_set_multi(priv->ndev);
1211 
1212 	/* clear ievent and imask before configuring coalescing */
1213 	gfar_ints_disable(priv);
1214 
1215 	/* Configure the coalescing support */
1216 	gfar_configure_coalescing_all(priv);
1217 }
1218 
gfar_hw_init(struct gfar_private * priv)1219 static void gfar_hw_init(struct gfar_private *priv)
1220 {
1221 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
1222 	u32 attrs;
1223 
1224 	/* Stop the DMA engine now, in case it was running before
1225 	 * (The firmware could have used it, and left it running).
1226 	 */
1227 	gfar_halt(priv);
1228 
1229 	gfar_mac_reset(priv);
1230 
1231 	/* Zero out the rmon mib registers if it has them */
1232 	if (priv->device_flags & FSL_GIANFAR_DEV_HAS_RMON) {
1233 		memset_io(&(regs->rmon), 0, sizeof(struct rmon_mib));
1234 
1235 		/* Mask off the CAM interrupts */
1236 		gfar_write(&regs->rmon.cam1, 0xffffffff);
1237 		gfar_write(&regs->rmon.cam2, 0xffffffff);
1238 	}
1239 
1240 	/* Initialize ECNTRL */
1241 	gfar_write(&regs->ecntrl, ECNTRL_INIT_SETTINGS);
1242 
1243 	/* Set the extraction length and index */
1244 	attrs = ATTRELI_EL(priv->rx_stash_size) |
1245 		ATTRELI_EI(priv->rx_stash_index);
1246 
1247 	gfar_write(&regs->attreli, attrs);
1248 
1249 	/* Start with defaults, and add stashing
1250 	 * depending on driver parameters
1251 	 */
1252 	attrs = ATTR_INIT_SETTINGS;
1253 
1254 	if (priv->bd_stash_en)
1255 		attrs |= ATTR_BDSTASH;
1256 
1257 	if (priv->rx_stash_size != 0)
1258 		attrs |= ATTR_BUFSTASH;
1259 
1260 	gfar_write(&regs->attr, attrs);
1261 
1262 	/* FIFO configs */
1263 	gfar_write(&regs->fifo_tx_thr, DEFAULT_FIFO_TX_THR);
1264 	gfar_write(&regs->fifo_tx_starve, DEFAULT_FIFO_TX_STARVE);
1265 	gfar_write(&regs->fifo_tx_starve_shutoff, DEFAULT_FIFO_TX_STARVE_OFF);
1266 
1267 	/* Program the interrupt steering regs, only for MG devices */
1268 	if (priv->num_grps > 1)
1269 		gfar_write_isrg(priv);
1270 }
1271 
gfar_init_addr_hash_table(struct gfar_private * priv)1272 static void gfar_init_addr_hash_table(struct gfar_private *priv)
1273 {
1274 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
1275 
1276 	if (priv->device_flags & FSL_GIANFAR_DEV_HAS_EXTENDED_HASH) {
1277 		priv->extended_hash = 1;
1278 		priv->hash_width = 9;
1279 
1280 		priv->hash_regs[0] = &regs->igaddr0;
1281 		priv->hash_regs[1] = &regs->igaddr1;
1282 		priv->hash_regs[2] = &regs->igaddr2;
1283 		priv->hash_regs[3] = &regs->igaddr3;
1284 		priv->hash_regs[4] = &regs->igaddr4;
1285 		priv->hash_regs[5] = &regs->igaddr5;
1286 		priv->hash_regs[6] = &regs->igaddr6;
1287 		priv->hash_regs[7] = &regs->igaddr7;
1288 		priv->hash_regs[8] = &regs->gaddr0;
1289 		priv->hash_regs[9] = &regs->gaddr1;
1290 		priv->hash_regs[10] = &regs->gaddr2;
1291 		priv->hash_regs[11] = &regs->gaddr3;
1292 		priv->hash_regs[12] = &regs->gaddr4;
1293 		priv->hash_regs[13] = &regs->gaddr5;
1294 		priv->hash_regs[14] = &regs->gaddr6;
1295 		priv->hash_regs[15] = &regs->gaddr7;
1296 
1297 	} else {
1298 		priv->extended_hash = 0;
1299 		priv->hash_width = 8;
1300 
1301 		priv->hash_regs[0] = &regs->gaddr0;
1302 		priv->hash_regs[1] = &regs->gaddr1;
1303 		priv->hash_regs[2] = &regs->gaddr2;
1304 		priv->hash_regs[3] = &regs->gaddr3;
1305 		priv->hash_regs[4] = &regs->gaddr4;
1306 		priv->hash_regs[5] = &regs->gaddr5;
1307 		priv->hash_regs[6] = &regs->gaddr6;
1308 		priv->hash_regs[7] = &regs->gaddr7;
1309 	}
1310 }
1311 
1312 /* Set up the ethernet device structure, private data,
1313  * and anything else we need before we start
1314  */
gfar_probe(struct platform_device * ofdev)1315 static int gfar_probe(struct platform_device *ofdev)
1316 {
1317 	struct device_node *np = ofdev->dev.of_node;
1318 	struct net_device *dev = NULL;
1319 	struct gfar_private *priv = NULL;
1320 	int err = 0, i;
1321 
1322 	err = gfar_of_init(ofdev, &dev);
1323 
1324 	if (err)
1325 		return err;
1326 
1327 	priv = netdev_priv(dev);
1328 	priv->ndev = dev;
1329 	priv->ofdev = ofdev;
1330 	priv->dev = &ofdev->dev;
1331 	SET_NETDEV_DEV(dev, &ofdev->dev);
1332 
1333 	INIT_WORK(&priv->reset_task, gfar_reset_task);
1334 
1335 	platform_set_drvdata(ofdev, priv);
1336 
1337 	gfar_detect_errata(priv);
1338 
1339 	/* Set the dev->base_addr to the gfar reg region */
1340 	dev->base_addr = (unsigned long) priv->gfargrp[0].regs;
1341 
1342 	/* Fill in the dev structure */
1343 	dev->watchdog_timeo = TX_TIMEOUT;
1344 	/* MTU range: 50 - 9586 */
1345 	dev->mtu = 1500;
1346 	dev->min_mtu = 50;
1347 	dev->max_mtu = GFAR_JUMBO_FRAME_SIZE - ETH_HLEN;
1348 	dev->netdev_ops = &gfar_netdev_ops;
1349 	dev->ethtool_ops = &gfar_ethtool_ops;
1350 
1351 	/* Register for napi ...We are registering NAPI for each grp */
1352 	for (i = 0; i < priv->num_grps; i++) {
1353 		if (priv->poll_mode == GFAR_SQ_POLLING) {
1354 			netif_napi_add(dev, &priv->gfargrp[i].napi_rx,
1355 				       gfar_poll_rx_sq, GFAR_DEV_WEIGHT);
1356 			netif_tx_napi_add(dev, &priv->gfargrp[i].napi_tx,
1357 				       gfar_poll_tx_sq, 2);
1358 		} else {
1359 			netif_napi_add(dev, &priv->gfargrp[i].napi_rx,
1360 				       gfar_poll_rx, GFAR_DEV_WEIGHT);
1361 			netif_tx_napi_add(dev, &priv->gfargrp[i].napi_tx,
1362 				       gfar_poll_tx, 2);
1363 		}
1364 	}
1365 
1366 	if (priv->device_flags & FSL_GIANFAR_DEV_HAS_CSUM) {
1367 		dev->hw_features = NETIF_F_IP_CSUM | NETIF_F_SG |
1368 				   NETIF_F_RXCSUM;
1369 		dev->features |= NETIF_F_IP_CSUM | NETIF_F_SG |
1370 				 NETIF_F_RXCSUM | NETIF_F_HIGHDMA;
1371 	}
1372 
1373 	if (priv->device_flags & FSL_GIANFAR_DEV_HAS_VLAN) {
1374 		dev->hw_features |= NETIF_F_HW_VLAN_CTAG_TX |
1375 				    NETIF_F_HW_VLAN_CTAG_RX;
1376 		dev->features |= NETIF_F_HW_VLAN_CTAG_RX;
1377 	}
1378 
1379 	dev->priv_flags |= IFF_LIVE_ADDR_CHANGE;
1380 
1381 	gfar_init_addr_hash_table(priv);
1382 
1383 	/* Insert receive time stamps into padding alignment bytes, and
1384 	 * plus 2 bytes padding to ensure the cpu alignment.
1385 	 */
1386 	if (priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER)
1387 		priv->padding = 8 + DEFAULT_PADDING;
1388 
1389 	if (dev->features & NETIF_F_IP_CSUM ||
1390 	    priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER)
1391 		dev->needed_headroom = GMAC_FCB_LEN;
1392 
1393 	/* Initializing some of the rx/tx queue level parameters */
1394 	for (i = 0; i < priv->num_tx_queues; i++) {
1395 		priv->tx_queue[i]->tx_ring_size = DEFAULT_TX_RING_SIZE;
1396 		priv->tx_queue[i]->num_txbdfree = DEFAULT_TX_RING_SIZE;
1397 		priv->tx_queue[i]->txcoalescing = DEFAULT_TX_COALESCE;
1398 		priv->tx_queue[i]->txic = DEFAULT_TXIC;
1399 	}
1400 
1401 	for (i = 0; i < priv->num_rx_queues; i++) {
1402 		priv->rx_queue[i]->rx_ring_size = DEFAULT_RX_RING_SIZE;
1403 		priv->rx_queue[i]->rxcoalescing = DEFAULT_RX_COALESCE;
1404 		priv->rx_queue[i]->rxic = DEFAULT_RXIC;
1405 	}
1406 
1407 	/* Always enable rx filer if available */
1408 	priv->rx_filer_enable =
1409 	    (priv->device_flags & FSL_GIANFAR_DEV_HAS_RX_FILER) ? 1 : 0;
1410 	/* Enable most messages by default */
1411 	priv->msg_enable = (NETIF_MSG_IFUP << 1 ) - 1;
1412 	/* use pritority h/w tx queue scheduling for single queue devices */
1413 	if (priv->num_tx_queues == 1)
1414 		priv->prio_sched_en = 1;
1415 
1416 	set_bit(GFAR_DOWN, &priv->state);
1417 
1418 	gfar_hw_init(priv);
1419 
1420 	/* Carrier starts down, phylib will bring it up */
1421 	netif_carrier_off(dev);
1422 
1423 	err = register_netdev(dev);
1424 
1425 	if (err) {
1426 		pr_err("%s: Cannot register net device, aborting\n", dev->name);
1427 		goto register_fail;
1428 	}
1429 
1430 	if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MAGIC_PACKET)
1431 		priv->wol_supported |= GFAR_WOL_MAGIC;
1432 
1433 	if ((priv->device_flags & FSL_GIANFAR_DEV_HAS_WAKE_ON_FILER) &&
1434 	    priv->rx_filer_enable)
1435 		priv->wol_supported |= GFAR_WOL_FILER_UCAST;
1436 
1437 	device_set_wakeup_capable(&ofdev->dev, priv->wol_supported);
1438 
1439 	/* fill out IRQ number and name fields */
1440 	for (i = 0; i < priv->num_grps; i++) {
1441 		struct gfar_priv_grp *grp = &priv->gfargrp[i];
1442 		if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
1443 			sprintf(gfar_irq(grp, TX)->name, "%s%s%c%s",
1444 				dev->name, "_g", '0' + i, "_tx");
1445 			sprintf(gfar_irq(grp, RX)->name, "%s%s%c%s",
1446 				dev->name, "_g", '0' + i, "_rx");
1447 			sprintf(gfar_irq(grp, ER)->name, "%s%s%c%s",
1448 				dev->name, "_g", '0' + i, "_er");
1449 		} else
1450 			strcpy(gfar_irq(grp, TX)->name, dev->name);
1451 	}
1452 
1453 	/* Initialize the filer table */
1454 	gfar_init_filer_table(priv);
1455 
1456 	/* Print out the device info */
1457 	netdev_info(dev, "mac: %pM\n", dev->dev_addr);
1458 
1459 	/* Even more device info helps when determining which kernel
1460 	 * provided which set of benchmarks.
1461 	 */
1462 	netdev_info(dev, "Running with NAPI enabled\n");
1463 	for (i = 0; i < priv->num_rx_queues; i++)
1464 		netdev_info(dev, "RX BD ring size for Q[%d]: %d\n",
1465 			    i, priv->rx_queue[i]->rx_ring_size);
1466 	for (i = 0; i < priv->num_tx_queues; i++)
1467 		netdev_info(dev, "TX BD ring size for Q[%d]: %d\n",
1468 			    i, priv->tx_queue[i]->tx_ring_size);
1469 
1470 	return 0;
1471 
1472 register_fail:
1473 	if (of_phy_is_fixed_link(np))
1474 		of_phy_deregister_fixed_link(np);
1475 	unmap_group_regs(priv);
1476 	gfar_free_rx_queues(priv);
1477 	gfar_free_tx_queues(priv);
1478 	of_node_put(priv->phy_node);
1479 	of_node_put(priv->tbi_node);
1480 	free_gfar_dev(priv);
1481 	return err;
1482 }
1483 
gfar_remove(struct platform_device * ofdev)1484 static int gfar_remove(struct platform_device *ofdev)
1485 {
1486 	struct gfar_private *priv = platform_get_drvdata(ofdev);
1487 	struct device_node *np = ofdev->dev.of_node;
1488 
1489 	of_node_put(priv->phy_node);
1490 	of_node_put(priv->tbi_node);
1491 
1492 	unregister_netdev(priv->ndev);
1493 
1494 	if (of_phy_is_fixed_link(np))
1495 		of_phy_deregister_fixed_link(np);
1496 
1497 	unmap_group_regs(priv);
1498 	gfar_free_rx_queues(priv);
1499 	gfar_free_tx_queues(priv);
1500 	free_gfar_dev(priv);
1501 
1502 	return 0;
1503 }
1504 
1505 #ifdef CONFIG_PM
1506 
__gfar_filer_disable(struct gfar_private * priv)1507 static void __gfar_filer_disable(struct gfar_private *priv)
1508 {
1509 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
1510 	u32 temp;
1511 
1512 	temp = gfar_read(&regs->rctrl);
1513 	temp &= ~(RCTRL_FILREN | RCTRL_PRSDEP_INIT);
1514 	gfar_write(&regs->rctrl, temp);
1515 }
1516 
__gfar_filer_enable(struct gfar_private * priv)1517 static void __gfar_filer_enable(struct gfar_private *priv)
1518 {
1519 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
1520 	u32 temp;
1521 
1522 	temp = gfar_read(&regs->rctrl);
1523 	temp |= RCTRL_FILREN | RCTRL_PRSDEP_INIT;
1524 	gfar_write(&regs->rctrl, temp);
1525 }
1526 
1527 /* Filer rules implementing wol capabilities */
gfar_filer_config_wol(struct gfar_private * priv)1528 static void gfar_filer_config_wol(struct gfar_private *priv)
1529 {
1530 	unsigned int i;
1531 	u32 rqfcr;
1532 
1533 	__gfar_filer_disable(priv);
1534 
1535 	/* clear the filer table, reject any packet by default */
1536 	rqfcr = RQFCR_RJE | RQFCR_CMP_MATCH;
1537 	for (i = 0; i <= MAX_FILER_IDX; i++)
1538 		gfar_write_filer(priv, i, rqfcr, 0);
1539 
1540 	i = 0;
1541 	if (priv->wol_opts & GFAR_WOL_FILER_UCAST) {
1542 		/* unicast packet, accept it */
1543 		struct net_device *ndev = priv->ndev;
1544 		/* get the default rx queue index */
1545 		u8 qindex = (u8)priv->gfargrp[0].rx_queue->qindex;
1546 		u32 dest_mac_addr = (ndev->dev_addr[0] << 16) |
1547 				    (ndev->dev_addr[1] << 8) |
1548 				     ndev->dev_addr[2];
1549 
1550 		rqfcr = (qindex << 10) | RQFCR_AND |
1551 			RQFCR_CMP_EXACT | RQFCR_PID_DAH;
1552 
1553 		gfar_write_filer(priv, i++, rqfcr, dest_mac_addr);
1554 
1555 		dest_mac_addr = (ndev->dev_addr[3] << 16) |
1556 				(ndev->dev_addr[4] << 8) |
1557 				 ndev->dev_addr[5];
1558 		rqfcr = (qindex << 10) | RQFCR_GPI |
1559 			RQFCR_CMP_EXACT | RQFCR_PID_DAL;
1560 		gfar_write_filer(priv, i++, rqfcr, dest_mac_addr);
1561 	}
1562 
1563 	__gfar_filer_enable(priv);
1564 }
1565 
gfar_filer_restore_table(struct gfar_private * priv)1566 static void gfar_filer_restore_table(struct gfar_private *priv)
1567 {
1568 	u32 rqfcr, rqfpr;
1569 	unsigned int i;
1570 
1571 	__gfar_filer_disable(priv);
1572 
1573 	for (i = 0; i <= MAX_FILER_IDX; i++) {
1574 		rqfcr = priv->ftp_rqfcr[i];
1575 		rqfpr = priv->ftp_rqfpr[i];
1576 		gfar_write_filer(priv, i, rqfcr, rqfpr);
1577 	}
1578 
1579 	__gfar_filer_enable(priv);
1580 }
1581 
1582 /* gfar_start() for Rx only and with the FGPI filer interrupt enabled */
gfar_start_wol_filer(struct gfar_private * priv)1583 static void gfar_start_wol_filer(struct gfar_private *priv)
1584 {
1585 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
1586 	u32 tempval;
1587 	int i = 0;
1588 
1589 	/* Enable Rx hw queues */
1590 	gfar_write(&regs->rqueue, priv->rqueue);
1591 
1592 	/* Initialize DMACTRL to have WWR and WOP */
1593 	tempval = gfar_read(&regs->dmactrl);
1594 	tempval |= DMACTRL_INIT_SETTINGS;
1595 	gfar_write(&regs->dmactrl, tempval);
1596 
1597 	/* Make sure we aren't stopped */
1598 	tempval = gfar_read(&regs->dmactrl);
1599 	tempval &= ~DMACTRL_GRS;
1600 	gfar_write(&regs->dmactrl, tempval);
1601 
1602 	for (i = 0; i < priv->num_grps; i++) {
1603 		regs = priv->gfargrp[i].regs;
1604 		/* Clear RHLT, so that the DMA starts polling now */
1605 		gfar_write(&regs->rstat, priv->gfargrp[i].rstat);
1606 		/* enable the Filer General Purpose Interrupt */
1607 		gfar_write(&regs->imask, IMASK_FGPI);
1608 	}
1609 
1610 	/* Enable Rx DMA */
1611 	tempval = gfar_read(&regs->maccfg1);
1612 	tempval |= MACCFG1_RX_EN;
1613 	gfar_write(&regs->maccfg1, tempval);
1614 }
1615 
gfar_suspend(struct device * dev)1616 static int gfar_suspend(struct device *dev)
1617 {
1618 	struct gfar_private *priv = dev_get_drvdata(dev);
1619 	struct net_device *ndev = priv->ndev;
1620 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
1621 	u32 tempval;
1622 	u16 wol = priv->wol_opts;
1623 
1624 	if (!netif_running(ndev))
1625 		return 0;
1626 
1627 	disable_napi(priv);
1628 	netif_tx_lock(ndev);
1629 	netif_device_detach(ndev);
1630 	netif_tx_unlock(ndev);
1631 
1632 	gfar_halt(priv);
1633 
1634 	if (wol & GFAR_WOL_MAGIC) {
1635 		/* Enable interrupt on Magic Packet */
1636 		gfar_write(&regs->imask, IMASK_MAG);
1637 
1638 		/* Enable Magic Packet mode */
1639 		tempval = gfar_read(&regs->maccfg2);
1640 		tempval |= MACCFG2_MPEN;
1641 		gfar_write(&regs->maccfg2, tempval);
1642 
1643 		/* re-enable the Rx block */
1644 		tempval = gfar_read(&regs->maccfg1);
1645 		tempval |= MACCFG1_RX_EN;
1646 		gfar_write(&regs->maccfg1, tempval);
1647 
1648 	} else if (wol & GFAR_WOL_FILER_UCAST) {
1649 		gfar_filer_config_wol(priv);
1650 		gfar_start_wol_filer(priv);
1651 
1652 	} else {
1653 		phy_stop(ndev->phydev);
1654 	}
1655 
1656 	return 0;
1657 }
1658 
gfar_resume(struct device * dev)1659 static int gfar_resume(struct device *dev)
1660 {
1661 	struct gfar_private *priv = dev_get_drvdata(dev);
1662 	struct net_device *ndev = priv->ndev;
1663 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
1664 	u32 tempval;
1665 	u16 wol = priv->wol_opts;
1666 
1667 	if (!netif_running(ndev))
1668 		return 0;
1669 
1670 	if (wol & GFAR_WOL_MAGIC) {
1671 		/* Disable Magic Packet mode */
1672 		tempval = gfar_read(&regs->maccfg2);
1673 		tempval &= ~MACCFG2_MPEN;
1674 		gfar_write(&regs->maccfg2, tempval);
1675 
1676 	} else if (wol & GFAR_WOL_FILER_UCAST) {
1677 		/* need to stop rx only, tx is already down */
1678 		gfar_halt(priv);
1679 		gfar_filer_restore_table(priv);
1680 
1681 	} else {
1682 		phy_start(ndev->phydev);
1683 	}
1684 
1685 	gfar_start(priv);
1686 
1687 	netif_device_attach(ndev);
1688 	enable_napi(priv);
1689 
1690 	return 0;
1691 }
1692 
gfar_restore(struct device * dev)1693 static int gfar_restore(struct device *dev)
1694 {
1695 	struct gfar_private *priv = dev_get_drvdata(dev);
1696 	struct net_device *ndev = priv->ndev;
1697 
1698 	if (!netif_running(ndev)) {
1699 		netif_device_attach(ndev);
1700 
1701 		return 0;
1702 	}
1703 
1704 	gfar_init_bds(ndev);
1705 
1706 	gfar_mac_reset(priv);
1707 
1708 	gfar_init_tx_rx_base(priv);
1709 
1710 	gfar_start(priv);
1711 
1712 	priv->oldlink = 0;
1713 	priv->oldspeed = 0;
1714 	priv->oldduplex = -1;
1715 
1716 	if (ndev->phydev)
1717 		phy_start(ndev->phydev);
1718 
1719 	netif_device_attach(ndev);
1720 	enable_napi(priv);
1721 
1722 	return 0;
1723 }
1724 
1725 static const struct dev_pm_ops gfar_pm_ops = {
1726 	.suspend = gfar_suspend,
1727 	.resume = gfar_resume,
1728 	.freeze = gfar_suspend,
1729 	.thaw = gfar_resume,
1730 	.restore = gfar_restore,
1731 };
1732 
1733 #define GFAR_PM_OPS (&gfar_pm_ops)
1734 
1735 #else
1736 
1737 #define GFAR_PM_OPS NULL
1738 
1739 #endif
1740 
1741 /* Reads the controller's registers to determine what interface
1742  * connects it to the PHY.
1743  */
gfar_get_interface(struct net_device * dev)1744 static phy_interface_t gfar_get_interface(struct net_device *dev)
1745 {
1746 	struct gfar_private *priv = netdev_priv(dev);
1747 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
1748 	u32 ecntrl;
1749 
1750 	ecntrl = gfar_read(&regs->ecntrl);
1751 
1752 	if (ecntrl & ECNTRL_SGMII_MODE)
1753 		return PHY_INTERFACE_MODE_SGMII;
1754 
1755 	if (ecntrl & ECNTRL_TBI_MODE) {
1756 		if (ecntrl & ECNTRL_REDUCED_MODE)
1757 			return PHY_INTERFACE_MODE_RTBI;
1758 		else
1759 			return PHY_INTERFACE_MODE_TBI;
1760 	}
1761 
1762 	if (ecntrl & ECNTRL_REDUCED_MODE) {
1763 		if (ecntrl & ECNTRL_REDUCED_MII_MODE) {
1764 			return PHY_INTERFACE_MODE_RMII;
1765 		}
1766 		else {
1767 			phy_interface_t interface = priv->interface;
1768 
1769 			/* This isn't autodetected right now, so it must
1770 			 * be set by the device tree or platform code.
1771 			 */
1772 			if (interface == PHY_INTERFACE_MODE_RGMII_ID)
1773 				return PHY_INTERFACE_MODE_RGMII_ID;
1774 
1775 			return PHY_INTERFACE_MODE_RGMII;
1776 		}
1777 	}
1778 
1779 	if (priv->device_flags & FSL_GIANFAR_DEV_HAS_GIGABIT)
1780 		return PHY_INTERFACE_MODE_GMII;
1781 
1782 	return PHY_INTERFACE_MODE_MII;
1783 }
1784 
1785 
1786 /* Initializes driver's PHY state, and attaches to the PHY.
1787  * Returns 0 on success.
1788  */
init_phy(struct net_device * dev)1789 static int init_phy(struct net_device *dev)
1790 {
1791 	struct gfar_private *priv = netdev_priv(dev);
1792 	uint gigabit_support =
1793 		priv->device_flags & FSL_GIANFAR_DEV_HAS_GIGABIT ?
1794 		GFAR_SUPPORTED_GBIT : 0;
1795 	phy_interface_t interface;
1796 	struct phy_device *phydev;
1797 	struct ethtool_eee edata;
1798 
1799 	priv->oldlink = 0;
1800 	priv->oldspeed = 0;
1801 	priv->oldduplex = -1;
1802 
1803 	interface = gfar_get_interface(dev);
1804 
1805 	phydev = of_phy_connect(dev, priv->phy_node, &adjust_link, 0,
1806 				interface);
1807 	if (!phydev) {
1808 		dev_err(&dev->dev, "could not attach to PHY\n");
1809 		return -ENODEV;
1810 	}
1811 
1812 	if (interface == PHY_INTERFACE_MODE_SGMII)
1813 		gfar_configure_serdes(dev);
1814 
1815 	/* Remove any features not supported by the controller */
1816 	phydev->supported &= (GFAR_SUPPORTED | gigabit_support);
1817 	phydev->advertising = phydev->supported;
1818 
1819 	/* Add support for flow control, but don't advertise it by default */
1820 	phydev->supported |= (SUPPORTED_Pause | SUPPORTED_Asym_Pause);
1821 
1822 	/* disable EEE autoneg, EEE not supported by eTSEC */
1823 	memset(&edata, 0, sizeof(struct ethtool_eee));
1824 	phy_ethtool_set_eee(phydev, &edata);
1825 
1826 	return 0;
1827 }
1828 
1829 /* Initialize TBI PHY interface for communicating with the
1830  * SERDES lynx PHY on the chip.  We communicate with this PHY
1831  * through the MDIO bus on each controller, treating it as a
1832  * "normal" PHY at the address found in the TBIPA register.  We assume
1833  * that the TBIPA register is valid.  Either the MDIO bus code will set
1834  * it to a value that doesn't conflict with other PHYs on the bus, or the
1835  * value doesn't matter, as there are no other PHYs on the bus.
1836  */
gfar_configure_serdes(struct net_device * dev)1837 static void gfar_configure_serdes(struct net_device *dev)
1838 {
1839 	struct gfar_private *priv = netdev_priv(dev);
1840 	struct phy_device *tbiphy;
1841 
1842 	if (!priv->tbi_node) {
1843 		dev_warn(&dev->dev, "error: SGMII mode requires that the "
1844 				    "device tree specify a tbi-handle\n");
1845 		return;
1846 	}
1847 
1848 	tbiphy = of_phy_find_device(priv->tbi_node);
1849 	if (!tbiphy) {
1850 		dev_err(&dev->dev, "error: Could not get TBI device\n");
1851 		return;
1852 	}
1853 
1854 	/* If the link is already up, we must already be ok, and don't need to
1855 	 * configure and reset the TBI<->SerDes link.  Maybe U-Boot configured
1856 	 * everything for us?  Resetting it takes the link down and requires
1857 	 * several seconds for it to come back.
1858 	 */
1859 	if (phy_read(tbiphy, MII_BMSR) & BMSR_LSTATUS) {
1860 		put_device(&tbiphy->mdio.dev);
1861 		return;
1862 	}
1863 
1864 	/* Single clk mode, mii mode off(for serdes communication) */
1865 	phy_write(tbiphy, MII_TBICON, TBICON_CLK_SELECT);
1866 
1867 	phy_write(tbiphy, MII_ADVERTISE,
1868 		  ADVERTISE_1000XFULL | ADVERTISE_1000XPAUSE |
1869 		  ADVERTISE_1000XPSE_ASYM);
1870 
1871 	phy_write(tbiphy, MII_BMCR,
1872 		  BMCR_ANENABLE | BMCR_ANRESTART | BMCR_FULLDPLX |
1873 		  BMCR_SPEED1000);
1874 
1875 	put_device(&tbiphy->mdio.dev);
1876 }
1877 
__gfar_is_rx_idle(struct gfar_private * priv)1878 static int __gfar_is_rx_idle(struct gfar_private *priv)
1879 {
1880 	u32 res;
1881 
1882 	/* Normaly TSEC should not hang on GRS commands, so we should
1883 	 * actually wait for IEVENT_GRSC flag.
1884 	 */
1885 	if (!gfar_has_errata(priv, GFAR_ERRATA_A002))
1886 		return 0;
1887 
1888 	/* Read the eTSEC register at offset 0xD1C. If bits 7-14 are
1889 	 * the same as bits 23-30, the eTSEC Rx is assumed to be idle
1890 	 * and the Rx can be safely reset.
1891 	 */
1892 	res = gfar_read((void __iomem *)priv->gfargrp[0].regs + 0xd1c);
1893 	res &= 0x7f807f80;
1894 	if ((res & 0xffff) == (res >> 16))
1895 		return 1;
1896 
1897 	return 0;
1898 }
1899 
1900 /* Halt the receive and transmit queues */
gfar_halt_nodisable(struct gfar_private * priv)1901 static void gfar_halt_nodisable(struct gfar_private *priv)
1902 {
1903 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
1904 	u32 tempval;
1905 	unsigned int timeout;
1906 	int stopped;
1907 
1908 	gfar_ints_disable(priv);
1909 
1910 	if (gfar_is_dma_stopped(priv))
1911 		return;
1912 
1913 	/* Stop the DMA, and wait for it to stop */
1914 	tempval = gfar_read(&regs->dmactrl);
1915 	tempval |= (DMACTRL_GRS | DMACTRL_GTS);
1916 	gfar_write(&regs->dmactrl, tempval);
1917 
1918 retry:
1919 	timeout = 1000;
1920 	while (!(stopped = gfar_is_dma_stopped(priv)) && timeout) {
1921 		cpu_relax();
1922 		timeout--;
1923 	}
1924 
1925 	if (!timeout)
1926 		stopped = gfar_is_dma_stopped(priv);
1927 
1928 	if (!stopped && !gfar_is_rx_dma_stopped(priv) &&
1929 	    !__gfar_is_rx_idle(priv))
1930 		goto retry;
1931 }
1932 
1933 /* Halt the receive and transmit queues */
gfar_halt(struct gfar_private * priv)1934 void gfar_halt(struct gfar_private *priv)
1935 {
1936 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
1937 	u32 tempval;
1938 
1939 	/* Dissable the Rx/Tx hw queues */
1940 	gfar_write(&regs->rqueue, 0);
1941 	gfar_write(&regs->tqueue, 0);
1942 
1943 	mdelay(10);
1944 
1945 	gfar_halt_nodisable(priv);
1946 
1947 	/* Disable Rx/Tx DMA */
1948 	tempval = gfar_read(&regs->maccfg1);
1949 	tempval &= ~(MACCFG1_RX_EN | MACCFG1_TX_EN);
1950 	gfar_write(&regs->maccfg1, tempval);
1951 }
1952 
stop_gfar(struct net_device * dev)1953 void stop_gfar(struct net_device *dev)
1954 {
1955 	struct gfar_private *priv = netdev_priv(dev);
1956 
1957 	netif_tx_stop_all_queues(dev);
1958 
1959 	smp_mb__before_atomic();
1960 	set_bit(GFAR_DOWN, &priv->state);
1961 	smp_mb__after_atomic();
1962 
1963 	disable_napi(priv);
1964 
1965 	/* disable ints and gracefully shut down Rx/Tx DMA */
1966 	gfar_halt(priv);
1967 
1968 	phy_stop(dev->phydev);
1969 
1970 	free_skb_resources(priv);
1971 }
1972 
free_skb_tx_queue(struct gfar_priv_tx_q * tx_queue)1973 static void free_skb_tx_queue(struct gfar_priv_tx_q *tx_queue)
1974 {
1975 	struct txbd8 *txbdp;
1976 	struct gfar_private *priv = netdev_priv(tx_queue->dev);
1977 	int i, j;
1978 
1979 	txbdp = tx_queue->tx_bd_base;
1980 
1981 	for (i = 0; i < tx_queue->tx_ring_size; i++) {
1982 		if (!tx_queue->tx_skbuff[i])
1983 			continue;
1984 
1985 		dma_unmap_single(priv->dev, be32_to_cpu(txbdp->bufPtr),
1986 				 be16_to_cpu(txbdp->length), DMA_TO_DEVICE);
1987 		txbdp->lstatus = 0;
1988 		for (j = 0; j < skb_shinfo(tx_queue->tx_skbuff[i])->nr_frags;
1989 		     j++) {
1990 			txbdp++;
1991 			dma_unmap_page(priv->dev, be32_to_cpu(txbdp->bufPtr),
1992 				       be16_to_cpu(txbdp->length),
1993 				       DMA_TO_DEVICE);
1994 		}
1995 		txbdp++;
1996 		dev_kfree_skb_any(tx_queue->tx_skbuff[i]);
1997 		tx_queue->tx_skbuff[i] = NULL;
1998 	}
1999 	kfree(tx_queue->tx_skbuff);
2000 	tx_queue->tx_skbuff = NULL;
2001 }
2002 
free_skb_rx_queue(struct gfar_priv_rx_q * rx_queue)2003 static void free_skb_rx_queue(struct gfar_priv_rx_q *rx_queue)
2004 {
2005 	int i;
2006 
2007 	struct rxbd8 *rxbdp = rx_queue->rx_bd_base;
2008 
2009 	if (rx_queue->skb)
2010 		dev_kfree_skb(rx_queue->skb);
2011 
2012 	for (i = 0; i < rx_queue->rx_ring_size; i++) {
2013 		struct	gfar_rx_buff *rxb = &rx_queue->rx_buff[i];
2014 
2015 		rxbdp->lstatus = 0;
2016 		rxbdp->bufPtr = 0;
2017 		rxbdp++;
2018 
2019 		if (!rxb->page)
2020 			continue;
2021 
2022 		dma_unmap_page(rx_queue->dev, rxb->dma,
2023 			       PAGE_SIZE, DMA_FROM_DEVICE);
2024 		__free_page(rxb->page);
2025 
2026 		rxb->page = NULL;
2027 	}
2028 
2029 	kfree(rx_queue->rx_buff);
2030 	rx_queue->rx_buff = NULL;
2031 }
2032 
2033 /* If there are any tx skbs or rx skbs still around, free them.
2034  * Then free tx_skbuff and rx_skbuff
2035  */
free_skb_resources(struct gfar_private * priv)2036 static void free_skb_resources(struct gfar_private *priv)
2037 {
2038 	struct gfar_priv_tx_q *tx_queue = NULL;
2039 	struct gfar_priv_rx_q *rx_queue = NULL;
2040 	int i;
2041 
2042 	/* Go through all the buffer descriptors and free their data buffers */
2043 	for (i = 0; i < priv->num_tx_queues; i++) {
2044 		struct netdev_queue *txq;
2045 
2046 		tx_queue = priv->tx_queue[i];
2047 		txq = netdev_get_tx_queue(tx_queue->dev, tx_queue->qindex);
2048 		if (tx_queue->tx_skbuff)
2049 			free_skb_tx_queue(tx_queue);
2050 		netdev_tx_reset_queue(txq);
2051 	}
2052 
2053 	for (i = 0; i < priv->num_rx_queues; i++) {
2054 		rx_queue = priv->rx_queue[i];
2055 		if (rx_queue->rx_buff)
2056 			free_skb_rx_queue(rx_queue);
2057 	}
2058 
2059 	dma_free_coherent(priv->dev,
2060 			  sizeof(struct txbd8) * priv->total_tx_ring_size +
2061 			  sizeof(struct rxbd8) * priv->total_rx_ring_size,
2062 			  priv->tx_queue[0]->tx_bd_base,
2063 			  priv->tx_queue[0]->tx_bd_dma_base);
2064 }
2065 
gfar_start(struct gfar_private * priv)2066 void gfar_start(struct gfar_private *priv)
2067 {
2068 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
2069 	u32 tempval;
2070 	int i = 0;
2071 
2072 	/* Enable Rx/Tx hw queues */
2073 	gfar_write(&regs->rqueue, priv->rqueue);
2074 	gfar_write(&regs->tqueue, priv->tqueue);
2075 
2076 	/* Initialize DMACTRL to have WWR and WOP */
2077 	tempval = gfar_read(&regs->dmactrl);
2078 	tempval |= DMACTRL_INIT_SETTINGS;
2079 	gfar_write(&regs->dmactrl, tempval);
2080 
2081 	/* Make sure we aren't stopped */
2082 	tempval = gfar_read(&regs->dmactrl);
2083 	tempval &= ~(DMACTRL_GRS | DMACTRL_GTS);
2084 	gfar_write(&regs->dmactrl, tempval);
2085 
2086 	for (i = 0; i < priv->num_grps; i++) {
2087 		regs = priv->gfargrp[i].regs;
2088 		/* Clear THLT/RHLT, so that the DMA starts polling now */
2089 		gfar_write(&regs->tstat, priv->gfargrp[i].tstat);
2090 		gfar_write(&regs->rstat, priv->gfargrp[i].rstat);
2091 	}
2092 
2093 	/* Enable Rx/Tx DMA */
2094 	tempval = gfar_read(&regs->maccfg1);
2095 	tempval |= (MACCFG1_RX_EN | MACCFG1_TX_EN);
2096 	gfar_write(&regs->maccfg1, tempval);
2097 
2098 	gfar_ints_enable(priv);
2099 
2100 	netif_trans_update(priv->ndev); /* prevent tx timeout */
2101 }
2102 
free_grp_irqs(struct gfar_priv_grp * grp)2103 static void free_grp_irqs(struct gfar_priv_grp *grp)
2104 {
2105 	free_irq(gfar_irq(grp, TX)->irq, grp);
2106 	free_irq(gfar_irq(grp, RX)->irq, grp);
2107 	free_irq(gfar_irq(grp, ER)->irq, grp);
2108 }
2109 
register_grp_irqs(struct gfar_priv_grp * grp)2110 static int register_grp_irqs(struct gfar_priv_grp *grp)
2111 {
2112 	struct gfar_private *priv = grp->priv;
2113 	struct net_device *dev = priv->ndev;
2114 	int err;
2115 
2116 	/* If the device has multiple interrupts, register for
2117 	 * them.  Otherwise, only register for the one
2118 	 */
2119 	if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
2120 		/* Install our interrupt handlers for Error,
2121 		 * Transmit, and Receive
2122 		 */
2123 		err = request_irq(gfar_irq(grp, ER)->irq, gfar_error, 0,
2124 				  gfar_irq(grp, ER)->name, grp);
2125 		if (err < 0) {
2126 			netif_err(priv, intr, dev, "Can't get IRQ %d\n",
2127 				  gfar_irq(grp, ER)->irq);
2128 
2129 			goto err_irq_fail;
2130 		}
2131 		enable_irq_wake(gfar_irq(grp, ER)->irq);
2132 
2133 		err = request_irq(gfar_irq(grp, TX)->irq, gfar_transmit, 0,
2134 				  gfar_irq(grp, TX)->name, grp);
2135 		if (err < 0) {
2136 			netif_err(priv, intr, dev, "Can't get IRQ %d\n",
2137 				  gfar_irq(grp, TX)->irq);
2138 			goto tx_irq_fail;
2139 		}
2140 		err = request_irq(gfar_irq(grp, RX)->irq, gfar_receive, 0,
2141 				  gfar_irq(grp, RX)->name, grp);
2142 		if (err < 0) {
2143 			netif_err(priv, intr, dev, "Can't get IRQ %d\n",
2144 				  gfar_irq(grp, RX)->irq);
2145 			goto rx_irq_fail;
2146 		}
2147 		enable_irq_wake(gfar_irq(grp, RX)->irq);
2148 
2149 	} else {
2150 		err = request_irq(gfar_irq(grp, TX)->irq, gfar_interrupt, 0,
2151 				  gfar_irq(grp, TX)->name, grp);
2152 		if (err < 0) {
2153 			netif_err(priv, intr, dev, "Can't get IRQ %d\n",
2154 				  gfar_irq(grp, TX)->irq);
2155 			goto err_irq_fail;
2156 		}
2157 		enable_irq_wake(gfar_irq(grp, TX)->irq);
2158 	}
2159 
2160 	return 0;
2161 
2162 rx_irq_fail:
2163 	free_irq(gfar_irq(grp, TX)->irq, grp);
2164 tx_irq_fail:
2165 	free_irq(gfar_irq(grp, ER)->irq, grp);
2166 err_irq_fail:
2167 	return err;
2168 
2169 }
2170 
gfar_free_irq(struct gfar_private * priv)2171 static void gfar_free_irq(struct gfar_private *priv)
2172 {
2173 	int i;
2174 
2175 	/* Free the IRQs */
2176 	if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
2177 		for (i = 0; i < priv->num_grps; i++)
2178 			free_grp_irqs(&priv->gfargrp[i]);
2179 	} else {
2180 		for (i = 0; i < priv->num_grps; i++)
2181 			free_irq(gfar_irq(&priv->gfargrp[i], TX)->irq,
2182 				 &priv->gfargrp[i]);
2183 	}
2184 }
2185 
gfar_request_irq(struct gfar_private * priv)2186 static int gfar_request_irq(struct gfar_private *priv)
2187 {
2188 	int err, i, j;
2189 
2190 	for (i = 0; i < priv->num_grps; i++) {
2191 		err = register_grp_irqs(&priv->gfargrp[i]);
2192 		if (err) {
2193 			for (j = 0; j < i; j++)
2194 				free_grp_irqs(&priv->gfargrp[j]);
2195 			return err;
2196 		}
2197 	}
2198 
2199 	return 0;
2200 }
2201 
2202 /* Bring the controller up and running */
startup_gfar(struct net_device * ndev)2203 int startup_gfar(struct net_device *ndev)
2204 {
2205 	struct gfar_private *priv = netdev_priv(ndev);
2206 	int err;
2207 
2208 	gfar_mac_reset(priv);
2209 
2210 	err = gfar_alloc_skb_resources(ndev);
2211 	if (err)
2212 		return err;
2213 
2214 	gfar_init_tx_rx_base(priv);
2215 
2216 	smp_mb__before_atomic();
2217 	clear_bit(GFAR_DOWN, &priv->state);
2218 	smp_mb__after_atomic();
2219 
2220 	/* Start Rx/Tx DMA and enable the interrupts */
2221 	gfar_start(priv);
2222 
2223 	/* force link state update after mac reset */
2224 	priv->oldlink = 0;
2225 	priv->oldspeed = 0;
2226 	priv->oldduplex = -1;
2227 
2228 	phy_start(ndev->phydev);
2229 
2230 	enable_napi(priv);
2231 
2232 	netif_tx_wake_all_queues(ndev);
2233 
2234 	return 0;
2235 }
2236 
2237 /* Called when something needs to use the ethernet device
2238  * Returns 0 for success.
2239  */
gfar_enet_open(struct net_device * dev)2240 static int gfar_enet_open(struct net_device *dev)
2241 {
2242 	struct gfar_private *priv = netdev_priv(dev);
2243 	int err;
2244 
2245 	err = init_phy(dev);
2246 	if (err)
2247 		return err;
2248 
2249 	err = gfar_request_irq(priv);
2250 	if (err)
2251 		return err;
2252 
2253 	err = startup_gfar(dev);
2254 	if (err)
2255 		return err;
2256 
2257 	return err;
2258 }
2259 
gfar_add_fcb(struct sk_buff * skb)2260 static inline struct txfcb *gfar_add_fcb(struct sk_buff *skb)
2261 {
2262 	struct txfcb *fcb = skb_push(skb, GMAC_FCB_LEN);
2263 
2264 	memset(fcb, 0, GMAC_FCB_LEN);
2265 
2266 	return fcb;
2267 }
2268 
gfar_tx_checksum(struct sk_buff * skb,struct txfcb * fcb,int fcb_length)2269 static inline void gfar_tx_checksum(struct sk_buff *skb, struct txfcb *fcb,
2270 				    int fcb_length)
2271 {
2272 	/* If we're here, it's a IP packet with a TCP or UDP
2273 	 * payload.  We set it to checksum, using a pseudo-header
2274 	 * we provide
2275 	 */
2276 	u8 flags = TXFCB_DEFAULT;
2277 
2278 	/* Tell the controller what the protocol is
2279 	 * And provide the already calculated phcs
2280 	 */
2281 	if (ip_hdr(skb)->protocol == IPPROTO_UDP) {
2282 		flags |= TXFCB_UDP;
2283 		fcb->phcs = (__force __be16)(udp_hdr(skb)->check);
2284 	} else
2285 		fcb->phcs = (__force __be16)(tcp_hdr(skb)->check);
2286 
2287 	/* l3os is the distance between the start of the
2288 	 * frame (skb->data) and the start of the IP hdr.
2289 	 * l4os is the distance between the start of the
2290 	 * l3 hdr and the l4 hdr
2291 	 */
2292 	fcb->l3os = (u8)(skb_network_offset(skb) - fcb_length);
2293 	fcb->l4os = skb_network_header_len(skb);
2294 
2295 	fcb->flags = flags;
2296 }
2297 
gfar_tx_vlan(struct sk_buff * skb,struct txfcb * fcb)2298 static inline void gfar_tx_vlan(struct sk_buff *skb, struct txfcb *fcb)
2299 {
2300 	fcb->flags |= TXFCB_VLN;
2301 	fcb->vlctl = cpu_to_be16(skb_vlan_tag_get(skb));
2302 }
2303 
skip_txbd(struct txbd8 * bdp,int stride,struct txbd8 * base,int ring_size)2304 static inline struct txbd8 *skip_txbd(struct txbd8 *bdp, int stride,
2305 				      struct txbd8 *base, int ring_size)
2306 {
2307 	struct txbd8 *new_bd = bdp + stride;
2308 
2309 	return (new_bd >= (base + ring_size)) ? (new_bd - ring_size) : new_bd;
2310 }
2311 
next_txbd(struct txbd8 * bdp,struct txbd8 * base,int ring_size)2312 static inline struct txbd8 *next_txbd(struct txbd8 *bdp, struct txbd8 *base,
2313 				      int ring_size)
2314 {
2315 	return skip_txbd(bdp, 1, base, ring_size);
2316 }
2317 
2318 /* eTSEC12: csum generation not supported for some fcb offsets */
gfar_csum_errata_12(struct gfar_private * priv,unsigned long fcb_addr)2319 static inline bool gfar_csum_errata_12(struct gfar_private *priv,
2320 				       unsigned long fcb_addr)
2321 {
2322 	return (gfar_has_errata(priv, GFAR_ERRATA_12) &&
2323 	       (fcb_addr % 0x20) > 0x18);
2324 }
2325 
2326 /* eTSEC76: csum generation for frames larger than 2500 may
2327  * cause excess delays before start of transmission
2328  */
gfar_csum_errata_76(struct gfar_private * priv,unsigned int len)2329 static inline bool gfar_csum_errata_76(struct gfar_private *priv,
2330 				       unsigned int len)
2331 {
2332 	return (gfar_has_errata(priv, GFAR_ERRATA_76) &&
2333 	       (len > 2500));
2334 }
2335 
2336 /* This is called by the kernel when a frame is ready for transmission.
2337  * It is pointed to by the dev->hard_start_xmit function pointer
2338  */
gfar_start_xmit(struct sk_buff * skb,struct net_device * dev)2339 static netdev_tx_t gfar_start_xmit(struct sk_buff *skb, struct net_device *dev)
2340 {
2341 	struct gfar_private *priv = netdev_priv(dev);
2342 	struct gfar_priv_tx_q *tx_queue = NULL;
2343 	struct netdev_queue *txq;
2344 	struct gfar __iomem *regs = NULL;
2345 	struct txfcb *fcb = NULL;
2346 	struct txbd8 *txbdp, *txbdp_start, *base, *txbdp_tstamp = NULL;
2347 	u32 lstatus;
2348 	skb_frag_t *frag;
2349 	int i, rq = 0;
2350 	int do_tstamp, do_csum, do_vlan;
2351 	u32 bufaddr;
2352 	unsigned int nr_frags, nr_txbds, bytes_sent, fcb_len = 0;
2353 
2354 	rq = skb->queue_mapping;
2355 	tx_queue = priv->tx_queue[rq];
2356 	txq = netdev_get_tx_queue(dev, rq);
2357 	base = tx_queue->tx_bd_base;
2358 	regs = tx_queue->grp->regs;
2359 
2360 	do_csum = (CHECKSUM_PARTIAL == skb->ip_summed);
2361 	do_vlan = skb_vlan_tag_present(skb);
2362 	do_tstamp = (skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) &&
2363 		    priv->hwts_tx_en;
2364 
2365 	if (do_csum || do_vlan)
2366 		fcb_len = GMAC_FCB_LEN;
2367 
2368 	/* check if time stamp should be generated */
2369 	if (unlikely(do_tstamp))
2370 		fcb_len = GMAC_FCB_LEN + GMAC_TXPAL_LEN;
2371 
2372 	/* make space for additional header when fcb is needed */
2373 	if (fcb_len && unlikely(skb_headroom(skb) < fcb_len)) {
2374 		struct sk_buff *skb_new;
2375 
2376 		skb_new = skb_realloc_headroom(skb, fcb_len);
2377 		if (!skb_new) {
2378 			dev->stats.tx_errors++;
2379 			dev_kfree_skb_any(skb);
2380 			return NETDEV_TX_OK;
2381 		}
2382 
2383 		if (skb->sk)
2384 			skb_set_owner_w(skb_new, skb->sk);
2385 		dev_consume_skb_any(skb);
2386 		skb = skb_new;
2387 	}
2388 
2389 	/* total number of fragments in the SKB */
2390 	nr_frags = skb_shinfo(skb)->nr_frags;
2391 
2392 	/* calculate the required number of TxBDs for this skb */
2393 	if (unlikely(do_tstamp))
2394 		nr_txbds = nr_frags + 2;
2395 	else
2396 		nr_txbds = nr_frags + 1;
2397 
2398 	/* check if there is space to queue this packet */
2399 	if (nr_txbds > tx_queue->num_txbdfree) {
2400 		/* no space, stop the queue */
2401 		netif_tx_stop_queue(txq);
2402 		dev->stats.tx_fifo_errors++;
2403 		return NETDEV_TX_BUSY;
2404 	}
2405 
2406 	/* Update transmit stats */
2407 	bytes_sent = skb->len;
2408 	tx_queue->stats.tx_bytes += bytes_sent;
2409 	/* keep Tx bytes on wire for BQL accounting */
2410 	GFAR_CB(skb)->bytes_sent = bytes_sent;
2411 	tx_queue->stats.tx_packets++;
2412 
2413 	txbdp = txbdp_start = tx_queue->cur_tx;
2414 	lstatus = be32_to_cpu(txbdp->lstatus);
2415 
2416 	/* Add TxPAL between FCB and frame if required */
2417 	if (unlikely(do_tstamp)) {
2418 		skb_push(skb, GMAC_TXPAL_LEN);
2419 		memset(skb->data, 0, GMAC_TXPAL_LEN);
2420 	}
2421 
2422 	/* Add TxFCB if required */
2423 	if (fcb_len) {
2424 		fcb = gfar_add_fcb(skb);
2425 		lstatus |= BD_LFLAG(TXBD_TOE);
2426 	}
2427 
2428 	/* Set up checksumming */
2429 	if (do_csum) {
2430 		gfar_tx_checksum(skb, fcb, fcb_len);
2431 
2432 		if (unlikely(gfar_csum_errata_12(priv, (unsigned long)fcb)) ||
2433 		    unlikely(gfar_csum_errata_76(priv, skb->len))) {
2434 			__skb_pull(skb, GMAC_FCB_LEN);
2435 			skb_checksum_help(skb);
2436 			if (do_vlan || do_tstamp) {
2437 				/* put back a new fcb for vlan/tstamp TOE */
2438 				fcb = gfar_add_fcb(skb);
2439 			} else {
2440 				/* Tx TOE not used */
2441 				lstatus &= ~(BD_LFLAG(TXBD_TOE));
2442 				fcb = NULL;
2443 			}
2444 		}
2445 	}
2446 
2447 	if (do_vlan)
2448 		gfar_tx_vlan(skb, fcb);
2449 
2450 	bufaddr = dma_map_single(priv->dev, skb->data, skb_headlen(skb),
2451 				 DMA_TO_DEVICE);
2452 	if (unlikely(dma_mapping_error(priv->dev, bufaddr)))
2453 		goto dma_map_err;
2454 
2455 	txbdp_start->bufPtr = cpu_to_be32(bufaddr);
2456 
2457 	/* Time stamp insertion requires one additional TxBD */
2458 	if (unlikely(do_tstamp))
2459 		txbdp_tstamp = txbdp = next_txbd(txbdp, base,
2460 						 tx_queue->tx_ring_size);
2461 
2462 	if (likely(!nr_frags)) {
2463 		if (likely(!do_tstamp))
2464 			lstatus |= BD_LFLAG(TXBD_LAST | TXBD_INTERRUPT);
2465 	} else {
2466 		u32 lstatus_start = lstatus;
2467 
2468 		/* Place the fragment addresses and lengths into the TxBDs */
2469 		frag = &skb_shinfo(skb)->frags[0];
2470 		for (i = 0; i < nr_frags; i++, frag++) {
2471 			unsigned int size;
2472 
2473 			/* Point at the next BD, wrapping as needed */
2474 			txbdp = next_txbd(txbdp, base, tx_queue->tx_ring_size);
2475 
2476 			size = skb_frag_size(frag);
2477 
2478 			lstatus = be32_to_cpu(txbdp->lstatus) | size |
2479 				  BD_LFLAG(TXBD_READY);
2480 
2481 			/* Handle the last BD specially */
2482 			if (i == nr_frags - 1)
2483 				lstatus |= BD_LFLAG(TXBD_LAST | TXBD_INTERRUPT);
2484 
2485 			bufaddr = skb_frag_dma_map(priv->dev, frag, 0,
2486 						   size, DMA_TO_DEVICE);
2487 			if (unlikely(dma_mapping_error(priv->dev, bufaddr)))
2488 				goto dma_map_err;
2489 
2490 			/* set the TxBD length and buffer pointer */
2491 			txbdp->bufPtr = cpu_to_be32(bufaddr);
2492 			txbdp->lstatus = cpu_to_be32(lstatus);
2493 		}
2494 
2495 		lstatus = lstatus_start;
2496 	}
2497 
2498 	/* If time stamping is requested one additional TxBD must be set up. The
2499 	 * first TxBD points to the FCB and must have a data length of
2500 	 * GMAC_FCB_LEN. The second TxBD points to the actual frame data with
2501 	 * the full frame length.
2502 	 */
2503 	if (unlikely(do_tstamp)) {
2504 		u32 lstatus_ts = be32_to_cpu(txbdp_tstamp->lstatus);
2505 
2506 		bufaddr = be32_to_cpu(txbdp_start->bufPtr);
2507 		bufaddr += fcb_len;
2508 
2509 		lstatus_ts |= BD_LFLAG(TXBD_READY) |
2510 			      (skb_headlen(skb) - fcb_len);
2511 		if (!nr_frags)
2512 			lstatus_ts |= BD_LFLAG(TXBD_LAST | TXBD_INTERRUPT);
2513 
2514 		txbdp_tstamp->bufPtr = cpu_to_be32(bufaddr);
2515 		txbdp_tstamp->lstatus = cpu_to_be32(lstatus_ts);
2516 		lstatus |= BD_LFLAG(TXBD_CRC | TXBD_READY) | GMAC_FCB_LEN;
2517 
2518 		/* Setup tx hardware time stamping */
2519 		skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
2520 		fcb->ptp = 1;
2521 	} else {
2522 		lstatus |= BD_LFLAG(TXBD_CRC | TXBD_READY) | skb_headlen(skb);
2523 	}
2524 
2525 	netdev_tx_sent_queue(txq, bytes_sent);
2526 
2527 	gfar_wmb();
2528 
2529 	txbdp_start->lstatus = cpu_to_be32(lstatus);
2530 
2531 	gfar_wmb(); /* force lstatus write before tx_skbuff */
2532 
2533 	tx_queue->tx_skbuff[tx_queue->skb_curtx] = skb;
2534 
2535 	/* Update the current skb pointer to the next entry we will use
2536 	 * (wrapping if necessary)
2537 	 */
2538 	tx_queue->skb_curtx = (tx_queue->skb_curtx + 1) &
2539 			      TX_RING_MOD_MASK(tx_queue->tx_ring_size);
2540 
2541 	tx_queue->cur_tx = next_txbd(txbdp, base, tx_queue->tx_ring_size);
2542 
2543 	/* We can work in parallel with gfar_clean_tx_ring(), except
2544 	 * when modifying num_txbdfree. Note that we didn't grab the lock
2545 	 * when we were reading the num_txbdfree and checking for available
2546 	 * space, that's because outside of this function it can only grow.
2547 	 */
2548 	spin_lock_bh(&tx_queue->txlock);
2549 	/* reduce TxBD free count */
2550 	tx_queue->num_txbdfree -= (nr_txbds);
2551 	spin_unlock_bh(&tx_queue->txlock);
2552 
2553 	/* If the next BD still needs to be cleaned up, then the bds
2554 	 * are full.  We need to tell the kernel to stop sending us stuff.
2555 	 */
2556 	if (!tx_queue->num_txbdfree) {
2557 		netif_tx_stop_queue(txq);
2558 
2559 		dev->stats.tx_fifo_errors++;
2560 	}
2561 
2562 	/* Tell the DMA to go go go */
2563 	gfar_write(&regs->tstat, TSTAT_CLEAR_THALT >> tx_queue->qindex);
2564 
2565 	return NETDEV_TX_OK;
2566 
2567 dma_map_err:
2568 	txbdp = next_txbd(txbdp_start, base, tx_queue->tx_ring_size);
2569 	if (do_tstamp)
2570 		txbdp = next_txbd(txbdp, base, tx_queue->tx_ring_size);
2571 	for (i = 0; i < nr_frags; i++) {
2572 		lstatus = be32_to_cpu(txbdp->lstatus);
2573 		if (!(lstatus & BD_LFLAG(TXBD_READY)))
2574 			break;
2575 
2576 		lstatus &= ~BD_LFLAG(TXBD_READY);
2577 		txbdp->lstatus = cpu_to_be32(lstatus);
2578 		bufaddr = be32_to_cpu(txbdp->bufPtr);
2579 		dma_unmap_page(priv->dev, bufaddr, be16_to_cpu(txbdp->length),
2580 			       DMA_TO_DEVICE);
2581 		txbdp = next_txbd(txbdp, base, tx_queue->tx_ring_size);
2582 	}
2583 	gfar_wmb();
2584 	dev_kfree_skb_any(skb);
2585 	return NETDEV_TX_OK;
2586 }
2587 
2588 /* Stops the kernel queue, and halts the controller */
gfar_close(struct net_device * dev)2589 static int gfar_close(struct net_device *dev)
2590 {
2591 	struct gfar_private *priv = netdev_priv(dev);
2592 
2593 	cancel_work_sync(&priv->reset_task);
2594 	stop_gfar(dev);
2595 
2596 	/* Disconnect from the PHY */
2597 	phy_disconnect(dev->phydev);
2598 
2599 	gfar_free_irq(priv);
2600 
2601 	return 0;
2602 }
2603 
2604 /* Changes the mac address if the controller is not running. */
gfar_set_mac_address(struct net_device * dev)2605 static int gfar_set_mac_address(struct net_device *dev)
2606 {
2607 	gfar_set_mac_for_addr(dev, 0, dev->dev_addr);
2608 
2609 	return 0;
2610 }
2611 
gfar_change_mtu(struct net_device * dev,int new_mtu)2612 static int gfar_change_mtu(struct net_device *dev, int new_mtu)
2613 {
2614 	struct gfar_private *priv = netdev_priv(dev);
2615 
2616 	while (test_and_set_bit_lock(GFAR_RESETTING, &priv->state))
2617 		cpu_relax();
2618 
2619 	if (dev->flags & IFF_UP)
2620 		stop_gfar(dev);
2621 
2622 	dev->mtu = new_mtu;
2623 
2624 	if (dev->flags & IFF_UP)
2625 		startup_gfar(dev);
2626 
2627 	clear_bit_unlock(GFAR_RESETTING, &priv->state);
2628 
2629 	return 0;
2630 }
2631 
reset_gfar(struct net_device * ndev)2632 void reset_gfar(struct net_device *ndev)
2633 {
2634 	struct gfar_private *priv = netdev_priv(ndev);
2635 
2636 	while (test_and_set_bit_lock(GFAR_RESETTING, &priv->state))
2637 		cpu_relax();
2638 
2639 	stop_gfar(ndev);
2640 	startup_gfar(ndev);
2641 
2642 	clear_bit_unlock(GFAR_RESETTING, &priv->state);
2643 }
2644 
2645 /* gfar_reset_task gets scheduled when a packet has not been
2646  * transmitted after a set amount of time.
2647  * For now, assume that clearing out all the structures, and
2648  * starting over will fix the problem.
2649  */
gfar_reset_task(struct work_struct * work)2650 static void gfar_reset_task(struct work_struct *work)
2651 {
2652 	struct gfar_private *priv = container_of(work, struct gfar_private,
2653 						 reset_task);
2654 	reset_gfar(priv->ndev);
2655 }
2656 
gfar_timeout(struct net_device * dev)2657 static void gfar_timeout(struct net_device *dev)
2658 {
2659 	struct gfar_private *priv = netdev_priv(dev);
2660 
2661 	dev->stats.tx_errors++;
2662 	schedule_work(&priv->reset_task);
2663 }
2664 
2665 /* Interrupt Handler for Transmit complete */
gfar_clean_tx_ring(struct gfar_priv_tx_q * tx_queue)2666 static void gfar_clean_tx_ring(struct gfar_priv_tx_q *tx_queue)
2667 {
2668 	struct net_device *dev = tx_queue->dev;
2669 	struct netdev_queue *txq;
2670 	struct gfar_private *priv = netdev_priv(dev);
2671 	struct txbd8 *bdp, *next = NULL;
2672 	struct txbd8 *lbdp = NULL;
2673 	struct txbd8 *base = tx_queue->tx_bd_base;
2674 	struct sk_buff *skb;
2675 	int skb_dirtytx;
2676 	int tx_ring_size = tx_queue->tx_ring_size;
2677 	int frags = 0, nr_txbds = 0;
2678 	int i;
2679 	int howmany = 0;
2680 	int tqi = tx_queue->qindex;
2681 	unsigned int bytes_sent = 0;
2682 	u32 lstatus;
2683 	size_t buflen;
2684 
2685 	txq = netdev_get_tx_queue(dev, tqi);
2686 	bdp = tx_queue->dirty_tx;
2687 	skb_dirtytx = tx_queue->skb_dirtytx;
2688 
2689 	while ((skb = tx_queue->tx_skbuff[skb_dirtytx])) {
2690 		bool do_tstamp;
2691 
2692 		do_tstamp = (skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) &&
2693 			    priv->hwts_tx_en;
2694 
2695 		frags = skb_shinfo(skb)->nr_frags;
2696 
2697 		/* When time stamping, one additional TxBD must be freed.
2698 		 * Also, we need to dma_unmap_single() the TxPAL.
2699 		 */
2700 		if (unlikely(do_tstamp))
2701 			nr_txbds = frags + 2;
2702 		else
2703 			nr_txbds = frags + 1;
2704 
2705 		lbdp = skip_txbd(bdp, nr_txbds - 1, base, tx_ring_size);
2706 
2707 		lstatus = be32_to_cpu(lbdp->lstatus);
2708 
2709 		/* Only clean completed frames */
2710 		if ((lstatus & BD_LFLAG(TXBD_READY)) &&
2711 		    (lstatus & BD_LENGTH_MASK))
2712 			break;
2713 
2714 		if (unlikely(do_tstamp)) {
2715 			next = next_txbd(bdp, base, tx_ring_size);
2716 			buflen = be16_to_cpu(next->length) +
2717 				 GMAC_FCB_LEN + GMAC_TXPAL_LEN;
2718 		} else
2719 			buflen = be16_to_cpu(bdp->length);
2720 
2721 		dma_unmap_single(priv->dev, be32_to_cpu(bdp->bufPtr),
2722 				 buflen, DMA_TO_DEVICE);
2723 
2724 		if (unlikely(do_tstamp)) {
2725 			struct skb_shared_hwtstamps shhwtstamps;
2726 			u64 *ns = (u64 *)(((uintptr_t)skb->data + 0x10) &
2727 					  ~0x7UL);
2728 
2729 			memset(&shhwtstamps, 0, sizeof(shhwtstamps));
2730 			shhwtstamps.hwtstamp = ns_to_ktime(be64_to_cpu(*ns));
2731 			skb_pull(skb, GMAC_FCB_LEN + GMAC_TXPAL_LEN);
2732 			skb_tstamp_tx(skb, &shhwtstamps);
2733 			gfar_clear_txbd_status(bdp);
2734 			bdp = next;
2735 		}
2736 
2737 		gfar_clear_txbd_status(bdp);
2738 		bdp = next_txbd(bdp, base, tx_ring_size);
2739 
2740 		for (i = 0; i < frags; i++) {
2741 			dma_unmap_page(priv->dev, be32_to_cpu(bdp->bufPtr),
2742 				       be16_to_cpu(bdp->length),
2743 				       DMA_TO_DEVICE);
2744 			gfar_clear_txbd_status(bdp);
2745 			bdp = next_txbd(bdp, base, tx_ring_size);
2746 		}
2747 
2748 		bytes_sent += GFAR_CB(skb)->bytes_sent;
2749 
2750 		dev_kfree_skb_any(skb);
2751 
2752 		tx_queue->tx_skbuff[skb_dirtytx] = NULL;
2753 
2754 		skb_dirtytx = (skb_dirtytx + 1) &
2755 			      TX_RING_MOD_MASK(tx_ring_size);
2756 
2757 		howmany++;
2758 		spin_lock(&tx_queue->txlock);
2759 		tx_queue->num_txbdfree += nr_txbds;
2760 		spin_unlock(&tx_queue->txlock);
2761 	}
2762 
2763 	/* If we freed a buffer, we can restart transmission, if necessary */
2764 	if (tx_queue->num_txbdfree &&
2765 	    netif_tx_queue_stopped(txq) &&
2766 	    !(test_bit(GFAR_DOWN, &priv->state)))
2767 		netif_wake_subqueue(priv->ndev, tqi);
2768 
2769 	/* Update dirty indicators */
2770 	tx_queue->skb_dirtytx = skb_dirtytx;
2771 	tx_queue->dirty_tx = bdp;
2772 
2773 	netdev_tx_completed_queue(txq, howmany, bytes_sent);
2774 }
2775 
gfar_new_page(struct gfar_priv_rx_q * rxq,struct gfar_rx_buff * rxb)2776 static bool gfar_new_page(struct gfar_priv_rx_q *rxq, struct gfar_rx_buff *rxb)
2777 {
2778 	struct page *page;
2779 	dma_addr_t addr;
2780 
2781 	page = dev_alloc_page();
2782 	if (unlikely(!page))
2783 		return false;
2784 
2785 	addr = dma_map_page(rxq->dev, page, 0, PAGE_SIZE, DMA_FROM_DEVICE);
2786 	if (unlikely(dma_mapping_error(rxq->dev, addr))) {
2787 		__free_page(page);
2788 
2789 		return false;
2790 	}
2791 
2792 	rxb->dma = addr;
2793 	rxb->page = page;
2794 	rxb->page_offset = 0;
2795 
2796 	return true;
2797 }
2798 
gfar_rx_alloc_err(struct gfar_priv_rx_q * rx_queue)2799 static void gfar_rx_alloc_err(struct gfar_priv_rx_q *rx_queue)
2800 {
2801 	struct gfar_private *priv = netdev_priv(rx_queue->ndev);
2802 	struct gfar_extra_stats *estats = &priv->extra_stats;
2803 
2804 	netdev_err(rx_queue->ndev, "Can't alloc RX buffers\n");
2805 	atomic64_inc(&estats->rx_alloc_err);
2806 }
2807 
gfar_alloc_rx_buffs(struct gfar_priv_rx_q * rx_queue,int alloc_cnt)2808 static void gfar_alloc_rx_buffs(struct gfar_priv_rx_q *rx_queue,
2809 				int alloc_cnt)
2810 {
2811 	struct rxbd8 *bdp;
2812 	struct gfar_rx_buff *rxb;
2813 	int i;
2814 
2815 	i = rx_queue->next_to_use;
2816 	bdp = &rx_queue->rx_bd_base[i];
2817 	rxb = &rx_queue->rx_buff[i];
2818 
2819 	while (alloc_cnt--) {
2820 		/* try reuse page */
2821 		if (unlikely(!rxb->page)) {
2822 			if (unlikely(!gfar_new_page(rx_queue, rxb))) {
2823 				gfar_rx_alloc_err(rx_queue);
2824 				break;
2825 			}
2826 		}
2827 
2828 		/* Setup the new RxBD */
2829 		gfar_init_rxbdp(rx_queue, bdp,
2830 				rxb->dma + rxb->page_offset + RXBUF_ALIGNMENT);
2831 
2832 		/* Update to the next pointer */
2833 		bdp++;
2834 		rxb++;
2835 
2836 		if (unlikely(++i == rx_queue->rx_ring_size)) {
2837 			i = 0;
2838 			bdp = rx_queue->rx_bd_base;
2839 			rxb = rx_queue->rx_buff;
2840 		}
2841 	}
2842 
2843 	rx_queue->next_to_use = i;
2844 	rx_queue->next_to_alloc = i;
2845 }
2846 
count_errors(u32 lstatus,struct net_device * ndev)2847 static void count_errors(u32 lstatus, struct net_device *ndev)
2848 {
2849 	struct gfar_private *priv = netdev_priv(ndev);
2850 	struct net_device_stats *stats = &ndev->stats;
2851 	struct gfar_extra_stats *estats = &priv->extra_stats;
2852 
2853 	/* If the packet was truncated, none of the other errors matter */
2854 	if (lstatus & BD_LFLAG(RXBD_TRUNCATED)) {
2855 		stats->rx_length_errors++;
2856 
2857 		atomic64_inc(&estats->rx_trunc);
2858 
2859 		return;
2860 	}
2861 	/* Count the errors, if there were any */
2862 	if (lstatus & BD_LFLAG(RXBD_LARGE | RXBD_SHORT)) {
2863 		stats->rx_length_errors++;
2864 
2865 		if (lstatus & BD_LFLAG(RXBD_LARGE))
2866 			atomic64_inc(&estats->rx_large);
2867 		else
2868 			atomic64_inc(&estats->rx_short);
2869 	}
2870 	if (lstatus & BD_LFLAG(RXBD_NONOCTET)) {
2871 		stats->rx_frame_errors++;
2872 		atomic64_inc(&estats->rx_nonoctet);
2873 	}
2874 	if (lstatus & BD_LFLAG(RXBD_CRCERR)) {
2875 		atomic64_inc(&estats->rx_crcerr);
2876 		stats->rx_crc_errors++;
2877 	}
2878 	if (lstatus & BD_LFLAG(RXBD_OVERRUN)) {
2879 		atomic64_inc(&estats->rx_overrun);
2880 		stats->rx_over_errors++;
2881 	}
2882 }
2883 
gfar_receive(int irq,void * grp_id)2884 irqreturn_t gfar_receive(int irq, void *grp_id)
2885 {
2886 	struct gfar_priv_grp *grp = (struct gfar_priv_grp *)grp_id;
2887 	unsigned long flags;
2888 	u32 imask, ievent;
2889 
2890 	ievent = gfar_read(&grp->regs->ievent);
2891 
2892 	if (unlikely(ievent & IEVENT_FGPI)) {
2893 		gfar_write(&grp->regs->ievent, IEVENT_FGPI);
2894 		return IRQ_HANDLED;
2895 	}
2896 
2897 	if (likely(napi_schedule_prep(&grp->napi_rx))) {
2898 		spin_lock_irqsave(&grp->grplock, flags);
2899 		imask = gfar_read(&grp->regs->imask);
2900 		imask &= IMASK_RX_DISABLED;
2901 		gfar_write(&grp->regs->imask, imask);
2902 		spin_unlock_irqrestore(&grp->grplock, flags);
2903 		__napi_schedule(&grp->napi_rx);
2904 	} else {
2905 		/* Clear IEVENT, so interrupts aren't called again
2906 		 * because of the packets that have already arrived.
2907 		 */
2908 		gfar_write(&grp->regs->ievent, IEVENT_RX_MASK);
2909 	}
2910 
2911 	return IRQ_HANDLED;
2912 }
2913 
2914 /* Interrupt Handler for Transmit complete */
gfar_transmit(int irq,void * grp_id)2915 static irqreturn_t gfar_transmit(int irq, void *grp_id)
2916 {
2917 	struct gfar_priv_grp *grp = (struct gfar_priv_grp *)grp_id;
2918 	unsigned long flags;
2919 	u32 imask;
2920 
2921 	if (likely(napi_schedule_prep(&grp->napi_tx))) {
2922 		spin_lock_irqsave(&grp->grplock, flags);
2923 		imask = gfar_read(&grp->regs->imask);
2924 		imask &= IMASK_TX_DISABLED;
2925 		gfar_write(&grp->regs->imask, imask);
2926 		spin_unlock_irqrestore(&grp->grplock, flags);
2927 		__napi_schedule(&grp->napi_tx);
2928 	} else {
2929 		/* Clear IEVENT, so interrupts aren't called again
2930 		 * because of the packets that have already arrived.
2931 		 */
2932 		gfar_write(&grp->regs->ievent, IEVENT_TX_MASK);
2933 	}
2934 
2935 	return IRQ_HANDLED;
2936 }
2937 
gfar_add_rx_frag(struct gfar_rx_buff * rxb,u32 lstatus,struct sk_buff * skb,bool first)2938 static bool gfar_add_rx_frag(struct gfar_rx_buff *rxb, u32 lstatus,
2939 			     struct sk_buff *skb, bool first)
2940 {
2941 	int size = lstatus & BD_LENGTH_MASK;
2942 	struct page *page = rxb->page;
2943 
2944 	if (likely(first)) {
2945 		skb_put(skb, size);
2946 	} else {
2947 		/* the last fragments' length contains the full frame length */
2948 		if (lstatus & BD_LFLAG(RXBD_LAST))
2949 			size -= skb->len;
2950 
2951 		WARN(size < 0, "gianfar: rx fragment size underflow");
2952 		if (size < 0)
2953 			return false;
2954 
2955 		skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, page,
2956 				rxb->page_offset + RXBUF_ALIGNMENT,
2957 				size, GFAR_RXB_TRUESIZE);
2958 	}
2959 
2960 	/* try reuse page */
2961 	if (unlikely(page_count(page) != 1 || page_is_pfmemalloc(page)))
2962 		return false;
2963 
2964 	/* change offset to the other half */
2965 	rxb->page_offset ^= GFAR_RXB_TRUESIZE;
2966 
2967 	page_ref_inc(page);
2968 
2969 	return true;
2970 }
2971 
gfar_reuse_rx_page(struct gfar_priv_rx_q * rxq,struct gfar_rx_buff * old_rxb)2972 static void gfar_reuse_rx_page(struct gfar_priv_rx_q *rxq,
2973 			       struct gfar_rx_buff *old_rxb)
2974 {
2975 	struct gfar_rx_buff *new_rxb;
2976 	u16 nta = rxq->next_to_alloc;
2977 
2978 	new_rxb = &rxq->rx_buff[nta];
2979 
2980 	/* find next buf that can reuse a page */
2981 	nta++;
2982 	rxq->next_to_alloc = (nta < rxq->rx_ring_size) ? nta : 0;
2983 
2984 	/* copy page reference */
2985 	*new_rxb = *old_rxb;
2986 
2987 	/* sync for use by the device */
2988 	dma_sync_single_range_for_device(rxq->dev, old_rxb->dma,
2989 					 old_rxb->page_offset,
2990 					 GFAR_RXB_TRUESIZE, DMA_FROM_DEVICE);
2991 }
2992 
gfar_get_next_rxbuff(struct gfar_priv_rx_q * rx_queue,u32 lstatus,struct sk_buff * skb)2993 static struct sk_buff *gfar_get_next_rxbuff(struct gfar_priv_rx_q *rx_queue,
2994 					    u32 lstatus, struct sk_buff *skb)
2995 {
2996 	struct gfar_rx_buff *rxb = &rx_queue->rx_buff[rx_queue->next_to_clean];
2997 	struct page *page = rxb->page;
2998 	bool first = false;
2999 
3000 	if (likely(!skb)) {
3001 		void *buff_addr = page_address(page) + rxb->page_offset;
3002 
3003 		skb = build_skb(buff_addr, GFAR_SKBFRAG_SIZE);
3004 		if (unlikely(!skb)) {
3005 			gfar_rx_alloc_err(rx_queue);
3006 			return NULL;
3007 		}
3008 		skb_reserve(skb, RXBUF_ALIGNMENT);
3009 		first = true;
3010 	}
3011 
3012 	dma_sync_single_range_for_cpu(rx_queue->dev, rxb->dma, rxb->page_offset,
3013 				      GFAR_RXB_TRUESIZE, DMA_FROM_DEVICE);
3014 
3015 	if (gfar_add_rx_frag(rxb, lstatus, skb, first)) {
3016 		/* reuse the free half of the page */
3017 		gfar_reuse_rx_page(rx_queue, rxb);
3018 	} else {
3019 		/* page cannot be reused, unmap it */
3020 		dma_unmap_page(rx_queue->dev, rxb->dma,
3021 			       PAGE_SIZE, DMA_FROM_DEVICE);
3022 	}
3023 
3024 	/* clear rxb content */
3025 	rxb->page = NULL;
3026 
3027 	return skb;
3028 }
3029 
gfar_rx_checksum(struct sk_buff * skb,struct rxfcb * fcb)3030 static inline void gfar_rx_checksum(struct sk_buff *skb, struct rxfcb *fcb)
3031 {
3032 	/* If valid headers were found, and valid sums
3033 	 * were verified, then we tell the kernel that no
3034 	 * checksumming is necessary.  Otherwise, it is [FIXME]
3035 	 */
3036 	if ((be16_to_cpu(fcb->flags) & RXFCB_CSUM_MASK) ==
3037 	    (RXFCB_CIP | RXFCB_CTU))
3038 		skb->ip_summed = CHECKSUM_UNNECESSARY;
3039 	else
3040 		skb_checksum_none_assert(skb);
3041 }
3042 
3043 /* gfar_process_frame() -- handle one incoming packet if skb isn't NULL. */
gfar_process_frame(struct net_device * ndev,struct sk_buff * skb)3044 static void gfar_process_frame(struct net_device *ndev, struct sk_buff *skb)
3045 {
3046 	struct gfar_private *priv = netdev_priv(ndev);
3047 	struct rxfcb *fcb = NULL;
3048 
3049 	/* fcb is at the beginning if exists */
3050 	fcb = (struct rxfcb *)skb->data;
3051 
3052 	/* Remove the FCB from the skb
3053 	 * Remove the padded bytes, if there are any
3054 	 */
3055 	if (priv->uses_rxfcb)
3056 		skb_pull(skb, GMAC_FCB_LEN);
3057 
3058 	/* Get receive timestamp from the skb */
3059 	if (priv->hwts_rx_en) {
3060 		struct skb_shared_hwtstamps *shhwtstamps = skb_hwtstamps(skb);
3061 		u64 *ns = (u64 *) skb->data;
3062 
3063 		memset(shhwtstamps, 0, sizeof(*shhwtstamps));
3064 		shhwtstamps->hwtstamp = ns_to_ktime(be64_to_cpu(*ns));
3065 	}
3066 
3067 	if (priv->padding)
3068 		skb_pull(skb, priv->padding);
3069 
3070 	/* Trim off the FCS */
3071 	pskb_trim(skb, skb->len - ETH_FCS_LEN);
3072 
3073 	if (ndev->features & NETIF_F_RXCSUM)
3074 		gfar_rx_checksum(skb, fcb);
3075 
3076 	/* There's need to check for NETIF_F_HW_VLAN_CTAG_RX here.
3077 	 * Even if vlan rx accel is disabled, on some chips
3078 	 * RXFCB_VLN is pseudo randomly set.
3079 	 */
3080 	if (ndev->features & NETIF_F_HW_VLAN_CTAG_RX &&
3081 	    be16_to_cpu(fcb->flags) & RXFCB_VLN)
3082 		__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q),
3083 				       be16_to_cpu(fcb->vlctl));
3084 }
3085 
3086 /* gfar_clean_rx_ring() -- Processes each frame in the rx ring
3087  * until the budget/quota has been reached. Returns the number
3088  * of frames handled
3089  */
gfar_clean_rx_ring(struct gfar_priv_rx_q * rx_queue,int rx_work_limit)3090 int gfar_clean_rx_ring(struct gfar_priv_rx_q *rx_queue, int rx_work_limit)
3091 {
3092 	struct net_device *ndev = rx_queue->ndev;
3093 	struct gfar_private *priv = netdev_priv(ndev);
3094 	struct rxbd8 *bdp;
3095 	int i, howmany = 0;
3096 	struct sk_buff *skb = rx_queue->skb;
3097 	int cleaned_cnt = gfar_rxbd_unused(rx_queue);
3098 	unsigned int total_bytes = 0, total_pkts = 0;
3099 
3100 	/* Get the first full descriptor */
3101 	i = rx_queue->next_to_clean;
3102 
3103 	while (rx_work_limit--) {
3104 		u32 lstatus;
3105 
3106 		if (cleaned_cnt >= GFAR_RX_BUFF_ALLOC) {
3107 			gfar_alloc_rx_buffs(rx_queue, cleaned_cnt);
3108 			cleaned_cnt = 0;
3109 		}
3110 
3111 		bdp = &rx_queue->rx_bd_base[i];
3112 		lstatus = be32_to_cpu(bdp->lstatus);
3113 		if (lstatus & BD_LFLAG(RXBD_EMPTY))
3114 			break;
3115 
3116 		/* lost RXBD_LAST descriptor due to overrun */
3117 		if (skb &&
3118 		    (lstatus & BD_LFLAG(RXBD_FIRST))) {
3119 			/* discard faulty buffer */
3120 			dev_kfree_skb(skb);
3121 			skb = NULL;
3122 			rx_queue->stats.rx_dropped++;
3123 
3124 			/* can continue normally */
3125 		}
3126 
3127 		/* order rx buffer descriptor reads */
3128 		rmb();
3129 
3130 		/* fetch next to clean buffer from the ring */
3131 		skb = gfar_get_next_rxbuff(rx_queue, lstatus, skb);
3132 		if (unlikely(!skb))
3133 			break;
3134 
3135 		cleaned_cnt++;
3136 		howmany++;
3137 
3138 		if (unlikely(++i == rx_queue->rx_ring_size))
3139 			i = 0;
3140 
3141 		rx_queue->next_to_clean = i;
3142 
3143 		/* fetch next buffer if not the last in frame */
3144 		if (!(lstatus & BD_LFLAG(RXBD_LAST)))
3145 			continue;
3146 
3147 		if (unlikely(lstatus & BD_LFLAG(RXBD_ERR))) {
3148 			count_errors(lstatus, ndev);
3149 
3150 			/* discard faulty buffer */
3151 			dev_kfree_skb(skb);
3152 			skb = NULL;
3153 			rx_queue->stats.rx_dropped++;
3154 			continue;
3155 		}
3156 
3157 		gfar_process_frame(ndev, skb);
3158 
3159 		/* Increment the number of packets */
3160 		total_pkts++;
3161 		total_bytes += skb->len;
3162 
3163 		skb_record_rx_queue(skb, rx_queue->qindex);
3164 
3165 		skb->protocol = eth_type_trans(skb, ndev);
3166 
3167 		/* Send the packet up the stack */
3168 		napi_gro_receive(&rx_queue->grp->napi_rx, skb);
3169 
3170 		skb = NULL;
3171 	}
3172 
3173 	/* Store incomplete frames for completion */
3174 	rx_queue->skb = skb;
3175 
3176 	rx_queue->stats.rx_packets += total_pkts;
3177 	rx_queue->stats.rx_bytes += total_bytes;
3178 
3179 	if (cleaned_cnt)
3180 		gfar_alloc_rx_buffs(rx_queue, cleaned_cnt);
3181 
3182 	/* Update Last Free RxBD pointer for LFC */
3183 	if (unlikely(priv->tx_actual_en)) {
3184 		u32 bdp_dma = gfar_rxbd_dma_lastfree(rx_queue);
3185 
3186 		gfar_write(rx_queue->rfbptr, bdp_dma);
3187 	}
3188 
3189 	return howmany;
3190 }
3191 
gfar_poll_rx_sq(struct napi_struct * napi,int budget)3192 static int gfar_poll_rx_sq(struct napi_struct *napi, int budget)
3193 {
3194 	struct gfar_priv_grp *gfargrp =
3195 		container_of(napi, struct gfar_priv_grp, napi_rx);
3196 	struct gfar __iomem *regs = gfargrp->regs;
3197 	struct gfar_priv_rx_q *rx_queue = gfargrp->rx_queue;
3198 	int work_done = 0;
3199 
3200 	/* Clear IEVENT, so interrupts aren't called again
3201 	 * because of the packets that have already arrived
3202 	 */
3203 	gfar_write(&regs->ievent, IEVENT_RX_MASK);
3204 
3205 	work_done = gfar_clean_rx_ring(rx_queue, budget);
3206 
3207 	if (work_done < budget) {
3208 		u32 imask;
3209 		napi_complete_done(napi, work_done);
3210 		/* Clear the halt bit in RSTAT */
3211 		gfar_write(&regs->rstat, gfargrp->rstat);
3212 
3213 		spin_lock_irq(&gfargrp->grplock);
3214 		imask = gfar_read(&regs->imask);
3215 		imask |= IMASK_RX_DEFAULT;
3216 		gfar_write(&regs->imask, imask);
3217 		spin_unlock_irq(&gfargrp->grplock);
3218 	}
3219 
3220 	return work_done;
3221 }
3222 
gfar_poll_tx_sq(struct napi_struct * napi,int budget)3223 static int gfar_poll_tx_sq(struct napi_struct *napi, int budget)
3224 {
3225 	struct gfar_priv_grp *gfargrp =
3226 		container_of(napi, struct gfar_priv_grp, napi_tx);
3227 	struct gfar __iomem *regs = gfargrp->regs;
3228 	struct gfar_priv_tx_q *tx_queue = gfargrp->tx_queue;
3229 	u32 imask;
3230 
3231 	/* Clear IEVENT, so interrupts aren't called again
3232 	 * because of the packets that have already arrived
3233 	 */
3234 	gfar_write(&regs->ievent, IEVENT_TX_MASK);
3235 
3236 	/* run Tx cleanup to completion */
3237 	if (tx_queue->tx_skbuff[tx_queue->skb_dirtytx])
3238 		gfar_clean_tx_ring(tx_queue);
3239 
3240 	napi_complete(napi);
3241 
3242 	spin_lock_irq(&gfargrp->grplock);
3243 	imask = gfar_read(&regs->imask);
3244 	imask |= IMASK_TX_DEFAULT;
3245 	gfar_write(&regs->imask, imask);
3246 	spin_unlock_irq(&gfargrp->grplock);
3247 
3248 	return 0;
3249 }
3250 
gfar_poll_rx(struct napi_struct * napi,int budget)3251 static int gfar_poll_rx(struct napi_struct *napi, int budget)
3252 {
3253 	struct gfar_priv_grp *gfargrp =
3254 		container_of(napi, struct gfar_priv_grp, napi_rx);
3255 	struct gfar_private *priv = gfargrp->priv;
3256 	struct gfar __iomem *regs = gfargrp->regs;
3257 	struct gfar_priv_rx_q *rx_queue = NULL;
3258 	int work_done = 0, work_done_per_q = 0;
3259 	int i, budget_per_q = 0;
3260 	unsigned long rstat_rxf;
3261 	int num_act_queues;
3262 
3263 	/* Clear IEVENT, so interrupts aren't called again
3264 	 * because of the packets that have already arrived
3265 	 */
3266 	gfar_write(&regs->ievent, IEVENT_RX_MASK);
3267 
3268 	rstat_rxf = gfar_read(&regs->rstat) & RSTAT_RXF_MASK;
3269 
3270 	num_act_queues = bitmap_weight(&rstat_rxf, MAX_RX_QS);
3271 	if (num_act_queues)
3272 		budget_per_q = budget/num_act_queues;
3273 
3274 	for_each_set_bit(i, &gfargrp->rx_bit_map, priv->num_rx_queues) {
3275 		/* skip queue if not active */
3276 		if (!(rstat_rxf & (RSTAT_CLEAR_RXF0 >> i)))
3277 			continue;
3278 
3279 		rx_queue = priv->rx_queue[i];
3280 		work_done_per_q =
3281 			gfar_clean_rx_ring(rx_queue, budget_per_q);
3282 		work_done += work_done_per_q;
3283 
3284 		/* finished processing this queue */
3285 		if (work_done_per_q < budget_per_q) {
3286 			/* clear active queue hw indication */
3287 			gfar_write(&regs->rstat,
3288 				   RSTAT_CLEAR_RXF0 >> i);
3289 			num_act_queues--;
3290 
3291 			if (!num_act_queues)
3292 				break;
3293 		}
3294 	}
3295 
3296 	if (!num_act_queues) {
3297 		u32 imask;
3298 		napi_complete_done(napi, work_done);
3299 
3300 		/* Clear the halt bit in RSTAT */
3301 		gfar_write(&regs->rstat, gfargrp->rstat);
3302 
3303 		spin_lock_irq(&gfargrp->grplock);
3304 		imask = gfar_read(&regs->imask);
3305 		imask |= IMASK_RX_DEFAULT;
3306 		gfar_write(&regs->imask, imask);
3307 		spin_unlock_irq(&gfargrp->grplock);
3308 	}
3309 
3310 	return work_done;
3311 }
3312 
gfar_poll_tx(struct napi_struct * napi,int budget)3313 static int gfar_poll_tx(struct napi_struct *napi, int budget)
3314 {
3315 	struct gfar_priv_grp *gfargrp =
3316 		container_of(napi, struct gfar_priv_grp, napi_tx);
3317 	struct gfar_private *priv = gfargrp->priv;
3318 	struct gfar __iomem *regs = gfargrp->regs;
3319 	struct gfar_priv_tx_q *tx_queue = NULL;
3320 	int has_tx_work = 0;
3321 	int i;
3322 
3323 	/* Clear IEVENT, so interrupts aren't called again
3324 	 * because of the packets that have already arrived
3325 	 */
3326 	gfar_write(&regs->ievent, IEVENT_TX_MASK);
3327 
3328 	for_each_set_bit(i, &gfargrp->tx_bit_map, priv->num_tx_queues) {
3329 		tx_queue = priv->tx_queue[i];
3330 		/* run Tx cleanup to completion */
3331 		if (tx_queue->tx_skbuff[tx_queue->skb_dirtytx]) {
3332 			gfar_clean_tx_ring(tx_queue);
3333 			has_tx_work = 1;
3334 		}
3335 	}
3336 
3337 	if (!has_tx_work) {
3338 		u32 imask;
3339 		napi_complete(napi);
3340 
3341 		spin_lock_irq(&gfargrp->grplock);
3342 		imask = gfar_read(&regs->imask);
3343 		imask |= IMASK_TX_DEFAULT;
3344 		gfar_write(&regs->imask, imask);
3345 		spin_unlock_irq(&gfargrp->grplock);
3346 	}
3347 
3348 	return 0;
3349 }
3350 
3351 
3352 #ifdef CONFIG_NET_POLL_CONTROLLER
3353 /* Polling 'interrupt' - used by things like netconsole to send skbs
3354  * without having to re-enable interrupts. It's not called while
3355  * the interrupt routine is executing.
3356  */
gfar_netpoll(struct net_device * dev)3357 static void gfar_netpoll(struct net_device *dev)
3358 {
3359 	struct gfar_private *priv = netdev_priv(dev);
3360 	int i;
3361 
3362 	/* If the device has multiple interrupts, run tx/rx */
3363 	if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
3364 		for (i = 0; i < priv->num_grps; i++) {
3365 			struct gfar_priv_grp *grp = &priv->gfargrp[i];
3366 
3367 			disable_irq(gfar_irq(grp, TX)->irq);
3368 			disable_irq(gfar_irq(grp, RX)->irq);
3369 			disable_irq(gfar_irq(grp, ER)->irq);
3370 			gfar_interrupt(gfar_irq(grp, TX)->irq, grp);
3371 			enable_irq(gfar_irq(grp, ER)->irq);
3372 			enable_irq(gfar_irq(grp, RX)->irq);
3373 			enable_irq(gfar_irq(grp, TX)->irq);
3374 		}
3375 	} else {
3376 		for (i = 0; i < priv->num_grps; i++) {
3377 			struct gfar_priv_grp *grp = &priv->gfargrp[i];
3378 
3379 			disable_irq(gfar_irq(grp, TX)->irq);
3380 			gfar_interrupt(gfar_irq(grp, TX)->irq, grp);
3381 			enable_irq(gfar_irq(grp, TX)->irq);
3382 		}
3383 	}
3384 }
3385 #endif
3386 
3387 /* The interrupt handler for devices with one interrupt */
gfar_interrupt(int irq,void * grp_id)3388 static irqreturn_t gfar_interrupt(int irq, void *grp_id)
3389 {
3390 	struct gfar_priv_grp *gfargrp = grp_id;
3391 
3392 	/* Save ievent for future reference */
3393 	u32 events = gfar_read(&gfargrp->regs->ievent);
3394 
3395 	/* Check for reception */
3396 	if (events & IEVENT_RX_MASK)
3397 		gfar_receive(irq, grp_id);
3398 
3399 	/* Check for transmit completion */
3400 	if (events & IEVENT_TX_MASK)
3401 		gfar_transmit(irq, grp_id);
3402 
3403 	/* Check for errors */
3404 	if (events & IEVENT_ERR_MASK)
3405 		gfar_error(irq, grp_id);
3406 
3407 	return IRQ_HANDLED;
3408 }
3409 
3410 /* Called every time the controller might need to be made
3411  * aware of new link state.  The PHY code conveys this
3412  * information through variables in the phydev structure, and this
3413  * function converts those variables into the appropriate
3414  * register values, and can bring down the device if needed.
3415  */
adjust_link(struct net_device * dev)3416 static void adjust_link(struct net_device *dev)
3417 {
3418 	struct gfar_private *priv = netdev_priv(dev);
3419 	struct phy_device *phydev = dev->phydev;
3420 
3421 	if (unlikely(phydev->link != priv->oldlink ||
3422 		     (phydev->link && (phydev->duplex != priv->oldduplex ||
3423 				       phydev->speed != priv->oldspeed))))
3424 		gfar_update_link_state(priv);
3425 }
3426 
3427 /* Update the hash table based on the current list of multicast
3428  * addresses we subscribe to.  Also, change the promiscuity of
3429  * the device based on the flags (this function is called
3430  * whenever dev->flags is changed
3431  */
gfar_set_multi(struct net_device * dev)3432 static void gfar_set_multi(struct net_device *dev)
3433 {
3434 	struct netdev_hw_addr *ha;
3435 	struct gfar_private *priv = netdev_priv(dev);
3436 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
3437 	u32 tempval;
3438 
3439 	if (dev->flags & IFF_PROMISC) {
3440 		/* Set RCTRL to PROM */
3441 		tempval = gfar_read(&regs->rctrl);
3442 		tempval |= RCTRL_PROM;
3443 		gfar_write(&regs->rctrl, tempval);
3444 	} else {
3445 		/* Set RCTRL to not PROM */
3446 		tempval = gfar_read(&regs->rctrl);
3447 		tempval &= ~(RCTRL_PROM);
3448 		gfar_write(&regs->rctrl, tempval);
3449 	}
3450 
3451 	if (dev->flags & IFF_ALLMULTI) {
3452 		/* Set the hash to rx all multicast frames */
3453 		gfar_write(&regs->igaddr0, 0xffffffff);
3454 		gfar_write(&regs->igaddr1, 0xffffffff);
3455 		gfar_write(&regs->igaddr2, 0xffffffff);
3456 		gfar_write(&regs->igaddr3, 0xffffffff);
3457 		gfar_write(&regs->igaddr4, 0xffffffff);
3458 		gfar_write(&regs->igaddr5, 0xffffffff);
3459 		gfar_write(&regs->igaddr6, 0xffffffff);
3460 		gfar_write(&regs->igaddr7, 0xffffffff);
3461 		gfar_write(&regs->gaddr0, 0xffffffff);
3462 		gfar_write(&regs->gaddr1, 0xffffffff);
3463 		gfar_write(&regs->gaddr2, 0xffffffff);
3464 		gfar_write(&regs->gaddr3, 0xffffffff);
3465 		gfar_write(&regs->gaddr4, 0xffffffff);
3466 		gfar_write(&regs->gaddr5, 0xffffffff);
3467 		gfar_write(&regs->gaddr6, 0xffffffff);
3468 		gfar_write(&regs->gaddr7, 0xffffffff);
3469 	} else {
3470 		int em_num;
3471 		int idx;
3472 
3473 		/* zero out the hash */
3474 		gfar_write(&regs->igaddr0, 0x0);
3475 		gfar_write(&regs->igaddr1, 0x0);
3476 		gfar_write(&regs->igaddr2, 0x0);
3477 		gfar_write(&regs->igaddr3, 0x0);
3478 		gfar_write(&regs->igaddr4, 0x0);
3479 		gfar_write(&regs->igaddr5, 0x0);
3480 		gfar_write(&regs->igaddr6, 0x0);
3481 		gfar_write(&regs->igaddr7, 0x0);
3482 		gfar_write(&regs->gaddr0, 0x0);
3483 		gfar_write(&regs->gaddr1, 0x0);
3484 		gfar_write(&regs->gaddr2, 0x0);
3485 		gfar_write(&regs->gaddr3, 0x0);
3486 		gfar_write(&regs->gaddr4, 0x0);
3487 		gfar_write(&regs->gaddr5, 0x0);
3488 		gfar_write(&regs->gaddr6, 0x0);
3489 		gfar_write(&regs->gaddr7, 0x0);
3490 
3491 		/* If we have extended hash tables, we need to
3492 		 * clear the exact match registers to prepare for
3493 		 * setting them
3494 		 */
3495 		if (priv->extended_hash) {
3496 			em_num = GFAR_EM_NUM + 1;
3497 			gfar_clear_exact_match(dev);
3498 			idx = 1;
3499 		} else {
3500 			idx = 0;
3501 			em_num = 0;
3502 		}
3503 
3504 		if (netdev_mc_empty(dev))
3505 			return;
3506 
3507 		/* Parse the list, and set the appropriate bits */
3508 		netdev_for_each_mc_addr(ha, dev) {
3509 			if (idx < em_num) {
3510 				gfar_set_mac_for_addr(dev, idx, ha->addr);
3511 				idx++;
3512 			} else
3513 				gfar_set_hash_for_addr(dev, ha->addr);
3514 		}
3515 	}
3516 }
3517 
3518 
3519 /* Clears each of the exact match registers to zero, so they
3520  * don't interfere with normal reception
3521  */
gfar_clear_exact_match(struct net_device * dev)3522 static void gfar_clear_exact_match(struct net_device *dev)
3523 {
3524 	int idx;
3525 	static const u8 zero_arr[ETH_ALEN] = {0, 0, 0, 0, 0, 0};
3526 
3527 	for (idx = 1; idx < GFAR_EM_NUM + 1; idx++)
3528 		gfar_set_mac_for_addr(dev, idx, zero_arr);
3529 }
3530 
3531 /* Set the appropriate hash bit for the given addr */
3532 /* The algorithm works like so:
3533  * 1) Take the Destination Address (ie the multicast address), and
3534  * do a CRC on it (little endian), and reverse the bits of the
3535  * result.
3536  * 2) Use the 8 most significant bits as a hash into a 256-entry
3537  * table.  The table is controlled through 8 32-bit registers:
3538  * gaddr0-7.  gaddr0's MSB is entry 0, and gaddr7's LSB is
3539  * gaddr7.  This means that the 3 most significant bits in the
3540  * hash index which gaddr register to use, and the 5 other bits
3541  * indicate which bit (assuming an IBM numbering scheme, which
3542  * for PowerPC (tm) is usually the case) in the register holds
3543  * the entry.
3544  */
gfar_set_hash_for_addr(struct net_device * dev,u8 * addr)3545 static void gfar_set_hash_for_addr(struct net_device *dev, u8 *addr)
3546 {
3547 	u32 tempval;
3548 	struct gfar_private *priv = netdev_priv(dev);
3549 	u32 result = ether_crc(ETH_ALEN, addr);
3550 	int width = priv->hash_width;
3551 	u8 whichbit = (result >> (32 - width)) & 0x1f;
3552 	u8 whichreg = result >> (32 - width + 5);
3553 	u32 value = (1 << (31-whichbit));
3554 
3555 	tempval = gfar_read(priv->hash_regs[whichreg]);
3556 	tempval |= value;
3557 	gfar_write(priv->hash_regs[whichreg], tempval);
3558 }
3559 
3560 
3561 /* There are multiple MAC Address register pairs on some controllers
3562  * This function sets the numth pair to a given address
3563  */
gfar_set_mac_for_addr(struct net_device * dev,int num,const u8 * addr)3564 static void gfar_set_mac_for_addr(struct net_device *dev, int num,
3565 				  const u8 *addr)
3566 {
3567 	struct gfar_private *priv = netdev_priv(dev);
3568 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
3569 	u32 tempval;
3570 	u32 __iomem *macptr = &regs->macstnaddr1;
3571 
3572 	macptr += num*2;
3573 
3574 	/* For a station address of 0x12345678ABCD in transmission
3575 	 * order (BE), MACnADDR1 is set to 0xCDAB7856 and
3576 	 * MACnADDR2 is set to 0x34120000.
3577 	 */
3578 	tempval = (addr[5] << 24) | (addr[4] << 16) |
3579 		  (addr[3] << 8)  |  addr[2];
3580 
3581 	gfar_write(macptr, tempval);
3582 
3583 	tempval = (addr[1] << 24) | (addr[0] << 16);
3584 
3585 	gfar_write(macptr+1, tempval);
3586 }
3587 
3588 /* GFAR error interrupt handler */
gfar_error(int irq,void * grp_id)3589 static irqreturn_t gfar_error(int irq, void *grp_id)
3590 {
3591 	struct gfar_priv_grp *gfargrp = grp_id;
3592 	struct gfar __iomem *regs = gfargrp->regs;
3593 	struct gfar_private *priv= gfargrp->priv;
3594 	struct net_device *dev = priv->ndev;
3595 
3596 	/* Save ievent for future reference */
3597 	u32 events = gfar_read(&regs->ievent);
3598 
3599 	/* Clear IEVENT */
3600 	gfar_write(&regs->ievent, events & IEVENT_ERR_MASK);
3601 
3602 	/* Magic Packet is not an error. */
3603 	if ((priv->device_flags & FSL_GIANFAR_DEV_HAS_MAGIC_PACKET) &&
3604 	    (events & IEVENT_MAG))
3605 		events &= ~IEVENT_MAG;
3606 
3607 	/* Hmm... */
3608 	if (netif_msg_rx_err(priv) || netif_msg_tx_err(priv))
3609 		netdev_dbg(dev,
3610 			   "error interrupt (ievent=0x%08x imask=0x%08x)\n",
3611 			   events, gfar_read(&regs->imask));
3612 
3613 	/* Update the error counters */
3614 	if (events & IEVENT_TXE) {
3615 		dev->stats.tx_errors++;
3616 
3617 		if (events & IEVENT_LC)
3618 			dev->stats.tx_window_errors++;
3619 		if (events & IEVENT_CRL)
3620 			dev->stats.tx_aborted_errors++;
3621 		if (events & IEVENT_XFUN) {
3622 			netif_dbg(priv, tx_err, dev,
3623 				  "TX FIFO underrun, packet dropped\n");
3624 			dev->stats.tx_dropped++;
3625 			atomic64_inc(&priv->extra_stats.tx_underrun);
3626 
3627 			schedule_work(&priv->reset_task);
3628 		}
3629 		netif_dbg(priv, tx_err, dev, "Transmit Error\n");
3630 	}
3631 	if (events & IEVENT_BSY) {
3632 		dev->stats.rx_over_errors++;
3633 		atomic64_inc(&priv->extra_stats.rx_bsy);
3634 
3635 		netif_dbg(priv, rx_err, dev, "busy error (rstat: %x)\n",
3636 			  gfar_read(&regs->rstat));
3637 	}
3638 	if (events & IEVENT_BABR) {
3639 		dev->stats.rx_errors++;
3640 		atomic64_inc(&priv->extra_stats.rx_babr);
3641 
3642 		netif_dbg(priv, rx_err, dev, "babbling RX error\n");
3643 	}
3644 	if (events & IEVENT_EBERR) {
3645 		atomic64_inc(&priv->extra_stats.eberr);
3646 		netif_dbg(priv, rx_err, dev, "bus error\n");
3647 	}
3648 	if (events & IEVENT_RXC)
3649 		netif_dbg(priv, rx_status, dev, "control frame\n");
3650 
3651 	if (events & IEVENT_BABT) {
3652 		atomic64_inc(&priv->extra_stats.tx_babt);
3653 		netif_dbg(priv, tx_err, dev, "babbling TX error\n");
3654 	}
3655 	return IRQ_HANDLED;
3656 }
3657 
gfar_get_flowctrl_cfg(struct gfar_private * priv)3658 static u32 gfar_get_flowctrl_cfg(struct gfar_private *priv)
3659 {
3660 	struct net_device *ndev = priv->ndev;
3661 	struct phy_device *phydev = ndev->phydev;
3662 	u32 val = 0;
3663 
3664 	if (!phydev->duplex)
3665 		return val;
3666 
3667 	if (!priv->pause_aneg_en) {
3668 		if (priv->tx_pause_en)
3669 			val |= MACCFG1_TX_FLOW;
3670 		if (priv->rx_pause_en)
3671 			val |= MACCFG1_RX_FLOW;
3672 	} else {
3673 		u16 lcl_adv, rmt_adv;
3674 		u8 flowctrl;
3675 		/* get link partner capabilities */
3676 		rmt_adv = 0;
3677 		if (phydev->pause)
3678 			rmt_adv = LPA_PAUSE_CAP;
3679 		if (phydev->asym_pause)
3680 			rmt_adv |= LPA_PAUSE_ASYM;
3681 
3682 		lcl_adv = 0;
3683 		if (phydev->advertising & ADVERTISED_Pause)
3684 			lcl_adv |= ADVERTISE_PAUSE_CAP;
3685 		if (phydev->advertising & ADVERTISED_Asym_Pause)
3686 			lcl_adv |= ADVERTISE_PAUSE_ASYM;
3687 
3688 		flowctrl = mii_resolve_flowctrl_fdx(lcl_adv, rmt_adv);
3689 		if (flowctrl & FLOW_CTRL_TX)
3690 			val |= MACCFG1_TX_FLOW;
3691 		if (flowctrl & FLOW_CTRL_RX)
3692 			val |= MACCFG1_RX_FLOW;
3693 	}
3694 
3695 	return val;
3696 }
3697 
gfar_update_link_state(struct gfar_private * priv)3698 static noinline void gfar_update_link_state(struct gfar_private *priv)
3699 {
3700 	struct gfar __iomem *regs = priv->gfargrp[0].regs;
3701 	struct net_device *ndev = priv->ndev;
3702 	struct phy_device *phydev = ndev->phydev;
3703 	struct gfar_priv_rx_q *rx_queue = NULL;
3704 	int i;
3705 
3706 	if (unlikely(test_bit(GFAR_RESETTING, &priv->state)))
3707 		return;
3708 
3709 	if (phydev->link) {
3710 		u32 tempval1 = gfar_read(&regs->maccfg1);
3711 		u32 tempval = gfar_read(&regs->maccfg2);
3712 		u32 ecntrl = gfar_read(&regs->ecntrl);
3713 		u32 tx_flow_oldval = (tempval1 & MACCFG1_TX_FLOW);
3714 
3715 		if (phydev->duplex != priv->oldduplex) {
3716 			if (!(phydev->duplex))
3717 				tempval &= ~(MACCFG2_FULL_DUPLEX);
3718 			else
3719 				tempval |= MACCFG2_FULL_DUPLEX;
3720 
3721 			priv->oldduplex = phydev->duplex;
3722 		}
3723 
3724 		if (phydev->speed != priv->oldspeed) {
3725 			switch (phydev->speed) {
3726 			case 1000:
3727 				tempval =
3728 				    ((tempval & ~(MACCFG2_IF)) | MACCFG2_GMII);
3729 
3730 				ecntrl &= ~(ECNTRL_R100);
3731 				break;
3732 			case 100:
3733 			case 10:
3734 				tempval =
3735 				    ((tempval & ~(MACCFG2_IF)) | MACCFG2_MII);
3736 
3737 				/* Reduced mode distinguishes
3738 				 * between 10 and 100
3739 				 */
3740 				if (phydev->speed == SPEED_100)
3741 					ecntrl |= ECNTRL_R100;
3742 				else
3743 					ecntrl &= ~(ECNTRL_R100);
3744 				break;
3745 			default:
3746 				netif_warn(priv, link, priv->ndev,
3747 					   "Ack!  Speed (%d) is not 10/100/1000!\n",
3748 					   phydev->speed);
3749 				break;
3750 			}
3751 
3752 			priv->oldspeed = phydev->speed;
3753 		}
3754 
3755 		tempval1 &= ~(MACCFG1_TX_FLOW | MACCFG1_RX_FLOW);
3756 		tempval1 |= gfar_get_flowctrl_cfg(priv);
3757 
3758 		/* Turn last free buffer recording on */
3759 		if ((tempval1 & MACCFG1_TX_FLOW) && !tx_flow_oldval) {
3760 			for (i = 0; i < priv->num_rx_queues; i++) {
3761 				u32 bdp_dma;
3762 
3763 				rx_queue = priv->rx_queue[i];
3764 				bdp_dma = gfar_rxbd_dma_lastfree(rx_queue);
3765 				gfar_write(rx_queue->rfbptr, bdp_dma);
3766 			}
3767 
3768 			priv->tx_actual_en = 1;
3769 		}
3770 
3771 		if (unlikely(!(tempval1 & MACCFG1_TX_FLOW) && tx_flow_oldval))
3772 			priv->tx_actual_en = 0;
3773 
3774 		gfar_write(&regs->maccfg1, tempval1);
3775 		gfar_write(&regs->maccfg2, tempval);
3776 		gfar_write(&regs->ecntrl, ecntrl);
3777 
3778 		if (!priv->oldlink)
3779 			priv->oldlink = 1;
3780 
3781 	} else if (priv->oldlink) {
3782 		priv->oldlink = 0;
3783 		priv->oldspeed = 0;
3784 		priv->oldduplex = -1;
3785 	}
3786 
3787 	if (netif_msg_link(priv))
3788 		phy_print_status(phydev);
3789 }
3790 
3791 static const struct of_device_id gfar_match[] =
3792 {
3793 	{
3794 		.type = "network",
3795 		.compatible = "gianfar",
3796 	},
3797 	{
3798 		.compatible = "fsl,etsec2",
3799 	},
3800 	{},
3801 };
3802 MODULE_DEVICE_TABLE(of, gfar_match);
3803 
3804 /* Structure for a device driver */
3805 static struct platform_driver gfar_driver = {
3806 	.driver = {
3807 		.name = "fsl-gianfar",
3808 		.pm = GFAR_PM_OPS,
3809 		.of_match_table = gfar_match,
3810 	},
3811 	.probe = gfar_probe,
3812 	.remove = gfar_remove,
3813 };
3814 
3815 module_platform_driver(gfar_driver);
3816