• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright(c) 1999 - 2018 Intel Corporation. */
3 
4 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
5 
6 #include <linux/module.h>
7 #include <linux/types.h>
8 #include <linux/init.h>
9 #include <linux/pci.h>
10 #include <linux/vmalloc.h>
11 #include <linux/pagemap.h>
12 #include <linux/delay.h>
13 #include <linux/netdevice.h>
14 #include <linux/interrupt.h>
15 #include <linux/tcp.h>
16 #include <linux/ipv6.h>
17 #include <linux/slab.h>
18 #include <net/checksum.h>
19 #include <net/ip6_checksum.h>
20 #include <linux/ethtool.h>
21 #include <linux/if_vlan.h>
22 #include <linux/cpu.h>
23 #include <linux/smp.h>
24 #include <linux/pm_qos.h>
25 #include <linux/pm_runtime.h>
26 #include <linux/aer.h>
27 #include <linux/prefetch.h>
28 
29 #include "e1000.h"
30 
31 #define DRV_EXTRAVERSION "-k"
32 
33 #define DRV_VERSION "3.2.6" DRV_EXTRAVERSION
34 char e1000e_driver_name[] = "e1000e";
35 const char e1000e_driver_version[] = DRV_VERSION;
36 
37 #define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV|NETIF_MSG_PROBE|NETIF_MSG_LINK)
38 static int debug = -1;
39 module_param(debug, int, 0);
40 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
41 
42 static const struct e1000_info *e1000_info_tbl[] = {
43 	[board_82571]		= &e1000_82571_info,
44 	[board_82572]		= &e1000_82572_info,
45 	[board_82573]		= &e1000_82573_info,
46 	[board_82574]		= &e1000_82574_info,
47 	[board_82583]		= &e1000_82583_info,
48 	[board_80003es2lan]	= &e1000_es2_info,
49 	[board_ich8lan]		= &e1000_ich8_info,
50 	[board_ich9lan]		= &e1000_ich9_info,
51 	[board_ich10lan]	= &e1000_ich10_info,
52 	[board_pchlan]		= &e1000_pch_info,
53 	[board_pch2lan]		= &e1000_pch2_info,
54 	[board_pch_lpt]		= &e1000_pch_lpt_info,
55 	[board_pch_spt]		= &e1000_pch_spt_info,
56 	[board_pch_cnp]		= &e1000_pch_cnp_info,
57 };
58 
59 struct e1000_reg_info {
60 	u32 ofs;
61 	char *name;
62 };
63 
64 static const struct e1000_reg_info e1000_reg_info_tbl[] = {
65 	/* General Registers */
66 	{E1000_CTRL, "CTRL"},
67 	{E1000_STATUS, "STATUS"},
68 	{E1000_CTRL_EXT, "CTRL_EXT"},
69 
70 	/* Interrupt Registers */
71 	{E1000_ICR, "ICR"},
72 
73 	/* Rx Registers */
74 	{E1000_RCTL, "RCTL"},
75 	{E1000_RDLEN(0), "RDLEN"},
76 	{E1000_RDH(0), "RDH"},
77 	{E1000_RDT(0), "RDT"},
78 	{E1000_RDTR, "RDTR"},
79 	{E1000_RXDCTL(0), "RXDCTL"},
80 	{E1000_ERT, "ERT"},
81 	{E1000_RDBAL(0), "RDBAL"},
82 	{E1000_RDBAH(0), "RDBAH"},
83 	{E1000_RDFH, "RDFH"},
84 	{E1000_RDFT, "RDFT"},
85 	{E1000_RDFHS, "RDFHS"},
86 	{E1000_RDFTS, "RDFTS"},
87 	{E1000_RDFPC, "RDFPC"},
88 
89 	/* Tx Registers */
90 	{E1000_TCTL, "TCTL"},
91 	{E1000_TDBAL(0), "TDBAL"},
92 	{E1000_TDBAH(0), "TDBAH"},
93 	{E1000_TDLEN(0), "TDLEN"},
94 	{E1000_TDH(0), "TDH"},
95 	{E1000_TDT(0), "TDT"},
96 	{E1000_TIDV, "TIDV"},
97 	{E1000_TXDCTL(0), "TXDCTL"},
98 	{E1000_TADV, "TADV"},
99 	{E1000_TARC(0), "TARC"},
100 	{E1000_TDFH, "TDFH"},
101 	{E1000_TDFT, "TDFT"},
102 	{E1000_TDFHS, "TDFHS"},
103 	{E1000_TDFTS, "TDFTS"},
104 	{E1000_TDFPC, "TDFPC"},
105 
106 	/* List Terminator */
107 	{0, NULL}
108 };
109 
110 /**
111  * __ew32_prepare - prepare to write to MAC CSR register on certain parts
112  * @hw: pointer to the HW structure
113  *
114  * When updating the MAC CSR registers, the Manageability Engine (ME) could
115  * be accessing the registers at the same time.  Normally, this is handled in
116  * h/w by an arbiter but on some parts there is a bug that acknowledges Host
117  * accesses later than it should which could result in the register to have
118  * an incorrect value.  Workaround this by checking the FWSM register which
119  * has bit 24 set while ME is accessing MAC CSR registers, wait if it is set
120  * and try again a number of times.
121  **/
__ew32_prepare(struct e1000_hw * hw)122 static void __ew32_prepare(struct e1000_hw *hw)
123 {
124 	s32 i = E1000_ICH_FWSM_PCIM2PCI_COUNT;
125 
126 	while ((er32(FWSM) & E1000_ICH_FWSM_PCIM2PCI) && --i)
127 		udelay(50);
128 }
129 
__ew32(struct e1000_hw * hw,unsigned long reg,u32 val)130 void __ew32(struct e1000_hw *hw, unsigned long reg, u32 val)
131 {
132 	if (hw->adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
133 		__ew32_prepare(hw);
134 
135 	writel(val, hw->hw_addr + reg);
136 }
137 
138 /**
139  * e1000_regdump - register printout routine
140  * @hw: pointer to the HW structure
141  * @reginfo: pointer to the register info table
142  **/
e1000_regdump(struct e1000_hw * hw,struct e1000_reg_info * reginfo)143 static void e1000_regdump(struct e1000_hw *hw, struct e1000_reg_info *reginfo)
144 {
145 	int n = 0;
146 	char rname[16];
147 	u32 regs[8];
148 
149 	switch (reginfo->ofs) {
150 	case E1000_RXDCTL(0):
151 		for (n = 0; n < 2; n++)
152 			regs[n] = __er32(hw, E1000_RXDCTL(n));
153 		break;
154 	case E1000_TXDCTL(0):
155 		for (n = 0; n < 2; n++)
156 			regs[n] = __er32(hw, E1000_TXDCTL(n));
157 		break;
158 	case E1000_TARC(0):
159 		for (n = 0; n < 2; n++)
160 			regs[n] = __er32(hw, E1000_TARC(n));
161 		break;
162 	default:
163 		pr_info("%-15s %08x\n",
164 			reginfo->name, __er32(hw, reginfo->ofs));
165 		return;
166 	}
167 
168 	snprintf(rname, 16, "%s%s", reginfo->name, "[0-1]");
169 	pr_info("%-15s %08x %08x\n", rname, regs[0], regs[1]);
170 }
171 
e1000e_dump_ps_pages(struct e1000_adapter * adapter,struct e1000_buffer * bi)172 static void e1000e_dump_ps_pages(struct e1000_adapter *adapter,
173 				 struct e1000_buffer *bi)
174 {
175 	int i;
176 	struct e1000_ps_page *ps_page;
177 
178 	for (i = 0; i < adapter->rx_ps_pages; i++) {
179 		ps_page = &bi->ps_pages[i];
180 
181 		if (ps_page->page) {
182 			pr_info("packet dump for ps_page %d:\n", i);
183 			print_hex_dump(KERN_INFO, "", DUMP_PREFIX_ADDRESS,
184 				       16, 1, page_address(ps_page->page),
185 				       PAGE_SIZE, true);
186 		}
187 	}
188 }
189 
190 /**
191  * e1000e_dump - Print registers, Tx-ring and Rx-ring
192  * @adapter: board private structure
193  **/
e1000e_dump(struct e1000_adapter * adapter)194 static void e1000e_dump(struct e1000_adapter *adapter)
195 {
196 	struct net_device *netdev = adapter->netdev;
197 	struct e1000_hw *hw = &adapter->hw;
198 	struct e1000_reg_info *reginfo;
199 	struct e1000_ring *tx_ring = adapter->tx_ring;
200 	struct e1000_tx_desc *tx_desc;
201 	struct my_u0 {
202 		__le64 a;
203 		__le64 b;
204 	} *u0;
205 	struct e1000_buffer *buffer_info;
206 	struct e1000_ring *rx_ring = adapter->rx_ring;
207 	union e1000_rx_desc_packet_split *rx_desc_ps;
208 	union e1000_rx_desc_extended *rx_desc;
209 	struct my_u1 {
210 		__le64 a;
211 		__le64 b;
212 		__le64 c;
213 		__le64 d;
214 	} *u1;
215 	u32 staterr;
216 	int i = 0;
217 
218 	if (!netif_msg_hw(adapter))
219 		return;
220 
221 	/* Print netdevice Info */
222 	if (netdev) {
223 		dev_info(&adapter->pdev->dev, "Net device Info\n");
224 		pr_info("Device Name     state            trans_start\n");
225 		pr_info("%-15s %016lX %016lX\n", netdev->name,
226 			netdev->state, dev_trans_start(netdev));
227 	}
228 
229 	/* Print Registers */
230 	dev_info(&adapter->pdev->dev, "Register Dump\n");
231 	pr_info(" Register Name   Value\n");
232 	for (reginfo = (struct e1000_reg_info *)e1000_reg_info_tbl;
233 	     reginfo->name; reginfo++) {
234 		e1000_regdump(hw, reginfo);
235 	}
236 
237 	/* Print Tx Ring Summary */
238 	if (!netdev || !netif_running(netdev))
239 		return;
240 
241 	dev_info(&adapter->pdev->dev, "Tx Ring Summary\n");
242 	pr_info("Queue [NTU] [NTC] [bi(ntc)->dma  ] leng ntw timestamp\n");
243 	buffer_info = &tx_ring->buffer_info[tx_ring->next_to_clean];
244 	pr_info(" %5d %5X %5X %016llX %04X %3X %016llX\n",
245 		0, tx_ring->next_to_use, tx_ring->next_to_clean,
246 		(unsigned long long)buffer_info->dma,
247 		buffer_info->length,
248 		buffer_info->next_to_watch,
249 		(unsigned long long)buffer_info->time_stamp);
250 
251 	/* Print Tx Ring */
252 	if (!netif_msg_tx_done(adapter))
253 		goto rx_ring_summary;
254 
255 	dev_info(&adapter->pdev->dev, "Tx Ring Dump\n");
256 
257 	/* Transmit Descriptor Formats - DEXT[29] is 0 (Legacy) or 1 (Extended)
258 	 *
259 	 * Legacy Transmit Descriptor
260 	 *   +--------------------------------------------------------------+
261 	 * 0 |         Buffer Address [63:0] (Reserved on Write Back)       |
262 	 *   +--------------------------------------------------------------+
263 	 * 8 | Special  |    CSS     | Status |  CMD    |  CSO   |  Length  |
264 	 *   +--------------------------------------------------------------+
265 	 *   63       48 47        36 35    32 31     24 23    16 15        0
266 	 *
267 	 * Extended Context Descriptor (DTYP=0x0) for TSO or checksum offload
268 	 *   63      48 47    40 39       32 31             16 15    8 7      0
269 	 *   +----------------------------------------------------------------+
270 	 * 0 |  TUCSE  | TUCS0  |   TUCSS   |     IPCSE       | IPCS0 | IPCSS |
271 	 *   +----------------------------------------------------------------+
272 	 * 8 |   MSS   | HDRLEN | RSV | STA | TUCMD | DTYP |      PAYLEN      |
273 	 *   +----------------------------------------------------------------+
274 	 *   63      48 47    40 39 36 35 32 31   24 23  20 19                0
275 	 *
276 	 * Extended Data Descriptor (DTYP=0x1)
277 	 *   +----------------------------------------------------------------+
278 	 * 0 |                     Buffer Address [63:0]                      |
279 	 *   +----------------------------------------------------------------+
280 	 * 8 | VLAN tag |  POPTS  | Rsvd | Status | Command | DTYP |  DTALEN  |
281 	 *   +----------------------------------------------------------------+
282 	 *   63       48 47     40 39  36 35    32 31     24 23  20 19        0
283 	 */
284 	pr_info("Tl[desc]     [address 63:0  ] [SpeCssSCmCsLen] [bi->dma       ] leng  ntw timestamp        bi->skb <-- Legacy format\n");
285 	pr_info("Tc[desc]     [Ce CoCsIpceCoS] [MssHlRSCm0Plen] [bi->dma       ] leng  ntw timestamp        bi->skb <-- Ext Context format\n");
286 	pr_info("Td[desc]     [address 63:0  ] [VlaPoRSCm1Dlen] [bi->dma       ] leng  ntw timestamp        bi->skb <-- Ext Data format\n");
287 	for (i = 0; tx_ring->desc && (i < tx_ring->count); i++) {
288 		const char *next_desc;
289 		tx_desc = E1000_TX_DESC(*tx_ring, i);
290 		buffer_info = &tx_ring->buffer_info[i];
291 		u0 = (struct my_u0 *)tx_desc;
292 		if (i == tx_ring->next_to_use && i == tx_ring->next_to_clean)
293 			next_desc = " NTC/U";
294 		else if (i == tx_ring->next_to_use)
295 			next_desc = " NTU";
296 		else if (i == tx_ring->next_to_clean)
297 			next_desc = " NTC";
298 		else
299 			next_desc = "";
300 		pr_info("T%c[0x%03X]    %016llX %016llX %016llX %04X  %3X %016llX %p%s\n",
301 			(!(le64_to_cpu(u0->b) & BIT(29)) ? 'l' :
302 			 ((le64_to_cpu(u0->b) & BIT(20)) ? 'd' : 'c')),
303 			i,
304 			(unsigned long long)le64_to_cpu(u0->a),
305 			(unsigned long long)le64_to_cpu(u0->b),
306 			(unsigned long long)buffer_info->dma,
307 			buffer_info->length, buffer_info->next_to_watch,
308 			(unsigned long long)buffer_info->time_stamp,
309 			buffer_info->skb, next_desc);
310 
311 		if (netif_msg_pktdata(adapter) && buffer_info->skb)
312 			print_hex_dump(KERN_INFO, "", DUMP_PREFIX_ADDRESS,
313 				       16, 1, buffer_info->skb->data,
314 				       buffer_info->skb->len, true);
315 	}
316 
317 	/* Print Rx Ring Summary */
318 rx_ring_summary:
319 	dev_info(&adapter->pdev->dev, "Rx Ring Summary\n");
320 	pr_info("Queue [NTU] [NTC]\n");
321 	pr_info(" %5d %5X %5X\n",
322 		0, rx_ring->next_to_use, rx_ring->next_to_clean);
323 
324 	/* Print Rx Ring */
325 	if (!netif_msg_rx_status(adapter))
326 		return;
327 
328 	dev_info(&adapter->pdev->dev, "Rx Ring Dump\n");
329 	switch (adapter->rx_ps_pages) {
330 	case 1:
331 	case 2:
332 	case 3:
333 		/* [Extended] Packet Split Receive Descriptor Format
334 		 *
335 		 *    +-----------------------------------------------------+
336 		 *  0 |                Buffer Address 0 [63:0]              |
337 		 *    +-----------------------------------------------------+
338 		 *  8 |                Buffer Address 1 [63:0]              |
339 		 *    +-----------------------------------------------------+
340 		 * 16 |                Buffer Address 2 [63:0]              |
341 		 *    +-----------------------------------------------------+
342 		 * 24 |                Buffer Address 3 [63:0]              |
343 		 *    +-----------------------------------------------------+
344 		 */
345 		pr_info("R  [desc]      [buffer 0 63:0 ] [buffer 1 63:0 ] [buffer 2 63:0 ] [buffer 3 63:0 ] [bi->dma       ] [bi->skb] <-- Ext Pkt Split format\n");
346 		/* [Extended] Receive Descriptor (Write-Back) Format
347 		 *
348 		 *   63       48 47    32 31     13 12    8 7    4 3        0
349 		 *   +------------------------------------------------------+
350 		 * 0 | Packet   | IP     |  Rsvd   | MRQ   | Rsvd | MRQ RSS |
351 		 *   | Checksum | Ident  |         | Queue |      |  Type   |
352 		 *   +------------------------------------------------------+
353 		 * 8 | VLAN Tag | Length | Extended Error | Extended Status |
354 		 *   +------------------------------------------------------+
355 		 *   63       48 47    32 31            20 19               0
356 		 */
357 		pr_info("RWB[desc]      [ck ipid mrqhsh] [vl   l0 ee  es] [ l3  l2  l1 hs] [reserved      ] ---------------- [bi->skb] <-- Ext Rx Write-Back format\n");
358 		for (i = 0; i < rx_ring->count; i++) {
359 			const char *next_desc;
360 			buffer_info = &rx_ring->buffer_info[i];
361 			rx_desc_ps = E1000_RX_DESC_PS(*rx_ring, i);
362 			u1 = (struct my_u1 *)rx_desc_ps;
363 			staterr =
364 			    le32_to_cpu(rx_desc_ps->wb.middle.status_error);
365 
366 			if (i == rx_ring->next_to_use)
367 				next_desc = " NTU";
368 			else if (i == rx_ring->next_to_clean)
369 				next_desc = " NTC";
370 			else
371 				next_desc = "";
372 
373 			if (staterr & E1000_RXD_STAT_DD) {
374 				/* Descriptor Done */
375 				pr_info("%s[0x%03X]     %016llX %016llX %016llX %016llX ---------------- %p%s\n",
376 					"RWB", i,
377 					(unsigned long long)le64_to_cpu(u1->a),
378 					(unsigned long long)le64_to_cpu(u1->b),
379 					(unsigned long long)le64_to_cpu(u1->c),
380 					(unsigned long long)le64_to_cpu(u1->d),
381 					buffer_info->skb, next_desc);
382 			} else {
383 				pr_info("%s[0x%03X]     %016llX %016llX %016llX %016llX %016llX %p%s\n",
384 					"R  ", i,
385 					(unsigned long long)le64_to_cpu(u1->a),
386 					(unsigned long long)le64_to_cpu(u1->b),
387 					(unsigned long long)le64_to_cpu(u1->c),
388 					(unsigned long long)le64_to_cpu(u1->d),
389 					(unsigned long long)buffer_info->dma,
390 					buffer_info->skb, next_desc);
391 
392 				if (netif_msg_pktdata(adapter))
393 					e1000e_dump_ps_pages(adapter,
394 							     buffer_info);
395 			}
396 		}
397 		break;
398 	default:
399 	case 0:
400 		/* Extended Receive Descriptor (Read) Format
401 		 *
402 		 *   +-----------------------------------------------------+
403 		 * 0 |                Buffer Address [63:0]                |
404 		 *   +-----------------------------------------------------+
405 		 * 8 |                      Reserved                       |
406 		 *   +-----------------------------------------------------+
407 		 */
408 		pr_info("R  [desc]      [buf addr 63:0 ] [reserved 63:0 ] [bi->dma       ] [bi->skb] <-- Ext (Read) format\n");
409 		/* Extended Receive Descriptor (Write-Back) Format
410 		 *
411 		 *   63       48 47    32 31    24 23            4 3        0
412 		 *   +------------------------------------------------------+
413 		 *   |     RSS Hash      |        |               |         |
414 		 * 0 +-------------------+  Rsvd  |   Reserved    | MRQ RSS |
415 		 *   | Packet   | IP     |        |               |  Type   |
416 		 *   | Checksum | Ident  |        |               |         |
417 		 *   +------------------------------------------------------+
418 		 * 8 | VLAN Tag | Length | Extended Error | Extended Status |
419 		 *   +------------------------------------------------------+
420 		 *   63       48 47    32 31            20 19               0
421 		 */
422 		pr_info("RWB[desc]      [cs ipid    mrq] [vt   ln xe  xs] [bi->skb] <-- Ext (Write-Back) format\n");
423 
424 		for (i = 0; i < rx_ring->count; i++) {
425 			const char *next_desc;
426 
427 			buffer_info = &rx_ring->buffer_info[i];
428 			rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
429 			u1 = (struct my_u1 *)rx_desc;
430 			staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
431 
432 			if (i == rx_ring->next_to_use)
433 				next_desc = " NTU";
434 			else if (i == rx_ring->next_to_clean)
435 				next_desc = " NTC";
436 			else
437 				next_desc = "";
438 
439 			if (staterr & E1000_RXD_STAT_DD) {
440 				/* Descriptor Done */
441 				pr_info("%s[0x%03X]     %016llX %016llX ---------------- %p%s\n",
442 					"RWB", i,
443 					(unsigned long long)le64_to_cpu(u1->a),
444 					(unsigned long long)le64_to_cpu(u1->b),
445 					buffer_info->skb, next_desc);
446 			} else {
447 				pr_info("%s[0x%03X]     %016llX %016llX %016llX %p%s\n",
448 					"R  ", i,
449 					(unsigned long long)le64_to_cpu(u1->a),
450 					(unsigned long long)le64_to_cpu(u1->b),
451 					(unsigned long long)buffer_info->dma,
452 					buffer_info->skb, next_desc);
453 
454 				if (netif_msg_pktdata(adapter) &&
455 				    buffer_info->skb)
456 					print_hex_dump(KERN_INFO, "",
457 						       DUMP_PREFIX_ADDRESS, 16,
458 						       1,
459 						       buffer_info->skb->data,
460 						       adapter->rx_buffer_len,
461 						       true);
462 			}
463 		}
464 	}
465 }
466 
467 /**
468  * e1000_desc_unused - calculate if we have unused descriptors
469  **/
e1000_desc_unused(struct e1000_ring * ring)470 static int e1000_desc_unused(struct e1000_ring *ring)
471 {
472 	if (ring->next_to_clean > ring->next_to_use)
473 		return ring->next_to_clean - ring->next_to_use - 1;
474 
475 	return ring->count + ring->next_to_clean - ring->next_to_use - 1;
476 }
477 
478 /**
479  * e1000e_systim_to_hwtstamp - convert system time value to hw time stamp
480  * @adapter: board private structure
481  * @hwtstamps: time stamp structure to update
482  * @systim: unsigned 64bit system time value.
483  *
484  * Convert the system time value stored in the RX/TXSTMP registers into a
485  * hwtstamp which can be used by the upper level time stamping functions.
486  *
487  * The 'systim_lock' spinlock is used to protect the consistency of the
488  * system time value. This is needed because reading the 64 bit time
489  * value involves reading two 32 bit registers. The first read latches the
490  * value.
491  **/
e1000e_systim_to_hwtstamp(struct e1000_adapter * adapter,struct skb_shared_hwtstamps * hwtstamps,u64 systim)492 static void e1000e_systim_to_hwtstamp(struct e1000_adapter *adapter,
493 				      struct skb_shared_hwtstamps *hwtstamps,
494 				      u64 systim)
495 {
496 	u64 ns;
497 	unsigned long flags;
498 
499 	spin_lock_irqsave(&adapter->systim_lock, flags);
500 	ns = timecounter_cyc2time(&adapter->tc, systim);
501 	spin_unlock_irqrestore(&adapter->systim_lock, flags);
502 
503 	memset(hwtstamps, 0, sizeof(*hwtstamps));
504 	hwtstamps->hwtstamp = ns_to_ktime(ns);
505 }
506 
507 /**
508  * e1000e_rx_hwtstamp - utility function which checks for Rx time stamp
509  * @adapter: board private structure
510  * @status: descriptor extended error and status field
511  * @skb: particular skb to include time stamp
512  *
513  * If the time stamp is valid, convert it into the timecounter ns value
514  * and store that result into the shhwtstamps structure which is passed
515  * up the network stack.
516  **/
e1000e_rx_hwtstamp(struct e1000_adapter * adapter,u32 status,struct sk_buff * skb)517 static void e1000e_rx_hwtstamp(struct e1000_adapter *adapter, u32 status,
518 			       struct sk_buff *skb)
519 {
520 	struct e1000_hw *hw = &adapter->hw;
521 	u64 rxstmp;
522 
523 	if (!(adapter->flags & FLAG_HAS_HW_TIMESTAMP) ||
524 	    !(status & E1000_RXDEXT_STATERR_TST) ||
525 	    !(er32(TSYNCRXCTL) & E1000_TSYNCRXCTL_VALID))
526 		return;
527 
528 	/* The Rx time stamp registers contain the time stamp.  No other
529 	 * received packet will be time stamped until the Rx time stamp
530 	 * registers are read.  Because only one packet can be time stamped
531 	 * at a time, the register values must belong to this packet and
532 	 * therefore none of the other additional attributes need to be
533 	 * compared.
534 	 */
535 	rxstmp = (u64)er32(RXSTMPL);
536 	rxstmp |= (u64)er32(RXSTMPH) << 32;
537 	e1000e_systim_to_hwtstamp(adapter, skb_hwtstamps(skb), rxstmp);
538 
539 	adapter->flags2 &= ~FLAG2_CHECK_RX_HWTSTAMP;
540 }
541 
542 /**
543  * e1000_receive_skb - helper function to handle Rx indications
544  * @adapter: board private structure
545  * @staterr: descriptor extended error and status field as written by hardware
546  * @vlan: descriptor vlan field as written by hardware (no le/be conversion)
547  * @skb: pointer to sk_buff to be indicated to stack
548  **/
e1000_receive_skb(struct e1000_adapter * adapter,struct net_device * netdev,struct sk_buff * skb,u32 staterr,__le16 vlan)549 static void e1000_receive_skb(struct e1000_adapter *adapter,
550 			      struct net_device *netdev, struct sk_buff *skb,
551 			      u32 staterr, __le16 vlan)
552 {
553 	u16 tag = le16_to_cpu(vlan);
554 
555 	e1000e_rx_hwtstamp(adapter, staterr, skb);
556 
557 	skb->protocol = eth_type_trans(skb, netdev);
558 
559 	if (staterr & E1000_RXD_STAT_VP)
560 		__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), tag);
561 
562 	napi_gro_receive(&adapter->napi, skb);
563 }
564 
565 /**
566  * e1000_rx_checksum - Receive Checksum Offload
567  * @adapter: board private structure
568  * @status_err: receive descriptor status and error fields
569  * @csum: receive descriptor csum field
570  * @sk_buff: socket buffer with received data
571  **/
e1000_rx_checksum(struct e1000_adapter * adapter,u32 status_err,struct sk_buff * skb)572 static void e1000_rx_checksum(struct e1000_adapter *adapter, u32 status_err,
573 			      struct sk_buff *skb)
574 {
575 	u16 status = (u16)status_err;
576 	u8 errors = (u8)(status_err >> 24);
577 
578 	skb_checksum_none_assert(skb);
579 
580 	/* Rx checksum disabled */
581 	if (!(adapter->netdev->features & NETIF_F_RXCSUM))
582 		return;
583 
584 	/* Ignore Checksum bit is set */
585 	if (status & E1000_RXD_STAT_IXSM)
586 		return;
587 
588 	/* TCP/UDP checksum error bit or IP checksum error bit is set */
589 	if (errors & (E1000_RXD_ERR_TCPE | E1000_RXD_ERR_IPE)) {
590 		/* let the stack verify checksum errors */
591 		adapter->hw_csum_err++;
592 		return;
593 	}
594 
595 	/* TCP/UDP Checksum has not been calculated */
596 	if (!(status & (E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS)))
597 		return;
598 
599 	/* It must be a TCP or UDP packet with a valid checksum */
600 	skb->ip_summed = CHECKSUM_UNNECESSARY;
601 	adapter->hw_csum_good++;
602 }
603 
e1000e_update_rdt_wa(struct e1000_ring * rx_ring,unsigned int i)604 static void e1000e_update_rdt_wa(struct e1000_ring *rx_ring, unsigned int i)
605 {
606 	struct e1000_adapter *adapter = rx_ring->adapter;
607 	struct e1000_hw *hw = &adapter->hw;
608 
609 	__ew32_prepare(hw);
610 	writel(i, rx_ring->tail);
611 
612 	if (unlikely(i != readl(rx_ring->tail))) {
613 		u32 rctl = er32(RCTL);
614 
615 		ew32(RCTL, rctl & ~E1000_RCTL_EN);
616 		e_err("ME firmware caused invalid RDT - resetting\n");
617 		schedule_work(&adapter->reset_task);
618 	}
619 }
620 
e1000e_update_tdt_wa(struct e1000_ring * tx_ring,unsigned int i)621 static void e1000e_update_tdt_wa(struct e1000_ring *tx_ring, unsigned int i)
622 {
623 	struct e1000_adapter *adapter = tx_ring->adapter;
624 	struct e1000_hw *hw = &adapter->hw;
625 
626 	__ew32_prepare(hw);
627 	writel(i, tx_ring->tail);
628 
629 	if (unlikely(i != readl(tx_ring->tail))) {
630 		u32 tctl = er32(TCTL);
631 
632 		ew32(TCTL, tctl & ~E1000_TCTL_EN);
633 		e_err("ME firmware caused invalid TDT - resetting\n");
634 		schedule_work(&adapter->reset_task);
635 	}
636 }
637 
638 /**
639  * e1000_alloc_rx_buffers - Replace used receive buffers
640  * @rx_ring: Rx descriptor ring
641  **/
e1000_alloc_rx_buffers(struct e1000_ring * rx_ring,int cleaned_count,gfp_t gfp)642 static void e1000_alloc_rx_buffers(struct e1000_ring *rx_ring,
643 				   int cleaned_count, gfp_t gfp)
644 {
645 	struct e1000_adapter *adapter = rx_ring->adapter;
646 	struct net_device *netdev = adapter->netdev;
647 	struct pci_dev *pdev = adapter->pdev;
648 	union e1000_rx_desc_extended *rx_desc;
649 	struct e1000_buffer *buffer_info;
650 	struct sk_buff *skb;
651 	unsigned int i;
652 	unsigned int bufsz = adapter->rx_buffer_len;
653 
654 	i = rx_ring->next_to_use;
655 	buffer_info = &rx_ring->buffer_info[i];
656 
657 	while (cleaned_count--) {
658 		skb = buffer_info->skb;
659 		if (skb) {
660 			skb_trim(skb, 0);
661 			goto map_skb;
662 		}
663 
664 		skb = __netdev_alloc_skb_ip_align(netdev, bufsz, gfp);
665 		if (!skb) {
666 			/* Better luck next round */
667 			adapter->alloc_rx_buff_failed++;
668 			break;
669 		}
670 
671 		buffer_info->skb = skb;
672 map_skb:
673 		buffer_info->dma = dma_map_single(&pdev->dev, skb->data,
674 						  adapter->rx_buffer_len,
675 						  DMA_FROM_DEVICE);
676 		if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
677 			dev_err(&pdev->dev, "Rx DMA map failed\n");
678 			adapter->rx_dma_failed++;
679 			break;
680 		}
681 
682 		rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
683 		rx_desc->read.buffer_addr = cpu_to_le64(buffer_info->dma);
684 
685 		if (unlikely(!(i & (E1000_RX_BUFFER_WRITE - 1)))) {
686 			/* Force memory writes to complete before letting h/w
687 			 * know there are new descriptors to fetch.  (Only
688 			 * applicable for weak-ordered memory model archs,
689 			 * such as IA-64).
690 			 */
691 			wmb();
692 			if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
693 				e1000e_update_rdt_wa(rx_ring, i);
694 			else
695 				writel(i, rx_ring->tail);
696 		}
697 		i++;
698 		if (i == rx_ring->count)
699 			i = 0;
700 		buffer_info = &rx_ring->buffer_info[i];
701 	}
702 
703 	rx_ring->next_to_use = i;
704 }
705 
706 /**
707  * e1000_alloc_rx_buffers_ps - Replace used receive buffers; packet split
708  * @rx_ring: Rx descriptor ring
709  **/
e1000_alloc_rx_buffers_ps(struct e1000_ring * rx_ring,int cleaned_count,gfp_t gfp)710 static void e1000_alloc_rx_buffers_ps(struct e1000_ring *rx_ring,
711 				      int cleaned_count, gfp_t gfp)
712 {
713 	struct e1000_adapter *adapter = rx_ring->adapter;
714 	struct net_device *netdev = adapter->netdev;
715 	struct pci_dev *pdev = adapter->pdev;
716 	union e1000_rx_desc_packet_split *rx_desc;
717 	struct e1000_buffer *buffer_info;
718 	struct e1000_ps_page *ps_page;
719 	struct sk_buff *skb;
720 	unsigned int i, j;
721 
722 	i = rx_ring->next_to_use;
723 	buffer_info = &rx_ring->buffer_info[i];
724 
725 	while (cleaned_count--) {
726 		rx_desc = E1000_RX_DESC_PS(*rx_ring, i);
727 
728 		for (j = 0; j < PS_PAGE_BUFFERS; j++) {
729 			ps_page = &buffer_info->ps_pages[j];
730 			if (j >= adapter->rx_ps_pages) {
731 				/* all unused desc entries get hw null ptr */
732 				rx_desc->read.buffer_addr[j + 1] =
733 				    ~cpu_to_le64(0);
734 				continue;
735 			}
736 			if (!ps_page->page) {
737 				ps_page->page = alloc_page(gfp);
738 				if (!ps_page->page) {
739 					adapter->alloc_rx_buff_failed++;
740 					goto no_buffers;
741 				}
742 				ps_page->dma = dma_map_page(&pdev->dev,
743 							    ps_page->page,
744 							    0, PAGE_SIZE,
745 							    DMA_FROM_DEVICE);
746 				if (dma_mapping_error(&pdev->dev,
747 						      ps_page->dma)) {
748 					dev_err(&adapter->pdev->dev,
749 						"Rx DMA page map failed\n");
750 					adapter->rx_dma_failed++;
751 					goto no_buffers;
752 				}
753 			}
754 			/* Refresh the desc even if buffer_addrs
755 			 * didn't change because each write-back
756 			 * erases this info.
757 			 */
758 			rx_desc->read.buffer_addr[j + 1] =
759 			    cpu_to_le64(ps_page->dma);
760 		}
761 
762 		skb = __netdev_alloc_skb_ip_align(netdev, adapter->rx_ps_bsize0,
763 						  gfp);
764 
765 		if (!skb) {
766 			adapter->alloc_rx_buff_failed++;
767 			break;
768 		}
769 
770 		buffer_info->skb = skb;
771 		buffer_info->dma = dma_map_single(&pdev->dev, skb->data,
772 						  adapter->rx_ps_bsize0,
773 						  DMA_FROM_DEVICE);
774 		if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
775 			dev_err(&pdev->dev, "Rx DMA map failed\n");
776 			adapter->rx_dma_failed++;
777 			/* cleanup skb */
778 			dev_kfree_skb_any(skb);
779 			buffer_info->skb = NULL;
780 			break;
781 		}
782 
783 		rx_desc->read.buffer_addr[0] = cpu_to_le64(buffer_info->dma);
784 
785 		if (unlikely(!(i & (E1000_RX_BUFFER_WRITE - 1)))) {
786 			/* Force memory writes to complete before letting h/w
787 			 * know there are new descriptors to fetch.  (Only
788 			 * applicable for weak-ordered memory model archs,
789 			 * such as IA-64).
790 			 */
791 			wmb();
792 			if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
793 				e1000e_update_rdt_wa(rx_ring, i << 1);
794 			else
795 				writel(i << 1, rx_ring->tail);
796 		}
797 
798 		i++;
799 		if (i == rx_ring->count)
800 			i = 0;
801 		buffer_info = &rx_ring->buffer_info[i];
802 	}
803 
804 no_buffers:
805 	rx_ring->next_to_use = i;
806 }
807 
808 /**
809  * e1000_alloc_jumbo_rx_buffers - Replace used jumbo receive buffers
810  * @rx_ring: Rx descriptor ring
811  * @cleaned_count: number of buffers to allocate this pass
812  **/
813 
e1000_alloc_jumbo_rx_buffers(struct e1000_ring * rx_ring,int cleaned_count,gfp_t gfp)814 static void e1000_alloc_jumbo_rx_buffers(struct e1000_ring *rx_ring,
815 					 int cleaned_count, gfp_t gfp)
816 {
817 	struct e1000_adapter *adapter = rx_ring->adapter;
818 	struct net_device *netdev = adapter->netdev;
819 	struct pci_dev *pdev = adapter->pdev;
820 	union e1000_rx_desc_extended *rx_desc;
821 	struct e1000_buffer *buffer_info;
822 	struct sk_buff *skb;
823 	unsigned int i;
824 	unsigned int bufsz = 256 - 16;	/* for skb_reserve */
825 
826 	i = rx_ring->next_to_use;
827 	buffer_info = &rx_ring->buffer_info[i];
828 
829 	while (cleaned_count--) {
830 		skb = buffer_info->skb;
831 		if (skb) {
832 			skb_trim(skb, 0);
833 			goto check_page;
834 		}
835 
836 		skb = __netdev_alloc_skb_ip_align(netdev, bufsz, gfp);
837 		if (unlikely(!skb)) {
838 			/* Better luck next round */
839 			adapter->alloc_rx_buff_failed++;
840 			break;
841 		}
842 
843 		buffer_info->skb = skb;
844 check_page:
845 		/* allocate a new page if necessary */
846 		if (!buffer_info->page) {
847 			buffer_info->page = alloc_page(gfp);
848 			if (unlikely(!buffer_info->page)) {
849 				adapter->alloc_rx_buff_failed++;
850 				break;
851 			}
852 		}
853 
854 		if (!buffer_info->dma) {
855 			buffer_info->dma = dma_map_page(&pdev->dev,
856 							buffer_info->page, 0,
857 							PAGE_SIZE,
858 							DMA_FROM_DEVICE);
859 			if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
860 				adapter->alloc_rx_buff_failed++;
861 				break;
862 			}
863 		}
864 
865 		rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
866 		rx_desc->read.buffer_addr = cpu_to_le64(buffer_info->dma);
867 
868 		if (unlikely(++i == rx_ring->count))
869 			i = 0;
870 		buffer_info = &rx_ring->buffer_info[i];
871 	}
872 
873 	if (likely(rx_ring->next_to_use != i)) {
874 		rx_ring->next_to_use = i;
875 		if (unlikely(i-- == 0))
876 			i = (rx_ring->count - 1);
877 
878 		/* Force memory writes to complete before letting h/w
879 		 * know there are new descriptors to fetch.  (Only
880 		 * applicable for weak-ordered memory model archs,
881 		 * such as IA-64).
882 		 */
883 		wmb();
884 		if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
885 			e1000e_update_rdt_wa(rx_ring, i);
886 		else
887 			writel(i, rx_ring->tail);
888 	}
889 }
890 
e1000_rx_hash(struct net_device * netdev,__le32 rss,struct sk_buff * skb)891 static inline void e1000_rx_hash(struct net_device *netdev, __le32 rss,
892 				 struct sk_buff *skb)
893 {
894 	if (netdev->features & NETIF_F_RXHASH)
895 		skb_set_hash(skb, le32_to_cpu(rss), PKT_HASH_TYPE_L3);
896 }
897 
898 /**
899  * e1000_clean_rx_irq - Send received data up the network stack
900  * @rx_ring: Rx descriptor ring
901  *
902  * the return value indicates whether actual cleaning was done, there
903  * is no guarantee that everything was cleaned
904  **/
e1000_clean_rx_irq(struct e1000_ring * rx_ring,int * work_done,int work_to_do)905 static bool e1000_clean_rx_irq(struct e1000_ring *rx_ring, int *work_done,
906 			       int work_to_do)
907 {
908 	struct e1000_adapter *adapter = rx_ring->adapter;
909 	struct net_device *netdev = adapter->netdev;
910 	struct pci_dev *pdev = adapter->pdev;
911 	struct e1000_hw *hw = &adapter->hw;
912 	union e1000_rx_desc_extended *rx_desc, *next_rxd;
913 	struct e1000_buffer *buffer_info, *next_buffer;
914 	u32 length, staterr;
915 	unsigned int i;
916 	int cleaned_count = 0;
917 	bool cleaned = false;
918 	unsigned int total_rx_bytes = 0, total_rx_packets = 0;
919 
920 	i = rx_ring->next_to_clean;
921 	rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
922 	staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
923 	buffer_info = &rx_ring->buffer_info[i];
924 
925 	while (staterr & E1000_RXD_STAT_DD) {
926 		struct sk_buff *skb;
927 
928 		if (*work_done >= work_to_do)
929 			break;
930 		(*work_done)++;
931 		dma_rmb();	/* read descriptor and rx_buffer_info after status DD */
932 
933 		skb = buffer_info->skb;
934 		buffer_info->skb = NULL;
935 
936 		prefetch(skb->data - NET_IP_ALIGN);
937 
938 		i++;
939 		if (i == rx_ring->count)
940 			i = 0;
941 		next_rxd = E1000_RX_DESC_EXT(*rx_ring, i);
942 		prefetch(next_rxd);
943 
944 		next_buffer = &rx_ring->buffer_info[i];
945 
946 		cleaned = true;
947 		cleaned_count++;
948 		dma_unmap_single(&pdev->dev, buffer_info->dma,
949 				 adapter->rx_buffer_len, DMA_FROM_DEVICE);
950 		buffer_info->dma = 0;
951 
952 		length = le16_to_cpu(rx_desc->wb.upper.length);
953 
954 		/* !EOP means multiple descriptors were used to store a single
955 		 * packet, if that's the case we need to toss it.  In fact, we
956 		 * need to toss every packet with the EOP bit clear and the
957 		 * next frame that _does_ have the EOP bit set, as it is by
958 		 * definition only a frame fragment
959 		 */
960 		if (unlikely(!(staterr & E1000_RXD_STAT_EOP)))
961 			adapter->flags2 |= FLAG2_IS_DISCARDING;
962 
963 		if (adapter->flags2 & FLAG2_IS_DISCARDING) {
964 			/* All receives must fit into a single buffer */
965 			e_dbg("Receive packet consumed multiple buffers\n");
966 			/* recycle */
967 			buffer_info->skb = skb;
968 			if (staterr & E1000_RXD_STAT_EOP)
969 				adapter->flags2 &= ~FLAG2_IS_DISCARDING;
970 			goto next_desc;
971 		}
972 
973 		if (unlikely((staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) &&
974 			     !(netdev->features & NETIF_F_RXALL))) {
975 			/* recycle */
976 			buffer_info->skb = skb;
977 			goto next_desc;
978 		}
979 
980 		/* adjust length to remove Ethernet CRC */
981 		if (!(adapter->flags2 & FLAG2_CRC_STRIPPING)) {
982 			/* If configured to store CRC, don't subtract FCS,
983 			 * but keep the FCS bytes out of the total_rx_bytes
984 			 * counter
985 			 */
986 			if (netdev->features & NETIF_F_RXFCS)
987 				total_rx_bytes -= 4;
988 			else
989 				length -= 4;
990 		}
991 
992 		total_rx_bytes += length;
993 		total_rx_packets++;
994 
995 		/* code added for copybreak, this should improve
996 		 * performance for small packets with large amounts
997 		 * of reassembly being done in the stack
998 		 */
999 		if (length < copybreak) {
1000 			struct sk_buff *new_skb =
1001 				napi_alloc_skb(&adapter->napi, length);
1002 			if (new_skb) {
1003 				skb_copy_to_linear_data_offset(new_skb,
1004 							       -NET_IP_ALIGN,
1005 							       (skb->data -
1006 								NET_IP_ALIGN),
1007 							       (length +
1008 								NET_IP_ALIGN));
1009 				/* save the skb in buffer_info as good */
1010 				buffer_info->skb = skb;
1011 				skb = new_skb;
1012 			}
1013 			/* else just continue with the old one */
1014 		}
1015 		/* end copybreak code */
1016 		skb_put(skb, length);
1017 
1018 		/* Receive Checksum Offload */
1019 		e1000_rx_checksum(adapter, staterr, skb);
1020 
1021 		e1000_rx_hash(netdev, rx_desc->wb.lower.hi_dword.rss, skb);
1022 
1023 		e1000_receive_skb(adapter, netdev, skb, staterr,
1024 				  rx_desc->wb.upper.vlan);
1025 
1026 next_desc:
1027 		rx_desc->wb.upper.status_error &= cpu_to_le32(~0xFF);
1028 
1029 		/* return some buffers to hardware, one at a time is too slow */
1030 		if (cleaned_count >= E1000_RX_BUFFER_WRITE) {
1031 			adapter->alloc_rx_buf(rx_ring, cleaned_count,
1032 					      GFP_ATOMIC);
1033 			cleaned_count = 0;
1034 		}
1035 
1036 		/* use prefetched values */
1037 		rx_desc = next_rxd;
1038 		buffer_info = next_buffer;
1039 
1040 		staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
1041 	}
1042 	rx_ring->next_to_clean = i;
1043 
1044 	cleaned_count = e1000_desc_unused(rx_ring);
1045 	if (cleaned_count)
1046 		adapter->alloc_rx_buf(rx_ring, cleaned_count, GFP_ATOMIC);
1047 
1048 	adapter->total_rx_bytes += total_rx_bytes;
1049 	adapter->total_rx_packets += total_rx_packets;
1050 	return cleaned;
1051 }
1052 
e1000_put_txbuf(struct e1000_ring * tx_ring,struct e1000_buffer * buffer_info,bool drop)1053 static void e1000_put_txbuf(struct e1000_ring *tx_ring,
1054 			    struct e1000_buffer *buffer_info,
1055 			    bool drop)
1056 {
1057 	struct e1000_adapter *adapter = tx_ring->adapter;
1058 
1059 	if (buffer_info->dma) {
1060 		if (buffer_info->mapped_as_page)
1061 			dma_unmap_page(&adapter->pdev->dev, buffer_info->dma,
1062 				       buffer_info->length, DMA_TO_DEVICE);
1063 		else
1064 			dma_unmap_single(&adapter->pdev->dev, buffer_info->dma,
1065 					 buffer_info->length, DMA_TO_DEVICE);
1066 		buffer_info->dma = 0;
1067 	}
1068 	if (buffer_info->skb) {
1069 		if (drop)
1070 			dev_kfree_skb_any(buffer_info->skb);
1071 		else
1072 			dev_consume_skb_any(buffer_info->skb);
1073 		buffer_info->skb = NULL;
1074 	}
1075 	buffer_info->time_stamp = 0;
1076 }
1077 
e1000_print_hw_hang(struct work_struct * work)1078 static void e1000_print_hw_hang(struct work_struct *work)
1079 {
1080 	struct e1000_adapter *adapter = container_of(work,
1081 						     struct e1000_adapter,
1082 						     print_hang_task);
1083 	struct net_device *netdev = adapter->netdev;
1084 	struct e1000_ring *tx_ring = adapter->tx_ring;
1085 	unsigned int i = tx_ring->next_to_clean;
1086 	unsigned int eop = tx_ring->buffer_info[i].next_to_watch;
1087 	struct e1000_tx_desc *eop_desc = E1000_TX_DESC(*tx_ring, eop);
1088 	struct e1000_hw *hw = &adapter->hw;
1089 	u16 phy_status, phy_1000t_status, phy_ext_status;
1090 	u16 pci_status;
1091 
1092 	if (test_bit(__E1000_DOWN, &adapter->state))
1093 		return;
1094 
1095 	if (!adapter->tx_hang_recheck && (adapter->flags2 & FLAG2_DMA_BURST)) {
1096 		/* May be block on write-back, flush and detect again
1097 		 * flush pending descriptor writebacks to memory
1098 		 */
1099 		ew32(TIDV, adapter->tx_int_delay | E1000_TIDV_FPD);
1100 		/* execute the writes immediately */
1101 		e1e_flush();
1102 		/* Due to rare timing issues, write to TIDV again to ensure
1103 		 * the write is successful
1104 		 */
1105 		ew32(TIDV, adapter->tx_int_delay | E1000_TIDV_FPD);
1106 		/* execute the writes immediately */
1107 		e1e_flush();
1108 		adapter->tx_hang_recheck = true;
1109 		return;
1110 	}
1111 	adapter->tx_hang_recheck = false;
1112 
1113 	if (er32(TDH(0)) == er32(TDT(0))) {
1114 		e_dbg("false hang detected, ignoring\n");
1115 		return;
1116 	}
1117 
1118 	/* Real hang detected */
1119 	netif_stop_queue(netdev);
1120 
1121 	e1e_rphy(hw, MII_BMSR, &phy_status);
1122 	e1e_rphy(hw, MII_STAT1000, &phy_1000t_status);
1123 	e1e_rphy(hw, MII_ESTATUS, &phy_ext_status);
1124 
1125 	pci_read_config_word(adapter->pdev, PCI_STATUS, &pci_status);
1126 
1127 	/* detected Hardware unit hang */
1128 	e_err("Detected Hardware Unit Hang:\n"
1129 	      "  TDH                  <%x>\n"
1130 	      "  TDT                  <%x>\n"
1131 	      "  next_to_use          <%x>\n"
1132 	      "  next_to_clean        <%x>\n"
1133 	      "buffer_info[next_to_clean]:\n"
1134 	      "  time_stamp           <%lx>\n"
1135 	      "  next_to_watch        <%x>\n"
1136 	      "  jiffies              <%lx>\n"
1137 	      "  next_to_watch.status <%x>\n"
1138 	      "MAC Status             <%x>\n"
1139 	      "PHY Status             <%x>\n"
1140 	      "PHY 1000BASE-T Status  <%x>\n"
1141 	      "PHY Extended Status    <%x>\n"
1142 	      "PCI Status             <%x>\n",
1143 	      readl(tx_ring->head), readl(tx_ring->tail), tx_ring->next_to_use,
1144 	      tx_ring->next_to_clean, tx_ring->buffer_info[eop].time_stamp,
1145 	      eop, jiffies, eop_desc->upper.fields.status, er32(STATUS),
1146 	      phy_status, phy_1000t_status, phy_ext_status, pci_status);
1147 
1148 	e1000e_dump(adapter);
1149 
1150 	/* Suggest workaround for known h/w issue */
1151 	if ((hw->mac.type == e1000_pchlan) && (er32(CTRL) & E1000_CTRL_TFCE))
1152 		e_err("Try turning off Tx pause (flow control) via ethtool\n");
1153 }
1154 
1155 /**
1156  * e1000e_tx_hwtstamp_work - check for Tx time stamp
1157  * @work: pointer to work struct
1158  *
1159  * This work function polls the TSYNCTXCTL valid bit to determine when a
1160  * timestamp has been taken for the current stored skb.  The timestamp must
1161  * be for this skb because only one such packet is allowed in the queue.
1162  */
e1000e_tx_hwtstamp_work(struct work_struct * work)1163 static void e1000e_tx_hwtstamp_work(struct work_struct *work)
1164 {
1165 	struct e1000_adapter *adapter = container_of(work, struct e1000_adapter,
1166 						     tx_hwtstamp_work);
1167 	struct e1000_hw *hw = &adapter->hw;
1168 
1169 	if (er32(TSYNCTXCTL) & E1000_TSYNCTXCTL_VALID) {
1170 		struct sk_buff *skb = adapter->tx_hwtstamp_skb;
1171 		struct skb_shared_hwtstamps shhwtstamps;
1172 		u64 txstmp;
1173 
1174 		txstmp = er32(TXSTMPL);
1175 		txstmp |= (u64)er32(TXSTMPH) << 32;
1176 
1177 		e1000e_systim_to_hwtstamp(adapter, &shhwtstamps, txstmp);
1178 
1179 		/* Clear the global tx_hwtstamp_skb pointer and force writes
1180 		 * prior to notifying the stack of a Tx timestamp.
1181 		 */
1182 		adapter->tx_hwtstamp_skb = NULL;
1183 		wmb(); /* force write prior to skb_tstamp_tx */
1184 
1185 		skb_tstamp_tx(skb, &shhwtstamps);
1186 		dev_consume_skb_any(skb);
1187 	} else if (time_after(jiffies, adapter->tx_hwtstamp_start
1188 			      + adapter->tx_timeout_factor * HZ)) {
1189 		dev_kfree_skb_any(adapter->tx_hwtstamp_skb);
1190 		adapter->tx_hwtstamp_skb = NULL;
1191 		adapter->tx_hwtstamp_timeouts++;
1192 		e_warn("clearing Tx timestamp hang\n");
1193 	} else {
1194 		/* reschedule to check later */
1195 		schedule_work(&adapter->tx_hwtstamp_work);
1196 	}
1197 }
1198 
1199 /**
1200  * e1000_clean_tx_irq - Reclaim resources after transmit completes
1201  * @tx_ring: Tx descriptor ring
1202  *
1203  * the return value indicates whether actual cleaning was done, there
1204  * is no guarantee that everything was cleaned
1205  **/
e1000_clean_tx_irq(struct e1000_ring * tx_ring)1206 static bool e1000_clean_tx_irq(struct e1000_ring *tx_ring)
1207 {
1208 	struct e1000_adapter *adapter = tx_ring->adapter;
1209 	struct net_device *netdev = adapter->netdev;
1210 	struct e1000_hw *hw = &adapter->hw;
1211 	struct e1000_tx_desc *tx_desc, *eop_desc;
1212 	struct e1000_buffer *buffer_info;
1213 	unsigned int i, eop;
1214 	unsigned int count = 0;
1215 	unsigned int total_tx_bytes = 0, total_tx_packets = 0;
1216 	unsigned int bytes_compl = 0, pkts_compl = 0;
1217 
1218 	i = tx_ring->next_to_clean;
1219 	eop = tx_ring->buffer_info[i].next_to_watch;
1220 	eop_desc = E1000_TX_DESC(*tx_ring, eop);
1221 
1222 	while ((eop_desc->upper.data & cpu_to_le32(E1000_TXD_STAT_DD)) &&
1223 	       (count < tx_ring->count)) {
1224 		bool cleaned = false;
1225 
1226 		dma_rmb();		/* read buffer_info after eop_desc */
1227 		for (; !cleaned; count++) {
1228 			tx_desc = E1000_TX_DESC(*tx_ring, i);
1229 			buffer_info = &tx_ring->buffer_info[i];
1230 			cleaned = (i == eop);
1231 
1232 			if (cleaned) {
1233 				total_tx_packets += buffer_info->segs;
1234 				total_tx_bytes += buffer_info->bytecount;
1235 				if (buffer_info->skb) {
1236 					bytes_compl += buffer_info->skb->len;
1237 					pkts_compl++;
1238 				}
1239 			}
1240 
1241 			e1000_put_txbuf(tx_ring, buffer_info, false);
1242 			tx_desc->upper.data = 0;
1243 
1244 			i++;
1245 			if (i == tx_ring->count)
1246 				i = 0;
1247 		}
1248 
1249 		if (i == tx_ring->next_to_use)
1250 			break;
1251 		eop = tx_ring->buffer_info[i].next_to_watch;
1252 		eop_desc = E1000_TX_DESC(*tx_ring, eop);
1253 	}
1254 
1255 	tx_ring->next_to_clean = i;
1256 
1257 	netdev_completed_queue(netdev, pkts_compl, bytes_compl);
1258 
1259 #define TX_WAKE_THRESHOLD 32
1260 	if (count && netif_carrier_ok(netdev) &&
1261 	    e1000_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD) {
1262 		/* Make sure that anybody stopping the queue after this
1263 		 * sees the new next_to_clean.
1264 		 */
1265 		smp_mb();
1266 
1267 		if (netif_queue_stopped(netdev) &&
1268 		    !(test_bit(__E1000_DOWN, &adapter->state))) {
1269 			netif_wake_queue(netdev);
1270 			++adapter->restart_queue;
1271 		}
1272 	}
1273 
1274 	if (adapter->detect_tx_hung) {
1275 		/* Detect a transmit hang in hardware, this serializes the
1276 		 * check with the clearing of time_stamp and movement of i
1277 		 */
1278 		adapter->detect_tx_hung = false;
1279 		if (tx_ring->buffer_info[i].time_stamp &&
1280 		    time_after(jiffies, tx_ring->buffer_info[i].time_stamp
1281 			       + (adapter->tx_timeout_factor * HZ)) &&
1282 		    !(er32(STATUS) & E1000_STATUS_TXOFF))
1283 			schedule_work(&adapter->print_hang_task);
1284 		else
1285 			adapter->tx_hang_recheck = false;
1286 	}
1287 	adapter->total_tx_bytes += total_tx_bytes;
1288 	adapter->total_tx_packets += total_tx_packets;
1289 	return count < tx_ring->count;
1290 }
1291 
1292 /**
1293  * e1000_clean_rx_irq_ps - Send received data up the network stack; packet split
1294  * @rx_ring: Rx descriptor ring
1295  *
1296  * the return value indicates whether actual cleaning was done, there
1297  * is no guarantee that everything was cleaned
1298  **/
e1000_clean_rx_irq_ps(struct e1000_ring * rx_ring,int * work_done,int work_to_do)1299 static bool e1000_clean_rx_irq_ps(struct e1000_ring *rx_ring, int *work_done,
1300 				  int work_to_do)
1301 {
1302 	struct e1000_adapter *adapter = rx_ring->adapter;
1303 	struct e1000_hw *hw = &adapter->hw;
1304 	union e1000_rx_desc_packet_split *rx_desc, *next_rxd;
1305 	struct net_device *netdev = adapter->netdev;
1306 	struct pci_dev *pdev = adapter->pdev;
1307 	struct e1000_buffer *buffer_info, *next_buffer;
1308 	struct e1000_ps_page *ps_page;
1309 	struct sk_buff *skb;
1310 	unsigned int i, j;
1311 	u32 length, staterr;
1312 	int cleaned_count = 0;
1313 	bool cleaned = false;
1314 	unsigned int total_rx_bytes = 0, total_rx_packets = 0;
1315 
1316 	i = rx_ring->next_to_clean;
1317 	rx_desc = E1000_RX_DESC_PS(*rx_ring, i);
1318 	staterr = le32_to_cpu(rx_desc->wb.middle.status_error);
1319 	buffer_info = &rx_ring->buffer_info[i];
1320 
1321 	while (staterr & E1000_RXD_STAT_DD) {
1322 		if (*work_done >= work_to_do)
1323 			break;
1324 		(*work_done)++;
1325 		skb = buffer_info->skb;
1326 		dma_rmb();	/* read descriptor and rx_buffer_info after status DD */
1327 
1328 		/* in the packet split case this is header only */
1329 		prefetch(skb->data - NET_IP_ALIGN);
1330 
1331 		i++;
1332 		if (i == rx_ring->count)
1333 			i = 0;
1334 		next_rxd = E1000_RX_DESC_PS(*rx_ring, i);
1335 		prefetch(next_rxd);
1336 
1337 		next_buffer = &rx_ring->buffer_info[i];
1338 
1339 		cleaned = true;
1340 		cleaned_count++;
1341 		dma_unmap_single(&pdev->dev, buffer_info->dma,
1342 				 adapter->rx_ps_bsize0, DMA_FROM_DEVICE);
1343 		buffer_info->dma = 0;
1344 
1345 		/* see !EOP comment in other Rx routine */
1346 		if (!(staterr & E1000_RXD_STAT_EOP))
1347 			adapter->flags2 |= FLAG2_IS_DISCARDING;
1348 
1349 		if (adapter->flags2 & FLAG2_IS_DISCARDING) {
1350 			e_dbg("Packet Split buffers didn't pick up the full packet\n");
1351 			dev_kfree_skb_irq(skb);
1352 			if (staterr & E1000_RXD_STAT_EOP)
1353 				adapter->flags2 &= ~FLAG2_IS_DISCARDING;
1354 			goto next_desc;
1355 		}
1356 
1357 		if (unlikely((staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) &&
1358 			     !(netdev->features & NETIF_F_RXALL))) {
1359 			dev_kfree_skb_irq(skb);
1360 			goto next_desc;
1361 		}
1362 
1363 		length = le16_to_cpu(rx_desc->wb.middle.length0);
1364 
1365 		if (!length) {
1366 			e_dbg("Last part of the packet spanning multiple descriptors\n");
1367 			dev_kfree_skb_irq(skb);
1368 			goto next_desc;
1369 		}
1370 
1371 		/* Good Receive */
1372 		skb_put(skb, length);
1373 
1374 		{
1375 			/* this looks ugly, but it seems compiler issues make
1376 			 * it more efficient than reusing j
1377 			 */
1378 			int l1 = le16_to_cpu(rx_desc->wb.upper.length[0]);
1379 
1380 			/* page alloc/put takes too long and effects small
1381 			 * packet throughput, so unsplit small packets and
1382 			 * save the alloc/put only valid in softirq (napi)
1383 			 * context to call kmap_*
1384 			 */
1385 			if (l1 && (l1 <= copybreak) &&
1386 			    ((length + l1) <= adapter->rx_ps_bsize0)) {
1387 				u8 *vaddr;
1388 
1389 				ps_page = &buffer_info->ps_pages[0];
1390 
1391 				/* there is no documentation about how to call
1392 				 * kmap_atomic, so we can't hold the mapping
1393 				 * very long
1394 				 */
1395 				dma_sync_single_for_cpu(&pdev->dev,
1396 							ps_page->dma,
1397 							PAGE_SIZE,
1398 							DMA_FROM_DEVICE);
1399 				vaddr = kmap_atomic(ps_page->page);
1400 				memcpy(skb_tail_pointer(skb), vaddr, l1);
1401 				kunmap_atomic(vaddr);
1402 				dma_sync_single_for_device(&pdev->dev,
1403 							   ps_page->dma,
1404 							   PAGE_SIZE,
1405 							   DMA_FROM_DEVICE);
1406 
1407 				/* remove the CRC */
1408 				if (!(adapter->flags2 & FLAG2_CRC_STRIPPING)) {
1409 					if (!(netdev->features & NETIF_F_RXFCS))
1410 						l1 -= 4;
1411 				}
1412 
1413 				skb_put(skb, l1);
1414 				goto copydone;
1415 			}	/* if */
1416 		}
1417 
1418 		for (j = 0; j < PS_PAGE_BUFFERS; j++) {
1419 			length = le16_to_cpu(rx_desc->wb.upper.length[j]);
1420 			if (!length)
1421 				break;
1422 
1423 			ps_page = &buffer_info->ps_pages[j];
1424 			dma_unmap_page(&pdev->dev, ps_page->dma, PAGE_SIZE,
1425 				       DMA_FROM_DEVICE);
1426 			ps_page->dma = 0;
1427 			skb_fill_page_desc(skb, j, ps_page->page, 0, length);
1428 			ps_page->page = NULL;
1429 			skb->len += length;
1430 			skb->data_len += length;
1431 			skb->truesize += PAGE_SIZE;
1432 		}
1433 
1434 		/* strip the ethernet crc, problem is we're using pages now so
1435 		 * this whole operation can get a little cpu intensive
1436 		 */
1437 		if (!(adapter->flags2 & FLAG2_CRC_STRIPPING)) {
1438 			if (!(netdev->features & NETIF_F_RXFCS))
1439 				pskb_trim(skb, skb->len - 4);
1440 		}
1441 
1442 copydone:
1443 		total_rx_bytes += skb->len;
1444 		total_rx_packets++;
1445 
1446 		e1000_rx_checksum(adapter, staterr, skb);
1447 
1448 		e1000_rx_hash(netdev, rx_desc->wb.lower.hi_dword.rss, skb);
1449 
1450 		if (rx_desc->wb.upper.header_status &
1451 		    cpu_to_le16(E1000_RXDPS_HDRSTAT_HDRSP))
1452 			adapter->rx_hdr_split++;
1453 
1454 		e1000_receive_skb(adapter, netdev, skb, staterr,
1455 				  rx_desc->wb.middle.vlan);
1456 
1457 next_desc:
1458 		rx_desc->wb.middle.status_error &= cpu_to_le32(~0xFF);
1459 		buffer_info->skb = NULL;
1460 
1461 		/* return some buffers to hardware, one at a time is too slow */
1462 		if (cleaned_count >= E1000_RX_BUFFER_WRITE) {
1463 			adapter->alloc_rx_buf(rx_ring, cleaned_count,
1464 					      GFP_ATOMIC);
1465 			cleaned_count = 0;
1466 		}
1467 
1468 		/* use prefetched values */
1469 		rx_desc = next_rxd;
1470 		buffer_info = next_buffer;
1471 
1472 		staterr = le32_to_cpu(rx_desc->wb.middle.status_error);
1473 	}
1474 	rx_ring->next_to_clean = i;
1475 
1476 	cleaned_count = e1000_desc_unused(rx_ring);
1477 	if (cleaned_count)
1478 		adapter->alloc_rx_buf(rx_ring, cleaned_count, GFP_ATOMIC);
1479 
1480 	adapter->total_rx_bytes += total_rx_bytes;
1481 	adapter->total_rx_packets += total_rx_packets;
1482 	return cleaned;
1483 }
1484 
1485 /**
1486  * e1000_consume_page - helper function
1487  **/
e1000_consume_page(struct e1000_buffer * bi,struct sk_buff * skb,u16 length)1488 static void e1000_consume_page(struct e1000_buffer *bi, struct sk_buff *skb,
1489 			       u16 length)
1490 {
1491 	bi->page = NULL;
1492 	skb->len += length;
1493 	skb->data_len += length;
1494 	skb->truesize += PAGE_SIZE;
1495 }
1496 
1497 /**
1498  * e1000_clean_jumbo_rx_irq - Send received data up the network stack; legacy
1499  * @adapter: board private structure
1500  *
1501  * the return value indicates whether actual cleaning was done, there
1502  * is no guarantee that everything was cleaned
1503  **/
e1000_clean_jumbo_rx_irq(struct e1000_ring * rx_ring,int * work_done,int work_to_do)1504 static bool e1000_clean_jumbo_rx_irq(struct e1000_ring *rx_ring, int *work_done,
1505 				     int work_to_do)
1506 {
1507 	struct e1000_adapter *adapter = rx_ring->adapter;
1508 	struct net_device *netdev = adapter->netdev;
1509 	struct pci_dev *pdev = adapter->pdev;
1510 	union e1000_rx_desc_extended *rx_desc, *next_rxd;
1511 	struct e1000_buffer *buffer_info, *next_buffer;
1512 	u32 length, staterr;
1513 	unsigned int i;
1514 	int cleaned_count = 0;
1515 	bool cleaned = false;
1516 	unsigned int total_rx_bytes = 0, total_rx_packets = 0;
1517 	struct skb_shared_info *shinfo;
1518 
1519 	i = rx_ring->next_to_clean;
1520 	rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
1521 	staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
1522 	buffer_info = &rx_ring->buffer_info[i];
1523 
1524 	while (staterr & E1000_RXD_STAT_DD) {
1525 		struct sk_buff *skb;
1526 
1527 		if (*work_done >= work_to_do)
1528 			break;
1529 		(*work_done)++;
1530 		dma_rmb();	/* read descriptor and rx_buffer_info after status DD */
1531 
1532 		skb = buffer_info->skb;
1533 		buffer_info->skb = NULL;
1534 
1535 		++i;
1536 		if (i == rx_ring->count)
1537 			i = 0;
1538 		next_rxd = E1000_RX_DESC_EXT(*rx_ring, i);
1539 		prefetch(next_rxd);
1540 
1541 		next_buffer = &rx_ring->buffer_info[i];
1542 
1543 		cleaned = true;
1544 		cleaned_count++;
1545 		dma_unmap_page(&pdev->dev, buffer_info->dma, PAGE_SIZE,
1546 			       DMA_FROM_DEVICE);
1547 		buffer_info->dma = 0;
1548 
1549 		length = le16_to_cpu(rx_desc->wb.upper.length);
1550 
1551 		/* errors is only valid for DD + EOP descriptors */
1552 		if (unlikely((staterr & E1000_RXD_STAT_EOP) &&
1553 			     ((staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) &&
1554 			      !(netdev->features & NETIF_F_RXALL)))) {
1555 			/* recycle both page and skb */
1556 			buffer_info->skb = skb;
1557 			/* an error means any chain goes out the window too */
1558 			if (rx_ring->rx_skb_top)
1559 				dev_kfree_skb_irq(rx_ring->rx_skb_top);
1560 			rx_ring->rx_skb_top = NULL;
1561 			goto next_desc;
1562 		}
1563 #define rxtop (rx_ring->rx_skb_top)
1564 		if (!(staterr & E1000_RXD_STAT_EOP)) {
1565 			/* this descriptor is only the beginning (or middle) */
1566 			if (!rxtop) {
1567 				/* this is the beginning of a chain */
1568 				rxtop = skb;
1569 				skb_fill_page_desc(rxtop, 0, buffer_info->page,
1570 						   0, length);
1571 			} else {
1572 				/* this is the middle of a chain */
1573 				shinfo = skb_shinfo(rxtop);
1574 				skb_fill_page_desc(rxtop, shinfo->nr_frags,
1575 						   buffer_info->page, 0,
1576 						   length);
1577 				/* re-use the skb, only consumed the page */
1578 				buffer_info->skb = skb;
1579 			}
1580 			e1000_consume_page(buffer_info, rxtop, length);
1581 			goto next_desc;
1582 		} else {
1583 			if (rxtop) {
1584 				/* end of the chain */
1585 				shinfo = skb_shinfo(rxtop);
1586 				skb_fill_page_desc(rxtop, shinfo->nr_frags,
1587 						   buffer_info->page, 0,
1588 						   length);
1589 				/* re-use the current skb, we only consumed the
1590 				 * page
1591 				 */
1592 				buffer_info->skb = skb;
1593 				skb = rxtop;
1594 				rxtop = NULL;
1595 				e1000_consume_page(buffer_info, skb, length);
1596 			} else {
1597 				/* no chain, got EOP, this buf is the packet
1598 				 * copybreak to save the put_page/alloc_page
1599 				 */
1600 				if (length <= copybreak &&
1601 				    skb_tailroom(skb) >= length) {
1602 					u8 *vaddr;
1603 					vaddr = kmap_atomic(buffer_info->page);
1604 					memcpy(skb_tail_pointer(skb), vaddr,
1605 					       length);
1606 					kunmap_atomic(vaddr);
1607 					/* re-use the page, so don't erase
1608 					 * buffer_info->page
1609 					 */
1610 					skb_put(skb, length);
1611 				} else {
1612 					skb_fill_page_desc(skb, 0,
1613 							   buffer_info->page, 0,
1614 							   length);
1615 					e1000_consume_page(buffer_info, skb,
1616 							   length);
1617 				}
1618 			}
1619 		}
1620 
1621 		/* Receive Checksum Offload */
1622 		e1000_rx_checksum(adapter, staterr, skb);
1623 
1624 		e1000_rx_hash(netdev, rx_desc->wb.lower.hi_dword.rss, skb);
1625 
1626 		/* probably a little skewed due to removing CRC */
1627 		total_rx_bytes += skb->len;
1628 		total_rx_packets++;
1629 
1630 		/* eth type trans needs skb->data to point to something */
1631 		if (!pskb_may_pull(skb, ETH_HLEN)) {
1632 			e_err("pskb_may_pull failed.\n");
1633 			dev_kfree_skb_irq(skb);
1634 			goto next_desc;
1635 		}
1636 
1637 		e1000_receive_skb(adapter, netdev, skb, staterr,
1638 				  rx_desc->wb.upper.vlan);
1639 
1640 next_desc:
1641 		rx_desc->wb.upper.status_error &= cpu_to_le32(~0xFF);
1642 
1643 		/* return some buffers to hardware, one at a time is too slow */
1644 		if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) {
1645 			adapter->alloc_rx_buf(rx_ring, cleaned_count,
1646 					      GFP_ATOMIC);
1647 			cleaned_count = 0;
1648 		}
1649 
1650 		/* use prefetched values */
1651 		rx_desc = next_rxd;
1652 		buffer_info = next_buffer;
1653 
1654 		staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
1655 	}
1656 	rx_ring->next_to_clean = i;
1657 
1658 	cleaned_count = e1000_desc_unused(rx_ring);
1659 	if (cleaned_count)
1660 		adapter->alloc_rx_buf(rx_ring, cleaned_count, GFP_ATOMIC);
1661 
1662 	adapter->total_rx_bytes += total_rx_bytes;
1663 	adapter->total_rx_packets += total_rx_packets;
1664 	return cleaned;
1665 }
1666 
1667 /**
1668  * e1000_clean_rx_ring - Free Rx Buffers per Queue
1669  * @rx_ring: Rx descriptor ring
1670  **/
e1000_clean_rx_ring(struct e1000_ring * rx_ring)1671 static void e1000_clean_rx_ring(struct e1000_ring *rx_ring)
1672 {
1673 	struct e1000_adapter *adapter = rx_ring->adapter;
1674 	struct e1000_buffer *buffer_info;
1675 	struct e1000_ps_page *ps_page;
1676 	struct pci_dev *pdev = adapter->pdev;
1677 	unsigned int i, j;
1678 
1679 	/* Free all the Rx ring sk_buffs */
1680 	for (i = 0; i < rx_ring->count; i++) {
1681 		buffer_info = &rx_ring->buffer_info[i];
1682 		if (buffer_info->dma) {
1683 			if (adapter->clean_rx == e1000_clean_rx_irq)
1684 				dma_unmap_single(&pdev->dev, buffer_info->dma,
1685 						 adapter->rx_buffer_len,
1686 						 DMA_FROM_DEVICE);
1687 			else if (adapter->clean_rx == e1000_clean_jumbo_rx_irq)
1688 				dma_unmap_page(&pdev->dev, buffer_info->dma,
1689 					       PAGE_SIZE, DMA_FROM_DEVICE);
1690 			else if (adapter->clean_rx == e1000_clean_rx_irq_ps)
1691 				dma_unmap_single(&pdev->dev, buffer_info->dma,
1692 						 adapter->rx_ps_bsize0,
1693 						 DMA_FROM_DEVICE);
1694 			buffer_info->dma = 0;
1695 		}
1696 
1697 		if (buffer_info->page) {
1698 			put_page(buffer_info->page);
1699 			buffer_info->page = NULL;
1700 		}
1701 
1702 		if (buffer_info->skb) {
1703 			dev_kfree_skb(buffer_info->skb);
1704 			buffer_info->skb = NULL;
1705 		}
1706 
1707 		for (j = 0; j < PS_PAGE_BUFFERS; j++) {
1708 			ps_page = &buffer_info->ps_pages[j];
1709 			if (!ps_page->page)
1710 				break;
1711 			dma_unmap_page(&pdev->dev, ps_page->dma, PAGE_SIZE,
1712 				       DMA_FROM_DEVICE);
1713 			ps_page->dma = 0;
1714 			put_page(ps_page->page);
1715 			ps_page->page = NULL;
1716 		}
1717 	}
1718 
1719 	/* there also may be some cached data from a chained receive */
1720 	if (rx_ring->rx_skb_top) {
1721 		dev_kfree_skb(rx_ring->rx_skb_top);
1722 		rx_ring->rx_skb_top = NULL;
1723 	}
1724 
1725 	/* Zero out the descriptor ring */
1726 	memset(rx_ring->desc, 0, rx_ring->size);
1727 
1728 	rx_ring->next_to_clean = 0;
1729 	rx_ring->next_to_use = 0;
1730 	adapter->flags2 &= ~FLAG2_IS_DISCARDING;
1731 }
1732 
e1000e_downshift_workaround(struct work_struct * work)1733 static void e1000e_downshift_workaround(struct work_struct *work)
1734 {
1735 	struct e1000_adapter *adapter = container_of(work,
1736 						     struct e1000_adapter,
1737 						     downshift_task);
1738 
1739 	if (test_bit(__E1000_DOWN, &adapter->state))
1740 		return;
1741 
1742 	e1000e_gig_downshift_workaround_ich8lan(&adapter->hw);
1743 }
1744 
1745 /**
1746  * e1000_intr_msi - Interrupt Handler
1747  * @irq: interrupt number
1748  * @data: pointer to a network interface device structure
1749  **/
e1000_intr_msi(int __always_unused irq,void * data)1750 static irqreturn_t e1000_intr_msi(int __always_unused irq, void *data)
1751 {
1752 	struct net_device *netdev = data;
1753 	struct e1000_adapter *adapter = netdev_priv(netdev);
1754 	struct e1000_hw *hw = &adapter->hw;
1755 	u32 icr = er32(ICR);
1756 
1757 	/* read ICR disables interrupts using IAM */
1758 	if (icr & E1000_ICR_LSC) {
1759 		hw->mac.get_link_status = true;
1760 		/* ICH8 workaround-- Call gig speed drop workaround on cable
1761 		 * disconnect (LSC) before accessing any PHY registers
1762 		 */
1763 		if ((adapter->flags & FLAG_LSC_GIG_SPEED_DROP) &&
1764 		    (!(er32(STATUS) & E1000_STATUS_LU)))
1765 			schedule_work(&adapter->downshift_task);
1766 
1767 		/* 80003ES2LAN workaround-- For packet buffer work-around on
1768 		 * link down event; disable receives here in the ISR and reset
1769 		 * adapter in watchdog
1770 		 */
1771 		if (netif_carrier_ok(netdev) &&
1772 		    adapter->flags & FLAG_RX_NEEDS_RESTART) {
1773 			/* disable receives */
1774 			u32 rctl = er32(RCTL);
1775 
1776 			ew32(RCTL, rctl & ~E1000_RCTL_EN);
1777 			adapter->flags |= FLAG_RESTART_NOW;
1778 		}
1779 		/* guard against interrupt when we're going down */
1780 		if (!test_bit(__E1000_DOWN, &adapter->state))
1781 			mod_timer(&adapter->watchdog_timer, jiffies + 1);
1782 	}
1783 
1784 	/* Reset on uncorrectable ECC error */
1785 	if ((icr & E1000_ICR_ECCER) && (hw->mac.type >= e1000_pch_lpt)) {
1786 		u32 pbeccsts = er32(PBECCSTS);
1787 
1788 		adapter->corr_errors +=
1789 		    pbeccsts & E1000_PBECCSTS_CORR_ERR_CNT_MASK;
1790 		adapter->uncorr_errors +=
1791 		    (pbeccsts & E1000_PBECCSTS_UNCORR_ERR_CNT_MASK) >>
1792 		    E1000_PBECCSTS_UNCORR_ERR_CNT_SHIFT;
1793 
1794 		/* Do the reset outside of interrupt context */
1795 		schedule_work(&adapter->reset_task);
1796 
1797 		/* return immediately since reset is imminent */
1798 		return IRQ_HANDLED;
1799 	}
1800 
1801 	if (napi_schedule_prep(&adapter->napi)) {
1802 		adapter->total_tx_bytes = 0;
1803 		adapter->total_tx_packets = 0;
1804 		adapter->total_rx_bytes = 0;
1805 		adapter->total_rx_packets = 0;
1806 		__napi_schedule(&adapter->napi);
1807 	}
1808 
1809 	return IRQ_HANDLED;
1810 }
1811 
1812 /**
1813  * e1000_intr - Interrupt Handler
1814  * @irq: interrupt number
1815  * @data: pointer to a network interface device structure
1816  **/
e1000_intr(int __always_unused irq,void * data)1817 static irqreturn_t e1000_intr(int __always_unused irq, void *data)
1818 {
1819 	struct net_device *netdev = data;
1820 	struct e1000_adapter *adapter = netdev_priv(netdev);
1821 	struct e1000_hw *hw = &adapter->hw;
1822 	u32 rctl, icr = er32(ICR);
1823 
1824 	if (!icr || test_bit(__E1000_DOWN, &adapter->state))
1825 		return IRQ_NONE;	/* Not our interrupt */
1826 
1827 	/* IMS will not auto-mask if INT_ASSERTED is not set, and if it is
1828 	 * not set, then the adapter didn't send an interrupt
1829 	 */
1830 	if (!(icr & E1000_ICR_INT_ASSERTED))
1831 		return IRQ_NONE;
1832 
1833 	/* Interrupt Auto-Mask...upon reading ICR,
1834 	 * interrupts are masked.  No need for the
1835 	 * IMC write
1836 	 */
1837 
1838 	if (icr & E1000_ICR_LSC) {
1839 		hw->mac.get_link_status = true;
1840 		/* ICH8 workaround-- Call gig speed drop workaround on cable
1841 		 * disconnect (LSC) before accessing any PHY registers
1842 		 */
1843 		if ((adapter->flags & FLAG_LSC_GIG_SPEED_DROP) &&
1844 		    (!(er32(STATUS) & E1000_STATUS_LU)))
1845 			schedule_work(&adapter->downshift_task);
1846 
1847 		/* 80003ES2LAN workaround--
1848 		 * For packet buffer work-around on link down event;
1849 		 * disable receives here in the ISR and
1850 		 * reset adapter in watchdog
1851 		 */
1852 		if (netif_carrier_ok(netdev) &&
1853 		    (adapter->flags & FLAG_RX_NEEDS_RESTART)) {
1854 			/* disable receives */
1855 			rctl = er32(RCTL);
1856 			ew32(RCTL, rctl & ~E1000_RCTL_EN);
1857 			adapter->flags |= FLAG_RESTART_NOW;
1858 		}
1859 		/* guard against interrupt when we're going down */
1860 		if (!test_bit(__E1000_DOWN, &adapter->state))
1861 			mod_timer(&adapter->watchdog_timer, jiffies + 1);
1862 	}
1863 
1864 	/* Reset on uncorrectable ECC error */
1865 	if ((icr & E1000_ICR_ECCER) && (hw->mac.type >= e1000_pch_lpt)) {
1866 		u32 pbeccsts = er32(PBECCSTS);
1867 
1868 		adapter->corr_errors +=
1869 		    pbeccsts & E1000_PBECCSTS_CORR_ERR_CNT_MASK;
1870 		adapter->uncorr_errors +=
1871 		    (pbeccsts & E1000_PBECCSTS_UNCORR_ERR_CNT_MASK) >>
1872 		    E1000_PBECCSTS_UNCORR_ERR_CNT_SHIFT;
1873 
1874 		/* Do the reset outside of interrupt context */
1875 		schedule_work(&adapter->reset_task);
1876 
1877 		/* return immediately since reset is imminent */
1878 		return IRQ_HANDLED;
1879 	}
1880 
1881 	if (napi_schedule_prep(&adapter->napi)) {
1882 		adapter->total_tx_bytes = 0;
1883 		adapter->total_tx_packets = 0;
1884 		adapter->total_rx_bytes = 0;
1885 		adapter->total_rx_packets = 0;
1886 		__napi_schedule(&adapter->napi);
1887 	}
1888 
1889 	return IRQ_HANDLED;
1890 }
1891 
e1000_msix_other(int __always_unused irq,void * data)1892 static irqreturn_t e1000_msix_other(int __always_unused irq, void *data)
1893 {
1894 	struct net_device *netdev = data;
1895 	struct e1000_adapter *adapter = netdev_priv(netdev);
1896 	struct e1000_hw *hw = &adapter->hw;
1897 	u32 icr = er32(ICR);
1898 
1899 	if (icr & adapter->eiac_mask)
1900 		ew32(ICS, (icr & adapter->eiac_mask));
1901 
1902 	if (icr & E1000_ICR_LSC) {
1903 		hw->mac.get_link_status = true;
1904 		/* guard against interrupt when we're going down */
1905 		if (!test_bit(__E1000_DOWN, &adapter->state))
1906 			mod_timer(&adapter->watchdog_timer, jiffies + 1);
1907 	}
1908 
1909 	if (!test_bit(__E1000_DOWN, &adapter->state))
1910 		ew32(IMS, E1000_IMS_OTHER | IMS_OTHER_MASK);
1911 
1912 	return IRQ_HANDLED;
1913 }
1914 
e1000_intr_msix_tx(int __always_unused irq,void * data)1915 static irqreturn_t e1000_intr_msix_tx(int __always_unused irq, void *data)
1916 {
1917 	struct net_device *netdev = data;
1918 	struct e1000_adapter *adapter = netdev_priv(netdev);
1919 	struct e1000_hw *hw = &adapter->hw;
1920 	struct e1000_ring *tx_ring = adapter->tx_ring;
1921 
1922 	adapter->total_tx_bytes = 0;
1923 	adapter->total_tx_packets = 0;
1924 
1925 	if (!e1000_clean_tx_irq(tx_ring))
1926 		/* Ring was not completely cleaned, so fire another interrupt */
1927 		ew32(ICS, tx_ring->ims_val);
1928 
1929 	if (!test_bit(__E1000_DOWN, &adapter->state))
1930 		ew32(IMS, adapter->tx_ring->ims_val);
1931 
1932 	return IRQ_HANDLED;
1933 }
1934 
e1000_intr_msix_rx(int __always_unused irq,void * data)1935 static irqreturn_t e1000_intr_msix_rx(int __always_unused irq, void *data)
1936 {
1937 	struct net_device *netdev = data;
1938 	struct e1000_adapter *adapter = netdev_priv(netdev);
1939 	struct e1000_ring *rx_ring = adapter->rx_ring;
1940 
1941 	/* Write the ITR value calculated at the end of the
1942 	 * previous interrupt.
1943 	 */
1944 	if (rx_ring->set_itr) {
1945 		u32 itr = rx_ring->itr_val ?
1946 			  1000000000 / (rx_ring->itr_val * 256) : 0;
1947 
1948 		writel(itr, rx_ring->itr_register);
1949 		rx_ring->set_itr = 0;
1950 	}
1951 
1952 	if (napi_schedule_prep(&adapter->napi)) {
1953 		adapter->total_rx_bytes = 0;
1954 		adapter->total_rx_packets = 0;
1955 		__napi_schedule(&adapter->napi);
1956 	}
1957 	return IRQ_HANDLED;
1958 }
1959 
1960 /**
1961  * e1000_configure_msix - Configure MSI-X hardware
1962  *
1963  * e1000_configure_msix sets up the hardware to properly
1964  * generate MSI-X interrupts.
1965  **/
e1000_configure_msix(struct e1000_adapter * adapter)1966 static void e1000_configure_msix(struct e1000_adapter *adapter)
1967 {
1968 	struct e1000_hw *hw = &adapter->hw;
1969 	struct e1000_ring *rx_ring = adapter->rx_ring;
1970 	struct e1000_ring *tx_ring = adapter->tx_ring;
1971 	int vector = 0;
1972 	u32 ctrl_ext, ivar = 0;
1973 
1974 	adapter->eiac_mask = 0;
1975 
1976 	/* Workaround issue with spurious interrupts on 82574 in MSI-X mode */
1977 	if (hw->mac.type == e1000_82574) {
1978 		u32 rfctl = er32(RFCTL);
1979 
1980 		rfctl |= E1000_RFCTL_ACK_DIS;
1981 		ew32(RFCTL, rfctl);
1982 	}
1983 
1984 	/* Configure Rx vector */
1985 	rx_ring->ims_val = E1000_IMS_RXQ0;
1986 	adapter->eiac_mask |= rx_ring->ims_val;
1987 	if (rx_ring->itr_val)
1988 		writel(1000000000 / (rx_ring->itr_val * 256),
1989 		       rx_ring->itr_register);
1990 	else
1991 		writel(1, rx_ring->itr_register);
1992 	ivar = E1000_IVAR_INT_ALLOC_VALID | vector;
1993 
1994 	/* Configure Tx vector */
1995 	tx_ring->ims_val = E1000_IMS_TXQ0;
1996 	vector++;
1997 	if (tx_ring->itr_val)
1998 		writel(1000000000 / (tx_ring->itr_val * 256),
1999 		       tx_ring->itr_register);
2000 	else
2001 		writel(1, tx_ring->itr_register);
2002 	adapter->eiac_mask |= tx_ring->ims_val;
2003 	ivar |= ((E1000_IVAR_INT_ALLOC_VALID | vector) << 8);
2004 
2005 	/* set vector for Other Causes, e.g. link changes */
2006 	vector++;
2007 	ivar |= ((E1000_IVAR_INT_ALLOC_VALID | vector) << 16);
2008 	if (rx_ring->itr_val)
2009 		writel(1000000000 / (rx_ring->itr_val * 256),
2010 		       hw->hw_addr + E1000_EITR_82574(vector));
2011 	else
2012 		writel(1, hw->hw_addr + E1000_EITR_82574(vector));
2013 
2014 	/* Cause Tx interrupts on every write back */
2015 	ivar |= BIT(31);
2016 
2017 	ew32(IVAR, ivar);
2018 
2019 	/* enable MSI-X PBA support */
2020 	ctrl_ext = er32(CTRL_EXT) & ~E1000_CTRL_EXT_IAME;
2021 	ctrl_ext |= E1000_CTRL_EXT_PBA_CLR | E1000_CTRL_EXT_EIAME;
2022 	ew32(CTRL_EXT, ctrl_ext);
2023 	e1e_flush();
2024 }
2025 
e1000e_reset_interrupt_capability(struct e1000_adapter * adapter)2026 void e1000e_reset_interrupt_capability(struct e1000_adapter *adapter)
2027 {
2028 	if (adapter->msix_entries) {
2029 		pci_disable_msix(adapter->pdev);
2030 		kfree(adapter->msix_entries);
2031 		adapter->msix_entries = NULL;
2032 	} else if (adapter->flags & FLAG_MSI_ENABLED) {
2033 		pci_disable_msi(adapter->pdev);
2034 		adapter->flags &= ~FLAG_MSI_ENABLED;
2035 	}
2036 }
2037 
2038 /**
2039  * e1000e_set_interrupt_capability - set MSI or MSI-X if supported
2040  *
2041  * Attempt to configure interrupts using the best available
2042  * capabilities of the hardware and kernel.
2043  **/
e1000e_set_interrupt_capability(struct e1000_adapter * adapter)2044 void e1000e_set_interrupt_capability(struct e1000_adapter *adapter)
2045 {
2046 	int err;
2047 	int i;
2048 
2049 	switch (adapter->int_mode) {
2050 	case E1000E_INT_MODE_MSIX:
2051 		if (adapter->flags & FLAG_HAS_MSIX) {
2052 			adapter->num_vectors = 3; /* RxQ0, TxQ0 and other */
2053 			adapter->msix_entries = kcalloc(adapter->num_vectors,
2054 							sizeof(struct
2055 							       msix_entry),
2056 							GFP_KERNEL);
2057 			if (adapter->msix_entries) {
2058 				struct e1000_adapter *a = adapter;
2059 
2060 				for (i = 0; i < adapter->num_vectors; i++)
2061 					adapter->msix_entries[i].entry = i;
2062 
2063 				err = pci_enable_msix_range(a->pdev,
2064 							    a->msix_entries,
2065 							    a->num_vectors,
2066 							    a->num_vectors);
2067 				if (err > 0)
2068 					return;
2069 			}
2070 			/* MSI-X failed, so fall through and try MSI */
2071 			e_err("Failed to initialize MSI-X interrupts.  Falling back to MSI interrupts.\n");
2072 			e1000e_reset_interrupt_capability(adapter);
2073 		}
2074 		adapter->int_mode = E1000E_INT_MODE_MSI;
2075 		/* Fall through */
2076 	case E1000E_INT_MODE_MSI:
2077 		if (!pci_enable_msi(adapter->pdev)) {
2078 			adapter->flags |= FLAG_MSI_ENABLED;
2079 		} else {
2080 			adapter->int_mode = E1000E_INT_MODE_LEGACY;
2081 			e_err("Failed to initialize MSI interrupts.  Falling back to legacy interrupts.\n");
2082 		}
2083 		/* Fall through */
2084 	case E1000E_INT_MODE_LEGACY:
2085 		/* Don't do anything; this is the system default */
2086 		break;
2087 	}
2088 
2089 	/* store the number of vectors being used */
2090 	adapter->num_vectors = 1;
2091 }
2092 
2093 /**
2094  * e1000_request_msix - Initialize MSI-X interrupts
2095  *
2096  * e1000_request_msix allocates MSI-X vectors and requests interrupts from the
2097  * kernel.
2098  **/
e1000_request_msix(struct e1000_adapter * adapter)2099 static int e1000_request_msix(struct e1000_adapter *adapter)
2100 {
2101 	struct net_device *netdev = adapter->netdev;
2102 	int err = 0, vector = 0;
2103 
2104 	if (strlen(netdev->name) < (IFNAMSIZ - 5))
2105 		snprintf(adapter->rx_ring->name,
2106 			 sizeof(adapter->rx_ring->name) - 1,
2107 			 "%.14s-rx-0", netdev->name);
2108 	else
2109 		memcpy(adapter->rx_ring->name, netdev->name, IFNAMSIZ);
2110 	err = request_irq(adapter->msix_entries[vector].vector,
2111 			  e1000_intr_msix_rx, 0, adapter->rx_ring->name,
2112 			  netdev);
2113 	if (err)
2114 		return err;
2115 	adapter->rx_ring->itr_register = adapter->hw.hw_addr +
2116 	    E1000_EITR_82574(vector);
2117 	adapter->rx_ring->itr_val = adapter->itr;
2118 	vector++;
2119 
2120 	if (strlen(netdev->name) < (IFNAMSIZ - 5))
2121 		snprintf(adapter->tx_ring->name,
2122 			 sizeof(adapter->tx_ring->name) - 1,
2123 			 "%.14s-tx-0", netdev->name);
2124 	else
2125 		memcpy(adapter->tx_ring->name, netdev->name, IFNAMSIZ);
2126 	err = request_irq(adapter->msix_entries[vector].vector,
2127 			  e1000_intr_msix_tx, 0, adapter->tx_ring->name,
2128 			  netdev);
2129 	if (err)
2130 		return err;
2131 	adapter->tx_ring->itr_register = adapter->hw.hw_addr +
2132 	    E1000_EITR_82574(vector);
2133 	adapter->tx_ring->itr_val = adapter->itr;
2134 	vector++;
2135 
2136 	err = request_irq(adapter->msix_entries[vector].vector,
2137 			  e1000_msix_other, 0, netdev->name, netdev);
2138 	if (err)
2139 		return err;
2140 
2141 	e1000_configure_msix(adapter);
2142 
2143 	return 0;
2144 }
2145 
2146 /**
2147  * e1000_request_irq - initialize interrupts
2148  *
2149  * Attempts to configure interrupts using the best available
2150  * capabilities of the hardware and kernel.
2151  **/
e1000_request_irq(struct e1000_adapter * adapter)2152 static int e1000_request_irq(struct e1000_adapter *adapter)
2153 {
2154 	struct net_device *netdev = adapter->netdev;
2155 	int err;
2156 
2157 	if (adapter->msix_entries) {
2158 		err = e1000_request_msix(adapter);
2159 		if (!err)
2160 			return err;
2161 		/* fall back to MSI */
2162 		e1000e_reset_interrupt_capability(adapter);
2163 		adapter->int_mode = E1000E_INT_MODE_MSI;
2164 		e1000e_set_interrupt_capability(adapter);
2165 	}
2166 	if (adapter->flags & FLAG_MSI_ENABLED) {
2167 		err = request_irq(adapter->pdev->irq, e1000_intr_msi, 0,
2168 				  netdev->name, netdev);
2169 		if (!err)
2170 			return err;
2171 
2172 		/* fall back to legacy interrupt */
2173 		e1000e_reset_interrupt_capability(adapter);
2174 		adapter->int_mode = E1000E_INT_MODE_LEGACY;
2175 	}
2176 
2177 	err = request_irq(adapter->pdev->irq, e1000_intr, IRQF_SHARED,
2178 			  netdev->name, netdev);
2179 	if (err)
2180 		e_err("Unable to allocate interrupt, Error: %d\n", err);
2181 
2182 	return err;
2183 }
2184 
e1000_free_irq(struct e1000_adapter * adapter)2185 static void e1000_free_irq(struct e1000_adapter *adapter)
2186 {
2187 	struct net_device *netdev = adapter->netdev;
2188 
2189 	if (adapter->msix_entries) {
2190 		int vector = 0;
2191 
2192 		free_irq(adapter->msix_entries[vector].vector, netdev);
2193 		vector++;
2194 
2195 		free_irq(adapter->msix_entries[vector].vector, netdev);
2196 		vector++;
2197 
2198 		/* Other Causes interrupt vector */
2199 		free_irq(adapter->msix_entries[vector].vector, netdev);
2200 		return;
2201 	}
2202 
2203 	free_irq(adapter->pdev->irq, netdev);
2204 }
2205 
2206 /**
2207  * e1000_irq_disable - Mask off interrupt generation on the NIC
2208  **/
e1000_irq_disable(struct e1000_adapter * adapter)2209 static void e1000_irq_disable(struct e1000_adapter *adapter)
2210 {
2211 	struct e1000_hw *hw = &adapter->hw;
2212 
2213 	ew32(IMC, ~0);
2214 	if (adapter->msix_entries)
2215 		ew32(EIAC_82574, 0);
2216 	e1e_flush();
2217 
2218 	if (adapter->msix_entries) {
2219 		int i;
2220 
2221 		for (i = 0; i < adapter->num_vectors; i++)
2222 			synchronize_irq(adapter->msix_entries[i].vector);
2223 	} else {
2224 		synchronize_irq(adapter->pdev->irq);
2225 	}
2226 }
2227 
2228 /**
2229  * e1000_irq_enable - Enable default interrupt generation settings
2230  **/
e1000_irq_enable(struct e1000_adapter * adapter)2231 static void e1000_irq_enable(struct e1000_adapter *adapter)
2232 {
2233 	struct e1000_hw *hw = &adapter->hw;
2234 
2235 	if (adapter->msix_entries) {
2236 		ew32(EIAC_82574, adapter->eiac_mask & E1000_EIAC_MASK_82574);
2237 		ew32(IMS, adapter->eiac_mask | E1000_IMS_OTHER |
2238 		     IMS_OTHER_MASK);
2239 	} else if (hw->mac.type >= e1000_pch_lpt) {
2240 		ew32(IMS, IMS_ENABLE_MASK | E1000_IMS_ECCER);
2241 	} else {
2242 		ew32(IMS, IMS_ENABLE_MASK);
2243 	}
2244 	e1e_flush();
2245 }
2246 
2247 /**
2248  * e1000e_get_hw_control - get control of the h/w from f/w
2249  * @adapter: address of board private structure
2250  *
2251  * e1000e_get_hw_control sets {CTRL_EXT|SWSM}:DRV_LOAD bit.
2252  * For ASF and Pass Through versions of f/w this means that
2253  * the driver is loaded. For AMT version (only with 82573)
2254  * of the f/w this means that the network i/f is open.
2255  **/
e1000e_get_hw_control(struct e1000_adapter * adapter)2256 void e1000e_get_hw_control(struct e1000_adapter *adapter)
2257 {
2258 	struct e1000_hw *hw = &adapter->hw;
2259 	u32 ctrl_ext;
2260 	u32 swsm;
2261 
2262 	/* Let firmware know the driver has taken over */
2263 	if (adapter->flags & FLAG_HAS_SWSM_ON_LOAD) {
2264 		swsm = er32(SWSM);
2265 		ew32(SWSM, swsm | E1000_SWSM_DRV_LOAD);
2266 	} else if (adapter->flags & FLAG_HAS_CTRLEXT_ON_LOAD) {
2267 		ctrl_ext = er32(CTRL_EXT);
2268 		ew32(CTRL_EXT, ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
2269 	}
2270 }
2271 
2272 /**
2273  * e1000e_release_hw_control - release control of the h/w to f/w
2274  * @adapter: address of board private structure
2275  *
2276  * e1000e_release_hw_control resets {CTRL_EXT|SWSM}:DRV_LOAD bit.
2277  * For ASF and Pass Through versions of f/w this means that the
2278  * driver is no longer loaded. For AMT version (only with 82573) i
2279  * of the f/w this means that the network i/f is closed.
2280  *
2281  **/
e1000e_release_hw_control(struct e1000_adapter * adapter)2282 void e1000e_release_hw_control(struct e1000_adapter *adapter)
2283 {
2284 	struct e1000_hw *hw = &adapter->hw;
2285 	u32 ctrl_ext;
2286 	u32 swsm;
2287 
2288 	/* Let firmware taken over control of h/w */
2289 	if (adapter->flags & FLAG_HAS_SWSM_ON_LOAD) {
2290 		swsm = er32(SWSM);
2291 		ew32(SWSM, swsm & ~E1000_SWSM_DRV_LOAD);
2292 	} else if (adapter->flags & FLAG_HAS_CTRLEXT_ON_LOAD) {
2293 		ctrl_ext = er32(CTRL_EXT);
2294 		ew32(CTRL_EXT, ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
2295 	}
2296 }
2297 
2298 /**
2299  * e1000_alloc_ring_dma - allocate memory for a ring structure
2300  **/
e1000_alloc_ring_dma(struct e1000_adapter * adapter,struct e1000_ring * ring)2301 static int e1000_alloc_ring_dma(struct e1000_adapter *adapter,
2302 				struct e1000_ring *ring)
2303 {
2304 	struct pci_dev *pdev = adapter->pdev;
2305 
2306 	ring->desc = dma_zalloc_coherent(&pdev->dev, ring->size, &ring->dma,
2307 					 GFP_KERNEL);
2308 	if (!ring->desc)
2309 		return -ENOMEM;
2310 
2311 	return 0;
2312 }
2313 
2314 /**
2315  * e1000e_setup_tx_resources - allocate Tx resources (Descriptors)
2316  * @tx_ring: Tx descriptor ring
2317  *
2318  * Return 0 on success, negative on failure
2319  **/
e1000e_setup_tx_resources(struct e1000_ring * tx_ring)2320 int e1000e_setup_tx_resources(struct e1000_ring *tx_ring)
2321 {
2322 	struct e1000_adapter *adapter = tx_ring->adapter;
2323 	int err = -ENOMEM, size;
2324 
2325 	size = sizeof(struct e1000_buffer) * tx_ring->count;
2326 	tx_ring->buffer_info = vzalloc(size);
2327 	if (!tx_ring->buffer_info)
2328 		goto err;
2329 
2330 	/* round up to nearest 4K */
2331 	tx_ring->size = tx_ring->count * sizeof(struct e1000_tx_desc);
2332 	tx_ring->size = ALIGN(tx_ring->size, 4096);
2333 
2334 	err = e1000_alloc_ring_dma(adapter, tx_ring);
2335 	if (err)
2336 		goto err;
2337 
2338 	tx_ring->next_to_use = 0;
2339 	tx_ring->next_to_clean = 0;
2340 
2341 	return 0;
2342 err:
2343 	vfree(tx_ring->buffer_info);
2344 	e_err("Unable to allocate memory for the transmit descriptor ring\n");
2345 	return err;
2346 }
2347 
2348 /**
2349  * e1000e_setup_rx_resources - allocate Rx resources (Descriptors)
2350  * @rx_ring: Rx descriptor ring
2351  *
2352  * Returns 0 on success, negative on failure
2353  **/
e1000e_setup_rx_resources(struct e1000_ring * rx_ring)2354 int e1000e_setup_rx_resources(struct e1000_ring *rx_ring)
2355 {
2356 	struct e1000_adapter *adapter = rx_ring->adapter;
2357 	struct e1000_buffer *buffer_info;
2358 	int i, size, desc_len, err = -ENOMEM;
2359 
2360 	size = sizeof(struct e1000_buffer) * rx_ring->count;
2361 	rx_ring->buffer_info = vzalloc(size);
2362 	if (!rx_ring->buffer_info)
2363 		goto err;
2364 
2365 	for (i = 0; i < rx_ring->count; i++) {
2366 		buffer_info = &rx_ring->buffer_info[i];
2367 		buffer_info->ps_pages = kcalloc(PS_PAGE_BUFFERS,
2368 						sizeof(struct e1000_ps_page),
2369 						GFP_KERNEL);
2370 		if (!buffer_info->ps_pages)
2371 			goto err_pages;
2372 	}
2373 
2374 	desc_len = sizeof(union e1000_rx_desc_packet_split);
2375 
2376 	/* Round up to nearest 4K */
2377 	rx_ring->size = rx_ring->count * desc_len;
2378 	rx_ring->size = ALIGN(rx_ring->size, 4096);
2379 
2380 	err = e1000_alloc_ring_dma(adapter, rx_ring);
2381 	if (err)
2382 		goto err_pages;
2383 
2384 	rx_ring->next_to_clean = 0;
2385 	rx_ring->next_to_use = 0;
2386 	rx_ring->rx_skb_top = NULL;
2387 
2388 	return 0;
2389 
2390 err_pages:
2391 	for (i = 0; i < rx_ring->count; i++) {
2392 		buffer_info = &rx_ring->buffer_info[i];
2393 		kfree(buffer_info->ps_pages);
2394 	}
2395 err:
2396 	vfree(rx_ring->buffer_info);
2397 	e_err("Unable to allocate memory for the receive descriptor ring\n");
2398 	return err;
2399 }
2400 
2401 /**
2402  * e1000_clean_tx_ring - Free Tx Buffers
2403  * @tx_ring: Tx descriptor ring
2404  **/
e1000_clean_tx_ring(struct e1000_ring * tx_ring)2405 static void e1000_clean_tx_ring(struct e1000_ring *tx_ring)
2406 {
2407 	struct e1000_adapter *adapter = tx_ring->adapter;
2408 	struct e1000_buffer *buffer_info;
2409 	unsigned long size;
2410 	unsigned int i;
2411 
2412 	for (i = 0; i < tx_ring->count; i++) {
2413 		buffer_info = &tx_ring->buffer_info[i];
2414 		e1000_put_txbuf(tx_ring, buffer_info, false);
2415 	}
2416 
2417 	netdev_reset_queue(adapter->netdev);
2418 	size = sizeof(struct e1000_buffer) * tx_ring->count;
2419 	memset(tx_ring->buffer_info, 0, size);
2420 
2421 	memset(tx_ring->desc, 0, tx_ring->size);
2422 
2423 	tx_ring->next_to_use = 0;
2424 	tx_ring->next_to_clean = 0;
2425 }
2426 
2427 /**
2428  * e1000e_free_tx_resources - Free Tx Resources per Queue
2429  * @tx_ring: Tx descriptor ring
2430  *
2431  * Free all transmit software resources
2432  **/
e1000e_free_tx_resources(struct e1000_ring * tx_ring)2433 void e1000e_free_tx_resources(struct e1000_ring *tx_ring)
2434 {
2435 	struct e1000_adapter *adapter = tx_ring->adapter;
2436 	struct pci_dev *pdev = adapter->pdev;
2437 
2438 	e1000_clean_tx_ring(tx_ring);
2439 
2440 	vfree(tx_ring->buffer_info);
2441 	tx_ring->buffer_info = NULL;
2442 
2443 	dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc,
2444 			  tx_ring->dma);
2445 	tx_ring->desc = NULL;
2446 }
2447 
2448 /**
2449  * e1000e_free_rx_resources - Free Rx Resources
2450  * @rx_ring: Rx descriptor ring
2451  *
2452  * Free all receive software resources
2453  **/
e1000e_free_rx_resources(struct e1000_ring * rx_ring)2454 void e1000e_free_rx_resources(struct e1000_ring *rx_ring)
2455 {
2456 	struct e1000_adapter *adapter = rx_ring->adapter;
2457 	struct pci_dev *pdev = adapter->pdev;
2458 	int i;
2459 
2460 	e1000_clean_rx_ring(rx_ring);
2461 
2462 	for (i = 0; i < rx_ring->count; i++)
2463 		kfree(rx_ring->buffer_info[i].ps_pages);
2464 
2465 	vfree(rx_ring->buffer_info);
2466 	rx_ring->buffer_info = NULL;
2467 
2468 	dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc,
2469 			  rx_ring->dma);
2470 	rx_ring->desc = NULL;
2471 }
2472 
2473 /**
2474  * e1000_update_itr - update the dynamic ITR value based on statistics
2475  * @adapter: pointer to adapter
2476  * @itr_setting: current adapter->itr
2477  * @packets: the number of packets during this measurement interval
2478  * @bytes: the number of bytes during this measurement interval
2479  *
2480  *      Stores a new ITR value based on packets and byte
2481  *      counts during the last interrupt.  The advantage of per interrupt
2482  *      computation is faster updates and more accurate ITR for the current
2483  *      traffic pattern.  Constants in this function were computed
2484  *      based on theoretical maximum wire speed and thresholds were set based
2485  *      on testing data as well as attempting to minimize response time
2486  *      while increasing bulk throughput.  This functionality is controlled
2487  *      by the InterruptThrottleRate module parameter.
2488  **/
e1000_update_itr(u16 itr_setting,int packets,int bytes)2489 static unsigned int e1000_update_itr(u16 itr_setting, int packets, int bytes)
2490 {
2491 	unsigned int retval = itr_setting;
2492 
2493 	if (packets == 0)
2494 		return itr_setting;
2495 
2496 	switch (itr_setting) {
2497 	case lowest_latency:
2498 		/* handle TSO and jumbo frames */
2499 		if (bytes / packets > 8000)
2500 			retval = bulk_latency;
2501 		else if ((packets < 5) && (bytes > 512))
2502 			retval = low_latency;
2503 		break;
2504 	case low_latency:	/* 50 usec aka 20000 ints/s */
2505 		if (bytes > 10000) {
2506 			/* this if handles the TSO accounting */
2507 			if (bytes / packets > 8000)
2508 				retval = bulk_latency;
2509 			else if ((packets < 10) || ((bytes / packets) > 1200))
2510 				retval = bulk_latency;
2511 			else if ((packets > 35))
2512 				retval = lowest_latency;
2513 		} else if (bytes / packets > 2000) {
2514 			retval = bulk_latency;
2515 		} else if (packets <= 2 && bytes < 512) {
2516 			retval = lowest_latency;
2517 		}
2518 		break;
2519 	case bulk_latency:	/* 250 usec aka 4000 ints/s */
2520 		if (bytes > 25000) {
2521 			if (packets > 35)
2522 				retval = low_latency;
2523 		} else if (bytes < 6000) {
2524 			retval = low_latency;
2525 		}
2526 		break;
2527 	}
2528 
2529 	return retval;
2530 }
2531 
e1000_set_itr(struct e1000_adapter * adapter)2532 static void e1000_set_itr(struct e1000_adapter *adapter)
2533 {
2534 	u16 current_itr;
2535 	u32 new_itr = adapter->itr;
2536 
2537 	/* for non-gigabit speeds, just fix the interrupt rate at 4000 */
2538 	if (adapter->link_speed != SPEED_1000) {
2539 		current_itr = 0;
2540 		new_itr = 4000;
2541 		goto set_itr_now;
2542 	}
2543 
2544 	if (adapter->flags2 & FLAG2_DISABLE_AIM) {
2545 		new_itr = 0;
2546 		goto set_itr_now;
2547 	}
2548 
2549 	adapter->tx_itr = e1000_update_itr(adapter->tx_itr,
2550 					   adapter->total_tx_packets,
2551 					   adapter->total_tx_bytes);
2552 	/* conservative mode (itr 3) eliminates the lowest_latency setting */
2553 	if (adapter->itr_setting == 3 && adapter->tx_itr == lowest_latency)
2554 		adapter->tx_itr = low_latency;
2555 
2556 	adapter->rx_itr = e1000_update_itr(adapter->rx_itr,
2557 					   adapter->total_rx_packets,
2558 					   adapter->total_rx_bytes);
2559 	/* conservative mode (itr 3) eliminates the lowest_latency setting */
2560 	if (adapter->itr_setting == 3 && adapter->rx_itr == lowest_latency)
2561 		adapter->rx_itr = low_latency;
2562 
2563 	current_itr = max(adapter->rx_itr, adapter->tx_itr);
2564 
2565 	/* counts and packets in update_itr are dependent on these numbers */
2566 	switch (current_itr) {
2567 	case lowest_latency:
2568 		new_itr = 70000;
2569 		break;
2570 	case low_latency:
2571 		new_itr = 20000;	/* aka hwitr = ~200 */
2572 		break;
2573 	case bulk_latency:
2574 		new_itr = 4000;
2575 		break;
2576 	default:
2577 		break;
2578 	}
2579 
2580 set_itr_now:
2581 	if (new_itr != adapter->itr) {
2582 		/* this attempts to bias the interrupt rate towards Bulk
2583 		 * by adding intermediate steps when interrupt rate is
2584 		 * increasing
2585 		 */
2586 		new_itr = new_itr > adapter->itr ?
2587 		    min(adapter->itr + (new_itr >> 2), new_itr) : new_itr;
2588 		adapter->itr = new_itr;
2589 		adapter->rx_ring->itr_val = new_itr;
2590 		if (adapter->msix_entries)
2591 			adapter->rx_ring->set_itr = 1;
2592 		else
2593 			e1000e_write_itr(adapter, new_itr);
2594 	}
2595 }
2596 
2597 /**
2598  * e1000e_write_itr - write the ITR value to the appropriate registers
2599  * @adapter: address of board private structure
2600  * @itr: new ITR value to program
2601  *
2602  * e1000e_write_itr determines if the adapter is in MSI-X mode
2603  * and, if so, writes the EITR registers with the ITR value.
2604  * Otherwise, it writes the ITR value into the ITR register.
2605  **/
e1000e_write_itr(struct e1000_adapter * adapter,u32 itr)2606 void e1000e_write_itr(struct e1000_adapter *adapter, u32 itr)
2607 {
2608 	struct e1000_hw *hw = &adapter->hw;
2609 	u32 new_itr = itr ? 1000000000 / (itr * 256) : 0;
2610 
2611 	if (adapter->msix_entries) {
2612 		int vector;
2613 
2614 		for (vector = 0; vector < adapter->num_vectors; vector++)
2615 			writel(new_itr, hw->hw_addr + E1000_EITR_82574(vector));
2616 	} else {
2617 		ew32(ITR, new_itr);
2618 	}
2619 }
2620 
2621 /**
2622  * e1000_alloc_queues - Allocate memory for all rings
2623  * @adapter: board private structure to initialize
2624  **/
e1000_alloc_queues(struct e1000_adapter * adapter)2625 static int e1000_alloc_queues(struct e1000_adapter *adapter)
2626 {
2627 	int size = sizeof(struct e1000_ring);
2628 
2629 	adapter->tx_ring = kzalloc(size, GFP_KERNEL);
2630 	if (!adapter->tx_ring)
2631 		goto err;
2632 	adapter->tx_ring->count = adapter->tx_ring_count;
2633 	adapter->tx_ring->adapter = adapter;
2634 
2635 	adapter->rx_ring = kzalloc(size, GFP_KERNEL);
2636 	if (!adapter->rx_ring)
2637 		goto err;
2638 	adapter->rx_ring->count = adapter->rx_ring_count;
2639 	adapter->rx_ring->adapter = adapter;
2640 
2641 	return 0;
2642 err:
2643 	e_err("Unable to allocate memory for queues\n");
2644 	kfree(adapter->rx_ring);
2645 	kfree(adapter->tx_ring);
2646 	return -ENOMEM;
2647 }
2648 
2649 /**
2650  * e1000e_poll - NAPI Rx polling callback
2651  * @napi: struct associated with this polling callback
2652  * @weight: number of packets driver is allowed to process this poll
2653  **/
e1000e_poll(struct napi_struct * napi,int weight)2654 static int e1000e_poll(struct napi_struct *napi, int weight)
2655 {
2656 	struct e1000_adapter *adapter = container_of(napi, struct e1000_adapter,
2657 						     napi);
2658 	struct e1000_hw *hw = &adapter->hw;
2659 	struct net_device *poll_dev = adapter->netdev;
2660 	int tx_cleaned = 1, work_done = 0;
2661 
2662 	adapter = netdev_priv(poll_dev);
2663 
2664 	if (!adapter->msix_entries ||
2665 	    (adapter->rx_ring->ims_val & adapter->tx_ring->ims_val))
2666 		tx_cleaned = e1000_clean_tx_irq(adapter->tx_ring);
2667 
2668 	adapter->clean_rx(adapter->rx_ring, &work_done, weight);
2669 
2670 	if (!tx_cleaned)
2671 		work_done = weight;
2672 
2673 	/* If weight not fully consumed, exit the polling mode */
2674 	if (work_done < weight) {
2675 		if (adapter->itr_setting & 3)
2676 			e1000_set_itr(adapter);
2677 		napi_complete_done(napi, work_done);
2678 		if (!test_bit(__E1000_DOWN, &adapter->state)) {
2679 			if (adapter->msix_entries)
2680 				ew32(IMS, adapter->rx_ring->ims_val);
2681 			else
2682 				e1000_irq_enable(adapter);
2683 		}
2684 	}
2685 
2686 	return work_done;
2687 }
2688 
e1000_vlan_rx_add_vid(struct net_device * netdev,__always_unused __be16 proto,u16 vid)2689 static int e1000_vlan_rx_add_vid(struct net_device *netdev,
2690 				 __always_unused __be16 proto, u16 vid)
2691 {
2692 	struct e1000_adapter *adapter = netdev_priv(netdev);
2693 	struct e1000_hw *hw = &adapter->hw;
2694 	u32 vfta, index;
2695 
2696 	/* don't update vlan cookie if already programmed */
2697 	if ((adapter->hw.mng_cookie.status &
2698 	     E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
2699 	    (vid == adapter->mng_vlan_id))
2700 		return 0;
2701 
2702 	/* add VID to filter table */
2703 	if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
2704 		index = (vid >> 5) & 0x7F;
2705 		vfta = E1000_READ_REG_ARRAY(hw, E1000_VFTA, index);
2706 		vfta |= BIT((vid & 0x1F));
2707 		hw->mac.ops.write_vfta(hw, index, vfta);
2708 	}
2709 
2710 	set_bit(vid, adapter->active_vlans);
2711 
2712 	return 0;
2713 }
2714 
e1000_vlan_rx_kill_vid(struct net_device * netdev,__always_unused __be16 proto,u16 vid)2715 static int e1000_vlan_rx_kill_vid(struct net_device *netdev,
2716 				  __always_unused __be16 proto, u16 vid)
2717 {
2718 	struct e1000_adapter *adapter = netdev_priv(netdev);
2719 	struct e1000_hw *hw = &adapter->hw;
2720 	u32 vfta, index;
2721 
2722 	if ((adapter->hw.mng_cookie.status &
2723 	     E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
2724 	    (vid == adapter->mng_vlan_id)) {
2725 		/* release control to f/w */
2726 		e1000e_release_hw_control(adapter);
2727 		return 0;
2728 	}
2729 
2730 	/* remove VID from filter table */
2731 	if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
2732 		index = (vid >> 5) & 0x7F;
2733 		vfta = E1000_READ_REG_ARRAY(hw, E1000_VFTA, index);
2734 		vfta &= ~BIT((vid & 0x1F));
2735 		hw->mac.ops.write_vfta(hw, index, vfta);
2736 	}
2737 
2738 	clear_bit(vid, adapter->active_vlans);
2739 
2740 	return 0;
2741 }
2742 
2743 /**
2744  * e1000e_vlan_filter_disable - helper to disable hw VLAN filtering
2745  * @adapter: board private structure to initialize
2746  **/
e1000e_vlan_filter_disable(struct e1000_adapter * adapter)2747 static void e1000e_vlan_filter_disable(struct e1000_adapter *adapter)
2748 {
2749 	struct net_device *netdev = adapter->netdev;
2750 	struct e1000_hw *hw = &adapter->hw;
2751 	u32 rctl;
2752 
2753 	if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
2754 		/* disable VLAN receive filtering */
2755 		rctl = er32(RCTL);
2756 		rctl &= ~(E1000_RCTL_VFE | E1000_RCTL_CFIEN);
2757 		ew32(RCTL, rctl);
2758 
2759 		if (adapter->mng_vlan_id != (u16)E1000_MNG_VLAN_NONE) {
2760 			e1000_vlan_rx_kill_vid(netdev, htons(ETH_P_8021Q),
2761 					       adapter->mng_vlan_id);
2762 			adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
2763 		}
2764 	}
2765 }
2766 
2767 /**
2768  * e1000e_vlan_filter_enable - helper to enable HW VLAN filtering
2769  * @adapter: board private structure to initialize
2770  **/
e1000e_vlan_filter_enable(struct e1000_adapter * adapter)2771 static void e1000e_vlan_filter_enable(struct e1000_adapter *adapter)
2772 {
2773 	struct e1000_hw *hw = &adapter->hw;
2774 	u32 rctl;
2775 
2776 	if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
2777 		/* enable VLAN receive filtering */
2778 		rctl = er32(RCTL);
2779 		rctl |= E1000_RCTL_VFE;
2780 		rctl &= ~E1000_RCTL_CFIEN;
2781 		ew32(RCTL, rctl);
2782 	}
2783 }
2784 
2785 /**
2786  * e1000e_vlan_strip_disable - helper to disable HW VLAN stripping
2787  * @adapter: board private structure to initialize
2788  **/
e1000e_vlan_strip_disable(struct e1000_adapter * adapter)2789 static void e1000e_vlan_strip_disable(struct e1000_adapter *adapter)
2790 {
2791 	struct e1000_hw *hw = &adapter->hw;
2792 	u32 ctrl;
2793 
2794 	/* disable VLAN tag insert/strip */
2795 	ctrl = er32(CTRL);
2796 	ctrl &= ~E1000_CTRL_VME;
2797 	ew32(CTRL, ctrl);
2798 }
2799 
2800 /**
2801  * e1000e_vlan_strip_enable - helper to enable HW VLAN stripping
2802  * @adapter: board private structure to initialize
2803  **/
e1000e_vlan_strip_enable(struct e1000_adapter * adapter)2804 static void e1000e_vlan_strip_enable(struct e1000_adapter *adapter)
2805 {
2806 	struct e1000_hw *hw = &adapter->hw;
2807 	u32 ctrl;
2808 
2809 	/* enable VLAN tag insert/strip */
2810 	ctrl = er32(CTRL);
2811 	ctrl |= E1000_CTRL_VME;
2812 	ew32(CTRL, ctrl);
2813 }
2814 
e1000_update_mng_vlan(struct e1000_adapter * adapter)2815 static void e1000_update_mng_vlan(struct e1000_adapter *adapter)
2816 {
2817 	struct net_device *netdev = adapter->netdev;
2818 	u16 vid = adapter->hw.mng_cookie.vlan_id;
2819 	u16 old_vid = adapter->mng_vlan_id;
2820 
2821 	if (adapter->hw.mng_cookie.status & E1000_MNG_DHCP_COOKIE_STATUS_VLAN) {
2822 		e1000_vlan_rx_add_vid(netdev, htons(ETH_P_8021Q), vid);
2823 		adapter->mng_vlan_id = vid;
2824 	}
2825 
2826 	if ((old_vid != (u16)E1000_MNG_VLAN_NONE) && (vid != old_vid))
2827 		e1000_vlan_rx_kill_vid(netdev, htons(ETH_P_8021Q), old_vid);
2828 }
2829 
e1000_restore_vlan(struct e1000_adapter * adapter)2830 static void e1000_restore_vlan(struct e1000_adapter *adapter)
2831 {
2832 	u16 vid;
2833 
2834 	e1000_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), 0);
2835 
2836 	for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID)
2837 	    e1000_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), vid);
2838 }
2839 
e1000_init_manageability_pt(struct e1000_adapter * adapter)2840 static void e1000_init_manageability_pt(struct e1000_adapter *adapter)
2841 {
2842 	struct e1000_hw *hw = &adapter->hw;
2843 	u32 manc, manc2h, mdef, i, j;
2844 
2845 	if (!(adapter->flags & FLAG_MNG_PT_ENABLED))
2846 		return;
2847 
2848 	manc = er32(MANC);
2849 
2850 	/* enable receiving management packets to the host. this will probably
2851 	 * generate destination unreachable messages from the host OS, but
2852 	 * the packets will be handled on SMBUS
2853 	 */
2854 	manc |= E1000_MANC_EN_MNG2HOST;
2855 	manc2h = er32(MANC2H);
2856 
2857 	switch (hw->mac.type) {
2858 	default:
2859 		manc2h |= (E1000_MANC2H_PORT_623 | E1000_MANC2H_PORT_664);
2860 		break;
2861 	case e1000_82574:
2862 	case e1000_82583:
2863 		/* Check if IPMI pass-through decision filter already exists;
2864 		 * if so, enable it.
2865 		 */
2866 		for (i = 0, j = 0; i < 8; i++) {
2867 			mdef = er32(MDEF(i));
2868 
2869 			/* Ignore filters with anything other than IPMI ports */
2870 			if (mdef & ~(E1000_MDEF_PORT_623 | E1000_MDEF_PORT_664))
2871 				continue;
2872 
2873 			/* Enable this decision filter in MANC2H */
2874 			if (mdef)
2875 				manc2h |= BIT(i);
2876 
2877 			j |= mdef;
2878 		}
2879 
2880 		if (j == (E1000_MDEF_PORT_623 | E1000_MDEF_PORT_664))
2881 			break;
2882 
2883 		/* Create new decision filter in an empty filter */
2884 		for (i = 0, j = 0; i < 8; i++)
2885 			if (er32(MDEF(i)) == 0) {
2886 				ew32(MDEF(i), (E1000_MDEF_PORT_623 |
2887 					       E1000_MDEF_PORT_664));
2888 				manc2h |= BIT(1);
2889 				j++;
2890 				break;
2891 			}
2892 
2893 		if (!j)
2894 			e_warn("Unable to create IPMI pass-through filter\n");
2895 		break;
2896 	}
2897 
2898 	ew32(MANC2H, manc2h);
2899 	ew32(MANC, manc);
2900 }
2901 
2902 /**
2903  * e1000_configure_tx - Configure Transmit Unit after Reset
2904  * @adapter: board private structure
2905  *
2906  * Configure the Tx unit of the MAC after a reset.
2907  **/
e1000_configure_tx(struct e1000_adapter * adapter)2908 static void e1000_configure_tx(struct e1000_adapter *adapter)
2909 {
2910 	struct e1000_hw *hw = &adapter->hw;
2911 	struct e1000_ring *tx_ring = adapter->tx_ring;
2912 	u64 tdba;
2913 	u32 tdlen, tctl, tarc;
2914 
2915 	/* Setup the HW Tx Head and Tail descriptor pointers */
2916 	tdba = tx_ring->dma;
2917 	tdlen = tx_ring->count * sizeof(struct e1000_tx_desc);
2918 	ew32(TDBAL(0), (tdba & DMA_BIT_MASK(32)));
2919 	ew32(TDBAH(0), (tdba >> 32));
2920 	ew32(TDLEN(0), tdlen);
2921 	ew32(TDH(0), 0);
2922 	ew32(TDT(0), 0);
2923 	tx_ring->head = adapter->hw.hw_addr + E1000_TDH(0);
2924 	tx_ring->tail = adapter->hw.hw_addr + E1000_TDT(0);
2925 
2926 	writel(0, tx_ring->head);
2927 	if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
2928 		e1000e_update_tdt_wa(tx_ring, 0);
2929 	else
2930 		writel(0, tx_ring->tail);
2931 
2932 	/* Set the Tx Interrupt Delay register */
2933 	ew32(TIDV, adapter->tx_int_delay);
2934 	/* Tx irq moderation */
2935 	ew32(TADV, adapter->tx_abs_int_delay);
2936 
2937 	if (adapter->flags2 & FLAG2_DMA_BURST) {
2938 		u32 txdctl = er32(TXDCTL(0));
2939 
2940 		txdctl &= ~(E1000_TXDCTL_PTHRESH | E1000_TXDCTL_HTHRESH |
2941 			    E1000_TXDCTL_WTHRESH);
2942 		/* set up some performance related parameters to encourage the
2943 		 * hardware to use the bus more efficiently in bursts, depends
2944 		 * on the tx_int_delay to be enabled,
2945 		 * wthresh = 1 ==> burst write is disabled to avoid Tx stalls
2946 		 * hthresh = 1 ==> prefetch when one or more available
2947 		 * pthresh = 0x1f ==> prefetch if internal cache 31 or less
2948 		 * BEWARE: this seems to work but should be considered first if
2949 		 * there are Tx hangs or other Tx related bugs
2950 		 */
2951 		txdctl |= E1000_TXDCTL_DMA_BURST_ENABLE;
2952 		ew32(TXDCTL(0), txdctl);
2953 	}
2954 	/* erratum work around: set txdctl the same for both queues */
2955 	ew32(TXDCTL(1), er32(TXDCTL(0)));
2956 
2957 	/* Program the Transmit Control Register */
2958 	tctl = er32(TCTL);
2959 	tctl &= ~E1000_TCTL_CT;
2960 	tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
2961 		(E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
2962 
2963 	if (adapter->flags & FLAG_TARC_SPEED_MODE_BIT) {
2964 		tarc = er32(TARC(0));
2965 		/* set the speed mode bit, we'll clear it if we're not at
2966 		 * gigabit link later
2967 		 */
2968 #define SPEED_MODE_BIT BIT(21)
2969 		tarc |= SPEED_MODE_BIT;
2970 		ew32(TARC(0), tarc);
2971 	}
2972 
2973 	/* errata: program both queues to unweighted RR */
2974 	if (adapter->flags & FLAG_TARC_SET_BIT_ZERO) {
2975 		tarc = er32(TARC(0));
2976 		tarc |= 1;
2977 		ew32(TARC(0), tarc);
2978 		tarc = er32(TARC(1));
2979 		tarc |= 1;
2980 		ew32(TARC(1), tarc);
2981 	}
2982 
2983 	/* Setup Transmit Descriptor Settings for eop descriptor */
2984 	adapter->txd_cmd = E1000_TXD_CMD_EOP | E1000_TXD_CMD_IFCS;
2985 
2986 	/* only set IDE if we are delaying interrupts using the timers */
2987 	if (adapter->tx_int_delay)
2988 		adapter->txd_cmd |= E1000_TXD_CMD_IDE;
2989 
2990 	/* enable Report Status bit */
2991 	adapter->txd_cmd |= E1000_TXD_CMD_RS;
2992 
2993 	ew32(TCTL, tctl);
2994 
2995 	hw->mac.ops.config_collision_dist(hw);
2996 
2997 	/* SPT and KBL Si errata workaround to avoid data corruption */
2998 	if (hw->mac.type == e1000_pch_spt) {
2999 		u32 reg_val;
3000 
3001 		reg_val = er32(IOSFPC);
3002 		reg_val |= E1000_RCTL_RDMTS_HEX;
3003 		ew32(IOSFPC, reg_val);
3004 
3005 		reg_val = er32(TARC(0));
3006 		/* SPT and KBL Si errata workaround to avoid Tx hang.
3007 		 * Dropping the number of outstanding requests from
3008 		 * 3 to 2 in order to avoid a buffer overrun.
3009 		 */
3010 		reg_val &= ~E1000_TARC0_CB_MULTIQ_3_REQ;
3011 		reg_val |= E1000_TARC0_CB_MULTIQ_2_REQ;
3012 		ew32(TARC(0), reg_val);
3013 	}
3014 }
3015 
3016 /**
3017  * e1000_setup_rctl - configure the receive control registers
3018  * @adapter: Board private structure
3019  **/
3020 #define PAGE_USE_COUNT(S) (((S) >> PAGE_SHIFT) + \
3021 			   (((S) & (PAGE_SIZE - 1)) ? 1 : 0))
e1000_setup_rctl(struct e1000_adapter * adapter)3022 static void e1000_setup_rctl(struct e1000_adapter *adapter)
3023 {
3024 	struct e1000_hw *hw = &adapter->hw;
3025 	u32 rctl, rfctl;
3026 	u32 pages = 0;
3027 
3028 	/* Workaround Si errata on PCHx - configure jumbo frame flow.
3029 	 * If jumbo frames not set, program related MAC/PHY registers
3030 	 * to h/w defaults
3031 	 */
3032 	if (hw->mac.type >= e1000_pch2lan) {
3033 		s32 ret_val;
3034 
3035 		if (adapter->netdev->mtu > ETH_DATA_LEN)
3036 			ret_val = e1000_lv_jumbo_workaround_ich8lan(hw, true);
3037 		else
3038 			ret_val = e1000_lv_jumbo_workaround_ich8lan(hw, false);
3039 
3040 		if (ret_val)
3041 			e_dbg("failed to enable|disable jumbo frame workaround mode\n");
3042 	}
3043 
3044 	/* Program MC offset vector base */
3045 	rctl = er32(RCTL);
3046 	rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
3047 	rctl |= E1000_RCTL_EN | E1000_RCTL_BAM |
3048 	    E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
3049 	    (adapter->hw.mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
3050 
3051 	/* Do not Store bad packets */
3052 	rctl &= ~E1000_RCTL_SBP;
3053 
3054 	/* Enable Long Packet receive */
3055 	if (adapter->netdev->mtu <= ETH_DATA_LEN)
3056 		rctl &= ~E1000_RCTL_LPE;
3057 	else
3058 		rctl |= E1000_RCTL_LPE;
3059 
3060 	/* Some systems expect that the CRC is included in SMBUS traffic. The
3061 	 * hardware strips the CRC before sending to both SMBUS (BMC) and to
3062 	 * host memory when this is enabled
3063 	 */
3064 	if (adapter->flags2 & FLAG2_CRC_STRIPPING)
3065 		rctl |= E1000_RCTL_SECRC;
3066 
3067 	/* Workaround Si errata on 82577 PHY - configure IPG for jumbos */
3068 	if ((hw->phy.type == e1000_phy_82577) && (rctl & E1000_RCTL_LPE)) {
3069 		u16 phy_data;
3070 
3071 		e1e_rphy(hw, PHY_REG(770, 26), &phy_data);
3072 		phy_data &= 0xfff8;
3073 		phy_data |= BIT(2);
3074 		e1e_wphy(hw, PHY_REG(770, 26), phy_data);
3075 
3076 		e1e_rphy(hw, 22, &phy_data);
3077 		phy_data &= 0x0fff;
3078 		phy_data |= BIT(14);
3079 		e1e_wphy(hw, 0x10, 0x2823);
3080 		e1e_wphy(hw, 0x11, 0x0003);
3081 		e1e_wphy(hw, 22, phy_data);
3082 	}
3083 
3084 	/* Setup buffer sizes */
3085 	rctl &= ~E1000_RCTL_SZ_4096;
3086 	rctl |= E1000_RCTL_BSEX;
3087 	switch (adapter->rx_buffer_len) {
3088 	case 2048:
3089 	default:
3090 		rctl |= E1000_RCTL_SZ_2048;
3091 		rctl &= ~E1000_RCTL_BSEX;
3092 		break;
3093 	case 4096:
3094 		rctl |= E1000_RCTL_SZ_4096;
3095 		break;
3096 	case 8192:
3097 		rctl |= E1000_RCTL_SZ_8192;
3098 		break;
3099 	case 16384:
3100 		rctl |= E1000_RCTL_SZ_16384;
3101 		break;
3102 	}
3103 
3104 	/* Enable Extended Status in all Receive Descriptors */
3105 	rfctl = er32(RFCTL);
3106 	rfctl |= E1000_RFCTL_EXTEN;
3107 	ew32(RFCTL, rfctl);
3108 
3109 	/* 82571 and greater support packet-split where the protocol
3110 	 * header is placed in skb->data and the packet data is
3111 	 * placed in pages hanging off of skb_shinfo(skb)->nr_frags.
3112 	 * In the case of a non-split, skb->data is linearly filled,
3113 	 * followed by the page buffers.  Therefore, skb->data is
3114 	 * sized to hold the largest protocol header.
3115 	 *
3116 	 * allocations using alloc_page take too long for regular MTU
3117 	 * so only enable packet split for jumbo frames
3118 	 *
3119 	 * Using pages when the page size is greater than 16k wastes
3120 	 * a lot of memory, since we allocate 3 pages at all times
3121 	 * per packet.
3122 	 */
3123 	pages = PAGE_USE_COUNT(adapter->netdev->mtu);
3124 	if ((pages <= 3) && (PAGE_SIZE <= 16384) && (rctl & E1000_RCTL_LPE))
3125 		adapter->rx_ps_pages = pages;
3126 	else
3127 		adapter->rx_ps_pages = 0;
3128 
3129 	if (adapter->rx_ps_pages) {
3130 		u32 psrctl = 0;
3131 
3132 		/* Enable Packet split descriptors */
3133 		rctl |= E1000_RCTL_DTYP_PS;
3134 
3135 		psrctl |= adapter->rx_ps_bsize0 >> E1000_PSRCTL_BSIZE0_SHIFT;
3136 
3137 		switch (adapter->rx_ps_pages) {
3138 		case 3:
3139 			psrctl |= PAGE_SIZE << E1000_PSRCTL_BSIZE3_SHIFT;
3140 			/* fall-through */
3141 		case 2:
3142 			psrctl |= PAGE_SIZE << E1000_PSRCTL_BSIZE2_SHIFT;
3143 			/* fall-through */
3144 		case 1:
3145 			psrctl |= PAGE_SIZE >> E1000_PSRCTL_BSIZE1_SHIFT;
3146 			break;
3147 		}
3148 
3149 		ew32(PSRCTL, psrctl);
3150 	}
3151 
3152 	/* This is useful for sniffing bad packets. */
3153 	if (adapter->netdev->features & NETIF_F_RXALL) {
3154 		/* UPE and MPE will be handled by normal PROMISC logic
3155 		 * in e1000e_set_rx_mode
3156 		 */
3157 		rctl |= (E1000_RCTL_SBP |	/* Receive bad packets */
3158 			 E1000_RCTL_BAM |	/* RX All Bcast Pkts */
3159 			 E1000_RCTL_PMCF);	/* RX All MAC Ctrl Pkts */
3160 
3161 		rctl &= ~(E1000_RCTL_VFE |	/* Disable VLAN filter */
3162 			  E1000_RCTL_DPF |	/* Allow filtered pause */
3163 			  E1000_RCTL_CFIEN);	/* Dis VLAN CFIEN Filter */
3164 		/* Do not mess with E1000_CTRL_VME, it affects transmit as well,
3165 		 * and that breaks VLANs.
3166 		 */
3167 	}
3168 
3169 	ew32(RCTL, rctl);
3170 	/* just started the receive unit, no need to restart */
3171 	adapter->flags &= ~FLAG_RESTART_NOW;
3172 }
3173 
3174 /**
3175  * e1000_configure_rx - Configure Receive Unit after Reset
3176  * @adapter: board private structure
3177  *
3178  * Configure the Rx unit of the MAC after a reset.
3179  **/
e1000_configure_rx(struct e1000_adapter * adapter)3180 static void e1000_configure_rx(struct e1000_adapter *adapter)
3181 {
3182 	struct e1000_hw *hw = &adapter->hw;
3183 	struct e1000_ring *rx_ring = adapter->rx_ring;
3184 	u64 rdba;
3185 	u32 rdlen, rctl, rxcsum, ctrl_ext;
3186 
3187 	if (adapter->rx_ps_pages) {
3188 		/* this is a 32 byte descriptor */
3189 		rdlen = rx_ring->count *
3190 		    sizeof(union e1000_rx_desc_packet_split);
3191 		adapter->clean_rx = e1000_clean_rx_irq_ps;
3192 		adapter->alloc_rx_buf = e1000_alloc_rx_buffers_ps;
3193 	} else if (adapter->netdev->mtu > ETH_FRAME_LEN + ETH_FCS_LEN) {
3194 		rdlen = rx_ring->count * sizeof(union e1000_rx_desc_extended);
3195 		adapter->clean_rx = e1000_clean_jumbo_rx_irq;
3196 		adapter->alloc_rx_buf = e1000_alloc_jumbo_rx_buffers;
3197 	} else {
3198 		rdlen = rx_ring->count * sizeof(union e1000_rx_desc_extended);
3199 		adapter->clean_rx = e1000_clean_rx_irq;
3200 		adapter->alloc_rx_buf = e1000_alloc_rx_buffers;
3201 	}
3202 
3203 	/* disable receives while setting up the descriptors */
3204 	rctl = er32(RCTL);
3205 	if (!(adapter->flags2 & FLAG2_NO_DISABLE_RX))
3206 		ew32(RCTL, rctl & ~E1000_RCTL_EN);
3207 	e1e_flush();
3208 	usleep_range(10000, 20000);
3209 
3210 	if (adapter->flags2 & FLAG2_DMA_BURST) {
3211 		/* set the writeback threshold (only takes effect if the RDTR
3212 		 * is set). set GRAN=1 and write back up to 0x4 worth, and
3213 		 * enable prefetching of 0x20 Rx descriptors
3214 		 * granularity = 01
3215 		 * wthresh = 04,
3216 		 * hthresh = 04,
3217 		 * pthresh = 0x20
3218 		 */
3219 		ew32(RXDCTL(0), E1000_RXDCTL_DMA_BURST_ENABLE);
3220 		ew32(RXDCTL(1), E1000_RXDCTL_DMA_BURST_ENABLE);
3221 	}
3222 
3223 	/* set the Receive Delay Timer Register */
3224 	ew32(RDTR, adapter->rx_int_delay);
3225 
3226 	/* irq moderation */
3227 	ew32(RADV, adapter->rx_abs_int_delay);
3228 	if ((adapter->itr_setting != 0) && (adapter->itr != 0))
3229 		e1000e_write_itr(adapter, adapter->itr);
3230 
3231 	ctrl_ext = er32(CTRL_EXT);
3232 	/* Auto-Mask interrupts upon ICR access */
3233 	ctrl_ext |= E1000_CTRL_EXT_IAME;
3234 	ew32(IAM, 0xffffffff);
3235 	ew32(CTRL_EXT, ctrl_ext);
3236 	e1e_flush();
3237 
3238 	/* Setup the HW Rx Head and Tail Descriptor Pointers and
3239 	 * the Base and Length of the Rx Descriptor Ring
3240 	 */
3241 	rdba = rx_ring->dma;
3242 	ew32(RDBAL(0), (rdba & DMA_BIT_MASK(32)));
3243 	ew32(RDBAH(0), (rdba >> 32));
3244 	ew32(RDLEN(0), rdlen);
3245 	ew32(RDH(0), 0);
3246 	ew32(RDT(0), 0);
3247 	rx_ring->head = adapter->hw.hw_addr + E1000_RDH(0);
3248 	rx_ring->tail = adapter->hw.hw_addr + E1000_RDT(0);
3249 
3250 	writel(0, rx_ring->head);
3251 	if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
3252 		e1000e_update_rdt_wa(rx_ring, 0);
3253 	else
3254 		writel(0, rx_ring->tail);
3255 
3256 	/* Enable Receive Checksum Offload for TCP and UDP */
3257 	rxcsum = er32(RXCSUM);
3258 	if (adapter->netdev->features & NETIF_F_RXCSUM)
3259 		rxcsum |= E1000_RXCSUM_TUOFL;
3260 	else
3261 		rxcsum &= ~E1000_RXCSUM_TUOFL;
3262 	ew32(RXCSUM, rxcsum);
3263 
3264 	/* With jumbo frames, excessive C-state transition latencies result
3265 	 * in dropped transactions.
3266 	 */
3267 	if (adapter->netdev->mtu > ETH_DATA_LEN) {
3268 		u32 lat =
3269 		    ((er32(PBA) & E1000_PBA_RXA_MASK) * 1024 -
3270 		     adapter->max_frame_size) * 8 / 1000;
3271 
3272 		if (adapter->flags & FLAG_IS_ICH) {
3273 			u32 rxdctl = er32(RXDCTL(0));
3274 
3275 			ew32(RXDCTL(0), rxdctl | 0x3 | BIT(8));
3276 		}
3277 
3278 		dev_info(&adapter->pdev->dev,
3279 			 "Some CPU C-states have been disabled in order to enable jumbo frames\n");
3280 		pm_qos_update_request(&adapter->pm_qos_req, lat);
3281 	} else {
3282 		pm_qos_update_request(&adapter->pm_qos_req,
3283 				      PM_QOS_DEFAULT_VALUE);
3284 	}
3285 
3286 	/* Enable Receives */
3287 	ew32(RCTL, rctl);
3288 }
3289 
3290 /**
3291  * e1000e_write_mc_addr_list - write multicast addresses to MTA
3292  * @netdev: network interface device structure
3293  *
3294  * Writes multicast address list to the MTA hash table.
3295  * Returns: -ENOMEM on failure
3296  *                0 on no addresses written
3297  *                X on writing X addresses to MTA
3298  */
e1000e_write_mc_addr_list(struct net_device * netdev)3299 static int e1000e_write_mc_addr_list(struct net_device *netdev)
3300 {
3301 	struct e1000_adapter *adapter = netdev_priv(netdev);
3302 	struct e1000_hw *hw = &adapter->hw;
3303 	struct netdev_hw_addr *ha;
3304 	u8 *mta_list;
3305 	int i;
3306 
3307 	if (netdev_mc_empty(netdev)) {
3308 		/* nothing to program, so clear mc list */
3309 		hw->mac.ops.update_mc_addr_list(hw, NULL, 0);
3310 		return 0;
3311 	}
3312 
3313 	mta_list = kcalloc(netdev_mc_count(netdev), ETH_ALEN, GFP_ATOMIC);
3314 	if (!mta_list)
3315 		return -ENOMEM;
3316 
3317 	/* update_mc_addr_list expects a packed array of only addresses. */
3318 	i = 0;
3319 	netdev_for_each_mc_addr(ha, netdev)
3320 	    memcpy(mta_list + (i++ * ETH_ALEN), ha->addr, ETH_ALEN);
3321 
3322 	hw->mac.ops.update_mc_addr_list(hw, mta_list, i);
3323 	kfree(mta_list);
3324 
3325 	return netdev_mc_count(netdev);
3326 }
3327 
3328 /**
3329  * e1000e_write_uc_addr_list - write unicast addresses to RAR table
3330  * @netdev: network interface device structure
3331  *
3332  * Writes unicast address list to the RAR table.
3333  * Returns: -ENOMEM on failure/insufficient address space
3334  *                0 on no addresses written
3335  *                X on writing X addresses to the RAR table
3336  **/
e1000e_write_uc_addr_list(struct net_device * netdev)3337 static int e1000e_write_uc_addr_list(struct net_device *netdev)
3338 {
3339 	struct e1000_adapter *adapter = netdev_priv(netdev);
3340 	struct e1000_hw *hw = &adapter->hw;
3341 	unsigned int rar_entries;
3342 	int count = 0;
3343 
3344 	rar_entries = hw->mac.ops.rar_get_count(hw);
3345 
3346 	/* save a rar entry for our hardware address */
3347 	rar_entries--;
3348 
3349 	/* save a rar entry for the LAA workaround */
3350 	if (adapter->flags & FLAG_RESET_OVERWRITES_LAA)
3351 		rar_entries--;
3352 
3353 	/* return ENOMEM indicating insufficient memory for addresses */
3354 	if (netdev_uc_count(netdev) > rar_entries)
3355 		return -ENOMEM;
3356 
3357 	if (!netdev_uc_empty(netdev) && rar_entries) {
3358 		struct netdev_hw_addr *ha;
3359 
3360 		/* write the addresses in reverse order to avoid write
3361 		 * combining
3362 		 */
3363 		netdev_for_each_uc_addr(ha, netdev) {
3364 			int ret_val;
3365 
3366 			if (!rar_entries)
3367 				break;
3368 			ret_val = hw->mac.ops.rar_set(hw, ha->addr, rar_entries--);
3369 			if (ret_val < 0)
3370 				return -ENOMEM;
3371 			count++;
3372 		}
3373 	}
3374 
3375 	/* zero out the remaining RAR entries not used above */
3376 	for (; rar_entries > 0; rar_entries--) {
3377 		ew32(RAH(rar_entries), 0);
3378 		ew32(RAL(rar_entries), 0);
3379 	}
3380 	e1e_flush();
3381 
3382 	return count;
3383 }
3384 
3385 /**
3386  * e1000e_set_rx_mode - secondary unicast, Multicast and Promiscuous mode set
3387  * @netdev: network interface device structure
3388  *
3389  * The ndo_set_rx_mode entry point is called whenever the unicast or multicast
3390  * address list or the network interface flags are updated.  This routine is
3391  * responsible for configuring the hardware for proper unicast, multicast,
3392  * promiscuous mode, and all-multi behavior.
3393  **/
e1000e_set_rx_mode(struct net_device * netdev)3394 static void e1000e_set_rx_mode(struct net_device *netdev)
3395 {
3396 	struct e1000_adapter *adapter = netdev_priv(netdev);
3397 	struct e1000_hw *hw = &adapter->hw;
3398 	u32 rctl;
3399 
3400 	if (pm_runtime_suspended(netdev->dev.parent))
3401 		return;
3402 
3403 	/* Check for Promiscuous and All Multicast modes */
3404 	rctl = er32(RCTL);
3405 
3406 	/* clear the affected bits */
3407 	rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_MPE);
3408 
3409 	if (netdev->flags & IFF_PROMISC) {
3410 		rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
3411 		/* Do not hardware filter VLANs in promisc mode */
3412 		e1000e_vlan_filter_disable(adapter);
3413 	} else {
3414 		int count;
3415 
3416 		if (netdev->flags & IFF_ALLMULTI) {
3417 			rctl |= E1000_RCTL_MPE;
3418 		} else {
3419 			/* Write addresses to the MTA, if the attempt fails
3420 			 * then we should just turn on promiscuous mode so
3421 			 * that we can at least receive multicast traffic
3422 			 */
3423 			count = e1000e_write_mc_addr_list(netdev);
3424 			if (count < 0)
3425 				rctl |= E1000_RCTL_MPE;
3426 		}
3427 		e1000e_vlan_filter_enable(adapter);
3428 		/* Write addresses to available RAR registers, if there is not
3429 		 * sufficient space to store all the addresses then enable
3430 		 * unicast promiscuous mode
3431 		 */
3432 		count = e1000e_write_uc_addr_list(netdev);
3433 		if (count < 0)
3434 			rctl |= E1000_RCTL_UPE;
3435 	}
3436 
3437 	ew32(RCTL, rctl);
3438 
3439 	if (netdev->features & NETIF_F_HW_VLAN_CTAG_RX)
3440 		e1000e_vlan_strip_enable(adapter);
3441 	else
3442 		e1000e_vlan_strip_disable(adapter);
3443 }
3444 
e1000e_setup_rss_hash(struct e1000_adapter * adapter)3445 static void e1000e_setup_rss_hash(struct e1000_adapter *adapter)
3446 {
3447 	struct e1000_hw *hw = &adapter->hw;
3448 	u32 mrqc, rxcsum;
3449 	u32 rss_key[10];
3450 	int i;
3451 
3452 	netdev_rss_key_fill(rss_key, sizeof(rss_key));
3453 	for (i = 0; i < 10; i++)
3454 		ew32(RSSRK(i), rss_key[i]);
3455 
3456 	/* Direct all traffic to queue 0 */
3457 	for (i = 0; i < 32; i++)
3458 		ew32(RETA(i), 0);
3459 
3460 	/* Disable raw packet checksumming so that RSS hash is placed in
3461 	 * descriptor on writeback.
3462 	 */
3463 	rxcsum = er32(RXCSUM);
3464 	rxcsum |= E1000_RXCSUM_PCSD;
3465 
3466 	ew32(RXCSUM, rxcsum);
3467 
3468 	mrqc = (E1000_MRQC_RSS_FIELD_IPV4 |
3469 		E1000_MRQC_RSS_FIELD_IPV4_TCP |
3470 		E1000_MRQC_RSS_FIELD_IPV6 |
3471 		E1000_MRQC_RSS_FIELD_IPV6_TCP |
3472 		E1000_MRQC_RSS_FIELD_IPV6_TCP_EX);
3473 
3474 	ew32(MRQC, mrqc);
3475 }
3476 
3477 /**
3478  * e1000e_get_base_timinca - get default SYSTIM time increment attributes
3479  * @adapter: board private structure
3480  * @timinca: pointer to returned time increment attributes
3481  *
3482  * Get attributes for incrementing the System Time Register SYSTIML/H at
3483  * the default base frequency, and set the cyclecounter shift value.
3484  **/
e1000e_get_base_timinca(struct e1000_adapter * adapter,u32 * timinca)3485 s32 e1000e_get_base_timinca(struct e1000_adapter *adapter, u32 *timinca)
3486 {
3487 	struct e1000_hw *hw = &adapter->hw;
3488 	u32 incvalue, incperiod, shift;
3489 
3490 	/* Make sure clock is enabled on I217/I218/I219  before checking
3491 	 * the frequency
3492 	 */
3493 	if ((hw->mac.type >= e1000_pch_lpt) &&
3494 	    !(er32(TSYNCTXCTL) & E1000_TSYNCTXCTL_ENABLED) &&
3495 	    !(er32(TSYNCRXCTL) & E1000_TSYNCRXCTL_ENABLED)) {
3496 		u32 fextnvm7 = er32(FEXTNVM7);
3497 
3498 		if (!(fextnvm7 & BIT(0))) {
3499 			ew32(FEXTNVM7, fextnvm7 | BIT(0));
3500 			e1e_flush();
3501 		}
3502 	}
3503 
3504 	switch (hw->mac.type) {
3505 	case e1000_pch2lan:
3506 		/* Stable 96MHz frequency */
3507 		incperiod = INCPERIOD_96MHZ;
3508 		incvalue = INCVALUE_96MHZ;
3509 		shift = INCVALUE_SHIFT_96MHZ;
3510 		adapter->cc.shift = shift + INCPERIOD_SHIFT_96MHZ;
3511 		break;
3512 	case e1000_pch_lpt:
3513 		if (er32(TSYNCRXCTL) & E1000_TSYNCRXCTL_SYSCFI) {
3514 			/* Stable 96MHz frequency */
3515 			incperiod = INCPERIOD_96MHZ;
3516 			incvalue = INCVALUE_96MHZ;
3517 			shift = INCVALUE_SHIFT_96MHZ;
3518 			adapter->cc.shift = shift + INCPERIOD_SHIFT_96MHZ;
3519 		} else {
3520 			/* Stable 25MHz frequency */
3521 			incperiod = INCPERIOD_25MHZ;
3522 			incvalue = INCVALUE_25MHZ;
3523 			shift = INCVALUE_SHIFT_25MHZ;
3524 			adapter->cc.shift = shift;
3525 		}
3526 		break;
3527 	case e1000_pch_spt:
3528 		/* Stable 24MHz frequency */
3529 		incperiod = INCPERIOD_24MHZ;
3530 		incvalue = INCVALUE_24MHZ;
3531 		shift = INCVALUE_SHIFT_24MHZ;
3532 		adapter->cc.shift = shift;
3533 		break;
3534 	case e1000_pch_cnp:
3535 		if (er32(TSYNCRXCTL) & E1000_TSYNCRXCTL_SYSCFI) {
3536 			/* Stable 24MHz frequency */
3537 			incperiod = INCPERIOD_24MHZ;
3538 			incvalue = INCVALUE_24MHZ;
3539 			shift = INCVALUE_SHIFT_24MHZ;
3540 			adapter->cc.shift = shift;
3541 		} else {
3542 			/* Stable 38400KHz frequency */
3543 			incperiod = INCPERIOD_38400KHZ;
3544 			incvalue = INCVALUE_38400KHZ;
3545 			shift = INCVALUE_SHIFT_38400KHZ;
3546 			adapter->cc.shift = shift;
3547 		}
3548 		break;
3549 	case e1000_82574:
3550 	case e1000_82583:
3551 		/* Stable 25MHz frequency */
3552 		incperiod = INCPERIOD_25MHZ;
3553 		incvalue = INCVALUE_25MHZ;
3554 		shift = INCVALUE_SHIFT_25MHZ;
3555 		adapter->cc.shift = shift;
3556 		break;
3557 	default:
3558 		return -EINVAL;
3559 	}
3560 
3561 	*timinca = ((incperiod << E1000_TIMINCA_INCPERIOD_SHIFT) |
3562 		    ((incvalue << shift) & E1000_TIMINCA_INCVALUE_MASK));
3563 
3564 	return 0;
3565 }
3566 
3567 /**
3568  * e1000e_config_hwtstamp - configure the hwtstamp registers and enable/disable
3569  * @adapter: board private structure
3570  *
3571  * Outgoing time stamping can be enabled and disabled. Play nice and
3572  * disable it when requested, although it shouldn't cause any overhead
3573  * when no packet needs it. At most one packet in the queue may be
3574  * marked for time stamping, otherwise it would be impossible to tell
3575  * for sure to which packet the hardware time stamp belongs.
3576  *
3577  * Incoming time stamping has to be configured via the hardware filters.
3578  * Not all combinations are supported, in particular event type has to be
3579  * specified. Matching the kind of event packet is not supported, with the
3580  * exception of "all V2 events regardless of level 2 or 4".
3581  **/
e1000e_config_hwtstamp(struct e1000_adapter * adapter,struct hwtstamp_config * config)3582 static int e1000e_config_hwtstamp(struct e1000_adapter *adapter,
3583 				  struct hwtstamp_config *config)
3584 {
3585 	struct e1000_hw *hw = &adapter->hw;
3586 	u32 tsync_tx_ctl = E1000_TSYNCTXCTL_ENABLED;
3587 	u32 tsync_rx_ctl = E1000_TSYNCRXCTL_ENABLED;
3588 	u32 rxmtrl = 0;
3589 	u16 rxudp = 0;
3590 	bool is_l4 = false;
3591 	bool is_l2 = false;
3592 	u32 regval;
3593 
3594 	if (!(adapter->flags & FLAG_HAS_HW_TIMESTAMP))
3595 		return -EINVAL;
3596 
3597 	/* flags reserved for future extensions - must be zero */
3598 	if (config->flags)
3599 		return -EINVAL;
3600 
3601 	switch (config->tx_type) {
3602 	case HWTSTAMP_TX_OFF:
3603 		tsync_tx_ctl = 0;
3604 		break;
3605 	case HWTSTAMP_TX_ON:
3606 		break;
3607 	default:
3608 		return -ERANGE;
3609 	}
3610 
3611 	switch (config->rx_filter) {
3612 	case HWTSTAMP_FILTER_NONE:
3613 		tsync_rx_ctl = 0;
3614 		break;
3615 	case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
3616 		tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L4_V1;
3617 		rxmtrl = E1000_RXMTRL_PTP_V1_SYNC_MESSAGE;
3618 		is_l4 = true;
3619 		break;
3620 	case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
3621 		tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L4_V1;
3622 		rxmtrl = E1000_RXMTRL_PTP_V1_DELAY_REQ_MESSAGE;
3623 		is_l4 = true;
3624 		break;
3625 	case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
3626 		/* Also time stamps V2 L2 Path Delay Request/Response */
3627 		tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L2_V2;
3628 		rxmtrl = E1000_RXMTRL_PTP_V2_SYNC_MESSAGE;
3629 		is_l2 = true;
3630 		break;
3631 	case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
3632 		/* Also time stamps V2 L2 Path Delay Request/Response. */
3633 		tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L2_V2;
3634 		rxmtrl = E1000_RXMTRL_PTP_V2_DELAY_REQ_MESSAGE;
3635 		is_l2 = true;
3636 		break;
3637 	case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
3638 		/* Hardware cannot filter just V2 L4 Sync messages;
3639 		 * fall-through to V2 (both L2 and L4) Sync.
3640 		 */
3641 	case HWTSTAMP_FILTER_PTP_V2_SYNC:
3642 		/* Also time stamps V2 Path Delay Request/Response. */
3643 		tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L2_L4_V2;
3644 		rxmtrl = E1000_RXMTRL_PTP_V2_SYNC_MESSAGE;
3645 		is_l2 = true;
3646 		is_l4 = true;
3647 		break;
3648 	case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
3649 		/* Hardware cannot filter just V2 L4 Delay Request messages;
3650 		 * fall-through to V2 (both L2 and L4) Delay Request.
3651 		 */
3652 	case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
3653 		/* Also time stamps V2 Path Delay Request/Response. */
3654 		tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L2_L4_V2;
3655 		rxmtrl = E1000_RXMTRL_PTP_V2_DELAY_REQ_MESSAGE;
3656 		is_l2 = true;
3657 		is_l4 = true;
3658 		break;
3659 	case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
3660 	case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
3661 		/* Hardware cannot filter just V2 L4 or L2 Event messages;
3662 		 * fall-through to all V2 (both L2 and L4) Events.
3663 		 */
3664 	case HWTSTAMP_FILTER_PTP_V2_EVENT:
3665 		tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_EVENT_V2;
3666 		config->rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT;
3667 		is_l2 = true;
3668 		is_l4 = true;
3669 		break;
3670 	case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
3671 		/* For V1, the hardware can only filter Sync messages or
3672 		 * Delay Request messages but not both so fall-through to
3673 		 * time stamp all packets.
3674 		 */
3675 	case HWTSTAMP_FILTER_NTP_ALL:
3676 	case HWTSTAMP_FILTER_ALL:
3677 		is_l2 = true;
3678 		is_l4 = true;
3679 		tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_ALL;
3680 		config->rx_filter = HWTSTAMP_FILTER_ALL;
3681 		break;
3682 	default:
3683 		return -ERANGE;
3684 	}
3685 
3686 	adapter->hwtstamp_config = *config;
3687 
3688 	/* enable/disable Tx h/w time stamping */
3689 	regval = er32(TSYNCTXCTL);
3690 	regval &= ~E1000_TSYNCTXCTL_ENABLED;
3691 	regval |= tsync_tx_ctl;
3692 	ew32(TSYNCTXCTL, regval);
3693 	if ((er32(TSYNCTXCTL) & E1000_TSYNCTXCTL_ENABLED) !=
3694 	    (regval & E1000_TSYNCTXCTL_ENABLED)) {
3695 		e_err("Timesync Tx Control register not set as expected\n");
3696 		return -EAGAIN;
3697 	}
3698 
3699 	/* enable/disable Rx h/w time stamping */
3700 	regval = er32(TSYNCRXCTL);
3701 	regval &= ~(E1000_TSYNCRXCTL_ENABLED | E1000_TSYNCRXCTL_TYPE_MASK);
3702 	regval |= tsync_rx_ctl;
3703 	ew32(TSYNCRXCTL, regval);
3704 	if ((er32(TSYNCRXCTL) & (E1000_TSYNCRXCTL_ENABLED |
3705 				 E1000_TSYNCRXCTL_TYPE_MASK)) !=
3706 	    (regval & (E1000_TSYNCRXCTL_ENABLED |
3707 		       E1000_TSYNCRXCTL_TYPE_MASK))) {
3708 		e_err("Timesync Rx Control register not set as expected\n");
3709 		return -EAGAIN;
3710 	}
3711 
3712 	/* L2: define ethertype filter for time stamped packets */
3713 	if (is_l2)
3714 		rxmtrl |= ETH_P_1588;
3715 
3716 	/* define which PTP packets get time stamped */
3717 	ew32(RXMTRL, rxmtrl);
3718 
3719 	/* Filter by destination port */
3720 	if (is_l4) {
3721 		rxudp = PTP_EV_PORT;
3722 		cpu_to_be16s(&rxudp);
3723 	}
3724 	ew32(RXUDP, rxudp);
3725 
3726 	e1e_flush();
3727 
3728 	/* Clear TSYNCRXCTL_VALID & TSYNCTXCTL_VALID bit */
3729 	er32(RXSTMPH);
3730 	er32(TXSTMPH);
3731 
3732 	return 0;
3733 }
3734 
3735 /**
3736  * e1000_configure - configure the hardware for Rx and Tx
3737  * @adapter: private board structure
3738  **/
e1000_configure(struct e1000_adapter * adapter)3739 static void e1000_configure(struct e1000_adapter *adapter)
3740 {
3741 	struct e1000_ring *rx_ring = adapter->rx_ring;
3742 
3743 	e1000e_set_rx_mode(adapter->netdev);
3744 
3745 	e1000_restore_vlan(adapter);
3746 	e1000_init_manageability_pt(adapter);
3747 
3748 	e1000_configure_tx(adapter);
3749 
3750 	if (adapter->netdev->features & NETIF_F_RXHASH)
3751 		e1000e_setup_rss_hash(adapter);
3752 	e1000_setup_rctl(adapter);
3753 	e1000_configure_rx(adapter);
3754 	adapter->alloc_rx_buf(rx_ring, e1000_desc_unused(rx_ring), GFP_KERNEL);
3755 }
3756 
3757 /**
3758  * e1000e_power_up_phy - restore link in case the phy was powered down
3759  * @adapter: address of board private structure
3760  *
3761  * The phy may be powered down to save power and turn off link when the
3762  * driver is unloaded and wake on lan is not enabled (among others)
3763  * *** this routine MUST be followed by a call to e1000e_reset ***
3764  **/
e1000e_power_up_phy(struct e1000_adapter * adapter)3765 void e1000e_power_up_phy(struct e1000_adapter *adapter)
3766 {
3767 	if (adapter->hw.phy.ops.power_up)
3768 		adapter->hw.phy.ops.power_up(&adapter->hw);
3769 
3770 	adapter->hw.mac.ops.setup_link(&adapter->hw);
3771 }
3772 
3773 /**
3774  * e1000_power_down_phy - Power down the PHY
3775  *
3776  * Power down the PHY so no link is implied when interface is down.
3777  * The PHY cannot be powered down if management or WoL is active.
3778  */
e1000_power_down_phy(struct e1000_adapter * adapter)3779 static void e1000_power_down_phy(struct e1000_adapter *adapter)
3780 {
3781 	if (adapter->hw.phy.ops.power_down)
3782 		adapter->hw.phy.ops.power_down(&adapter->hw);
3783 }
3784 
3785 /**
3786  * e1000_flush_tx_ring - remove all descriptors from the tx_ring
3787  *
3788  * We want to clear all pending descriptors from the TX ring.
3789  * zeroing happens when the HW reads the regs. We  assign the ring itself as
3790  * the data of the next descriptor. We don't care about the data we are about
3791  * to reset the HW.
3792  */
e1000_flush_tx_ring(struct e1000_adapter * adapter)3793 static void e1000_flush_tx_ring(struct e1000_adapter *adapter)
3794 {
3795 	struct e1000_hw *hw = &adapter->hw;
3796 	struct e1000_ring *tx_ring = adapter->tx_ring;
3797 	struct e1000_tx_desc *tx_desc = NULL;
3798 	u32 tdt, tctl, txd_lower = E1000_TXD_CMD_IFCS;
3799 	u16 size = 512;
3800 
3801 	tctl = er32(TCTL);
3802 	ew32(TCTL, tctl | E1000_TCTL_EN);
3803 	tdt = er32(TDT(0));
3804 	BUG_ON(tdt != tx_ring->next_to_use);
3805 	tx_desc =  E1000_TX_DESC(*tx_ring, tx_ring->next_to_use);
3806 	tx_desc->buffer_addr = tx_ring->dma;
3807 
3808 	tx_desc->lower.data = cpu_to_le32(txd_lower | size);
3809 	tx_desc->upper.data = 0;
3810 	/* flush descriptors to memory before notifying the HW */
3811 	wmb();
3812 	tx_ring->next_to_use++;
3813 	if (tx_ring->next_to_use == tx_ring->count)
3814 		tx_ring->next_to_use = 0;
3815 	ew32(TDT(0), tx_ring->next_to_use);
3816 	mmiowb();
3817 	usleep_range(200, 250);
3818 }
3819 
3820 /**
3821  * e1000_flush_rx_ring - remove all descriptors from the rx_ring
3822  *
3823  * Mark all descriptors in the RX ring as consumed and disable the rx ring
3824  */
e1000_flush_rx_ring(struct e1000_adapter * adapter)3825 static void e1000_flush_rx_ring(struct e1000_adapter *adapter)
3826 {
3827 	u32 rctl, rxdctl;
3828 	struct e1000_hw *hw = &adapter->hw;
3829 
3830 	rctl = er32(RCTL);
3831 	ew32(RCTL, rctl & ~E1000_RCTL_EN);
3832 	e1e_flush();
3833 	usleep_range(100, 150);
3834 
3835 	rxdctl = er32(RXDCTL(0));
3836 	/* zero the lower 14 bits (prefetch and host thresholds) */
3837 	rxdctl &= 0xffffc000;
3838 
3839 	/* update thresholds: prefetch threshold to 31, host threshold to 1
3840 	 * and make sure the granularity is "descriptors" and not "cache lines"
3841 	 */
3842 	rxdctl |= (0x1F | BIT(8) | E1000_RXDCTL_THRESH_UNIT_DESC);
3843 
3844 	ew32(RXDCTL(0), rxdctl);
3845 	/* momentarily enable the RX ring for the changes to take effect */
3846 	ew32(RCTL, rctl | E1000_RCTL_EN);
3847 	e1e_flush();
3848 	usleep_range(100, 150);
3849 	ew32(RCTL, rctl & ~E1000_RCTL_EN);
3850 }
3851 
3852 /**
3853  * e1000_flush_desc_rings - remove all descriptors from the descriptor rings
3854  *
3855  * In i219, the descriptor rings must be emptied before resetting the HW
3856  * or before changing the device state to D3 during runtime (runtime PM).
3857  *
3858  * Failure to do this will cause the HW to enter a unit hang state which can
3859  * only be released by PCI reset on the device
3860  *
3861  */
3862 
e1000_flush_desc_rings(struct e1000_adapter * adapter)3863 static void e1000_flush_desc_rings(struct e1000_adapter *adapter)
3864 {
3865 	u16 hang_state;
3866 	u32 fext_nvm11, tdlen;
3867 	struct e1000_hw *hw = &adapter->hw;
3868 
3869 	/* First, disable MULR fix in FEXTNVM11 */
3870 	fext_nvm11 = er32(FEXTNVM11);
3871 	fext_nvm11 |= E1000_FEXTNVM11_DISABLE_MULR_FIX;
3872 	ew32(FEXTNVM11, fext_nvm11);
3873 	/* do nothing if we're not in faulty state, or if the queue is empty */
3874 	tdlen = er32(TDLEN(0));
3875 	pci_read_config_word(adapter->pdev, PCICFG_DESC_RING_STATUS,
3876 			     &hang_state);
3877 	if (!(hang_state & FLUSH_DESC_REQUIRED) || !tdlen)
3878 		return;
3879 	e1000_flush_tx_ring(adapter);
3880 	/* recheck, maybe the fault is caused by the rx ring */
3881 	pci_read_config_word(adapter->pdev, PCICFG_DESC_RING_STATUS,
3882 			     &hang_state);
3883 	if (hang_state & FLUSH_DESC_REQUIRED)
3884 		e1000_flush_rx_ring(adapter);
3885 }
3886 
3887 /**
3888  * e1000e_systim_reset - reset the timesync registers after a hardware reset
3889  * @adapter: board private structure
3890  *
3891  * When the MAC is reset, all hardware bits for timesync will be reset to the
3892  * default values. This function will restore the settings last in place.
3893  * Since the clock SYSTIME registers are reset, we will simply restore the
3894  * cyclecounter to the kernel real clock time.
3895  **/
e1000e_systim_reset(struct e1000_adapter * adapter)3896 static void e1000e_systim_reset(struct e1000_adapter *adapter)
3897 {
3898 	struct ptp_clock_info *info = &adapter->ptp_clock_info;
3899 	struct e1000_hw *hw = &adapter->hw;
3900 	unsigned long flags;
3901 	u32 timinca;
3902 	s32 ret_val;
3903 
3904 	if (!(adapter->flags & FLAG_HAS_HW_TIMESTAMP))
3905 		return;
3906 
3907 	if (info->adjfreq) {
3908 		/* restore the previous ptp frequency delta */
3909 		ret_val = info->adjfreq(info, adapter->ptp_delta);
3910 	} else {
3911 		/* set the default base frequency if no adjustment possible */
3912 		ret_val = e1000e_get_base_timinca(adapter, &timinca);
3913 		if (!ret_val)
3914 			ew32(TIMINCA, timinca);
3915 	}
3916 
3917 	if (ret_val) {
3918 		dev_warn(&adapter->pdev->dev,
3919 			 "Failed to restore TIMINCA clock rate delta: %d\n",
3920 			 ret_val);
3921 		return;
3922 	}
3923 
3924 	/* reset the systim ns time counter */
3925 	spin_lock_irqsave(&adapter->systim_lock, flags);
3926 	timecounter_init(&adapter->tc, &adapter->cc,
3927 			 ktime_to_ns(ktime_get_real()));
3928 	spin_unlock_irqrestore(&adapter->systim_lock, flags);
3929 
3930 	/* restore the previous hwtstamp configuration settings */
3931 	e1000e_config_hwtstamp(adapter, &adapter->hwtstamp_config);
3932 }
3933 
3934 /**
3935  * e1000e_reset - bring the hardware into a known good state
3936  *
3937  * This function boots the hardware and enables some settings that
3938  * require a configuration cycle of the hardware - those cannot be
3939  * set/changed during runtime. After reset the device needs to be
3940  * properly configured for Rx, Tx etc.
3941  */
e1000e_reset(struct e1000_adapter * adapter)3942 void e1000e_reset(struct e1000_adapter *adapter)
3943 {
3944 	struct e1000_mac_info *mac = &adapter->hw.mac;
3945 	struct e1000_fc_info *fc = &adapter->hw.fc;
3946 	struct e1000_hw *hw = &adapter->hw;
3947 	u32 tx_space, min_tx_space, min_rx_space;
3948 	u32 pba = adapter->pba;
3949 	u16 hwm;
3950 
3951 	/* reset Packet Buffer Allocation to default */
3952 	ew32(PBA, pba);
3953 
3954 	if (adapter->max_frame_size > (VLAN_ETH_FRAME_LEN + ETH_FCS_LEN)) {
3955 		/* To maintain wire speed transmits, the Tx FIFO should be
3956 		 * large enough to accommodate two full transmit packets,
3957 		 * rounded up to the next 1KB and expressed in KB.  Likewise,
3958 		 * the Rx FIFO should be large enough to accommodate at least
3959 		 * one full receive packet and is similarly rounded up and
3960 		 * expressed in KB.
3961 		 */
3962 		pba = er32(PBA);
3963 		/* upper 16 bits has Tx packet buffer allocation size in KB */
3964 		tx_space = pba >> 16;
3965 		/* lower 16 bits has Rx packet buffer allocation size in KB */
3966 		pba &= 0xffff;
3967 		/* the Tx fifo also stores 16 bytes of information about the Tx
3968 		 * but don't include ethernet FCS because hardware appends it
3969 		 */
3970 		min_tx_space = (adapter->max_frame_size +
3971 				sizeof(struct e1000_tx_desc) - ETH_FCS_LEN) * 2;
3972 		min_tx_space = ALIGN(min_tx_space, 1024);
3973 		min_tx_space >>= 10;
3974 		/* software strips receive CRC, so leave room for it */
3975 		min_rx_space = adapter->max_frame_size;
3976 		min_rx_space = ALIGN(min_rx_space, 1024);
3977 		min_rx_space >>= 10;
3978 
3979 		/* If current Tx allocation is less than the min Tx FIFO size,
3980 		 * and the min Tx FIFO size is less than the current Rx FIFO
3981 		 * allocation, take space away from current Rx allocation
3982 		 */
3983 		if ((tx_space < min_tx_space) &&
3984 		    ((min_tx_space - tx_space) < pba)) {
3985 			pba -= min_tx_space - tx_space;
3986 
3987 			/* if short on Rx space, Rx wins and must trump Tx
3988 			 * adjustment
3989 			 */
3990 			if (pba < min_rx_space)
3991 				pba = min_rx_space;
3992 		}
3993 
3994 		ew32(PBA, pba);
3995 	}
3996 
3997 	/* flow control settings
3998 	 *
3999 	 * The high water mark must be low enough to fit one full frame
4000 	 * (or the size used for early receive) above it in the Rx FIFO.
4001 	 * Set it to the lower of:
4002 	 * - 90% of the Rx FIFO size, and
4003 	 * - the full Rx FIFO size minus one full frame
4004 	 */
4005 	if (adapter->flags & FLAG_DISABLE_FC_PAUSE_TIME)
4006 		fc->pause_time = 0xFFFF;
4007 	else
4008 		fc->pause_time = E1000_FC_PAUSE_TIME;
4009 	fc->send_xon = true;
4010 	fc->current_mode = fc->requested_mode;
4011 
4012 	switch (hw->mac.type) {
4013 	case e1000_ich9lan:
4014 	case e1000_ich10lan:
4015 		if (adapter->netdev->mtu > ETH_DATA_LEN) {
4016 			pba = 14;
4017 			ew32(PBA, pba);
4018 			fc->high_water = 0x2800;
4019 			fc->low_water = fc->high_water - 8;
4020 			break;
4021 		}
4022 		/* fall-through */
4023 	default:
4024 		hwm = min(((pba << 10) * 9 / 10),
4025 			  ((pba << 10) - adapter->max_frame_size));
4026 
4027 		fc->high_water = hwm & E1000_FCRTH_RTH;	/* 8-byte granularity */
4028 		fc->low_water = fc->high_water - 8;
4029 		break;
4030 	case e1000_pchlan:
4031 		/* Workaround PCH LOM adapter hangs with certain network
4032 		 * loads.  If hangs persist, try disabling Tx flow control.
4033 		 */
4034 		if (adapter->netdev->mtu > ETH_DATA_LEN) {
4035 			fc->high_water = 0x3500;
4036 			fc->low_water = 0x1500;
4037 		} else {
4038 			fc->high_water = 0x5000;
4039 			fc->low_water = 0x3000;
4040 		}
4041 		fc->refresh_time = 0x1000;
4042 		break;
4043 	case e1000_pch2lan:
4044 	case e1000_pch_lpt:
4045 	case e1000_pch_spt:
4046 	case e1000_pch_cnp:
4047 		fc->refresh_time = 0x0400;
4048 
4049 		if (adapter->netdev->mtu <= ETH_DATA_LEN) {
4050 			fc->high_water = 0x05C20;
4051 			fc->low_water = 0x05048;
4052 			fc->pause_time = 0x0650;
4053 			break;
4054 		}
4055 
4056 		pba = 14;
4057 		ew32(PBA, pba);
4058 		fc->high_water = ((pba << 10) * 9 / 10) & E1000_FCRTH_RTH;
4059 		fc->low_water = ((pba << 10) * 8 / 10) & E1000_FCRTL_RTL;
4060 		break;
4061 	}
4062 
4063 	/* Alignment of Tx data is on an arbitrary byte boundary with the
4064 	 * maximum size per Tx descriptor limited only to the transmit
4065 	 * allocation of the packet buffer minus 96 bytes with an upper
4066 	 * limit of 24KB due to receive synchronization limitations.
4067 	 */
4068 	adapter->tx_fifo_limit = min_t(u32, ((er32(PBA) >> 16) << 10) - 96,
4069 				       24 << 10);
4070 
4071 	/* Disable Adaptive Interrupt Moderation if 2 full packets cannot
4072 	 * fit in receive buffer.
4073 	 */
4074 	if (adapter->itr_setting & 0x3) {
4075 		if ((adapter->max_frame_size * 2) > (pba << 10)) {
4076 			if (!(adapter->flags2 & FLAG2_DISABLE_AIM)) {
4077 				dev_info(&adapter->pdev->dev,
4078 					 "Interrupt Throttle Rate off\n");
4079 				adapter->flags2 |= FLAG2_DISABLE_AIM;
4080 				e1000e_write_itr(adapter, 0);
4081 			}
4082 		} else if (adapter->flags2 & FLAG2_DISABLE_AIM) {
4083 			dev_info(&adapter->pdev->dev,
4084 				 "Interrupt Throttle Rate on\n");
4085 			adapter->flags2 &= ~FLAG2_DISABLE_AIM;
4086 			adapter->itr = 20000;
4087 			e1000e_write_itr(adapter, adapter->itr);
4088 		}
4089 	}
4090 
4091 	if (hw->mac.type >= e1000_pch_spt)
4092 		e1000_flush_desc_rings(adapter);
4093 	/* Allow time for pending master requests to run */
4094 	mac->ops.reset_hw(hw);
4095 
4096 	/* For parts with AMT enabled, let the firmware know
4097 	 * that the network interface is in control
4098 	 */
4099 	if (adapter->flags & FLAG_HAS_AMT)
4100 		e1000e_get_hw_control(adapter);
4101 
4102 	ew32(WUC, 0);
4103 
4104 	if (mac->ops.init_hw(hw))
4105 		e_err("Hardware Error\n");
4106 
4107 	e1000_update_mng_vlan(adapter);
4108 
4109 	/* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
4110 	ew32(VET, ETH_P_8021Q);
4111 
4112 	e1000e_reset_adaptive(hw);
4113 
4114 	/* restore systim and hwtstamp settings */
4115 	e1000e_systim_reset(adapter);
4116 
4117 	/* Set EEE advertisement as appropriate */
4118 	if (adapter->flags2 & FLAG2_HAS_EEE) {
4119 		s32 ret_val;
4120 		u16 adv_addr;
4121 
4122 		switch (hw->phy.type) {
4123 		case e1000_phy_82579:
4124 			adv_addr = I82579_EEE_ADVERTISEMENT;
4125 			break;
4126 		case e1000_phy_i217:
4127 			adv_addr = I217_EEE_ADVERTISEMENT;
4128 			break;
4129 		default:
4130 			dev_err(&adapter->pdev->dev,
4131 				"Invalid PHY type setting EEE advertisement\n");
4132 			return;
4133 		}
4134 
4135 		ret_val = hw->phy.ops.acquire(hw);
4136 		if (ret_val) {
4137 			dev_err(&adapter->pdev->dev,
4138 				"EEE advertisement - unable to acquire PHY\n");
4139 			return;
4140 		}
4141 
4142 		e1000_write_emi_reg_locked(hw, adv_addr,
4143 					   hw->dev_spec.ich8lan.eee_disable ?
4144 					   0 : adapter->eee_advert);
4145 
4146 		hw->phy.ops.release(hw);
4147 	}
4148 
4149 	if (!netif_running(adapter->netdev) &&
4150 	    !test_bit(__E1000_TESTING, &adapter->state))
4151 		e1000_power_down_phy(adapter);
4152 
4153 	e1000_get_phy_info(hw);
4154 
4155 	if ((adapter->flags & FLAG_HAS_SMART_POWER_DOWN) &&
4156 	    !(adapter->flags & FLAG_SMART_POWER_DOWN)) {
4157 		u16 phy_data = 0;
4158 		/* speed up time to link by disabling smart power down, ignore
4159 		 * the return value of this function because there is nothing
4160 		 * different we would do if it failed
4161 		 */
4162 		e1e_rphy(hw, IGP02E1000_PHY_POWER_MGMT, &phy_data);
4163 		phy_data &= ~IGP02E1000_PM_SPD;
4164 		e1e_wphy(hw, IGP02E1000_PHY_POWER_MGMT, phy_data);
4165 	}
4166 	if (hw->mac.type >= e1000_pch_spt && adapter->int_mode == 0) {
4167 		u32 reg;
4168 
4169 		/* Fextnvm7 @ 0xe4[2] = 1 */
4170 		reg = er32(FEXTNVM7);
4171 		reg |= E1000_FEXTNVM7_SIDE_CLK_UNGATE;
4172 		ew32(FEXTNVM7, reg);
4173 		/* Fextnvm9 @ 0x5bb4[13:12] = 11 */
4174 		reg = er32(FEXTNVM9);
4175 		reg |= E1000_FEXTNVM9_IOSFSB_CLKGATE_DIS |
4176 		       E1000_FEXTNVM9_IOSFSB_CLKREQ_DIS;
4177 		ew32(FEXTNVM9, reg);
4178 	}
4179 
4180 }
4181 
4182 /**
4183  * e1000e_trigger_lsc - trigger an LSC interrupt
4184  * @adapter:
4185  *
4186  * Fire a link status change interrupt to start the watchdog.
4187  **/
e1000e_trigger_lsc(struct e1000_adapter * adapter)4188 static void e1000e_trigger_lsc(struct e1000_adapter *adapter)
4189 {
4190 	struct e1000_hw *hw = &adapter->hw;
4191 
4192 	if (adapter->msix_entries)
4193 		ew32(ICS, E1000_ICS_LSC | E1000_ICS_OTHER);
4194 	else
4195 		ew32(ICS, E1000_ICS_LSC);
4196 }
4197 
e1000e_up(struct e1000_adapter * adapter)4198 void e1000e_up(struct e1000_adapter *adapter)
4199 {
4200 	/* hardware has been reset, we need to reload some things */
4201 	e1000_configure(adapter);
4202 
4203 	clear_bit(__E1000_DOWN, &adapter->state);
4204 
4205 	if (adapter->msix_entries)
4206 		e1000_configure_msix(adapter);
4207 	e1000_irq_enable(adapter);
4208 
4209 	/* Tx queue started by watchdog timer when link is up */
4210 
4211 	e1000e_trigger_lsc(adapter);
4212 }
4213 
e1000e_flush_descriptors(struct e1000_adapter * adapter)4214 static void e1000e_flush_descriptors(struct e1000_adapter *adapter)
4215 {
4216 	struct e1000_hw *hw = &adapter->hw;
4217 
4218 	if (!(adapter->flags2 & FLAG2_DMA_BURST))
4219 		return;
4220 
4221 	/* flush pending descriptor writebacks to memory */
4222 	ew32(TIDV, adapter->tx_int_delay | E1000_TIDV_FPD);
4223 	ew32(RDTR, adapter->rx_int_delay | E1000_RDTR_FPD);
4224 
4225 	/* execute the writes immediately */
4226 	e1e_flush();
4227 
4228 	/* due to rare timing issues, write to TIDV/RDTR again to ensure the
4229 	 * write is successful
4230 	 */
4231 	ew32(TIDV, adapter->tx_int_delay | E1000_TIDV_FPD);
4232 	ew32(RDTR, adapter->rx_int_delay | E1000_RDTR_FPD);
4233 
4234 	/* execute the writes immediately */
4235 	e1e_flush();
4236 }
4237 
4238 static void e1000e_update_stats(struct e1000_adapter *adapter);
4239 
4240 /**
4241  * e1000e_down - quiesce the device and optionally reset the hardware
4242  * @adapter: board private structure
4243  * @reset: boolean flag to reset the hardware or not
4244  */
e1000e_down(struct e1000_adapter * adapter,bool reset)4245 void e1000e_down(struct e1000_adapter *adapter, bool reset)
4246 {
4247 	struct net_device *netdev = adapter->netdev;
4248 	struct e1000_hw *hw = &adapter->hw;
4249 	u32 tctl, rctl;
4250 
4251 	/* signal that we're down so the interrupt handler does not
4252 	 * reschedule our watchdog timer
4253 	 */
4254 	set_bit(__E1000_DOWN, &adapter->state);
4255 
4256 	netif_carrier_off(netdev);
4257 
4258 	/* disable receives in the hardware */
4259 	rctl = er32(RCTL);
4260 	if (!(adapter->flags2 & FLAG2_NO_DISABLE_RX))
4261 		ew32(RCTL, rctl & ~E1000_RCTL_EN);
4262 	/* flush and sleep below */
4263 
4264 	netif_stop_queue(netdev);
4265 
4266 	/* disable transmits in the hardware */
4267 	tctl = er32(TCTL);
4268 	tctl &= ~E1000_TCTL_EN;
4269 	ew32(TCTL, tctl);
4270 
4271 	/* flush both disables and wait for them to finish */
4272 	e1e_flush();
4273 	usleep_range(10000, 20000);
4274 
4275 	e1000_irq_disable(adapter);
4276 
4277 	napi_synchronize(&adapter->napi);
4278 
4279 	del_timer_sync(&adapter->watchdog_timer);
4280 	del_timer_sync(&adapter->phy_info_timer);
4281 
4282 	spin_lock(&adapter->stats64_lock);
4283 	e1000e_update_stats(adapter);
4284 	spin_unlock(&adapter->stats64_lock);
4285 
4286 	e1000e_flush_descriptors(adapter);
4287 
4288 	adapter->link_speed = 0;
4289 	adapter->link_duplex = 0;
4290 
4291 	/* Disable Si errata workaround on PCHx for jumbo frame flow */
4292 	if ((hw->mac.type >= e1000_pch2lan) &&
4293 	    (adapter->netdev->mtu > ETH_DATA_LEN) &&
4294 	    e1000_lv_jumbo_workaround_ich8lan(hw, false))
4295 		e_dbg("failed to disable jumbo frame workaround mode\n");
4296 
4297 	if (!pci_channel_offline(adapter->pdev)) {
4298 		if (reset)
4299 			e1000e_reset(adapter);
4300 		else if (hw->mac.type >= e1000_pch_spt)
4301 			e1000_flush_desc_rings(adapter);
4302 	}
4303 	e1000_clean_tx_ring(adapter->tx_ring);
4304 	e1000_clean_rx_ring(adapter->rx_ring);
4305 }
4306 
e1000e_reinit_locked(struct e1000_adapter * adapter)4307 void e1000e_reinit_locked(struct e1000_adapter *adapter)
4308 {
4309 	might_sleep();
4310 	while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
4311 		usleep_range(1000, 2000);
4312 	e1000e_down(adapter, true);
4313 	e1000e_up(adapter);
4314 	clear_bit(__E1000_RESETTING, &adapter->state);
4315 }
4316 
4317 /**
4318  * e1000e_sanitize_systim - sanitize raw cycle counter reads
4319  * @hw: pointer to the HW structure
4320  * @systim: time value read, sanitized and returned
4321  *
4322  * Errata for 82574/82583 possible bad bits read from SYSTIMH/L:
4323  * check to see that the time is incrementing at a reasonable
4324  * rate and is a multiple of incvalue.
4325  **/
e1000e_sanitize_systim(struct e1000_hw * hw,u64 systim)4326 static u64 e1000e_sanitize_systim(struct e1000_hw *hw, u64 systim)
4327 {
4328 	u64 time_delta, rem, temp;
4329 	u64 systim_next;
4330 	u32 incvalue;
4331 	int i;
4332 
4333 	incvalue = er32(TIMINCA) & E1000_TIMINCA_INCVALUE_MASK;
4334 	for (i = 0; i < E1000_MAX_82574_SYSTIM_REREADS; i++) {
4335 		/* latch SYSTIMH on read of SYSTIML */
4336 		systim_next = (u64)er32(SYSTIML);
4337 		systim_next |= (u64)er32(SYSTIMH) << 32;
4338 
4339 		time_delta = systim_next - systim;
4340 		temp = time_delta;
4341 		/* VMWare users have seen incvalue of zero, don't div / 0 */
4342 		rem = incvalue ? do_div(temp, incvalue) : (time_delta != 0);
4343 
4344 		systim = systim_next;
4345 
4346 		if ((time_delta < E1000_82574_SYSTIM_EPSILON) && (rem == 0))
4347 			break;
4348 	}
4349 
4350 	return systim;
4351 }
4352 
4353 /**
4354  * e1000e_cyclecounter_read - read raw cycle counter (used by time counter)
4355  * @cc: cyclecounter structure
4356  **/
e1000e_cyclecounter_read(const struct cyclecounter * cc)4357 static u64 e1000e_cyclecounter_read(const struct cyclecounter *cc)
4358 {
4359 	struct e1000_adapter *adapter = container_of(cc, struct e1000_adapter,
4360 						     cc);
4361 	struct e1000_hw *hw = &adapter->hw;
4362 	u32 systimel, systimeh;
4363 	u64 systim;
4364 	/* SYSTIMH latching upon SYSTIML read does not work well.
4365 	 * This means that if SYSTIML overflows after we read it but before
4366 	 * we read SYSTIMH, the value of SYSTIMH has been incremented and we
4367 	 * will experience a huge non linear increment in the systime value
4368 	 * to fix that we test for overflow and if true, we re-read systime.
4369 	 */
4370 	systimel = er32(SYSTIML);
4371 	systimeh = er32(SYSTIMH);
4372 	/* Is systimel is so large that overflow is possible? */
4373 	if (systimel >= (u32)0xffffffff - E1000_TIMINCA_INCVALUE_MASK) {
4374 		u32 systimel_2 = er32(SYSTIML);
4375 		if (systimel > systimel_2) {
4376 			/* There was an overflow, read again SYSTIMH, and use
4377 			 * systimel_2
4378 			 */
4379 			systimeh = er32(SYSTIMH);
4380 			systimel = systimel_2;
4381 		}
4382 	}
4383 	systim = (u64)systimel;
4384 	systim |= (u64)systimeh << 32;
4385 
4386 	if (adapter->flags2 & FLAG2_CHECK_SYSTIM_OVERFLOW)
4387 		systim = e1000e_sanitize_systim(hw, systim);
4388 
4389 	return systim;
4390 }
4391 
4392 /**
4393  * e1000_sw_init - Initialize general software structures (struct e1000_adapter)
4394  * @adapter: board private structure to initialize
4395  *
4396  * e1000_sw_init initializes the Adapter private data structure.
4397  * Fields are initialized based on PCI device information and
4398  * OS network device settings (MTU size).
4399  **/
e1000_sw_init(struct e1000_adapter * adapter)4400 static int e1000_sw_init(struct e1000_adapter *adapter)
4401 {
4402 	struct net_device *netdev = adapter->netdev;
4403 
4404 	adapter->rx_buffer_len = VLAN_ETH_FRAME_LEN + ETH_FCS_LEN;
4405 	adapter->rx_ps_bsize0 = 128;
4406 	adapter->max_frame_size = netdev->mtu + VLAN_ETH_HLEN + ETH_FCS_LEN;
4407 	adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
4408 	adapter->tx_ring_count = E1000_DEFAULT_TXD;
4409 	adapter->rx_ring_count = E1000_DEFAULT_RXD;
4410 
4411 	spin_lock_init(&adapter->stats64_lock);
4412 
4413 	e1000e_set_interrupt_capability(adapter);
4414 
4415 	if (e1000_alloc_queues(adapter))
4416 		return -ENOMEM;
4417 
4418 	/* Setup hardware time stamping cyclecounter */
4419 	if (adapter->flags & FLAG_HAS_HW_TIMESTAMP) {
4420 		adapter->cc.read = e1000e_cyclecounter_read;
4421 		adapter->cc.mask = CYCLECOUNTER_MASK(64);
4422 		adapter->cc.mult = 1;
4423 		/* cc.shift set in e1000e_get_base_tininca() */
4424 
4425 		spin_lock_init(&adapter->systim_lock);
4426 		INIT_WORK(&adapter->tx_hwtstamp_work, e1000e_tx_hwtstamp_work);
4427 	}
4428 
4429 	/* Explicitly disable IRQ since the NIC can be in any state. */
4430 	e1000_irq_disable(adapter);
4431 
4432 	set_bit(__E1000_DOWN, &adapter->state);
4433 	return 0;
4434 }
4435 
4436 /**
4437  * e1000_intr_msi_test - Interrupt Handler
4438  * @irq: interrupt number
4439  * @data: pointer to a network interface device structure
4440  **/
e1000_intr_msi_test(int __always_unused irq,void * data)4441 static irqreturn_t e1000_intr_msi_test(int __always_unused irq, void *data)
4442 {
4443 	struct net_device *netdev = data;
4444 	struct e1000_adapter *adapter = netdev_priv(netdev);
4445 	struct e1000_hw *hw = &adapter->hw;
4446 	u32 icr = er32(ICR);
4447 
4448 	e_dbg("icr is %08X\n", icr);
4449 	if (icr & E1000_ICR_RXSEQ) {
4450 		adapter->flags &= ~FLAG_MSI_TEST_FAILED;
4451 		/* Force memory writes to complete before acknowledging the
4452 		 * interrupt is handled.
4453 		 */
4454 		wmb();
4455 	}
4456 
4457 	return IRQ_HANDLED;
4458 }
4459 
4460 /**
4461  * e1000_test_msi_interrupt - Returns 0 for successful test
4462  * @adapter: board private struct
4463  *
4464  * code flow taken from tg3.c
4465  **/
e1000_test_msi_interrupt(struct e1000_adapter * adapter)4466 static int e1000_test_msi_interrupt(struct e1000_adapter *adapter)
4467 {
4468 	struct net_device *netdev = adapter->netdev;
4469 	struct e1000_hw *hw = &adapter->hw;
4470 	int err;
4471 
4472 	/* poll_enable hasn't been called yet, so don't need disable */
4473 	/* clear any pending events */
4474 	er32(ICR);
4475 
4476 	/* free the real vector and request a test handler */
4477 	e1000_free_irq(adapter);
4478 	e1000e_reset_interrupt_capability(adapter);
4479 
4480 	/* Assume that the test fails, if it succeeds then the test
4481 	 * MSI irq handler will unset this flag
4482 	 */
4483 	adapter->flags |= FLAG_MSI_TEST_FAILED;
4484 
4485 	err = pci_enable_msi(adapter->pdev);
4486 	if (err)
4487 		goto msi_test_failed;
4488 
4489 	err = request_irq(adapter->pdev->irq, e1000_intr_msi_test, 0,
4490 			  netdev->name, netdev);
4491 	if (err) {
4492 		pci_disable_msi(adapter->pdev);
4493 		goto msi_test_failed;
4494 	}
4495 
4496 	/* Force memory writes to complete before enabling and firing an
4497 	 * interrupt.
4498 	 */
4499 	wmb();
4500 
4501 	e1000_irq_enable(adapter);
4502 
4503 	/* fire an unusual interrupt on the test handler */
4504 	ew32(ICS, E1000_ICS_RXSEQ);
4505 	e1e_flush();
4506 	msleep(100);
4507 
4508 	e1000_irq_disable(adapter);
4509 
4510 	rmb();			/* read flags after interrupt has been fired */
4511 
4512 	if (adapter->flags & FLAG_MSI_TEST_FAILED) {
4513 		adapter->int_mode = E1000E_INT_MODE_LEGACY;
4514 		e_info("MSI interrupt test failed, using legacy interrupt.\n");
4515 	} else {
4516 		e_dbg("MSI interrupt test succeeded!\n");
4517 	}
4518 
4519 	free_irq(adapter->pdev->irq, netdev);
4520 	pci_disable_msi(adapter->pdev);
4521 
4522 msi_test_failed:
4523 	e1000e_set_interrupt_capability(adapter);
4524 	return e1000_request_irq(adapter);
4525 }
4526 
4527 /**
4528  * e1000_test_msi - Returns 0 if MSI test succeeds or INTx mode is restored
4529  * @adapter: board private struct
4530  *
4531  * code flow taken from tg3.c, called with e1000 interrupts disabled.
4532  **/
e1000_test_msi(struct e1000_adapter * adapter)4533 static int e1000_test_msi(struct e1000_adapter *adapter)
4534 {
4535 	int err;
4536 	u16 pci_cmd;
4537 
4538 	if (!(adapter->flags & FLAG_MSI_ENABLED))
4539 		return 0;
4540 
4541 	/* disable SERR in case the MSI write causes a master abort */
4542 	pci_read_config_word(adapter->pdev, PCI_COMMAND, &pci_cmd);
4543 	if (pci_cmd & PCI_COMMAND_SERR)
4544 		pci_write_config_word(adapter->pdev, PCI_COMMAND,
4545 				      pci_cmd & ~PCI_COMMAND_SERR);
4546 
4547 	err = e1000_test_msi_interrupt(adapter);
4548 
4549 	/* re-enable SERR */
4550 	if (pci_cmd & PCI_COMMAND_SERR) {
4551 		pci_read_config_word(adapter->pdev, PCI_COMMAND, &pci_cmd);
4552 		pci_cmd |= PCI_COMMAND_SERR;
4553 		pci_write_config_word(adapter->pdev, PCI_COMMAND, pci_cmd);
4554 	}
4555 
4556 	return err;
4557 }
4558 
4559 /**
4560  * e1000e_open - Called when a network interface is made active
4561  * @netdev: network interface device structure
4562  *
4563  * Returns 0 on success, negative value on failure
4564  *
4565  * The open entry point is called when a network interface is made
4566  * active by the system (IFF_UP).  At this point all resources needed
4567  * for transmit and receive operations are allocated, the interrupt
4568  * handler is registered with the OS, the watchdog timer is started,
4569  * and the stack is notified that the interface is ready.
4570  **/
e1000e_open(struct net_device * netdev)4571 int e1000e_open(struct net_device *netdev)
4572 {
4573 	struct e1000_adapter *adapter = netdev_priv(netdev);
4574 	struct e1000_hw *hw = &adapter->hw;
4575 	struct pci_dev *pdev = adapter->pdev;
4576 	int err;
4577 
4578 	/* disallow open during test */
4579 	if (test_bit(__E1000_TESTING, &adapter->state))
4580 		return -EBUSY;
4581 
4582 	pm_runtime_get_sync(&pdev->dev);
4583 
4584 	netif_carrier_off(netdev);
4585 	netif_stop_queue(netdev);
4586 
4587 	/* allocate transmit descriptors */
4588 	err = e1000e_setup_tx_resources(adapter->tx_ring);
4589 	if (err)
4590 		goto err_setup_tx;
4591 
4592 	/* allocate receive descriptors */
4593 	err = e1000e_setup_rx_resources(adapter->rx_ring);
4594 	if (err)
4595 		goto err_setup_rx;
4596 
4597 	/* If AMT is enabled, let the firmware know that the network
4598 	 * interface is now open and reset the part to a known state.
4599 	 */
4600 	if (adapter->flags & FLAG_HAS_AMT) {
4601 		e1000e_get_hw_control(adapter);
4602 		e1000e_reset(adapter);
4603 	}
4604 
4605 	e1000e_power_up_phy(adapter);
4606 
4607 	adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
4608 	if ((adapter->hw.mng_cookie.status & E1000_MNG_DHCP_COOKIE_STATUS_VLAN))
4609 		e1000_update_mng_vlan(adapter);
4610 
4611 	/* DMA latency requirement to workaround jumbo issue */
4612 	pm_qos_add_request(&adapter->pm_qos_req, PM_QOS_CPU_DMA_LATENCY,
4613 			   PM_QOS_DEFAULT_VALUE);
4614 
4615 	/* before we allocate an interrupt, we must be ready to handle it.
4616 	 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
4617 	 * as soon as we call pci_request_irq, so we have to setup our
4618 	 * clean_rx handler before we do so.
4619 	 */
4620 	e1000_configure(adapter);
4621 
4622 	err = e1000_request_irq(adapter);
4623 	if (err)
4624 		goto err_req_irq;
4625 
4626 	/* Work around PCIe errata with MSI interrupts causing some chipsets to
4627 	 * ignore e1000e MSI messages, which means we need to test our MSI
4628 	 * interrupt now
4629 	 */
4630 	if (adapter->int_mode != E1000E_INT_MODE_LEGACY) {
4631 		err = e1000_test_msi(adapter);
4632 		if (err) {
4633 			e_err("Interrupt allocation failed\n");
4634 			goto err_req_irq;
4635 		}
4636 	}
4637 
4638 	/* From here on the code is the same as e1000e_up() */
4639 	clear_bit(__E1000_DOWN, &adapter->state);
4640 
4641 	napi_enable(&adapter->napi);
4642 
4643 	e1000_irq_enable(adapter);
4644 
4645 	adapter->tx_hang_recheck = false;
4646 
4647 	hw->mac.get_link_status = true;
4648 	pm_runtime_put(&pdev->dev);
4649 
4650 	e1000e_trigger_lsc(adapter);
4651 
4652 	return 0;
4653 
4654 err_req_irq:
4655 	pm_qos_remove_request(&adapter->pm_qos_req);
4656 	e1000e_release_hw_control(adapter);
4657 	e1000_power_down_phy(adapter);
4658 	e1000e_free_rx_resources(adapter->rx_ring);
4659 err_setup_rx:
4660 	e1000e_free_tx_resources(adapter->tx_ring);
4661 err_setup_tx:
4662 	e1000e_reset(adapter);
4663 	pm_runtime_put_sync(&pdev->dev);
4664 
4665 	return err;
4666 }
4667 
4668 /**
4669  * e1000e_close - Disables a network interface
4670  * @netdev: network interface device structure
4671  *
4672  * Returns 0, this is not allowed to fail
4673  *
4674  * The close entry point is called when an interface is de-activated
4675  * by the OS.  The hardware is still under the drivers control, but
4676  * needs to be disabled.  A global MAC reset is issued to stop the
4677  * hardware, and all transmit and receive resources are freed.
4678  **/
e1000e_close(struct net_device * netdev)4679 int e1000e_close(struct net_device *netdev)
4680 {
4681 	struct e1000_adapter *adapter = netdev_priv(netdev);
4682 	struct pci_dev *pdev = adapter->pdev;
4683 	int count = E1000_CHECK_RESET_COUNT;
4684 
4685 	while (test_bit(__E1000_RESETTING, &adapter->state) && count--)
4686 		usleep_range(10000, 20000);
4687 
4688 	WARN_ON(test_bit(__E1000_RESETTING, &adapter->state));
4689 
4690 	pm_runtime_get_sync(&pdev->dev);
4691 
4692 	if (!test_bit(__E1000_DOWN, &adapter->state)) {
4693 		e1000e_down(adapter, true);
4694 		e1000_free_irq(adapter);
4695 
4696 		/* Link status message must follow this format */
4697 		pr_info("%s NIC Link is Down\n", adapter->netdev->name);
4698 	}
4699 
4700 	napi_disable(&adapter->napi);
4701 
4702 	e1000e_free_tx_resources(adapter->tx_ring);
4703 	e1000e_free_rx_resources(adapter->rx_ring);
4704 
4705 	/* kill manageability vlan ID if supported, but not if a vlan with
4706 	 * the same ID is registered on the host OS (let 8021q kill it)
4707 	 */
4708 	if (adapter->hw.mng_cookie.status & E1000_MNG_DHCP_COOKIE_STATUS_VLAN)
4709 		e1000_vlan_rx_kill_vid(netdev, htons(ETH_P_8021Q),
4710 				       adapter->mng_vlan_id);
4711 
4712 	/* If AMT is enabled, let the firmware know that the network
4713 	 * interface is now closed
4714 	 */
4715 	if ((adapter->flags & FLAG_HAS_AMT) &&
4716 	    !test_bit(__E1000_TESTING, &adapter->state))
4717 		e1000e_release_hw_control(adapter);
4718 
4719 	pm_qos_remove_request(&adapter->pm_qos_req);
4720 
4721 	pm_runtime_put_sync(&pdev->dev);
4722 
4723 	return 0;
4724 }
4725 
4726 /**
4727  * e1000_set_mac - Change the Ethernet Address of the NIC
4728  * @netdev: network interface device structure
4729  * @p: pointer to an address structure
4730  *
4731  * Returns 0 on success, negative on failure
4732  **/
e1000_set_mac(struct net_device * netdev,void * p)4733 static int e1000_set_mac(struct net_device *netdev, void *p)
4734 {
4735 	struct e1000_adapter *adapter = netdev_priv(netdev);
4736 	struct e1000_hw *hw = &adapter->hw;
4737 	struct sockaddr *addr = p;
4738 
4739 	if (!is_valid_ether_addr(addr->sa_data))
4740 		return -EADDRNOTAVAIL;
4741 
4742 	memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
4743 	memcpy(adapter->hw.mac.addr, addr->sa_data, netdev->addr_len);
4744 
4745 	hw->mac.ops.rar_set(&adapter->hw, adapter->hw.mac.addr, 0);
4746 
4747 	if (adapter->flags & FLAG_RESET_OVERWRITES_LAA) {
4748 		/* activate the work around */
4749 		e1000e_set_laa_state_82571(&adapter->hw, 1);
4750 
4751 		/* Hold a copy of the LAA in RAR[14] This is done so that
4752 		 * between the time RAR[0] gets clobbered  and the time it
4753 		 * gets fixed (in e1000_watchdog), the actual LAA is in one
4754 		 * of the RARs and no incoming packets directed to this port
4755 		 * are dropped. Eventually the LAA will be in RAR[0] and
4756 		 * RAR[14]
4757 		 */
4758 		hw->mac.ops.rar_set(&adapter->hw, adapter->hw.mac.addr,
4759 				    adapter->hw.mac.rar_entry_count - 1);
4760 	}
4761 
4762 	return 0;
4763 }
4764 
4765 /**
4766  * e1000e_update_phy_task - work thread to update phy
4767  * @work: pointer to our work struct
4768  *
4769  * this worker thread exists because we must acquire a
4770  * semaphore to read the phy, which we could msleep while
4771  * waiting for it, and we can't msleep in a timer.
4772  **/
e1000e_update_phy_task(struct work_struct * work)4773 static void e1000e_update_phy_task(struct work_struct *work)
4774 {
4775 	struct e1000_adapter *adapter = container_of(work,
4776 						     struct e1000_adapter,
4777 						     update_phy_task);
4778 	struct e1000_hw *hw = &adapter->hw;
4779 
4780 	if (test_bit(__E1000_DOWN, &adapter->state))
4781 		return;
4782 
4783 	e1000_get_phy_info(hw);
4784 
4785 	/* Enable EEE on 82579 after link up */
4786 	if (hw->phy.type >= e1000_phy_82579)
4787 		e1000_set_eee_pchlan(hw);
4788 }
4789 
4790 /**
4791  * e1000_update_phy_info - timre call-back to update PHY info
4792  * @data: pointer to adapter cast into an unsigned long
4793  *
4794  * Need to wait a few seconds after link up to get diagnostic information from
4795  * the phy
4796  **/
e1000_update_phy_info(struct timer_list * t)4797 static void e1000_update_phy_info(struct timer_list *t)
4798 {
4799 	struct e1000_adapter *adapter = from_timer(adapter, t, phy_info_timer);
4800 
4801 	if (test_bit(__E1000_DOWN, &adapter->state))
4802 		return;
4803 
4804 	schedule_work(&adapter->update_phy_task);
4805 }
4806 
4807 /**
4808  * e1000e_update_phy_stats - Update the PHY statistics counters
4809  * @adapter: board private structure
4810  *
4811  * Read/clear the upper 16-bit PHY registers and read/accumulate lower
4812  **/
e1000e_update_phy_stats(struct e1000_adapter * adapter)4813 static void e1000e_update_phy_stats(struct e1000_adapter *adapter)
4814 {
4815 	struct e1000_hw *hw = &adapter->hw;
4816 	s32 ret_val;
4817 	u16 phy_data;
4818 
4819 	ret_val = hw->phy.ops.acquire(hw);
4820 	if (ret_val)
4821 		return;
4822 
4823 	/* A page set is expensive so check if already on desired page.
4824 	 * If not, set to the page with the PHY status registers.
4825 	 */
4826 	hw->phy.addr = 1;
4827 	ret_val = e1000e_read_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT,
4828 					   &phy_data);
4829 	if (ret_val)
4830 		goto release;
4831 	if (phy_data != (HV_STATS_PAGE << IGP_PAGE_SHIFT)) {
4832 		ret_val = hw->phy.ops.set_page(hw,
4833 					       HV_STATS_PAGE << IGP_PAGE_SHIFT);
4834 		if (ret_val)
4835 			goto release;
4836 	}
4837 
4838 	/* Single Collision Count */
4839 	hw->phy.ops.read_reg_page(hw, HV_SCC_UPPER, &phy_data);
4840 	ret_val = hw->phy.ops.read_reg_page(hw, HV_SCC_LOWER, &phy_data);
4841 	if (!ret_val)
4842 		adapter->stats.scc += phy_data;
4843 
4844 	/* Excessive Collision Count */
4845 	hw->phy.ops.read_reg_page(hw, HV_ECOL_UPPER, &phy_data);
4846 	ret_val = hw->phy.ops.read_reg_page(hw, HV_ECOL_LOWER, &phy_data);
4847 	if (!ret_val)
4848 		adapter->stats.ecol += phy_data;
4849 
4850 	/* Multiple Collision Count */
4851 	hw->phy.ops.read_reg_page(hw, HV_MCC_UPPER, &phy_data);
4852 	ret_val = hw->phy.ops.read_reg_page(hw, HV_MCC_LOWER, &phy_data);
4853 	if (!ret_val)
4854 		adapter->stats.mcc += phy_data;
4855 
4856 	/* Late Collision Count */
4857 	hw->phy.ops.read_reg_page(hw, HV_LATECOL_UPPER, &phy_data);
4858 	ret_val = hw->phy.ops.read_reg_page(hw, HV_LATECOL_LOWER, &phy_data);
4859 	if (!ret_val)
4860 		adapter->stats.latecol += phy_data;
4861 
4862 	/* Collision Count - also used for adaptive IFS */
4863 	hw->phy.ops.read_reg_page(hw, HV_COLC_UPPER, &phy_data);
4864 	ret_val = hw->phy.ops.read_reg_page(hw, HV_COLC_LOWER, &phy_data);
4865 	if (!ret_val)
4866 		hw->mac.collision_delta = phy_data;
4867 
4868 	/* Defer Count */
4869 	hw->phy.ops.read_reg_page(hw, HV_DC_UPPER, &phy_data);
4870 	ret_val = hw->phy.ops.read_reg_page(hw, HV_DC_LOWER, &phy_data);
4871 	if (!ret_val)
4872 		adapter->stats.dc += phy_data;
4873 
4874 	/* Transmit with no CRS */
4875 	hw->phy.ops.read_reg_page(hw, HV_TNCRS_UPPER, &phy_data);
4876 	ret_val = hw->phy.ops.read_reg_page(hw, HV_TNCRS_LOWER, &phy_data);
4877 	if (!ret_val)
4878 		adapter->stats.tncrs += phy_data;
4879 
4880 release:
4881 	hw->phy.ops.release(hw);
4882 }
4883 
4884 /**
4885  * e1000e_update_stats - Update the board statistics counters
4886  * @adapter: board private structure
4887  **/
e1000e_update_stats(struct e1000_adapter * adapter)4888 static void e1000e_update_stats(struct e1000_adapter *adapter)
4889 {
4890 	struct net_device *netdev = adapter->netdev;
4891 	struct e1000_hw *hw = &adapter->hw;
4892 	struct pci_dev *pdev = adapter->pdev;
4893 
4894 	/* Prevent stats update while adapter is being reset, or if the pci
4895 	 * connection is down.
4896 	 */
4897 	if (adapter->link_speed == 0)
4898 		return;
4899 	if (pci_channel_offline(pdev))
4900 		return;
4901 
4902 	adapter->stats.crcerrs += er32(CRCERRS);
4903 	adapter->stats.gprc += er32(GPRC);
4904 	adapter->stats.gorc += er32(GORCL);
4905 	er32(GORCH);		/* Clear gorc */
4906 	adapter->stats.bprc += er32(BPRC);
4907 	adapter->stats.mprc += er32(MPRC);
4908 	adapter->stats.roc += er32(ROC);
4909 
4910 	adapter->stats.mpc += er32(MPC);
4911 
4912 	/* Half-duplex statistics */
4913 	if (adapter->link_duplex == HALF_DUPLEX) {
4914 		if (adapter->flags2 & FLAG2_HAS_PHY_STATS) {
4915 			e1000e_update_phy_stats(adapter);
4916 		} else {
4917 			adapter->stats.scc += er32(SCC);
4918 			adapter->stats.ecol += er32(ECOL);
4919 			adapter->stats.mcc += er32(MCC);
4920 			adapter->stats.latecol += er32(LATECOL);
4921 			adapter->stats.dc += er32(DC);
4922 
4923 			hw->mac.collision_delta = er32(COLC);
4924 
4925 			if ((hw->mac.type != e1000_82574) &&
4926 			    (hw->mac.type != e1000_82583))
4927 				adapter->stats.tncrs += er32(TNCRS);
4928 		}
4929 		adapter->stats.colc += hw->mac.collision_delta;
4930 	}
4931 
4932 	adapter->stats.xonrxc += er32(XONRXC);
4933 	adapter->stats.xontxc += er32(XONTXC);
4934 	adapter->stats.xoffrxc += er32(XOFFRXC);
4935 	adapter->stats.xofftxc += er32(XOFFTXC);
4936 	adapter->stats.gptc += er32(GPTC);
4937 	adapter->stats.gotc += er32(GOTCL);
4938 	er32(GOTCH);		/* Clear gotc */
4939 	adapter->stats.rnbc += er32(RNBC);
4940 	adapter->stats.ruc += er32(RUC);
4941 
4942 	adapter->stats.mptc += er32(MPTC);
4943 	adapter->stats.bptc += er32(BPTC);
4944 
4945 	/* used for adaptive IFS */
4946 
4947 	hw->mac.tx_packet_delta = er32(TPT);
4948 	adapter->stats.tpt += hw->mac.tx_packet_delta;
4949 
4950 	adapter->stats.algnerrc += er32(ALGNERRC);
4951 	adapter->stats.rxerrc += er32(RXERRC);
4952 	adapter->stats.cexterr += er32(CEXTERR);
4953 	adapter->stats.tsctc += er32(TSCTC);
4954 	adapter->stats.tsctfc += er32(TSCTFC);
4955 
4956 	/* Fill out the OS statistics structure */
4957 	netdev->stats.multicast = adapter->stats.mprc;
4958 	netdev->stats.collisions = adapter->stats.colc;
4959 
4960 	/* Rx Errors */
4961 
4962 	/* RLEC on some newer hardware can be incorrect so build
4963 	 * our own version based on RUC and ROC
4964 	 */
4965 	netdev->stats.rx_errors = adapter->stats.rxerrc +
4966 	    adapter->stats.crcerrs + adapter->stats.algnerrc +
4967 	    adapter->stats.ruc + adapter->stats.roc + adapter->stats.cexterr;
4968 	netdev->stats.rx_length_errors = adapter->stats.ruc +
4969 	    adapter->stats.roc;
4970 	netdev->stats.rx_crc_errors = adapter->stats.crcerrs;
4971 	netdev->stats.rx_frame_errors = adapter->stats.algnerrc;
4972 	netdev->stats.rx_missed_errors = adapter->stats.mpc;
4973 
4974 	/* Tx Errors */
4975 	netdev->stats.tx_errors = adapter->stats.ecol + adapter->stats.latecol;
4976 	netdev->stats.tx_aborted_errors = adapter->stats.ecol;
4977 	netdev->stats.tx_window_errors = adapter->stats.latecol;
4978 	netdev->stats.tx_carrier_errors = adapter->stats.tncrs;
4979 
4980 	/* Tx Dropped needs to be maintained elsewhere */
4981 
4982 	/* Management Stats */
4983 	adapter->stats.mgptc += er32(MGTPTC);
4984 	adapter->stats.mgprc += er32(MGTPRC);
4985 	adapter->stats.mgpdc += er32(MGTPDC);
4986 
4987 	/* Correctable ECC Errors */
4988 	if (hw->mac.type >= e1000_pch_lpt) {
4989 		u32 pbeccsts = er32(PBECCSTS);
4990 
4991 		adapter->corr_errors +=
4992 		    pbeccsts & E1000_PBECCSTS_CORR_ERR_CNT_MASK;
4993 		adapter->uncorr_errors +=
4994 		    (pbeccsts & E1000_PBECCSTS_UNCORR_ERR_CNT_MASK) >>
4995 		    E1000_PBECCSTS_UNCORR_ERR_CNT_SHIFT;
4996 	}
4997 }
4998 
4999 /**
5000  * e1000_phy_read_status - Update the PHY register status snapshot
5001  * @adapter: board private structure
5002  **/
e1000_phy_read_status(struct e1000_adapter * adapter)5003 static void e1000_phy_read_status(struct e1000_adapter *adapter)
5004 {
5005 	struct e1000_hw *hw = &adapter->hw;
5006 	struct e1000_phy_regs *phy = &adapter->phy_regs;
5007 
5008 	if (!pm_runtime_suspended((&adapter->pdev->dev)->parent) &&
5009 	    (er32(STATUS) & E1000_STATUS_LU) &&
5010 	    (adapter->hw.phy.media_type == e1000_media_type_copper)) {
5011 		int ret_val;
5012 
5013 		ret_val = e1e_rphy(hw, MII_BMCR, &phy->bmcr);
5014 		ret_val |= e1e_rphy(hw, MII_BMSR, &phy->bmsr);
5015 		ret_val |= e1e_rphy(hw, MII_ADVERTISE, &phy->advertise);
5016 		ret_val |= e1e_rphy(hw, MII_LPA, &phy->lpa);
5017 		ret_val |= e1e_rphy(hw, MII_EXPANSION, &phy->expansion);
5018 		ret_val |= e1e_rphy(hw, MII_CTRL1000, &phy->ctrl1000);
5019 		ret_val |= e1e_rphy(hw, MII_STAT1000, &phy->stat1000);
5020 		ret_val |= e1e_rphy(hw, MII_ESTATUS, &phy->estatus);
5021 		if (ret_val)
5022 			e_warn("Error reading PHY register\n");
5023 	} else {
5024 		/* Do not read PHY registers if link is not up
5025 		 * Set values to typical power-on defaults
5026 		 */
5027 		phy->bmcr = (BMCR_SPEED1000 | BMCR_ANENABLE | BMCR_FULLDPLX);
5028 		phy->bmsr = (BMSR_100FULL | BMSR_100HALF | BMSR_10FULL |
5029 			     BMSR_10HALF | BMSR_ESTATEN | BMSR_ANEGCAPABLE |
5030 			     BMSR_ERCAP);
5031 		phy->advertise = (ADVERTISE_PAUSE_ASYM | ADVERTISE_PAUSE_CAP |
5032 				  ADVERTISE_ALL | ADVERTISE_CSMA);
5033 		phy->lpa = 0;
5034 		phy->expansion = EXPANSION_ENABLENPAGE;
5035 		phy->ctrl1000 = ADVERTISE_1000FULL;
5036 		phy->stat1000 = 0;
5037 		phy->estatus = (ESTATUS_1000_TFULL | ESTATUS_1000_THALF);
5038 	}
5039 }
5040 
e1000_print_link_info(struct e1000_adapter * adapter)5041 static void e1000_print_link_info(struct e1000_adapter *adapter)
5042 {
5043 	struct e1000_hw *hw = &adapter->hw;
5044 	u32 ctrl = er32(CTRL);
5045 
5046 	/* Link status message must follow this format for user tools */
5047 	pr_info("%s NIC Link is Up %d Mbps %s Duplex, Flow Control: %s\n",
5048 		adapter->netdev->name, adapter->link_speed,
5049 		adapter->link_duplex == FULL_DUPLEX ? "Full" : "Half",
5050 		(ctrl & E1000_CTRL_TFCE) && (ctrl & E1000_CTRL_RFCE) ? "Rx/Tx" :
5051 		(ctrl & E1000_CTRL_RFCE) ? "Rx" :
5052 		(ctrl & E1000_CTRL_TFCE) ? "Tx" : "None");
5053 }
5054 
e1000e_has_link(struct e1000_adapter * adapter)5055 static bool e1000e_has_link(struct e1000_adapter *adapter)
5056 {
5057 	struct e1000_hw *hw = &adapter->hw;
5058 	bool link_active = false;
5059 	s32 ret_val = 0;
5060 
5061 	/* get_link_status is set on LSC (link status) interrupt or
5062 	 * Rx sequence error interrupt.  get_link_status will stay
5063 	 * true until the check_for_link establishes link
5064 	 * for copper adapters ONLY
5065 	 */
5066 	switch (hw->phy.media_type) {
5067 	case e1000_media_type_copper:
5068 		if (hw->mac.get_link_status) {
5069 			ret_val = hw->mac.ops.check_for_link(hw);
5070 			link_active = !hw->mac.get_link_status;
5071 		} else {
5072 			link_active = true;
5073 		}
5074 		break;
5075 	case e1000_media_type_fiber:
5076 		ret_val = hw->mac.ops.check_for_link(hw);
5077 		link_active = !!(er32(STATUS) & E1000_STATUS_LU);
5078 		break;
5079 	case e1000_media_type_internal_serdes:
5080 		ret_val = hw->mac.ops.check_for_link(hw);
5081 		link_active = hw->mac.serdes_has_link;
5082 		break;
5083 	default:
5084 	case e1000_media_type_unknown:
5085 		break;
5086 	}
5087 
5088 	if ((ret_val == -E1000_ERR_PHY) && (hw->phy.type == e1000_phy_igp_3) &&
5089 	    (er32(CTRL) & E1000_PHY_CTRL_GBE_DISABLE)) {
5090 		/* See e1000_kmrn_lock_loss_workaround_ich8lan() */
5091 		e_info("Gigabit has been disabled, downgrading speed\n");
5092 	}
5093 
5094 	return link_active;
5095 }
5096 
e1000e_enable_receives(struct e1000_adapter * adapter)5097 static void e1000e_enable_receives(struct e1000_adapter *adapter)
5098 {
5099 	/* make sure the receive unit is started */
5100 	if ((adapter->flags & FLAG_RX_NEEDS_RESTART) &&
5101 	    (adapter->flags & FLAG_RESTART_NOW)) {
5102 		struct e1000_hw *hw = &adapter->hw;
5103 		u32 rctl = er32(RCTL);
5104 
5105 		ew32(RCTL, rctl | E1000_RCTL_EN);
5106 		adapter->flags &= ~FLAG_RESTART_NOW;
5107 	}
5108 }
5109 
e1000e_check_82574_phy_workaround(struct e1000_adapter * adapter)5110 static void e1000e_check_82574_phy_workaround(struct e1000_adapter *adapter)
5111 {
5112 	struct e1000_hw *hw = &adapter->hw;
5113 
5114 	/* With 82574 controllers, PHY needs to be checked periodically
5115 	 * for hung state and reset, if two calls return true
5116 	 */
5117 	if (e1000_check_phy_82574(hw))
5118 		adapter->phy_hang_count++;
5119 	else
5120 		adapter->phy_hang_count = 0;
5121 
5122 	if (adapter->phy_hang_count > 1) {
5123 		adapter->phy_hang_count = 0;
5124 		e_dbg("PHY appears hung - resetting\n");
5125 		schedule_work(&adapter->reset_task);
5126 	}
5127 }
5128 
5129 /**
5130  * e1000_watchdog - Timer Call-back
5131  * @data: pointer to adapter cast into an unsigned long
5132  **/
e1000_watchdog(struct timer_list * t)5133 static void e1000_watchdog(struct timer_list *t)
5134 {
5135 	struct e1000_adapter *adapter = from_timer(adapter, t, watchdog_timer);
5136 
5137 	/* Do the rest outside of interrupt context */
5138 	schedule_work(&adapter->watchdog_task);
5139 
5140 	/* TODO: make this use queue_delayed_work() */
5141 }
5142 
e1000_watchdog_task(struct work_struct * work)5143 static void e1000_watchdog_task(struct work_struct *work)
5144 {
5145 	struct e1000_adapter *adapter = container_of(work,
5146 						     struct e1000_adapter,
5147 						     watchdog_task);
5148 	struct net_device *netdev = adapter->netdev;
5149 	struct e1000_mac_info *mac = &adapter->hw.mac;
5150 	struct e1000_phy_info *phy = &adapter->hw.phy;
5151 	struct e1000_ring *tx_ring = adapter->tx_ring;
5152 	struct e1000_hw *hw = &adapter->hw;
5153 	u32 link, tctl;
5154 
5155 	if (test_bit(__E1000_DOWN, &adapter->state))
5156 		return;
5157 
5158 	link = e1000e_has_link(adapter);
5159 	if ((netif_carrier_ok(netdev)) && link) {
5160 		/* Cancel scheduled suspend requests. */
5161 		pm_runtime_resume(netdev->dev.parent);
5162 
5163 		e1000e_enable_receives(adapter);
5164 		goto link_up;
5165 	}
5166 
5167 	if ((e1000e_enable_tx_pkt_filtering(hw)) &&
5168 	    (adapter->mng_vlan_id != adapter->hw.mng_cookie.vlan_id))
5169 		e1000_update_mng_vlan(adapter);
5170 
5171 	if (link) {
5172 		if (!netif_carrier_ok(netdev)) {
5173 			bool txb2b = true;
5174 
5175 			/* Cancel scheduled suspend requests. */
5176 			pm_runtime_resume(netdev->dev.parent);
5177 
5178 			/* update snapshot of PHY registers on LSC */
5179 			e1000_phy_read_status(adapter);
5180 			mac->ops.get_link_up_info(&adapter->hw,
5181 						  &adapter->link_speed,
5182 						  &adapter->link_duplex);
5183 			e1000_print_link_info(adapter);
5184 
5185 			/* check if SmartSpeed worked */
5186 			e1000e_check_downshift(hw);
5187 			if (phy->speed_downgraded)
5188 				netdev_warn(netdev,
5189 					    "Link Speed was downgraded by SmartSpeed\n");
5190 
5191 			/* On supported PHYs, check for duplex mismatch only
5192 			 * if link has autonegotiated at 10/100 half
5193 			 */
5194 			if ((hw->phy.type == e1000_phy_igp_3 ||
5195 			     hw->phy.type == e1000_phy_bm) &&
5196 			    hw->mac.autoneg &&
5197 			    (adapter->link_speed == SPEED_10 ||
5198 			     adapter->link_speed == SPEED_100) &&
5199 			    (adapter->link_duplex == HALF_DUPLEX)) {
5200 				u16 autoneg_exp;
5201 
5202 				e1e_rphy(hw, MII_EXPANSION, &autoneg_exp);
5203 
5204 				if (!(autoneg_exp & EXPANSION_NWAY))
5205 					e_info("Autonegotiated half duplex but link partner cannot autoneg.  Try forcing full duplex if link gets many collisions.\n");
5206 			}
5207 
5208 			/* adjust timeout factor according to speed/duplex */
5209 			adapter->tx_timeout_factor = 1;
5210 			switch (adapter->link_speed) {
5211 			case SPEED_10:
5212 				txb2b = false;
5213 				adapter->tx_timeout_factor = 16;
5214 				break;
5215 			case SPEED_100:
5216 				txb2b = false;
5217 				adapter->tx_timeout_factor = 10;
5218 				break;
5219 			}
5220 
5221 			/* workaround: re-program speed mode bit after
5222 			 * link-up event
5223 			 */
5224 			if ((adapter->flags & FLAG_TARC_SPEED_MODE_BIT) &&
5225 			    !txb2b) {
5226 				u32 tarc0;
5227 
5228 				tarc0 = er32(TARC(0));
5229 				tarc0 &= ~SPEED_MODE_BIT;
5230 				ew32(TARC(0), tarc0);
5231 			}
5232 
5233 			/* disable TSO for pcie and 10/100 speeds, to avoid
5234 			 * some hardware issues
5235 			 */
5236 			if (!(adapter->flags & FLAG_TSO_FORCE)) {
5237 				switch (adapter->link_speed) {
5238 				case SPEED_10:
5239 				case SPEED_100:
5240 					e_info("10/100 speed: disabling TSO\n");
5241 					netdev->features &= ~NETIF_F_TSO;
5242 					netdev->features &= ~NETIF_F_TSO6;
5243 					break;
5244 				case SPEED_1000:
5245 					netdev->features |= NETIF_F_TSO;
5246 					netdev->features |= NETIF_F_TSO6;
5247 					break;
5248 				default:
5249 					/* oops */
5250 					break;
5251 				}
5252 				if (hw->mac.type == e1000_pch_spt) {
5253 					netdev->features &= ~NETIF_F_TSO;
5254 					netdev->features &= ~NETIF_F_TSO6;
5255 				}
5256 			}
5257 
5258 			/* enable transmits in the hardware, need to do this
5259 			 * after setting TARC(0)
5260 			 */
5261 			tctl = er32(TCTL);
5262 			tctl |= E1000_TCTL_EN;
5263 			ew32(TCTL, tctl);
5264 
5265 			/* Perform any post-link-up configuration before
5266 			 * reporting link up.
5267 			 */
5268 			if (phy->ops.cfg_on_link_up)
5269 				phy->ops.cfg_on_link_up(hw);
5270 
5271 			netif_wake_queue(netdev);
5272 			netif_carrier_on(netdev);
5273 
5274 			if (!test_bit(__E1000_DOWN, &adapter->state))
5275 				mod_timer(&adapter->phy_info_timer,
5276 					  round_jiffies(jiffies + 2 * HZ));
5277 		}
5278 	} else {
5279 		if (netif_carrier_ok(netdev)) {
5280 			adapter->link_speed = 0;
5281 			adapter->link_duplex = 0;
5282 			/* Link status message must follow this format */
5283 			pr_info("%s NIC Link is Down\n", adapter->netdev->name);
5284 			netif_carrier_off(netdev);
5285 			netif_stop_queue(netdev);
5286 			if (!test_bit(__E1000_DOWN, &adapter->state))
5287 				mod_timer(&adapter->phy_info_timer,
5288 					  round_jiffies(jiffies + 2 * HZ));
5289 
5290 			/* 8000ES2LAN requires a Rx packet buffer work-around
5291 			 * on link down event; reset the controller to flush
5292 			 * the Rx packet buffer.
5293 			 */
5294 			if (adapter->flags & FLAG_RX_NEEDS_RESTART)
5295 				adapter->flags |= FLAG_RESTART_NOW;
5296 			else
5297 				pm_schedule_suspend(netdev->dev.parent,
5298 						    LINK_TIMEOUT);
5299 		}
5300 	}
5301 
5302 link_up:
5303 	spin_lock(&adapter->stats64_lock);
5304 	e1000e_update_stats(adapter);
5305 
5306 	mac->tx_packet_delta = adapter->stats.tpt - adapter->tpt_old;
5307 	adapter->tpt_old = adapter->stats.tpt;
5308 	mac->collision_delta = adapter->stats.colc - adapter->colc_old;
5309 	adapter->colc_old = adapter->stats.colc;
5310 
5311 	adapter->gorc = adapter->stats.gorc - adapter->gorc_old;
5312 	adapter->gorc_old = adapter->stats.gorc;
5313 	adapter->gotc = adapter->stats.gotc - adapter->gotc_old;
5314 	adapter->gotc_old = adapter->stats.gotc;
5315 	spin_unlock(&adapter->stats64_lock);
5316 
5317 	/* If the link is lost the controller stops DMA, but
5318 	 * if there is queued Tx work it cannot be done.  So
5319 	 * reset the controller to flush the Tx packet buffers.
5320 	 */
5321 	if (!netif_carrier_ok(netdev) &&
5322 	    (e1000_desc_unused(tx_ring) + 1 < tx_ring->count))
5323 		adapter->flags |= FLAG_RESTART_NOW;
5324 
5325 	/* If reset is necessary, do it outside of interrupt context. */
5326 	if (adapter->flags & FLAG_RESTART_NOW) {
5327 		schedule_work(&adapter->reset_task);
5328 		/* return immediately since reset is imminent */
5329 		return;
5330 	}
5331 
5332 	e1000e_update_adaptive(&adapter->hw);
5333 
5334 	/* Simple mode for Interrupt Throttle Rate (ITR) */
5335 	if (adapter->itr_setting == 4) {
5336 		/* Symmetric Tx/Rx gets a reduced ITR=2000;
5337 		 * Total asymmetrical Tx or Rx gets ITR=8000;
5338 		 * everyone else is between 2000-8000.
5339 		 */
5340 		u32 goc = (adapter->gotc + adapter->gorc) / 10000;
5341 		u32 dif = (adapter->gotc > adapter->gorc ?
5342 			   adapter->gotc - adapter->gorc :
5343 			   adapter->gorc - adapter->gotc) / 10000;
5344 		u32 itr = goc > 0 ? (dif * 6000 / goc + 2000) : 8000;
5345 
5346 		e1000e_write_itr(adapter, itr);
5347 	}
5348 
5349 	/* Cause software interrupt to ensure Rx ring is cleaned */
5350 	if (adapter->msix_entries)
5351 		ew32(ICS, adapter->rx_ring->ims_val);
5352 	else
5353 		ew32(ICS, E1000_ICS_RXDMT0);
5354 
5355 	/* flush pending descriptors to memory before detecting Tx hang */
5356 	e1000e_flush_descriptors(adapter);
5357 
5358 	/* Force detection of hung controller every watchdog period */
5359 	adapter->detect_tx_hung = true;
5360 
5361 	/* With 82571 controllers, LAA may be overwritten due to controller
5362 	 * reset from the other port. Set the appropriate LAA in RAR[0]
5363 	 */
5364 	if (e1000e_get_laa_state_82571(hw))
5365 		hw->mac.ops.rar_set(hw, adapter->hw.mac.addr, 0);
5366 
5367 	if (adapter->flags2 & FLAG2_CHECK_PHY_HANG)
5368 		e1000e_check_82574_phy_workaround(adapter);
5369 
5370 	/* Clear valid timestamp stuck in RXSTMPL/H due to a Rx error */
5371 	if (adapter->hwtstamp_config.rx_filter != HWTSTAMP_FILTER_NONE) {
5372 		if ((adapter->flags2 & FLAG2_CHECK_RX_HWTSTAMP) &&
5373 		    (er32(TSYNCRXCTL) & E1000_TSYNCRXCTL_VALID)) {
5374 			er32(RXSTMPH);
5375 			adapter->rx_hwtstamp_cleared++;
5376 		} else {
5377 			adapter->flags2 |= FLAG2_CHECK_RX_HWTSTAMP;
5378 		}
5379 	}
5380 
5381 	/* Reset the timer */
5382 	if (!test_bit(__E1000_DOWN, &adapter->state))
5383 		mod_timer(&adapter->watchdog_timer,
5384 			  round_jiffies(jiffies + 2 * HZ));
5385 }
5386 
5387 #define E1000_TX_FLAGS_CSUM		0x00000001
5388 #define E1000_TX_FLAGS_VLAN		0x00000002
5389 #define E1000_TX_FLAGS_TSO		0x00000004
5390 #define E1000_TX_FLAGS_IPV4		0x00000008
5391 #define E1000_TX_FLAGS_NO_FCS		0x00000010
5392 #define E1000_TX_FLAGS_HWTSTAMP		0x00000020
5393 #define E1000_TX_FLAGS_VLAN_MASK	0xffff0000
5394 #define E1000_TX_FLAGS_VLAN_SHIFT	16
5395 
e1000_tso(struct e1000_ring * tx_ring,struct sk_buff * skb,__be16 protocol)5396 static int e1000_tso(struct e1000_ring *tx_ring, struct sk_buff *skb,
5397 		     __be16 protocol)
5398 {
5399 	struct e1000_context_desc *context_desc;
5400 	struct e1000_buffer *buffer_info;
5401 	unsigned int i;
5402 	u32 cmd_length = 0;
5403 	u16 ipcse = 0, mss;
5404 	u8 ipcss, ipcso, tucss, tucso, hdr_len;
5405 	int err;
5406 
5407 	if (!skb_is_gso(skb))
5408 		return 0;
5409 
5410 	err = skb_cow_head(skb, 0);
5411 	if (err < 0)
5412 		return err;
5413 
5414 	hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
5415 	mss = skb_shinfo(skb)->gso_size;
5416 	if (protocol == htons(ETH_P_IP)) {
5417 		struct iphdr *iph = ip_hdr(skb);
5418 		iph->tot_len = 0;
5419 		iph->check = 0;
5420 		tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr, iph->daddr,
5421 							 0, IPPROTO_TCP, 0);
5422 		cmd_length = E1000_TXD_CMD_IP;
5423 		ipcse = skb_transport_offset(skb) - 1;
5424 	} else if (skb_is_gso_v6(skb)) {
5425 		ipv6_hdr(skb)->payload_len = 0;
5426 		tcp_hdr(skb)->check = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
5427 						       &ipv6_hdr(skb)->daddr,
5428 						       0, IPPROTO_TCP, 0);
5429 		ipcse = 0;
5430 	}
5431 	ipcss = skb_network_offset(skb);
5432 	ipcso = (void *)&(ip_hdr(skb)->check) - (void *)skb->data;
5433 	tucss = skb_transport_offset(skb);
5434 	tucso = (void *)&(tcp_hdr(skb)->check) - (void *)skb->data;
5435 
5436 	cmd_length |= (E1000_TXD_CMD_DEXT | E1000_TXD_CMD_TSE |
5437 		       E1000_TXD_CMD_TCP | (skb->len - (hdr_len)));
5438 
5439 	i = tx_ring->next_to_use;
5440 	context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
5441 	buffer_info = &tx_ring->buffer_info[i];
5442 
5443 	context_desc->lower_setup.ip_fields.ipcss = ipcss;
5444 	context_desc->lower_setup.ip_fields.ipcso = ipcso;
5445 	context_desc->lower_setup.ip_fields.ipcse = cpu_to_le16(ipcse);
5446 	context_desc->upper_setup.tcp_fields.tucss = tucss;
5447 	context_desc->upper_setup.tcp_fields.tucso = tucso;
5448 	context_desc->upper_setup.tcp_fields.tucse = 0;
5449 	context_desc->tcp_seg_setup.fields.mss = cpu_to_le16(mss);
5450 	context_desc->tcp_seg_setup.fields.hdr_len = hdr_len;
5451 	context_desc->cmd_and_length = cpu_to_le32(cmd_length);
5452 
5453 	buffer_info->time_stamp = jiffies;
5454 	buffer_info->next_to_watch = i;
5455 
5456 	i++;
5457 	if (i == tx_ring->count)
5458 		i = 0;
5459 	tx_ring->next_to_use = i;
5460 
5461 	return 1;
5462 }
5463 
e1000_tx_csum(struct e1000_ring * tx_ring,struct sk_buff * skb,__be16 protocol)5464 static bool e1000_tx_csum(struct e1000_ring *tx_ring, struct sk_buff *skb,
5465 			  __be16 protocol)
5466 {
5467 	struct e1000_adapter *adapter = tx_ring->adapter;
5468 	struct e1000_context_desc *context_desc;
5469 	struct e1000_buffer *buffer_info;
5470 	unsigned int i;
5471 	u8 css;
5472 	u32 cmd_len = E1000_TXD_CMD_DEXT;
5473 
5474 	if (skb->ip_summed != CHECKSUM_PARTIAL)
5475 		return false;
5476 
5477 	switch (protocol) {
5478 	case cpu_to_be16(ETH_P_IP):
5479 		if (ip_hdr(skb)->protocol == IPPROTO_TCP)
5480 			cmd_len |= E1000_TXD_CMD_TCP;
5481 		break;
5482 	case cpu_to_be16(ETH_P_IPV6):
5483 		/* XXX not handling all IPV6 headers */
5484 		if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
5485 			cmd_len |= E1000_TXD_CMD_TCP;
5486 		break;
5487 	default:
5488 		if (unlikely(net_ratelimit()))
5489 			e_warn("checksum_partial proto=%x!\n",
5490 			       be16_to_cpu(protocol));
5491 		break;
5492 	}
5493 
5494 	css = skb_checksum_start_offset(skb);
5495 
5496 	i = tx_ring->next_to_use;
5497 	buffer_info = &tx_ring->buffer_info[i];
5498 	context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
5499 
5500 	context_desc->lower_setup.ip_config = 0;
5501 	context_desc->upper_setup.tcp_fields.tucss = css;
5502 	context_desc->upper_setup.tcp_fields.tucso = css + skb->csum_offset;
5503 	context_desc->upper_setup.tcp_fields.tucse = 0;
5504 	context_desc->tcp_seg_setup.data = 0;
5505 	context_desc->cmd_and_length = cpu_to_le32(cmd_len);
5506 
5507 	buffer_info->time_stamp = jiffies;
5508 	buffer_info->next_to_watch = i;
5509 
5510 	i++;
5511 	if (i == tx_ring->count)
5512 		i = 0;
5513 	tx_ring->next_to_use = i;
5514 
5515 	return true;
5516 }
5517 
e1000_tx_map(struct e1000_ring * tx_ring,struct sk_buff * skb,unsigned int first,unsigned int max_per_txd,unsigned int nr_frags)5518 static int e1000_tx_map(struct e1000_ring *tx_ring, struct sk_buff *skb,
5519 			unsigned int first, unsigned int max_per_txd,
5520 			unsigned int nr_frags)
5521 {
5522 	struct e1000_adapter *adapter = tx_ring->adapter;
5523 	struct pci_dev *pdev = adapter->pdev;
5524 	struct e1000_buffer *buffer_info;
5525 	unsigned int len = skb_headlen(skb);
5526 	unsigned int offset = 0, size, count = 0, i;
5527 	unsigned int f, bytecount, segs;
5528 
5529 	i = tx_ring->next_to_use;
5530 
5531 	while (len) {
5532 		buffer_info = &tx_ring->buffer_info[i];
5533 		size = min(len, max_per_txd);
5534 
5535 		buffer_info->length = size;
5536 		buffer_info->time_stamp = jiffies;
5537 		buffer_info->next_to_watch = i;
5538 		buffer_info->dma = dma_map_single(&pdev->dev,
5539 						  skb->data + offset,
5540 						  size, DMA_TO_DEVICE);
5541 		buffer_info->mapped_as_page = false;
5542 		if (dma_mapping_error(&pdev->dev, buffer_info->dma))
5543 			goto dma_error;
5544 
5545 		len -= size;
5546 		offset += size;
5547 		count++;
5548 
5549 		if (len) {
5550 			i++;
5551 			if (i == tx_ring->count)
5552 				i = 0;
5553 		}
5554 	}
5555 
5556 	for (f = 0; f < nr_frags; f++) {
5557 		const struct skb_frag_struct *frag;
5558 
5559 		frag = &skb_shinfo(skb)->frags[f];
5560 		len = skb_frag_size(frag);
5561 		offset = 0;
5562 
5563 		while (len) {
5564 			i++;
5565 			if (i == tx_ring->count)
5566 				i = 0;
5567 
5568 			buffer_info = &tx_ring->buffer_info[i];
5569 			size = min(len, max_per_txd);
5570 
5571 			buffer_info->length = size;
5572 			buffer_info->time_stamp = jiffies;
5573 			buffer_info->next_to_watch = i;
5574 			buffer_info->dma = skb_frag_dma_map(&pdev->dev, frag,
5575 							    offset, size,
5576 							    DMA_TO_DEVICE);
5577 			buffer_info->mapped_as_page = true;
5578 			if (dma_mapping_error(&pdev->dev, buffer_info->dma))
5579 				goto dma_error;
5580 
5581 			len -= size;
5582 			offset += size;
5583 			count++;
5584 		}
5585 	}
5586 
5587 	segs = skb_shinfo(skb)->gso_segs ? : 1;
5588 	/* multiply data chunks by size of headers */
5589 	bytecount = ((segs - 1) * skb_headlen(skb)) + skb->len;
5590 
5591 	tx_ring->buffer_info[i].skb = skb;
5592 	tx_ring->buffer_info[i].segs = segs;
5593 	tx_ring->buffer_info[i].bytecount = bytecount;
5594 	tx_ring->buffer_info[first].next_to_watch = i;
5595 
5596 	return count;
5597 
5598 dma_error:
5599 	dev_err(&pdev->dev, "Tx DMA map failed\n");
5600 	buffer_info->dma = 0;
5601 	if (count)
5602 		count--;
5603 
5604 	while (count--) {
5605 		if (i == 0)
5606 			i += tx_ring->count;
5607 		i--;
5608 		buffer_info = &tx_ring->buffer_info[i];
5609 		e1000_put_txbuf(tx_ring, buffer_info, true);
5610 	}
5611 
5612 	return 0;
5613 }
5614 
e1000_tx_queue(struct e1000_ring * tx_ring,int tx_flags,int count)5615 static void e1000_tx_queue(struct e1000_ring *tx_ring, int tx_flags, int count)
5616 {
5617 	struct e1000_adapter *adapter = tx_ring->adapter;
5618 	struct e1000_tx_desc *tx_desc = NULL;
5619 	struct e1000_buffer *buffer_info;
5620 	u32 txd_upper = 0, txd_lower = E1000_TXD_CMD_IFCS;
5621 	unsigned int i;
5622 
5623 	if (tx_flags & E1000_TX_FLAGS_TSO) {
5624 		txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D |
5625 		    E1000_TXD_CMD_TSE;
5626 		txd_upper |= E1000_TXD_POPTS_TXSM << 8;
5627 
5628 		if (tx_flags & E1000_TX_FLAGS_IPV4)
5629 			txd_upper |= E1000_TXD_POPTS_IXSM << 8;
5630 	}
5631 
5632 	if (tx_flags & E1000_TX_FLAGS_CSUM) {
5633 		txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D;
5634 		txd_upper |= E1000_TXD_POPTS_TXSM << 8;
5635 	}
5636 
5637 	if (tx_flags & E1000_TX_FLAGS_VLAN) {
5638 		txd_lower |= E1000_TXD_CMD_VLE;
5639 		txd_upper |= (tx_flags & E1000_TX_FLAGS_VLAN_MASK);
5640 	}
5641 
5642 	if (unlikely(tx_flags & E1000_TX_FLAGS_NO_FCS))
5643 		txd_lower &= ~(E1000_TXD_CMD_IFCS);
5644 
5645 	if (unlikely(tx_flags & E1000_TX_FLAGS_HWTSTAMP)) {
5646 		txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D;
5647 		txd_upper |= E1000_TXD_EXTCMD_TSTAMP;
5648 	}
5649 
5650 	i = tx_ring->next_to_use;
5651 
5652 	do {
5653 		buffer_info = &tx_ring->buffer_info[i];
5654 		tx_desc = E1000_TX_DESC(*tx_ring, i);
5655 		tx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
5656 		tx_desc->lower.data = cpu_to_le32(txd_lower |
5657 						  buffer_info->length);
5658 		tx_desc->upper.data = cpu_to_le32(txd_upper);
5659 
5660 		i++;
5661 		if (i == tx_ring->count)
5662 			i = 0;
5663 	} while (--count > 0);
5664 
5665 	tx_desc->lower.data |= cpu_to_le32(adapter->txd_cmd);
5666 
5667 	/* txd_cmd re-enables FCS, so we'll re-disable it here as desired. */
5668 	if (unlikely(tx_flags & E1000_TX_FLAGS_NO_FCS))
5669 		tx_desc->lower.data &= ~(cpu_to_le32(E1000_TXD_CMD_IFCS));
5670 
5671 	/* Force memory writes to complete before letting h/w
5672 	 * know there are new descriptors to fetch.  (Only
5673 	 * applicable for weak-ordered memory model archs,
5674 	 * such as IA-64).
5675 	 */
5676 	wmb();
5677 
5678 	tx_ring->next_to_use = i;
5679 }
5680 
5681 #define MINIMUM_DHCP_PACKET_SIZE 282
e1000_transfer_dhcp_info(struct e1000_adapter * adapter,struct sk_buff * skb)5682 static int e1000_transfer_dhcp_info(struct e1000_adapter *adapter,
5683 				    struct sk_buff *skb)
5684 {
5685 	struct e1000_hw *hw = &adapter->hw;
5686 	u16 length, offset;
5687 
5688 	if (skb_vlan_tag_present(skb) &&
5689 	    !((skb_vlan_tag_get(skb) == adapter->hw.mng_cookie.vlan_id) &&
5690 	      (adapter->hw.mng_cookie.status &
5691 	       E1000_MNG_DHCP_COOKIE_STATUS_VLAN)))
5692 		return 0;
5693 
5694 	if (skb->len <= MINIMUM_DHCP_PACKET_SIZE)
5695 		return 0;
5696 
5697 	if (((struct ethhdr *)skb->data)->h_proto != htons(ETH_P_IP))
5698 		return 0;
5699 
5700 	{
5701 		const struct iphdr *ip = (struct iphdr *)((u8 *)skb->data + 14);
5702 		struct udphdr *udp;
5703 
5704 		if (ip->protocol != IPPROTO_UDP)
5705 			return 0;
5706 
5707 		udp = (struct udphdr *)((u8 *)ip + (ip->ihl << 2));
5708 		if (ntohs(udp->dest) != 67)
5709 			return 0;
5710 
5711 		offset = (u8 *)udp + 8 - skb->data;
5712 		length = skb->len - offset;
5713 		return e1000e_mng_write_dhcp_info(hw, (u8 *)udp + 8, length);
5714 	}
5715 
5716 	return 0;
5717 }
5718 
__e1000_maybe_stop_tx(struct e1000_ring * tx_ring,int size)5719 static int __e1000_maybe_stop_tx(struct e1000_ring *tx_ring, int size)
5720 {
5721 	struct e1000_adapter *adapter = tx_ring->adapter;
5722 
5723 	netif_stop_queue(adapter->netdev);
5724 	/* Herbert's original patch had:
5725 	 *  smp_mb__after_netif_stop_queue();
5726 	 * but since that doesn't exist yet, just open code it.
5727 	 */
5728 	smp_mb();
5729 
5730 	/* We need to check again in a case another CPU has just
5731 	 * made room available.
5732 	 */
5733 	if (e1000_desc_unused(tx_ring) < size)
5734 		return -EBUSY;
5735 
5736 	/* A reprieve! */
5737 	netif_start_queue(adapter->netdev);
5738 	++adapter->restart_queue;
5739 	return 0;
5740 }
5741 
e1000_maybe_stop_tx(struct e1000_ring * tx_ring,int size)5742 static int e1000_maybe_stop_tx(struct e1000_ring *tx_ring, int size)
5743 {
5744 	BUG_ON(size > tx_ring->count);
5745 
5746 	if (e1000_desc_unused(tx_ring) >= size)
5747 		return 0;
5748 	return __e1000_maybe_stop_tx(tx_ring, size);
5749 }
5750 
e1000_xmit_frame(struct sk_buff * skb,struct net_device * netdev)5751 static netdev_tx_t e1000_xmit_frame(struct sk_buff *skb,
5752 				    struct net_device *netdev)
5753 {
5754 	struct e1000_adapter *adapter = netdev_priv(netdev);
5755 	struct e1000_ring *tx_ring = adapter->tx_ring;
5756 	unsigned int first;
5757 	unsigned int tx_flags = 0;
5758 	unsigned int len = skb_headlen(skb);
5759 	unsigned int nr_frags;
5760 	unsigned int mss;
5761 	int count = 0;
5762 	int tso;
5763 	unsigned int f;
5764 	__be16 protocol = vlan_get_protocol(skb);
5765 
5766 	if (test_bit(__E1000_DOWN, &adapter->state)) {
5767 		dev_kfree_skb_any(skb);
5768 		return NETDEV_TX_OK;
5769 	}
5770 
5771 	if (skb->len <= 0) {
5772 		dev_kfree_skb_any(skb);
5773 		return NETDEV_TX_OK;
5774 	}
5775 
5776 	/* The minimum packet size with TCTL.PSP set is 17 bytes so
5777 	 * pad skb in order to meet this minimum size requirement
5778 	 */
5779 	if (skb_put_padto(skb, 17))
5780 		return NETDEV_TX_OK;
5781 
5782 	mss = skb_shinfo(skb)->gso_size;
5783 	if (mss) {
5784 		u8 hdr_len;
5785 
5786 		/* TSO Workaround for 82571/2/3 Controllers -- if skb->data
5787 		 * points to just header, pull a few bytes of payload from
5788 		 * frags into skb->data
5789 		 */
5790 		hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
5791 		/* we do this workaround for ES2LAN, but it is un-necessary,
5792 		 * avoiding it could save a lot of cycles
5793 		 */
5794 		if (skb->data_len && (hdr_len == len)) {
5795 			unsigned int pull_size;
5796 
5797 			pull_size = min_t(unsigned int, 4, skb->data_len);
5798 			if (!__pskb_pull_tail(skb, pull_size)) {
5799 				e_err("__pskb_pull_tail failed.\n");
5800 				dev_kfree_skb_any(skb);
5801 				return NETDEV_TX_OK;
5802 			}
5803 			len = skb_headlen(skb);
5804 		}
5805 	}
5806 
5807 	/* reserve a descriptor for the offload context */
5808 	if ((mss) || (skb->ip_summed == CHECKSUM_PARTIAL))
5809 		count++;
5810 	count++;
5811 
5812 	count += DIV_ROUND_UP(len, adapter->tx_fifo_limit);
5813 
5814 	nr_frags = skb_shinfo(skb)->nr_frags;
5815 	for (f = 0; f < nr_frags; f++)
5816 		count += DIV_ROUND_UP(skb_frag_size(&skb_shinfo(skb)->frags[f]),
5817 				      adapter->tx_fifo_limit);
5818 
5819 	if (adapter->hw.mac.tx_pkt_filtering)
5820 		e1000_transfer_dhcp_info(adapter, skb);
5821 
5822 	/* need: count + 2 desc gap to keep tail from touching
5823 	 * head, otherwise try next time
5824 	 */
5825 	if (e1000_maybe_stop_tx(tx_ring, count + 2))
5826 		return NETDEV_TX_BUSY;
5827 
5828 	if (skb_vlan_tag_present(skb)) {
5829 		tx_flags |= E1000_TX_FLAGS_VLAN;
5830 		tx_flags |= (skb_vlan_tag_get(skb) <<
5831 			     E1000_TX_FLAGS_VLAN_SHIFT);
5832 	}
5833 
5834 	first = tx_ring->next_to_use;
5835 
5836 	tso = e1000_tso(tx_ring, skb, protocol);
5837 	if (tso < 0) {
5838 		dev_kfree_skb_any(skb);
5839 		return NETDEV_TX_OK;
5840 	}
5841 
5842 	if (tso)
5843 		tx_flags |= E1000_TX_FLAGS_TSO;
5844 	else if (e1000_tx_csum(tx_ring, skb, protocol))
5845 		tx_flags |= E1000_TX_FLAGS_CSUM;
5846 
5847 	/* Old method was to assume IPv4 packet by default if TSO was enabled.
5848 	 * 82571 hardware supports TSO capabilities for IPv6 as well...
5849 	 * no longer assume, we must.
5850 	 */
5851 	if (protocol == htons(ETH_P_IP))
5852 		tx_flags |= E1000_TX_FLAGS_IPV4;
5853 
5854 	if (unlikely(skb->no_fcs))
5855 		tx_flags |= E1000_TX_FLAGS_NO_FCS;
5856 
5857 	/* if count is 0 then mapping error has occurred */
5858 	count = e1000_tx_map(tx_ring, skb, first, adapter->tx_fifo_limit,
5859 			     nr_frags);
5860 	if (count) {
5861 		if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) &&
5862 		    (adapter->flags & FLAG_HAS_HW_TIMESTAMP)) {
5863 			if (!adapter->tx_hwtstamp_skb) {
5864 				skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
5865 				tx_flags |= E1000_TX_FLAGS_HWTSTAMP;
5866 				adapter->tx_hwtstamp_skb = skb_get(skb);
5867 				adapter->tx_hwtstamp_start = jiffies;
5868 				schedule_work(&adapter->tx_hwtstamp_work);
5869 			} else {
5870 				adapter->tx_hwtstamp_skipped++;
5871 			}
5872 		}
5873 
5874 		skb_tx_timestamp(skb);
5875 
5876 		netdev_sent_queue(netdev, skb->len);
5877 		e1000_tx_queue(tx_ring, tx_flags, count);
5878 		/* Make sure there is space in the ring for the next send. */
5879 		e1000_maybe_stop_tx(tx_ring,
5880 				    (MAX_SKB_FRAGS *
5881 				     DIV_ROUND_UP(PAGE_SIZE,
5882 						  adapter->tx_fifo_limit) + 2));
5883 
5884 		if (!skb->xmit_more ||
5885 		    netif_xmit_stopped(netdev_get_tx_queue(netdev, 0))) {
5886 			if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
5887 				e1000e_update_tdt_wa(tx_ring,
5888 						     tx_ring->next_to_use);
5889 			else
5890 				writel(tx_ring->next_to_use, tx_ring->tail);
5891 
5892 			/* we need this if more than one processor can write
5893 			 * to our tail at a time, it synchronizes IO on
5894 			 *IA64/Altix systems
5895 			 */
5896 			mmiowb();
5897 		}
5898 	} else {
5899 		dev_kfree_skb_any(skb);
5900 		tx_ring->buffer_info[first].time_stamp = 0;
5901 		tx_ring->next_to_use = first;
5902 	}
5903 
5904 	return NETDEV_TX_OK;
5905 }
5906 
5907 /**
5908  * e1000_tx_timeout - Respond to a Tx Hang
5909  * @netdev: network interface device structure
5910  **/
e1000_tx_timeout(struct net_device * netdev)5911 static void e1000_tx_timeout(struct net_device *netdev)
5912 {
5913 	struct e1000_adapter *adapter = netdev_priv(netdev);
5914 
5915 	/* Do the reset outside of interrupt context */
5916 	adapter->tx_timeout_count++;
5917 	schedule_work(&adapter->reset_task);
5918 }
5919 
e1000_reset_task(struct work_struct * work)5920 static void e1000_reset_task(struct work_struct *work)
5921 {
5922 	struct e1000_adapter *adapter;
5923 	adapter = container_of(work, struct e1000_adapter, reset_task);
5924 
5925 	/* don't run the task if already down */
5926 	if (test_bit(__E1000_DOWN, &adapter->state))
5927 		return;
5928 
5929 	if (!(adapter->flags & FLAG_RESTART_NOW)) {
5930 		e1000e_dump(adapter);
5931 		e_err("Reset adapter unexpectedly\n");
5932 	}
5933 	e1000e_reinit_locked(adapter);
5934 }
5935 
5936 /**
5937  * e1000_get_stats64 - Get System Network Statistics
5938  * @netdev: network interface device structure
5939  * @stats: rtnl_link_stats64 pointer
5940  *
5941  * Returns the address of the device statistics structure.
5942  **/
e1000e_get_stats64(struct net_device * netdev,struct rtnl_link_stats64 * stats)5943 void e1000e_get_stats64(struct net_device *netdev,
5944 			struct rtnl_link_stats64 *stats)
5945 {
5946 	struct e1000_adapter *adapter = netdev_priv(netdev);
5947 
5948 	spin_lock(&adapter->stats64_lock);
5949 	e1000e_update_stats(adapter);
5950 	/* Fill out the OS statistics structure */
5951 	stats->rx_bytes = adapter->stats.gorc;
5952 	stats->rx_packets = adapter->stats.gprc;
5953 	stats->tx_bytes = adapter->stats.gotc;
5954 	stats->tx_packets = adapter->stats.gptc;
5955 	stats->multicast = adapter->stats.mprc;
5956 	stats->collisions = adapter->stats.colc;
5957 
5958 	/* Rx Errors */
5959 
5960 	/* RLEC on some newer hardware can be incorrect so build
5961 	 * our own version based on RUC and ROC
5962 	 */
5963 	stats->rx_errors = adapter->stats.rxerrc +
5964 	    adapter->stats.crcerrs + adapter->stats.algnerrc +
5965 	    adapter->stats.ruc + adapter->stats.roc + adapter->stats.cexterr;
5966 	stats->rx_length_errors = adapter->stats.ruc + adapter->stats.roc;
5967 	stats->rx_crc_errors = adapter->stats.crcerrs;
5968 	stats->rx_frame_errors = adapter->stats.algnerrc;
5969 	stats->rx_missed_errors = adapter->stats.mpc;
5970 
5971 	/* Tx Errors */
5972 	stats->tx_errors = adapter->stats.ecol + adapter->stats.latecol;
5973 	stats->tx_aborted_errors = adapter->stats.ecol;
5974 	stats->tx_window_errors = adapter->stats.latecol;
5975 	stats->tx_carrier_errors = adapter->stats.tncrs;
5976 
5977 	/* Tx Dropped needs to be maintained elsewhere */
5978 
5979 	spin_unlock(&adapter->stats64_lock);
5980 }
5981 
5982 /**
5983  * e1000_change_mtu - Change the Maximum Transfer Unit
5984  * @netdev: network interface device structure
5985  * @new_mtu: new value for maximum frame size
5986  *
5987  * Returns 0 on success, negative on failure
5988  **/
e1000_change_mtu(struct net_device * netdev,int new_mtu)5989 static int e1000_change_mtu(struct net_device *netdev, int new_mtu)
5990 {
5991 	struct e1000_adapter *adapter = netdev_priv(netdev);
5992 	int max_frame = new_mtu + VLAN_ETH_HLEN + ETH_FCS_LEN;
5993 
5994 	/* Jumbo frame support */
5995 	if ((new_mtu > ETH_DATA_LEN) &&
5996 	    !(adapter->flags & FLAG_HAS_JUMBO_FRAMES)) {
5997 		e_err("Jumbo Frames not supported.\n");
5998 		return -EINVAL;
5999 	}
6000 
6001 	/* Jumbo frame workaround on 82579 and newer requires CRC be stripped */
6002 	if ((adapter->hw.mac.type >= e1000_pch2lan) &&
6003 	    !(adapter->flags2 & FLAG2_CRC_STRIPPING) &&
6004 	    (new_mtu > ETH_DATA_LEN)) {
6005 		e_err("Jumbo Frames not supported on this device when CRC stripping is disabled.\n");
6006 		return -EINVAL;
6007 	}
6008 
6009 	while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
6010 		usleep_range(1000, 2000);
6011 	/* e1000e_down -> e1000e_reset dependent on max_frame_size & mtu */
6012 	adapter->max_frame_size = max_frame;
6013 	e_info("changing MTU from %d to %d\n", netdev->mtu, new_mtu);
6014 	netdev->mtu = new_mtu;
6015 
6016 	pm_runtime_get_sync(netdev->dev.parent);
6017 
6018 	if (netif_running(netdev))
6019 		e1000e_down(adapter, true);
6020 
6021 	/* NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
6022 	 * means we reserve 2 more, this pushes us to allocate from the next
6023 	 * larger slab size.
6024 	 * i.e. RXBUFFER_2048 --> size-4096 slab
6025 	 * However with the new *_jumbo_rx* routines, jumbo receives will use
6026 	 * fragmented skbs
6027 	 */
6028 
6029 	if (max_frame <= 2048)
6030 		adapter->rx_buffer_len = 2048;
6031 	else
6032 		adapter->rx_buffer_len = 4096;
6033 
6034 	/* adjust allocation if LPE protects us, and we aren't using SBP */
6035 	if (max_frame <= (VLAN_ETH_FRAME_LEN + ETH_FCS_LEN))
6036 		adapter->rx_buffer_len = VLAN_ETH_FRAME_LEN + ETH_FCS_LEN;
6037 
6038 	if (netif_running(netdev))
6039 		e1000e_up(adapter);
6040 	else
6041 		e1000e_reset(adapter);
6042 
6043 	pm_runtime_put_sync(netdev->dev.parent);
6044 
6045 	clear_bit(__E1000_RESETTING, &adapter->state);
6046 
6047 	return 0;
6048 }
6049 
e1000_mii_ioctl(struct net_device * netdev,struct ifreq * ifr,int cmd)6050 static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr,
6051 			   int cmd)
6052 {
6053 	struct e1000_adapter *adapter = netdev_priv(netdev);
6054 	struct mii_ioctl_data *data = if_mii(ifr);
6055 
6056 	if (adapter->hw.phy.media_type != e1000_media_type_copper)
6057 		return -EOPNOTSUPP;
6058 
6059 	switch (cmd) {
6060 	case SIOCGMIIPHY:
6061 		data->phy_id = adapter->hw.phy.addr;
6062 		break;
6063 	case SIOCGMIIREG:
6064 		e1000_phy_read_status(adapter);
6065 
6066 		switch (data->reg_num & 0x1F) {
6067 		case MII_BMCR:
6068 			data->val_out = adapter->phy_regs.bmcr;
6069 			break;
6070 		case MII_BMSR:
6071 			data->val_out = adapter->phy_regs.bmsr;
6072 			break;
6073 		case MII_PHYSID1:
6074 			data->val_out = (adapter->hw.phy.id >> 16);
6075 			break;
6076 		case MII_PHYSID2:
6077 			data->val_out = (adapter->hw.phy.id & 0xFFFF);
6078 			break;
6079 		case MII_ADVERTISE:
6080 			data->val_out = adapter->phy_regs.advertise;
6081 			break;
6082 		case MII_LPA:
6083 			data->val_out = adapter->phy_regs.lpa;
6084 			break;
6085 		case MII_EXPANSION:
6086 			data->val_out = adapter->phy_regs.expansion;
6087 			break;
6088 		case MII_CTRL1000:
6089 			data->val_out = adapter->phy_regs.ctrl1000;
6090 			break;
6091 		case MII_STAT1000:
6092 			data->val_out = adapter->phy_regs.stat1000;
6093 			break;
6094 		case MII_ESTATUS:
6095 			data->val_out = adapter->phy_regs.estatus;
6096 			break;
6097 		default:
6098 			return -EIO;
6099 		}
6100 		break;
6101 	case SIOCSMIIREG:
6102 	default:
6103 		return -EOPNOTSUPP;
6104 	}
6105 	return 0;
6106 }
6107 
6108 /**
6109  * e1000e_hwtstamp_ioctl - control hardware time stamping
6110  * @netdev: network interface device structure
6111  * @ifreq: interface request
6112  *
6113  * Outgoing time stamping can be enabled and disabled. Play nice and
6114  * disable it when requested, although it shouldn't cause any overhead
6115  * when no packet needs it. At most one packet in the queue may be
6116  * marked for time stamping, otherwise it would be impossible to tell
6117  * for sure to which packet the hardware time stamp belongs.
6118  *
6119  * Incoming time stamping has to be configured via the hardware filters.
6120  * Not all combinations are supported, in particular event type has to be
6121  * specified. Matching the kind of event packet is not supported, with the
6122  * exception of "all V2 events regardless of level 2 or 4".
6123  **/
e1000e_hwtstamp_set(struct net_device * netdev,struct ifreq * ifr)6124 static int e1000e_hwtstamp_set(struct net_device *netdev, struct ifreq *ifr)
6125 {
6126 	struct e1000_adapter *adapter = netdev_priv(netdev);
6127 	struct hwtstamp_config config;
6128 	int ret_val;
6129 
6130 	if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
6131 		return -EFAULT;
6132 
6133 	ret_val = e1000e_config_hwtstamp(adapter, &config);
6134 	if (ret_val)
6135 		return ret_val;
6136 
6137 	switch (config.rx_filter) {
6138 	case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
6139 	case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
6140 	case HWTSTAMP_FILTER_PTP_V2_SYNC:
6141 	case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
6142 	case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
6143 	case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
6144 		/* With V2 type filters which specify a Sync or Delay Request,
6145 		 * Path Delay Request/Response messages are also time stamped
6146 		 * by hardware so notify the caller the requested packets plus
6147 		 * some others are time stamped.
6148 		 */
6149 		config.rx_filter = HWTSTAMP_FILTER_SOME;
6150 		break;
6151 	default:
6152 		break;
6153 	}
6154 
6155 	return copy_to_user(ifr->ifr_data, &config,
6156 			    sizeof(config)) ? -EFAULT : 0;
6157 }
6158 
e1000e_hwtstamp_get(struct net_device * netdev,struct ifreq * ifr)6159 static int e1000e_hwtstamp_get(struct net_device *netdev, struct ifreq *ifr)
6160 {
6161 	struct e1000_adapter *adapter = netdev_priv(netdev);
6162 
6163 	return copy_to_user(ifr->ifr_data, &adapter->hwtstamp_config,
6164 			    sizeof(adapter->hwtstamp_config)) ? -EFAULT : 0;
6165 }
6166 
e1000_ioctl(struct net_device * netdev,struct ifreq * ifr,int cmd)6167 static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
6168 {
6169 	switch (cmd) {
6170 	case SIOCGMIIPHY:
6171 	case SIOCGMIIREG:
6172 	case SIOCSMIIREG:
6173 		return e1000_mii_ioctl(netdev, ifr, cmd);
6174 	case SIOCSHWTSTAMP:
6175 		return e1000e_hwtstamp_set(netdev, ifr);
6176 	case SIOCGHWTSTAMP:
6177 		return e1000e_hwtstamp_get(netdev, ifr);
6178 	default:
6179 		return -EOPNOTSUPP;
6180 	}
6181 }
6182 
e1000_init_phy_wakeup(struct e1000_adapter * adapter,u32 wufc)6183 static int e1000_init_phy_wakeup(struct e1000_adapter *adapter, u32 wufc)
6184 {
6185 	struct e1000_hw *hw = &adapter->hw;
6186 	u32 i, mac_reg, wuc;
6187 	u16 phy_reg, wuc_enable;
6188 	int retval;
6189 
6190 	/* copy MAC RARs to PHY RARs */
6191 	e1000_copy_rx_addrs_to_phy_ich8lan(hw);
6192 
6193 	retval = hw->phy.ops.acquire(hw);
6194 	if (retval) {
6195 		e_err("Could not acquire PHY\n");
6196 		return retval;
6197 	}
6198 
6199 	/* Enable access to wakeup registers on and set page to BM_WUC_PAGE */
6200 	retval = e1000_enable_phy_wakeup_reg_access_bm(hw, &wuc_enable);
6201 	if (retval)
6202 		goto release;
6203 
6204 	/* copy MAC MTA to PHY MTA - only needed for pchlan */
6205 	for (i = 0; i < adapter->hw.mac.mta_reg_count; i++) {
6206 		mac_reg = E1000_READ_REG_ARRAY(hw, E1000_MTA, i);
6207 		hw->phy.ops.write_reg_page(hw, BM_MTA(i),
6208 					   (u16)(mac_reg & 0xFFFF));
6209 		hw->phy.ops.write_reg_page(hw, BM_MTA(i) + 1,
6210 					   (u16)((mac_reg >> 16) & 0xFFFF));
6211 	}
6212 
6213 	/* configure PHY Rx Control register */
6214 	hw->phy.ops.read_reg_page(&adapter->hw, BM_RCTL, &phy_reg);
6215 	mac_reg = er32(RCTL);
6216 	if (mac_reg & E1000_RCTL_UPE)
6217 		phy_reg |= BM_RCTL_UPE;
6218 	if (mac_reg & E1000_RCTL_MPE)
6219 		phy_reg |= BM_RCTL_MPE;
6220 	phy_reg &= ~(BM_RCTL_MO_MASK);
6221 	if (mac_reg & E1000_RCTL_MO_3)
6222 		phy_reg |= (((mac_reg & E1000_RCTL_MO_3) >> E1000_RCTL_MO_SHIFT)
6223 			    << BM_RCTL_MO_SHIFT);
6224 	if (mac_reg & E1000_RCTL_BAM)
6225 		phy_reg |= BM_RCTL_BAM;
6226 	if (mac_reg & E1000_RCTL_PMCF)
6227 		phy_reg |= BM_RCTL_PMCF;
6228 	mac_reg = er32(CTRL);
6229 	if (mac_reg & E1000_CTRL_RFCE)
6230 		phy_reg |= BM_RCTL_RFCE;
6231 	hw->phy.ops.write_reg_page(&adapter->hw, BM_RCTL, phy_reg);
6232 
6233 	wuc = E1000_WUC_PME_EN;
6234 	if (wufc & (E1000_WUFC_MAG | E1000_WUFC_LNKC))
6235 		wuc |= E1000_WUC_APME;
6236 
6237 	/* enable PHY wakeup in MAC register */
6238 	ew32(WUFC, wufc);
6239 	ew32(WUC, (E1000_WUC_PHY_WAKE | E1000_WUC_APMPME |
6240 		   E1000_WUC_PME_STATUS | wuc));
6241 
6242 	/* configure and enable PHY wakeup in PHY registers */
6243 	hw->phy.ops.write_reg_page(&adapter->hw, BM_WUFC, wufc);
6244 	hw->phy.ops.write_reg_page(&adapter->hw, BM_WUC, wuc);
6245 
6246 	/* activate PHY wakeup */
6247 	wuc_enable |= BM_WUC_ENABLE_BIT | BM_WUC_HOST_WU_BIT;
6248 	retval = e1000_disable_phy_wakeup_reg_access_bm(hw, &wuc_enable);
6249 	if (retval)
6250 		e_err("Could not set PHY Host Wakeup bit\n");
6251 release:
6252 	hw->phy.ops.release(hw);
6253 
6254 	return retval;
6255 }
6256 
e1000e_flush_lpic(struct pci_dev * pdev)6257 static void e1000e_flush_lpic(struct pci_dev *pdev)
6258 {
6259 	struct net_device *netdev = pci_get_drvdata(pdev);
6260 	struct e1000_adapter *adapter = netdev_priv(netdev);
6261 	struct e1000_hw *hw = &adapter->hw;
6262 	u32 ret_val;
6263 
6264 	pm_runtime_get_sync(netdev->dev.parent);
6265 
6266 	ret_val = hw->phy.ops.acquire(hw);
6267 	if (ret_val)
6268 		goto fl_out;
6269 
6270 	pr_info("EEE TX LPI TIMER: %08X\n",
6271 		er32(LPIC) >> E1000_LPIC_LPIET_SHIFT);
6272 
6273 	hw->phy.ops.release(hw);
6274 
6275 fl_out:
6276 	pm_runtime_put_sync(netdev->dev.parent);
6277 }
6278 
e1000e_pm_freeze(struct device * dev)6279 static int e1000e_pm_freeze(struct device *dev)
6280 {
6281 	struct net_device *netdev = pci_get_drvdata(to_pci_dev(dev));
6282 	struct e1000_adapter *adapter = netdev_priv(netdev);
6283 
6284 	netif_device_detach(netdev);
6285 
6286 	if (netif_running(netdev)) {
6287 		int count = E1000_CHECK_RESET_COUNT;
6288 
6289 		while (test_bit(__E1000_RESETTING, &adapter->state) && count--)
6290 			usleep_range(10000, 20000);
6291 
6292 		WARN_ON(test_bit(__E1000_RESETTING, &adapter->state));
6293 
6294 		/* Quiesce the device without resetting the hardware */
6295 		e1000e_down(adapter, false);
6296 		e1000_free_irq(adapter);
6297 	}
6298 	e1000e_reset_interrupt_capability(adapter);
6299 
6300 	/* Allow time for pending master requests to run */
6301 	e1000e_disable_pcie_master(&adapter->hw);
6302 
6303 	return 0;
6304 }
6305 
__e1000_shutdown(struct pci_dev * pdev,bool runtime)6306 static int __e1000_shutdown(struct pci_dev *pdev, bool runtime)
6307 {
6308 	struct net_device *netdev = pci_get_drvdata(pdev);
6309 	struct e1000_adapter *adapter = netdev_priv(netdev);
6310 	struct e1000_hw *hw = &adapter->hw;
6311 	u32 ctrl, ctrl_ext, rctl, status, wufc;
6312 	int retval = 0;
6313 
6314 	/* Runtime suspend should only enable wakeup for link changes */
6315 	if (runtime)
6316 		wufc = E1000_WUFC_LNKC;
6317 	else if (device_may_wakeup(&pdev->dev))
6318 		wufc = adapter->wol;
6319 	else
6320 		wufc = 0;
6321 
6322 	status = er32(STATUS);
6323 	if (status & E1000_STATUS_LU)
6324 		wufc &= ~E1000_WUFC_LNKC;
6325 
6326 	if (wufc) {
6327 		e1000_setup_rctl(adapter);
6328 		e1000e_set_rx_mode(netdev);
6329 
6330 		/* turn on all-multi mode if wake on multicast is enabled */
6331 		if (wufc & E1000_WUFC_MC) {
6332 			rctl = er32(RCTL);
6333 			rctl |= E1000_RCTL_MPE;
6334 			ew32(RCTL, rctl);
6335 		}
6336 
6337 		ctrl = er32(CTRL);
6338 		ctrl |= E1000_CTRL_ADVD3WUC;
6339 		if (!(adapter->flags2 & FLAG2_HAS_PHY_WAKEUP))
6340 			ctrl |= E1000_CTRL_EN_PHY_PWR_MGMT;
6341 		ew32(CTRL, ctrl);
6342 
6343 		if (adapter->hw.phy.media_type == e1000_media_type_fiber ||
6344 		    adapter->hw.phy.media_type ==
6345 		    e1000_media_type_internal_serdes) {
6346 			/* keep the laser running in D3 */
6347 			ctrl_ext = er32(CTRL_EXT);
6348 			ctrl_ext |= E1000_CTRL_EXT_SDP3_DATA;
6349 			ew32(CTRL_EXT, ctrl_ext);
6350 		}
6351 
6352 		if (!runtime)
6353 			e1000e_power_up_phy(adapter);
6354 
6355 		if (adapter->flags & FLAG_IS_ICH)
6356 			e1000_suspend_workarounds_ich8lan(&adapter->hw);
6357 
6358 		if (adapter->flags2 & FLAG2_HAS_PHY_WAKEUP) {
6359 			/* enable wakeup by the PHY */
6360 			retval = e1000_init_phy_wakeup(adapter, wufc);
6361 			if (retval)
6362 				return retval;
6363 		} else {
6364 			/* enable wakeup by the MAC */
6365 			ew32(WUFC, wufc);
6366 			ew32(WUC, E1000_WUC_PME_EN);
6367 		}
6368 	} else {
6369 		ew32(WUC, 0);
6370 		ew32(WUFC, 0);
6371 
6372 		e1000_power_down_phy(adapter);
6373 	}
6374 
6375 	if (adapter->hw.phy.type == e1000_phy_igp_3) {
6376 		e1000e_igp3_phy_powerdown_workaround_ich8lan(&adapter->hw);
6377 	} else if (hw->mac.type >= e1000_pch_lpt) {
6378 		if (wufc && !(wufc & (E1000_WUFC_EX | E1000_WUFC_MC | E1000_WUFC_BC)))
6379 			/* ULP does not support wake from unicast, multicast
6380 			 * or broadcast.
6381 			 */
6382 			retval = e1000_enable_ulp_lpt_lp(hw, !runtime);
6383 
6384 		if (retval)
6385 			return retval;
6386 	}
6387 
6388 	/* Ensure that the appropriate bits are set in LPI_CTRL
6389 	 * for EEE in Sx
6390 	 */
6391 	if ((hw->phy.type >= e1000_phy_i217) &&
6392 	    adapter->eee_advert && hw->dev_spec.ich8lan.eee_lp_ability) {
6393 		u16 lpi_ctrl = 0;
6394 
6395 		retval = hw->phy.ops.acquire(hw);
6396 		if (!retval) {
6397 			retval = e1e_rphy_locked(hw, I82579_LPI_CTRL,
6398 						 &lpi_ctrl);
6399 			if (!retval) {
6400 				if (adapter->eee_advert &
6401 				    hw->dev_spec.ich8lan.eee_lp_ability &
6402 				    I82579_EEE_100_SUPPORTED)
6403 					lpi_ctrl |= I82579_LPI_CTRL_100_ENABLE;
6404 				if (adapter->eee_advert &
6405 				    hw->dev_spec.ich8lan.eee_lp_ability &
6406 				    I82579_EEE_1000_SUPPORTED)
6407 					lpi_ctrl |= I82579_LPI_CTRL_1000_ENABLE;
6408 
6409 				retval = e1e_wphy_locked(hw, I82579_LPI_CTRL,
6410 							 lpi_ctrl);
6411 			}
6412 		}
6413 		hw->phy.ops.release(hw);
6414 	}
6415 
6416 	/* Release control of h/w to f/w.  If f/w is AMT enabled, this
6417 	 * would have already happened in close and is redundant.
6418 	 */
6419 	e1000e_release_hw_control(adapter);
6420 
6421 	pci_clear_master(pdev);
6422 
6423 	/* The pci-e switch on some quad port adapters will report a
6424 	 * correctable error when the MAC transitions from D0 to D3.  To
6425 	 * prevent this we need to mask off the correctable errors on the
6426 	 * downstream port of the pci-e switch.
6427 	 *
6428 	 * We don't have the associated upstream bridge while assigning
6429 	 * the PCI device into guest. For example, the KVM on power is
6430 	 * one of the cases.
6431 	 */
6432 	if (adapter->flags & FLAG_IS_QUAD_PORT) {
6433 		struct pci_dev *us_dev = pdev->bus->self;
6434 		u16 devctl;
6435 
6436 		if (!us_dev)
6437 			return 0;
6438 
6439 		pcie_capability_read_word(us_dev, PCI_EXP_DEVCTL, &devctl);
6440 		pcie_capability_write_word(us_dev, PCI_EXP_DEVCTL,
6441 					   (devctl & ~PCI_EXP_DEVCTL_CERE));
6442 
6443 		pci_save_state(pdev);
6444 		pci_prepare_to_sleep(pdev);
6445 
6446 		pcie_capability_write_word(us_dev, PCI_EXP_DEVCTL, devctl);
6447 	}
6448 
6449 	return 0;
6450 }
6451 
6452 /**
6453  * __e1000e_disable_aspm - Disable ASPM states
6454  * @pdev: pointer to PCI device struct
6455  * @state: bit-mask of ASPM states to disable
6456  * @locked: indication if this context holds pci_bus_sem locked.
6457  *
6458  * Some devices *must* have certain ASPM states disabled per hardware errata.
6459  **/
__e1000e_disable_aspm(struct pci_dev * pdev,u16 state,int locked)6460 static void __e1000e_disable_aspm(struct pci_dev *pdev, u16 state, int locked)
6461 {
6462 	struct pci_dev *parent = pdev->bus->self;
6463 	u16 aspm_dis_mask = 0;
6464 	u16 pdev_aspmc, parent_aspmc;
6465 
6466 	switch (state) {
6467 	case PCIE_LINK_STATE_L0S:
6468 	case PCIE_LINK_STATE_L0S | PCIE_LINK_STATE_L1:
6469 		aspm_dis_mask |= PCI_EXP_LNKCTL_ASPM_L0S;
6470 		/* fall-through - can't have L1 without L0s */
6471 	case PCIE_LINK_STATE_L1:
6472 		aspm_dis_mask |= PCI_EXP_LNKCTL_ASPM_L1;
6473 		break;
6474 	default:
6475 		return;
6476 	}
6477 
6478 	pcie_capability_read_word(pdev, PCI_EXP_LNKCTL, &pdev_aspmc);
6479 	pdev_aspmc &= PCI_EXP_LNKCTL_ASPMC;
6480 
6481 	if (parent) {
6482 		pcie_capability_read_word(parent, PCI_EXP_LNKCTL,
6483 					  &parent_aspmc);
6484 		parent_aspmc &= PCI_EXP_LNKCTL_ASPMC;
6485 	}
6486 
6487 	/* Nothing to do if the ASPM states to be disabled already are */
6488 	if (!(pdev_aspmc & aspm_dis_mask) &&
6489 	    (!parent || !(parent_aspmc & aspm_dis_mask)))
6490 		return;
6491 
6492 	dev_info(&pdev->dev, "Disabling ASPM %s %s\n",
6493 		 (aspm_dis_mask & pdev_aspmc & PCI_EXP_LNKCTL_ASPM_L0S) ?
6494 		 "L0s" : "",
6495 		 (aspm_dis_mask & pdev_aspmc & PCI_EXP_LNKCTL_ASPM_L1) ?
6496 		 "L1" : "");
6497 
6498 #ifdef CONFIG_PCIEASPM
6499 	if (locked)
6500 		pci_disable_link_state_locked(pdev, state);
6501 	else
6502 		pci_disable_link_state(pdev, state);
6503 
6504 	/* Double-check ASPM control.  If not disabled by the above, the
6505 	 * BIOS is preventing that from happening (or CONFIG_PCIEASPM is
6506 	 * not enabled); override by writing PCI config space directly.
6507 	 */
6508 	pcie_capability_read_word(pdev, PCI_EXP_LNKCTL, &pdev_aspmc);
6509 	pdev_aspmc &= PCI_EXP_LNKCTL_ASPMC;
6510 
6511 	if (!(aspm_dis_mask & pdev_aspmc))
6512 		return;
6513 #endif
6514 
6515 	/* Both device and parent should have the same ASPM setting.
6516 	 * Disable ASPM in downstream component first and then upstream.
6517 	 */
6518 	pcie_capability_clear_word(pdev, PCI_EXP_LNKCTL, aspm_dis_mask);
6519 
6520 	if (parent)
6521 		pcie_capability_clear_word(parent, PCI_EXP_LNKCTL,
6522 					   aspm_dis_mask);
6523 }
6524 
6525 /**
6526  * e1000e_disable_aspm - Disable ASPM states.
6527  * @pdev: pointer to PCI device struct
6528  * @state: bit-mask of ASPM states to disable
6529  *
6530  * This function acquires the pci_bus_sem!
6531  * Some devices *must* have certain ASPM states disabled per hardware errata.
6532  **/
e1000e_disable_aspm(struct pci_dev * pdev,u16 state)6533 static void e1000e_disable_aspm(struct pci_dev *pdev, u16 state)
6534 {
6535 	__e1000e_disable_aspm(pdev, state, 0);
6536 }
6537 
6538 /**
6539  * e1000e_disable_aspm_locked   Disable ASPM states.
6540  * @pdev: pointer to PCI device struct
6541  * @state: bit-mask of ASPM states to disable
6542  *
6543  * This function must be called with pci_bus_sem acquired!
6544  * Some devices *must* have certain ASPM states disabled per hardware errata.
6545  **/
e1000e_disable_aspm_locked(struct pci_dev * pdev,u16 state)6546 static void e1000e_disable_aspm_locked(struct pci_dev *pdev, u16 state)
6547 {
6548 	__e1000e_disable_aspm(pdev, state, 1);
6549 }
6550 
6551 #ifdef CONFIG_PM
__e1000_resume(struct pci_dev * pdev)6552 static int __e1000_resume(struct pci_dev *pdev)
6553 {
6554 	struct net_device *netdev = pci_get_drvdata(pdev);
6555 	struct e1000_adapter *adapter = netdev_priv(netdev);
6556 	struct e1000_hw *hw = &adapter->hw;
6557 	u16 aspm_disable_flag = 0;
6558 
6559 	if (adapter->flags2 & FLAG2_DISABLE_ASPM_L0S)
6560 		aspm_disable_flag = PCIE_LINK_STATE_L0S;
6561 	if (adapter->flags2 & FLAG2_DISABLE_ASPM_L1)
6562 		aspm_disable_flag |= PCIE_LINK_STATE_L1;
6563 	if (aspm_disable_flag)
6564 		e1000e_disable_aspm(pdev, aspm_disable_flag);
6565 
6566 	pci_set_master(pdev);
6567 
6568 	if (hw->mac.type >= e1000_pch2lan)
6569 		e1000_resume_workarounds_pchlan(&adapter->hw);
6570 
6571 	e1000e_power_up_phy(adapter);
6572 
6573 	/* report the system wakeup cause from S3/S4 */
6574 	if (adapter->flags2 & FLAG2_HAS_PHY_WAKEUP) {
6575 		u16 phy_data;
6576 
6577 		e1e_rphy(&adapter->hw, BM_WUS, &phy_data);
6578 		if (phy_data) {
6579 			e_info("PHY Wakeup cause - %s\n",
6580 			       phy_data & E1000_WUS_EX ? "Unicast Packet" :
6581 			       phy_data & E1000_WUS_MC ? "Multicast Packet" :
6582 			       phy_data & E1000_WUS_BC ? "Broadcast Packet" :
6583 			       phy_data & E1000_WUS_MAG ? "Magic Packet" :
6584 			       phy_data & E1000_WUS_LNKC ?
6585 			       "Link Status Change" : "other");
6586 		}
6587 		e1e_wphy(&adapter->hw, BM_WUS, ~0);
6588 	} else {
6589 		u32 wus = er32(WUS);
6590 
6591 		if (wus) {
6592 			e_info("MAC Wakeup cause - %s\n",
6593 			       wus & E1000_WUS_EX ? "Unicast Packet" :
6594 			       wus & E1000_WUS_MC ? "Multicast Packet" :
6595 			       wus & E1000_WUS_BC ? "Broadcast Packet" :
6596 			       wus & E1000_WUS_MAG ? "Magic Packet" :
6597 			       wus & E1000_WUS_LNKC ? "Link Status Change" :
6598 			       "other");
6599 		}
6600 		ew32(WUS, ~0);
6601 	}
6602 
6603 	e1000e_reset(adapter);
6604 
6605 	e1000_init_manageability_pt(adapter);
6606 
6607 	/* If the controller has AMT, do not set DRV_LOAD until the interface
6608 	 * is up.  For all other cases, let the f/w know that the h/w is now
6609 	 * under the control of the driver.
6610 	 */
6611 	if (!(adapter->flags & FLAG_HAS_AMT))
6612 		e1000e_get_hw_control(adapter);
6613 
6614 	return 0;
6615 }
6616 
6617 #ifdef CONFIG_PM_SLEEP
e1000e_pm_thaw(struct device * dev)6618 static int e1000e_pm_thaw(struct device *dev)
6619 {
6620 	struct net_device *netdev = pci_get_drvdata(to_pci_dev(dev));
6621 	struct e1000_adapter *adapter = netdev_priv(netdev);
6622 
6623 	e1000e_set_interrupt_capability(adapter);
6624 	if (netif_running(netdev)) {
6625 		u32 err = e1000_request_irq(adapter);
6626 
6627 		if (err)
6628 			return err;
6629 
6630 		e1000e_up(adapter);
6631 	}
6632 
6633 	netif_device_attach(netdev);
6634 
6635 	return 0;
6636 }
6637 
e1000e_pm_suspend(struct device * dev)6638 static int e1000e_pm_suspend(struct device *dev)
6639 {
6640 	struct pci_dev *pdev = to_pci_dev(dev);
6641 	int rc;
6642 
6643 	e1000e_flush_lpic(pdev);
6644 
6645 	e1000e_pm_freeze(dev);
6646 
6647 	rc = __e1000_shutdown(pdev, false);
6648 	if (rc)
6649 		e1000e_pm_thaw(dev);
6650 
6651 	return rc;
6652 }
6653 
e1000e_pm_resume(struct device * dev)6654 static int e1000e_pm_resume(struct device *dev)
6655 {
6656 	struct pci_dev *pdev = to_pci_dev(dev);
6657 	int rc;
6658 
6659 	rc = __e1000_resume(pdev);
6660 	if (rc)
6661 		return rc;
6662 
6663 	return e1000e_pm_thaw(dev);
6664 }
6665 #endif /* CONFIG_PM_SLEEP */
6666 
e1000e_pm_runtime_idle(struct device * dev)6667 static int e1000e_pm_runtime_idle(struct device *dev)
6668 {
6669 	struct pci_dev *pdev = to_pci_dev(dev);
6670 	struct net_device *netdev = pci_get_drvdata(pdev);
6671 	struct e1000_adapter *adapter = netdev_priv(netdev);
6672 	u16 eee_lp;
6673 
6674 	eee_lp = adapter->hw.dev_spec.ich8lan.eee_lp_ability;
6675 
6676 	if (!e1000e_has_link(adapter)) {
6677 		adapter->hw.dev_spec.ich8lan.eee_lp_ability = eee_lp;
6678 		pm_schedule_suspend(dev, 5 * MSEC_PER_SEC);
6679 	}
6680 
6681 	return -EBUSY;
6682 }
6683 
e1000e_pm_runtime_resume(struct device * dev)6684 static int e1000e_pm_runtime_resume(struct device *dev)
6685 {
6686 	struct pci_dev *pdev = to_pci_dev(dev);
6687 	struct net_device *netdev = pci_get_drvdata(pdev);
6688 	struct e1000_adapter *adapter = netdev_priv(netdev);
6689 	int rc;
6690 
6691 	rc = __e1000_resume(pdev);
6692 	if (rc)
6693 		return rc;
6694 
6695 	if (netdev->flags & IFF_UP)
6696 		e1000e_up(adapter);
6697 
6698 	return rc;
6699 }
6700 
e1000e_pm_runtime_suspend(struct device * dev)6701 static int e1000e_pm_runtime_suspend(struct device *dev)
6702 {
6703 	struct pci_dev *pdev = to_pci_dev(dev);
6704 	struct net_device *netdev = pci_get_drvdata(pdev);
6705 	struct e1000_adapter *adapter = netdev_priv(netdev);
6706 
6707 	if (netdev->flags & IFF_UP) {
6708 		int count = E1000_CHECK_RESET_COUNT;
6709 
6710 		while (test_bit(__E1000_RESETTING, &adapter->state) && count--)
6711 			usleep_range(10000, 20000);
6712 
6713 		WARN_ON(test_bit(__E1000_RESETTING, &adapter->state));
6714 
6715 		/* Down the device without resetting the hardware */
6716 		e1000e_down(adapter, false);
6717 	}
6718 
6719 	if (__e1000_shutdown(pdev, true)) {
6720 		e1000e_pm_runtime_resume(dev);
6721 		return -EBUSY;
6722 	}
6723 
6724 	return 0;
6725 }
6726 #endif /* CONFIG_PM */
6727 
e1000_shutdown(struct pci_dev * pdev)6728 static void e1000_shutdown(struct pci_dev *pdev)
6729 {
6730 	e1000e_flush_lpic(pdev);
6731 
6732 	e1000e_pm_freeze(&pdev->dev);
6733 
6734 	__e1000_shutdown(pdev, false);
6735 }
6736 
6737 #ifdef CONFIG_NET_POLL_CONTROLLER
6738 
e1000_intr_msix(int __always_unused irq,void * data)6739 static irqreturn_t e1000_intr_msix(int __always_unused irq, void *data)
6740 {
6741 	struct net_device *netdev = data;
6742 	struct e1000_adapter *adapter = netdev_priv(netdev);
6743 
6744 	if (adapter->msix_entries) {
6745 		int vector, msix_irq;
6746 
6747 		vector = 0;
6748 		msix_irq = adapter->msix_entries[vector].vector;
6749 		if (disable_hardirq(msix_irq))
6750 			e1000_intr_msix_rx(msix_irq, netdev);
6751 		enable_irq(msix_irq);
6752 
6753 		vector++;
6754 		msix_irq = adapter->msix_entries[vector].vector;
6755 		if (disable_hardirq(msix_irq))
6756 			e1000_intr_msix_tx(msix_irq, netdev);
6757 		enable_irq(msix_irq);
6758 
6759 		vector++;
6760 		msix_irq = adapter->msix_entries[vector].vector;
6761 		if (disable_hardirq(msix_irq))
6762 			e1000_msix_other(msix_irq, netdev);
6763 		enable_irq(msix_irq);
6764 	}
6765 
6766 	return IRQ_HANDLED;
6767 }
6768 
6769 /**
6770  * e1000_netpoll
6771  * @netdev: network interface device structure
6772  *
6773  * Polling 'interrupt' - used by things like netconsole to send skbs
6774  * without having to re-enable interrupts. It's not called while
6775  * the interrupt routine is executing.
6776  */
e1000_netpoll(struct net_device * netdev)6777 static void e1000_netpoll(struct net_device *netdev)
6778 {
6779 	struct e1000_adapter *adapter = netdev_priv(netdev);
6780 
6781 	switch (adapter->int_mode) {
6782 	case E1000E_INT_MODE_MSIX:
6783 		e1000_intr_msix(adapter->pdev->irq, netdev);
6784 		break;
6785 	case E1000E_INT_MODE_MSI:
6786 		if (disable_hardirq(adapter->pdev->irq))
6787 			e1000_intr_msi(adapter->pdev->irq, netdev);
6788 		enable_irq(adapter->pdev->irq);
6789 		break;
6790 	default:		/* E1000E_INT_MODE_LEGACY */
6791 		if (disable_hardirq(adapter->pdev->irq))
6792 			e1000_intr(adapter->pdev->irq, netdev);
6793 		enable_irq(adapter->pdev->irq);
6794 		break;
6795 	}
6796 }
6797 #endif
6798 
6799 /**
6800  * e1000_io_error_detected - called when PCI error is detected
6801  * @pdev: Pointer to PCI device
6802  * @state: The current pci connection state
6803  *
6804  * This function is called after a PCI bus error affecting
6805  * this device has been detected.
6806  */
e1000_io_error_detected(struct pci_dev * pdev,pci_channel_state_t state)6807 static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev,
6808 						pci_channel_state_t state)
6809 {
6810 	struct net_device *netdev = pci_get_drvdata(pdev);
6811 	struct e1000_adapter *adapter = netdev_priv(netdev);
6812 
6813 	netif_device_detach(netdev);
6814 
6815 	if (state == pci_channel_io_perm_failure)
6816 		return PCI_ERS_RESULT_DISCONNECT;
6817 
6818 	if (netif_running(netdev))
6819 		e1000e_down(adapter, true);
6820 	pci_disable_device(pdev);
6821 
6822 	/* Request a slot slot reset. */
6823 	return PCI_ERS_RESULT_NEED_RESET;
6824 }
6825 
6826 /**
6827  * e1000_io_slot_reset - called after the pci bus has been reset.
6828  * @pdev: Pointer to PCI device
6829  *
6830  * Restart the card from scratch, as if from a cold-boot. Implementation
6831  * resembles the first-half of the e1000e_pm_resume routine.
6832  */
e1000_io_slot_reset(struct pci_dev * pdev)6833 static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev)
6834 {
6835 	struct net_device *netdev = pci_get_drvdata(pdev);
6836 	struct e1000_adapter *adapter = netdev_priv(netdev);
6837 	struct e1000_hw *hw = &adapter->hw;
6838 	u16 aspm_disable_flag = 0;
6839 	int err;
6840 	pci_ers_result_t result;
6841 
6842 	if (adapter->flags2 & FLAG2_DISABLE_ASPM_L0S)
6843 		aspm_disable_flag = PCIE_LINK_STATE_L0S;
6844 	if (adapter->flags2 & FLAG2_DISABLE_ASPM_L1)
6845 		aspm_disable_flag |= PCIE_LINK_STATE_L1;
6846 	if (aspm_disable_flag)
6847 		e1000e_disable_aspm_locked(pdev, aspm_disable_flag);
6848 
6849 	err = pci_enable_device_mem(pdev);
6850 	if (err) {
6851 		dev_err(&pdev->dev,
6852 			"Cannot re-enable PCI device after reset.\n");
6853 		result = PCI_ERS_RESULT_DISCONNECT;
6854 	} else {
6855 		pdev->state_saved = true;
6856 		pci_restore_state(pdev);
6857 		pci_set_master(pdev);
6858 
6859 		pci_enable_wake(pdev, PCI_D3hot, 0);
6860 		pci_enable_wake(pdev, PCI_D3cold, 0);
6861 
6862 		e1000e_reset(adapter);
6863 		ew32(WUS, ~0);
6864 		result = PCI_ERS_RESULT_RECOVERED;
6865 	}
6866 
6867 	pci_cleanup_aer_uncorrect_error_status(pdev);
6868 
6869 	return result;
6870 }
6871 
6872 /**
6873  * e1000_io_resume - called when traffic can start flowing again.
6874  * @pdev: Pointer to PCI device
6875  *
6876  * This callback is called when the error recovery driver tells us that
6877  * its OK to resume normal operation. Implementation resembles the
6878  * second-half of the e1000e_pm_resume routine.
6879  */
e1000_io_resume(struct pci_dev * pdev)6880 static void e1000_io_resume(struct pci_dev *pdev)
6881 {
6882 	struct net_device *netdev = pci_get_drvdata(pdev);
6883 	struct e1000_adapter *adapter = netdev_priv(netdev);
6884 
6885 	e1000_init_manageability_pt(adapter);
6886 
6887 	if (netif_running(netdev))
6888 		e1000e_up(adapter);
6889 
6890 	netif_device_attach(netdev);
6891 
6892 	/* If the controller has AMT, do not set DRV_LOAD until the interface
6893 	 * is up.  For all other cases, let the f/w know that the h/w is now
6894 	 * under the control of the driver.
6895 	 */
6896 	if (!(adapter->flags & FLAG_HAS_AMT))
6897 		e1000e_get_hw_control(adapter);
6898 }
6899 
e1000_print_device_info(struct e1000_adapter * adapter)6900 static void e1000_print_device_info(struct e1000_adapter *adapter)
6901 {
6902 	struct e1000_hw *hw = &adapter->hw;
6903 	struct net_device *netdev = adapter->netdev;
6904 	u32 ret_val;
6905 	u8 pba_str[E1000_PBANUM_LENGTH];
6906 
6907 	/* print bus type/speed/width info */
6908 	e_info("(PCI Express:2.5GT/s:%s) %pM\n",
6909 	       /* bus width */
6910 	       ((hw->bus.width == e1000_bus_width_pcie_x4) ? "Width x4" :
6911 		"Width x1"),
6912 	       /* MAC address */
6913 	       netdev->dev_addr);
6914 	e_info("Intel(R) PRO/%s Network Connection\n",
6915 	       (hw->phy.type == e1000_phy_ife) ? "10/100" : "1000");
6916 	ret_val = e1000_read_pba_string_generic(hw, pba_str,
6917 						E1000_PBANUM_LENGTH);
6918 	if (ret_val)
6919 		strlcpy((char *)pba_str, "Unknown", sizeof(pba_str));
6920 	e_info("MAC: %d, PHY: %d, PBA No: %s\n",
6921 	       hw->mac.type, hw->phy.type, pba_str);
6922 }
6923 
e1000_eeprom_checks(struct e1000_adapter * adapter)6924 static void e1000_eeprom_checks(struct e1000_adapter *adapter)
6925 {
6926 	struct e1000_hw *hw = &adapter->hw;
6927 	int ret_val;
6928 	u16 buf = 0;
6929 
6930 	if (hw->mac.type != e1000_82573)
6931 		return;
6932 
6933 	ret_val = e1000_read_nvm(hw, NVM_INIT_CONTROL2_REG, 1, &buf);
6934 	le16_to_cpus(&buf);
6935 	if (!ret_val && (!(buf & BIT(0)))) {
6936 		/* Deep Smart Power Down (DSPD) */
6937 		dev_warn(&adapter->pdev->dev,
6938 			 "Warning: detected DSPD enabled in EEPROM\n");
6939 	}
6940 }
6941 
e1000_fix_features(struct net_device * netdev,netdev_features_t features)6942 static netdev_features_t e1000_fix_features(struct net_device *netdev,
6943 					    netdev_features_t features)
6944 {
6945 	struct e1000_adapter *adapter = netdev_priv(netdev);
6946 	struct e1000_hw *hw = &adapter->hw;
6947 
6948 	/* Jumbo frame workaround on 82579 and newer requires CRC be stripped */
6949 	if ((hw->mac.type >= e1000_pch2lan) && (netdev->mtu > ETH_DATA_LEN))
6950 		features &= ~NETIF_F_RXFCS;
6951 
6952 	/* Since there is no support for separate Rx/Tx vlan accel
6953 	 * enable/disable make sure Tx flag is always in same state as Rx.
6954 	 */
6955 	if (features & NETIF_F_HW_VLAN_CTAG_RX)
6956 		features |= NETIF_F_HW_VLAN_CTAG_TX;
6957 	else
6958 		features &= ~NETIF_F_HW_VLAN_CTAG_TX;
6959 
6960 	return features;
6961 }
6962 
e1000_set_features(struct net_device * netdev,netdev_features_t features)6963 static int e1000_set_features(struct net_device *netdev,
6964 			      netdev_features_t features)
6965 {
6966 	struct e1000_adapter *adapter = netdev_priv(netdev);
6967 	netdev_features_t changed = features ^ netdev->features;
6968 
6969 	if (changed & (NETIF_F_TSO | NETIF_F_TSO6))
6970 		adapter->flags |= FLAG_TSO_FORCE;
6971 
6972 	if (!(changed & (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX |
6973 			 NETIF_F_RXCSUM | NETIF_F_RXHASH | NETIF_F_RXFCS |
6974 			 NETIF_F_RXALL)))
6975 		return 0;
6976 
6977 	if (changed & NETIF_F_RXFCS) {
6978 		if (features & NETIF_F_RXFCS) {
6979 			adapter->flags2 &= ~FLAG2_CRC_STRIPPING;
6980 		} else {
6981 			/* We need to take it back to defaults, which might mean
6982 			 * stripping is still disabled at the adapter level.
6983 			 */
6984 			if (adapter->flags2 & FLAG2_DFLT_CRC_STRIPPING)
6985 				adapter->flags2 |= FLAG2_CRC_STRIPPING;
6986 			else
6987 				adapter->flags2 &= ~FLAG2_CRC_STRIPPING;
6988 		}
6989 	}
6990 
6991 	netdev->features = features;
6992 
6993 	if (netif_running(netdev))
6994 		e1000e_reinit_locked(adapter);
6995 	else
6996 		e1000e_reset(adapter);
6997 
6998 	return 0;
6999 }
7000 
7001 static const struct net_device_ops e1000e_netdev_ops = {
7002 	.ndo_open		= e1000e_open,
7003 	.ndo_stop		= e1000e_close,
7004 	.ndo_start_xmit		= e1000_xmit_frame,
7005 	.ndo_get_stats64	= e1000e_get_stats64,
7006 	.ndo_set_rx_mode	= e1000e_set_rx_mode,
7007 	.ndo_set_mac_address	= e1000_set_mac,
7008 	.ndo_change_mtu		= e1000_change_mtu,
7009 	.ndo_do_ioctl		= e1000_ioctl,
7010 	.ndo_tx_timeout		= e1000_tx_timeout,
7011 	.ndo_validate_addr	= eth_validate_addr,
7012 
7013 	.ndo_vlan_rx_add_vid	= e1000_vlan_rx_add_vid,
7014 	.ndo_vlan_rx_kill_vid	= e1000_vlan_rx_kill_vid,
7015 #ifdef CONFIG_NET_POLL_CONTROLLER
7016 	.ndo_poll_controller	= e1000_netpoll,
7017 #endif
7018 	.ndo_set_features = e1000_set_features,
7019 	.ndo_fix_features = e1000_fix_features,
7020 	.ndo_features_check	= passthru_features_check,
7021 };
7022 
7023 /**
7024  * e1000_probe - Device Initialization Routine
7025  * @pdev: PCI device information struct
7026  * @ent: entry in e1000_pci_tbl
7027  *
7028  * Returns 0 on success, negative on failure
7029  *
7030  * e1000_probe initializes an adapter identified by a pci_dev structure.
7031  * The OS initialization, configuring of the adapter private structure,
7032  * and a hardware reset occur.
7033  **/
e1000_probe(struct pci_dev * pdev,const struct pci_device_id * ent)7034 static int e1000_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
7035 {
7036 	struct net_device *netdev;
7037 	struct e1000_adapter *adapter;
7038 	struct e1000_hw *hw;
7039 	const struct e1000_info *ei = e1000_info_tbl[ent->driver_data];
7040 	resource_size_t mmio_start, mmio_len;
7041 	resource_size_t flash_start, flash_len;
7042 	static int cards_found;
7043 	u16 aspm_disable_flag = 0;
7044 	int bars, i, err, pci_using_dac;
7045 	u16 eeprom_data = 0;
7046 	u16 eeprom_apme_mask = E1000_EEPROM_APME;
7047 	s32 ret_val = 0;
7048 
7049 	if (ei->flags2 & FLAG2_DISABLE_ASPM_L0S)
7050 		aspm_disable_flag = PCIE_LINK_STATE_L0S;
7051 	if (ei->flags2 & FLAG2_DISABLE_ASPM_L1)
7052 		aspm_disable_flag |= PCIE_LINK_STATE_L1;
7053 	if (aspm_disable_flag)
7054 		e1000e_disable_aspm(pdev, aspm_disable_flag);
7055 
7056 	err = pci_enable_device_mem(pdev);
7057 	if (err)
7058 		return err;
7059 
7060 	pci_using_dac = 0;
7061 	err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
7062 	if (!err) {
7063 		pci_using_dac = 1;
7064 	} else {
7065 		err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
7066 		if (err) {
7067 			dev_err(&pdev->dev,
7068 				"No usable DMA configuration, aborting\n");
7069 			goto err_dma;
7070 		}
7071 	}
7072 
7073 	bars = pci_select_bars(pdev, IORESOURCE_MEM);
7074 	err = pci_request_selected_regions_exclusive(pdev, bars,
7075 						     e1000e_driver_name);
7076 	if (err)
7077 		goto err_pci_reg;
7078 
7079 	/* AER (Advanced Error Reporting) hooks */
7080 	pci_enable_pcie_error_reporting(pdev);
7081 
7082 	pci_set_master(pdev);
7083 	/* PCI config space info */
7084 	err = pci_save_state(pdev);
7085 	if (err)
7086 		goto err_alloc_etherdev;
7087 
7088 	err = -ENOMEM;
7089 	netdev = alloc_etherdev(sizeof(struct e1000_adapter));
7090 	if (!netdev)
7091 		goto err_alloc_etherdev;
7092 
7093 	SET_NETDEV_DEV(netdev, &pdev->dev);
7094 
7095 	netdev->irq = pdev->irq;
7096 
7097 	pci_set_drvdata(pdev, netdev);
7098 	adapter = netdev_priv(netdev);
7099 	hw = &adapter->hw;
7100 	adapter->netdev = netdev;
7101 	adapter->pdev = pdev;
7102 	adapter->ei = ei;
7103 	adapter->pba = ei->pba;
7104 	adapter->flags = ei->flags;
7105 	adapter->flags2 = ei->flags2;
7106 	adapter->hw.adapter = adapter;
7107 	adapter->hw.mac.type = ei->mac;
7108 	adapter->max_hw_frame_size = ei->max_hw_frame_size;
7109 	adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE);
7110 
7111 	mmio_start = pci_resource_start(pdev, 0);
7112 	mmio_len = pci_resource_len(pdev, 0);
7113 
7114 	err = -EIO;
7115 	adapter->hw.hw_addr = ioremap(mmio_start, mmio_len);
7116 	if (!adapter->hw.hw_addr)
7117 		goto err_ioremap;
7118 
7119 	if ((adapter->flags & FLAG_HAS_FLASH) &&
7120 	    (pci_resource_flags(pdev, 1) & IORESOURCE_MEM) &&
7121 	    (hw->mac.type < e1000_pch_spt)) {
7122 		flash_start = pci_resource_start(pdev, 1);
7123 		flash_len = pci_resource_len(pdev, 1);
7124 		adapter->hw.flash_address = ioremap(flash_start, flash_len);
7125 		if (!adapter->hw.flash_address)
7126 			goto err_flashmap;
7127 	}
7128 
7129 	/* Set default EEE advertisement */
7130 	if (adapter->flags2 & FLAG2_HAS_EEE)
7131 		adapter->eee_advert = MDIO_EEE_100TX | MDIO_EEE_1000T;
7132 
7133 	/* construct the net_device struct */
7134 	netdev->netdev_ops = &e1000e_netdev_ops;
7135 	e1000e_set_ethtool_ops(netdev);
7136 	netdev->watchdog_timeo = 5 * HZ;
7137 	netif_napi_add(netdev, &adapter->napi, e1000e_poll, 64);
7138 	strlcpy(netdev->name, pci_name(pdev), sizeof(netdev->name));
7139 
7140 	netdev->mem_start = mmio_start;
7141 	netdev->mem_end = mmio_start + mmio_len;
7142 
7143 	adapter->bd_number = cards_found++;
7144 
7145 	e1000e_check_options(adapter);
7146 
7147 	/* setup adapter struct */
7148 	err = e1000_sw_init(adapter);
7149 	if (err)
7150 		goto err_sw_init;
7151 
7152 	memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops));
7153 	memcpy(&hw->nvm.ops, ei->nvm_ops, sizeof(hw->nvm.ops));
7154 	memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops));
7155 
7156 	err = ei->get_variants(adapter);
7157 	if (err)
7158 		goto err_hw_init;
7159 
7160 	if ((adapter->flags & FLAG_IS_ICH) &&
7161 	    (adapter->flags & FLAG_READ_ONLY_NVM) &&
7162 	    (hw->mac.type < e1000_pch_spt))
7163 		e1000e_write_protect_nvm_ich8lan(&adapter->hw);
7164 
7165 	hw->mac.ops.get_bus_info(&adapter->hw);
7166 
7167 	adapter->hw.phy.autoneg_wait_to_complete = 0;
7168 
7169 	/* Copper options */
7170 	if (adapter->hw.phy.media_type == e1000_media_type_copper) {
7171 		adapter->hw.phy.mdix = AUTO_ALL_MODES;
7172 		adapter->hw.phy.disable_polarity_correction = 0;
7173 		adapter->hw.phy.ms_type = e1000_ms_hw_default;
7174 	}
7175 
7176 	if (hw->phy.ops.check_reset_block && hw->phy.ops.check_reset_block(hw))
7177 		dev_info(&pdev->dev,
7178 			 "PHY reset is blocked due to SOL/IDER session.\n");
7179 
7180 	/* Set initial default active device features */
7181 	netdev->features = (NETIF_F_SG |
7182 			    NETIF_F_HW_VLAN_CTAG_RX |
7183 			    NETIF_F_HW_VLAN_CTAG_TX |
7184 			    NETIF_F_TSO |
7185 			    NETIF_F_TSO6 |
7186 			    NETIF_F_RXHASH |
7187 			    NETIF_F_RXCSUM |
7188 			    NETIF_F_HW_CSUM);
7189 
7190 	/* Set user-changeable features (subset of all device features) */
7191 	netdev->hw_features = netdev->features;
7192 	netdev->hw_features |= NETIF_F_RXFCS;
7193 	netdev->priv_flags |= IFF_SUPP_NOFCS;
7194 	netdev->hw_features |= NETIF_F_RXALL;
7195 
7196 	if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER)
7197 		netdev->features |= NETIF_F_HW_VLAN_CTAG_FILTER;
7198 
7199 	netdev->vlan_features |= (NETIF_F_SG |
7200 				  NETIF_F_TSO |
7201 				  NETIF_F_TSO6 |
7202 				  NETIF_F_HW_CSUM);
7203 
7204 	netdev->priv_flags |= IFF_UNICAST_FLT;
7205 
7206 	if (pci_using_dac) {
7207 		netdev->features |= NETIF_F_HIGHDMA;
7208 		netdev->vlan_features |= NETIF_F_HIGHDMA;
7209 	}
7210 
7211 	/* MTU range: 68 - max_hw_frame_size */
7212 	netdev->min_mtu = ETH_MIN_MTU;
7213 	netdev->max_mtu = adapter->max_hw_frame_size -
7214 			  (VLAN_ETH_HLEN + ETH_FCS_LEN);
7215 
7216 	if (e1000e_enable_mng_pass_thru(&adapter->hw))
7217 		adapter->flags |= FLAG_MNG_PT_ENABLED;
7218 
7219 	/* before reading the NVM, reset the controller to
7220 	 * put the device in a known good starting state
7221 	 */
7222 	adapter->hw.mac.ops.reset_hw(&adapter->hw);
7223 
7224 	/* systems with ASPM and others may see the checksum fail on the first
7225 	 * attempt. Let's give it a few tries
7226 	 */
7227 	for (i = 0;; i++) {
7228 		if (e1000_validate_nvm_checksum(&adapter->hw) >= 0)
7229 			break;
7230 		if (i == 2) {
7231 			dev_err(&pdev->dev, "The NVM Checksum Is Not Valid\n");
7232 			err = -EIO;
7233 			goto err_eeprom;
7234 		}
7235 	}
7236 
7237 	e1000_eeprom_checks(adapter);
7238 
7239 	/* copy the MAC address */
7240 	if (e1000e_read_mac_addr(&adapter->hw))
7241 		dev_err(&pdev->dev,
7242 			"NVM Read Error while reading MAC address\n");
7243 
7244 	memcpy(netdev->dev_addr, adapter->hw.mac.addr, netdev->addr_len);
7245 
7246 	if (!is_valid_ether_addr(netdev->dev_addr)) {
7247 		dev_err(&pdev->dev, "Invalid MAC Address: %pM\n",
7248 			netdev->dev_addr);
7249 		err = -EIO;
7250 		goto err_eeprom;
7251 	}
7252 
7253 	timer_setup(&adapter->watchdog_timer, e1000_watchdog, 0);
7254 	timer_setup(&adapter->phy_info_timer, e1000_update_phy_info, 0);
7255 
7256 	INIT_WORK(&adapter->reset_task, e1000_reset_task);
7257 	INIT_WORK(&adapter->watchdog_task, e1000_watchdog_task);
7258 	INIT_WORK(&adapter->downshift_task, e1000e_downshift_workaround);
7259 	INIT_WORK(&adapter->update_phy_task, e1000e_update_phy_task);
7260 	INIT_WORK(&adapter->print_hang_task, e1000_print_hw_hang);
7261 
7262 	/* Initialize link parameters. User can change them with ethtool */
7263 	adapter->hw.mac.autoneg = 1;
7264 	adapter->fc_autoneg = true;
7265 	adapter->hw.fc.requested_mode = e1000_fc_default;
7266 	adapter->hw.fc.current_mode = e1000_fc_default;
7267 	adapter->hw.phy.autoneg_advertised = 0x2f;
7268 
7269 	/* Initial Wake on LAN setting - If APM wake is enabled in
7270 	 * the EEPROM, enable the ACPI Magic Packet filter
7271 	 */
7272 	if (adapter->flags & FLAG_APME_IN_WUC) {
7273 		/* APME bit in EEPROM is mapped to WUC.APME */
7274 		eeprom_data = er32(WUC);
7275 		eeprom_apme_mask = E1000_WUC_APME;
7276 		if ((hw->mac.type > e1000_ich10lan) &&
7277 		    (eeprom_data & E1000_WUC_PHY_WAKE))
7278 			adapter->flags2 |= FLAG2_HAS_PHY_WAKEUP;
7279 	} else if (adapter->flags & FLAG_APME_IN_CTRL3) {
7280 		if (adapter->flags & FLAG_APME_CHECK_PORT_B &&
7281 		    (adapter->hw.bus.func == 1))
7282 			ret_val = e1000_read_nvm(&adapter->hw,
7283 					      NVM_INIT_CONTROL3_PORT_B,
7284 					      1, &eeprom_data);
7285 		else
7286 			ret_val = e1000_read_nvm(&adapter->hw,
7287 					      NVM_INIT_CONTROL3_PORT_A,
7288 					      1, &eeprom_data);
7289 	}
7290 
7291 	/* fetch WoL from EEPROM */
7292 	if (ret_val)
7293 		e_dbg("NVM read error getting WoL initial values: %d\n", ret_val);
7294 	else if (eeprom_data & eeprom_apme_mask)
7295 		adapter->eeprom_wol |= E1000_WUFC_MAG;
7296 
7297 	/* now that we have the eeprom settings, apply the special cases
7298 	 * where the eeprom may be wrong or the board simply won't support
7299 	 * wake on lan on a particular port
7300 	 */
7301 	if (!(adapter->flags & FLAG_HAS_WOL))
7302 		adapter->eeprom_wol = 0;
7303 
7304 	/* initialize the wol settings based on the eeprom settings */
7305 	adapter->wol = adapter->eeprom_wol;
7306 
7307 	/* make sure adapter isn't asleep if manageability is enabled */
7308 	if (adapter->wol || (adapter->flags & FLAG_MNG_PT_ENABLED) ||
7309 	    (hw->mac.ops.check_mng_mode(hw)))
7310 		device_wakeup_enable(&pdev->dev);
7311 
7312 	/* save off EEPROM version number */
7313 	ret_val = e1000_read_nvm(&adapter->hw, 5, 1, &adapter->eeprom_vers);
7314 
7315 	if (ret_val) {
7316 		e_dbg("NVM read error getting EEPROM version: %d\n", ret_val);
7317 		adapter->eeprom_vers = 0;
7318 	}
7319 
7320 	/* init PTP hardware clock */
7321 	e1000e_ptp_init(adapter);
7322 
7323 	/* reset the hardware with the new settings */
7324 	e1000e_reset(adapter);
7325 
7326 	/* If the controller has AMT, do not set DRV_LOAD until the interface
7327 	 * is up.  For all other cases, let the f/w know that the h/w is now
7328 	 * under the control of the driver.
7329 	 */
7330 	if (!(adapter->flags & FLAG_HAS_AMT))
7331 		e1000e_get_hw_control(adapter);
7332 
7333 	strlcpy(netdev->name, "eth%d", sizeof(netdev->name));
7334 	err = register_netdev(netdev);
7335 	if (err)
7336 		goto err_register;
7337 
7338 	/* carrier off reporting is important to ethtool even BEFORE open */
7339 	netif_carrier_off(netdev);
7340 
7341 	e1000_print_device_info(adapter);
7342 
7343 	dev_pm_set_driver_flags(&pdev->dev, DPM_FLAG_NEVER_SKIP);
7344 
7345 	if (pci_dev_run_wake(pdev) && hw->mac.type < e1000_pch_cnp)
7346 		pm_runtime_put_noidle(&pdev->dev);
7347 
7348 	return 0;
7349 
7350 err_register:
7351 	if (!(adapter->flags & FLAG_HAS_AMT))
7352 		e1000e_release_hw_control(adapter);
7353 err_eeprom:
7354 	if (hw->phy.ops.check_reset_block && !hw->phy.ops.check_reset_block(hw))
7355 		e1000_phy_hw_reset(&adapter->hw);
7356 err_hw_init:
7357 	kfree(adapter->tx_ring);
7358 	kfree(adapter->rx_ring);
7359 err_sw_init:
7360 	if ((adapter->hw.flash_address) && (hw->mac.type < e1000_pch_spt))
7361 		iounmap(adapter->hw.flash_address);
7362 	e1000e_reset_interrupt_capability(adapter);
7363 err_flashmap:
7364 	iounmap(adapter->hw.hw_addr);
7365 err_ioremap:
7366 	free_netdev(netdev);
7367 err_alloc_etherdev:
7368 	pci_release_mem_regions(pdev);
7369 err_pci_reg:
7370 err_dma:
7371 	pci_disable_device(pdev);
7372 	return err;
7373 }
7374 
7375 /**
7376  * e1000_remove - Device Removal Routine
7377  * @pdev: PCI device information struct
7378  *
7379  * e1000_remove is called by the PCI subsystem to alert the driver
7380  * that it should release a PCI device.  The could be caused by a
7381  * Hot-Plug event, or because the driver is going to be removed from
7382  * memory.
7383  **/
e1000_remove(struct pci_dev * pdev)7384 static void e1000_remove(struct pci_dev *pdev)
7385 {
7386 	struct net_device *netdev = pci_get_drvdata(pdev);
7387 	struct e1000_adapter *adapter = netdev_priv(netdev);
7388 	bool down = test_bit(__E1000_DOWN, &adapter->state);
7389 
7390 	e1000e_ptp_remove(adapter);
7391 
7392 	/* The timers may be rescheduled, so explicitly disable them
7393 	 * from being rescheduled.
7394 	 */
7395 	if (!down)
7396 		set_bit(__E1000_DOWN, &adapter->state);
7397 	del_timer_sync(&adapter->watchdog_timer);
7398 	del_timer_sync(&adapter->phy_info_timer);
7399 
7400 	cancel_work_sync(&adapter->reset_task);
7401 	cancel_work_sync(&adapter->watchdog_task);
7402 	cancel_work_sync(&adapter->downshift_task);
7403 	cancel_work_sync(&adapter->update_phy_task);
7404 	cancel_work_sync(&adapter->print_hang_task);
7405 
7406 	if (adapter->flags & FLAG_HAS_HW_TIMESTAMP) {
7407 		cancel_work_sync(&adapter->tx_hwtstamp_work);
7408 		if (adapter->tx_hwtstamp_skb) {
7409 			dev_consume_skb_any(adapter->tx_hwtstamp_skb);
7410 			adapter->tx_hwtstamp_skb = NULL;
7411 		}
7412 	}
7413 
7414 	/* Don't lie to e1000_close() down the road. */
7415 	if (!down)
7416 		clear_bit(__E1000_DOWN, &adapter->state);
7417 	unregister_netdev(netdev);
7418 
7419 	if (pci_dev_run_wake(pdev))
7420 		pm_runtime_get_noresume(&pdev->dev);
7421 
7422 	/* Release control of h/w to f/w.  If f/w is AMT enabled, this
7423 	 * would have already happened in close and is redundant.
7424 	 */
7425 	e1000e_release_hw_control(adapter);
7426 
7427 	e1000e_reset_interrupt_capability(adapter);
7428 	kfree(adapter->tx_ring);
7429 	kfree(adapter->rx_ring);
7430 
7431 	iounmap(adapter->hw.hw_addr);
7432 	if ((adapter->hw.flash_address) &&
7433 	    (adapter->hw.mac.type < e1000_pch_spt))
7434 		iounmap(adapter->hw.flash_address);
7435 	pci_release_mem_regions(pdev);
7436 
7437 	free_netdev(netdev);
7438 
7439 	/* AER disable */
7440 	pci_disable_pcie_error_reporting(pdev);
7441 
7442 	pci_disable_device(pdev);
7443 }
7444 
7445 /* PCI Error Recovery (ERS) */
7446 static const struct pci_error_handlers e1000_err_handler = {
7447 	.error_detected = e1000_io_error_detected,
7448 	.slot_reset = e1000_io_slot_reset,
7449 	.resume = e1000_io_resume,
7450 };
7451 
7452 static const struct pci_device_id e1000_pci_tbl[] = {
7453 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_COPPER), board_82571 },
7454 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_FIBER), board_82571 },
7455 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_COPPER), board_82571 },
7456 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_COPPER_LP),
7457 	  board_82571 },
7458 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_FIBER), board_82571 },
7459 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES), board_82571 },
7460 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES_DUAL), board_82571 },
7461 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES_QUAD), board_82571 },
7462 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571PT_QUAD_COPPER), board_82571 },
7463 
7464 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI), board_82572 },
7465 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_COPPER), board_82572 },
7466 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_FIBER), board_82572 },
7467 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_SERDES), board_82572 },
7468 
7469 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82573E), board_82573 },
7470 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82573E_IAMT), board_82573 },
7471 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82573L), board_82573 },
7472 
7473 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82574L), board_82574 },
7474 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82574LA), board_82574 },
7475 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82583V), board_82583 },
7476 
7477 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_COPPER_DPT),
7478 	  board_80003es2lan },
7479 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_COPPER_SPT),
7480 	  board_80003es2lan },
7481 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_SERDES_DPT),
7482 	  board_80003es2lan },
7483 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_SERDES_SPT),
7484 	  board_80003es2lan },
7485 
7486 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE), board_ich8lan },
7487 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE_G), board_ich8lan },
7488 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE_GT), board_ich8lan },
7489 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_AMT), board_ich8lan },
7490 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_C), board_ich8lan },
7491 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_M), board_ich8lan },
7492 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_M_AMT), board_ich8lan },
7493 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_82567V_3), board_ich8lan },
7494 
7495 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE), board_ich9lan },
7496 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE_G), board_ich9lan },
7497 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE_GT), board_ich9lan },
7498 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_AMT), board_ich9lan },
7499 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_C), board_ich9lan },
7500 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_BM), board_ich9lan },
7501 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_M), board_ich9lan },
7502 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_M_AMT), board_ich9lan },
7503 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_M_V), board_ich9lan },
7504 
7505 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_R_BM_LM), board_ich9lan },
7506 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_R_BM_LF), board_ich9lan },
7507 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_R_BM_V), board_ich9lan },
7508 
7509 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_D_BM_LM), board_ich10lan },
7510 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_D_BM_LF), board_ich10lan },
7511 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_D_BM_V), board_ich10lan },
7512 
7513 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_M_HV_LM), board_pchlan },
7514 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_M_HV_LC), board_pchlan },
7515 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_D_HV_DM), board_pchlan },
7516 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_D_HV_DC), board_pchlan },
7517 
7518 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH2_LV_LM), board_pch2lan },
7519 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH2_LV_V), board_pch2lan },
7520 
7521 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_LPT_I217_LM), board_pch_lpt },
7522 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_LPT_I217_V), board_pch_lpt },
7523 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_LPTLP_I218_LM), board_pch_lpt },
7524 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_LPTLP_I218_V), board_pch_lpt },
7525 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_I218_LM2), board_pch_lpt },
7526 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_I218_V2), board_pch_lpt },
7527 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_I218_LM3), board_pch_lpt },
7528 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_I218_V3), board_pch_lpt },
7529 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_SPT_I219_LM), board_pch_spt },
7530 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_SPT_I219_V), board_pch_spt },
7531 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_SPT_I219_LM2), board_pch_spt },
7532 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_SPT_I219_V2), board_pch_spt },
7533 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_LBG_I219_LM3), board_pch_spt },
7534 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_SPT_I219_LM4), board_pch_spt },
7535 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_SPT_I219_V4), board_pch_spt },
7536 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_SPT_I219_LM5), board_pch_spt },
7537 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_SPT_I219_V5), board_pch_spt },
7538 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_CNP_I219_LM6), board_pch_cnp },
7539 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_CNP_I219_V6), board_pch_cnp },
7540 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_CNP_I219_LM7), board_pch_cnp },
7541 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_CNP_I219_V7), board_pch_cnp },
7542 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_ICP_I219_LM8), board_pch_cnp },
7543 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_ICP_I219_V8), board_pch_cnp },
7544 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_ICP_I219_LM9), board_pch_cnp },
7545 	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_ICP_I219_V9), board_pch_cnp },
7546 
7547 	{ 0, 0, 0, 0, 0, 0, 0 }	/* terminate list */
7548 };
7549 MODULE_DEVICE_TABLE(pci, e1000_pci_tbl);
7550 
7551 static const struct dev_pm_ops e1000_pm_ops = {
7552 #ifdef CONFIG_PM_SLEEP
7553 	.suspend	= e1000e_pm_suspend,
7554 	.resume		= e1000e_pm_resume,
7555 	.freeze		= e1000e_pm_freeze,
7556 	.thaw		= e1000e_pm_thaw,
7557 	.poweroff	= e1000e_pm_suspend,
7558 	.restore	= e1000e_pm_resume,
7559 #endif
7560 	SET_RUNTIME_PM_OPS(e1000e_pm_runtime_suspend, e1000e_pm_runtime_resume,
7561 			   e1000e_pm_runtime_idle)
7562 };
7563 
7564 /* PCI Device API Driver */
7565 static struct pci_driver e1000_driver = {
7566 	.name     = e1000e_driver_name,
7567 	.id_table = e1000_pci_tbl,
7568 	.probe    = e1000_probe,
7569 	.remove   = e1000_remove,
7570 	.driver   = {
7571 		.pm = &e1000_pm_ops,
7572 	},
7573 	.shutdown = e1000_shutdown,
7574 	.err_handler = &e1000_err_handler
7575 };
7576 
7577 /**
7578  * e1000_init_module - Driver Registration Routine
7579  *
7580  * e1000_init_module is the first routine called when the driver is
7581  * loaded. All it does is register with the PCI subsystem.
7582  **/
e1000_init_module(void)7583 static int __init e1000_init_module(void)
7584 {
7585 	pr_info("Intel(R) PRO/1000 Network Driver - %s\n",
7586 		e1000e_driver_version);
7587 	pr_info("Copyright(c) 1999 - 2015 Intel Corporation.\n");
7588 
7589 	return pci_register_driver(&e1000_driver);
7590 }
7591 module_init(e1000_init_module);
7592 
7593 /**
7594  * e1000_exit_module - Driver Exit Cleanup Routine
7595  *
7596  * e1000_exit_module is called just before the driver is removed
7597  * from memory.
7598  **/
e1000_exit_module(void)7599 static void __exit e1000_exit_module(void)
7600 {
7601 	pci_unregister_driver(&e1000_driver);
7602 }
7603 module_exit(e1000_exit_module);
7604 
7605 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
7606 MODULE_DESCRIPTION("Intel(R) PRO/1000 Network Driver");
7607 MODULE_LICENSE("GPL");
7608 MODULE_VERSION(DRV_VERSION);
7609 
7610 /* netdev.c */
7611