• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (c) 2018, Intel Corporation. */
3 
4 #include "ice_common.h"
5 #include "ice_sched.h"
6 #include "ice_adminq_cmd.h"
7 
8 #define ICE_PF_RESET_WAIT_COUNT	200
9 
10 #define ICE_NIC_FLX_ENTRY(hw, mdid, idx) \
11 	wr32((hw), GLFLXP_RXDID_FLX_WRD_##idx(ICE_RXDID_FLEX_NIC), \
12 	     ((ICE_RX_OPC_MDID << \
13 	       GLFLXP_RXDID_FLX_WRD_##idx##_RXDID_OPCODE_S) & \
14 	      GLFLXP_RXDID_FLX_WRD_##idx##_RXDID_OPCODE_M) | \
15 	     (((mdid) << GLFLXP_RXDID_FLX_WRD_##idx##_PROT_MDID_S) & \
16 	      GLFLXP_RXDID_FLX_WRD_##idx##_PROT_MDID_M))
17 
18 #define ICE_NIC_FLX_FLG_ENTRY(hw, flg_0, flg_1, flg_2, flg_3, idx) \
19 	wr32((hw), GLFLXP_RXDID_FLAGS(ICE_RXDID_FLEX_NIC, idx), \
20 	     (((flg_0) << GLFLXP_RXDID_FLAGS_FLEXIFLAG_4N_S) & \
21 	      GLFLXP_RXDID_FLAGS_FLEXIFLAG_4N_M) | \
22 	     (((flg_1) << GLFLXP_RXDID_FLAGS_FLEXIFLAG_4N_1_S) & \
23 	      GLFLXP_RXDID_FLAGS_FLEXIFLAG_4N_1_M) | \
24 	     (((flg_2) << GLFLXP_RXDID_FLAGS_FLEXIFLAG_4N_2_S) & \
25 	      GLFLXP_RXDID_FLAGS_FLEXIFLAG_4N_2_M) | \
26 	     (((flg_3) << GLFLXP_RXDID_FLAGS_FLEXIFLAG_4N_3_S) & \
27 	      GLFLXP_RXDID_FLAGS_FLEXIFLAG_4N_3_M))
28 
29 /**
30  * ice_set_mac_type - Sets MAC type
31  * @hw: pointer to the HW structure
32  *
33  * This function sets the MAC type of the adapter based on the
34  * vendor ID and device ID stored in the hw structure.
35  */
ice_set_mac_type(struct ice_hw * hw)36 static enum ice_status ice_set_mac_type(struct ice_hw *hw)
37 {
38 	if (hw->vendor_id != PCI_VENDOR_ID_INTEL)
39 		return ICE_ERR_DEVICE_NOT_SUPPORTED;
40 
41 	hw->mac_type = ICE_MAC_GENERIC;
42 	return 0;
43 }
44 
45 /**
46  * ice_clear_pf_cfg - Clear PF configuration
47  * @hw: pointer to the hardware structure
48  *
49  * Clears any existing PF configuration (VSIs, VSI lists, switch rules, port
50  * configuration, flow director filters, etc.).
51  */
ice_clear_pf_cfg(struct ice_hw * hw)52 enum ice_status ice_clear_pf_cfg(struct ice_hw *hw)
53 {
54 	struct ice_aq_desc desc;
55 
56 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_clear_pf_cfg);
57 
58 	return ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
59 }
60 
61 /**
62  * ice_aq_manage_mac_read - manage MAC address read command
63  * @hw: pointer to the hw struct
64  * @buf: a virtual buffer to hold the manage MAC read response
65  * @buf_size: Size of the virtual buffer
66  * @cd: pointer to command details structure or NULL
67  *
68  * This function is used to return per PF station MAC address (0x0107).
69  * NOTE: Upon successful completion of this command, MAC address information
70  * is returned in user specified buffer. Please interpret user specified
71  * buffer as "manage_mac_read" response.
72  * Response such as various MAC addresses are stored in HW struct (port.mac)
73  * ice_aq_discover_caps is expected to be called before this function is called.
74  */
75 static enum ice_status
ice_aq_manage_mac_read(struct ice_hw * hw,void * buf,u16 buf_size,struct ice_sq_cd * cd)76 ice_aq_manage_mac_read(struct ice_hw *hw, void *buf, u16 buf_size,
77 		       struct ice_sq_cd *cd)
78 {
79 	struct ice_aqc_manage_mac_read_resp *resp;
80 	struct ice_aqc_manage_mac_read *cmd;
81 	struct ice_aq_desc desc;
82 	enum ice_status status;
83 	u16 flags;
84 	u8 i;
85 
86 	cmd = &desc.params.mac_read;
87 
88 	if (buf_size < sizeof(*resp))
89 		return ICE_ERR_BUF_TOO_SHORT;
90 
91 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_manage_mac_read);
92 
93 	status = ice_aq_send_cmd(hw, &desc, buf, buf_size, cd);
94 	if (status)
95 		return status;
96 
97 	resp = (struct ice_aqc_manage_mac_read_resp *)buf;
98 	flags = le16_to_cpu(cmd->flags) & ICE_AQC_MAN_MAC_READ_M;
99 
100 	if (!(flags & ICE_AQC_MAN_MAC_LAN_ADDR_VALID)) {
101 		ice_debug(hw, ICE_DBG_LAN, "got invalid MAC address\n");
102 		return ICE_ERR_CFG;
103 	}
104 
105 	/* A single port can report up to two (LAN and WoL) addresses */
106 	for (i = 0; i < cmd->num_addr; i++)
107 		if (resp[i].addr_type == ICE_AQC_MAN_MAC_ADDR_TYPE_LAN) {
108 			ether_addr_copy(hw->port_info->mac.lan_addr,
109 					resp[i].mac_addr);
110 			ether_addr_copy(hw->port_info->mac.perm_addr,
111 					resp[i].mac_addr);
112 			break;
113 		}
114 
115 	return 0;
116 }
117 
118 /**
119  * ice_aq_get_phy_caps - returns PHY capabilities
120  * @pi: port information structure
121  * @qual_mods: report qualified modules
122  * @report_mode: report mode capabilities
123  * @pcaps: structure for PHY capabilities to be filled
124  * @cd: pointer to command details structure or NULL
125  *
126  * Returns the various PHY capabilities supported on the Port (0x0600)
127  */
128 static enum ice_status
ice_aq_get_phy_caps(struct ice_port_info * pi,bool qual_mods,u8 report_mode,struct ice_aqc_get_phy_caps_data * pcaps,struct ice_sq_cd * cd)129 ice_aq_get_phy_caps(struct ice_port_info *pi, bool qual_mods, u8 report_mode,
130 		    struct ice_aqc_get_phy_caps_data *pcaps,
131 		    struct ice_sq_cd *cd)
132 {
133 	struct ice_aqc_get_phy_caps *cmd;
134 	u16 pcaps_size = sizeof(*pcaps);
135 	struct ice_aq_desc desc;
136 	enum ice_status status;
137 
138 	cmd = &desc.params.get_phy;
139 
140 	if (!pcaps || (report_mode & ~ICE_AQC_REPORT_MODE_M) || !pi)
141 		return ICE_ERR_PARAM;
142 
143 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_phy_caps);
144 
145 	if (qual_mods)
146 		cmd->param0 |= cpu_to_le16(ICE_AQC_GET_PHY_RQM);
147 
148 	cmd->param0 |= cpu_to_le16(report_mode);
149 	status = ice_aq_send_cmd(pi->hw, &desc, pcaps, pcaps_size, cd);
150 
151 	if (!status && report_mode == ICE_AQC_REPORT_TOPO_CAP)
152 		pi->phy.phy_type_low = le64_to_cpu(pcaps->phy_type_low);
153 
154 	return status;
155 }
156 
157 /**
158  * ice_get_media_type - Gets media type
159  * @pi: port information structure
160  */
ice_get_media_type(struct ice_port_info * pi)161 static enum ice_media_type ice_get_media_type(struct ice_port_info *pi)
162 {
163 	struct ice_link_status *hw_link_info;
164 
165 	if (!pi)
166 		return ICE_MEDIA_UNKNOWN;
167 
168 	hw_link_info = &pi->phy.link_info;
169 
170 	if (hw_link_info->phy_type_low) {
171 		switch (hw_link_info->phy_type_low) {
172 		case ICE_PHY_TYPE_LOW_1000BASE_SX:
173 		case ICE_PHY_TYPE_LOW_1000BASE_LX:
174 		case ICE_PHY_TYPE_LOW_10GBASE_SR:
175 		case ICE_PHY_TYPE_LOW_10GBASE_LR:
176 		case ICE_PHY_TYPE_LOW_10G_SFI_C2C:
177 		case ICE_PHY_TYPE_LOW_25GBASE_SR:
178 		case ICE_PHY_TYPE_LOW_25GBASE_LR:
179 		case ICE_PHY_TYPE_LOW_25G_AUI_C2C:
180 		case ICE_PHY_TYPE_LOW_40GBASE_SR4:
181 		case ICE_PHY_TYPE_LOW_40GBASE_LR4:
182 			return ICE_MEDIA_FIBER;
183 		case ICE_PHY_TYPE_LOW_100BASE_TX:
184 		case ICE_PHY_TYPE_LOW_1000BASE_T:
185 		case ICE_PHY_TYPE_LOW_2500BASE_T:
186 		case ICE_PHY_TYPE_LOW_5GBASE_T:
187 		case ICE_PHY_TYPE_LOW_10GBASE_T:
188 		case ICE_PHY_TYPE_LOW_25GBASE_T:
189 			return ICE_MEDIA_BASET;
190 		case ICE_PHY_TYPE_LOW_10G_SFI_DA:
191 		case ICE_PHY_TYPE_LOW_25GBASE_CR:
192 		case ICE_PHY_TYPE_LOW_25GBASE_CR_S:
193 		case ICE_PHY_TYPE_LOW_25GBASE_CR1:
194 		case ICE_PHY_TYPE_LOW_40GBASE_CR4:
195 			return ICE_MEDIA_DA;
196 		case ICE_PHY_TYPE_LOW_1000BASE_KX:
197 		case ICE_PHY_TYPE_LOW_2500BASE_KX:
198 		case ICE_PHY_TYPE_LOW_2500BASE_X:
199 		case ICE_PHY_TYPE_LOW_5GBASE_KR:
200 		case ICE_PHY_TYPE_LOW_10GBASE_KR_CR1:
201 		case ICE_PHY_TYPE_LOW_25GBASE_KR:
202 		case ICE_PHY_TYPE_LOW_25GBASE_KR1:
203 		case ICE_PHY_TYPE_LOW_25GBASE_KR_S:
204 		case ICE_PHY_TYPE_LOW_40GBASE_KR4:
205 			return ICE_MEDIA_BACKPLANE;
206 		}
207 	}
208 
209 	return ICE_MEDIA_UNKNOWN;
210 }
211 
212 /**
213  * ice_aq_get_link_info
214  * @pi: port information structure
215  * @ena_lse: enable/disable LinkStatusEvent reporting
216  * @link: pointer to link status structure - optional
217  * @cd: pointer to command details structure or NULL
218  *
219  * Get Link Status (0x607). Returns the link status of the adapter.
220  */
221 enum ice_status
ice_aq_get_link_info(struct ice_port_info * pi,bool ena_lse,struct ice_link_status * link,struct ice_sq_cd * cd)222 ice_aq_get_link_info(struct ice_port_info *pi, bool ena_lse,
223 		     struct ice_link_status *link, struct ice_sq_cd *cd)
224 {
225 	struct ice_link_status *hw_link_info_old, *hw_link_info;
226 	struct ice_aqc_get_link_status_data link_data = { 0 };
227 	struct ice_aqc_get_link_status *resp;
228 	enum ice_media_type *hw_media_type;
229 	struct ice_fc_info *hw_fc_info;
230 	bool tx_pause, rx_pause;
231 	struct ice_aq_desc desc;
232 	enum ice_status status;
233 	u16 cmd_flags;
234 
235 	if (!pi)
236 		return ICE_ERR_PARAM;
237 	hw_link_info_old = &pi->phy.link_info_old;
238 	hw_media_type = &pi->phy.media_type;
239 	hw_link_info = &pi->phy.link_info;
240 	hw_fc_info = &pi->fc;
241 
242 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_link_status);
243 	cmd_flags = (ena_lse) ? ICE_AQ_LSE_ENA : ICE_AQ_LSE_DIS;
244 	resp = &desc.params.get_link_status;
245 	resp->cmd_flags = cpu_to_le16(cmd_flags);
246 	resp->lport_num = pi->lport;
247 
248 	status = ice_aq_send_cmd(pi->hw, &desc, &link_data, sizeof(link_data),
249 				 cd);
250 
251 	if (status)
252 		return status;
253 
254 	/* save off old link status information */
255 	*hw_link_info_old = *hw_link_info;
256 
257 	/* update current link status information */
258 	hw_link_info->link_speed = le16_to_cpu(link_data.link_speed);
259 	hw_link_info->phy_type_low = le64_to_cpu(link_data.phy_type_low);
260 	*hw_media_type = ice_get_media_type(pi);
261 	hw_link_info->link_info = link_data.link_info;
262 	hw_link_info->an_info = link_data.an_info;
263 	hw_link_info->ext_info = link_data.ext_info;
264 	hw_link_info->max_frame_size = le16_to_cpu(link_data.max_frame_size);
265 	hw_link_info->pacing = link_data.cfg & ICE_AQ_CFG_PACING_M;
266 
267 	/* update fc info */
268 	tx_pause = !!(link_data.an_info & ICE_AQ_LINK_PAUSE_TX);
269 	rx_pause = !!(link_data.an_info & ICE_AQ_LINK_PAUSE_RX);
270 	if (tx_pause && rx_pause)
271 		hw_fc_info->current_mode = ICE_FC_FULL;
272 	else if (tx_pause)
273 		hw_fc_info->current_mode = ICE_FC_TX_PAUSE;
274 	else if (rx_pause)
275 		hw_fc_info->current_mode = ICE_FC_RX_PAUSE;
276 	else
277 		hw_fc_info->current_mode = ICE_FC_NONE;
278 
279 	hw_link_info->lse_ena =
280 		!!(resp->cmd_flags & cpu_to_le16(ICE_AQ_LSE_IS_ENABLED));
281 
282 	/* save link status information */
283 	if (link)
284 		*link = *hw_link_info;
285 
286 	/* flag cleared so calling functions don't call AQ again */
287 	pi->phy.get_link_info = false;
288 
289 	return status;
290 }
291 
292 /**
293  * ice_init_flex_parser - initialize rx flex parser
294  * @hw: pointer to the hardware structure
295  *
296  * Function to initialize flex descriptors
297  */
ice_init_flex_parser(struct ice_hw * hw)298 static void ice_init_flex_parser(struct ice_hw *hw)
299 {
300 	u8 idx = 0;
301 
302 	ICE_NIC_FLX_ENTRY(hw, ICE_RX_MDID_HASH_LOW, 0);
303 	ICE_NIC_FLX_ENTRY(hw, ICE_RX_MDID_HASH_HIGH, 1);
304 	ICE_NIC_FLX_ENTRY(hw, ICE_RX_MDID_FLOW_ID_LOWER, 2);
305 	ICE_NIC_FLX_ENTRY(hw, ICE_RX_MDID_FLOW_ID_HIGH, 3);
306 	ICE_NIC_FLX_FLG_ENTRY(hw, ICE_RXFLG_PKT_FRG, ICE_RXFLG_UDP_GRE,
307 			      ICE_RXFLG_PKT_DSI, ICE_RXFLG_FIN, idx++);
308 	ICE_NIC_FLX_FLG_ENTRY(hw, ICE_RXFLG_SYN, ICE_RXFLG_RST,
309 			      ICE_RXFLG_PKT_DSI, ICE_RXFLG_PKT_DSI, idx++);
310 	ICE_NIC_FLX_FLG_ENTRY(hw, ICE_RXFLG_PKT_DSI, ICE_RXFLG_PKT_DSI,
311 			      ICE_RXFLG_EVLAN_x8100, ICE_RXFLG_EVLAN_x9100,
312 			      idx++);
313 	ICE_NIC_FLX_FLG_ENTRY(hw, ICE_RXFLG_VLAN_x8100, ICE_RXFLG_TNL_VLAN,
314 			      ICE_RXFLG_TNL_MAC, ICE_RXFLG_TNL0, idx++);
315 	ICE_NIC_FLX_FLG_ENTRY(hw, ICE_RXFLG_TNL1, ICE_RXFLG_TNL2,
316 			      ICE_RXFLG_PKT_DSI, ICE_RXFLG_PKT_DSI, idx);
317 }
318 
319 /**
320  * ice_init_fltr_mgmt_struct - initializes filter management list and locks
321  * @hw: pointer to the hw struct
322  */
ice_init_fltr_mgmt_struct(struct ice_hw * hw)323 static enum ice_status ice_init_fltr_mgmt_struct(struct ice_hw *hw)
324 {
325 	struct ice_switch_info *sw;
326 
327 	hw->switch_info = devm_kzalloc(ice_hw_to_dev(hw),
328 				       sizeof(*hw->switch_info), GFP_KERNEL);
329 	sw = hw->switch_info;
330 
331 	if (!sw)
332 		return ICE_ERR_NO_MEMORY;
333 
334 	INIT_LIST_HEAD(&sw->vsi_list_map_head);
335 
336 	mutex_init(&sw->mac_list_lock);
337 	INIT_LIST_HEAD(&sw->mac_list_head);
338 
339 	mutex_init(&sw->vlan_list_lock);
340 	INIT_LIST_HEAD(&sw->vlan_list_head);
341 
342 	mutex_init(&sw->eth_m_list_lock);
343 	INIT_LIST_HEAD(&sw->eth_m_list_head);
344 
345 	mutex_init(&sw->promisc_list_lock);
346 	INIT_LIST_HEAD(&sw->promisc_list_head);
347 
348 	mutex_init(&sw->mac_vlan_list_lock);
349 	INIT_LIST_HEAD(&sw->mac_vlan_list_head);
350 
351 	return 0;
352 }
353 
354 /**
355  * ice_cleanup_fltr_mgmt_struct - cleanup filter management list and locks
356  * @hw: pointer to the hw struct
357  */
ice_cleanup_fltr_mgmt_struct(struct ice_hw * hw)358 static void ice_cleanup_fltr_mgmt_struct(struct ice_hw *hw)
359 {
360 	struct ice_switch_info *sw = hw->switch_info;
361 	struct ice_vsi_list_map_info *v_pos_map;
362 	struct ice_vsi_list_map_info *v_tmp_map;
363 
364 	list_for_each_entry_safe(v_pos_map, v_tmp_map, &sw->vsi_list_map_head,
365 				 list_entry) {
366 		list_del(&v_pos_map->list_entry);
367 		devm_kfree(ice_hw_to_dev(hw), v_pos_map);
368 	}
369 
370 	mutex_destroy(&sw->mac_list_lock);
371 	mutex_destroy(&sw->vlan_list_lock);
372 	mutex_destroy(&sw->eth_m_list_lock);
373 	mutex_destroy(&sw->promisc_list_lock);
374 	mutex_destroy(&sw->mac_vlan_list_lock);
375 
376 	devm_kfree(ice_hw_to_dev(hw), sw);
377 }
378 
379 /**
380  * ice_init_hw - main hardware initialization routine
381  * @hw: pointer to the hardware structure
382  */
ice_init_hw(struct ice_hw * hw)383 enum ice_status ice_init_hw(struct ice_hw *hw)
384 {
385 	struct ice_aqc_get_phy_caps_data *pcaps;
386 	enum ice_status status;
387 	u16 mac_buf_len;
388 	void *mac_buf;
389 
390 	/* Set MAC type based on DeviceID */
391 	status = ice_set_mac_type(hw);
392 	if (status)
393 		return status;
394 
395 	hw->pf_id = (u8)(rd32(hw, PF_FUNC_RID) &
396 			 PF_FUNC_RID_FUNC_NUM_M) >>
397 		PF_FUNC_RID_FUNC_NUM_S;
398 
399 	status = ice_reset(hw, ICE_RESET_PFR);
400 	if (status)
401 		return status;
402 
403 	/* set these values to minimum allowed */
404 	hw->itr_gran_200 = ICE_ITR_GRAN_MIN_200;
405 	hw->itr_gran_100 = ICE_ITR_GRAN_MIN_100;
406 	hw->itr_gran_50 = ICE_ITR_GRAN_MIN_50;
407 	hw->itr_gran_25 = ICE_ITR_GRAN_MIN_25;
408 
409 	status = ice_init_all_ctrlq(hw);
410 	if (status)
411 		goto err_unroll_cqinit;
412 
413 	status = ice_clear_pf_cfg(hw);
414 	if (status)
415 		goto err_unroll_cqinit;
416 
417 	ice_clear_pxe_mode(hw);
418 
419 	status = ice_init_nvm(hw);
420 	if (status)
421 		goto err_unroll_cqinit;
422 
423 	status = ice_get_caps(hw);
424 	if (status)
425 		goto err_unroll_cqinit;
426 
427 	hw->port_info = devm_kzalloc(ice_hw_to_dev(hw),
428 				     sizeof(*hw->port_info), GFP_KERNEL);
429 	if (!hw->port_info) {
430 		status = ICE_ERR_NO_MEMORY;
431 		goto err_unroll_cqinit;
432 	}
433 
434 	/* set the back pointer to hw */
435 	hw->port_info->hw = hw;
436 
437 	/* Initialize port_info struct with switch configuration data */
438 	status = ice_get_initial_sw_cfg(hw);
439 	if (status)
440 		goto err_unroll_alloc;
441 
442 	hw->evb_veb = true;
443 
444 	/* Query the allocated resources for tx scheduler */
445 	status = ice_sched_query_res_alloc(hw);
446 	if (status) {
447 		ice_debug(hw, ICE_DBG_SCHED,
448 			  "Failed to get scheduler allocated resources\n");
449 		goto err_unroll_alloc;
450 	}
451 
452 	/* Initialize port_info struct with scheduler data */
453 	status = ice_sched_init_port(hw->port_info);
454 	if (status)
455 		goto err_unroll_sched;
456 
457 	pcaps = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*pcaps), GFP_KERNEL);
458 	if (!pcaps) {
459 		status = ICE_ERR_NO_MEMORY;
460 		goto err_unroll_sched;
461 	}
462 
463 	/* Initialize port_info struct with PHY capabilities */
464 	status = ice_aq_get_phy_caps(hw->port_info, false,
465 				     ICE_AQC_REPORT_TOPO_CAP, pcaps, NULL);
466 	devm_kfree(ice_hw_to_dev(hw), pcaps);
467 	if (status)
468 		goto err_unroll_sched;
469 
470 	/* Initialize port_info struct with link information */
471 	status = ice_aq_get_link_info(hw->port_info, false, NULL, NULL);
472 	if (status)
473 		goto err_unroll_sched;
474 
475 	status = ice_init_fltr_mgmt_struct(hw);
476 	if (status)
477 		goto err_unroll_sched;
478 
479 	/* Get MAC information */
480 	/* A single port can report up to two (LAN and WoL) addresses */
481 	mac_buf = devm_kcalloc(ice_hw_to_dev(hw), 2,
482 			       sizeof(struct ice_aqc_manage_mac_read_resp),
483 			       GFP_KERNEL);
484 	mac_buf_len = 2 * sizeof(struct ice_aqc_manage_mac_read_resp);
485 
486 	if (!mac_buf) {
487 		status = ICE_ERR_NO_MEMORY;
488 		goto err_unroll_fltr_mgmt_struct;
489 	}
490 
491 	status = ice_aq_manage_mac_read(hw, mac_buf, mac_buf_len, NULL);
492 	devm_kfree(ice_hw_to_dev(hw), mac_buf);
493 
494 	if (status)
495 		goto err_unroll_fltr_mgmt_struct;
496 
497 	ice_init_flex_parser(hw);
498 
499 	return 0;
500 
501 err_unroll_fltr_mgmt_struct:
502 	ice_cleanup_fltr_mgmt_struct(hw);
503 err_unroll_sched:
504 	ice_sched_cleanup_all(hw);
505 err_unroll_alloc:
506 	devm_kfree(ice_hw_to_dev(hw), hw->port_info);
507 err_unroll_cqinit:
508 	ice_shutdown_all_ctrlq(hw);
509 	return status;
510 }
511 
512 /**
513  * ice_deinit_hw - unroll initialization operations done by ice_init_hw
514  * @hw: pointer to the hardware structure
515  */
ice_deinit_hw(struct ice_hw * hw)516 void ice_deinit_hw(struct ice_hw *hw)
517 {
518 	ice_sched_cleanup_all(hw);
519 	ice_shutdown_all_ctrlq(hw);
520 
521 	if (hw->port_info) {
522 		devm_kfree(ice_hw_to_dev(hw), hw->port_info);
523 		hw->port_info = NULL;
524 	}
525 
526 	ice_cleanup_fltr_mgmt_struct(hw);
527 }
528 
529 /**
530  * ice_check_reset - Check to see if a global reset is complete
531  * @hw: pointer to the hardware structure
532  */
ice_check_reset(struct ice_hw * hw)533 enum ice_status ice_check_reset(struct ice_hw *hw)
534 {
535 	u32 cnt, reg = 0, grst_delay;
536 
537 	/* Poll for Device Active state in case a recent CORER, GLOBR,
538 	 * or EMPR has occurred. The grst delay value is in 100ms units.
539 	 * Add 1sec for outstanding AQ commands that can take a long time.
540 	 */
541 	grst_delay = ((rd32(hw, GLGEN_RSTCTL) & GLGEN_RSTCTL_GRSTDEL_M) >>
542 		      GLGEN_RSTCTL_GRSTDEL_S) + 10;
543 
544 	for (cnt = 0; cnt < grst_delay; cnt++) {
545 		mdelay(100);
546 		reg = rd32(hw, GLGEN_RSTAT);
547 		if (!(reg & GLGEN_RSTAT_DEVSTATE_M))
548 			break;
549 	}
550 
551 	if (cnt == grst_delay) {
552 		ice_debug(hw, ICE_DBG_INIT,
553 			  "Global reset polling failed to complete.\n");
554 		return ICE_ERR_RESET_FAILED;
555 	}
556 
557 #define ICE_RESET_DONE_MASK	(GLNVM_ULD_CORER_DONE_M | \
558 				 GLNVM_ULD_GLOBR_DONE_M)
559 
560 	/* Device is Active; check Global Reset processes are done */
561 	for (cnt = 0; cnt < ICE_PF_RESET_WAIT_COUNT; cnt++) {
562 		reg = rd32(hw, GLNVM_ULD) & ICE_RESET_DONE_MASK;
563 		if (reg == ICE_RESET_DONE_MASK) {
564 			ice_debug(hw, ICE_DBG_INIT,
565 				  "Global reset processes done. %d\n", cnt);
566 			break;
567 		}
568 		mdelay(10);
569 	}
570 
571 	if (cnt == ICE_PF_RESET_WAIT_COUNT) {
572 		ice_debug(hw, ICE_DBG_INIT,
573 			  "Wait for Reset Done timed out. GLNVM_ULD = 0x%x\n",
574 			  reg);
575 		return ICE_ERR_RESET_FAILED;
576 	}
577 
578 	return 0;
579 }
580 
581 /**
582  * ice_pf_reset - Reset the PF
583  * @hw: pointer to the hardware structure
584  *
585  * If a global reset has been triggered, this function checks
586  * for its completion and then issues the PF reset
587  */
ice_pf_reset(struct ice_hw * hw)588 static enum ice_status ice_pf_reset(struct ice_hw *hw)
589 {
590 	u32 cnt, reg;
591 
592 	/* If at function entry a global reset was already in progress, i.e.
593 	 * state is not 'device active' or any of the reset done bits are not
594 	 * set in GLNVM_ULD, there is no need for a PF Reset; poll until the
595 	 * global reset is done.
596 	 */
597 	if ((rd32(hw, GLGEN_RSTAT) & GLGEN_RSTAT_DEVSTATE_M) ||
598 	    (rd32(hw, GLNVM_ULD) & ICE_RESET_DONE_MASK) ^ ICE_RESET_DONE_MASK) {
599 		/* poll on global reset currently in progress until done */
600 		if (ice_check_reset(hw))
601 			return ICE_ERR_RESET_FAILED;
602 
603 		return 0;
604 	}
605 
606 	/* Reset the PF */
607 	reg = rd32(hw, PFGEN_CTRL);
608 
609 	wr32(hw, PFGEN_CTRL, (reg | PFGEN_CTRL_PFSWR_M));
610 
611 	for (cnt = 0; cnt < ICE_PF_RESET_WAIT_COUNT; cnt++) {
612 		reg = rd32(hw, PFGEN_CTRL);
613 		if (!(reg & PFGEN_CTRL_PFSWR_M))
614 			break;
615 
616 		mdelay(1);
617 	}
618 
619 	if (cnt == ICE_PF_RESET_WAIT_COUNT) {
620 		ice_debug(hw, ICE_DBG_INIT,
621 			  "PF reset polling failed to complete.\n");
622 		return ICE_ERR_RESET_FAILED;
623 	}
624 
625 	return 0;
626 }
627 
628 /**
629  * ice_reset - Perform different types of reset
630  * @hw: pointer to the hardware structure
631  * @req: reset request
632  *
633  * This function triggers a reset as specified by the req parameter.
634  *
635  * Note:
636  * If anything other than a PF reset is triggered, PXE mode is restored.
637  * This has to be cleared using ice_clear_pxe_mode again, once the AQ
638  * interface has been restored in the rebuild flow.
639  */
ice_reset(struct ice_hw * hw,enum ice_reset_req req)640 enum ice_status ice_reset(struct ice_hw *hw, enum ice_reset_req req)
641 {
642 	u32 val = 0;
643 
644 	switch (req) {
645 	case ICE_RESET_PFR:
646 		return ice_pf_reset(hw);
647 	case ICE_RESET_CORER:
648 		ice_debug(hw, ICE_DBG_INIT, "CoreR requested\n");
649 		val = GLGEN_RTRIG_CORER_M;
650 		break;
651 	case ICE_RESET_GLOBR:
652 		ice_debug(hw, ICE_DBG_INIT, "GlobalR requested\n");
653 		val = GLGEN_RTRIG_GLOBR_M;
654 		break;
655 	}
656 
657 	val |= rd32(hw, GLGEN_RTRIG);
658 	wr32(hw, GLGEN_RTRIG, val);
659 	ice_flush(hw);
660 
661 	/* wait for the FW to be ready */
662 	return ice_check_reset(hw);
663 }
664 
665 /**
666  * ice_copy_rxq_ctx_to_hw
667  * @hw: pointer to the hardware structure
668  * @ice_rxq_ctx: pointer to the rxq context
669  * @rxq_index: the index of the rx queue
670  *
671  * Copies rxq context from dense structure to hw register space
672  */
673 static enum ice_status
ice_copy_rxq_ctx_to_hw(struct ice_hw * hw,u8 * ice_rxq_ctx,u32 rxq_index)674 ice_copy_rxq_ctx_to_hw(struct ice_hw *hw, u8 *ice_rxq_ctx, u32 rxq_index)
675 {
676 	u8 i;
677 
678 	if (!ice_rxq_ctx)
679 		return ICE_ERR_BAD_PTR;
680 
681 	if (rxq_index > QRX_CTRL_MAX_INDEX)
682 		return ICE_ERR_PARAM;
683 
684 	/* Copy each dword separately to hw */
685 	for (i = 0; i < ICE_RXQ_CTX_SIZE_DWORDS; i++) {
686 		wr32(hw, QRX_CONTEXT(i, rxq_index),
687 		     *((u32 *)(ice_rxq_ctx + (i * sizeof(u32)))));
688 
689 		ice_debug(hw, ICE_DBG_QCTX, "qrxdata[%d]: %08X\n", i,
690 			  *((u32 *)(ice_rxq_ctx + (i * sizeof(u32)))));
691 	}
692 
693 	return 0;
694 }
695 
696 /* LAN Rx Queue Context */
697 static const struct ice_ctx_ele ice_rlan_ctx_info[] = {
698 	/* Field		Width	LSB */
699 	ICE_CTX_STORE(ice_rlan_ctx, head,		13,	0),
700 	ICE_CTX_STORE(ice_rlan_ctx, cpuid,		8,	13),
701 	ICE_CTX_STORE(ice_rlan_ctx, base,		57,	32),
702 	ICE_CTX_STORE(ice_rlan_ctx, qlen,		13,	89),
703 	ICE_CTX_STORE(ice_rlan_ctx, dbuf,		7,	102),
704 	ICE_CTX_STORE(ice_rlan_ctx, hbuf,		5,	109),
705 	ICE_CTX_STORE(ice_rlan_ctx, dtype,		2,	114),
706 	ICE_CTX_STORE(ice_rlan_ctx, dsize,		1,	116),
707 	ICE_CTX_STORE(ice_rlan_ctx, crcstrip,		1,	117),
708 	ICE_CTX_STORE(ice_rlan_ctx, l2tsel,		1,	119),
709 	ICE_CTX_STORE(ice_rlan_ctx, hsplit_0,		4,	120),
710 	ICE_CTX_STORE(ice_rlan_ctx, hsplit_1,		2,	124),
711 	ICE_CTX_STORE(ice_rlan_ctx, showiv,		1,	127),
712 	ICE_CTX_STORE(ice_rlan_ctx, rxmax,		14,	174),
713 	ICE_CTX_STORE(ice_rlan_ctx, tphrdesc_ena,	1,	193),
714 	ICE_CTX_STORE(ice_rlan_ctx, tphwdesc_ena,	1,	194),
715 	ICE_CTX_STORE(ice_rlan_ctx, tphdata_ena,	1,	195),
716 	ICE_CTX_STORE(ice_rlan_ctx, tphhead_ena,	1,	196),
717 	ICE_CTX_STORE(ice_rlan_ctx, lrxqthresh,		3,	198),
718 	{ 0 }
719 };
720 
721 /**
722  * ice_write_rxq_ctx
723  * @hw: pointer to the hardware structure
724  * @rlan_ctx: pointer to the rxq context
725  * @rxq_index: the index of the rx queue
726  *
727  * Converts rxq context from sparse to dense structure and then writes
728  * it to hw register space
729  */
730 enum ice_status
ice_write_rxq_ctx(struct ice_hw * hw,struct ice_rlan_ctx * rlan_ctx,u32 rxq_index)731 ice_write_rxq_ctx(struct ice_hw *hw, struct ice_rlan_ctx *rlan_ctx,
732 		  u32 rxq_index)
733 {
734 	u8 ctx_buf[ICE_RXQ_CTX_SZ] = { 0 };
735 
736 	ice_set_ctx((u8 *)rlan_ctx, ctx_buf, ice_rlan_ctx_info);
737 	return ice_copy_rxq_ctx_to_hw(hw, ctx_buf, rxq_index);
738 }
739 
740 /* LAN Tx Queue Context */
741 const struct ice_ctx_ele ice_tlan_ctx_info[] = {
742 				    /* Field			Width	LSB */
743 	ICE_CTX_STORE(ice_tlan_ctx, base,			57,	0),
744 	ICE_CTX_STORE(ice_tlan_ctx, port_num,			3,	57),
745 	ICE_CTX_STORE(ice_tlan_ctx, cgd_num,			5,	60),
746 	ICE_CTX_STORE(ice_tlan_ctx, pf_num,			3,	65),
747 	ICE_CTX_STORE(ice_tlan_ctx, vmvf_num,			10,	68),
748 	ICE_CTX_STORE(ice_tlan_ctx, vmvf_type,			2,	78),
749 	ICE_CTX_STORE(ice_tlan_ctx, src_vsi,			10,	80),
750 	ICE_CTX_STORE(ice_tlan_ctx, tsyn_ena,			1,	90),
751 	ICE_CTX_STORE(ice_tlan_ctx, alt_vlan,			1,	92),
752 	ICE_CTX_STORE(ice_tlan_ctx, cpuid,			8,	93),
753 	ICE_CTX_STORE(ice_tlan_ctx, wb_mode,			1,	101),
754 	ICE_CTX_STORE(ice_tlan_ctx, tphrd_desc,			1,	102),
755 	ICE_CTX_STORE(ice_tlan_ctx, tphrd,			1,	103),
756 	ICE_CTX_STORE(ice_tlan_ctx, tphwr_desc,			1,	104),
757 	ICE_CTX_STORE(ice_tlan_ctx, cmpq_id,			9,	105),
758 	ICE_CTX_STORE(ice_tlan_ctx, qnum_in_func,		14,	114),
759 	ICE_CTX_STORE(ice_tlan_ctx, itr_notification_mode,	1,	128),
760 	ICE_CTX_STORE(ice_tlan_ctx, adjust_prof_id,		6,	129),
761 	ICE_CTX_STORE(ice_tlan_ctx, qlen,			13,	135),
762 	ICE_CTX_STORE(ice_tlan_ctx, quanta_prof_idx,		4,	148),
763 	ICE_CTX_STORE(ice_tlan_ctx, tso_ena,			1,	152),
764 	ICE_CTX_STORE(ice_tlan_ctx, tso_qnum,			11,	153),
765 	ICE_CTX_STORE(ice_tlan_ctx, legacy_int,			1,	164),
766 	ICE_CTX_STORE(ice_tlan_ctx, drop_ena,			1,	165),
767 	ICE_CTX_STORE(ice_tlan_ctx, cache_prof_idx,		2,	166),
768 	ICE_CTX_STORE(ice_tlan_ctx, pkt_shaper_prof_idx,	3,	168),
769 	ICE_CTX_STORE(ice_tlan_ctx, int_q_state,		110,	171),
770 	{ 0 }
771 };
772 
773 /**
774  * ice_debug_cq
775  * @hw: pointer to the hardware structure
776  * @mask: debug mask
777  * @desc: pointer to control queue descriptor
778  * @buf: pointer to command buffer
779  * @buf_len: max length of buf
780  *
781  * Dumps debug log about control command with descriptor contents.
782  */
ice_debug_cq(struct ice_hw * hw,u32 __maybe_unused mask,void * desc,void * buf,u16 buf_len)783 void ice_debug_cq(struct ice_hw *hw, u32 __maybe_unused mask, void *desc,
784 		  void *buf, u16 buf_len)
785 {
786 	struct ice_aq_desc *cq_desc = (struct ice_aq_desc *)desc;
787 	u16 len;
788 
789 #ifndef CONFIG_DYNAMIC_DEBUG
790 	if (!(mask & hw->debug_mask))
791 		return;
792 #endif
793 
794 	if (!desc)
795 		return;
796 
797 	len = le16_to_cpu(cq_desc->datalen);
798 
799 	ice_debug(hw, mask,
800 		  "CQ CMD: opcode 0x%04X, flags 0x%04X, datalen 0x%04X, retval 0x%04X\n",
801 		  le16_to_cpu(cq_desc->opcode),
802 		  le16_to_cpu(cq_desc->flags),
803 		  le16_to_cpu(cq_desc->datalen), le16_to_cpu(cq_desc->retval));
804 	ice_debug(hw, mask, "\tcookie (h,l) 0x%08X 0x%08X\n",
805 		  le32_to_cpu(cq_desc->cookie_high),
806 		  le32_to_cpu(cq_desc->cookie_low));
807 	ice_debug(hw, mask, "\tparam (0,1)  0x%08X 0x%08X\n",
808 		  le32_to_cpu(cq_desc->params.generic.param0),
809 		  le32_to_cpu(cq_desc->params.generic.param1));
810 	ice_debug(hw, mask, "\taddr (h,l)   0x%08X 0x%08X\n",
811 		  le32_to_cpu(cq_desc->params.generic.addr_high),
812 		  le32_to_cpu(cq_desc->params.generic.addr_low));
813 	if (buf && cq_desc->datalen != 0) {
814 		ice_debug(hw, mask, "Buffer:\n");
815 		if (buf_len < len)
816 			len = buf_len;
817 
818 		ice_debug_array(hw, mask, 16, 1, (u8 *)buf, len);
819 	}
820 }
821 
822 /* FW Admin Queue command wrappers */
823 
824 /**
825  * ice_aq_send_cmd - send FW Admin Queue command to FW Admin Queue
826  * @hw: pointer to the hw struct
827  * @desc: descriptor describing the command
828  * @buf: buffer to use for indirect commands (NULL for direct commands)
829  * @buf_size: size of buffer for indirect commands (0 for direct commands)
830  * @cd: pointer to command details structure
831  *
832  * Helper function to send FW Admin Queue commands to the FW Admin Queue.
833  */
834 enum ice_status
ice_aq_send_cmd(struct ice_hw * hw,struct ice_aq_desc * desc,void * buf,u16 buf_size,struct ice_sq_cd * cd)835 ice_aq_send_cmd(struct ice_hw *hw, struct ice_aq_desc *desc, void *buf,
836 		u16 buf_size, struct ice_sq_cd *cd)
837 {
838 	return ice_sq_send_cmd(hw, &hw->adminq, desc, buf, buf_size, cd);
839 }
840 
841 /**
842  * ice_aq_get_fw_ver
843  * @hw: pointer to the hw struct
844  * @cd: pointer to command details structure or NULL
845  *
846  * Get the firmware version (0x0001) from the admin queue commands
847  */
ice_aq_get_fw_ver(struct ice_hw * hw,struct ice_sq_cd * cd)848 enum ice_status ice_aq_get_fw_ver(struct ice_hw *hw, struct ice_sq_cd *cd)
849 {
850 	struct ice_aqc_get_ver *resp;
851 	struct ice_aq_desc desc;
852 	enum ice_status status;
853 
854 	resp = &desc.params.get_ver;
855 
856 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_ver);
857 
858 	status = ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
859 
860 	if (!status) {
861 		hw->fw_branch = resp->fw_branch;
862 		hw->fw_maj_ver = resp->fw_major;
863 		hw->fw_min_ver = resp->fw_minor;
864 		hw->fw_patch = resp->fw_patch;
865 		hw->fw_build = le32_to_cpu(resp->fw_build);
866 		hw->api_branch = resp->api_branch;
867 		hw->api_maj_ver = resp->api_major;
868 		hw->api_min_ver = resp->api_minor;
869 		hw->api_patch = resp->api_patch;
870 	}
871 
872 	return status;
873 }
874 
875 /**
876  * ice_aq_q_shutdown
877  * @hw: pointer to the hw struct
878  * @unloading: is the driver unloading itself
879  *
880  * Tell the Firmware that we're shutting down the AdminQ and whether
881  * or not the driver is unloading as well (0x0003).
882  */
ice_aq_q_shutdown(struct ice_hw * hw,bool unloading)883 enum ice_status ice_aq_q_shutdown(struct ice_hw *hw, bool unloading)
884 {
885 	struct ice_aqc_q_shutdown *cmd;
886 	struct ice_aq_desc desc;
887 
888 	cmd = &desc.params.q_shutdown;
889 
890 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_q_shutdown);
891 
892 	if (unloading)
893 		cmd->driver_unloading = cpu_to_le32(ICE_AQC_DRIVER_UNLOADING);
894 
895 	return ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
896 }
897 
898 /**
899  * ice_aq_req_res
900  * @hw: pointer to the hw struct
901  * @res: resource id
902  * @access: access type
903  * @sdp_number: resource number
904  * @timeout: the maximum time in ms that the driver may hold the resource
905  * @cd: pointer to command details structure or NULL
906  *
907  * Requests common resource using the admin queue commands (0x0008).
908  * When attempting to acquire the Global Config Lock, the driver can
909  * learn of three states:
910  *  1) ICE_SUCCESS -        acquired lock, and can perform download package
911  *  2) ICE_ERR_AQ_ERROR -   did not get lock, driver should fail to load
912  *  3) ICE_ERR_AQ_NO_WORK - did not get lock, but another driver has
913  *                          successfully downloaded the package; the driver does
914  *                          not have to download the package and can continue
915  *                          loading
916  *
917  * Note that if the caller is in an acquire lock, perform action, release lock
918  * phase of operation, it is possible that the FW may detect a timeout and issue
919  * a CORER. In this case, the driver will receive a CORER interrupt and will
920  * have to determine its cause. The calling thread that is handling this flow
921  * will likely get an error propagated back to it indicating the Download
922  * Package, Update Package or the Release Resource AQ commands timed out.
923  */
924 static enum ice_status
ice_aq_req_res(struct ice_hw * hw,enum ice_aq_res_ids res,enum ice_aq_res_access_type access,u8 sdp_number,u32 * timeout,struct ice_sq_cd * cd)925 ice_aq_req_res(struct ice_hw *hw, enum ice_aq_res_ids res,
926 	       enum ice_aq_res_access_type access, u8 sdp_number, u32 *timeout,
927 	       struct ice_sq_cd *cd)
928 {
929 	struct ice_aqc_req_res *cmd_resp;
930 	struct ice_aq_desc desc;
931 	enum ice_status status;
932 
933 	cmd_resp = &desc.params.res_owner;
934 
935 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_req_res);
936 
937 	cmd_resp->res_id = cpu_to_le16(res);
938 	cmd_resp->access_type = cpu_to_le16(access);
939 	cmd_resp->res_number = cpu_to_le32(sdp_number);
940 	cmd_resp->timeout = cpu_to_le32(*timeout);
941 	*timeout = 0;
942 
943 	status = ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
944 
945 	/* The completion specifies the maximum time in ms that the driver
946 	 * may hold the resource in the Timeout field.
947 	 */
948 
949 	/* Global config lock response utilizes an additional status field.
950 	 *
951 	 * If the Global config lock resource is held by some other driver, the
952 	 * command completes with ICE_AQ_RES_GLBL_IN_PROG in the status field
953 	 * and the timeout field indicates the maximum time the current owner
954 	 * of the resource has to free it.
955 	 */
956 	if (res == ICE_GLOBAL_CFG_LOCK_RES_ID) {
957 		if (le16_to_cpu(cmd_resp->status) == ICE_AQ_RES_GLBL_SUCCESS) {
958 			*timeout = le32_to_cpu(cmd_resp->timeout);
959 			return 0;
960 		} else if (le16_to_cpu(cmd_resp->status) ==
961 			   ICE_AQ_RES_GLBL_IN_PROG) {
962 			*timeout = le32_to_cpu(cmd_resp->timeout);
963 			return ICE_ERR_AQ_ERROR;
964 		} else if (le16_to_cpu(cmd_resp->status) ==
965 			   ICE_AQ_RES_GLBL_DONE) {
966 			return ICE_ERR_AQ_NO_WORK;
967 		}
968 
969 		/* invalid FW response, force a timeout immediately */
970 		*timeout = 0;
971 		return ICE_ERR_AQ_ERROR;
972 	}
973 
974 	/* If the resource is held by some other driver, the command completes
975 	 * with a busy return value and the timeout field indicates the maximum
976 	 * time the current owner of the resource has to free it.
977 	 */
978 	if (!status || hw->adminq.sq_last_status == ICE_AQ_RC_EBUSY)
979 		*timeout = le32_to_cpu(cmd_resp->timeout);
980 
981 	return status;
982 }
983 
984 /**
985  * ice_aq_release_res
986  * @hw: pointer to the hw struct
987  * @res: resource id
988  * @sdp_number: resource number
989  * @cd: pointer to command details structure or NULL
990  *
991  * release common resource using the admin queue commands (0x0009)
992  */
993 static enum ice_status
ice_aq_release_res(struct ice_hw * hw,enum ice_aq_res_ids res,u8 sdp_number,struct ice_sq_cd * cd)994 ice_aq_release_res(struct ice_hw *hw, enum ice_aq_res_ids res, u8 sdp_number,
995 		   struct ice_sq_cd *cd)
996 {
997 	struct ice_aqc_req_res *cmd;
998 	struct ice_aq_desc desc;
999 
1000 	cmd = &desc.params.res_owner;
1001 
1002 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_release_res);
1003 
1004 	cmd->res_id = cpu_to_le16(res);
1005 	cmd->res_number = cpu_to_le32(sdp_number);
1006 
1007 	return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
1008 }
1009 
1010 /**
1011  * ice_acquire_res
1012  * @hw: pointer to the HW structure
1013  * @res: resource id
1014  * @access: access type (read or write)
1015  * @timeout: timeout in milliseconds
1016  *
1017  * This function will attempt to acquire the ownership of a resource.
1018  */
1019 enum ice_status
ice_acquire_res(struct ice_hw * hw,enum ice_aq_res_ids res,enum ice_aq_res_access_type access,u32 timeout)1020 ice_acquire_res(struct ice_hw *hw, enum ice_aq_res_ids res,
1021 		enum ice_aq_res_access_type access, u32 timeout)
1022 {
1023 #define ICE_RES_POLLING_DELAY_MS	10
1024 	u32 delay = ICE_RES_POLLING_DELAY_MS;
1025 	u32 time_left = timeout;
1026 	enum ice_status status;
1027 
1028 	status = ice_aq_req_res(hw, res, access, 0, &time_left, NULL);
1029 
1030 	/* A return code of ICE_ERR_AQ_NO_WORK means that another driver has
1031 	 * previously acquired the resource and performed any necessary updates;
1032 	 * in this case the caller does not obtain the resource and has no
1033 	 * further work to do.
1034 	 */
1035 	if (status == ICE_ERR_AQ_NO_WORK)
1036 		goto ice_acquire_res_exit;
1037 
1038 	if (status)
1039 		ice_debug(hw, ICE_DBG_RES,
1040 			  "resource %d acquire type %d failed.\n", res, access);
1041 
1042 	/* If necessary, poll until the current lock owner timeouts */
1043 	timeout = time_left;
1044 	while (status && timeout && time_left) {
1045 		mdelay(delay);
1046 		timeout = (timeout > delay) ? timeout - delay : 0;
1047 		status = ice_aq_req_res(hw, res, access, 0, &time_left, NULL);
1048 
1049 		if (status == ICE_ERR_AQ_NO_WORK)
1050 			/* lock free, but no work to do */
1051 			break;
1052 
1053 		if (!status)
1054 			/* lock acquired */
1055 			break;
1056 	}
1057 	if (status && status != ICE_ERR_AQ_NO_WORK)
1058 		ice_debug(hw, ICE_DBG_RES, "resource acquire timed out.\n");
1059 
1060 ice_acquire_res_exit:
1061 	if (status == ICE_ERR_AQ_NO_WORK) {
1062 		if (access == ICE_RES_WRITE)
1063 			ice_debug(hw, ICE_DBG_RES,
1064 				  "resource indicates no work to do.\n");
1065 		else
1066 			ice_debug(hw, ICE_DBG_RES,
1067 				  "Warning: ICE_ERR_AQ_NO_WORK not expected\n");
1068 	}
1069 	return status;
1070 }
1071 
1072 /**
1073  * ice_release_res
1074  * @hw: pointer to the HW structure
1075  * @res: resource id
1076  *
1077  * This function will release a resource using the proper Admin Command.
1078  */
ice_release_res(struct ice_hw * hw,enum ice_aq_res_ids res)1079 void ice_release_res(struct ice_hw *hw, enum ice_aq_res_ids res)
1080 {
1081 	enum ice_status status;
1082 	u32 total_delay = 0;
1083 
1084 	status = ice_aq_release_res(hw, res, 0, NULL);
1085 
1086 	/* there are some rare cases when trying to release the resource
1087 	 * results in an admin Q timeout, so handle them correctly
1088 	 */
1089 	while ((status == ICE_ERR_AQ_TIMEOUT) &&
1090 	       (total_delay < hw->adminq.sq_cmd_timeout)) {
1091 		mdelay(1);
1092 		status = ice_aq_release_res(hw, res, 0, NULL);
1093 		total_delay++;
1094 	}
1095 }
1096 
1097 /**
1098  * ice_parse_caps - parse function/device capabilities
1099  * @hw: pointer to the hw struct
1100  * @buf: pointer to a buffer containing function/device capability records
1101  * @cap_count: number of capability records in the list
1102  * @opc: type of capabilities list to parse
1103  *
1104  * Helper function to parse function(0x000a)/device(0x000b) capabilities list.
1105  */
1106 static void
ice_parse_caps(struct ice_hw * hw,void * buf,u32 cap_count,enum ice_adminq_opc opc)1107 ice_parse_caps(struct ice_hw *hw, void *buf, u32 cap_count,
1108 	       enum ice_adminq_opc opc)
1109 {
1110 	struct ice_aqc_list_caps_elem *cap_resp;
1111 	struct ice_hw_func_caps *func_p = NULL;
1112 	struct ice_hw_dev_caps *dev_p = NULL;
1113 	struct ice_hw_common_caps *caps;
1114 	u32 i;
1115 
1116 	if (!buf)
1117 		return;
1118 
1119 	cap_resp = (struct ice_aqc_list_caps_elem *)buf;
1120 
1121 	if (opc == ice_aqc_opc_list_dev_caps) {
1122 		dev_p = &hw->dev_caps;
1123 		caps = &dev_p->common_cap;
1124 	} else if (opc == ice_aqc_opc_list_func_caps) {
1125 		func_p = &hw->func_caps;
1126 		caps = &func_p->common_cap;
1127 	} else {
1128 		ice_debug(hw, ICE_DBG_INIT, "wrong opcode\n");
1129 		return;
1130 	}
1131 
1132 	for (i = 0; caps && i < cap_count; i++, cap_resp++) {
1133 		u32 logical_id = le32_to_cpu(cap_resp->logical_id);
1134 		u32 phys_id = le32_to_cpu(cap_resp->phys_id);
1135 		u32 number = le32_to_cpu(cap_resp->number);
1136 		u16 cap = le16_to_cpu(cap_resp->cap);
1137 
1138 		switch (cap) {
1139 		case ICE_AQC_CAPS_VSI:
1140 			if (dev_p) {
1141 				dev_p->num_vsi_allocd_to_host = number;
1142 				ice_debug(hw, ICE_DBG_INIT,
1143 					  "HW caps: Dev.VSI cnt = %d\n",
1144 					  dev_p->num_vsi_allocd_to_host);
1145 			} else if (func_p) {
1146 				func_p->guaranteed_num_vsi = number;
1147 				ice_debug(hw, ICE_DBG_INIT,
1148 					  "HW caps: Func.VSI cnt = %d\n",
1149 					  func_p->guaranteed_num_vsi);
1150 			}
1151 			break;
1152 		case ICE_AQC_CAPS_RSS:
1153 			caps->rss_table_size = number;
1154 			caps->rss_table_entry_width = logical_id;
1155 			ice_debug(hw, ICE_DBG_INIT,
1156 				  "HW caps: RSS table size = %d\n",
1157 				  caps->rss_table_size);
1158 			ice_debug(hw, ICE_DBG_INIT,
1159 				  "HW caps: RSS table width = %d\n",
1160 				  caps->rss_table_entry_width);
1161 			break;
1162 		case ICE_AQC_CAPS_RXQS:
1163 			caps->num_rxq = number;
1164 			caps->rxq_first_id = phys_id;
1165 			ice_debug(hw, ICE_DBG_INIT,
1166 				  "HW caps: Num Rx Qs = %d\n", caps->num_rxq);
1167 			ice_debug(hw, ICE_DBG_INIT,
1168 				  "HW caps: Rx first queue ID = %d\n",
1169 				  caps->rxq_first_id);
1170 			break;
1171 		case ICE_AQC_CAPS_TXQS:
1172 			caps->num_txq = number;
1173 			caps->txq_first_id = phys_id;
1174 			ice_debug(hw, ICE_DBG_INIT,
1175 				  "HW caps: Num Tx Qs = %d\n", caps->num_txq);
1176 			ice_debug(hw, ICE_DBG_INIT,
1177 				  "HW caps: Tx first queue ID = %d\n",
1178 				  caps->txq_first_id);
1179 			break;
1180 		case ICE_AQC_CAPS_MSIX:
1181 			caps->num_msix_vectors = number;
1182 			caps->msix_vector_first_id = phys_id;
1183 			ice_debug(hw, ICE_DBG_INIT,
1184 				  "HW caps: MSIX vector count = %d\n",
1185 				  caps->num_msix_vectors);
1186 			ice_debug(hw, ICE_DBG_INIT,
1187 				  "HW caps: MSIX first vector index = %d\n",
1188 				  caps->msix_vector_first_id);
1189 			break;
1190 		case ICE_AQC_CAPS_MAX_MTU:
1191 			caps->max_mtu = number;
1192 			if (dev_p)
1193 				ice_debug(hw, ICE_DBG_INIT,
1194 					  "HW caps: Dev.MaxMTU = %d\n",
1195 					  caps->max_mtu);
1196 			else if (func_p)
1197 				ice_debug(hw, ICE_DBG_INIT,
1198 					  "HW caps: func.MaxMTU = %d\n",
1199 					  caps->max_mtu);
1200 			break;
1201 		default:
1202 			ice_debug(hw, ICE_DBG_INIT,
1203 				  "HW caps: Unknown capability[%d]: 0x%x\n", i,
1204 				  cap);
1205 			break;
1206 		}
1207 	}
1208 }
1209 
1210 /**
1211  * ice_aq_discover_caps - query function/device capabilities
1212  * @hw: pointer to the hw struct
1213  * @buf: a virtual buffer to hold the capabilities
1214  * @buf_size: Size of the virtual buffer
1215  * @data_size: Size of the returned data, or buf size needed if AQ err==ENOMEM
1216  * @opc: capabilities type to discover - pass in the command opcode
1217  * @cd: pointer to command details structure or NULL
1218  *
1219  * Get the function(0x000a)/device(0x000b) capabilities description from
1220  * the firmware.
1221  */
1222 static enum ice_status
ice_aq_discover_caps(struct ice_hw * hw,void * buf,u16 buf_size,u16 * data_size,enum ice_adminq_opc opc,struct ice_sq_cd * cd)1223 ice_aq_discover_caps(struct ice_hw *hw, void *buf, u16 buf_size, u16 *data_size,
1224 		     enum ice_adminq_opc opc, struct ice_sq_cd *cd)
1225 {
1226 	struct ice_aqc_list_caps *cmd;
1227 	struct ice_aq_desc desc;
1228 	enum ice_status status;
1229 
1230 	cmd = &desc.params.get_cap;
1231 
1232 	if (opc != ice_aqc_opc_list_func_caps &&
1233 	    opc != ice_aqc_opc_list_dev_caps)
1234 		return ICE_ERR_PARAM;
1235 
1236 	ice_fill_dflt_direct_cmd_desc(&desc, opc);
1237 
1238 	status = ice_aq_send_cmd(hw, &desc, buf, buf_size, cd);
1239 	if (!status)
1240 		ice_parse_caps(hw, buf, le32_to_cpu(cmd->count), opc);
1241 	*data_size = le16_to_cpu(desc.datalen);
1242 
1243 	return status;
1244 }
1245 
1246 /**
1247  * ice_get_caps - get info about the HW
1248  * @hw: pointer to the hardware structure
1249  */
ice_get_caps(struct ice_hw * hw)1250 enum ice_status ice_get_caps(struct ice_hw *hw)
1251 {
1252 	enum ice_status status;
1253 	u16 data_size = 0;
1254 	u16 cbuf_len;
1255 	u8 retries;
1256 
1257 	/* The driver doesn't know how many capabilities the device will return
1258 	 * so the buffer size required isn't known ahead of time. The driver
1259 	 * starts with cbuf_len and if this turns out to be insufficient, the
1260 	 * device returns ICE_AQ_RC_ENOMEM and also the buffer size it needs.
1261 	 * The driver then allocates the buffer of this size and retries the
1262 	 * operation. So it follows that the retry count is 2.
1263 	 */
1264 #define ICE_GET_CAP_BUF_COUNT	40
1265 #define ICE_GET_CAP_RETRY_COUNT	2
1266 
1267 	cbuf_len = ICE_GET_CAP_BUF_COUNT *
1268 		sizeof(struct ice_aqc_list_caps_elem);
1269 
1270 	retries = ICE_GET_CAP_RETRY_COUNT;
1271 
1272 	do {
1273 		void *cbuf;
1274 
1275 		cbuf = devm_kzalloc(ice_hw_to_dev(hw), cbuf_len, GFP_KERNEL);
1276 		if (!cbuf)
1277 			return ICE_ERR_NO_MEMORY;
1278 
1279 		status = ice_aq_discover_caps(hw, cbuf, cbuf_len, &data_size,
1280 					      ice_aqc_opc_list_func_caps, NULL);
1281 		devm_kfree(ice_hw_to_dev(hw), cbuf);
1282 
1283 		if (!status || hw->adminq.sq_last_status != ICE_AQ_RC_ENOMEM)
1284 			break;
1285 
1286 		/* If ENOMEM is returned, try again with bigger buffer */
1287 		cbuf_len = data_size;
1288 	} while (--retries);
1289 
1290 	return status;
1291 }
1292 
1293 /**
1294  * ice_aq_manage_mac_write - manage MAC address write command
1295  * @hw: pointer to the hw struct
1296  * @mac_addr: MAC address to be written as LAA/LAA+WoL/Port address
1297  * @flags: flags to control write behavior
1298  * @cd: pointer to command details structure or NULL
1299  *
1300  * This function is used to write MAC address to the NVM (0x0108).
1301  */
1302 enum ice_status
ice_aq_manage_mac_write(struct ice_hw * hw,u8 * mac_addr,u8 flags,struct ice_sq_cd * cd)1303 ice_aq_manage_mac_write(struct ice_hw *hw, u8 *mac_addr, u8 flags,
1304 			struct ice_sq_cd *cd)
1305 {
1306 	struct ice_aqc_manage_mac_write *cmd;
1307 	struct ice_aq_desc desc;
1308 
1309 	cmd = &desc.params.mac_write;
1310 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_manage_mac_write);
1311 
1312 	cmd->flags = flags;
1313 
1314 	/* Prep values for flags, sah, sal */
1315 	cmd->sah = htons(*((u16 *)mac_addr));
1316 	cmd->sal = htonl(*((u32 *)(mac_addr + 2)));
1317 
1318 	return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
1319 }
1320 
1321 /**
1322  * ice_aq_clear_pxe_mode
1323  * @hw: pointer to the hw struct
1324  *
1325  * Tell the firmware that the driver is taking over from PXE (0x0110).
1326  */
ice_aq_clear_pxe_mode(struct ice_hw * hw)1327 static enum ice_status ice_aq_clear_pxe_mode(struct ice_hw *hw)
1328 {
1329 	struct ice_aq_desc desc;
1330 
1331 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_clear_pxe_mode);
1332 	desc.params.clear_pxe.rx_cnt = ICE_AQC_CLEAR_PXE_RX_CNT;
1333 
1334 	return ice_aq_send_cmd(hw, &desc, NULL, 0, NULL);
1335 }
1336 
1337 /**
1338  * ice_clear_pxe_mode - clear pxe operations mode
1339  * @hw: pointer to the hw struct
1340  *
1341  * Make sure all PXE mode settings are cleared, including things
1342  * like descriptor fetch/write-back mode.
1343  */
ice_clear_pxe_mode(struct ice_hw * hw)1344 void ice_clear_pxe_mode(struct ice_hw *hw)
1345 {
1346 	if (ice_check_sq_alive(hw, &hw->adminq))
1347 		ice_aq_clear_pxe_mode(hw);
1348 }
1349 
1350 /**
1351  * ice_aq_set_phy_cfg
1352  * @hw: pointer to the hw struct
1353  * @lport: logical port number
1354  * @cfg: structure with PHY configuration data to be set
1355  * @cd: pointer to command details structure or NULL
1356  *
1357  * Set the various PHY configuration parameters supported on the Port.
1358  * One or more of the Set PHY config parameters may be ignored in an MFP
1359  * mode as the PF may not have the privilege to set some of the PHY Config
1360  * parameters. This status will be indicated by the command response (0x0601).
1361  */
1362 static enum ice_status
ice_aq_set_phy_cfg(struct ice_hw * hw,u8 lport,struct ice_aqc_set_phy_cfg_data * cfg,struct ice_sq_cd * cd)1363 ice_aq_set_phy_cfg(struct ice_hw *hw, u8 lport,
1364 		   struct ice_aqc_set_phy_cfg_data *cfg, struct ice_sq_cd *cd)
1365 {
1366 	struct ice_aqc_set_phy_cfg *cmd;
1367 	struct ice_aq_desc desc;
1368 
1369 	if (!cfg)
1370 		return ICE_ERR_PARAM;
1371 
1372 	cmd = &desc.params.set_phy;
1373 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_phy_cfg);
1374 	cmd->lport_num = lport;
1375 
1376 	return ice_aq_send_cmd(hw, &desc, cfg, sizeof(*cfg), cd);
1377 }
1378 
1379 /**
1380  * ice_update_link_info - update status of the HW network link
1381  * @pi: port info structure of the interested logical port
1382  */
1383 static enum ice_status
ice_update_link_info(struct ice_port_info * pi)1384 ice_update_link_info(struct ice_port_info *pi)
1385 {
1386 	struct ice_aqc_get_phy_caps_data *pcaps;
1387 	struct ice_phy_info *phy_info;
1388 	enum ice_status status;
1389 	struct ice_hw *hw;
1390 
1391 	if (!pi)
1392 		return ICE_ERR_PARAM;
1393 
1394 	hw = pi->hw;
1395 
1396 	pcaps = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*pcaps), GFP_KERNEL);
1397 	if (!pcaps)
1398 		return ICE_ERR_NO_MEMORY;
1399 
1400 	phy_info = &pi->phy;
1401 	status = ice_aq_get_link_info(pi, true, NULL, NULL);
1402 	if (status)
1403 		goto out;
1404 
1405 	if (phy_info->link_info.link_info & ICE_AQ_MEDIA_AVAILABLE) {
1406 		status = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_SW_CFG,
1407 					     pcaps, NULL);
1408 		if (status)
1409 			goto out;
1410 
1411 		memcpy(phy_info->link_info.module_type, &pcaps->module_type,
1412 		       sizeof(phy_info->link_info.module_type));
1413 	}
1414 out:
1415 	devm_kfree(ice_hw_to_dev(hw), pcaps);
1416 	return status;
1417 }
1418 
1419 /**
1420  * ice_set_fc
1421  * @pi: port information structure
1422  * @aq_failures: pointer to status code, specific to ice_set_fc routine
1423  * @atomic_restart: enable automatic link update
1424  *
1425  * Set the requested flow control mode.
1426  */
1427 enum ice_status
ice_set_fc(struct ice_port_info * pi,u8 * aq_failures,bool atomic_restart)1428 ice_set_fc(struct ice_port_info *pi, u8 *aq_failures, bool atomic_restart)
1429 {
1430 	struct ice_aqc_set_phy_cfg_data cfg = { 0 };
1431 	struct ice_aqc_get_phy_caps_data *pcaps;
1432 	enum ice_status status;
1433 	u8 pause_mask = 0x0;
1434 	struct ice_hw *hw;
1435 
1436 	if (!pi)
1437 		return ICE_ERR_PARAM;
1438 	hw = pi->hw;
1439 	*aq_failures = ICE_SET_FC_AQ_FAIL_NONE;
1440 
1441 	switch (pi->fc.req_mode) {
1442 	case ICE_FC_FULL:
1443 		pause_mask |= ICE_AQC_PHY_EN_TX_LINK_PAUSE;
1444 		pause_mask |= ICE_AQC_PHY_EN_RX_LINK_PAUSE;
1445 		break;
1446 	case ICE_FC_RX_PAUSE:
1447 		pause_mask |= ICE_AQC_PHY_EN_RX_LINK_PAUSE;
1448 		break;
1449 	case ICE_FC_TX_PAUSE:
1450 		pause_mask |= ICE_AQC_PHY_EN_TX_LINK_PAUSE;
1451 		break;
1452 	default:
1453 		break;
1454 	}
1455 
1456 	pcaps = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*pcaps), GFP_KERNEL);
1457 	if (!pcaps)
1458 		return ICE_ERR_NO_MEMORY;
1459 
1460 	/* Get the current phy config */
1461 	status = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_SW_CFG, pcaps,
1462 				     NULL);
1463 	if (status) {
1464 		*aq_failures = ICE_SET_FC_AQ_FAIL_GET;
1465 		goto out;
1466 	}
1467 
1468 	/* clear the old pause settings */
1469 	cfg.caps = pcaps->caps & ~(ICE_AQC_PHY_EN_TX_LINK_PAUSE |
1470 				   ICE_AQC_PHY_EN_RX_LINK_PAUSE);
1471 	/* set the new capabilities */
1472 	cfg.caps |= pause_mask;
1473 	/* If the capabilities have changed, then set the new config */
1474 	if (cfg.caps != pcaps->caps) {
1475 		int retry_count, retry_max = 10;
1476 
1477 		/* Auto restart link so settings take effect */
1478 		if (atomic_restart)
1479 			cfg.caps |= ICE_AQ_PHY_ENA_ATOMIC_LINK;
1480 		/* Copy over all the old settings */
1481 		cfg.phy_type_low = pcaps->phy_type_low;
1482 		cfg.low_power_ctrl = pcaps->low_power_ctrl;
1483 		cfg.eee_cap = pcaps->eee_cap;
1484 		cfg.eeer_value = pcaps->eeer_value;
1485 		cfg.link_fec_opt = pcaps->link_fec_options;
1486 
1487 		status = ice_aq_set_phy_cfg(hw, pi->lport, &cfg, NULL);
1488 		if (status) {
1489 			*aq_failures = ICE_SET_FC_AQ_FAIL_SET;
1490 			goto out;
1491 		}
1492 
1493 		/* Update the link info
1494 		 * It sometimes takes a really long time for link to
1495 		 * come back from the atomic reset. Thus, we wait a
1496 		 * little bit.
1497 		 */
1498 		for (retry_count = 0; retry_count < retry_max; retry_count++) {
1499 			status = ice_update_link_info(pi);
1500 
1501 			if (!status)
1502 				break;
1503 
1504 			mdelay(100);
1505 		}
1506 
1507 		if (status)
1508 			*aq_failures = ICE_SET_FC_AQ_FAIL_UPDATE;
1509 	}
1510 
1511 out:
1512 	devm_kfree(ice_hw_to_dev(hw), pcaps);
1513 	return status;
1514 }
1515 
1516 /**
1517  * ice_get_link_status - get status of the HW network link
1518  * @pi: port information structure
1519  * @link_up: pointer to bool (true/false = linkup/linkdown)
1520  *
1521  * Variable link_up is true if link is up, false if link is down.
1522  * The variable link_up is invalid if status is non zero. As a
1523  * result of this call, link status reporting becomes enabled
1524  */
ice_get_link_status(struct ice_port_info * pi,bool * link_up)1525 enum ice_status ice_get_link_status(struct ice_port_info *pi, bool *link_up)
1526 {
1527 	struct ice_phy_info *phy_info;
1528 	enum ice_status status = 0;
1529 
1530 	if (!pi || !link_up)
1531 		return ICE_ERR_PARAM;
1532 
1533 	phy_info = &pi->phy;
1534 
1535 	if (phy_info->get_link_info) {
1536 		status = ice_update_link_info(pi);
1537 
1538 		if (status)
1539 			ice_debug(pi->hw, ICE_DBG_LINK,
1540 				  "get link status error, status = %d\n",
1541 				  status);
1542 	}
1543 
1544 	*link_up = phy_info->link_info.link_info & ICE_AQ_LINK_UP;
1545 
1546 	return status;
1547 }
1548 
1549 /**
1550  * ice_aq_set_link_restart_an
1551  * @pi: pointer to the port information structure
1552  * @ena_link: if true: enable link, if false: disable link
1553  * @cd: pointer to command details structure or NULL
1554  *
1555  * Sets up the link and restarts the Auto-Negotiation over the link.
1556  */
1557 enum ice_status
ice_aq_set_link_restart_an(struct ice_port_info * pi,bool ena_link,struct ice_sq_cd * cd)1558 ice_aq_set_link_restart_an(struct ice_port_info *pi, bool ena_link,
1559 			   struct ice_sq_cd *cd)
1560 {
1561 	struct ice_aqc_restart_an *cmd;
1562 	struct ice_aq_desc desc;
1563 
1564 	cmd = &desc.params.restart_an;
1565 
1566 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_restart_an);
1567 
1568 	cmd->cmd_flags = ICE_AQC_RESTART_AN_LINK_RESTART;
1569 	cmd->lport_num = pi->lport;
1570 	if (ena_link)
1571 		cmd->cmd_flags |= ICE_AQC_RESTART_AN_LINK_ENABLE;
1572 	else
1573 		cmd->cmd_flags &= ~ICE_AQC_RESTART_AN_LINK_ENABLE;
1574 
1575 	return ice_aq_send_cmd(pi->hw, &desc, NULL, 0, cd);
1576 }
1577 
1578 /**
1579  * ice_aq_set_event_mask
1580  * @hw: pointer to the hw struct
1581  * @port_num: port number of the physical function
1582  * @mask: event mask to be set
1583  * @cd: pointer to command details structure or NULL
1584  *
1585  * Set event mask (0x0613)
1586  */
1587 enum ice_status
ice_aq_set_event_mask(struct ice_hw * hw,u8 port_num,u16 mask,struct ice_sq_cd * cd)1588 ice_aq_set_event_mask(struct ice_hw *hw, u8 port_num, u16 mask,
1589 		      struct ice_sq_cd *cd)
1590 {
1591 	struct ice_aqc_set_event_mask *cmd;
1592 	struct ice_aq_desc desc;
1593 
1594 	cmd = &desc.params.set_event_mask;
1595 
1596 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_event_mask);
1597 
1598 	cmd->lport_num = port_num;
1599 
1600 	cmd->event_mask = cpu_to_le16(mask);
1601 
1602 	return ice_aq_send_cmd(hw, &desc, NULL, 0, cd);
1603 }
1604 
1605 /**
1606  * __ice_aq_get_set_rss_lut
1607  * @hw: pointer to the hardware structure
1608  * @vsi_id: VSI FW index
1609  * @lut_type: LUT table type
1610  * @lut: pointer to the LUT buffer provided by the caller
1611  * @lut_size: size of the LUT buffer
1612  * @glob_lut_idx: global LUT index
1613  * @set: set true to set the table, false to get the table
1614  *
1615  * Internal function to get (0x0B05) or set (0x0B03) RSS look up table
1616  */
1617 static enum ice_status
__ice_aq_get_set_rss_lut(struct ice_hw * hw,u16 vsi_id,u8 lut_type,u8 * lut,u16 lut_size,u8 glob_lut_idx,bool set)1618 __ice_aq_get_set_rss_lut(struct ice_hw *hw, u16 vsi_id, u8 lut_type, u8 *lut,
1619 			 u16 lut_size, u8 glob_lut_idx, bool set)
1620 {
1621 	struct ice_aqc_get_set_rss_lut *cmd_resp;
1622 	struct ice_aq_desc desc;
1623 	enum ice_status status;
1624 	u16 flags = 0;
1625 
1626 	cmd_resp = &desc.params.get_set_rss_lut;
1627 
1628 	if (set) {
1629 		ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_rss_lut);
1630 		desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
1631 	} else {
1632 		ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_rss_lut);
1633 	}
1634 
1635 	cmd_resp->vsi_id = cpu_to_le16(((vsi_id <<
1636 					 ICE_AQC_GSET_RSS_LUT_VSI_ID_S) &
1637 					ICE_AQC_GSET_RSS_LUT_VSI_ID_M) |
1638 				       ICE_AQC_GSET_RSS_LUT_VSI_VALID);
1639 
1640 	switch (lut_type) {
1641 	case ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_VSI:
1642 	case ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_PF:
1643 	case ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_GLOBAL:
1644 		flags |= ((lut_type << ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_S) &
1645 			  ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_M);
1646 		break;
1647 	default:
1648 		status = ICE_ERR_PARAM;
1649 		goto ice_aq_get_set_rss_lut_exit;
1650 	}
1651 
1652 	if (lut_type == ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_GLOBAL) {
1653 		flags |= ((glob_lut_idx << ICE_AQC_GSET_RSS_LUT_GLOBAL_IDX_S) &
1654 			  ICE_AQC_GSET_RSS_LUT_GLOBAL_IDX_M);
1655 
1656 		if (!set)
1657 			goto ice_aq_get_set_rss_lut_send;
1658 	} else if (lut_type == ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_PF) {
1659 		if (!set)
1660 			goto ice_aq_get_set_rss_lut_send;
1661 	} else {
1662 		goto ice_aq_get_set_rss_lut_send;
1663 	}
1664 
1665 	/* LUT size is only valid for Global and PF table types */
1666 	switch (lut_size) {
1667 	case ICE_AQC_GSET_RSS_LUT_TABLE_SIZE_128:
1668 		break;
1669 	case ICE_AQC_GSET_RSS_LUT_TABLE_SIZE_512:
1670 		flags |= (ICE_AQC_GSET_RSS_LUT_TABLE_SIZE_512_FLAG <<
1671 			  ICE_AQC_GSET_RSS_LUT_TABLE_SIZE_S) &
1672 			 ICE_AQC_GSET_RSS_LUT_TABLE_SIZE_M;
1673 		break;
1674 	case ICE_AQC_GSET_RSS_LUT_TABLE_SIZE_2K:
1675 		if (lut_type == ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_PF) {
1676 			flags |= (ICE_AQC_GSET_RSS_LUT_TABLE_SIZE_2K_FLAG <<
1677 				  ICE_AQC_GSET_RSS_LUT_TABLE_SIZE_S) &
1678 				 ICE_AQC_GSET_RSS_LUT_TABLE_SIZE_M;
1679 			break;
1680 		}
1681 		/* fall-through */
1682 	default:
1683 		status = ICE_ERR_PARAM;
1684 		goto ice_aq_get_set_rss_lut_exit;
1685 	}
1686 
1687 ice_aq_get_set_rss_lut_send:
1688 	cmd_resp->flags = cpu_to_le16(flags);
1689 	status = ice_aq_send_cmd(hw, &desc, lut, lut_size, NULL);
1690 
1691 ice_aq_get_set_rss_lut_exit:
1692 	return status;
1693 }
1694 
1695 /**
1696  * ice_aq_get_rss_lut
1697  * @hw: pointer to the hardware structure
1698  * @vsi_id: VSI FW index
1699  * @lut_type: LUT table type
1700  * @lut: pointer to the LUT buffer provided by the caller
1701  * @lut_size: size of the LUT buffer
1702  *
1703  * get the RSS lookup table, PF or VSI type
1704  */
1705 enum ice_status
ice_aq_get_rss_lut(struct ice_hw * hw,u16 vsi_id,u8 lut_type,u8 * lut,u16 lut_size)1706 ice_aq_get_rss_lut(struct ice_hw *hw, u16 vsi_id, u8 lut_type, u8 *lut,
1707 		   u16 lut_size)
1708 {
1709 	return __ice_aq_get_set_rss_lut(hw, vsi_id, lut_type, lut, lut_size, 0,
1710 					false);
1711 }
1712 
1713 /**
1714  * ice_aq_set_rss_lut
1715  * @hw: pointer to the hardware structure
1716  * @vsi_id: VSI FW index
1717  * @lut_type: LUT table type
1718  * @lut: pointer to the LUT buffer provided by the caller
1719  * @lut_size: size of the LUT buffer
1720  *
1721  * set the RSS lookup table, PF or VSI type
1722  */
1723 enum ice_status
ice_aq_set_rss_lut(struct ice_hw * hw,u16 vsi_id,u8 lut_type,u8 * lut,u16 lut_size)1724 ice_aq_set_rss_lut(struct ice_hw *hw, u16 vsi_id, u8 lut_type, u8 *lut,
1725 		   u16 lut_size)
1726 {
1727 	return __ice_aq_get_set_rss_lut(hw, vsi_id, lut_type, lut, lut_size, 0,
1728 					true);
1729 }
1730 
1731 /**
1732  * __ice_aq_get_set_rss_key
1733  * @hw: pointer to the hw struct
1734  * @vsi_id: VSI FW index
1735  * @key: pointer to key info struct
1736  * @set: set true to set the key, false to get the key
1737  *
1738  * get (0x0B04) or set (0x0B02) the RSS key per VSI
1739  */
1740 static enum
__ice_aq_get_set_rss_key(struct ice_hw * hw,u16 vsi_id,struct ice_aqc_get_set_rss_keys * key,bool set)1741 ice_status __ice_aq_get_set_rss_key(struct ice_hw *hw, u16 vsi_id,
1742 				    struct ice_aqc_get_set_rss_keys *key,
1743 				    bool set)
1744 {
1745 	struct ice_aqc_get_set_rss_key *cmd_resp;
1746 	u16 key_size = sizeof(*key);
1747 	struct ice_aq_desc desc;
1748 
1749 	cmd_resp = &desc.params.get_set_rss_key;
1750 
1751 	if (set) {
1752 		ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_set_rss_key);
1753 		desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
1754 	} else {
1755 		ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_rss_key);
1756 	}
1757 
1758 	cmd_resp->vsi_id = cpu_to_le16(((vsi_id <<
1759 					 ICE_AQC_GSET_RSS_KEY_VSI_ID_S) &
1760 					ICE_AQC_GSET_RSS_KEY_VSI_ID_M) |
1761 				       ICE_AQC_GSET_RSS_KEY_VSI_VALID);
1762 
1763 	return ice_aq_send_cmd(hw, &desc, key, key_size, NULL);
1764 }
1765 
1766 /**
1767  * ice_aq_get_rss_key
1768  * @hw: pointer to the hw struct
1769  * @vsi_id: VSI FW index
1770  * @key: pointer to key info struct
1771  *
1772  * get the RSS key per VSI
1773  */
1774 enum ice_status
ice_aq_get_rss_key(struct ice_hw * hw,u16 vsi_id,struct ice_aqc_get_set_rss_keys * key)1775 ice_aq_get_rss_key(struct ice_hw *hw, u16 vsi_id,
1776 		   struct ice_aqc_get_set_rss_keys *key)
1777 {
1778 	return __ice_aq_get_set_rss_key(hw, vsi_id, key, false);
1779 }
1780 
1781 /**
1782  * ice_aq_set_rss_key
1783  * @hw: pointer to the hw struct
1784  * @vsi_id: VSI FW index
1785  * @keys: pointer to key info struct
1786  *
1787  * set the RSS key per VSI
1788  */
1789 enum ice_status
ice_aq_set_rss_key(struct ice_hw * hw,u16 vsi_id,struct ice_aqc_get_set_rss_keys * keys)1790 ice_aq_set_rss_key(struct ice_hw *hw, u16 vsi_id,
1791 		   struct ice_aqc_get_set_rss_keys *keys)
1792 {
1793 	return __ice_aq_get_set_rss_key(hw, vsi_id, keys, true);
1794 }
1795 
1796 /**
1797  * ice_aq_add_lan_txq
1798  * @hw: pointer to the hardware structure
1799  * @num_qgrps: Number of added queue groups
1800  * @qg_list: list of queue groups to be added
1801  * @buf_size: size of buffer for indirect command
1802  * @cd: pointer to command details structure or NULL
1803  *
1804  * Add Tx LAN queue (0x0C30)
1805  *
1806  * NOTE:
1807  * Prior to calling add Tx LAN queue:
1808  * Initialize the following as part of the Tx queue context:
1809  * Completion queue ID if the queue uses Completion queue, Quanta profile,
1810  * Cache profile and Packet shaper profile.
1811  *
1812  * After add Tx LAN queue AQ command is completed:
1813  * Interrupts should be associated with specific queues,
1814  * Association of Tx queue to Doorbell queue is not part of Add LAN Tx queue
1815  * flow.
1816  */
1817 static enum ice_status
ice_aq_add_lan_txq(struct ice_hw * hw,u8 num_qgrps,struct ice_aqc_add_tx_qgrp * qg_list,u16 buf_size,struct ice_sq_cd * cd)1818 ice_aq_add_lan_txq(struct ice_hw *hw, u8 num_qgrps,
1819 		   struct ice_aqc_add_tx_qgrp *qg_list, u16 buf_size,
1820 		   struct ice_sq_cd *cd)
1821 {
1822 	u16 i, sum_header_size, sum_q_size = 0;
1823 	struct ice_aqc_add_tx_qgrp *list;
1824 	struct ice_aqc_add_txqs *cmd;
1825 	struct ice_aq_desc desc;
1826 
1827 	cmd = &desc.params.add_txqs;
1828 
1829 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_add_txqs);
1830 
1831 	if (!qg_list)
1832 		return ICE_ERR_PARAM;
1833 
1834 	if (num_qgrps > ICE_LAN_TXQ_MAX_QGRPS)
1835 		return ICE_ERR_PARAM;
1836 
1837 	sum_header_size = num_qgrps *
1838 		(sizeof(*qg_list) - sizeof(*qg_list->txqs));
1839 
1840 	list = qg_list;
1841 	for (i = 0; i < num_qgrps; i++) {
1842 		struct ice_aqc_add_txqs_perq *q = list->txqs;
1843 
1844 		sum_q_size += list->num_txqs * sizeof(*q);
1845 		list = (struct ice_aqc_add_tx_qgrp *)(q + list->num_txqs);
1846 	}
1847 
1848 	if (buf_size != (sum_header_size + sum_q_size))
1849 		return ICE_ERR_PARAM;
1850 
1851 	desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
1852 
1853 	cmd->num_qgrps = num_qgrps;
1854 
1855 	return ice_aq_send_cmd(hw, &desc, qg_list, buf_size, cd);
1856 }
1857 
1858 /**
1859  * ice_aq_dis_lan_txq
1860  * @hw: pointer to the hardware structure
1861  * @num_qgrps: number of groups in the list
1862  * @qg_list: the list of groups to disable
1863  * @buf_size: the total size of the qg_list buffer in bytes
1864  * @cd: pointer to command details structure or NULL
1865  *
1866  * Disable LAN Tx queue (0x0C31)
1867  */
1868 static enum ice_status
ice_aq_dis_lan_txq(struct ice_hw * hw,u8 num_qgrps,struct ice_aqc_dis_txq_item * qg_list,u16 buf_size,struct ice_sq_cd * cd)1869 ice_aq_dis_lan_txq(struct ice_hw *hw, u8 num_qgrps,
1870 		   struct ice_aqc_dis_txq_item *qg_list, u16 buf_size,
1871 		   struct ice_sq_cd *cd)
1872 {
1873 	struct ice_aqc_dis_txqs *cmd;
1874 	struct ice_aq_desc desc;
1875 	u16 i, sz = 0;
1876 
1877 	cmd = &desc.params.dis_txqs;
1878 	ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_dis_txqs);
1879 
1880 	if (!qg_list)
1881 		return ICE_ERR_PARAM;
1882 
1883 	if (num_qgrps > ICE_LAN_TXQ_MAX_QGRPS)
1884 		return ICE_ERR_PARAM;
1885 	desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD);
1886 	cmd->num_entries = num_qgrps;
1887 
1888 	for (i = 0; i < num_qgrps; ++i) {
1889 		/* Calculate the size taken up by the queue IDs in this group */
1890 		sz += qg_list[i].num_qs * sizeof(qg_list[i].q_id);
1891 
1892 		/* Add the size of the group header */
1893 		sz += sizeof(qg_list[i]) - sizeof(qg_list[i].q_id);
1894 
1895 		/* If the num of queues is even, add 2 bytes of padding */
1896 		if ((qg_list[i].num_qs % 2) == 0)
1897 			sz += 2;
1898 	}
1899 
1900 	if (buf_size != sz)
1901 		return ICE_ERR_PARAM;
1902 
1903 	return ice_aq_send_cmd(hw, &desc, qg_list, buf_size, cd);
1904 }
1905 
1906 /* End of FW Admin Queue command wrappers */
1907 
1908 /**
1909  * ice_write_byte - write a byte to a packed context structure
1910  * @src_ctx:  the context structure to read from
1911  * @dest_ctx: the context to be written to
1912  * @ce_info:  a description of the struct to be filled
1913  */
ice_write_byte(u8 * src_ctx,u8 * dest_ctx,const struct ice_ctx_ele * ce_info)1914 static void ice_write_byte(u8 *src_ctx, u8 *dest_ctx,
1915 			   const struct ice_ctx_ele *ce_info)
1916 {
1917 	u8 src_byte, dest_byte, mask;
1918 	u8 *from, *dest;
1919 	u16 shift_width;
1920 
1921 	/* copy from the next struct field */
1922 	from = src_ctx + ce_info->offset;
1923 
1924 	/* prepare the bits and mask */
1925 	shift_width = ce_info->lsb % 8;
1926 	mask = (u8)(BIT(ce_info->width) - 1);
1927 
1928 	src_byte = *from;
1929 	src_byte &= mask;
1930 
1931 	/* shift to correct alignment */
1932 	mask <<= shift_width;
1933 	src_byte <<= shift_width;
1934 
1935 	/* get the current bits from the target bit string */
1936 	dest = dest_ctx + (ce_info->lsb / 8);
1937 
1938 	memcpy(&dest_byte, dest, sizeof(dest_byte));
1939 
1940 	dest_byte &= ~mask;	/* get the bits not changing */
1941 	dest_byte |= src_byte;	/* add in the new bits */
1942 
1943 	/* put it all back */
1944 	memcpy(dest, &dest_byte, sizeof(dest_byte));
1945 }
1946 
1947 /**
1948  * ice_write_word - write a word to a packed context structure
1949  * @src_ctx:  the context structure to read from
1950  * @dest_ctx: the context to be written to
1951  * @ce_info:  a description of the struct to be filled
1952  */
ice_write_word(u8 * src_ctx,u8 * dest_ctx,const struct ice_ctx_ele * ce_info)1953 static void ice_write_word(u8 *src_ctx, u8 *dest_ctx,
1954 			   const struct ice_ctx_ele *ce_info)
1955 {
1956 	u16 src_word, mask;
1957 	__le16 dest_word;
1958 	u8 *from, *dest;
1959 	u16 shift_width;
1960 
1961 	/* copy from the next struct field */
1962 	from = src_ctx + ce_info->offset;
1963 
1964 	/* prepare the bits and mask */
1965 	shift_width = ce_info->lsb % 8;
1966 	mask = BIT(ce_info->width) - 1;
1967 
1968 	/* don't swizzle the bits until after the mask because the mask bits
1969 	 * will be in a different bit position on big endian machines
1970 	 */
1971 	src_word = *(u16 *)from;
1972 	src_word &= mask;
1973 
1974 	/* shift to correct alignment */
1975 	mask <<= shift_width;
1976 	src_word <<= shift_width;
1977 
1978 	/* get the current bits from the target bit string */
1979 	dest = dest_ctx + (ce_info->lsb / 8);
1980 
1981 	memcpy(&dest_word, dest, sizeof(dest_word));
1982 
1983 	dest_word &= ~(cpu_to_le16(mask));	/* get the bits not changing */
1984 	dest_word |= cpu_to_le16(src_word);	/* add in the new bits */
1985 
1986 	/* put it all back */
1987 	memcpy(dest, &dest_word, sizeof(dest_word));
1988 }
1989 
1990 /**
1991  * ice_write_dword - write a dword to a packed context structure
1992  * @src_ctx:  the context structure to read from
1993  * @dest_ctx: the context to be written to
1994  * @ce_info:  a description of the struct to be filled
1995  */
ice_write_dword(u8 * src_ctx,u8 * dest_ctx,const struct ice_ctx_ele * ce_info)1996 static void ice_write_dword(u8 *src_ctx, u8 *dest_ctx,
1997 			    const struct ice_ctx_ele *ce_info)
1998 {
1999 	u32 src_dword, mask;
2000 	__le32 dest_dword;
2001 	u8 *from, *dest;
2002 	u16 shift_width;
2003 
2004 	/* copy from the next struct field */
2005 	from = src_ctx + ce_info->offset;
2006 
2007 	/* prepare the bits and mask */
2008 	shift_width = ce_info->lsb % 8;
2009 
2010 	/* if the field width is exactly 32 on an x86 machine, then the shift
2011 	 * operation will not work because the SHL instructions count is masked
2012 	 * to 5 bits so the shift will do nothing
2013 	 */
2014 	if (ce_info->width < 32)
2015 		mask = BIT(ce_info->width) - 1;
2016 	else
2017 		mask = (u32)~0;
2018 
2019 	/* don't swizzle the bits until after the mask because the mask bits
2020 	 * will be in a different bit position on big endian machines
2021 	 */
2022 	src_dword = *(u32 *)from;
2023 	src_dword &= mask;
2024 
2025 	/* shift to correct alignment */
2026 	mask <<= shift_width;
2027 	src_dword <<= shift_width;
2028 
2029 	/* get the current bits from the target bit string */
2030 	dest = dest_ctx + (ce_info->lsb / 8);
2031 
2032 	memcpy(&dest_dword, dest, sizeof(dest_dword));
2033 
2034 	dest_dword &= ~(cpu_to_le32(mask));	/* get the bits not changing */
2035 	dest_dword |= cpu_to_le32(src_dword);	/* add in the new bits */
2036 
2037 	/* put it all back */
2038 	memcpy(dest, &dest_dword, sizeof(dest_dword));
2039 }
2040 
2041 /**
2042  * ice_write_qword - write a qword to a packed context structure
2043  * @src_ctx:  the context structure to read from
2044  * @dest_ctx: the context to be written to
2045  * @ce_info:  a description of the struct to be filled
2046  */
ice_write_qword(u8 * src_ctx,u8 * dest_ctx,const struct ice_ctx_ele * ce_info)2047 static void ice_write_qword(u8 *src_ctx, u8 *dest_ctx,
2048 			    const struct ice_ctx_ele *ce_info)
2049 {
2050 	u64 src_qword, mask;
2051 	__le64 dest_qword;
2052 	u8 *from, *dest;
2053 	u16 shift_width;
2054 
2055 	/* copy from the next struct field */
2056 	from = src_ctx + ce_info->offset;
2057 
2058 	/* prepare the bits and mask */
2059 	shift_width = ce_info->lsb % 8;
2060 
2061 	/* if the field width is exactly 64 on an x86 machine, then the shift
2062 	 * operation will not work because the SHL instructions count is masked
2063 	 * to 6 bits so the shift will do nothing
2064 	 */
2065 	if (ce_info->width < 64)
2066 		mask = BIT_ULL(ce_info->width) - 1;
2067 	else
2068 		mask = (u64)~0;
2069 
2070 	/* don't swizzle the bits until after the mask because the mask bits
2071 	 * will be in a different bit position on big endian machines
2072 	 */
2073 	src_qword = *(u64 *)from;
2074 	src_qword &= mask;
2075 
2076 	/* shift to correct alignment */
2077 	mask <<= shift_width;
2078 	src_qword <<= shift_width;
2079 
2080 	/* get the current bits from the target bit string */
2081 	dest = dest_ctx + (ce_info->lsb / 8);
2082 
2083 	memcpy(&dest_qword, dest, sizeof(dest_qword));
2084 
2085 	dest_qword &= ~(cpu_to_le64(mask));	/* get the bits not changing */
2086 	dest_qword |= cpu_to_le64(src_qword);	/* add in the new bits */
2087 
2088 	/* put it all back */
2089 	memcpy(dest, &dest_qword, sizeof(dest_qword));
2090 }
2091 
2092 /**
2093  * ice_set_ctx - set context bits in packed structure
2094  * @src_ctx:  pointer to a generic non-packed context structure
2095  * @dest_ctx: pointer to memory for the packed structure
2096  * @ce_info:  a description of the structure to be transformed
2097  */
2098 enum ice_status
ice_set_ctx(u8 * src_ctx,u8 * dest_ctx,const struct ice_ctx_ele * ce_info)2099 ice_set_ctx(u8 *src_ctx, u8 *dest_ctx, const struct ice_ctx_ele *ce_info)
2100 {
2101 	int f;
2102 
2103 	for (f = 0; ce_info[f].width; f++) {
2104 		/* We have to deal with each element of the FW response
2105 		 * using the correct size so that we are correct regardless
2106 		 * of the endianness of the machine.
2107 		 */
2108 		switch (ce_info[f].size_of) {
2109 		case sizeof(u8):
2110 			ice_write_byte(src_ctx, dest_ctx, &ce_info[f]);
2111 			break;
2112 		case sizeof(u16):
2113 			ice_write_word(src_ctx, dest_ctx, &ce_info[f]);
2114 			break;
2115 		case sizeof(u32):
2116 			ice_write_dword(src_ctx, dest_ctx, &ce_info[f]);
2117 			break;
2118 		case sizeof(u64):
2119 			ice_write_qword(src_ctx, dest_ctx, &ce_info[f]);
2120 			break;
2121 		default:
2122 			return ICE_ERR_INVAL_SIZE;
2123 		}
2124 	}
2125 
2126 	return 0;
2127 }
2128 
2129 /**
2130  * ice_ena_vsi_txq
2131  * @pi: port information structure
2132  * @vsi_id: VSI id
2133  * @tc: tc number
2134  * @num_qgrps: Number of added queue groups
2135  * @buf: list of queue groups to be added
2136  * @buf_size: size of buffer for indirect command
2137  * @cd: pointer to command details structure or NULL
2138  *
2139  * This function adds one lan q
2140  */
2141 enum ice_status
ice_ena_vsi_txq(struct ice_port_info * pi,u16 vsi_id,u8 tc,u8 num_qgrps,struct ice_aqc_add_tx_qgrp * buf,u16 buf_size,struct ice_sq_cd * cd)2142 ice_ena_vsi_txq(struct ice_port_info *pi, u16 vsi_id, u8 tc, u8 num_qgrps,
2143 		struct ice_aqc_add_tx_qgrp *buf, u16 buf_size,
2144 		struct ice_sq_cd *cd)
2145 {
2146 	struct ice_aqc_txsched_elem_data node = { 0 };
2147 	struct ice_sched_node *parent;
2148 	enum ice_status status;
2149 	struct ice_hw *hw;
2150 
2151 	if (!pi || pi->port_state != ICE_SCHED_PORT_STATE_READY)
2152 		return ICE_ERR_CFG;
2153 
2154 	if (num_qgrps > 1 || buf->num_txqs > 1)
2155 		return ICE_ERR_MAX_LIMIT;
2156 
2157 	hw = pi->hw;
2158 
2159 	mutex_lock(&pi->sched_lock);
2160 
2161 	/* find a parent node */
2162 	parent = ice_sched_get_free_qparent(pi, vsi_id, tc,
2163 					    ICE_SCHED_NODE_OWNER_LAN);
2164 	if (!parent) {
2165 		status = ICE_ERR_PARAM;
2166 		goto ena_txq_exit;
2167 	}
2168 	buf->parent_teid = parent->info.node_teid;
2169 	node.parent_teid = parent->info.node_teid;
2170 	/* Mark that the values in the "generic" section as valid. The default
2171 	 * value in the "generic" section is zero. This means that :
2172 	 * - Scheduling mode is Bytes Per Second (BPS), indicated by Bit 0.
2173 	 * - 0 priority among siblings, indicated by Bit 1-3.
2174 	 * - WFQ, indicated by Bit 4.
2175 	 * - 0 Adjustment value is used in PSM credit update flow, indicated by
2176 	 * Bit 5-6.
2177 	 * - Bit 7 is reserved.
2178 	 * Without setting the generic section as valid in valid_sections, the
2179 	 * Admin Q command will fail with error code ICE_AQ_RC_EINVAL.
2180 	 */
2181 	buf->txqs[0].info.valid_sections = ICE_AQC_ELEM_VALID_GENERIC;
2182 
2183 	/* add the lan q */
2184 	status = ice_aq_add_lan_txq(hw, num_qgrps, buf, buf_size, cd);
2185 	if (status)
2186 		goto ena_txq_exit;
2187 
2188 	node.node_teid = buf->txqs[0].q_teid;
2189 	node.data.elem_type = ICE_AQC_ELEM_TYPE_LEAF;
2190 
2191 	/* add a leaf node into schduler tree q layer */
2192 	status = ice_sched_add_node(pi, hw->num_tx_sched_layers - 1, &node);
2193 
2194 ena_txq_exit:
2195 	mutex_unlock(&pi->sched_lock);
2196 	return status;
2197 }
2198 
2199 /**
2200  * ice_dis_vsi_txq
2201  * @pi: port information structure
2202  * @num_queues: number of queues
2203  * @q_ids: pointer to the q_id array
2204  * @q_teids: pointer to queue node teids
2205  * @cd: pointer to command details structure or NULL
2206  *
2207  * This function removes queues and their corresponding nodes in SW DB
2208  */
2209 enum ice_status
ice_dis_vsi_txq(struct ice_port_info * pi,u8 num_queues,u16 * q_ids,u32 * q_teids,struct ice_sq_cd * cd)2210 ice_dis_vsi_txq(struct ice_port_info *pi, u8 num_queues, u16 *q_ids,
2211 		u32 *q_teids, struct ice_sq_cd *cd)
2212 {
2213 	enum ice_status status = ICE_ERR_DOES_NOT_EXIST;
2214 	struct ice_aqc_dis_txq_item qg_list;
2215 	u16 i;
2216 
2217 	if (!pi || pi->port_state != ICE_SCHED_PORT_STATE_READY)
2218 		return ICE_ERR_CFG;
2219 
2220 	mutex_lock(&pi->sched_lock);
2221 
2222 	for (i = 0; i < num_queues; i++) {
2223 		struct ice_sched_node *node;
2224 
2225 		node = ice_sched_find_node_by_teid(pi->root, q_teids[i]);
2226 		if (!node)
2227 			continue;
2228 		qg_list.parent_teid = node->info.parent_teid;
2229 		qg_list.num_qs = 1;
2230 		qg_list.q_id[0] = cpu_to_le16(q_ids[i]);
2231 		status = ice_aq_dis_lan_txq(pi->hw, 1, &qg_list,
2232 					    sizeof(qg_list), cd);
2233 
2234 		if (status)
2235 			break;
2236 		ice_free_sched_node(pi, node);
2237 	}
2238 	mutex_unlock(&pi->sched_lock);
2239 	return status;
2240 }
2241 
2242 /**
2243  * ice_cfg_vsi_qs - configure the new/exisiting VSI queues
2244  * @pi: port information structure
2245  * @vsi_id: VSI Id
2246  * @tc_bitmap: TC bitmap
2247  * @maxqs: max queues array per TC
2248  * @owner: lan or rdma
2249  *
2250  * This function adds/updates the VSI queues per TC.
2251  */
2252 static enum ice_status
ice_cfg_vsi_qs(struct ice_port_info * pi,u16 vsi_id,u8 tc_bitmap,u16 * maxqs,u8 owner)2253 ice_cfg_vsi_qs(struct ice_port_info *pi, u16 vsi_id, u8 tc_bitmap,
2254 	       u16 *maxqs, u8 owner)
2255 {
2256 	enum ice_status status = 0;
2257 	u8 i;
2258 
2259 	if (!pi || pi->port_state != ICE_SCHED_PORT_STATE_READY)
2260 		return ICE_ERR_CFG;
2261 
2262 	mutex_lock(&pi->sched_lock);
2263 
2264 	for (i = 0; i < ICE_MAX_TRAFFIC_CLASS; i++) {
2265 		/* configuration is possible only if TC node is present */
2266 		if (!ice_sched_get_tc_node(pi, i))
2267 			continue;
2268 
2269 		status = ice_sched_cfg_vsi(pi, vsi_id, i, maxqs[i], owner,
2270 					   ice_is_tc_ena(tc_bitmap, i));
2271 		if (status)
2272 			break;
2273 	}
2274 
2275 	mutex_unlock(&pi->sched_lock);
2276 	return status;
2277 }
2278 
2279 /**
2280  * ice_cfg_vsi_lan - configure VSI lan queues
2281  * @pi: port information structure
2282  * @vsi_id: VSI Id
2283  * @tc_bitmap: TC bitmap
2284  * @max_lanqs: max lan queues array per TC
2285  *
2286  * This function adds/updates the VSI lan queues per TC.
2287  */
2288 enum ice_status
ice_cfg_vsi_lan(struct ice_port_info * pi,u16 vsi_id,u8 tc_bitmap,u16 * max_lanqs)2289 ice_cfg_vsi_lan(struct ice_port_info *pi, u16 vsi_id, u8 tc_bitmap,
2290 		u16 *max_lanqs)
2291 {
2292 	return ice_cfg_vsi_qs(pi, vsi_id, tc_bitmap, max_lanqs,
2293 			      ICE_SCHED_NODE_OWNER_LAN);
2294 }
2295