1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright(c) 2007 - 2018 Intel Corporation. */
3
4 /* ethtool support for igb */
5
6 #include <linux/vmalloc.h>
7 #include <linux/netdevice.h>
8 #include <linux/pci.h>
9 #include <linux/delay.h>
10 #include <linux/interrupt.h>
11 #include <linux/if_ether.h>
12 #include <linux/ethtool.h>
13 #include <linux/sched.h>
14 #include <linux/slab.h>
15 #include <linux/pm_runtime.h>
16 #include <linux/highmem.h>
17 #include <linux/mdio.h>
18
19 #include "igb.h"
20
21 struct igb_stats {
22 char stat_string[ETH_GSTRING_LEN];
23 int sizeof_stat;
24 int stat_offset;
25 };
26
27 #define IGB_STAT(_name, _stat) { \
28 .stat_string = _name, \
29 .sizeof_stat = FIELD_SIZEOF(struct igb_adapter, _stat), \
30 .stat_offset = offsetof(struct igb_adapter, _stat) \
31 }
32 static const struct igb_stats igb_gstrings_stats[] = {
33 IGB_STAT("rx_packets", stats.gprc),
34 IGB_STAT("tx_packets", stats.gptc),
35 IGB_STAT("rx_bytes", stats.gorc),
36 IGB_STAT("tx_bytes", stats.gotc),
37 IGB_STAT("rx_broadcast", stats.bprc),
38 IGB_STAT("tx_broadcast", stats.bptc),
39 IGB_STAT("rx_multicast", stats.mprc),
40 IGB_STAT("tx_multicast", stats.mptc),
41 IGB_STAT("multicast", stats.mprc),
42 IGB_STAT("collisions", stats.colc),
43 IGB_STAT("rx_crc_errors", stats.crcerrs),
44 IGB_STAT("rx_no_buffer_count", stats.rnbc),
45 IGB_STAT("rx_missed_errors", stats.mpc),
46 IGB_STAT("tx_aborted_errors", stats.ecol),
47 IGB_STAT("tx_carrier_errors", stats.tncrs),
48 IGB_STAT("tx_window_errors", stats.latecol),
49 IGB_STAT("tx_abort_late_coll", stats.latecol),
50 IGB_STAT("tx_deferred_ok", stats.dc),
51 IGB_STAT("tx_single_coll_ok", stats.scc),
52 IGB_STAT("tx_multi_coll_ok", stats.mcc),
53 IGB_STAT("tx_timeout_count", tx_timeout_count),
54 IGB_STAT("rx_long_length_errors", stats.roc),
55 IGB_STAT("rx_short_length_errors", stats.ruc),
56 IGB_STAT("rx_align_errors", stats.algnerrc),
57 IGB_STAT("tx_tcp_seg_good", stats.tsctc),
58 IGB_STAT("tx_tcp_seg_failed", stats.tsctfc),
59 IGB_STAT("rx_flow_control_xon", stats.xonrxc),
60 IGB_STAT("rx_flow_control_xoff", stats.xoffrxc),
61 IGB_STAT("tx_flow_control_xon", stats.xontxc),
62 IGB_STAT("tx_flow_control_xoff", stats.xofftxc),
63 IGB_STAT("rx_long_byte_count", stats.gorc),
64 IGB_STAT("tx_dma_out_of_sync", stats.doosync),
65 IGB_STAT("tx_smbus", stats.mgptc),
66 IGB_STAT("rx_smbus", stats.mgprc),
67 IGB_STAT("dropped_smbus", stats.mgpdc),
68 IGB_STAT("os2bmc_rx_by_bmc", stats.o2bgptc),
69 IGB_STAT("os2bmc_tx_by_bmc", stats.b2ospc),
70 IGB_STAT("os2bmc_tx_by_host", stats.o2bspc),
71 IGB_STAT("os2bmc_rx_by_host", stats.b2ogprc),
72 IGB_STAT("tx_hwtstamp_timeouts", tx_hwtstamp_timeouts),
73 IGB_STAT("tx_hwtstamp_skipped", tx_hwtstamp_skipped),
74 IGB_STAT("rx_hwtstamp_cleared", rx_hwtstamp_cleared),
75 };
76
77 #define IGB_NETDEV_STAT(_net_stat) { \
78 .stat_string = __stringify(_net_stat), \
79 .sizeof_stat = FIELD_SIZEOF(struct rtnl_link_stats64, _net_stat), \
80 .stat_offset = offsetof(struct rtnl_link_stats64, _net_stat) \
81 }
82 static const struct igb_stats igb_gstrings_net_stats[] = {
83 IGB_NETDEV_STAT(rx_errors),
84 IGB_NETDEV_STAT(tx_errors),
85 IGB_NETDEV_STAT(tx_dropped),
86 IGB_NETDEV_STAT(rx_length_errors),
87 IGB_NETDEV_STAT(rx_over_errors),
88 IGB_NETDEV_STAT(rx_frame_errors),
89 IGB_NETDEV_STAT(rx_fifo_errors),
90 IGB_NETDEV_STAT(tx_fifo_errors),
91 IGB_NETDEV_STAT(tx_heartbeat_errors)
92 };
93
94 #define IGB_GLOBAL_STATS_LEN \
95 (sizeof(igb_gstrings_stats) / sizeof(struct igb_stats))
96 #define IGB_NETDEV_STATS_LEN \
97 (sizeof(igb_gstrings_net_stats) / sizeof(struct igb_stats))
98 #define IGB_RX_QUEUE_STATS_LEN \
99 (sizeof(struct igb_rx_queue_stats) / sizeof(u64))
100
101 #define IGB_TX_QUEUE_STATS_LEN 3 /* packets, bytes, restart_queue */
102
103 #define IGB_QUEUE_STATS_LEN \
104 ((((struct igb_adapter *)netdev_priv(netdev))->num_rx_queues * \
105 IGB_RX_QUEUE_STATS_LEN) + \
106 (((struct igb_adapter *)netdev_priv(netdev))->num_tx_queues * \
107 IGB_TX_QUEUE_STATS_LEN))
108 #define IGB_STATS_LEN \
109 (IGB_GLOBAL_STATS_LEN + IGB_NETDEV_STATS_LEN + IGB_QUEUE_STATS_LEN)
110
111 enum igb_diagnostics_results {
112 TEST_REG = 0,
113 TEST_EEP,
114 TEST_IRQ,
115 TEST_LOOP,
116 TEST_LINK
117 };
118
119 static const char igb_gstrings_test[][ETH_GSTRING_LEN] = {
120 [TEST_REG] = "Register test (offline)",
121 [TEST_EEP] = "Eeprom test (offline)",
122 [TEST_IRQ] = "Interrupt test (offline)",
123 [TEST_LOOP] = "Loopback test (offline)",
124 [TEST_LINK] = "Link test (on/offline)"
125 };
126 #define IGB_TEST_LEN (sizeof(igb_gstrings_test) / ETH_GSTRING_LEN)
127
128 static const char igb_priv_flags_strings[][ETH_GSTRING_LEN] = {
129 #define IGB_PRIV_FLAGS_LEGACY_RX BIT(0)
130 "legacy-rx",
131 };
132
133 #define IGB_PRIV_FLAGS_STR_LEN ARRAY_SIZE(igb_priv_flags_strings)
134
igb_get_link_ksettings(struct net_device * netdev,struct ethtool_link_ksettings * cmd)135 static int igb_get_link_ksettings(struct net_device *netdev,
136 struct ethtool_link_ksettings *cmd)
137 {
138 struct igb_adapter *adapter = netdev_priv(netdev);
139 struct e1000_hw *hw = &adapter->hw;
140 struct e1000_dev_spec_82575 *dev_spec = &hw->dev_spec._82575;
141 struct e1000_sfp_flags *eth_flags = &dev_spec->eth_flags;
142 u32 status;
143 u32 speed;
144 u32 supported, advertising;
145
146 status = pm_runtime_suspended(&adapter->pdev->dev) ?
147 0 : rd32(E1000_STATUS);
148 if (hw->phy.media_type == e1000_media_type_copper) {
149
150 supported = (SUPPORTED_10baseT_Half |
151 SUPPORTED_10baseT_Full |
152 SUPPORTED_100baseT_Half |
153 SUPPORTED_100baseT_Full |
154 SUPPORTED_1000baseT_Full|
155 SUPPORTED_Autoneg |
156 SUPPORTED_TP |
157 SUPPORTED_Pause);
158 advertising = ADVERTISED_TP;
159
160 if (hw->mac.autoneg == 1) {
161 advertising |= ADVERTISED_Autoneg;
162 /* the e1000 autoneg seems to match ethtool nicely */
163 advertising |= hw->phy.autoneg_advertised;
164 }
165
166 cmd->base.port = PORT_TP;
167 cmd->base.phy_address = hw->phy.addr;
168 } else {
169 supported = (SUPPORTED_FIBRE |
170 SUPPORTED_1000baseKX_Full |
171 SUPPORTED_Autoneg |
172 SUPPORTED_Pause);
173 advertising = (ADVERTISED_FIBRE |
174 ADVERTISED_1000baseKX_Full);
175 if (hw->mac.type == e1000_i354) {
176 if ((hw->device_id ==
177 E1000_DEV_ID_I354_BACKPLANE_2_5GBPS) &&
178 !(status & E1000_STATUS_2P5_SKU_OVER)) {
179 supported |= SUPPORTED_2500baseX_Full;
180 supported &= ~SUPPORTED_1000baseKX_Full;
181 advertising |= ADVERTISED_2500baseX_Full;
182 advertising &= ~ADVERTISED_1000baseKX_Full;
183 }
184 }
185 if (eth_flags->e100_base_fx || eth_flags->e100_base_lx) {
186 supported |= SUPPORTED_100baseT_Full;
187 advertising |= ADVERTISED_100baseT_Full;
188 }
189 if (hw->mac.autoneg == 1)
190 advertising |= ADVERTISED_Autoneg;
191
192 cmd->base.port = PORT_FIBRE;
193 }
194 if (hw->mac.autoneg != 1)
195 advertising &= ~(ADVERTISED_Pause |
196 ADVERTISED_Asym_Pause);
197
198 switch (hw->fc.requested_mode) {
199 case e1000_fc_full:
200 advertising |= ADVERTISED_Pause;
201 break;
202 case e1000_fc_rx_pause:
203 advertising |= (ADVERTISED_Pause |
204 ADVERTISED_Asym_Pause);
205 break;
206 case e1000_fc_tx_pause:
207 advertising |= ADVERTISED_Asym_Pause;
208 break;
209 default:
210 advertising &= ~(ADVERTISED_Pause |
211 ADVERTISED_Asym_Pause);
212 }
213 if (status & E1000_STATUS_LU) {
214 if ((status & E1000_STATUS_2P5_SKU) &&
215 !(status & E1000_STATUS_2P5_SKU_OVER)) {
216 speed = SPEED_2500;
217 } else if (status & E1000_STATUS_SPEED_1000) {
218 speed = SPEED_1000;
219 } else if (status & E1000_STATUS_SPEED_100) {
220 speed = SPEED_100;
221 } else {
222 speed = SPEED_10;
223 }
224 if ((status & E1000_STATUS_FD) ||
225 hw->phy.media_type != e1000_media_type_copper)
226 cmd->base.duplex = DUPLEX_FULL;
227 else
228 cmd->base.duplex = DUPLEX_HALF;
229 } else {
230 speed = SPEED_UNKNOWN;
231 cmd->base.duplex = DUPLEX_UNKNOWN;
232 }
233 cmd->base.speed = speed;
234 if ((hw->phy.media_type == e1000_media_type_fiber) ||
235 hw->mac.autoneg)
236 cmd->base.autoneg = AUTONEG_ENABLE;
237 else
238 cmd->base.autoneg = AUTONEG_DISABLE;
239
240 /* MDI-X => 2; MDI =>1; Invalid =>0 */
241 if (hw->phy.media_type == e1000_media_type_copper)
242 cmd->base.eth_tp_mdix = hw->phy.is_mdix ? ETH_TP_MDI_X :
243 ETH_TP_MDI;
244 else
245 cmd->base.eth_tp_mdix = ETH_TP_MDI_INVALID;
246
247 if (hw->phy.mdix == AUTO_ALL_MODES)
248 cmd->base.eth_tp_mdix_ctrl = ETH_TP_MDI_AUTO;
249 else
250 cmd->base.eth_tp_mdix_ctrl = hw->phy.mdix;
251
252 ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.supported,
253 supported);
254 ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.advertising,
255 advertising);
256
257 return 0;
258 }
259
igb_set_link_ksettings(struct net_device * netdev,const struct ethtool_link_ksettings * cmd)260 static int igb_set_link_ksettings(struct net_device *netdev,
261 const struct ethtool_link_ksettings *cmd)
262 {
263 struct igb_adapter *adapter = netdev_priv(netdev);
264 struct e1000_hw *hw = &adapter->hw;
265 u32 advertising;
266
267 /* When SoL/IDER sessions are active, autoneg/speed/duplex
268 * cannot be changed
269 */
270 if (igb_check_reset_block(hw)) {
271 dev_err(&adapter->pdev->dev,
272 "Cannot change link characteristics when SoL/IDER is active.\n");
273 return -EINVAL;
274 }
275
276 /* MDI setting is only allowed when autoneg enabled because
277 * some hardware doesn't allow MDI setting when speed or
278 * duplex is forced.
279 */
280 if (cmd->base.eth_tp_mdix_ctrl) {
281 if (hw->phy.media_type != e1000_media_type_copper)
282 return -EOPNOTSUPP;
283
284 if ((cmd->base.eth_tp_mdix_ctrl != ETH_TP_MDI_AUTO) &&
285 (cmd->base.autoneg != AUTONEG_ENABLE)) {
286 dev_err(&adapter->pdev->dev, "forcing MDI/MDI-X state is not supported when link speed and/or duplex are forced\n");
287 return -EINVAL;
288 }
289 }
290
291 while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
292 usleep_range(1000, 2000);
293
294 ethtool_convert_link_mode_to_legacy_u32(&advertising,
295 cmd->link_modes.advertising);
296
297 if (cmd->base.autoneg == AUTONEG_ENABLE) {
298 hw->mac.autoneg = 1;
299 if (hw->phy.media_type == e1000_media_type_fiber) {
300 hw->phy.autoneg_advertised = advertising |
301 ADVERTISED_FIBRE |
302 ADVERTISED_Autoneg;
303 switch (adapter->link_speed) {
304 case SPEED_2500:
305 hw->phy.autoneg_advertised =
306 ADVERTISED_2500baseX_Full;
307 break;
308 case SPEED_1000:
309 hw->phy.autoneg_advertised =
310 ADVERTISED_1000baseT_Full;
311 break;
312 case SPEED_100:
313 hw->phy.autoneg_advertised =
314 ADVERTISED_100baseT_Full;
315 break;
316 default:
317 break;
318 }
319 } else {
320 hw->phy.autoneg_advertised = advertising |
321 ADVERTISED_TP |
322 ADVERTISED_Autoneg;
323 }
324 advertising = hw->phy.autoneg_advertised;
325 if (adapter->fc_autoneg)
326 hw->fc.requested_mode = e1000_fc_default;
327 } else {
328 u32 speed = cmd->base.speed;
329 /* calling this overrides forced MDI setting */
330 if (igb_set_spd_dplx(adapter, speed, cmd->base.duplex)) {
331 clear_bit(__IGB_RESETTING, &adapter->state);
332 return -EINVAL;
333 }
334 }
335
336 /* MDI-X => 2; MDI => 1; Auto => 3 */
337 if (cmd->base.eth_tp_mdix_ctrl) {
338 /* fix up the value for auto (3 => 0) as zero is mapped
339 * internally to auto
340 */
341 if (cmd->base.eth_tp_mdix_ctrl == ETH_TP_MDI_AUTO)
342 hw->phy.mdix = AUTO_ALL_MODES;
343 else
344 hw->phy.mdix = cmd->base.eth_tp_mdix_ctrl;
345 }
346
347 /* reset the link */
348 if (netif_running(adapter->netdev)) {
349 igb_down(adapter);
350 igb_up(adapter);
351 } else
352 igb_reset(adapter);
353
354 clear_bit(__IGB_RESETTING, &adapter->state);
355 return 0;
356 }
357
igb_get_link(struct net_device * netdev)358 static u32 igb_get_link(struct net_device *netdev)
359 {
360 struct igb_adapter *adapter = netdev_priv(netdev);
361 struct e1000_mac_info *mac = &adapter->hw.mac;
362
363 /* If the link is not reported up to netdev, interrupts are disabled,
364 * and so the physical link state may have changed since we last
365 * looked. Set get_link_status to make sure that the true link
366 * state is interrogated, rather than pulling a cached and possibly
367 * stale link state from the driver.
368 */
369 if (!netif_carrier_ok(netdev))
370 mac->get_link_status = 1;
371
372 return igb_has_link(adapter);
373 }
374
igb_get_pauseparam(struct net_device * netdev,struct ethtool_pauseparam * pause)375 static void igb_get_pauseparam(struct net_device *netdev,
376 struct ethtool_pauseparam *pause)
377 {
378 struct igb_adapter *adapter = netdev_priv(netdev);
379 struct e1000_hw *hw = &adapter->hw;
380
381 pause->autoneg =
382 (adapter->fc_autoneg ? AUTONEG_ENABLE : AUTONEG_DISABLE);
383
384 if (hw->fc.current_mode == e1000_fc_rx_pause)
385 pause->rx_pause = 1;
386 else if (hw->fc.current_mode == e1000_fc_tx_pause)
387 pause->tx_pause = 1;
388 else if (hw->fc.current_mode == e1000_fc_full) {
389 pause->rx_pause = 1;
390 pause->tx_pause = 1;
391 }
392 }
393
igb_set_pauseparam(struct net_device * netdev,struct ethtool_pauseparam * pause)394 static int igb_set_pauseparam(struct net_device *netdev,
395 struct ethtool_pauseparam *pause)
396 {
397 struct igb_adapter *adapter = netdev_priv(netdev);
398 struct e1000_hw *hw = &adapter->hw;
399 int retval = 0;
400
401 /* 100basefx does not support setting link flow control */
402 if (hw->dev_spec._82575.eth_flags.e100_base_fx)
403 return -EINVAL;
404
405 adapter->fc_autoneg = pause->autoneg;
406
407 while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
408 usleep_range(1000, 2000);
409
410 if (adapter->fc_autoneg == AUTONEG_ENABLE) {
411 hw->fc.requested_mode = e1000_fc_default;
412 if (netif_running(adapter->netdev)) {
413 igb_down(adapter);
414 igb_up(adapter);
415 } else {
416 igb_reset(adapter);
417 }
418 } else {
419 if (pause->rx_pause && pause->tx_pause)
420 hw->fc.requested_mode = e1000_fc_full;
421 else if (pause->rx_pause && !pause->tx_pause)
422 hw->fc.requested_mode = e1000_fc_rx_pause;
423 else if (!pause->rx_pause && pause->tx_pause)
424 hw->fc.requested_mode = e1000_fc_tx_pause;
425 else if (!pause->rx_pause && !pause->tx_pause)
426 hw->fc.requested_mode = e1000_fc_none;
427
428 hw->fc.current_mode = hw->fc.requested_mode;
429
430 retval = ((hw->phy.media_type == e1000_media_type_copper) ?
431 igb_force_mac_fc(hw) : igb_setup_link(hw));
432 }
433
434 clear_bit(__IGB_RESETTING, &adapter->state);
435 return retval;
436 }
437
igb_get_msglevel(struct net_device * netdev)438 static u32 igb_get_msglevel(struct net_device *netdev)
439 {
440 struct igb_adapter *adapter = netdev_priv(netdev);
441 return adapter->msg_enable;
442 }
443
igb_set_msglevel(struct net_device * netdev,u32 data)444 static void igb_set_msglevel(struct net_device *netdev, u32 data)
445 {
446 struct igb_adapter *adapter = netdev_priv(netdev);
447 adapter->msg_enable = data;
448 }
449
igb_get_regs_len(struct net_device * netdev)450 static int igb_get_regs_len(struct net_device *netdev)
451 {
452 #define IGB_REGS_LEN 739
453 return IGB_REGS_LEN * sizeof(u32);
454 }
455
igb_get_regs(struct net_device * netdev,struct ethtool_regs * regs,void * p)456 static void igb_get_regs(struct net_device *netdev,
457 struct ethtool_regs *regs, void *p)
458 {
459 struct igb_adapter *adapter = netdev_priv(netdev);
460 struct e1000_hw *hw = &adapter->hw;
461 u32 *regs_buff = p;
462 u8 i;
463
464 memset(p, 0, IGB_REGS_LEN * sizeof(u32));
465
466 regs->version = (1u << 24) | (hw->revision_id << 16) | hw->device_id;
467
468 /* General Registers */
469 regs_buff[0] = rd32(E1000_CTRL);
470 regs_buff[1] = rd32(E1000_STATUS);
471 regs_buff[2] = rd32(E1000_CTRL_EXT);
472 regs_buff[3] = rd32(E1000_MDIC);
473 regs_buff[4] = rd32(E1000_SCTL);
474 regs_buff[5] = rd32(E1000_CONNSW);
475 regs_buff[6] = rd32(E1000_VET);
476 regs_buff[7] = rd32(E1000_LEDCTL);
477 regs_buff[8] = rd32(E1000_PBA);
478 regs_buff[9] = rd32(E1000_PBS);
479 regs_buff[10] = rd32(E1000_FRTIMER);
480 regs_buff[11] = rd32(E1000_TCPTIMER);
481
482 /* NVM Register */
483 regs_buff[12] = rd32(E1000_EECD);
484
485 /* Interrupt */
486 /* Reading EICS for EICR because they read the
487 * same but EICS does not clear on read
488 */
489 regs_buff[13] = rd32(E1000_EICS);
490 regs_buff[14] = rd32(E1000_EICS);
491 regs_buff[15] = rd32(E1000_EIMS);
492 regs_buff[16] = rd32(E1000_EIMC);
493 regs_buff[17] = rd32(E1000_EIAC);
494 regs_buff[18] = rd32(E1000_EIAM);
495 /* Reading ICS for ICR because they read the
496 * same but ICS does not clear on read
497 */
498 regs_buff[19] = rd32(E1000_ICS);
499 regs_buff[20] = rd32(E1000_ICS);
500 regs_buff[21] = rd32(E1000_IMS);
501 regs_buff[22] = rd32(E1000_IMC);
502 regs_buff[23] = rd32(E1000_IAC);
503 regs_buff[24] = rd32(E1000_IAM);
504 regs_buff[25] = rd32(E1000_IMIRVP);
505
506 /* Flow Control */
507 regs_buff[26] = rd32(E1000_FCAL);
508 regs_buff[27] = rd32(E1000_FCAH);
509 regs_buff[28] = rd32(E1000_FCTTV);
510 regs_buff[29] = rd32(E1000_FCRTL);
511 regs_buff[30] = rd32(E1000_FCRTH);
512 regs_buff[31] = rd32(E1000_FCRTV);
513
514 /* Receive */
515 regs_buff[32] = rd32(E1000_RCTL);
516 regs_buff[33] = rd32(E1000_RXCSUM);
517 regs_buff[34] = rd32(E1000_RLPML);
518 regs_buff[35] = rd32(E1000_RFCTL);
519 regs_buff[36] = rd32(E1000_MRQC);
520 regs_buff[37] = rd32(E1000_VT_CTL);
521
522 /* Transmit */
523 regs_buff[38] = rd32(E1000_TCTL);
524 regs_buff[39] = rd32(E1000_TCTL_EXT);
525 regs_buff[40] = rd32(E1000_TIPG);
526 regs_buff[41] = rd32(E1000_DTXCTL);
527
528 /* Wake Up */
529 regs_buff[42] = rd32(E1000_WUC);
530 regs_buff[43] = rd32(E1000_WUFC);
531 regs_buff[44] = rd32(E1000_WUS);
532 regs_buff[45] = rd32(E1000_IPAV);
533 regs_buff[46] = rd32(E1000_WUPL);
534
535 /* MAC */
536 regs_buff[47] = rd32(E1000_PCS_CFG0);
537 regs_buff[48] = rd32(E1000_PCS_LCTL);
538 regs_buff[49] = rd32(E1000_PCS_LSTAT);
539 regs_buff[50] = rd32(E1000_PCS_ANADV);
540 regs_buff[51] = rd32(E1000_PCS_LPAB);
541 regs_buff[52] = rd32(E1000_PCS_NPTX);
542 regs_buff[53] = rd32(E1000_PCS_LPABNP);
543
544 /* Statistics */
545 regs_buff[54] = adapter->stats.crcerrs;
546 regs_buff[55] = adapter->stats.algnerrc;
547 regs_buff[56] = adapter->stats.symerrs;
548 regs_buff[57] = adapter->stats.rxerrc;
549 regs_buff[58] = adapter->stats.mpc;
550 regs_buff[59] = adapter->stats.scc;
551 regs_buff[60] = adapter->stats.ecol;
552 regs_buff[61] = adapter->stats.mcc;
553 regs_buff[62] = adapter->stats.latecol;
554 regs_buff[63] = adapter->stats.colc;
555 regs_buff[64] = adapter->stats.dc;
556 regs_buff[65] = adapter->stats.tncrs;
557 regs_buff[66] = adapter->stats.sec;
558 regs_buff[67] = adapter->stats.htdpmc;
559 regs_buff[68] = adapter->stats.rlec;
560 regs_buff[69] = adapter->stats.xonrxc;
561 regs_buff[70] = adapter->stats.xontxc;
562 regs_buff[71] = adapter->stats.xoffrxc;
563 regs_buff[72] = adapter->stats.xofftxc;
564 regs_buff[73] = adapter->stats.fcruc;
565 regs_buff[74] = adapter->stats.prc64;
566 regs_buff[75] = adapter->stats.prc127;
567 regs_buff[76] = adapter->stats.prc255;
568 regs_buff[77] = adapter->stats.prc511;
569 regs_buff[78] = adapter->stats.prc1023;
570 regs_buff[79] = adapter->stats.prc1522;
571 regs_buff[80] = adapter->stats.gprc;
572 regs_buff[81] = adapter->stats.bprc;
573 regs_buff[82] = adapter->stats.mprc;
574 regs_buff[83] = adapter->stats.gptc;
575 regs_buff[84] = adapter->stats.gorc;
576 regs_buff[86] = adapter->stats.gotc;
577 regs_buff[88] = adapter->stats.rnbc;
578 regs_buff[89] = adapter->stats.ruc;
579 regs_buff[90] = adapter->stats.rfc;
580 regs_buff[91] = adapter->stats.roc;
581 regs_buff[92] = adapter->stats.rjc;
582 regs_buff[93] = adapter->stats.mgprc;
583 regs_buff[94] = adapter->stats.mgpdc;
584 regs_buff[95] = adapter->stats.mgptc;
585 regs_buff[96] = adapter->stats.tor;
586 regs_buff[98] = adapter->stats.tot;
587 regs_buff[100] = adapter->stats.tpr;
588 regs_buff[101] = adapter->stats.tpt;
589 regs_buff[102] = adapter->stats.ptc64;
590 regs_buff[103] = adapter->stats.ptc127;
591 regs_buff[104] = adapter->stats.ptc255;
592 regs_buff[105] = adapter->stats.ptc511;
593 regs_buff[106] = adapter->stats.ptc1023;
594 regs_buff[107] = adapter->stats.ptc1522;
595 regs_buff[108] = adapter->stats.mptc;
596 regs_buff[109] = adapter->stats.bptc;
597 regs_buff[110] = adapter->stats.tsctc;
598 regs_buff[111] = adapter->stats.iac;
599 regs_buff[112] = adapter->stats.rpthc;
600 regs_buff[113] = adapter->stats.hgptc;
601 regs_buff[114] = adapter->stats.hgorc;
602 regs_buff[116] = adapter->stats.hgotc;
603 regs_buff[118] = adapter->stats.lenerrs;
604 regs_buff[119] = adapter->stats.scvpc;
605 regs_buff[120] = adapter->stats.hrmpc;
606
607 for (i = 0; i < 4; i++)
608 regs_buff[121 + i] = rd32(E1000_SRRCTL(i));
609 for (i = 0; i < 4; i++)
610 regs_buff[125 + i] = rd32(E1000_PSRTYPE(i));
611 for (i = 0; i < 4; i++)
612 regs_buff[129 + i] = rd32(E1000_RDBAL(i));
613 for (i = 0; i < 4; i++)
614 regs_buff[133 + i] = rd32(E1000_RDBAH(i));
615 for (i = 0; i < 4; i++)
616 regs_buff[137 + i] = rd32(E1000_RDLEN(i));
617 for (i = 0; i < 4; i++)
618 regs_buff[141 + i] = rd32(E1000_RDH(i));
619 for (i = 0; i < 4; i++)
620 regs_buff[145 + i] = rd32(E1000_RDT(i));
621 for (i = 0; i < 4; i++)
622 regs_buff[149 + i] = rd32(E1000_RXDCTL(i));
623
624 for (i = 0; i < 10; i++)
625 regs_buff[153 + i] = rd32(E1000_EITR(i));
626 for (i = 0; i < 8; i++)
627 regs_buff[163 + i] = rd32(E1000_IMIR(i));
628 for (i = 0; i < 8; i++)
629 regs_buff[171 + i] = rd32(E1000_IMIREXT(i));
630 for (i = 0; i < 16; i++)
631 regs_buff[179 + i] = rd32(E1000_RAL(i));
632 for (i = 0; i < 16; i++)
633 regs_buff[195 + i] = rd32(E1000_RAH(i));
634
635 for (i = 0; i < 4; i++)
636 regs_buff[211 + i] = rd32(E1000_TDBAL(i));
637 for (i = 0; i < 4; i++)
638 regs_buff[215 + i] = rd32(E1000_TDBAH(i));
639 for (i = 0; i < 4; i++)
640 regs_buff[219 + i] = rd32(E1000_TDLEN(i));
641 for (i = 0; i < 4; i++)
642 regs_buff[223 + i] = rd32(E1000_TDH(i));
643 for (i = 0; i < 4; i++)
644 regs_buff[227 + i] = rd32(E1000_TDT(i));
645 for (i = 0; i < 4; i++)
646 regs_buff[231 + i] = rd32(E1000_TXDCTL(i));
647 for (i = 0; i < 4; i++)
648 regs_buff[235 + i] = rd32(E1000_TDWBAL(i));
649 for (i = 0; i < 4; i++)
650 regs_buff[239 + i] = rd32(E1000_TDWBAH(i));
651 for (i = 0; i < 4; i++)
652 regs_buff[243 + i] = rd32(E1000_DCA_TXCTRL(i));
653
654 for (i = 0; i < 4; i++)
655 regs_buff[247 + i] = rd32(E1000_IP4AT_REG(i));
656 for (i = 0; i < 4; i++)
657 regs_buff[251 + i] = rd32(E1000_IP6AT_REG(i));
658 for (i = 0; i < 32; i++)
659 regs_buff[255 + i] = rd32(E1000_WUPM_REG(i));
660 for (i = 0; i < 128; i++)
661 regs_buff[287 + i] = rd32(E1000_FFMT_REG(i));
662 for (i = 0; i < 128; i++)
663 regs_buff[415 + i] = rd32(E1000_FFVT_REG(i));
664 for (i = 0; i < 4; i++)
665 regs_buff[543 + i] = rd32(E1000_FFLT_REG(i));
666
667 regs_buff[547] = rd32(E1000_TDFH);
668 regs_buff[548] = rd32(E1000_TDFT);
669 regs_buff[549] = rd32(E1000_TDFHS);
670 regs_buff[550] = rd32(E1000_TDFPC);
671
672 if (hw->mac.type > e1000_82580) {
673 regs_buff[551] = adapter->stats.o2bgptc;
674 regs_buff[552] = adapter->stats.b2ospc;
675 regs_buff[553] = adapter->stats.o2bspc;
676 regs_buff[554] = adapter->stats.b2ogprc;
677 }
678
679 if (hw->mac.type != e1000_82576)
680 return;
681 for (i = 0; i < 12; i++)
682 regs_buff[555 + i] = rd32(E1000_SRRCTL(i + 4));
683 for (i = 0; i < 4; i++)
684 regs_buff[567 + i] = rd32(E1000_PSRTYPE(i + 4));
685 for (i = 0; i < 12; i++)
686 regs_buff[571 + i] = rd32(E1000_RDBAL(i + 4));
687 for (i = 0; i < 12; i++)
688 regs_buff[583 + i] = rd32(E1000_RDBAH(i + 4));
689 for (i = 0; i < 12; i++)
690 regs_buff[595 + i] = rd32(E1000_RDLEN(i + 4));
691 for (i = 0; i < 12; i++)
692 regs_buff[607 + i] = rd32(E1000_RDH(i + 4));
693 for (i = 0; i < 12; i++)
694 regs_buff[619 + i] = rd32(E1000_RDT(i + 4));
695 for (i = 0; i < 12; i++)
696 regs_buff[631 + i] = rd32(E1000_RXDCTL(i + 4));
697
698 for (i = 0; i < 12; i++)
699 regs_buff[643 + i] = rd32(E1000_TDBAL(i + 4));
700 for (i = 0; i < 12; i++)
701 regs_buff[655 + i] = rd32(E1000_TDBAH(i + 4));
702 for (i = 0; i < 12; i++)
703 regs_buff[667 + i] = rd32(E1000_TDLEN(i + 4));
704 for (i = 0; i < 12; i++)
705 regs_buff[679 + i] = rd32(E1000_TDH(i + 4));
706 for (i = 0; i < 12; i++)
707 regs_buff[691 + i] = rd32(E1000_TDT(i + 4));
708 for (i = 0; i < 12; i++)
709 regs_buff[703 + i] = rd32(E1000_TXDCTL(i + 4));
710 for (i = 0; i < 12; i++)
711 regs_buff[715 + i] = rd32(E1000_TDWBAL(i + 4));
712 for (i = 0; i < 12; i++)
713 regs_buff[727 + i] = rd32(E1000_TDWBAH(i + 4));
714 }
715
igb_get_eeprom_len(struct net_device * netdev)716 static int igb_get_eeprom_len(struct net_device *netdev)
717 {
718 struct igb_adapter *adapter = netdev_priv(netdev);
719 return adapter->hw.nvm.word_size * 2;
720 }
721
igb_get_eeprom(struct net_device * netdev,struct ethtool_eeprom * eeprom,u8 * bytes)722 static int igb_get_eeprom(struct net_device *netdev,
723 struct ethtool_eeprom *eeprom, u8 *bytes)
724 {
725 struct igb_adapter *adapter = netdev_priv(netdev);
726 struct e1000_hw *hw = &adapter->hw;
727 u16 *eeprom_buff;
728 int first_word, last_word;
729 int ret_val = 0;
730 u16 i;
731
732 if (eeprom->len == 0)
733 return -EINVAL;
734
735 eeprom->magic = hw->vendor_id | (hw->device_id << 16);
736
737 first_word = eeprom->offset >> 1;
738 last_word = (eeprom->offset + eeprom->len - 1) >> 1;
739
740 eeprom_buff = kmalloc_array(last_word - first_word + 1, sizeof(u16),
741 GFP_KERNEL);
742 if (!eeprom_buff)
743 return -ENOMEM;
744
745 if (hw->nvm.type == e1000_nvm_eeprom_spi)
746 ret_val = hw->nvm.ops.read(hw, first_word,
747 last_word - first_word + 1,
748 eeprom_buff);
749 else {
750 for (i = 0; i < last_word - first_word + 1; i++) {
751 ret_val = hw->nvm.ops.read(hw, first_word + i, 1,
752 &eeprom_buff[i]);
753 if (ret_val)
754 break;
755 }
756 }
757
758 /* Device's eeprom is always little-endian, word addressable */
759 for (i = 0; i < last_word - first_word + 1; i++)
760 le16_to_cpus(&eeprom_buff[i]);
761
762 memcpy(bytes, (u8 *)eeprom_buff + (eeprom->offset & 1),
763 eeprom->len);
764 kfree(eeprom_buff);
765
766 return ret_val;
767 }
768
igb_set_eeprom(struct net_device * netdev,struct ethtool_eeprom * eeprom,u8 * bytes)769 static int igb_set_eeprom(struct net_device *netdev,
770 struct ethtool_eeprom *eeprom, u8 *bytes)
771 {
772 struct igb_adapter *adapter = netdev_priv(netdev);
773 struct e1000_hw *hw = &adapter->hw;
774 u16 *eeprom_buff;
775 void *ptr;
776 int max_len, first_word, last_word, ret_val = 0;
777 u16 i;
778
779 if (eeprom->len == 0)
780 return -EOPNOTSUPP;
781
782 if ((hw->mac.type >= e1000_i210) &&
783 !igb_get_flash_presence_i210(hw)) {
784 return -EOPNOTSUPP;
785 }
786
787 if (eeprom->magic != (hw->vendor_id | (hw->device_id << 16)))
788 return -EFAULT;
789
790 max_len = hw->nvm.word_size * 2;
791
792 first_word = eeprom->offset >> 1;
793 last_word = (eeprom->offset + eeprom->len - 1) >> 1;
794 eeprom_buff = kmalloc(max_len, GFP_KERNEL);
795 if (!eeprom_buff)
796 return -ENOMEM;
797
798 ptr = (void *)eeprom_buff;
799
800 if (eeprom->offset & 1) {
801 /* need read/modify/write of first changed EEPROM word
802 * only the second byte of the word is being modified
803 */
804 ret_val = hw->nvm.ops.read(hw, first_word, 1,
805 &eeprom_buff[0]);
806 ptr++;
807 }
808 if (((eeprom->offset + eeprom->len) & 1) && (ret_val == 0)) {
809 /* need read/modify/write of last changed EEPROM word
810 * only the first byte of the word is being modified
811 */
812 ret_val = hw->nvm.ops.read(hw, last_word, 1,
813 &eeprom_buff[last_word - first_word]);
814 }
815
816 /* Device's eeprom is always little-endian, word addressable */
817 for (i = 0; i < last_word - first_word + 1; i++)
818 le16_to_cpus(&eeprom_buff[i]);
819
820 memcpy(ptr, bytes, eeprom->len);
821
822 for (i = 0; i < last_word - first_word + 1; i++)
823 eeprom_buff[i] = cpu_to_le16(eeprom_buff[i]);
824
825 ret_val = hw->nvm.ops.write(hw, first_word,
826 last_word - first_word + 1, eeprom_buff);
827
828 /* Update the checksum if nvm write succeeded */
829 if (ret_val == 0)
830 hw->nvm.ops.update(hw);
831
832 igb_set_fw_version(adapter);
833 kfree(eeprom_buff);
834 return ret_val;
835 }
836
igb_get_drvinfo(struct net_device * netdev,struct ethtool_drvinfo * drvinfo)837 static void igb_get_drvinfo(struct net_device *netdev,
838 struct ethtool_drvinfo *drvinfo)
839 {
840 struct igb_adapter *adapter = netdev_priv(netdev);
841
842 strlcpy(drvinfo->driver, igb_driver_name, sizeof(drvinfo->driver));
843 strlcpy(drvinfo->version, igb_driver_version, sizeof(drvinfo->version));
844
845 /* EEPROM image version # is reported as firmware version # for
846 * 82575 controllers
847 */
848 strlcpy(drvinfo->fw_version, adapter->fw_version,
849 sizeof(drvinfo->fw_version));
850 strlcpy(drvinfo->bus_info, pci_name(adapter->pdev),
851 sizeof(drvinfo->bus_info));
852
853 drvinfo->n_priv_flags = IGB_PRIV_FLAGS_STR_LEN;
854 }
855
igb_get_ringparam(struct net_device * netdev,struct ethtool_ringparam * ring)856 static void igb_get_ringparam(struct net_device *netdev,
857 struct ethtool_ringparam *ring)
858 {
859 struct igb_adapter *adapter = netdev_priv(netdev);
860
861 ring->rx_max_pending = IGB_MAX_RXD;
862 ring->tx_max_pending = IGB_MAX_TXD;
863 ring->rx_pending = adapter->rx_ring_count;
864 ring->tx_pending = adapter->tx_ring_count;
865 }
866
igb_set_ringparam(struct net_device * netdev,struct ethtool_ringparam * ring)867 static int igb_set_ringparam(struct net_device *netdev,
868 struct ethtool_ringparam *ring)
869 {
870 struct igb_adapter *adapter = netdev_priv(netdev);
871 struct igb_ring *temp_ring;
872 int i, err = 0;
873 u16 new_rx_count, new_tx_count;
874
875 if ((ring->rx_mini_pending) || (ring->rx_jumbo_pending))
876 return -EINVAL;
877
878 new_rx_count = min_t(u32, ring->rx_pending, IGB_MAX_RXD);
879 new_rx_count = max_t(u16, new_rx_count, IGB_MIN_RXD);
880 new_rx_count = ALIGN(new_rx_count, REQ_RX_DESCRIPTOR_MULTIPLE);
881
882 new_tx_count = min_t(u32, ring->tx_pending, IGB_MAX_TXD);
883 new_tx_count = max_t(u16, new_tx_count, IGB_MIN_TXD);
884 new_tx_count = ALIGN(new_tx_count, REQ_TX_DESCRIPTOR_MULTIPLE);
885
886 if ((new_tx_count == adapter->tx_ring_count) &&
887 (new_rx_count == adapter->rx_ring_count)) {
888 /* nothing to do */
889 return 0;
890 }
891
892 while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
893 usleep_range(1000, 2000);
894
895 if (!netif_running(adapter->netdev)) {
896 for (i = 0; i < adapter->num_tx_queues; i++)
897 adapter->tx_ring[i]->count = new_tx_count;
898 for (i = 0; i < adapter->num_rx_queues; i++)
899 adapter->rx_ring[i]->count = new_rx_count;
900 adapter->tx_ring_count = new_tx_count;
901 adapter->rx_ring_count = new_rx_count;
902 goto clear_reset;
903 }
904
905 if (adapter->num_tx_queues > adapter->num_rx_queues)
906 temp_ring = vmalloc(array_size(sizeof(struct igb_ring),
907 adapter->num_tx_queues));
908 else
909 temp_ring = vmalloc(array_size(sizeof(struct igb_ring),
910 adapter->num_rx_queues));
911
912 if (!temp_ring) {
913 err = -ENOMEM;
914 goto clear_reset;
915 }
916
917 igb_down(adapter);
918
919 /* We can't just free everything and then setup again,
920 * because the ISRs in MSI-X mode get passed pointers
921 * to the Tx and Rx ring structs.
922 */
923 if (new_tx_count != adapter->tx_ring_count) {
924 for (i = 0; i < adapter->num_tx_queues; i++) {
925 memcpy(&temp_ring[i], adapter->tx_ring[i],
926 sizeof(struct igb_ring));
927
928 temp_ring[i].count = new_tx_count;
929 err = igb_setup_tx_resources(&temp_ring[i]);
930 if (err) {
931 while (i) {
932 i--;
933 igb_free_tx_resources(&temp_ring[i]);
934 }
935 goto err_setup;
936 }
937 }
938
939 for (i = 0; i < adapter->num_tx_queues; i++) {
940 igb_free_tx_resources(adapter->tx_ring[i]);
941
942 memcpy(adapter->tx_ring[i], &temp_ring[i],
943 sizeof(struct igb_ring));
944 }
945
946 adapter->tx_ring_count = new_tx_count;
947 }
948
949 if (new_rx_count != adapter->rx_ring_count) {
950 for (i = 0; i < adapter->num_rx_queues; i++) {
951 memcpy(&temp_ring[i], adapter->rx_ring[i],
952 sizeof(struct igb_ring));
953
954 temp_ring[i].count = new_rx_count;
955 err = igb_setup_rx_resources(&temp_ring[i]);
956 if (err) {
957 while (i) {
958 i--;
959 igb_free_rx_resources(&temp_ring[i]);
960 }
961 goto err_setup;
962 }
963
964 }
965
966 for (i = 0; i < adapter->num_rx_queues; i++) {
967 igb_free_rx_resources(adapter->rx_ring[i]);
968
969 memcpy(adapter->rx_ring[i], &temp_ring[i],
970 sizeof(struct igb_ring));
971 }
972
973 adapter->rx_ring_count = new_rx_count;
974 }
975 err_setup:
976 igb_up(adapter);
977 vfree(temp_ring);
978 clear_reset:
979 clear_bit(__IGB_RESETTING, &adapter->state);
980 return err;
981 }
982
983 /* ethtool register test data */
984 struct igb_reg_test {
985 u16 reg;
986 u16 reg_offset;
987 u16 array_len;
988 u16 test_type;
989 u32 mask;
990 u32 write;
991 };
992
993 /* In the hardware, registers are laid out either singly, in arrays
994 * spaced 0x100 bytes apart, or in contiguous tables. We assume
995 * most tests take place on arrays or single registers (handled
996 * as a single-element array) and special-case the tables.
997 * Table tests are always pattern tests.
998 *
999 * We also make provision for some required setup steps by specifying
1000 * registers to be written without any read-back testing.
1001 */
1002
1003 #define PATTERN_TEST 1
1004 #define SET_READ_TEST 2
1005 #define WRITE_NO_TEST 3
1006 #define TABLE32_TEST 4
1007 #define TABLE64_TEST_LO 5
1008 #define TABLE64_TEST_HI 6
1009
1010 /* i210 reg test */
1011 static struct igb_reg_test reg_test_i210[] = {
1012 { E1000_FCAL, 0x100, 1, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1013 { E1000_FCAH, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1014 { E1000_FCT, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1015 { E1000_RDBAL(0), 0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1016 { E1000_RDBAH(0), 0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1017 { E1000_RDLEN(0), 0x100, 4, PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
1018 /* RDH is read-only for i210, only test RDT. */
1019 { E1000_RDT(0), 0x100, 4, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1020 { E1000_FCRTH, 0x100, 1, PATTERN_TEST, 0x0000FFF0, 0x0000FFF0 },
1021 { E1000_FCTTV, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1022 { E1000_TIPG, 0x100, 1, PATTERN_TEST, 0x3FFFFFFF, 0x3FFFFFFF },
1023 { E1000_TDBAL(0), 0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1024 { E1000_TDBAH(0), 0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1025 { E1000_TDLEN(0), 0x100, 4, PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
1026 { E1000_TDT(0), 0x100, 4, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1027 { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1028 { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0x04CFB0FE, 0x003FFFFB },
1029 { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0x04CFB0FE, 0xFFFFFFFF },
1030 { E1000_TCTL, 0x100, 1, SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1031 { E1000_RA, 0, 16, TABLE64_TEST_LO,
1032 0xFFFFFFFF, 0xFFFFFFFF },
1033 { E1000_RA, 0, 16, TABLE64_TEST_HI,
1034 0x900FFFFF, 0xFFFFFFFF },
1035 { E1000_MTA, 0, 128, TABLE32_TEST,
1036 0xFFFFFFFF, 0xFFFFFFFF },
1037 { 0, 0, 0, 0, 0 }
1038 };
1039
1040 /* i350 reg test */
1041 static struct igb_reg_test reg_test_i350[] = {
1042 { E1000_FCAL, 0x100, 1, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1043 { E1000_FCAH, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1044 { E1000_FCT, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1045 { E1000_VET, 0x100, 1, PATTERN_TEST, 0xFFFF0000, 0xFFFF0000 },
1046 { E1000_RDBAL(0), 0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1047 { E1000_RDBAH(0), 0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1048 { E1000_RDLEN(0), 0x100, 4, PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
1049 { E1000_RDBAL(4), 0x40, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1050 { E1000_RDBAH(4), 0x40, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1051 { E1000_RDLEN(4), 0x40, 4, PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
1052 /* RDH is read-only for i350, only test RDT. */
1053 { E1000_RDT(0), 0x100, 4, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1054 { E1000_RDT(4), 0x40, 4, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1055 { E1000_FCRTH, 0x100, 1, PATTERN_TEST, 0x0000FFF0, 0x0000FFF0 },
1056 { E1000_FCTTV, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1057 { E1000_TIPG, 0x100, 1, PATTERN_TEST, 0x3FFFFFFF, 0x3FFFFFFF },
1058 { E1000_TDBAL(0), 0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1059 { E1000_TDBAH(0), 0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1060 { E1000_TDLEN(0), 0x100, 4, PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
1061 { E1000_TDBAL(4), 0x40, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1062 { E1000_TDBAH(4), 0x40, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1063 { E1000_TDLEN(4), 0x40, 4, PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
1064 { E1000_TDT(0), 0x100, 4, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1065 { E1000_TDT(4), 0x40, 4, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1066 { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1067 { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0x04CFB0FE, 0x003FFFFB },
1068 { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0x04CFB0FE, 0xFFFFFFFF },
1069 { E1000_TCTL, 0x100, 1, SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1070 { E1000_RA, 0, 16, TABLE64_TEST_LO,
1071 0xFFFFFFFF, 0xFFFFFFFF },
1072 { E1000_RA, 0, 16, TABLE64_TEST_HI,
1073 0xC3FFFFFF, 0xFFFFFFFF },
1074 { E1000_RA2, 0, 16, TABLE64_TEST_LO,
1075 0xFFFFFFFF, 0xFFFFFFFF },
1076 { E1000_RA2, 0, 16, TABLE64_TEST_HI,
1077 0xC3FFFFFF, 0xFFFFFFFF },
1078 { E1000_MTA, 0, 128, TABLE32_TEST,
1079 0xFFFFFFFF, 0xFFFFFFFF },
1080 { 0, 0, 0, 0 }
1081 };
1082
1083 /* 82580 reg test */
1084 static struct igb_reg_test reg_test_82580[] = {
1085 { E1000_FCAL, 0x100, 1, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1086 { E1000_FCAH, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1087 { E1000_FCT, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1088 { E1000_VET, 0x100, 1, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1089 { E1000_RDBAL(0), 0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1090 { E1000_RDBAH(0), 0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1091 { E1000_RDLEN(0), 0x100, 4, PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
1092 { E1000_RDBAL(4), 0x40, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1093 { E1000_RDBAH(4), 0x40, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1094 { E1000_RDLEN(4), 0x40, 4, PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
1095 /* RDH is read-only for 82580, only test RDT. */
1096 { E1000_RDT(0), 0x100, 4, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1097 { E1000_RDT(4), 0x40, 4, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1098 { E1000_FCRTH, 0x100, 1, PATTERN_TEST, 0x0000FFF0, 0x0000FFF0 },
1099 { E1000_FCTTV, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1100 { E1000_TIPG, 0x100, 1, PATTERN_TEST, 0x3FFFFFFF, 0x3FFFFFFF },
1101 { E1000_TDBAL(0), 0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1102 { E1000_TDBAH(0), 0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1103 { E1000_TDLEN(0), 0x100, 4, PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
1104 { E1000_TDBAL(4), 0x40, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1105 { E1000_TDBAH(4), 0x40, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1106 { E1000_TDLEN(4), 0x40, 4, PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
1107 { E1000_TDT(0), 0x100, 4, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1108 { E1000_TDT(4), 0x40, 4, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1109 { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1110 { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0x04CFB0FE, 0x003FFFFB },
1111 { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0x04CFB0FE, 0xFFFFFFFF },
1112 { E1000_TCTL, 0x100, 1, SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1113 { E1000_RA, 0, 16, TABLE64_TEST_LO,
1114 0xFFFFFFFF, 0xFFFFFFFF },
1115 { E1000_RA, 0, 16, TABLE64_TEST_HI,
1116 0x83FFFFFF, 0xFFFFFFFF },
1117 { E1000_RA2, 0, 8, TABLE64_TEST_LO,
1118 0xFFFFFFFF, 0xFFFFFFFF },
1119 { E1000_RA2, 0, 8, TABLE64_TEST_HI,
1120 0x83FFFFFF, 0xFFFFFFFF },
1121 { E1000_MTA, 0, 128, TABLE32_TEST,
1122 0xFFFFFFFF, 0xFFFFFFFF },
1123 { 0, 0, 0, 0 }
1124 };
1125
1126 /* 82576 reg test */
1127 static struct igb_reg_test reg_test_82576[] = {
1128 { E1000_FCAL, 0x100, 1, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1129 { E1000_FCAH, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1130 { E1000_FCT, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1131 { E1000_VET, 0x100, 1, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1132 { E1000_RDBAL(0), 0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1133 { E1000_RDBAH(0), 0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1134 { E1000_RDLEN(0), 0x100, 4, PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
1135 { E1000_RDBAL(4), 0x40, 12, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1136 { E1000_RDBAH(4), 0x40, 12, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1137 { E1000_RDLEN(4), 0x40, 12, PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
1138 /* Enable all RX queues before testing. */
1139 { E1000_RXDCTL(0), 0x100, 4, WRITE_NO_TEST, 0,
1140 E1000_RXDCTL_QUEUE_ENABLE },
1141 { E1000_RXDCTL(4), 0x40, 12, WRITE_NO_TEST, 0,
1142 E1000_RXDCTL_QUEUE_ENABLE },
1143 /* RDH is read-only for 82576, only test RDT. */
1144 { E1000_RDT(0), 0x100, 4, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1145 { E1000_RDT(4), 0x40, 12, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1146 { E1000_RXDCTL(0), 0x100, 4, WRITE_NO_TEST, 0, 0 },
1147 { E1000_RXDCTL(4), 0x40, 12, WRITE_NO_TEST, 0, 0 },
1148 { E1000_FCRTH, 0x100, 1, PATTERN_TEST, 0x0000FFF0, 0x0000FFF0 },
1149 { E1000_FCTTV, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1150 { E1000_TIPG, 0x100, 1, PATTERN_TEST, 0x3FFFFFFF, 0x3FFFFFFF },
1151 { E1000_TDBAL(0), 0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1152 { E1000_TDBAH(0), 0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1153 { E1000_TDLEN(0), 0x100, 4, PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
1154 { E1000_TDBAL(4), 0x40, 12, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1155 { E1000_TDBAH(4), 0x40, 12, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1156 { E1000_TDLEN(4), 0x40, 12, PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
1157 { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1158 { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0x04CFB0FE, 0x003FFFFB },
1159 { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0x04CFB0FE, 0xFFFFFFFF },
1160 { E1000_TCTL, 0x100, 1, SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1161 { E1000_RA, 0, 16, TABLE64_TEST_LO, 0xFFFFFFFF, 0xFFFFFFFF },
1162 { E1000_RA, 0, 16, TABLE64_TEST_HI, 0x83FFFFFF, 0xFFFFFFFF },
1163 { E1000_RA2, 0, 8, TABLE64_TEST_LO, 0xFFFFFFFF, 0xFFFFFFFF },
1164 { E1000_RA2, 0, 8, TABLE64_TEST_HI, 0x83FFFFFF, 0xFFFFFFFF },
1165 { E1000_MTA, 0, 128, TABLE32_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1166 { 0, 0, 0, 0 }
1167 };
1168
1169 /* 82575 register test */
1170 static struct igb_reg_test reg_test_82575[] = {
1171 { E1000_FCAL, 0x100, 1, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1172 { E1000_FCAH, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1173 { E1000_FCT, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1174 { E1000_VET, 0x100, 1, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1175 { E1000_RDBAL(0), 0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1176 { E1000_RDBAH(0), 0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1177 { E1000_RDLEN(0), 0x100, 4, PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
1178 /* Enable all four RX queues before testing. */
1179 { E1000_RXDCTL(0), 0x100, 4, WRITE_NO_TEST, 0,
1180 E1000_RXDCTL_QUEUE_ENABLE },
1181 /* RDH is read-only for 82575, only test RDT. */
1182 { E1000_RDT(0), 0x100, 4, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1183 { E1000_RXDCTL(0), 0x100, 4, WRITE_NO_TEST, 0, 0 },
1184 { E1000_FCRTH, 0x100, 1, PATTERN_TEST, 0x0000FFF0, 0x0000FFF0 },
1185 { E1000_FCTTV, 0x100, 1, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1186 { E1000_TIPG, 0x100, 1, PATTERN_TEST, 0x3FFFFFFF, 0x3FFFFFFF },
1187 { E1000_TDBAL(0), 0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1188 { E1000_TDBAH(0), 0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1189 { E1000_TDLEN(0), 0x100, 4, PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
1190 { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1191 { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0x04CFB3FE, 0x003FFFFB },
1192 { E1000_RCTL, 0x100, 1, SET_READ_TEST, 0x04CFB3FE, 0xFFFFFFFF },
1193 { E1000_TCTL, 0x100, 1, SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1194 { E1000_TXCW, 0x100, 1, PATTERN_TEST, 0xC000FFFF, 0x0000FFFF },
1195 { E1000_RA, 0, 16, TABLE64_TEST_LO, 0xFFFFFFFF, 0xFFFFFFFF },
1196 { E1000_RA, 0, 16, TABLE64_TEST_HI, 0x800FFFFF, 0xFFFFFFFF },
1197 { E1000_MTA, 0, 128, TABLE32_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1198 { 0, 0, 0, 0 }
1199 };
1200
reg_pattern_test(struct igb_adapter * adapter,u64 * data,int reg,u32 mask,u32 write)1201 static bool reg_pattern_test(struct igb_adapter *adapter, u64 *data,
1202 int reg, u32 mask, u32 write)
1203 {
1204 struct e1000_hw *hw = &adapter->hw;
1205 u32 pat, val;
1206 static const u32 _test[] = {
1207 0x5A5A5A5A, 0xA5A5A5A5, 0x00000000, 0xFFFFFFFF};
1208 for (pat = 0; pat < ARRAY_SIZE(_test); pat++) {
1209 wr32(reg, (_test[pat] & write));
1210 val = rd32(reg) & mask;
1211 if (val != (_test[pat] & write & mask)) {
1212 dev_err(&adapter->pdev->dev,
1213 "pattern test reg %04X failed: got 0x%08X expected 0x%08X\n",
1214 reg, val, (_test[pat] & write & mask));
1215 *data = reg;
1216 return true;
1217 }
1218 }
1219
1220 return false;
1221 }
1222
reg_set_and_check(struct igb_adapter * adapter,u64 * data,int reg,u32 mask,u32 write)1223 static bool reg_set_and_check(struct igb_adapter *adapter, u64 *data,
1224 int reg, u32 mask, u32 write)
1225 {
1226 struct e1000_hw *hw = &adapter->hw;
1227 u32 val;
1228
1229 wr32(reg, write & mask);
1230 val = rd32(reg);
1231 if ((write & mask) != (val & mask)) {
1232 dev_err(&adapter->pdev->dev,
1233 "set/check reg %04X test failed: got 0x%08X expected 0x%08X\n",
1234 reg, (val & mask), (write & mask));
1235 *data = reg;
1236 return true;
1237 }
1238
1239 return false;
1240 }
1241
1242 #define REG_PATTERN_TEST(reg, mask, write) \
1243 do { \
1244 if (reg_pattern_test(adapter, data, reg, mask, write)) \
1245 return 1; \
1246 } while (0)
1247
1248 #define REG_SET_AND_CHECK(reg, mask, write) \
1249 do { \
1250 if (reg_set_and_check(adapter, data, reg, mask, write)) \
1251 return 1; \
1252 } while (0)
1253
igb_reg_test(struct igb_adapter * adapter,u64 * data)1254 static int igb_reg_test(struct igb_adapter *adapter, u64 *data)
1255 {
1256 struct e1000_hw *hw = &adapter->hw;
1257 struct igb_reg_test *test;
1258 u32 value, before, after;
1259 u32 i, toggle;
1260
1261 switch (adapter->hw.mac.type) {
1262 case e1000_i350:
1263 case e1000_i354:
1264 test = reg_test_i350;
1265 toggle = 0x7FEFF3FF;
1266 break;
1267 case e1000_i210:
1268 case e1000_i211:
1269 test = reg_test_i210;
1270 toggle = 0x7FEFF3FF;
1271 break;
1272 case e1000_82580:
1273 test = reg_test_82580;
1274 toggle = 0x7FEFF3FF;
1275 break;
1276 case e1000_82576:
1277 test = reg_test_82576;
1278 toggle = 0x7FFFF3FF;
1279 break;
1280 default:
1281 test = reg_test_82575;
1282 toggle = 0x7FFFF3FF;
1283 break;
1284 }
1285
1286 /* Because the status register is such a special case,
1287 * we handle it separately from the rest of the register
1288 * tests. Some bits are read-only, some toggle, and some
1289 * are writable on newer MACs.
1290 */
1291 before = rd32(E1000_STATUS);
1292 value = (rd32(E1000_STATUS) & toggle);
1293 wr32(E1000_STATUS, toggle);
1294 after = rd32(E1000_STATUS) & toggle;
1295 if (value != after) {
1296 dev_err(&adapter->pdev->dev,
1297 "failed STATUS register test got: 0x%08X expected: 0x%08X\n",
1298 after, value);
1299 *data = 1;
1300 return 1;
1301 }
1302 /* restore previous status */
1303 wr32(E1000_STATUS, before);
1304
1305 /* Perform the remainder of the register test, looping through
1306 * the test table until we either fail or reach the null entry.
1307 */
1308 while (test->reg) {
1309 for (i = 0; i < test->array_len; i++) {
1310 switch (test->test_type) {
1311 case PATTERN_TEST:
1312 REG_PATTERN_TEST(test->reg +
1313 (i * test->reg_offset),
1314 test->mask,
1315 test->write);
1316 break;
1317 case SET_READ_TEST:
1318 REG_SET_AND_CHECK(test->reg +
1319 (i * test->reg_offset),
1320 test->mask,
1321 test->write);
1322 break;
1323 case WRITE_NO_TEST:
1324 writel(test->write,
1325 (adapter->hw.hw_addr + test->reg)
1326 + (i * test->reg_offset));
1327 break;
1328 case TABLE32_TEST:
1329 REG_PATTERN_TEST(test->reg + (i * 4),
1330 test->mask,
1331 test->write);
1332 break;
1333 case TABLE64_TEST_LO:
1334 REG_PATTERN_TEST(test->reg + (i * 8),
1335 test->mask,
1336 test->write);
1337 break;
1338 case TABLE64_TEST_HI:
1339 REG_PATTERN_TEST((test->reg + 4) + (i * 8),
1340 test->mask,
1341 test->write);
1342 break;
1343 }
1344 }
1345 test++;
1346 }
1347
1348 *data = 0;
1349 return 0;
1350 }
1351
igb_eeprom_test(struct igb_adapter * adapter,u64 * data)1352 static int igb_eeprom_test(struct igb_adapter *adapter, u64 *data)
1353 {
1354 struct e1000_hw *hw = &adapter->hw;
1355
1356 *data = 0;
1357
1358 /* Validate eeprom on all parts but flashless */
1359 switch (hw->mac.type) {
1360 case e1000_i210:
1361 case e1000_i211:
1362 if (igb_get_flash_presence_i210(hw)) {
1363 if (adapter->hw.nvm.ops.validate(&adapter->hw) < 0)
1364 *data = 2;
1365 }
1366 break;
1367 default:
1368 if (adapter->hw.nvm.ops.validate(&adapter->hw) < 0)
1369 *data = 2;
1370 break;
1371 }
1372
1373 return *data;
1374 }
1375
igb_test_intr(int irq,void * data)1376 static irqreturn_t igb_test_intr(int irq, void *data)
1377 {
1378 struct igb_adapter *adapter = (struct igb_adapter *) data;
1379 struct e1000_hw *hw = &adapter->hw;
1380
1381 adapter->test_icr |= rd32(E1000_ICR);
1382
1383 return IRQ_HANDLED;
1384 }
1385
igb_intr_test(struct igb_adapter * adapter,u64 * data)1386 static int igb_intr_test(struct igb_adapter *adapter, u64 *data)
1387 {
1388 struct e1000_hw *hw = &adapter->hw;
1389 struct net_device *netdev = adapter->netdev;
1390 u32 mask, ics_mask, i = 0, shared_int = true;
1391 u32 irq = adapter->pdev->irq;
1392
1393 *data = 0;
1394
1395 /* Hook up test interrupt handler just for this test */
1396 if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1397 if (request_irq(adapter->msix_entries[0].vector,
1398 igb_test_intr, 0, netdev->name, adapter)) {
1399 *data = 1;
1400 return -1;
1401 }
1402 } else if (adapter->flags & IGB_FLAG_HAS_MSI) {
1403 shared_int = false;
1404 if (request_irq(irq,
1405 igb_test_intr, 0, netdev->name, adapter)) {
1406 *data = 1;
1407 return -1;
1408 }
1409 } else if (!request_irq(irq, igb_test_intr, IRQF_PROBE_SHARED,
1410 netdev->name, adapter)) {
1411 shared_int = false;
1412 } else if (request_irq(irq, igb_test_intr, IRQF_SHARED,
1413 netdev->name, adapter)) {
1414 *data = 1;
1415 return -1;
1416 }
1417 dev_info(&adapter->pdev->dev, "testing %s interrupt\n",
1418 (shared_int ? "shared" : "unshared"));
1419
1420 /* Disable all the interrupts */
1421 wr32(E1000_IMC, ~0);
1422 wrfl();
1423 usleep_range(10000, 11000);
1424
1425 /* Define all writable bits for ICS */
1426 switch (hw->mac.type) {
1427 case e1000_82575:
1428 ics_mask = 0x37F47EDD;
1429 break;
1430 case e1000_82576:
1431 ics_mask = 0x77D4FBFD;
1432 break;
1433 case e1000_82580:
1434 ics_mask = 0x77DCFED5;
1435 break;
1436 case e1000_i350:
1437 case e1000_i354:
1438 case e1000_i210:
1439 case e1000_i211:
1440 ics_mask = 0x77DCFED5;
1441 break;
1442 default:
1443 ics_mask = 0x7FFFFFFF;
1444 break;
1445 }
1446
1447 /* Test each interrupt */
1448 for (; i < 31; i++) {
1449 /* Interrupt to test */
1450 mask = BIT(i);
1451
1452 if (!(mask & ics_mask))
1453 continue;
1454
1455 if (!shared_int) {
1456 /* Disable the interrupt to be reported in
1457 * the cause register and then force the same
1458 * interrupt and see if one gets posted. If
1459 * an interrupt was posted to the bus, the
1460 * test failed.
1461 */
1462 adapter->test_icr = 0;
1463
1464 /* Flush any pending interrupts */
1465 wr32(E1000_ICR, ~0);
1466
1467 wr32(E1000_IMC, mask);
1468 wr32(E1000_ICS, mask);
1469 wrfl();
1470 usleep_range(10000, 11000);
1471
1472 if (adapter->test_icr & mask) {
1473 *data = 3;
1474 break;
1475 }
1476 }
1477
1478 /* Enable the interrupt to be reported in
1479 * the cause register and then force the same
1480 * interrupt and see if one gets posted. If
1481 * an interrupt was not posted to the bus, the
1482 * test failed.
1483 */
1484 adapter->test_icr = 0;
1485
1486 /* Flush any pending interrupts */
1487 wr32(E1000_ICR, ~0);
1488
1489 wr32(E1000_IMS, mask);
1490 wr32(E1000_ICS, mask);
1491 wrfl();
1492 usleep_range(10000, 11000);
1493
1494 if (!(adapter->test_icr & mask)) {
1495 *data = 4;
1496 break;
1497 }
1498
1499 if (!shared_int) {
1500 /* Disable the other interrupts to be reported in
1501 * the cause register and then force the other
1502 * interrupts and see if any get posted. If
1503 * an interrupt was posted to the bus, the
1504 * test failed.
1505 */
1506 adapter->test_icr = 0;
1507
1508 /* Flush any pending interrupts */
1509 wr32(E1000_ICR, ~0);
1510
1511 wr32(E1000_IMC, ~mask);
1512 wr32(E1000_ICS, ~mask);
1513 wrfl();
1514 usleep_range(10000, 11000);
1515
1516 if (adapter->test_icr & mask) {
1517 *data = 5;
1518 break;
1519 }
1520 }
1521 }
1522
1523 /* Disable all the interrupts */
1524 wr32(E1000_IMC, ~0);
1525 wrfl();
1526 usleep_range(10000, 11000);
1527
1528 /* Unhook test interrupt handler */
1529 if (adapter->flags & IGB_FLAG_HAS_MSIX)
1530 free_irq(adapter->msix_entries[0].vector, adapter);
1531 else
1532 free_irq(irq, adapter);
1533
1534 return *data;
1535 }
1536
igb_free_desc_rings(struct igb_adapter * adapter)1537 static void igb_free_desc_rings(struct igb_adapter *adapter)
1538 {
1539 igb_free_tx_resources(&adapter->test_tx_ring);
1540 igb_free_rx_resources(&adapter->test_rx_ring);
1541 }
1542
igb_setup_desc_rings(struct igb_adapter * adapter)1543 static int igb_setup_desc_rings(struct igb_adapter *adapter)
1544 {
1545 struct igb_ring *tx_ring = &adapter->test_tx_ring;
1546 struct igb_ring *rx_ring = &adapter->test_rx_ring;
1547 struct e1000_hw *hw = &adapter->hw;
1548 int ret_val;
1549
1550 /* Setup Tx descriptor ring and Tx buffers */
1551 tx_ring->count = IGB_DEFAULT_TXD;
1552 tx_ring->dev = &adapter->pdev->dev;
1553 tx_ring->netdev = adapter->netdev;
1554 tx_ring->reg_idx = adapter->vfs_allocated_count;
1555
1556 if (igb_setup_tx_resources(tx_ring)) {
1557 ret_val = 1;
1558 goto err_nomem;
1559 }
1560
1561 igb_setup_tctl(adapter);
1562 igb_configure_tx_ring(adapter, tx_ring);
1563
1564 /* Setup Rx descriptor ring and Rx buffers */
1565 rx_ring->count = IGB_DEFAULT_RXD;
1566 rx_ring->dev = &adapter->pdev->dev;
1567 rx_ring->netdev = adapter->netdev;
1568 rx_ring->reg_idx = adapter->vfs_allocated_count;
1569
1570 if (igb_setup_rx_resources(rx_ring)) {
1571 ret_val = 3;
1572 goto err_nomem;
1573 }
1574
1575 /* set the default queue to queue 0 of PF */
1576 wr32(E1000_MRQC, adapter->vfs_allocated_count << 3);
1577
1578 /* enable receive ring */
1579 igb_setup_rctl(adapter);
1580 igb_configure_rx_ring(adapter, rx_ring);
1581
1582 igb_alloc_rx_buffers(rx_ring, igb_desc_unused(rx_ring));
1583
1584 return 0;
1585
1586 err_nomem:
1587 igb_free_desc_rings(adapter);
1588 return ret_val;
1589 }
1590
igb_phy_disable_receiver(struct igb_adapter * adapter)1591 static void igb_phy_disable_receiver(struct igb_adapter *adapter)
1592 {
1593 struct e1000_hw *hw = &adapter->hw;
1594
1595 /* Write out to PHY registers 29 and 30 to disable the Receiver. */
1596 igb_write_phy_reg(hw, 29, 0x001F);
1597 igb_write_phy_reg(hw, 30, 0x8FFC);
1598 igb_write_phy_reg(hw, 29, 0x001A);
1599 igb_write_phy_reg(hw, 30, 0x8FF0);
1600 }
1601
igb_integrated_phy_loopback(struct igb_adapter * adapter)1602 static int igb_integrated_phy_loopback(struct igb_adapter *adapter)
1603 {
1604 struct e1000_hw *hw = &adapter->hw;
1605 u32 ctrl_reg = 0;
1606
1607 hw->mac.autoneg = false;
1608
1609 if (hw->phy.type == e1000_phy_m88) {
1610 if (hw->phy.id != I210_I_PHY_ID) {
1611 /* Auto-MDI/MDIX Off */
1612 igb_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, 0x0808);
1613 /* reset to update Auto-MDI/MDIX */
1614 igb_write_phy_reg(hw, PHY_CONTROL, 0x9140);
1615 /* autoneg off */
1616 igb_write_phy_reg(hw, PHY_CONTROL, 0x8140);
1617 } else {
1618 /* force 1000, set loopback */
1619 igb_write_phy_reg(hw, I347AT4_PAGE_SELECT, 0);
1620 igb_write_phy_reg(hw, PHY_CONTROL, 0x4140);
1621 }
1622 } else if (hw->phy.type == e1000_phy_82580) {
1623 /* enable MII loopback */
1624 igb_write_phy_reg(hw, I82580_PHY_LBK_CTRL, 0x8041);
1625 }
1626
1627 /* add small delay to avoid loopback test failure */
1628 msleep(50);
1629
1630 /* force 1000, set loopback */
1631 igb_write_phy_reg(hw, PHY_CONTROL, 0x4140);
1632
1633 /* Now set up the MAC to the same speed/duplex as the PHY. */
1634 ctrl_reg = rd32(E1000_CTRL);
1635 ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */
1636 ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */
1637 E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */
1638 E1000_CTRL_SPD_1000 |/* Force Speed to 1000 */
1639 E1000_CTRL_FD | /* Force Duplex to FULL */
1640 E1000_CTRL_SLU); /* Set link up enable bit */
1641
1642 if (hw->phy.type == e1000_phy_m88)
1643 ctrl_reg |= E1000_CTRL_ILOS; /* Invert Loss of Signal */
1644
1645 wr32(E1000_CTRL, ctrl_reg);
1646
1647 /* Disable the receiver on the PHY so when a cable is plugged in, the
1648 * PHY does not begin to autoneg when a cable is reconnected to the NIC.
1649 */
1650 if (hw->phy.type == e1000_phy_m88)
1651 igb_phy_disable_receiver(adapter);
1652
1653 msleep(500);
1654 return 0;
1655 }
1656
igb_set_phy_loopback(struct igb_adapter * adapter)1657 static int igb_set_phy_loopback(struct igb_adapter *adapter)
1658 {
1659 return igb_integrated_phy_loopback(adapter);
1660 }
1661
igb_setup_loopback_test(struct igb_adapter * adapter)1662 static int igb_setup_loopback_test(struct igb_adapter *adapter)
1663 {
1664 struct e1000_hw *hw = &adapter->hw;
1665 u32 reg;
1666
1667 reg = rd32(E1000_CTRL_EXT);
1668
1669 /* use CTRL_EXT to identify link type as SGMII can appear as copper */
1670 if (reg & E1000_CTRL_EXT_LINK_MODE_MASK) {
1671 if ((hw->device_id == E1000_DEV_ID_DH89XXCC_SGMII) ||
1672 (hw->device_id == E1000_DEV_ID_DH89XXCC_SERDES) ||
1673 (hw->device_id == E1000_DEV_ID_DH89XXCC_BACKPLANE) ||
1674 (hw->device_id == E1000_DEV_ID_DH89XXCC_SFP) ||
1675 (hw->device_id == E1000_DEV_ID_I354_SGMII) ||
1676 (hw->device_id == E1000_DEV_ID_I354_BACKPLANE_2_5GBPS)) {
1677 /* Enable DH89xxCC MPHY for near end loopback */
1678 reg = rd32(E1000_MPHY_ADDR_CTL);
1679 reg = (reg & E1000_MPHY_ADDR_CTL_OFFSET_MASK) |
1680 E1000_MPHY_PCS_CLK_REG_OFFSET;
1681 wr32(E1000_MPHY_ADDR_CTL, reg);
1682
1683 reg = rd32(E1000_MPHY_DATA);
1684 reg |= E1000_MPHY_PCS_CLK_REG_DIGINELBEN;
1685 wr32(E1000_MPHY_DATA, reg);
1686 }
1687
1688 reg = rd32(E1000_RCTL);
1689 reg |= E1000_RCTL_LBM_TCVR;
1690 wr32(E1000_RCTL, reg);
1691
1692 wr32(E1000_SCTL, E1000_ENABLE_SERDES_LOOPBACK);
1693
1694 reg = rd32(E1000_CTRL);
1695 reg &= ~(E1000_CTRL_RFCE |
1696 E1000_CTRL_TFCE |
1697 E1000_CTRL_LRST);
1698 reg |= E1000_CTRL_SLU |
1699 E1000_CTRL_FD;
1700 wr32(E1000_CTRL, reg);
1701
1702 /* Unset switch control to serdes energy detect */
1703 reg = rd32(E1000_CONNSW);
1704 reg &= ~E1000_CONNSW_ENRGSRC;
1705 wr32(E1000_CONNSW, reg);
1706
1707 /* Unset sigdetect for SERDES loopback on
1708 * 82580 and newer devices.
1709 */
1710 if (hw->mac.type >= e1000_82580) {
1711 reg = rd32(E1000_PCS_CFG0);
1712 reg |= E1000_PCS_CFG_IGN_SD;
1713 wr32(E1000_PCS_CFG0, reg);
1714 }
1715
1716 /* Set PCS register for forced speed */
1717 reg = rd32(E1000_PCS_LCTL);
1718 reg &= ~E1000_PCS_LCTL_AN_ENABLE; /* Disable Autoneg*/
1719 reg |= E1000_PCS_LCTL_FLV_LINK_UP | /* Force link up */
1720 E1000_PCS_LCTL_FSV_1000 | /* Force 1000 */
1721 E1000_PCS_LCTL_FDV_FULL | /* SerDes Full duplex */
1722 E1000_PCS_LCTL_FSD | /* Force Speed */
1723 E1000_PCS_LCTL_FORCE_LINK; /* Force Link */
1724 wr32(E1000_PCS_LCTL, reg);
1725
1726 return 0;
1727 }
1728
1729 return igb_set_phy_loopback(adapter);
1730 }
1731
igb_loopback_cleanup(struct igb_adapter * adapter)1732 static void igb_loopback_cleanup(struct igb_adapter *adapter)
1733 {
1734 struct e1000_hw *hw = &adapter->hw;
1735 u32 rctl;
1736 u16 phy_reg;
1737
1738 if ((hw->device_id == E1000_DEV_ID_DH89XXCC_SGMII) ||
1739 (hw->device_id == E1000_DEV_ID_DH89XXCC_SERDES) ||
1740 (hw->device_id == E1000_DEV_ID_DH89XXCC_BACKPLANE) ||
1741 (hw->device_id == E1000_DEV_ID_DH89XXCC_SFP) ||
1742 (hw->device_id == E1000_DEV_ID_I354_SGMII)) {
1743 u32 reg;
1744
1745 /* Disable near end loopback on DH89xxCC */
1746 reg = rd32(E1000_MPHY_ADDR_CTL);
1747 reg = (reg & E1000_MPHY_ADDR_CTL_OFFSET_MASK) |
1748 E1000_MPHY_PCS_CLK_REG_OFFSET;
1749 wr32(E1000_MPHY_ADDR_CTL, reg);
1750
1751 reg = rd32(E1000_MPHY_DATA);
1752 reg &= ~E1000_MPHY_PCS_CLK_REG_DIGINELBEN;
1753 wr32(E1000_MPHY_DATA, reg);
1754 }
1755
1756 rctl = rd32(E1000_RCTL);
1757 rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
1758 wr32(E1000_RCTL, rctl);
1759
1760 hw->mac.autoneg = true;
1761 igb_read_phy_reg(hw, PHY_CONTROL, &phy_reg);
1762 if (phy_reg & MII_CR_LOOPBACK) {
1763 phy_reg &= ~MII_CR_LOOPBACK;
1764 igb_write_phy_reg(hw, PHY_CONTROL, phy_reg);
1765 igb_phy_sw_reset(hw);
1766 }
1767 }
1768
igb_create_lbtest_frame(struct sk_buff * skb,unsigned int frame_size)1769 static void igb_create_lbtest_frame(struct sk_buff *skb,
1770 unsigned int frame_size)
1771 {
1772 memset(skb->data, 0xFF, frame_size);
1773 frame_size /= 2;
1774 memset(&skb->data[frame_size], 0xAA, frame_size - 1);
1775 memset(&skb->data[frame_size + 10], 0xBE, 1);
1776 memset(&skb->data[frame_size + 12], 0xAF, 1);
1777 }
1778
igb_check_lbtest_frame(struct igb_rx_buffer * rx_buffer,unsigned int frame_size)1779 static int igb_check_lbtest_frame(struct igb_rx_buffer *rx_buffer,
1780 unsigned int frame_size)
1781 {
1782 unsigned char *data;
1783 bool match = true;
1784
1785 frame_size >>= 1;
1786
1787 data = kmap(rx_buffer->page);
1788
1789 if (data[3] != 0xFF ||
1790 data[frame_size + 10] != 0xBE ||
1791 data[frame_size + 12] != 0xAF)
1792 match = false;
1793
1794 kunmap(rx_buffer->page);
1795
1796 return match;
1797 }
1798
igb_clean_test_rings(struct igb_ring * rx_ring,struct igb_ring * tx_ring,unsigned int size)1799 static int igb_clean_test_rings(struct igb_ring *rx_ring,
1800 struct igb_ring *tx_ring,
1801 unsigned int size)
1802 {
1803 union e1000_adv_rx_desc *rx_desc;
1804 struct igb_rx_buffer *rx_buffer_info;
1805 struct igb_tx_buffer *tx_buffer_info;
1806 u16 rx_ntc, tx_ntc, count = 0;
1807
1808 /* initialize next to clean and descriptor values */
1809 rx_ntc = rx_ring->next_to_clean;
1810 tx_ntc = tx_ring->next_to_clean;
1811 rx_desc = IGB_RX_DESC(rx_ring, rx_ntc);
1812
1813 while (rx_desc->wb.upper.length) {
1814 /* check Rx buffer */
1815 rx_buffer_info = &rx_ring->rx_buffer_info[rx_ntc];
1816
1817 /* sync Rx buffer for CPU read */
1818 dma_sync_single_for_cpu(rx_ring->dev,
1819 rx_buffer_info->dma,
1820 size,
1821 DMA_FROM_DEVICE);
1822
1823 /* verify contents of skb */
1824 if (igb_check_lbtest_frame(rx_buffer_info, size))
1825 count++;
1826
1827 /* sync Rx buffer for device write */
1828 dma_sync_single_for_device(rx_ring->dev,
1829 rx_buffer_info->dma,
1830 size,
1831 DMA_FROM_DEVICE);
1832
1833 /* unmap buffer on Tx side */
1834 tx_buffer_info = &tx_ring->tx_buffer_info[tx_ntc];
1835
1836 /* Free all the Tx ring sk_buffs */
1837 dev_kfree_skb_any(tx_buffer_info->skb);
1838
1839 /* unmap skb header data */
1840 dma_unmap_single(tx_ring->dev,
1841 dma_unmap_addr(tx_buffer_info, dma),
1842 dma_unmap_len(tx_buffer_info, len),
1843 DMA_TO_DEVICE);
1844 dma_unmap_len_set(tx_buffer_info, len, 0);
1845
1846 /* increment Rx/Tx next to clean counters */
1847 rx_ntc++;
1848 if (rx_ntc == rx_ring->count)
1849 rx_ntc = 0;
1850 tx_ntc++;
1851 if (tx_ntc == tx_ring->count)
1852 tx_ntc = 0;
1853
1854 /* fetch next descriptor */
1855 rx_desc = IGB_RX_DESC(rx_ring, rx_ntc);
1856 }
1857
1858 netdev_tx_reset_queue(txring_txq(tx_ring));
1859
1860 /* re-map buffers to ring, store next to clean values */
1861 igb_alloc_rx_buffers(rx_ring, count);
1862 rx_ring->next_to_clean = rx_ntc;
1863 tx_ring->next_to_clean = tx_ntc;
1864
1865 return count;
1866 }
1867
igb_run_loopback_test(struct igb_adapter * adapter)1868 static int igb_run_loopback_test(struct igb_adapter *adapter)
1869 {
1870 struct igb_ring *tx_ring = &adapter->test_tx_ring;
1871 struct igb_ring *rx_ring = &adapter->test_rx_ring;
1872 u16 i, j, lc, good_cnt;
1873 int ret_val = 0;
1874 unsigned int size = IGB_RX_HDR_LEN;
1875 netdev_tx_t tx_ret_val;
1876 struct sk_buff *skb;
1877
1878 /* allocate test skb */
1879 skb = alloc_skb(size, GFP_KERNEL);
1880 if (!skb)
1881 return 11;
1882
1883 /* place data into test skb */
1884 igb_create_lbtest_frame(skb, size);
1885 skb_put(skb, size);
1886
1887 /* Calculate the loop count based on the largest descriptor ring
1888 * The idea is to wrap the largest ring a number of times using 64
1889 * send/receive pairs during each loop
1890 */
1891
1892 if (rx_ring->count <= tx_ring->count)
1893 lc = ((tx_ring->count / 64) * 2) + 1;
1894 else
1895 lc = ((rx_ring->count / 64) * 2) + 1;
1896
1897 for (j = 0; j <= lc; j++) { /* loop count loop */
1898 /* reset count of good packets */
1899 good_cnt = 0;
1900
1901 /* place 64 packets on the transmit queue*/
1902 for (i = 0; i < 64; i++) {
1903 skb_get(skb);
1904 tx_ret_val = igb_xmit_frame_ring(skb, tx_ring);
1905 if (tx_ret_val == NETDEV_TX_OK)
1906 good_cnt++;
1907 }
1908
1909 if (good_cnt != 64) {
1910 ret_val = 12;
1911 break;
1912 }
1913
1914 /* allow 200 milliseconds for packets to go from Tx to Rx */
1915 msleep(200);
1916
1917 good_cnt = igb_clean_test_rings(rx_ring, tx_ring, size);
1918 if (good_cnt != 64) {
1919 ret_val = 13;
1920 break;
1921 }
1922 } /* end loop count loop */
1923
1924 /* free the original skb */
1925 kfree_skb(skb);
1926
1927 return ret_val;
1928 }
1929
igb_loopback_test(struct igb_adapter * adapter,u64 * data)1930 static int igb_loopback_test(struct igb_adapter *adapter, u64 *data)
1931 {
1932 /* PHY loopback cannot be performed if SoL/IDER
1933 * sessions are active
1934 */
1935 if (igb_check_reset_block(&adapter->hw)) {
1936 dev_err(&adapter->pdev->dev,
1937 "Cannot do PHY loopback test when SoL/IDER is active.\n");
1938 *data = 0;
1939 goto out;
1940 }
1941
1942 if (adapter->hw.mac.type == e1000_i354) {
1943 dev_info(&adapter->pdev->dev,
1944 "Loopback test not supported on i354.\n");
1945 *data = 0;
1946 goto out;
1947 }
1948 *data = igb_setup_desc_rings(adapter);
1949 if (*data)
1950 goto out;
1951 *data = igb_setup_loopback_test(adapter);
1952 if (*data)
1953 goto err_loopback;
1954 *data = igb_run_loopback_test(adapter);
1955 igb_loopback_cleanup(adapter);
1956
1957 err_loopback:
1958 igb_free_desc_rings(adapter);
1959 out:
1960 return *data;
1961 }
1962
igb_link_test(struct igb_adapter * adapter,u64 * data)1963 static int igb_link_test(struct igb_adapter *adapter, u64 *data)
1964 {
1965 struct e1000_hw *hw = &adapter->hw;
1966 *data = 0;
1967 if (hw->phy.media_type == e1000_media_type_internal_serdes) {
1968 int i = 0;
1969
1970 hw->mac.serdes_has_link = false;
1971
1972 /* On some blade server designs, link establishment
1973 * could take as long as 2-3 minutes
1974 */
1975 do {
1976 hw->mac.ops.check_for_link(&adapter->hw);
1977 if (hw->mac.serdes_has_link)
1978 return *data;
1979 msleep(20);
1980 } while (i++ < 3750);
1981
1982 *data = 1;
1983 } else {
1984 hw->mac.ops.check_for_link(&adapter->hw);
1985 if (hw->mac.autoneg)
1986 msleep(5000);
1987
1988 if (!(rd32(E1000_STATUS) & E1000_STATUS_LU))
1989 *data = 1;
1990 }
1991 return *data;
1992 }
1993
igb_diag_test(struct net_device * netdev,struct ethtool_test * eth_test,u64 * data)1994 static void igb_diag_test(struct net_device *netdev,
1995 struct ethtool_test *eth_test, u64 *data)
1996 {
1997 struct igb_adapter *adapter = netdev_priv(netdev);
1998 u16 autoneg_advertised;
1999 u8 forced_speed_duplex, autoneg;
2000 bool if_running = netif_running(netdev);
2001
2002 set_bit(__IGB_TESTING, &adapter->state);
2003
2004 /* can't do offline tests on media switching devices */
2005 if (adapter->hw.dev_spec._82575.mas_capable)
2006 eth_test->flags &= ~ETH_TEST_FL_OFFLINE;
2007 if (eth_test->flags == ETH_TEST_FL_OFFLINE) {
2008 /* Offline tests */
2009
2010 /* save speed, duplex, autoneg settings */
2011 autoneg_advertised = adapter->hw.phy.autoneg_advertised;
2012 forced_speed_duplex = adapter->hw.mac.forced_speed_duplex;
2013 autoneg = adapter->hw.mac.autoneg;
2014
2015 dev_info(&adapter->pdev->dev, "offline testing starting\n");
2016
2017 /* power up link for link test */
2018 igb_power_up_link(adapter);
2019
2020 /* Link test performed before hardware reset so autoneg doesn't
2021 * interfere with test result
2022 */
2023 if (igb_link_test(adapter, &data[TEST_LINK]))
2024 eth_test->flags |= ETH_TEST_FL_FAILED;
2025
2026 if (if_running)
2027 /* indicate we're in test mode */
2028 igb_close(netdev);
2029 else
2030 igb_reset(adapter);
2031
2032 if (igb_reg_test(adapter, &data[TEST_REG]))
2033 eth_test->flags |= ETH_TEST_FL_FAILED;
2034
2035 igb_reset(adapter);
2036 if (igb_eeprom_test(adapter, &data[TEST_EEP]))
2037 eth_test->flags |= ETH_TEST_FL_FAILED;
2038
2039 igb_reset(adapter);
2040 if (igb_intr_test(adapter, &data[TEST_IRQ]))
2041 eth_test->flags |= ETH_TEST_FL_FAILED;
2042
2043 igb_reset(adapter);
2044 /* power up link for loopback test */
2045 igb_power_up_link(adapter);
2046 if (igb_loopback_test(adapter, &data[TEST_LOOP]))
2047 eth_test->flags |= ETH_TEST_FL_FAILED;
2048
2049 /* restore speed, duplex, autoneg settings */
2050 adapter->hw.phy.autoneg_advertised = autoneg_advertised;
2051 adapter->hw.mac.forced_speed_duplex = forced_speed_duplex;
2052 adapter->hw.mac.autoneg = autoneg;
2053
2054 /* force this routine to wait until autoneg complete/timeout */
2055 adapter->hw.phy.autoneg_wait_to_complete = true;
2056 igb_reset(adapter);
2057 adapter->hw.phy.autoneg_wait_to_complete = false;
2058
2059 clear_bit(__IGB_TESTING, &adapter->state);
2060 if (if_running)
2061 igb_open(netdev);
2062 } else {
2063 dev_info(&adapter->pdev->dev, "online testing starting\n");
2064
2065 /* PHY is powered down when interface is down */
2066 if (if_running && igb_link_test(adapter, &data[TEST_LINK]))
2067 eth_test->flags |= ETH_TEST_FL_FAILED;
2068 else
2069 data[TEST_LINK] = 0;
2070
2071 /* Online tests aren't run; pass by default */
2072 data[TEST_REG] = 0;
2073 data[TEST_EEP] = 0;
2074 data[TEST_IRQ] = 0;
2075 data[TEST_LOOP] = 0;
2076
2077 clear_bit(__IGB_TESTING, &adapter->state);
2078 }
2079 msleep_interruptible(4 * 1000);
2080 }
2081
igb_get_wol(struct net_device * netdev,struct ethtool_wolinfo * wol)2082 static void igb_get_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
2083 {
2084 struct igb_adapter *adapter = netdev_priv(netdev);
2085
2086 wol->wolopts = 0;
2087
2088 if (!(adapter->flags & IGB_FLAG_WOL_SUPPORTED))
2089 return;
2090
2091 wol->supported = WAKE_UCAST | WAKE_MCAST |
2092 WAKE_BCAST | WAKE_MAGIC |
2093 WAKE_PHY;
2094
2095 /* apply any specific unsupported masks here */
2096 switch (adapter->hw.device_id) {
2097 default:
2098 break;
2099 }
2100
2101 if (adapter->wol & E1000_WUFC_EX)
2102 wol->wolopts |= WAKE_UCAST;
2103 if (adapter->wol & E1000_WUFC_MC)
2104 wol->wolopts |= WAKE_MCAST;
2105 if (adapter->wol & E1000_WUFC_BC)
2106 wol->wolopts |= WAKE_BCAST;
2107 if (adapter->wol & E1000_WUFC_MAG)
2108 wol->wolopts |= WAKE_MAGIC;
2109 if (adapter->wol & E1000_WUFC_LNKC)
2110 wol->wolopts |= WAKE_PHY;
2111 }
2112
igb_set_wol(struct net_device * netdev,struct ethtool_wolinfo * wol)2113 static int igb_set_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
2114 {
2115 struct igb_adapter *adapter = netdev_priv(netdev);
2116
2117 if (wol->wolopts & (WAKE_ARP | WAKE_MAGICSECURE))
2118 return -EOPNOTSUPP;
2119
2120 if (!(adapter->flags & IGB_FLAG_WOL_SUPPORTED))
2121 return wol->wolopts ? -EOPNOTSUPP : 0;
2122
2123 /* these settings will always override what we currently have */
2124 adapter->wol = 0;
2125
2126 if (wol->wolopts & WAKE_UCAST)
2127 adapter->wol |= E1000_WUFC_EX;
2128 if (wol->wolopts & WAKE_MCAST)
2129 adapter->wol |= E1000_WUFC_MC;
2130 if (wol->wolopts & WAKE_BCAST)
2131 adapter->wol |= E1000_WUFC_BC;
2132 if (wol->wolopts & WAKE_MAGIC)
2133 adapter->wol |= E1000_WUFC_MAG;
2134 if (wol->wolopts & WAKE_PHY)
2135 adapter->wol |= E1000_WUFC_LNKC;
2136 device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
2137
2138 return 0;
2139 }
2140
2141 /* bit defines for adapter->led_status */
2142 #define IGB_LED_ON 0
2143
igb_set_phys_id(struct net_device * netdev,enum ethtool_phys_id_state state)2144 static int igb_set_phys_id(struct net_device *netdev,
2145 enum ethtool_phys_id_state state)
2146 {
2147 struct igb_adapter *adapter = netdev_priv(netdev);
2148 struct e1000_hw *hw = &adapter->hw;
2149
2150 switch (state) {
2151 case ETHTOOL_ID_ACTIVE:
2152 igb_blink_led(hw);
2153 return 2;
2154 case ETHTOOL_ID_ON:
2155 igb_blink_led(hw);
2156 break;
2157 case ETHTOOL_ID_OFF:
2158 igb_led_off(hw);
2159 break;
2160 case ETHTOOL_ID_INACTIVE:
2161 igb_led_off(hw);
2162 clear_bit(IGB_LED_ON, &adapter->led_status);
2163 igb_cleanup_led(hw);
2164 break;
2165 }
2166
2167 return 0;
2168 }
2169
igb_set_coalesce(struct net_device * netdev,struct ethtool_coalesce * ec)2170 static int igb_set_coalesce(struct net_device *netdev,
2171 struct ethtool_coalesce *ec)
2172 {
2173 struct igb_adapter *adapter = netdev_priv(netdev);
2174 int i;
2175
2176 if (ec->rx_max_coalesced_frames ||
2177 ec->rx_coalesce_usecs_irq ||
2178 ec->rx_max_coalesced_frames_irq ||
2179 ec->tx_max_coalesced_frames ||
2180 ec->tx_coalesce_usecs_irq ||
2181 ec->stats_block_coalesce_usecs ||
2182 ec->use_adaptive_rx_coalesce ||
2183 ec->use_adaptive_tx_coalesce ||
2184 ec->pkt_rate_low ||
2185 ec->rx_coalesce_usecs_low ||
2186 ec->rx_max_coalesced_frames_low ||
2187 ec->tx_coalesce_usecs_low ||
2188 ec->tx_max_coalesced_frames_low ||
2189 ec->pkt_rate_high ||
2190 ec->rx_coalesce_usecs_high ||
2191 ec->rx_max_coalesced_frames_high ||
2192 ec->tx_coalesce_usecs_high ||
2193 ec->tx_max_coalesced_frames_high ||
2194 ec->rate_sample_interval)
2195 return -ENOTSUPP;
2196
2197 if ((ec->rx_coalesce_usecs > IGB_MAX_ITR_USECS) ||
2198 ((ec->rx_coalesce_usecs > 3) &&
2199 (ec->rx_coalesce_usecs < IGB_MIN_ITR_USECS)) ||
2200 (ec->rx_coalesce_usecs == 2))
2201 return -EINVAL;
2202
2203 if ((ec->tx_coalesce_usecs > IGB_MAX_ITR_USECS) ||
2204 ((ec->tx_coalesce_usecs > 3) &&
2205 (ec->tx_coalesce_usecs < IGB_MIN_ITR_USECS)) ||
2206 (ec->tx_coalesce_usecs == 2))
2207 return -EINVAL;
2208
2209 if ((adapter->flags & IGB_FLAG_QUEUE_PAIRS) && ec->tx_coalesce_usecs)
2210 return -EINVAL;
2211
2212 /* If ITR is disabled, disable DMAC */
2213 if (ec->rx_coalesce_usecs == 0) {
2214 if (adapter->flags & IGB_FLAG_DMAC)
2215 adapter->flags &= ~IGB_FLAG_DMAC;
2216 }
2217
2218 /* convert to rate of irq's per second */
2219 if (ec->rx_coalesce_usecs && ec->rx_coalesce_usecs <= 3)
2220 adapter->rx_itr_setting = ec->rx_coalesce_usecs;
2221 else
2222 adapter->rx_itr_setting = ec->rx_coalesce_usecs << 2;
2223
2224 /* convert to rate of irq's per second */
2225 if (adapter->flags & IGB_FLAG_QUEUE_PAIRS)
2226 adapter->tx_itr_setting = adapter->rx_itr_setting;
2227 else if (ec->tx_coalesce_usecs && ec->tx_coalesce_usecs <= 3)
2228 adapter->tx_itr_setting = ec->tx_coalesce_usecs;
2229 else
2230 adapter->tx_itr_setting = ec->tx_coalesce_usecs << 2;
2231
2232 for (i = 0; i < adapter->num_q_vectors; i++) {
2233 struct igb_q_vector *q_vector = adapter->q_vector[i];
2234 q_vector->tx.work_limit = adapter->tx_work_limit;
2235 if (q_vector->rx.ring)
2236 q_vector->itr_val = adapter->rx_itr_setting;
2237 else
2238 q_vector->itr_val = adapter->tx_itr_setting;
2239 if (q_vector->itr_val && q_vector->itr_val <= 3)
2240 q_vector->itr_val = IGB_START_ITR;
2241 q_vector->set_itr = 1;
2242 }
2243
2244 return 0;
2245 }
2246
igb_get_coalesce(struct net_device * netdev,struct ethtool_coalesce * ec)2247 static int igb_get_coalesce(struct net_device *netdev,
2248 struct ethtool_coalesce *ec)
2249 {
2250 struct igb_adapter *adapter = netdev_priv(netdev);
2251
2252 if (adapter->rx_itr_setting <= 3)
2253 ec->rx_coalesce_usecs = adapter->rx_itr_setting;
2254 else
2255 ec->rx_coalesce_usecs = adapter->rx_itr_setting >> 2;
2256
2257 if (!(adapter->flags & IGB_FLAG_QUEUE_PAIRS)) {
2258 if (adapter->tx_itr_setting <= 3)
2259 ec->tx_coalesce_usecs = adapter->tx_itr_setting;
2260 else
2261 ec->tx_coalesce_usecs = adapter->tx_itr_setting >> 2;
2262 }
2263
2264 return 0;
2265 }
2266
igb_nway_reset(struct net_device * netdev)2267 static int igb_nway_reset(struct net_device *netdev)
2268 {
2269 struct igb_adapter *adapter = netdev_priv(netdev);
2270 if (netif_running(netdev))
2271 igb_reinit_locked(adapter);
2272 return 0;
2273 }
2274
igb_get_sset_count(struct net_device * netdev,int sset)2275 static int igb_get_sset_count(struct net_device *netdev, int sset)
2276 {
2277 switch (sset) {
2278 case ETH_SS_STATS:
2279 return IGB_STATS_LEN;
2280 case ETH_SS_TEST:
2281 return IGB_TEST_LEN;
2282 case ETH_SS_PRIV_FLAGS:
2283 return IGB_PRIV_FLAGS_STR_LEN;
2284 default:
2285 return -ENOTSUPP;
2286 }
2287 }
2288
igb_get_ethtool_stats(struct net_device * netdev,struct ethtool_stats * stats,u64 * data)2289 static void igb_get_ethtool_stats(struct net_device *netdev,
2290 struct ethtool_stats *stats, u64 *data)
2291 {
2292 struct igb_adapter *adapter = netdev_priv(netdev);
2293 struct rtnl_link_stats64 *net_stats = &adapter->stats64;
2294 unsigned int start;
2295 struct igb_ring *ring;
2296 int i, j;
2297 char *p;
2298
2299 spin_lock(&adapter->stats64_lock);
2300 igb_update_stats(adapter);
2301
2302 for (i = 0; i < IGB_GLOBAL_STATS_LEN; i++) {
2303 p = (char *)adapter + igb_gstrings_stats[i].stat_offset;
2304 data[i] = (igb_gstrings_stats[i].sizeof_stat ==
2305 sizeof(u64)) ? *(u64 *)p : *(u32 *)p;
2306 }
2307 for (j = 0; j < IGB_NETDEV_STATS_LEN; j++, i++) {
2308 p = (char *)net_stats + igb_gstrings_net_stats[j].stat_offset;
2309 data[i] = (igb_gstrings_net_stats[j].sizeof_stat ==
2310 sizeof(u64)) ? *(u64 *)p : *(u32 *)p;
2311 }
2312 for (j = 0; j < adapter->num_tx_queues; j++) {
2313 u64 restart2;
2314
2315 ring = adapter->tx_ring[j];
2316 do {
2317 start = u64_stats_fetch_begin_irq(&ring->tx_syncp);
2318 data[i] = ring->tx_stats.packets;
2319 data[i+1] = ring->tx_stats.bytes;
2320 data[i+2] = ring->tx_stats.restart_queue;
2321 } while (u64_stats_fetch_retry_irq(&ring->tx_syncp, start));
2322 do {
2323 start = u64_stats_fetch_begin_irq(&ring->tx_syncp2);
2324 restart2 = ring->tx_stats.restart_queue2;
2325 } while (u64_stats_fetch_retry_irq(&ring->tx_syncp2, start));
2326 data[i+2] += restart2;
2327
2328 i += IGB_TX_QUEUE_STATS_LEN;
2329 }
2330 for (j = 0; j < adapter->num_rx_queues; j++) {
2331 ring = adapter->rx_ring[j];
2332 do {
2333 start = u64_stats_fetch_begin_irq(&ring->rx_syncp);
2334 data[i] = ring->rx_stats.packets;
2335 data[i+1] = ring->rx_stats.bytes;
2336 data[i+2] = ring->rx_stats.drops;
2337 data[i+3] = ring->rx_stats.csum_err;
2338 data[i+4] = ring->rx_stats.alloc_failed;
2339 } while (u64_stats_fetch_retry_irq(&ring->rx_syncp, start));
2340 i += IGB_RX_QUEUE_STATS_LEN;
2341 }
2342 spin_unlock(&adapter->stats64_lock);
2343 }
2344
igb_get_strings(struct net_device * netdev,u32 stringset,u8 * data)2345 static void igb_get_strings(struct net_device *netdev, u32 stringset, u8 *data)
2346 {
2347 struct igb_adapter *adapter = netdev_priv(netdev);
2348 u8 *p = data;
2349 int i;
2350
2351 switch (stringset) {
2352 case ETH_SS_TEST:
2353 memcpy(data, *igb_gstrings_test,
2354 IGB_TEST_LEN*ETH_GSTRING_LEN);
2355 break;
2356 case ETH_SS_STATS:
2357 for (i = 0; i < IGB_GLOBAL_STATS_LEN; i++) {
2358 memcpy(p, igb_gstrings_stats[i].stat_string,
2359 ETH_GSTRING_LEN);
2360 p += ETH_GSTRING_LEN;
2361 }
2362 for (i = 0; i < IGB_NETDEV_STATS_LEN; i++) {
2363 memcpy(p, igb_gstrings_net_stats[i].stat_string,
2364 ETH_GSTRING_LEN);
2365 p += ETH_GSTRING_LEN;
2366 }
2367 for (i = 0; i < adapter->num_tx_queues; i++) {
2368 sprintf(p, "tx_queue_%u_packets", i);
2369 p += ETH_GSTRING_LEN;
2370 sprintf(p, "tx_queue_%u_bytes", i);
2371 p += ETH_GSTRING_LEN;
2372 sprintf(p, "tx_queue_%u_restart", i);
2373 p += ETH_GSTRING_LEN;
2374 }
2375 for (i = 0; i < adapter->num_rx_queues; i++) {
2376 sprintf(p, "rx_queue_%u_packets", i);
2377 p += ETH_GSTRING_LEN;
2378 sprintf(p, "rx_queue_%u_bytes", i);
2379 p += ETH_GSTRING_LEN;
2380 sprintf(p, "rx_queue_%u_drops", i);
2381 p += ETH_GSTRING_LEN;
2382 sprintf(p, "rx_queue_%u_csum_err", i);
2383 p += ETH_GSTRING_LEN;
2384 sprintf(p, "rx_queue_%u_alloc_failed", i);
2385 p += ETH_GSTRING_LEN;
2386 }
2387 /* BUG_ON(p - data != IGB_STATS_LEN * ETH_GSTRING_LEN); */
2388 break;
2389 case ETH_SS_PRIV_FLAGS:
2390 memcpy(data, igb_priv_flags_strings,
2391 IGB_PRIV_FLAGS_STR_LEN * ETH_GSTRING_LEN);
2392 break;
2393 }
2394 }
2395
igb_get_ts_info(struct net_device * dev,struct ethtool_ts_info * info)2396 static int igb_get_ts_info(struct net_device *dev,
2397 struct ethtool_ts_info *info)
2398 {
2399 struct igb_adapter *adapter = netdev_priv(dev);
2400
2401 if (adapter->ptp_clock)
2402 info->phc_index = ptp_clock_index(adapter->ptp_clock);
2403 else
2404 info->phc_index = -1;
2405
2406 switch (adapter->hw.mac.type) {
2407 case e1000_82575:
2408 info->so_timestamping =
2409 SOF_TIMESTAMPING_TX_SOFTWARE |
2410 SOF_TIMESTAMPING_RX_SOFTWARE |
2411 SOF_TIMESTAMPING_SOFTWARE;
2412 return 0;
2413 case e1000_82576:
2414 case e1000_82580:
2415 case e1000_i350:
2416 case e1000_i354:
2417 case e1000_i210:
2418 case e1000_i211:
2419 info->so_timestamping =
2420 SOF_TIMESTAMPING_TX_SOFTWARE |
2421 SOF_TIMESTAMPING_RX_SOFTWARE |
2422 SOF_TIMESTAMPING_SOFTWARE |
2423 SOF_TIMESTAMPING_TX_HARDWARE |
2424 SOF_TIMESTAMPING_RX_HARDWARE |
2425 SOF_TIMESTAMPING_RAW_HARDWARE;
2426
2427 info->tx_types =
2428 BIT(HWTSTAMP_TX_OFF) |
2429 BIT(HWTSTAMP_TX_ON);
2430
2431 info->rx_filters = BIT(HWTSTAMP_FILTER_NONE);
2432
2433 /* 82576 does not support timestamping all packets. */
2434 if (adapter->hw.mac.type >= e1000_82580)
2435 info->rx_filters |= BIT(HWTSTAMP_FILTER_ALL);
2436 else
2437 info->rx_filters |=
2438 BIT(HWTSTAMP_FILTER_PTP_V1_L4_SYNC) |
2439 BIT(HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ) |
2440 BIT(HWTSTAMP_FILTER_PTP_V2_EVENT);
2441
2442 return 0;
2443 default:
2444 return -EOPNOTSUPP;
2445 }
2446 }
2447
2448 #define ETHER_TYPE_FULL_MASK ((__force __be16)~0)
igb_get_ethtool_nfc_entry(struct igb_adapter * adapter,struct ethtool_rxnfc * cmd)2449 static int igb_get_ethtool_nfc_entry(struct igb_adapter *adapter,
2450 struct ethtool_rxnfc *cmd)
2451 {
2452 struct ethtool_rx_flow_spec *fsp = &cmd->fs;
2453 struct igb_nfc_filter *rule = NULL;
2454
2455 /* report total rule count */
2456 cmd->data = IGB_MAX_RXNFC_FILTERS;
2457
2458 hlist_for_each_entry(rule, &adapter->nfc_filter_list, nfc_node) {
2459 if (fsp->location <= rule->sw_idx)
2460 break;
2461 }
2462
2463 if (!rule || fsp->location != rule->sw_idx)
2464 return -EINVAL;
2465
2466 if (rule->filter.match_flags) {
2467 fsp->flow_type = ETHER_FLOW;
2468 fsp->ring_cookie = rule->action;
2469 if (rule->filter.match_flags & IGB_FILTER_FLAG_ETHER_TYPE) {
2470 fsp->h_u.ether_spec.h_proto = rule->filter.etype;
2471 fsp->m_u.ether_spec.h_proto = ETHER_TYPE_FULL_MASK;
2472 }
2473 if (rule->filter.match_flags & IGB_FILTER_FLAG_VLAN_TCI) {
2474 fsp->flow_type |= FLOW_EXT;
2475 fsp->h_ext.vlan_tci = rule->filter.vlan_tci;
2476 fsp->m_ext.vlan_tci = htons(VLAN_PRIO_MASK);
2477 }
2478 if (rule->filter.match_flags & IGB_FILTER_FLAG_DST_MAC_ADDR) {
2479 ether_addr_copy(fsp->h_u.ether_spec.h_dest,
2480 rule->filter.dst_addr);
2481 /* As we only support matching by the full
2482 * mask, return the mask to userspace
2483 */
2484 eth_broadcast_addr(fsp->m_u.ether_spec.h_dest);
2485 }
2486 if (rule->filter.match_flags & IGB_FILTER_FLAG_SRC_MAC_ADDR) {
2487 ether_addr_copy(fsp->h_u.ether_spec.h_source,
2488 rule->filter.src_addr);
2489 /* As we only support matching by the full
2490 * mask, return the mask to userspace
2491 */
2492 eth_broadcast_addr(fsp->m_u.ether_spec.h_source);
2493 }
2494
2495 return 0;
2496 }
2497 return -EINVAL;
2498 }
2499
igb_get_ethtool_nfc_all(struct igb_adapter * adapter,struct ethtool_rxnfc * cmd,u32 * rule_locs)2500 static int igb_get_ethtool_nfc_all(struct igb_adapter *adapter,
2501 struct ethtool_rxnfc *cmd,
2502 u32 *rule_locs)
2503 {
2504 struct igb_nfc_filter *rule;
2505 int cnt = 0;
2506
2507 /* report total rule count */
2508 cmd->data = IGB_MAX_RXNFC_FILTERS;
2509
2510 hlist_for_each_entry(rule, &adapter->nfc_filter_list, nfc_node) {
2511 if (cnt == cmd->rule_cnt)
2512 return -EMSGSIZE;
2513 rule_locs[cnt] = rule->sw_idx;
2514 cnt++;
2515 }
2516
2517 cmd->rule_cnt = cnt;
2518
2519 return 0;
2520 }
2521
igb_get_rss_hash_opts(struct igb_adapter * adapter,struct ethtool_rxnfc * cmd)2522 static int igb_get_rss_hash_opts(struct igb_adapter *adapter,
2523 struct ethtool_rxnfc *cmd)
2524 {
2525 cmd->data = 0;
2526
2527 /* Report default options for RSS on igb */
2528 switch (cmd->flow_type) {
2529 case TCP_V4_FLOW:
2530 cmd->data |= RXH_L4_B_0_1 | RXH_L4_B_2_3;
2531 /* Fall through */
2532 case UDP_V4_FLOW:
2533 if (adapter->flags & IGB_FLAG_RSS_FIELD_IPV4_UDP)
2534 cmd->data |= RXH_L4_B_0_1 | RXH_L4_B_2_3;
2535 /* Fall through */
2536 case SCTP_V4_FLOW:
2537 case AH_ESP_V4_FLOW:
2538 case AH_V4_FLOW:
2539 case ESP_V4_FLOW:
2540 case IPV4_FLOW:
2541 cmd->data |= RXH_IP_SRC | RXH_IP_DST;
2542 break;
2543 case TCP_V6_FLOW:
2544 cmd->data |= RXH_L4_B_0_1 | RXH_L4_B_2_3;
2545 /* Fall through */
2546 case UDP_V6_FLOW:
2547 if (adapter->flags & IGB_FLAG_RSS_FIELD_IPV6_UDP)
2548 cmd->data |= RXH_L4_B_0_1 | RXH_L4_B_2_3;
2549 /* Fall through */
2550 case SCTP_V6_FLOW:
2551 case AH_ESP_V6_FLOW:
2552 case AH_V6_FLOW:
2553 case ESP_V6_FLOW:
2554 case IPV6_FLOW:
2555 cmd->data |= RXH_IP_SRC | RXH_IP_DST;
2556 break;
2557 default:
2558 return -EINVAL;
2559 }
2560
2561 return 0;
2562 }
2563
igb_get_rxnfc(struct net_device * dev,struct ethtool_rxnfc * cmd,u32 * rule_locs)2564 static int igb_get_rxnfc(struct net_device *dev, struct ethtool_rxnfc *cmd,
2565 u32 *rule_locs)
2566 {
2567 struct igb_adapter *adapter = netdev_priv(dev);
2568 int ret = -EOPNOTSUPP;
2569
2570 switch (cmd->cmd) {
2571 case ETHTOOL_GRXRINGS:
2572 cmd->data = adapter->num_rx_queues;
2573 ret = 0;
2574 break;
2575 case ETHTOOL_GRXCLSRLCNT:
2576 cmd->rule_cnt = adapter->nfc_filter_count;
2577 ret = 0;
2578 break;
2579 case ETHTOOL_GRXCLSRULE:
2580 ret = igb_get_ethtool_nfc_entry(adapter, cmd);
2581 break;
2582 case ETHTOOL_GRXCLSRLALL:
2583 ret = igb_get_ethtool_nfc_all(adapter, cmd, rule_locs);
2584 break;
2585 case ETHTOOL_GRXFH:
2586 ret = igb_get_rss_hash_opts(adapter, cmd);
2587 break;
2588 default:
2589 break;
2590 }
2591
2592 return ret;
2593 }
2594
2595 #define UDP_RSS_FLAGS (IGB_FLAG_RSS_FIELD_IPV4_UDP | \
2596 IGB_FLAG_RSS_FIELD_IPV6_UDP)
igb_set_rss_hash_opt(struct igb_adapter * adapter,struct ethtool_rxnfc * nfc)2597 static int igb_set_rss_hash_opt(struct igb_adapter *adapter,
2598 struct ethtool_rxnfc *nfc)
2599 {
2600 u32 flags = adapter->flags;
2601
2602 /* RSS does not support anything other than hashing
2603 * to queues on src and dst IPs and ports
2604 */
2605 if (nfc->data & ~(RXH_IP_SRC | RXH_IP_DST |
2606 RXH_L4_B_0_1 | RXH_L4_B_2_3))
2607 return -EINVAL;
2608
2609 switch (nfc->flow_type) {
2610 case TCP_V4_FLOW:
2611 case TCP_V6_FLOW:
2612 if (!(nfc->data & RXH_IP_SRC) ||
2613 !(nfc->data & RXH_IP_DST) ||
2614 !(nfc->data & RXH_L4_B_0_1) ||
2615 !(nfc->data & RXH_L4_B_2_3))
2616 return -EINVAL;
2617 break;
2618 case UDP_V4_FLOW:
2619 if (!(nfc->data & RXH_IP_SRC) ||
2620 !(nfc->data & RXH_IP_DST))
2621 return -EINVAL;
2622 switch (nfc->data & (RXH_L4_B_0_1 | RXH_L4_B_2_3)) {
2623 case 0:
2624 flags &= ~IGB_FLAG_RSS_FIELD_IPV4_UDP;
2625 break;
2626 case (RXH_L4_B_0_1 | RXH_L4_B_2_3):
2627 flags |= IGB_FLAG_RSS_FIELD_IPV4_UDP;
2628 break;
2629 default:
2630 return -EINVAL;
2631 }
2632 break;
2633 case UDP_V6_FLOW:
2634 if (!(nfc->data & RXH_IP_SRC) ||
2635 !(nfc->data & RXH_IP_DST))
2636 return -EINVAL;
2637 switch (nfc->data & (RXH_L4_B_0_1 | RXH_L4_B_2_3)) {
2638 case 0:
2639 flags &= ~IGB_FLAG_RSS_FIELD_IPV6_UDP;
2640 break;
2641 case (RXH_L4_B_0_1 | RXH_L4_B_2_3):
2642 flags |= IGB_FLAG_RSS_FIELD_IPV6_UDP;
2643 break;
2644 default:
2645 return -EINVAL;
2646 }
2647 break;
2648 case AH_ESP_V4_FLOW:
2649 case AH_V4_FLOW:
2650 case ESP_V4_FLOW:
2651 case SCTP_V4_FLOW:
2652 case AH_ESP_V6_FLOW:
2653 case AH_V6_FLOW:
2654 case ESP_V6_FLOW:
2655 case SCTP_V6_FLOW:
2656 if (!(nfc->data & RXH_IP_SRC) ||
2657 !(nfc->data & RXH_IP_DST) ||
2658 (nfc->data & RXH_L4_B_0_1) ||
2659 (nfc->data & RXH_L4_B_2_3))
2660 return -EINVAL;
2661 break;
2662 default:
2663 return -EINVAL;
2664 }
2665
2666 /* if we changed something we need to update flags */
2667 if (flags != adapter->flags) {
2668 struct e1000_hw *hw = &adapter->hw;
2669 u32 mrqc = rd32(E1000_MRQC);
2670
2671 if ((flags & UDP_RSS_FLAGS) &&
2672 !(adapter->flags & UDP_RSS_FLAGS))
2673 dev_err(&adapter->pdev->dev,
2674 "enabling UDP RSS: fragmented packets may arrive out of order to the stack above\n");
2675
2676 adapter->flags = flags;
2677
2678 /* Perform hash on these packet types */
2679 mrqc |= E1000_MRQC_RSS_FIELD_IPV4 |
2680 E1000_MRQC_RSS_FIELD_IPV4_TCP |
2681 E1000_MRQC_RSS_FIELD_IPV6 |
2682 E1000_MRQC_RSS_FIELD_IPV6_TCP;
2683
2684 mrqc &= ~(E1000_MRQC_RSS_FIELD_IPV4_UDP |
2685 E1000_MRQC_RSS_FIELD_IPV6_UDP);
2686
2687 if (flags & IGB_FLAG_RSS_FIELD_IPV4_UDP)
2688 mrqc |= E1000_MRQC_RSS_FIELD_IPV4_UDP;
2689
2690 if (flags & IGB_FLAG_RSS_FIELD_IPV6_UDP)
2691 mrqc |= E1000_MRQC_RSS_FIELD_IPV6_UDP;
2692
2693 wr32(E1000_MRQC, mrqc);
2694 }
2695
2696 return 0;
2697 }
2698
igb_rxnfc_write_etype_filter(struct igb_adapter * adapter,struct igb_nfc_filter * input)2699 static int igb_rxnfc_write_etype_filter(struct igb_adapter *adapter,
2700 struct igb_nfc_filter *input)
2701 {
2702 struct e1000_hw *hw = &adapter->hw;
2703 u8 i;
2704 u32 etqf;
2705 u16 etype;
2706
2707 /* find an empty etype filter register */
2708 for (i = 0; i < MAX_ETYPE_FILTER; ++i) {
2709 if (!adapter->etype_bitmap[i])
2710 break;
2711 }
2712 if (i == MAX_ETYPE_FILTER) {
2713 dev_err(&adapter->pdev->dev, "ethtool -N: etype filters are all used.\n");
2714 return -EINVAL;
2715 }
2716
2717 adapter->etype_bitmap[i] = true;
2718
2719 etqf = rd32(E1000_ETQF(i));
2720 etype = ntohs(input->filter.etype & ETHER_TYPE_FULL_MASK);
2721
2722 etqf |= E1000_ETQF_FILTER_ENABLE;
2723 etqf &= ~E1000_ETQF_ETYPE_MASK;
2724 etqf |= (etype & E1000_ETQF_ETYPE_MASK);
2725
2726 etqf &= ~E1000_ETQF_QUEUE_MASK;
2727 etqf |= ((input->action << E1000_ETQF_QUEUE_SHIFT)
2728 & E1000_ETQF_QUEUE_MASK);
2729 etqf |= E1000_ETQF_QUEUE_ENABLE;
2730
2731 wr32(E1000_ETQF(i), etqf);
2732
2733 input->etype_reg_index = i;
2734
2735 return 0;
2736 }
2737
igb_rxnfc_write_vlan_prio_filter(struct igb_adapter * adapter,struct igb_nfc_filter * input)2738 static int igb_rxnfc_write_vlan_prio_filter(struct igb_adapter *adapter,
2739 struct igb_nfc_filter *input)
2740 {
2741 struct e1000_hw *hw = &adapter->hw;
2742 u8 vlan_priority;
2743 u16 queue_index;
2744 u32 vlapqf;
2745
2746 vlapqf = rd32(E1000_VLAPQF);
2747 vlan_priority = (ntohs(input->filter.vlan_tci) & VLAN_PRIO_MASK)
2748 >> VLAN_PRIO_SHIFT;
2749 queue_index = (vlapqf >> (vlan_priority * 4)) & E1000_VLAPQF_QUEUE_MASK;
2750
2751 /* check whether this vlan prio is already set */
2752 if ((vlapqf & E1000_VLAPQF_P_VALID(vlan_priority)) &&
2753 (queue_index != input->action)) {
2754 dev_err(&adapter->pdev->dev, "ethtool rxnfc set vlan prio filter failed.\n");
2755 return -EEXIST;
2756 }
2757
2758 vlapqf |= E1000_VLAPQF_P_VALID(vlan_priority);
2759 vlapqf |= E1000_VLAPQF_QUEUE_SEL(vlan_priority, input->action);
2760
2761 wr32(E1000_VLAPQF, vlapqf);
2762
2763 return 0;
2764 }
2765
igb_add_filter(struct igb_adapter * adapter,struct igb_nfc_filter * input)2766 int igb_add_filter(struct igb_adapter *adapter, struct igb_nfc_filter *input)
2767 {
2768 struct e1000_hw *hw = &adapter->hw;
2769 int err = -EINVAL;
2770
2771 if (hw->mac.type == e1000_i210 &&
2772 !(input->filter.match_flags & ~IGB_FILTER_FLAG_SRC_MAC_ADDR)) {
2773 dev_err(&adapter->pdev->dev,
2774 "i210 doesn't support flow classification rules specifying only source addresses.\n");
2775 return -EOPNOTSUPP;
2776 }
2777
2778 if (input->filter.match_flags & IGB_FILTER_FLAG_ETHER_TYPE) {
2779 err = igb_rxnfc_write_etype_filter(adapter, input);
2780 if (err)
2781 return err;
2782 }
2783
2784 if (input->filter.match_flags & IGB_FILTER_FLAG_DST_MAC_ADDR) {
2785 err = igb_add_mac_steering_filter(adapter,
2786 input->filter.dst_addr,
2787 input->action, 0);
2788 err = min_t(int, err, 0);
2789 if (err)
2790 return err;
2791 }
2792
2793 if (input->filter.match_flags & IGB_FILTER_FLAG_SRC_MAC_ADDR) {
2794 err = igb_add_mac_steering_filter(adapter,
2795 input->filter.src_addr,
2796 input->action,
2797 IGB_MAC_STATE_SRC_ADDR);
2798 err = min_t(int, err, 0);
2799 if (err)
2800 return err;
2801 }
2802
2803 if (input->filter.match_flags & IGB_FILTER_FLAG_VLAN_TCI)
2804 err = igb_rxnfc_write_vlan_prio_filter(adapter, input);
2805
2806 return err;
2807 }
2808
igb_clear_etype_filter_regs(struct igb_adapter * adapter,u16 reg_index)2809 static void igb_clear_etype_filter_regs(struct igb_adapter *adapter,
2810 u16 reg_index)
2811 {
2812 struct e1000_hw *hw = &adapter->hw;
2813 u32 etqf = rd32(E1000_ETQF(reg_index));
2814
2815 etqf &= ~E1000_ETQF_QUEUE_ENABLE;
2816 etqf &= ~E1000_ETQF_QUEUE_MASK;
2817 etqf &= ~E1000_ETQF_FILTER_ENABLE;
2818
2819 wr32(E1000_ETQF(reg_index), etqf);
2820
2821 adapter->etype_bitmap[reg_index] = false;
2822 }
2823
igb_clear_vlan_prio_filter(struct igb_adapter * adapter,u16 vlan_tci)2824 static void igb_clear_vlan_prio_filter(struct igb_adapter *adapter,
2825 u16 vlan_tci)
2826 {
2827 struct e1000_hw *hw = &adapter->hw;
2828 u8 vlan_priority;
2829 u32 vlapqf;
2830
2831 vlan_priority = (vlan_tci & VLAN_PRIO_MASK) >> VLAN_PRIO_SHIFT;
2832
2833 vlapqf = rd32(E1000_VLAPQF);
2834 vlapqf &= ~E1000_VLAPQF_P_VALID(vlan_priority);
2835 vlapqf &= ~E1000_VLAPQF_QUEUE_SEL(vlan_priority,
2836 E1000_VLAPQF_QUEUE_MASK);
2837
2838 wr32(E1000_VLAPQF, vlapqf);
2839 }
2840
igb_erase_filter(struct igb_adapter * adapter,struct igb_nfc_filter * input)2841 int igb_erase_filter(struct igb_adapter *adapter, struct igb_nfc_filter *input)
2842 {
2843 if (input->filter.match_flags & IGB_FILTER_FLAG_ETHER_TYPE)
2844 igb_clear_etype_filter_regs(adapter,
2845 input->etype_reg_index);
2846
2847 if (input->filter.match_flags & IGB_FILTER_FLAG_VLAN_TCI)
2848 igb_clear_vlan_prio_filter(adapter,
2849 ntohs(input->filter.vlan_tci));
2850
2851 if (input->filter.match_flags & IGB_FILTER_FLAG_SRC_MAC_ADDR)
2852 igb_del_mac_steering_filter(adapter, input->filter.src_addr,
2853 input->action,
2854 IGB_MAC_STATE_SRC_ADDR);
2855
2856 if (input->filter.match_flags & IGB_FILTER_FLAG_DST_MAC_ADDR)
2857 igb_del_mac_steering_filter(adapter, input->filter.dst_addr,
2858 input->action, 0);
2859
2860 return 0;
2861 }
2862
igb_update_ethtool_nfc_entry(struct igb_adapter * adapter,struct igb_nfc_filter * input,u16 sw_idx)2863 static int igb_update_ethtool_nfc_entry(struct igb_adapter *adapter,
2864 struct igb_nfc_filter *input,
2865 u16 sw_idx)
2866 {
2867 struct igb_nfc_filter *rule, *parent;
2868 int err = -EINVAL;
2869
2870 parent = NULL;
2871 rule = NULL;
2872
2873 hlist_for_each_entry(rule, &adapter->nfc_filter_list, nfc_node) {
2874 /* hash found, or no matching entry */
2875 if (rule->sw_idx >= sw_idx)
2876 break;
2877 parent = rule;
2878 }
2879
2880 /* if there is an old rule occupying our place remove it */
2881 if (rule && (rule->sw_idx == sw_idx)) {
2882 if (!input)
2883 err = igb_erase_filter(adapter, rule);
2884
2885 hlist_del(&rule->nfc_node);
2886 kfree(rule);
2887 adapter->nfc_filter_count--;
2888 }
2889
2890 /* If no input this was a delete, err should be 0 if a rule was
2891 * successfully found and removed from the list else -EINVAL
2892 */
2893 if (!input)
2894 return err;
2895
2896 /* initialize node */
2897 INIT_HLIST_NODE(&input->nfc_node);
2898
2899 /* add filter to the list */
2900 if (parent)
2901 hlist_add_behind(&input->nfc_node, &parent->nfc_node);
2902 else
2903 hlist_add_head(&input->nfc_node, &adapter->nfc_filter_list);
2904
2905 /* update counts */
2906 adapter->nfc_filter_count++;
2907
2908 return 0;
2909 }
2910
igb_add_ethtool_nfc_entry(struct igb_adapter * adapter,struct ethtool_rxnfc * cmd)2911 static int igb_add_ethtool_nfc_entry(struct igb_adapter *adapter,
2912 struct ethtool_rxnfc *cmd)
2913 {
2914 struct net_device *netdev = adapter->netdev;
2915 struct ethtool_rx_flow_spec *fsp =
2916 (struct ethtool_rx_flow_spec *)&cmd->fs;
2917 struct igb_nfc_filter *input, *rule;
2918 int err = 0;
2919
2920 if (!(netdev->hw_features & NETIF_F_NTUPLE))
2921 return -EOPNOTSUPP;
2922
2923 /* Don't allow programming if the action is a queue greater than
2924 * the number of online Rx queues.
2925 */
2926 if ((fsp->ring_cookie == RX_CLS_FLOW_DISC) ||
2927 (fsp->ring_cookie >= adapter->num_rx_queues)) {
2928 dev_err(&adapter->pdev->dev, "ethtool -N: The specified action is invalid\n");
2929 return -EINVAL;
2930 }
2931
2932 /* Don't allow indexes to exist outside of available space */
2933 if (fsp->location >= IGB_MAX_RXNFC_FILTERS) {
2934 dev_err(&adapter->pdev->dev, "Location out of range\n");
2935 return -EINVAL;
2936 }
2937
2938 if ((fsp->flow_type & ~FLOW_EXT) != ETHER_FLOW)
2939 return -EINVAL;
2940
2941 input = kzalloc(sizeof(*input), GFP_KERNEL);
2942 if (!input)
2943 return -ENOMEM;
2944
2945 if (fsp->m_u.ether_spec.h_proto == ETHER_TYPE_FULL_MASK) {
2946 input->filter.etype = fsp->h_u.ether_spec.h_proto;
2947 input->filter.match_flags = IGB_FILTER_FLAG_ETHER_TYPE;
2948 }
2949
2950 /* Only support matching addresses by the full mask */
2951 if (is_broadcast_ether_addr(fsp->m_u.ether_spec.h_source)) {
2952 input->filter.match_flags |= IGB_FILTER_FLAG_SRC_MAC_ADDR;
2953 ether_addr_copy(input->filter.src_addr,
2954 fsp->h_u.ether_spec.h_source);
2955 }
2956
2957 /* Only support matching addresses by the full mask */
2958 if (is_broadcast_ether_addr(fsp->m_u.ether_spec.h_dest)) {
2959 input->filter.match_flags |= IGB_FILTER_FLAG_DST_MAC_ADDR;
2960 ether_addr_copy(input->filter.dst_addr,
2961 fsp->h_u.ether_spec.h_dest);
2962 }
2963
2964 if ((fsp->flow_type & FLOW_EXT) && fsp->m_ext.vlan_tci) {
2965 if (fsp->m_ext.vlan_tci != htons(VLAN_PRIO_MASK)) {
2966 err = -EINVAL;
2967 goto err_out;
2968 }
2969 input->filter.vlan_tci = fsp->h_ext.vlan_tci;
2970 input->filter.match_flags |= IGB_FILTER_FLAG_VLAN_TCI;
2971 }
2972
2973 input->action = fsp->ring_cookie;
2974 input->sw_idx = fsp->location;
2975
2976 spin_lock(&adapter->nfc_lock);
2977
2978 hlist_for_each_entry(rule, &adapter->nfc_filter_list, nfc_node) {
2979 if (!memcmp(&input->filter, &rule->filter,
2980 sizeof(input->filter))) {
2981 err = -EEXIST;
2982 dev_err(&adapter->pdev->dev,
2983 "ethtool: this filter is already set\n");
2984 goto err_out_w_lock;
2985 }
2986 }
2987
2988 err = igb_add_filter(adapter, input);
2989 if (err)
2990 goto err_out_w_lock;
2991
2992 igb_update_ethtool_nfc_entry(adapter, input, input->sw_idx);
2993
2994 spin_unlock(&adapter->nfc_lock);
2995 return 0;
2996
2997 err_out_w_lock:
2998 spin_unlock(&adapter->nfc_lock);
2999 err_out:
3000 kfree(input);
3001 return err;
3002 }
3003
igb_del_ethtool_nfc_entry(struct igb_adapter * adapter,struct ethtool_rxnfc * cmd)3004 static int igb_del_ethtool_nfc_entry(struct igb_adapter *adapter,
3005 struct ethtool_rxnfc *cmd)
3006 {
3007 struct ethtool_rx_flow_spec *fsp =
3008 (struct ethtool_rx_flow_spec *)&cmd->fs;
3009 int err;
3010
3011 spin_lock(&adapter->nfc_lock);
3012 err = igb_update_ethtool_nfc_entry(adapter, NULL, fsp->location);
3013 spin_unlock(&adapter->nfc_lock);
3014
3015 return err;
3016 }
3017
igb_set_rxnfc(struct net_device * dev,struct ethtool_rxnfc * cmd)3018 static int igb_set_rxnfc(struct net_device *dev, struct ethtool_rxnfc *cmd)
3019 {
3020 struct igb_adapter *adapter = netdev_priv(dev);
3021 int ret = -EOPNOTSUPP;
3022
3023 switch (cmd->cmd) {
3024 case ETHTOOL_SRXFH:
3025 ret = igb_set_rss_hash_opt(adapter, cmd);
3026 break;
3027 case ETHTOOL_SRXCLSRLINS:
3028 ret = igb_add_ethtool_nfc_entry(adapter, cmd);
3029 break;
3030 case ETHTOOL_SRXCLSRLDEL:
3031 ret = igb_del_ethtool_nfc_entry(adapter, cmd);
3032 default:
3033 break;
3034 }
3035
3036 return ret;
3037 }
3038
igb_get_eee(struct net_device * netdev,struct ethtool_eee * edata)3039 static int igb_get_eee(struct net_device *netdev, struct ethtool_eee *edata)
3040 {
3041 struct igb_adapter *adapter = netdev_priv(netdev);
3042 struct e1000_hw *hw = &adapter->hw;
3043 u32 ret_val;
3044 u16 phy_data;
3045
3046 if ((hw->mac.type < e1000_i350) ||
3047 (hw->phy.media_type != e1000_media_type_copper))
3048 return -EOPNOTSUPP;
3049
3050 edata->supported = (SUPPORTED_1000baseT_Full |
3051 SUPPORTED_100baseT_Full);
3052 if (!hw->dev_spec._82575.eee_disable)
3053 edata->advertised =
3054 mmd_eee_adv_to_ethtool_adv_t(adapter->eee_advert);
3055
3056 /* The IPCNFG and EEER registers are not supported on I354. */
3057 if (hw->mac.type == e1000_i354) {
3058 igb_get_eee_status_i354(hw, (bool *)&edata->eee_active);
3059 } else {
3060 u32 eeer;
3061
3062 eeer = rd32(E1000_EEER);
3063
3064 /* EEE status on negotiated link */
3065 if (eeer & E1000_EEER_EEE_NEG)
3066 edata->eee_active = true;
3067
3068 if (eeer & E1000_EEER_TX_LPI_EN)
3069 edata->tx_lpi_enabled = true;
3070 }
3071
3072 /* EEE Link Partner Advertised */
3073 switch (hw->mac.type) {
3074 case e1000_i350:
3075 ret_val = igb_read_emi_reg(hw, E1000_EEE_LP_ADV_ADDR_I350,
3076 &phy_data);
3077 if (ret_val)
3078 return -ENODATA;
3079
3080 edata->lp_advertised = mmd_eee_adv_to_ethtool_adv_t(phy_data);
3081 break;
3082 case e1000_i354:
3083 case e1000_i210:
3084 case e1000_i211:
3085 ret_val = igb_read_xmdio_reg(hw, E1000_EEE_LP_ADV_ADDR_I210,
3086 E1000_EEE_LP_ADV_DEV_I210,
3087 &phy_data);
3088 if (ret_val)
3089 return -ENODATA;
3090
3091 edata->lp_advertised = mmd_eee_adv_to_ethtool_adv_t(phy_data);
3092
3093 break;
3094 default:
3095 break;
3096 }
3097
3098 edata->eee_enabled = !hw->dev_spec._82575.eee_disable;
3099
3100 if ((hw->mac.type == e1000_i354) &&
3101 (edata->eee_enabled))
3102 edata->tx_lpi_enabled = true;
3103
3104 /* Report correct negotiated EEE status for devices that
3105 * wrongly report EEE at half-duplex
3106 */
3107 if (adapter->link_duplex == HALF_DUPLEX) {
3108 edata->eee_enabled = false;
3109 edata->eee_active = false;
3110 edata->tx_lpi_enabled = false;
3111 edata->advertised &= ~edata->advertised;
3112 }
3113
3114 return 0;
3115 }
3116
igb_set_eee(struct net_device * netdev,struct ethtool_eee * edata)3117 static int igb_set_eee(struct net_device *netdev,
3118 struct ethtool_eee *edata)
3119 {
3120 struct igb_adapter *adapter = netdev_priv(netdev);
3121 struct e1000_hw *hw = &adapter->hw;
3122 struct ethtool_eee eee_curr;
3123 bool adv1g_eee = true, adv100m_eee = true;
3124 s32 ret_val;
3125
3126 if ((hw->mac.type < e1000_i350) ||
3127 (hw->phy.media_type != e1000_media_type_copper))
3128 return -EOPNOTSUPP;
3129
3130 memset(&eee_curr, 0, sizeof(struct ethtool_eee));
3131
3132 ret_val = igb_get_eee(netdev, &eee_curr);
3133 if (ret_val)
3134 return ret_val;
3135
3136 if (eee_curr.eee_enabled) {
3137 if (eee_curr.tx_lpi_enabled != edata->tx_lpi_enabled) {
3138 dev_err(&adapter->pdev->dev,
3139 "Setting EEE tx-lpi is not supported\n");
3140 return -EINVAL;
3141 }
3142
3143 /* Tx LPI timer is not implemented currently */
3144 if (edata->tx_lpi_timer) {
3145 dev_err(&adapter->pdev->dev,
3146 "Setting EEE Tx LPI timer is not supported\n");
3147 return -EINVAL;
3148 }
3149
3150 if (!edata->advertised || (edata->advertised &
3151 ~(ADVERTISE_100_FULL | ADVERTISE_1000_FULL))) {
3152 dev_err(&adapter->pdev->dev,
3153 "EEE Advertisement supports only 100Tx and/or 100T full duplex\n");
3154 return -EINVAL;
3155 }
3156 adv100m_eee = !!(edata->advertised & ADVERTISE_100_FULL);
3157 adv1g_eee = !!(edata->advertised & ADVERTISE_1000_FULL);
3158
3159 } else if (!edata->eee_enabled) {
3160 dev_err(&adapter->pdev->dev,
3161 "Setting EEE options are not supported with EEE disabled\n");
3162 return -EINVAL;
3163 }
3164
3165 adapter->eee_advert = ethtool_adv_to_mmd_eee_adv_t(edata->advertised);
3166 if (hw->dev_spec._82575.eee_disable != !edata->eee_enabled) {
3167 hw->dev_spec._82575.eee_disable = !edata->eee_enabled;
3168 adapter->flags |= IGB_FLAG_EEE;
3169
3170 /* reset link */
3171 if (netif_running(netdev))
3172 igb_reinit_locked(adapter);
3173 else
3174 igb_reset(adapter);
3175 }
3176
3177 if (hw->mac.type == e1000_i354)
3178 ret_val = igb_set_eee_i354(hw, adv1g_eee, adv100m_eee);
3179 else
3180 ret_val = igb_set_eee_i350(hw, adv1g_eee, adv100m_eee);
3181
3182 if (ret_val) {
3183 dev_err(&adapter->pdev->dev,
3184 "Problem setting EEE advertisement options\n");
3185 return -EINVAL;
3186 }
3187
3188 return 0;
3189 }
3190
igb_get_module_info(struct net_device * netdev,struct ethtool_modinfo * modinfo)3191 static int igb_get_module_info(struct net_device *netdev,
3192 struct ethtool_modinfo *modinfo)
3193 {
3194 struct igb_adapter *adapter = netdev_priv(netdev);
3195 struct e1000_hw *hw = &adapter->hw;
3196 u32 status = 0;
3197 u16 sff8472_rev, addr_mode;
3198 bool page_swap = false;
3199
3200 if ((hw->phy.media_type == e1000_media_type_copper) ||
3201 (hw->phy.media_type == e1000_media_type_unknown))
3202 return -EOPNOTSUPP;
3203
3204 /* Check whether we support SFF-8472 or not */
3205 status = igb_read_phy_reg_i2c(hw, IGB_SFF_8472_COMP, &sff8472_rev);
3206 if (status)
3207 return -EIO;
3208
3209 /* addressing mode is not supported */
3210 status = igb_read_phy_reg_i2c(hw, IGB_SFF_8472_SWAP, &addr_mode);
3211 if (status)
3212 return -EIO;
3213
3214 /* addressing mode is not supported */
3215 if ((addr_mode & 0xFF) & IGB_SFF_ADDRESSING_MODE) {
3216 hw_dbg("Address change required to access page 0xA2, but not supported. Please report the module type to the driver maintainers.\n");
3217 page_swap = true;
3218 }
3219
3220 if ((sff8472_rev & 0xFF) == IGB_SFF_8472_UNSUP || page_swap) {
3221 /* We have an SFP, but it does not support SFF-8472 */
3222 modinfo->type = ETH_MODULE_SFF_8079;
3223 modinfo->eeprom_len = ETH_MODULE_SFF_8079_LEN;
3224 } else {
3225 /* We have an SFP which supports a revision of SFF-8472 */
3226 modinfo->type = ETH_MODULE_SFF_8472;
3227 modinfo->eeprom_len = ETH_MODULE_SFF_8472_LEN;
3228 }
3229
3230 return 0;
3231 }
3232
igb_get_module_eeprom(struct net_device * netdev,struct ethtool_eeprom * ee,u8 * data)3233 static int igb_get_module_eeprom(struct net_device *netdev,
3234 struct ethtool_eeprom *ee, u8 *data)
3235 {
3236 struct igb_adapter *adapter = netdev_priv(netdev);
3237 struct e1000_hw *hw = &adapter->hw;
3238 u32 status = 0;
3239 u16 *dataword;
3240 u16 first_word, last_word;
3241 int i = 0;
3242
3243 if (ee->len == 0)
3244 return -EINVAL;
3245
3246 first_word = ee->offset >> 1;
3247 last_word = (ee->offset + ee->len - 1) >> 1;
3248
3249 dataword = kmalloc_array(last_word - first_word + 1, sizeof(u16),
3250 GFP_KERNEL);
3251 if (!dataword)
3252 return -ENOMEM;
3253
3254 /* Read EEPROM block, SFF-8079/SFF-8472, word at a time */
3255 for (i = 0; i < last_word - first_word + 1; i++) {
3256 status = igb_read_phy_reg_i2c(hw, (first_word + i) * 2,
3257 &dataword[i]);
3258 if (status) {
3259 /* Error occurred while reading module */
3260 kfree(dataword);
3261 return -EIO;
3262 }
3263
3264 be16_to_cpus(&dataword[i]);
3265 }
3266
3267 memcpy(data, (u8 *)dataword + (ee->offset & 1), ee->len);
3268 kfree(dataword);
3269
3270 return 0;
3271 }
3272
igb_ethtool_begin(struct net_device * netdev)3273 static int igb_ethtool_begin(struct net_device *netdev)
3274 {
3275 struct igb_adapter *adapter = netdev_priv(netdev);
3276 pm_runtime_get_sync(&adapter->pdev->dev);
3277 return 0;
3278 }
3279
igb_ethtool_complete(struct net_device * netdev)3280 static void igb_ethtool_complete(struct net_device *netdev)
3281 {
3282 struct igb_adapter *adapter = netdev_priv(netdev);
3283 pm_runtime_put(&adapter->pdev->dev);
3284 }
3285
igb_get_rxfh_indir_size(struct net_device * netdev)3286 static u32 igb_get_rxfh_indir_size(struct net_device *netdev)
3287 {
3288 return IGB_RETA_SIZE;
3289 }
3290
igb_get_rxfh(struct net_device * netdev,u32 * indir,u8 * key,u8 * hfunc)3291 static int igb_get_rxfh(struct net_device *netdev, u32 *indir, u8 *key,
3292 u8 *hfunc)
3293 {
3294 struct igb_adapter *adapter = netdev_priv(netdev);
3295 int i;
3296
3297 if (hfunc)
3298 *hfunc = ETH_RSS_HASH_TOP;
3299 if (!indir)
3300 return 0;
3301 for (i = 0; i < IGB_RETA_SIZE; i++)
3302 indir[i] = adapter->rss_indir_tbl[i];
3303
3304 return 0;
3305 }
3306
igb_write_rss_indir_tbl(struct igb_adapter * adapter)3307 void igb_write_rss_indir_tbl(struct igb_adapter *adapter)
3308 {
3309 struct e1000_hw *hw = &adapter->hw;
3310 u32 reg = E1000_RETA(0);
3311 u32 shift = 0;
3312 int i = 0;
3313
3314 switch (hw->mac.type) {
3315 case e1000_82575:
3316 shift = 6;
3317 break;
3318 case e1000_82576:
3319 /* 82576 supports 2 RSS queues for SR-IOV */
3320 if (adapter->vfs_allocated_count)
3321 shift = 3;
3322 break;
3323 default:
3324 break;
3325 }
3326
3327 while (i < IGB_RETA_SIZE) {
3328 u32 val = 0;
3329 int j;
3330
3331 for (j = 3; j >= 0; j--) {
3332 val <<= 8;
3333 val |= adapter->rss_indir_tbl[i + j];
3334 }
3335
3336 wr32(reg, val << shift);
3337 reg += 4;
3338 i += 4;
3339 }
3340 }
3341
igb_set_rxfh(struct net_device * netdev,const u32 * indir,const u8 * key,const u8 hfunc)3342 static int igb_set_rxfh(struct net_device *netdev, const u32 *indir,
3343 const u8 *key, const u8 hfunc)
3344 {
3345 struct igb_adapter *adapter = netdev_priv(netdev);
3346 struct e1000_hw *hw = &adapter->hw;
3347 int i;
3348 u32 num_queues;
3349
3350 /* We do not allow change in unsupported parameters */
3351 if (key ||
3352 (hfunc != ETH_RSS_HASH_NO_CHANGE && hfunc != ETH_RSS_HASH_TOP))
3353 return -EOPNOTSUPP;
3354 if (!indir)
3355 return 0;
3356
3357 num_queues = adapter->rss_queues;
3358
3359 switch (hw->mac.type) {
3360 case e1000_82576:
3361 /* 82576 supports 2 RSS queues for SR-IOV */
3362 if (adapter->vfs_allocated_count)
3363 num_queues = 2;
3364 break;
3365 default:
3366 break;
3367 }
3368
3369 /* Verify user input. */
3370 for (i = 0; i < IGB_RETA_SIZE; i++)
3371 if (indir[i] >= num_queues)
3372 return -EINVAL;
3373
3374
3375 for (i = 0; i < IGB_RETA_SIZE; i++)
3376 adapter->rss_indir_tbl[i] = indir[i];
3377
3378 igb_write_rss_indir_tbl(adapter);
3379
3380 return 0;
3381 }
3382
igb_max_channels(struct igb_adapter * adapter)3383 static unsigned int igb_max_channels(struct igb_adapter *adapter)
3384 {
3385 return igb_get_max_rss_queues(adapter);
3386 }
3387
igb_get_channels(struct net_device * netdev,struct ethtool_channels * ch)3388 static void igb_get_channels(struct net_device *netdev,
3389 struct ethtool_channels *ch)
3390 {
3391 struct igb_adapter *adapter = netdev_priv(netdev);
3392
3393 /* Report maximum channels */
3394 ch->max_combined = igb_max_channels(adapter);
3395
3396 /* Report info for other vector */
3397 if (adapter->flags & IGB_FLAG_HAS_MSIX) {
3398 ch->max_other = NON_Q_VECTORS;
3399 ch->other_count = NON_Q_VECTORS;
3400 }
3401
3402 ch->combined_count = adapter->rss_queues;
3403 }
3404
igb_set_channels(struct net_device * netdev,struct ethtool_channels * ch)3405 static int igb_set_channels(struct net_device *netdev,
3406 struct ethtool_channels *ch)
3407 {
3408 struct igb_adapter *adapter = netdev_priv(netdev);
3409 unsigned int count = ch->combined_count;
3410 unsigned int max_combined = 0;
3411
3412 /* Verify they are not requesting separate vectors */
3413 if (!count || ch->rx_count || ch->tx_count)
3414 return -EINVAL;
3415
3416 /* Verify other_count is valid and has not been changed */
3417 if (ch->other_count != NON_Q_VECTORS)
3418 return -EINVAL;
3419
3420 /* Verify the number of channels doesn't exceed hw limits */
3421 max_combined = igb_max_channels(adapter);
3422 if (count > max_combined)
3423 return -EINVAL;
3424
3425 if (count != adapter->rss_queues) {
3426 adapter->rss_queues = count;
3427 igb_set_flag_queue_pairs(adapter, max_combined);
3428
3429 /* Hardware has to reinitialize queues and interrupts to
3430 * match the new configuration.
3431 */
3432 return igb_reinit_queues(adapter);
3433 }
3434
3435 return 0;
3436 }
3437
igb_get_priv_flags(struct net_device * netdev)3438 static u32 igb_get_priv_flags(struct net_device *netdev)
3439 {
3440 struct igb_adapter *adapter = netdev_priv(netdev);
3441 u32 priv_flags = 0;
3442
3443 if (adapter->flags & IGB_FLAG_RX_LEGACY)
3444 priv_flags |= IGB_PRIV_FLAGS_LEGACY_RX;
3445
3446 return priv_flags;
3447 }
3448
igb_set_priv_flags(struct net_device * netdev,u32 priv_flags)3449 static int igb_set_priv_flags(struct net_device *netdev, u32 priv_flags)
3450 {
3451 struct igb_adapter *adapter = netdev_priv(netdev);
3452 unsigned int flags = adapter->flags;
3453
3454 flags &= ~IGB_FLAG_RX_LEGACY;
3455 if (priv_flags & IGB_PRIV_FLAGS_LEGACY_RX)
3456 flags |= IGB_FLAG_RX_LEGACY;
3457
3458 if (flags != adapter->flags) {
3459 adapter->flags = flags;
3460
3461 /* reset interface to repopulate queues */
3462 if (netif_running(netdev))
3463 igb_reinit_locked(adapter);
3464 }
3465
3466 return 0;
3467 }
3468
3469 static const struct ethtool_ops igb_ethtool_ops = {
3470 .get_drvinfo = igb_get_drvinfo,
3471 .get_regs_len = igb_get_regs_len,
3472 .get_regs = igb_get_regs,
3473 .get_wol = igb_get_wol,
3474 .set_wol = igb_set_wol,
3475 .get_msglevel = igb_get_msglevel,
3476 .set_msglevel = igb_set_msglevel,
3477 .nway_reset = igb_nway_reset,
3478 .get_link = igb_get_link,
3479 .get_eeprom_len = igb_get_eeprom_len,
3480 .get_eeprom = igb_get_eeprom,
3481 .set_eeprom = igb_set_eeprom,
3482 .get_ringparam = igb_get_ringparam,
3483 .set_ringparam = igb_set_ringparam,
3484 .get_pauseparam = igb_get_pauseparam,
3485 .set_pauseparam = igb_set_pauseparam,
3486 .self_test = igb_diag_test,
3487 .get_strings = igb_get_strings,
3488 .set_phys_id = igb_set_phys_id,
3489 .get_sset_count = igb_get_sset_count,
3490 .get_ethtool_stats = igb_get_ethtool_stats,
3491 .get_coalesce = igb_get_coalesce,
3492 .set_coalesce = igb_set_coalesce,
3493 .get_ts_info = igb_get_ts_info,
3494 .get_rxnfc = igb_get_rxnfc,
3495 .set_rxnfc = igb_set_rxnfc,
3496 .get_eee = igb_get_eee,
3497 .set_eee = igb_set_eee,
3498 .get_module_info = igb_get_module_info,
3499 .get_module_eeprom = igb_get_module_eeprom,
3500 .get_rxfh_indir_size = igb_get_rxfh_indir_size,
3501 .get_rxfh = igb_get_rxfh,
3502 .set_rxfh = igb_set_rxfh,
3503 .get_channels = igb_get_channels,
3504 .set_channels = igb_set_channels,
3505 .get_priv_flags = igb_get_priv_flags,
3506 .set_priv_flags = igb_set_priv_flags,
3507 .begin = igb_ethtool_begin,
3508 .complete = igb_ethtool_complete,
3509 .get_link_ksettings = igb_get_link_ksettings,
3510 .set_link_ksettings = igb_set_link_ksettings,
3511 };
3512
igb_set_ethtool_ops(struct net_device * netdev)3513 void igb_set_ethtool_ops(struct net_device *netdev)
3514 {
3515 netdev->ethtool_ops = &igb_ethtool_ops;
3516 }
3517