• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright(c) 2007 - 2018 Intel Corporation. */
3 
4 /* ethtool support for igb */
5 
6 #include <linux/vmalloc.h>
7 #include <linux/netdevice.h>
8 #include <linux/pci.h>
9 #include <linux/delay.h>
10 #include <linux/interrupt.h>
11 #include <linux/if_ether.h>
12 #include <linux/ethtool.h>
13 #include <linux/sched.h>
14 #include <linux/slab.h>
15 #include <linux/pm_runtime.h>
16 #include <linux/highmem.h>
17 #include <linux/mdio.h>
18 
19 #include "igb.h"
20 
21 struct igb_stats {
22 	char stat_string[ETH_GSTRING_LEN];
23 	int sizeof_stat;
24 	int stat_offset;
25 };
26 
27 #define IGB_STAT(_name, _stat) { \
28 	.stat_string = _name, \
29 	.sizeof_stat = FIELD_SIZEOF(struct igb_adapter, _stat), \
30 	.stat_offset = offsetof(struct igb_adapter, _stat) \
31 }
32 static const struct igb_stats igb_gstrings_stats[] = {
33 	IGB_STAT("rx_packets", stats.gprc),
34 	IGB_STAT("tx_packets", stats.gptc),
35 	IGB_STAT("rx_bytes", stats.gorc),
36 	IGB_STAT("tx_bytes", stats.gotc),
37 	IGB_STAT("rx_broadcast", stats.bprc),
38 	IGB_STAT("tx_broadcast", stats.bptc),
39 	IGB_STAT("rx_multicast", stats.mprc),
40 	IGB_STAT("tx_multicast", stats.mptc),
41 	IGB_STAT("multicast", stats.mprc),
42 	IGB_STAT("collisions", stats.colc),
43 	IGB_STAT("rx_crc_errors", stats.crcerrs),
44 	IGB_STAT("rx_no_buffer_count", stats.rnbc),
45 	IGB_STAT("rx_missed_errors", stats.mpc),
46 	IGB_STAT("tx_aborted_errors", stats.ecol),
47 	IGB_STAT("tx_carrier_errors", stats.tncrs),
48 	IGB_STAT("tx_window_errors", stats.latecol),
49 	IGB_STAT("tx_abort_late_coll", stats.latecol),
50 	IGB_STAT("tx_deferred_ok", stats.dc),
51 	IGB_STAT("tx_single_coll_ok", stats.scc),
52 	IGB_STAT("tx_multi_coll_ok", stats.mcc),
53 	IGB_STAT("tx_timeout_count", tx_timeout_count),
54 	IGB_STAT("rx_long_length_errors", stats.roc),
55 	IGB_STAT("rx_short_length_errors", stats.ruc),
56 	IGB_STAT("rx_align_errors", stats.algnerrc),
57 	IGB_STAT("tx_tcp_seg_good", stats.tsctc),
58 	IGB_STAT("tx_tcp_seg_failed", stats.tsctfc),
59 	IGB_STAT("rx_flow_control_xon", stats.xonrxc),
60 	IGB_STAT("rx_flow_control_xoff", stats.xoffrxc),
61 	IGB_STAT("tx_flow_control_xon", stats.xontxc),
62 	IGB_STAT("tx_flow_control_xoff", stats.xofftxc),
63 	IGB_STAT("rx_long_byte_count", stats.gorc),
64 	IGB_STAT("tx_dma_out_of_sync", stats.doosync),
65 	IGB_STAT("tx_smbus", stats.mgptc),
66 	IGB_STAT("rx_smbus", stats.mgprc),
67 	IGB_STAT("dropped_smbus", stats.mgpdc),
68 	IGB_STAT("os2bmc_rx_by_bmc", stats.o2bgptc),
69 	IGB_STAT("os2bmc_tx_by_bmc", stats.b2ospc),
70 	IGB_STAT("os2bmc_tx_by_host", stats.o2bspc),
71 	IGB_STAT("os2bmc_rx_by_host", stats.b2ogprc),
72 	IGB_STAT("tx_hwtstamp_timeouts", tx_hwtstamp_timeouts),
73 	IGB_STAT("tx_hwtstamp_skipped", tx_hwtstamp_skipped),
74 	IGB_STAT("rx_hwtstamp_cleared", rx_hwtstamp_cleared),
75 };
76 
77 #define IGB_NETDEV_STAT(_net_stat) { \
78 	.stat_string = __stringify(_net_stat), \
79 	.sizeof_stat = FIELD_SIZEOF(struct rtnl_link_stats64, _net_stat), \
80 	.stat_offset = offsetof(struct rtnl_link_stats64, _net_stat) \
81 }
82 static const struct igb_stats igb_gstrings_net_stats[] = {
83 	IGB_NETDEV_STAT(rx_errors),
84 	IGB_NETDEV_STAT(tx_errors),
85 	IGB_NETDEV_STAT(tx_dropped),
86 	IGB_NETDEV_STAT(rx_length_errors),
87 	IGB_NETDEV_STAT(rx_over_errors),
88 	IGB_NETDEV_STAT(rx_frame_errors),
89 	IGB_NETDEV_STAT(rx_fifo_errors),
90 	IGB_NETDEV_STAT(tx_fifo_errors),
91 	IGB_NETDEV_STAT(tx_heartbeat_errors)
92 };
93 
94 #define IGB_GLOBAL_STATS_LEN	\
95 	(sizeof(igb_gstrings_stats) / sizeof(struct igb_stats))
96 #define IGB_NETDEV_STATS_LEN	\
97 	(sizeof(igb_gstrings_net_stats) / sizeof(struct igb_stats))
98 #define IGB_RX_QUEUE_STATS_LEN \
99 	(sizeof(struct igb_rx_queue_stats) / sizeof(u64))
100 
101 #define IGB_TX_QUEUE_STATS_LEN 3 /* packets, bytes, restart_queue */
102 
103 #define IGB_QUEUE_STATS_LEN \
104 	((((struct igb_adapter *)netdev_priv(netdev))->num_rx_queues * \
105 	  IGB_RX_QUEUE_STATS_LEN) + \
106 	 (((struct igb_adapter *)netdev_priv(netdev))->num_tx_queues * \
107 	  IGB_TX_QUEUE_STATS_LEN))
108 #define IGB_STATS_LEN \
109 	(IGB_GLOBAL_STATS_LEN + IGB_NETDEV_STATS_LEN + IGB_QUEUE_STATS_LEN)
110 
111 enum igb_diagnostics_results {
112 	TEST_REG = 0,
113 	TEST_EEP,
114 	TEST_IRQ,
115 	TEST_LOOP,
116 	TEST_LINK
117 };
118 
119 static const char igb_gstrings_test[][ETH_GSTRING_LEN] = {
120 	[TEST_REG]  = "Register test  (offline)",
121 	[TEST_EEP]  = "Eeprom test    (offline)",
122 	[TEST_IRQ]  = "Interrupt test (offline)",
123 	[TEST_LOOP] = "Loopback test  (offline)",
124 	[TEST_LINK] = "Link test   (on/offline)"
125 };
126 #define IGB_TEST_LEN (sizeof(igb_gstrings_test) / ETH_GSTRING_LEN)
127 
128 static const char igb_priv_flags_strings[][ETH_GSTRING_LEN] = {
129 #define IGB_PRIV_FLAGS_LEGACY_RX	BIT(0)
130 	"legacy-rx",
131 };
132 
133 #define IGB_PRIV_FLAGS_STR_LEN ARRAY_SIZE(igb_priv_flags_strings)
134 
igb_get_link_ksettings(struct net_device * netdev,struct ethtool_link_ksettings * cmd)135 static int igb_get_link_ksettings(struct net_device *netdev,
136 				  struct ethtool_link_ksettings *cmd)
137 {
138 	struct igb_adapter *adapter = netdev_priv(netdev);
139 	struct e1000_hw *hw = &adapter->hw;
140 	struct e1000_dev_spec_82575 *dev_spec = &hw->dev_spec._82575;
141 	struct e1000_sfp_flags *eth_flags = &dev_spec->eth_flags;
142 	u32 status;
143 	u32 speed;
144 	u32 supported, advertising;
145 
146 	status = pm_runtime_suspended(&adapter->pdev->dev) ?
147 		 0 : rd32(E1000_STATUS);
148 	if (hw->phy.media_type == e1000_media_type_copper) {
149 
150 		supported = (SUPPORTED_10baseT_Half |
151 			     SUPPORTED_10baseT_Full |
152 			     SUPPORTED_100baseT_Half |
153 			     SUPPORTED_100baseT_Full |
154 			     SUPPORTED_1000baseT_Full|
155 			     SUPPORTED_Autoneg |
156 			     SUPPORTED_TP |
157 			     SUPPORTED_Pause);
158 		advertising = ADVERTISED_TP;
159 
160 		if (hw->mac.autoneg == 1) {
161 			advertising |= ADVERTISED_Autoneg;
162 			/* the e1000 autoneg seems to match ethtool nicely */
163 			advertising |= hw->phy.autoneg_advertised;
164 		}
165 
166 		cmd->base.port = PORT_TP;
167 		cmd->base.phy_address = hw->phy.addr;
168 	} else {
169 		supported = (SUPPORTED_FIBRE |
170 			     SUPPORTED_1000baseKX_Full |
171 			     SUPPORTED_Autoneg |
172 			     SUPPORTED_Pause);
173 		advertising = (ADVERTISED_FIBRE |
174 			       ADVERTISED_1000baseKX_Full);
175 		if (hw->mac.type == e1000_i354) {
176 			if ((hw->device_id ==
177 			     E1000_DEV_ID_I354_BACKPLANE_2_5GBPS) &&
178 			    !(status & E1000_STATUS_2P5_SKU_OVER)) {
179 				supported |= SUPPORTED_2500baseX_Full;
180 				supported &= ~SUPPORTED_1000baseKX_Full;
181 				advertising |= ADVERTISED_2500baseX_Full;
182 				advertising &= ~ADVERTISED_1000baseKX_Full;
183 			}
184 		}
185 		if (eth_flags->e100_base_fx || eth_flags->e100_base_lx) {
186 			supported |= SUPPORTED_100baseT_Full;
187 			advertising |= ADVERTISED_100baseT_Full;
188 		}
189 		if (hw->mac.autoneg == 1)
190 			advertising |= ADVERTISED_Autoneg;
191 
192 		cmd->base.port = PORT_FIBRE;
193 	}
194 	if (hw->mac.autoneg != 1)
195 		advertising &= ~(ADVERTISED_Pause |
196 				 ADVERTISED_Asym_Pause);
197 
198 	switch (hw->fc.requested_mode) {
199 	case e1000_fc_full:
200 		advertising |= ADVERTISED_Pause;
201 		break;
202 	case e1000_fc_rx_pause:
203 		advertising |= (ADVERTISED_Pause |
204 				ADVERTISED_Asym_Pause);
205 		break;
206 	case e1000_fc_tx_pause:
207 		advertising |=  ADVERTISED_Asym_Pause;
208 		break;
209 	default:
210 		advertising &= ~(ADVERTISED_Pause |
211 				 ADVERTISED_Asym_Pause);
212 	}
213 	if (status & E1000_STATUS_LU) {
214 		if ((status & E1000_STATUS_2P5_SKU) &&
215 		    !(status & E1000_STATUS_2P5_SKU_OVER)) {
216 			speed = SPEED_2500;
217 		} else if (status & E1000_STATUS_SPEED_1000) {
218 			speed = SPEED_1000;
219 		} else if (status & E1000_STATUS_SPEED_100) {
220 			speed = SPEED_100;
221 		} else {
222 			speed = SPEED_10;
223 		}
224 		if ((status & E1000_STATUS_FD) ||
225 		    hw->phy.media_type != e1000_media_type_copper)
226 			cmd->base.duplex = DUPLEX_FULL;
227 		else
228 			cmd->base.duplex = DUPLEX_HALF;
229 	} else {
230 		speed = SPEED_UNKNOWN;
231 		cmd->base.duplex = DUPLEX_UNKNOWN;
232 	}
233 	cmd->base.speed = speed;
234 	if ((hw->phy.media_type == e1000_media_type_fiber) ||
235 	    hw->mac.autoneg)
236 		cmd->base.autoneg = AUTONEG_ENABLE;
237 	else
238 		cmd->base.autoneg = AUTONEG_DISABLE;
239 
240 	/* MDI-X => 2; MDI =>1; Invalid =>0 */
241 	if (hw->phy.media_type == e1000_media_type_copper)
242 		cmd->base.eth_tp_mdix = hw->phy.is_mdix ? ETH_TP_MDI_X :
243 						      ETH_TP_MDI;
244 	else
245 		cmd->base.eth_tp_mdix = ETH_TP_MDI_INVALID;
246 
247 	if (hw->phy.mdix == AUTO_ALL_MODES)
248 		cmd->base.eth_tp_mdix_ctrl = ETH_TP_MDI_AUTO;
249 	else
250 		cmd->base.eth_tp_mdix_ctrl = hw->phy.mdix;
251 
252 	ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.supported,
253 						supported);
254 	ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.advertising,
255 						advertising);
256 
257 	return 0;
258 }
259 
igb_set_link_ksettings(struct net_device * netdev,const struct ethtool_link_ksettings * cmd)260 static int igb_set_link_ksettings(struct net_device *netdev,
261 				  const struct ethtool_link_ksettings *cmd)
262 {
263 	struct igb_adapter *adapter = netdev_priv(netdev);
264 	struct e1000_hw *hw = &adapter->hw;
265 	u32 advertising;
266 
267 	/* When SoL/IDER sessions are active, autoneg/speed/duplex
268 	 * cannot be changed
269 	 */
270 	if (igb_check_reset_block(hw)) {
271 		dev_err(&adapter->pdev->dev,
272 			"Cannot change link characteristics when SoL/IDER is active.\n");
273 		return -EINVAL;
274 	}
275 
276 	/* MDI setting is only allowed when autoneg enabled because
277 	 * some hardware doesn't allow MDI setting when speed or
278 	 * duplex is forced.
279 	 */
280 	if (cmd->base.eth_tp_mdix_ctrl) {
281 		if (hw->phy.media_type != e1000_media_type_copper)
282 			return -EOPNOTSUPP;
283 
284 		if ((cmd->base.eth_tp_mdix_ctrl != ETH_TP_MDI_AUTO) &&
285 		    (cmd->base.autoneg != AUTONEG_ENABLE)) {
286 			dev_err(&adapter->pdev->dev, "forcing MDI/MDI-X state is not supported when link speed and/or duplex are forced\n");
287 			return -EINVAL;
288 		}
289 	}
290 
291 	while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
292 		usleep_range(1000, 2000);
293 
294 	ethtool_convert_link_mode_to_legacy_u32(&advertising,
295 						cmd->link_modes.advertising);
296 
297 	if (cmd->base.autoneg == AUTONEG_ENABLE) {
298 		hw->mac.autoneg = 1;
299 		if (hw->phy.media_type == e1000_media_type_fiber) {
300 			hw->phy.autoneg_advertised = advertising |
301 						     ADVERTISED_FIBRE |
302 						     ADVERTISED_Autoneg;
303 			switch (adapter->link_speed) {
304 			case SPEED_2500:
305 				hw->phy.autoneg_advertised =
306 					ADVERTISED_2500baseX_Full;
307 				break;
308 			case SPEED_1000:
309 				hw->phy.autoneg_advertised =
310 					ADVERTISED_1000baseT_Full;
311 				break;
312 			case SPEED_100:
313 				hw->phy.autoneg_advertised =
314 					ADVERTISED_100baseT_Full;
315 				break;
316 			default:
317 				break;
318 			}
319 		} else {
320 			hw->phy.autoneg_advertised = advertising |
321 						     ADVERTISED_TP |
322 						     ADVERTISED_Autoneg;
323 		}
324 		advertising = hw->phy.autoneg_advertised;
325 		if (adapter->fc_autoneg)
326 			hw->fc.requested_mode = e1000_fc_default;
327 	} else {
328 		u32 speed = cmd->base.speed;
329 		/* calling this overrides forced MDI setting */
330 		if (igb_set_spd_dplx(adapter, speed, cmd->base.duplex)) {
331 			clear_bit(__IGB_RESETTING, &adapter->state);
332 			return -EINVAL;
333 		}
334 	}
335 
336 	/* MDI-X => 2; MDI => 1; Auto => 3 */
337 	if (cmd->base.eth_tp_mdix_ctrl) {
338 		/* fix up the value for auto (3 => 0) as zero is mapped
339 		 * internally to auto
340 		 */
341 		if (cmd->base.eth_tp_mdix_ctrl == ETH_TP_MDI_AUTO)
342 			hw->phy.mdix = AUTO_ALL_MODES;
343 		else
344 			hw->phy.mdix = cmd->base.eth_tp_mdix_ctrl;
345 	}
346 
347 	/* reset the link */
348 	if (netif_running(adapter->netdev)) {
349 		igb_down(adapter);
350 		igb_up(adapter);
351 	} else
352 		igb_reset(adapter);
353 
354 	clear_bit(__IGB_RESETTING, &adapter->state);
355 	return 0;
356 }
357 
igb_get_link(struct net_device * netdev)358 static u32 igb_get_link(struct net_device *netdev)
359 {
360 	struct igb_adapter *adapter = netdev_priv(netdev);
361 	struct e1000_mac_info *mac = &adapter->hw.mac;
362 
363 	/* If the link is not reported up to netdev, interrupts are disabled,
364 	 * and so the physical link state may have changed since we last
365 	 * looked. Set get_link_status to make sure that the true link
366 	 * state is interrogated, rather than pulling a cached and possibly
367 	 * stale link state from the driver.
368 	 */
369 	if (!netif_carrier_ok(netdev))
370 		mac->get_link_status = 1;
371 
372 	return igb_has_link(adapter);
373 }
374 
igb_get_pauseparam(struct net_device * netdev,struct ethtool_pauseparam * pause)375 static void igb_get_pauseparam(struct net_device *netdev,
376 			       struct ethtool_pauseparam *pause)
377 {
378 	struct igb_adapter *adapter = netdev_priv(netdev);
379 	struct e1000_hw *hw = &adapter->hw;
380 
381 	pause->autoneg =
382 		(adapter->fc_autoneg ? AUTONEG_ENABLE : AUTONEG_DISABLE);
383 
384 	if (hw->fc.current_mode == e1000_fc_rx_pause)
385 		pause->rx_pause = 1;
386 	else if (hw->fc.current_mode == e1000_fc_tx_pause)
387 		pause->tx_pause = 1;
388 	else if (hw->fc.current_mode == e1000_fc_full) {
389 		pause->rx_pause = 1;
390 		pause->tx_pause = 1;
391 	}
392 }
393 
igb_set_pauseparam(struct net_device * netdev,struct ethtool_pauseparam * pause)394 static int igb_set_pauseparam(struct net_device *netdev,
395 			      struct ethtool_pauseparam *pause)
396 {
397 	struct igb_adapter *adapter = netdev_priv(netdev);
398 	struct e1000_hw *hw = &adapter->hw;
399 	int retval = 0;
400 
401 	/* 100basefx does not support setting link flow control */
402 	if (hw->dev_spec._82575.eth_flags.e100_base_fx)
403 		return -EINVAL;
404 
405 	adapter->fc_autoneg = pause->autoneg;
406 
407 	while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
408 		usleep_range(1000, 2000);
409 
410 	if (adapter->fc_autoneg == AUTONEG_ENABLE) {
411 		hw->fc.requested_mode = e1000_fc_default;
412 		if (netif_running(adapter->netdev)) {
413 			igb_down(adapter);
414 			igb_up(adapter);
415 		} else {
416 			igb_reset(adapter);
417 		}
418 	} else {
419 		if (pause->rx_pause && pause->tx_pause)
420 			hw->fc.requested_mode = e1000_fc_full;
421 		else if (pause->rx_pause && !pause->tx_pause)
422 			hw->fc.requested_mode = e1000_fc_rx_pause;
423 		else if (!pause->rx_pause && pause->tx_pause)
424 			hw->fc.requested_mode = e1000_fc_tx_pause;
425 		else if (!pause->rx_pause && !pause->tx_pause)
426 			hw->fc.requested_mode = e1000_fc_none;
427 
428 		hw->fc.current_mode = hw->fc.requested_mode;
429 
430 		retval = ((hw->phy.media_type == e1000_media_type_copper) ?
431 			  igb_force_mac_fc(hw) : igb_setup_link(hw));
432 	}
433 
434 	clear_bit(__IGB_RESETTING, &adapter->state);
435 	return retval;
436 }
437 
igb_get_msglevel(struct net_device * netdev)438 static u32 igb_get_msglevel(struct net_device *netdev)
439 {
440 	struct igb_adapter *adapter = netdev_priv(netdev);
441 	return adapter->msg_enable;
442 }
443 
igb_set_msglevel(struct net_device * netdev,u32 data)444 static void igb_set_msglevel(struct net_device *netdev, u32 data)
445 {
446 	struct igb_adapter *adapter = netdev_priv(netdev);
447 	adapter->msg_enable = data;
448 }
449 
igb_get_regs_len(struct net_device * netdev)450 static int igb_get_regs_len(struct net_device *netdev)
451 {
452 #define IGB_REGS_LEN 739
453 	return IGB_REGS_LEN * sizeof(u32);
454 }
455 
igb_get_regs(struct net_device * netdev,struct ethtool_regs * regs,void * p)456 static void igb_get_regs(struct net_device *netdev,
457 			 struct ethtool_regs *regs, void *p)
458 {
459 	struct igb_adapter *adapter = netdev_priv(netdev);
460 	struct e1000_hw *hw = &adapter->hw;
461 	u32 *regs_buff = p;
462 	u8 i;
463 
464 	memset(p, 0, IGB_REGS_LEN * sizeof(u32));
465 
466 	regs->version = (1u << 24) | (hw->revision_id << 16) | hw->device_id;
467 
468 	/* General Registers */
469 	regs_buff[0] = rd32(E1000_CTRL);
470 	regs_buff[1] = rd32(E1000_STATUS);
471 	regs_buff[2] = rd32(E1000_CTRL_EXT);
472 	regs_buff[3] = rd32(E1000_MDIC);
473 	regs_buff[4] = rd32(E1000_SCTL);
474 	regs_buff[5] = rd32(E1000_CONNSW);
475 	regs_buff[6] = rd32(E1000_VET);
476 	regs_buff[7] = rd32(E1000_LEDCTL);
477 	regs_buff[8] = rd32(E1000_PBA);
478 	regs_buff[9] = rd32(E1000_PBS);
479 	regs_buff[10] = rd32(E1000_FRTIMER);
480 	regs_buff[11] = rd32(E1000_TCPTIMER);
481 
482 	/* NVM Register */
483 	regs_buff[12] = rd32(E1000_EECD);
484 
485 	/* Interrupt */
486 	/* Reading EICS for EICR because they read the
487 	 * same but EICS does not clear on read
488 	 */
489 	regs_buff[13] = rd32(E1000_EICS);
490 	regs_buff[14] = rd32(E1000_EICS);
491 	regs_buff[15] = rd32(E1000_EIMS);
492 	regs_buff[16] = rd32(E1000_EIMC);
493 	regs_buff[17] = rd32(E1000_EIAC);
494 	regs_buff[18] = rd32(E1000_EIAM);
495 	/* Reading ICS for ICR because they read the
496 	 * same but ICS does not clear on read
497 	 */
498 	regs_buff[19] = rd32(E1000_ICS);
499 	regs_buff[20] = rd32(E1000_ICS);
500 	regs_buff[21] = rd32(E1000_IMS);
501 	regs_buff[22] = rd32(E1000_IMC);
502 	regs_buff[23] = rd32(E1000_IAC);
503 	regs_buff[24] = rd32(E1000_IAM);
504 	regs_buff[25] = rd32(E1000_IMIRVP);
505 
506 	/* Flow Control */
507 	regs_buff[26] = rd32(E1000_FCAL);
508 	regs_buff[27] = rd32(E1000_FCAH);
509 	regs_buff[28] = rd32(E1000_FCTTV);
510 	regs_buff[29] = rd32(E1000_FCRTL);
511 	regs_buff[30] = rd32(E1000_FCRTH);
512 	regs_buff[31] = rd32(E1000_FCRTV);
513 
514 	/* Receive */
515 	regs_buff[32] = rd32(E1000_RCTL);
516 	regs_buff[33] = rd32(E1000_RXCSUM);
517 	regs_buff[34] = rd32(E1000_RLPML);
518 	regs_buff[35] = rd32(E1000_RFCTL);
519 	regs_buff[36] = rd32(E1000_MRQC);
520 	regs_buff[37] = rd32(E1000_VT_CTL);
521 
522 	/* Transmit */
523 	regs_buff[38] = rd32(E1000_TCTL);
524 	regs_buff[39] = rd32(E1000_TCTL_EXT);
525 	regs_buff[40] = rd32(E1000_TIPG);
526 	regs_buff[41] = rd32(E1000_DTXCTL);
527 
528 	/* Wake Up */
529 	regs_buff[42] = rd32(E1000_WUC);
530 	regs_buff[43] = rd32(E1000_WUFC);
531 	regs_buff[44] = rd32(E1000_WUS);
532 	regs_buff[45] = rd32(E1000_IPAV);
533 	regs_buff[46] = rd32(E1000_WUPL);
534 
535 	/* MAC */
536 	regs_buff[47] = rd32(E1000_PCS_CFG0);
537 	regs_buff[48] = rd32(E1000_PCS_LCTL);
538 	regs_buff[49] = rd32(E1000_PCS_LSTAT);
539 	regs_buff[50] = rd32(E1000_PCS_ANADV);
540 	regs_buff[51] = rd32(E1000_PCS_LPAB);
541 	regs_buff[52] = rd32(E1000_PCS_NPTX);
542 	regs_buff[53] = rd32(E1000_PCS_LPABNP);
543 
544 	/* Statistics */
545 	regs_buff[54] = adapter->stats.crcerrs;
546 	regs_buff[55] = adapter->stats.algnerrc;
547 	regs_buff[56] = adapter->stats.symerrs;
548 	regs_buff[57] = adapter->stats.rxerrc;
549 	regs_buff[58] = adapter->stats.mpc;
550 	regs_buff[59] = adapter->stats.scc;
551 	regs_buff[60] = adapter->stats.ecol;
552 	regs_buff[61] = adapter->stats.mcc;
553 	regs_buff[62] = adapter->stats.latecol;
554 	regs_buff[63] = adapter->stats.colc;
555 	regs_buff[64] = adapter->stats.dc;
556 	regs_buff[65] = adapter->stats.tncrs;
557 	regs_buff[66] = adapter->stats.sec;
558 	regs_buff[67] = adapter->stats.htdpmc;
559 	regs_buff[68] = adapter->stats.rlec;
560 	regs_buff[69] = adapter->stats.xonrxc;
561 	regs_buff[70] = adapter->stats.xontxc;
562 	regs_buff[71] = adapter->stats.xoffrxc;
563 	regs_buff[72] = adapter->stats.xofftxc;
564 	regs_buff[73] = adapter->stats.fcruc;
565 	regs_buff[74] = adapter->stats.prc64;
566 	regs_buff[75] = adapter->stats.prc127;
567 	regs_buff[76] = adapter->stats.prc255;
568 	regs_buff[77] = adapter->stats.prc511;
569 	regs_buff[78] = adapter->stats.prc1023;
570 	regs_buff[79] = adapter->stats.prc1522;
571 	regs_buff[80] = adapter->stats.gprc;
572 	regs_buff[81] = adapter->stats.bprc;
573 	regs_buff[82] = adapter->stats.mprc;
574 	regs_buff[83] = adapter->stats.gptc;
575 	regs_buff[84] = adapter->stats.gorc;
576 	regs_buff[86] = adapter->stats.gotc;
577 	regs_buff[88] = adapter->stats.rnbc;
578 	regs_buff[89] = adapter->stats.ruc;
579 	regs_buff[90] = adapter->stats.rfc;
580 	regs_buff[91] = adapter->stats.roc;
581 	regs_buff[92] = adapter->stats.rjc;
582 	regs_buff[93] = adapter->stats.mgprc;
583 	regs_buff[94] = adapter->stats.mgpdc;
584 	regs_buff[95] = adapter->stats.mgptc;
585 	regs_buff[96] = adapter->stats.tor;
586 	regs_buff[98] = adapter->stats.tot;
587 	regs_buff[100] = adapter->stats.tpr;
588 	regs_buff[101] = adapter->stats.tpt;
589 	regs_buff[102] = adapter->stats.ptc64;
590 	regs_buff[103] = adapter->stats.ptc127;
591 	regs_buff[104] = adapter->stats.ptc255;
592 	regs_buff[105] = adapter->stats.ptc511;
593 	regs_buff[106] = adapter->stats.ptc1023;
594 	regs_buff[107] = adapter->stats.ptc1522;
595 	regs_buff[108] = adapter->stats.mptc;
596 	regs_buff[109] = adapter->stats.bptc;
597 	regs_buff[110] = adapter->stats.tsctc;
598 	regs_buff[111] = adapter->stats.iac;
599 	regs_buff[112] = adapter->stats.rpthc;
600 	regs_buff[113] = adapter->stats.hgptc;
601 	regs_buff[114] = adapter->stats.hgorc;
602 	regs_buff[116] = adapter->stats.hgotc;
603 	regs_buff[118] = adapter->stats.lenerrs;
604 	regs_buff[119] = adapter->stats.scvpc;
605 	regs_buff[120] = adapter->stats.hrmpc;
606 
607 	for (i = 0; i < 4; i++)
608 		regs_buff[121 + i] = rd32(E1000_SRRCTL(i));
609 	for (i = 0; i < 4; i++)
610 		regs_buff[125 + i] = rd32(E1000_PSRTYPE(i));
611 	for (i = 0; i < 4; i++)
612 		regs_buff[129 + i] = rd32(E1000_RDBAL(i));
613 	for (i = 0; i < 4; i++)
614 		regs_buff[133 + i] = rd32(E1000_RDBAH(i));
615 	for (i = 0; i < 4; i++)
616 		regs_buff[137 + i] = rd32(E1000_RDLEN(i));
617 	for (i = 0; i < 4; i++)
618 		regs_buff[141 + i] = rd32(E1000_RDH(i));
619 	for (i = 0; i < 4; i++)
620 		regs_buff[145 + i] = rd32(E1000_RDT(i));
621 	for (i = 0; i < 4; i++)
622 		regs_buff[149 + i] = rd32(E1000_RXDCTL(i));
623 
624 	for (i = 0; i < 10; i++)
625 		regs_buff[153 + i] = rd32(E1000_EITR(i));
626 	for (i = 0; i < 8; i++)
627 		regs_buff[163 + i] = rd32(E1000_IMIR(i));
628 	for (i = 0; i < 8; i++)
629 		regs_buff[171 + i] = rd32(E1000_IMIREXT(i));
630 	for (i = 0; i < 16; i++)
631 		regs_buff[179 + i] = rd32(E1000_RAL(i));
632 	for (i = 0; i < 16; i++)
633 		regs_buff[195 + i] = rd32(E1000_RAH(i));
634 
635 	for (i = 0; i < 4; i++)
636 		regs_buff[211 + i] = rd32(E1000_TDBAL(i));
637 	for (i = 0; i < 4; i++)
638 		regs_buff[215 + i] = rd32(E1000_TDBAH(i));
639 	for (i = 0; i < 4; i++)
640 		regs_buff[219 + i] = rd32(E1000_TDLEN(i));
641 	for (i = 0; i < 4; i++)
642 		regs_buff[223 + i] = rd32(E1000_TDH(i));
643 	for (i = 0; i < 4; i++)
644 		regs_buff[227 + i] = rd32(E1000_TDT(i));
645 	for (i = 0; i < 4; i++)
646 		regs_buff[231 + i] = rd32(E1000_TXDCTL(i));
647 	for (i = 0; i < 4; i++)
648 		regs_buff[235 + i] = rd32(E1000_TDWBAL(i));
649 	for (i = 0; i < 4; i++)
650 		regs_buff[239 + i] = rd32(E1000_TDWBAH(i));
651 	for (i = 0; i < 4; i++)
652 		regs_buff[243 + i] = rd32(E1000_DCA_TXCTRL(i));
653 
654 	for (i = 0; i < 4; i++)
655 		regs_buff[247 + i] = rd32(E1000_IP4AT_REG(i));
656 	for (i = 0; i < 4; i++)
657 		regs_buff[251 + i] = rd32(E1000_IP6AT_REG(i));
658 	for (i = 0; i < 32; i++)
659 		regs_buff[255 + i] = rd32(E1000_WUPM_REG(i));
660 	for (i = 0; i < 128; i++)
661 		regs_buff[287 + i] = rd32(E1000_FFMT_REG(i));
662 	for (i = 0; i < 128; i++)
663 		regs_buff[415 + i] = rd32(E1000_FFVT_REG(i));
664 	for (i = 0; i < 4; i++)
665 		regs_buff[543 + i] = rd32(E1000_FFLT_REG(i));
666 
667 	regs_buff[547] = rd32(E1000_TDFH);
668 	regs_buff[548] = rd32(E1000_TDFT);
669 	regs_buff[549] = rd32(E1000_TDFHS);
670 	regs_buff[550] = rd32(E1000_TDFPC);
671 
672 	if (hw->mac.type > e1000_82580) {
673 		regs_buff[551] = adapter->stats.o2bgptc;
674 		regs_buff[552] = adapter->stats.b2ospc;
675 		regs_buff[553] = adapter->stats.o2bspc;
676 		regs_buff[554] = adapter->stats.b2ogprc;
677 	}
678 
679 	if (hw->mac.type != e1000_82576)
680 		return;
681 	for (i = 0; i < 12; i++)
682 		regs_buff[555 + i] = rd32(E1000_SRRCTL(i + 4));
683 	for (i = 0; i < 4; i++)
684 		regs_buff[567 + i] = rd32(E1000_PSRTYPE(i + 4));
685 	for (i = 0; i < 12; i++)
686 		regs_buff[571 + i] = rd32(E1000_RDBAL(i + 4));
687 	for (i = 0; i < 12; i++)
688 		regs_buff[583 + i] = rd32(E1000_RDBAH(i + 4));
689 	for (i = 0; i < 12; i++)
690 		regs_buff[595 + i] = rd32(E1000_RDLEN(i + 4));
691 	for (i = 0; i < 12; i++)
692 		regs_buff[607 + i] = rd32(E1000_RDH(i + 4));
693 	for (i = 0; i < 12; i++)
694 		regs_buff[619 + i] = rd32(E1000_RDT(i + 4));
695 	for (i = 0; i < 12; i++)
696 		regs_buff[631 + i] = rd32(E1000_RXDCTL(i + 4));
697 
698 	for (i = 0; i < 12; i++)
699 		regs_buff[643 + i] = rd32(E1000_TDBAL(i + 4));
700 	for (i = 0; i < 12; i++)
701 		regs_buff[655 + i] = rd32(E1000_TDBAH(i + 4));
702 	for (i = 0; i < 12; i++)
703 		regs_buff[667 + i] = rd32(E1000_TDLEN(i + 4));
704 	for (i = 0; i < 12; i++)
705 		regs_buff[679 + i] = rd32(E1000_TDH(i + 4));
706 	for (i = 0; i < 12; i++)
707 		regs_buff[691 + i] = rd32(E1000_TDT(i + 4));
708 	for (i = 0; i < 12; i++)
709 		regs_buff[703 + i] = rd32(E1000_TXDCTL(i + 4));
710 	for (i = 0; i < 12; i++)
711 		regs_buff[715 + i] = rd32(E1000_TDWBAL(i + 4));
712 	for (i = 0; i < 12; i++)
713 		regs_buff[727 + i] = rd32(E1000_TDWBAH(i + 4));
714 }
715 
igb_get_eeprom_len(struct net_device * netdev)716 static int igb_get_eeprom_len(struct net_device *netdev)
717 {
718 	struct igb_adapter *adapter = netdev_priv(netdev);
719 	return adapter->hw.nvm.word_size * 2;
720 }
721 
igb_get_eeprom(struct net_device * netdev,struct ethtool_eeprom * eeprom,u8 * bytes)722 static int igb_get_eeprom(struct net_device *netdev,
723 			  struct ethtool_eeprom *eeprom, u8 *bytes)
724 {
725 	struct igb_adapter *adapter = netdev_priv(netdev);
726 	struct e1000_hw *hw = &adapter->hw;
727 	u16 *eeprom_buff;
728 	int first_word, last_word;
729 	int ret_val = 0;
730 	u16 i;
731 
732 	if (eeprom->len == 0)
733 		return -EINVAL;
734 
735 	eeprom->magic = hw->vendor_id | (hw->device_id << 16);
736 
737 	first_word = eeprom->offset >> 1;
738 	last_word = (eeprom->offset + eeprom->len - 1) >> 1;
739 
740 	eeprom_buff = kmalloc_array(last_word - first_word + 1, sizeof(u16),
741 				    GFP_KERNEL);
742 	if (!eeprom_buff)
743 		return -ENOMEM;
744 
745 	if (hw->nvm.type == e1000_nvm_eeprom_spi)
746 		ret_val = hw->nvm.ops.read(hw, first_word,
747 					   last_word - first_word + 1,
748 					   eeprom_buff);
749 	else {
750 		for (i = 0; i < last_word - first_word + 1; i++) {
751 			ret_val = hw->nvm.ops.read(hw, first_word + i, 1,
752 						   &eeprom_buff[i]);
753 			if (ret_val)
754 				break;
755 		}
756 	}
757 
758 	/* Device's eeprom is always little-endian, word addressable */
759 	for (i = 0; i < last_word - first_word + 1; i++)
760 		le16_to_cpus(&eeprom_buff[i]);
761 
762 	memcpy(bytes, (u8 *)eeprom_buff + (eeprom->offset & 1),
763 			eeprom->len);
764 	kfree(eeprom_buff);
765 
766 	return ret_val;
767 }
768 
igb_set_eeprom(struct net_device * netdev,struct ethtool_eeprom * eeprom,u8 * bytes)769 static int igb_set_eeprom(struct net_device *netdev,
770 			  struct ethtool_eeprom *eeprom, u8 *bytes)
771 {
772 	struct igb_adapter *adapter = netdev_priv(netdev);
773 	struct e1000_hw *hw = &adapter->hw;
774 	u16 *eeprom_buff;
775 	void *ptr;
776 	int max_len, first_word, last_word, ret_val = 0;
777 	u16 i;
778 
779 	if (eeprom->len == 0)
780 		return -EOPNOTSUPP;
781 
782 	if ((hw->mac.type >= e1000_i210) &&
783 	    !igb_get_flash_presence_i210(hw)) {
784 		return -EOPNOTSUPP;
785 	}
786 
787 	if (eeprom->magic != (hw->vendor_id | (hw->device_id << 16)))
788 		return -EFAULT;
789 
790 	max_len = hw->nvm.word_size * 2;
791 
792 	first_word = eeprom->offset >> 1;
793 	last_word = (eeprom->offset + eeprom->len - 1) >> 1;
794 	eeprom_buff = kmalloc(max_len, GFP_KERNEL);
795 	if (!eeprom_buff)
796 		return -ENOMEM;
797 
798 	ptr = (void *)eeprom_buff;
799 
800 	if (eeprom->offset & 1) {
801 		/* need read/modify/write of first changed EEPROM word
802 		 * only the second byte of the word is being modified
803 		 */
804 		ret_val = hw->nvm.ops.read(hw, first_word, 1,
805 					    &eeprom_buff[0]);
806 		ptr++;
807 	}
808 	if (((eeprom->offset + eeprom->len) & 1) && (ret_val == 0)) {
809 		/* need read/modify/write of last changed EEPROM word
810 		 * only the first byte of the word is being modified
811 		 */
812 		ret_val = hw->nvm.ops.read(hw, last_word, 1,
813 				   &eeprom_buff[last_word - first_word]);
814 	}
815 
816 	/* Device's eeprom is always little-endian, word addressable */
817 	for (i = 0; i < last_word - first_word + 1; i++)
818 		le16_to_cpus(&eeprom_buff[i]);
819 
820 	memcpy(ptr, bytes, eeprom->len);
821 
822 	for (i = 0; i < last_word - first_word + 1; i++)
823 		eeprom_buff[i] = cpu_to_le16(eeprom_buff[i]);
824 
825 	ret_val = hw->nvm.ops.write(hw, first_word,
826 				    last_word - first_word + 1, eeprom_buff);
827 
828 	/* Update the checksum if nvm write succeeded */
829 	if (ret_val == 0)
830 		hw->nvm.ops.update(hw);
831 
832 	igb_set_fw_version(adapter);
833 	kfree(eeprom_buff);
834 	return ret_val;
835 }
836 
igb_get_drvinfo(struct net_device * netdev,struct ethtool_drvinfo * drvinfo)837 static void igb_get_drvinfo(struct net_device *netdev,
838 			    struct ethtool_drvinfo *drvinfo)
839 {
840 	struct igb_adapter *adapter = netdev_priv(netdev);
841 
842 	strlcpy(drvinfo->driver,  igb_driver_name, sizeof(drvinfo->driver));
843 	strlcpy(drvinfo->version, igb_driver_version, sizeof(drvinfo->version));
844 
845 	/* EEPROM image version # is reported as firmware version # for
846 	 * 82575 controllers
847 	 */
848 	strlcpy(drvinfo->fw_version, adapter->fw_version,
849 		sizeof(drvinfo->fw_version));
850 	strlcpy(drvinfo->bus_info, pci_name(adapter->pdev),
851 		sizeof(drvinfo->bus_info));
852 
853 	drvinfo->n_priv_flags = IGB_PRIV_FLAGS_STR_LEN;
854 }
855 
igb_get_ringparam(struct net_device * netdev,struct ethtool_ringparam * ring)856 static void igb_get_ringparam(struct net_device *netdev,
857 			      struct ethtool_ringparam *ring)
858 {
859 	struct igb_adapter *adapter = netdev_priv(netdev);
860 
861 	ring->rx_max_pending = IGB_MAX_RXD;
862 	ring->tx_max_pending = IGB_MAX_TXD;
863 	ring->rx_pending = adapter->rx_ring_count;
864 	ring->tx_pending = adapter->tx_ring_count;
865 }
866 
igb_set_ringparam(struct net_device * netdev,struct ethtool_ringparam * ring)867 static int igb_set_ringparam(struct net_device *netdev,
868 			     struct ethtool_ringparam *ring)
869 {
870 	struct igb_adapter *adapter = netdev_priv(netdev);
871 	struct igb_ring *temp_ring;
872 	int i, err = 0;
873 	u16 new_rx_count, new_tx_count;
874 
875 	if ((ring->rx_mini_pending) || (ring->rx_jumbo_pending))
876 		return -EINVAL;
877 
878 	new_rx_count = min_t(u32, ring->rx_pending, IGB_MAX_RXD);
879 	new_rx_count = max_t(u16, new_rx_count, IGB_MIN_RXD);
880 	new_rx_count = ALIGN(new_rx_count, REQ_RX_DESCRIPTOR_MULTIPLE);
881 
882 	new_tx_count = min_t(u32, ring->tx_pending, IGB_MAX_TXD);
883 	new_tx_count = max_t(u16, new_tx_count, IGB_MIN_TXD);
884 	new_tx_count = ALIGN(new_tx_count, REQ_TX_DESCRIPTOR_MULTIPLE);
885 
886 	if ((new_tx_count == adapter->tx_ring_count) &&
887 	    (new_rx_count == adapter->rx_ring_count)) {
888 		/* nothing to do */
889 		return 0;
890 	}
891 
892 	while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
893 		usleep_range(1000, 2000);
894 
895 	if (!netif_running(adapter->netdev)) {
896 		for (i = 0; i < adapter->num_tx_queues; i++)
897 			adapter->tx_ring[i]->count = new_tx_count;
898 		for (i = 0; i < adapter->num_rx_queues; i++)
899 			adapter->rx_ring[i]->count = new_rx_count;
900 		adapter->tx_ring_count = new_tx_count;
901 		adapter->rx_ring_count = new_rx_count;
902 		goto clear_reset;
903 	}
904 
905 	if (adapter->num_tx_queues > adapter->num_rx_queues)
906 		temp_ring = vmalloc(array_size(sizeof(struct igb_ring),
907 					       adapter->num_tx_queues));
908 	else
909 		temp_ring = vmalloc(array_size(sizeof(struct igb_ring),
910 					       adapter->num_rx_queues));
911 
912 	if (!temp_ring) {
913 		err = -ENOMEM;
914 		goto clear_reset;
915 	}
916 
917 	igb_down(adapter);
918 
919 	/* We can't just free everything and then setup again,
920 	 * because the ISRs in MSI-X mode get passed pointers
921 	 * to the Tx and Rx ring structs.
922 	 */
923 	if (new_tx_count != adapter->tx_ring_count) {
924 		for (i = 0; i < adapter->num_tx_queues; i++) {
925 			memcpy(&temp_ring[i], adapter->tx_ring[i],
926 			       sizeof(struct igb_ring));
927 
928 			temp_ring[i].count = new_tx_count;
929 			err = igb_setup_tx_resources(&temp_ring[i]);
930 			if (err) {
931 				while (i) {
932 					i--;
933 					igb_free_tx_resources(&temp_ring[i]);
934 				}
935 				goto err_setup;
936 			}
937 		}
938 
939 		for (i = 0; i < adapter->num_tx_queues; i++) {
940 			igb_free_tx_resources(adapter->tx_ring[i]);
941 
942 			memcpy(adapter->tx_ring[i], &temp_ring[i],
943 			       sizeof(struct igb_ring));
944 		}
945 
946 		adapter->tx_ring_count = new_tx_count;
947 	}
948 
949 	if (new_rx_count != adapter->rx_ring_count) {
950 		for (i = 0; i < adapter->num_rx_queues; i++) {
951 			memcpy(&temp_ring[i], adapter->rx_ring[i],
952 			       sizeof(struct igb_ring));
953 
954 			temp_ring[i].count = new_rx_count;
955 			err = igb_setup_rx_resources(&temp_ring[i]);
956 			if (err) {
957 				while (i) {
958 					i--;
959 					igb_free_rx_resources(&temp_ring[i]);
960 				}
961 				goto err_setup;
962 			}
963 
964 		}
965 
966 		for (i = 0; i < adapter->num_rx_queues; i++) {
967 			igb_free_rx_resources(adapter->rx_ring[i]);
968 
969 			memcpy(adapter->rx_ring[i], &temp_ring[i],
970 			       sizeof(struct igb_ring));
971 		}
972 
973 		adapter->rx_ring_count = new_rx_count;
974 	}
975 err_setup:
976 	igb_up(adapter);
977 	vfree(temp_ring);
978 clear_reset:
979 	clear_bit(__IGB_RESETTING, &adapter->state);
980 	return err;
981 }
982 
983 /* ethtool register test data */
984 struct igb_reg_test {
985 	u16 reg;
986 	u16 reg_offset;
987 	u16 array_len;
988 	u16 test_type;
989 	u32 mask;
990 	u32 write;
991 };
992 
993 /* In the hardware, registers are laid out either singly, in arrays
994  * spaced 0x100 bytes apart, or in contiguous tables.  We assume
995  * most tests take place on arrays or single registers (handled
996  * as a single-element array) and special-case the tables.
997  * Table tests are always pattern tests.
998  *
999  * We also make provision for some required setup steps by specifying
1000  * registers to be written without any read-back testing.
1001  */
1002 
1003 #define PATTERN_TEST	1
1004 #define SET_READ_TEST	2
1005 #define WRITE_NO_TEST	3
1006 #define TABLE32_TEST	4
1007 #define TABLE64_TEST_LO	5
1008 #define TABLE64_TEST_HI	6
1009 
1010 /* i210 reg test */
1011 static struct igb_reg_test reg_test_i210[] = {
1012 	{ E1000_FCAL,	   0x100, 1,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1013 	{ E1000_FCAH,	   0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1014 	{ E1000_FCT,	   0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1015 	{ E1000_RDBAL(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1016 	{ E1000_RDBAH(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1017 	{ E1000_RDLEN(0),  0x100, 4,  PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
1018 	/* RDH is read-only for i210, only test RDT. */
1019 	{ E1000_RDT(0),	   0x100, 4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1020 	{ E1000_FCRTH,	   0x100, 1,  PATTERN_TEST, 0x0000FFF0, 0x0000FFF0 },
1021 	{ E1000_FCTTV,	   0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1022 	{ E1000_TIPG,	   0x100, 1,  PATTERN_TEST, 0x3FFFFFFF, 0x3FFFFFFF },
1023 	{ E1000_TDBAL(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1024 	{ E1000_TDBAH(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1025 	{ E1000_TDLEN(0),  0x100, 4,  PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
1026 	{ E1000_TDT(0),	   0x100, 4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1027 	{ E1000_RCTL,	   0x100, 1,  SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1028 	{ E1000_RCTL,	   0x100, 1,  SET_READ_TEST, 0x04CFB0FE, 0x003FFFFB },
1029 	{ E1000_RCTL,	   0x100, 1,  SET_READ_TEST, 0x04CFB0FE, 0xFFFFFFFF },
1030 	{ E1000_TCTL,	   0x100, 1,  SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1031 	{ E1000_RA,	   0, 16, TABLE64_TEST_LO,
1032 						0xFFFFFFFF, 0xFFFFFFFF },
1033 	{ E1000_RA,	   0, 16, TABLE64_TEST_HI,
1034 						0x900FFFFF, 0xFFFFFFFF },
1035 	{ E1000_MTA,	   0, 128, TABLE32_TEST,
1036 						0xFFFFFFFF, 0xFFFFFFFF },
1037 	{ 0, 0, 0, 0, 0 }
1038 };
1039 
1040 /* i350 reg test */
1041 static struct igb_reg_test reg_test_i350[] = {
1042 	{ E1000_FCAL,	   0x100, 1,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1043 	{ E1000_FCAH,	   0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1044 	{ E1000_FCT,	   0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1045 	{ E1000_VET,	   0x100, 1,  PATTERN_TEST, 0xFFFF0000, 0xFFFF0000 },
1046 	{ E1000_RDBAL(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1047 	{ E1000_RDBAH(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1048 	{ E1000_RDLEN(0),  0x100, 4,  PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
1049 	{ E1000_RDBAL(4),  0x40,  4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1050 	{ E1000_RDBAH(4),  0x40,  4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1051 	{ E1000_RDLEN(4),  0x40,  4,  PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
1052 	/* RDH is read-only for i350, only test RDT. */
1053 	{ E1000_RDT(0),	   0x100, 4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1054 	{ E1000_RDT(4),	   0x40,  4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1055 	{ E1000_FCRTH,	   0x100, 1,  PATTERN_TEST, 0x0000FFF0, 0x0000FFF0 },
1056 	{ E1000_FCTTV,	   0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1057 	{ E1000_TIPG,	   0x100, 1,  PATTERN_TEST, 0x3FFFFFFF, 0x3FFFFFFF },
1058 	{ E1000_TDBAL(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1059 	{ E1000_TDBAH(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1060 	{ E1000_TDLEN(0),  0x100, 4,  PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
1061 	{ E1000_TDBAL(4),  0x40,  4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1062 	{ E1000_TDBAH(4),  0x40,  4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1063 	{ E1000_TDLEN(4),  0x40,  4,  PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
1064 	{ E1000_TDT(0),	   0x100, 4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1065 	{ E1000_TDT(4),	   0x40,  4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1066 	{ E1000_RCTL,	   0x100, 1,  SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1067 	{ E1000_RCTL,	   0x100, 1,  SET_READ_TEST, 0x04CFB0FE, 0x003FFFFB },
1068 	{ E1000_RCTL,	   0x100, 1,  SET_READ_TEST, 0x04CFB0FE, 0xFFFFFFFF },
1069 	{ E1000_TCTL,	   0x100, 1,  SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1070 	{ E1000_RA,	   0, 16, TABLE64_TEST_LO,
1071 						0xFFFFFFFF, 0xFFFFFFFF },
1072 	{ E1000_RA,	   0, 16, TABLE64_TEST_HI,
1073 						0xC3FFFFFF, 0xFFFFFFFF },
1074 	{ E1000_RA2,	   0, 16, TABLE64_TEST_LO,
1075 						0xFFFFFFFF, 0xFFFFFFFF },
1076 	{ E1000_RA2,	   0, 16, TABLE64_TEST_HI,
1077 						0xC3FFFFFF, 0xFFFFFFFF },
1078 	{ E1000_MTA,	   0, 128, TABLE32_TEST,
1079 						0xFFFFFFFF, 0xFFFFFFFF },
1080 	{ 0, 0, 0, 0 }
1081 };
1082 
1083 /* 82580 reg test */
1084 static struct igb_reg_test reg_test_82580[] = {
1085 	{ E1000_FCAL,	   0x100, 1,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1086 	{ E1000_FCAH,	   0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1087 	{ E1000_FCT,	   0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1088 	{ E1000_VET,	   0x100, 1,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1089 	{ E1000_RDBAL(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1090 	{ E1000_RDBAH(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1091 	{ E1000_RDLEN(0),  0x100, 4,  PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
1092 	{ E1000_RDBAL(4),  0x40,  4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1093 	{ E1000_RDBAH(4),  0x40,  4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1094 	{ E1000_RDLEN(4),  0x40,  4,  PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
1095 	/* RDH is read-only for 82580, only test RDT. */
1096 	{ E1000_RDT(0),	   0x100, 4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1097 	{ E1000_RDT(4),	   0x40,  4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1098 	{ E1000_FCRTH,	   0x100, 1,  PATTERN_TEST, 0x0000FFF0, 0x0000FFF0 },
1099 	{ E1000_FCTTV,	   0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1100 	{ E1000_TIPG,	   0x100, 1,  PATTERN_TEST, 0x3FFFFFFF, 0x3FFFFFFF },
1101 	{ E1000_TDBAL(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1102 	{ E1000_TDBAH(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1103 	{ E1000_TDLEN(0),  0x100, 4,  PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
1104 	{ E1000_TDBAL(4),  0x40,  4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1105 	{ E1000_TDBAH(4),  0x40,  4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1106 	{ E1000_TDLEN(4),  0x40,  4,  PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
1107 	{ E1000_TDT(0),	   0x100, 4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1108 	{ E1000_TDT(4),	   0x40,  4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1109 	{ E1000_RCTL,	   0x100, 1,  SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1110 	{ E1000_RCTL,	   0x100, 1,  SET_READ_TEST, 0x04CFB0FE, 0x003FFFFB },
1111 	{ E1000_RCTL,	   0x100, 1,  SET_READ_TEST, 0x04CFB0FE, 0xFFFFFFFF },
1112 	{ E1000_TCTL,	   0x100, 1,  SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1113 	{ E1000_RA,	   0, 16, TABLE64_TEST_LO,
1114 						0xFFFFFFFF, 0xFFFFFFFF },
1115 	{ E1000_RA,	   0, 16, TABLE64_TEST_HI,
1116 						0x83FFFFFF, 0xFFFFFFFF },
1117 	{ E1000_RA2,	   0, 8, TABLE64_TEST_LO,
1118 						0xFFFFFFFF, 0xFFFFFFFF },
1119 	{ E1000_RA2,	   0, 8, TABLE64_TEST_HI,
1120 						0x83FFFFFF, 0xFFFFFFFF },
1121 	{ E1000_MTA,	   0, 128, TABLE32_TEST,
1122 						0xFFFFFFFF, 0xFFFFFFFF },
1123 	{ 0, 0, 0, 0 }
1124 };
1125 
1126 /* 82576 reg test */
1127 static struct igb_reg_test reg_test_82576[] = {
1128 	{ E1000_FCAL,	   0x100, 1,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1129 	{ E1000_FCAH,	   0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1130 	{ E1000_FCT,	   0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1131 	{ E1000_VET,	   0x100, 1,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1132 	{ E1000_RDBAL(0),  0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1133 	{ E1000_RDBAH(0),  0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1134 	{ E1000_RDLEN(0),  0x100, 4, PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
1135 	{ E1000_RDBAL(4),  0x40, 12, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1136 	{ E1000_RDBAH(4),  0x40, 12, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1137 	{ E1000_RDLEN(4),  0x40, 12, PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
1138 	/* Enable all RX queues before testing. */
1139 	{ E1000_RXDCTL(0), 0x100, 4, WRITE_NO_TEST, 0,
1140 	  E1000_RXDCTL_QUEUE_ENABLE },
1141 	{ E1000_RXDCTL(4), 0x40, 12, WRITE_NO_TEST, 0,
1142 	  E1000_RXDCTL_QUEUE_ENABLE },
1143 	/* RDH is read-only for 82576, only test RDT. */
1144 	{ E1000_RDT(0),	   0x100, 4,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1145 	{ E1000_RDT(4),	   0x40, 12,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1146 	{ E1000_RXDCTL(0), 0x100, 4,  WRITE_NO_TEST, 0, 0 },
1147 	{ E1000_RXDCTL(4), 0x40, 12,  WRITE_NO_TEST, 0, 0 },
1148 	{ E1000_FCRTH,	   0x100, 1,  PATTERN_TEST, 0x0000FFF0, 0x0000FFF0 },
1149 	{ E1000_FCTTV,	   0x100, 1,  PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1150 	{ E1000_TIPG,	   0x100, 1,  PATTERN_TEST, 0x3FFFFFFF, 0x3FFFFFFF },
1151 	{ E1000_TDBAL(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1152 	{ E1000_TDBAH(0),  0x100, 4,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1153 	{ E1000_TDLEN(0),  0x100, 4,  PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
1154 	{ E1000_TDBAL(4),  0x40, 12,  PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1155 	{ E1000_TDBAH(4),  0x40, 12,  PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1156 	{ E1000_TDLEN(4),  0x40, 12,  PATTERN_TEST, 0x000FFFF0, 0x000FFFFF },
1157 	{ E1000_RCTL,	   0x100, 1,  SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1158 	{ E1000_RCTL,	   0x100, 1,  SET_READ_TEST, 0x04CFB0FE, 0x003FFFFB },
1159 	{ E1000_RCTL,	   0x100, 1,  SET_READ_TEST, 0x04CFB0FE, 0xFFFFFFFF },
1160 	{ E1000_TCTL,	   0x100, 1,  SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1161 	{ E1000_RA,	   0, 16, TABLE64_TEST_LO, 0xFFFFFFFF, 0xFFFFFFFF },
1162 	{ E1000_RA,	   0, 16, TABLE64_TEST_HI, 0x83FFFFFF, 0xFFFFFFFF },
1163 	{ E1000_RA2,	   0, 8, TABLE64_TEST_LO, 0xFFFFFFFF, 0xFFFFFFFF },
1164 	{ E1000_RA2,	   0, 8, TABLE64_TEST_HI, 0x83FFFFFF, 0xFFFFFFFF },
1165 	{ E1000_MTA,	   0, 128, TABLE32_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1166 	{ 0, 0, 0, 0 }
1167 };
1168 
1169 /* 82575 register test */
1170 static struct igb_reg_test reg_test_82575[] = {
1171 	{ E1000_FCAL,      0x100, 1, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1172 	{ E1000_FCAH,      0x100, 1, PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1173 	{ E1000_FCT,       0x100, 1, PATTERN_TEST, 0x0000FFFF, 0xFFFFFFFF },
1174 	{ E1000_VET,       0x100, 1, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1175 	{ E1000_RDBAL(0),  0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1176 	{ E1000_RDBAH(0),  0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1177 	{ E1000_RDLEN(0),  0x100, 4, PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
1178 	/* Enable all four RX queues before testing. */
1179 	{ E1000_RXDCTL(0), 0x100, 4, WRITE_NO_TEST, 0,
1180 	  E1000_RXDCTL_QUEUE_ENABLE },
1181 	/* RDH is read-only for 82575, only test RDT. */
1182 	{ E1000_RDT(0),    0x100, 4, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1183 	{ E1000_RXDCTL(0), 0x100, 4, WRITE_NO_TEST, 0, 0 },
1184 	{ E1000_FCRTH,     0x100, 1, PATTERN_TEST, 0x0000FFF0, 0x0000FFF0 },
1185 	{ E1000_FCTTV,     0x100, 1, PATTERN_TEST, 0x0000FFFF, 0x0000FFFF },
1186 	{ E1000_TIPG,      0x100, 1, PATTERN_TEST, 0x3FFFFFFF, 0x3FFFFFFF },
1187 	{ E1000_TDBAL(0),  0x100, 4, PATTERN_TEST, 0xFFFFFF80, 0xFFFFFFFF },
1188 	{ E1000_TDBAH(0),  0x100, 4, PATTERN_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1189 	{ E1000_TDLEN(0),  0x100, 4, PATTERN_TEST, 0x000FFF80, 0x000FFFFF },
1190 	{ E1000_RCTL,      0x100, 1, SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1191 	{ E1000_RCTL,      0x100, 1, SET_READ_TEST, 0x04CFB3FE, 0x003FFFFB },
1192 	{ E1000_RCTL,      0x100, 1, SET_READ_TEST, 0x04CFB3FE, 0xFFFFFFFF },
1193 	{ E1000_TCTL,      0x100, 1, SET_READ_TEST, 0xFFFFFFFF, 0x00000000 },
1194 	{ E1000_TXCW,      0x100, 1, PATTERN_TEST, 0xC000FFFF, 0x0000FFFF },
1195 	{ E1000_RA,        0, 16, TABLE64_TEST_LO, 0xFFFFFFFF, 0xFFFFFFFF },
1196 	{ E1000_RA,        0, 16, TABLE64_TEST_HI, 0x800FFFFF, 0xFFFFFFFF },
1197 	{ E1000_MTA,       0, 128, TABLE32_TEST, 0xFFFFFFFF, 0xFFFFFFFF },
1198 	{ 0, 0, 0, 0 }
1199 };
1200 
reg_pattern_test(struct igb_adapter * adapter,u64 * data,int reg,u32 mask,u32 write)1201 static bool reg_pattern_test(struct igb_adapter *adapter, u64 *data,
1202 			     int reg, u32 mask, u32 write)
1203 {
1204 	struct e1000_hw *hw = &adapter->hw;
1205 	u32 pat, val;
1206 	static const u32 _test[] = {
1207 		0x5A5A5A5A, 0xA5A5A5A5, 0x00000000, 0xFFFFFFFF};
1208 	for (pat = 0; pat < ARRAY_SIZE(_test); pat++) {
1209 		wr32(reg, (_test[pat] & write));
1210 		val = rd32(reg) & mask;
1211 		if (val != (_test[pat] & write & mask)) {
1212 			dev_err(&adapter->pdev->dev,
1213 				"pattern test reg %04X failed: got 0x%08X expected 0x%08X\n",
1214 				reg, val, (_test[pat] & write & mask));
1215 			*data = reg;
1216 			return true;
1217 		}
1218 	}
1219 
1220 	return false;
1221 }
1222 
reg_set_and_check(struct igb_adapter * adapter,u64 * data,int reg,u32 mask,u32 write)1223 static bool reg_set_and_check(struct igb_adapter *adapter, u64 *data,
1224 			      int reg, u32 mask, u32 write)
1225 {
1226 	struct e1000_hw *hw = &adapter->hw;
1227 	u32 val;
1228 
1229 	wr32(reg, write & mask);
1230 	val = rd32(reg);
1231 	if ((write & mask) != (val & mask)) {
1232 		dev_err(&adapter->pdev->dev,
1233 			"set/check reg %04X test failed: got 0x%08X expected 0x%08X\n",
1234 			reg, (val & mask), (write & mask));
1235 		*data = reg;
1236 		return true;
1237 	}
1238 
1239 	return false;
1240 }
1241 
1242 #define REG_PATTERN_TEST(reg, mask, write) \
1243 	do { \
1244 		if (reg_pattern_test(adapter, data, reg, mask, write)) \
1245 			return 1; \
1246 	} while (0)
1247 
1248 #define REG_SET_AND_CHECK(reg, mask, write) \
1249 	do { \
1250 		if (reg_set_and_check(adapter, data, reg, mask, write)) \
1251 			return 1; \
1252 	} while (0)
1253 
igb_reg_test(struct igb_adapter * adapter,u64 * data)1254 static int igb_reg_test(struct igb_adapter *adapter, u64 *data)
1255 {
1256 	struct e1000_hw *hw = &adapter->hw;
1257 	struct igb_reg_test *test;
1258 	u32 value, before, after;
1259 	u32 i, toggle;
1260 
1261 	switch (adapter->hw.mac.type) {
1262 	case e1000_i350:
1263 	case e1000_i354:
1264 		test = reg_test_i350;
1265 		toggle = 0x7FEFF3FF;
1266 		break;
1267 	case e1000_i210:
1268 	case e1000_i211:
1269 		test = reg_test_i210;
1270 		toggle = 0x7FEFF3FF;
1271 		break;
1272 	case e1000_82580:
1273 		test = reg_test_82580;
1274 		toggle = 0x7FEFF3FF;
1275 		break;
1276 	case e1000_82576:
1277 		test = reg_test_82576;
1278 		toggle = 0x7FFFF3FF;
1279 		break;
1280 	default:
1281 		test = reg_test_82575;
1282 		toggle = 0x7FFFF3FF;
1283 		break;
1284 	}
1285 
1286 	/* Because the status register is such a special case,
1287 	 * we handle it separately from the rest of the register
1288 	 * tests.  Some bits are read-only, some toggle, and some
1289 	 * are writable on newer MACs.
1290 	 */
1291 	before = rd32(E1000_STATUS);
1292 	value = (rd32(E1000_STATUS) & toggle);
1293 	wr32(E1000_STATUS, toggle);
1294 	after = rd32(E1000_STATUS) & toggle;
1295 	if (value != after) {
1296 		dev_err(&adapter->pdev->dev,
1297 			"failed STATUS register test got: 0x%08X expected: 0x%08X\n",
1298 			after, value);
1299 		*data = 1;
1300 		return 1;
1301 	}
1302 	/* restore previous status */
1303 	wr32(E1000_STATUS, before);
1304 
1305 	/* Perform the remainder of the register test, looping through
1306 	 * the test table until we either fail or reach the null entry.
1307 	 */
1308 	while (test->reg) {
1309 		for (i = 0; i < test->array_len; i++) {
1310 			switch (test->test_type) {
1311 			case PATTERN_TEST:
1312 				REG_PATTERN_TEST(test->reg +
1313 						(i * test->reg_offset),
1314 						test->mask,
1315 						test->write);
1316 				break;
1317 			case SET_READ_TEST:
1318 				REG_SET_AND_CHECK(test->reg +
1319 						(i * test->reg_offset),
1320 						test->mask,
1321 						test->write);
1322 				break;
1323 			case WRITE_NO_TEST:
1324 				writel(test->write,
1325 				    (adapter->hw.hw_addr + test->reg)
1326 					+ (i * test->reg_offset));
1327 				break;
1328 			case TABLE32_TEST:
1329 				REG_PATTERN_TEST(test->reg + (i * 4),
1330 						test->mask,
1331 						test->write);
1332 				break;
1333 			case TABLE64_TEST_LO:
1334 				REG_PATTERN_TEST(test->reg + (i * 8),
1335 						test->mask,
1336 						test->write);
1337 				break;
1338 			case TABLE64_TEST_HI:
1339 				REG_PATTERN_TEST((test->reg + 4) + (i * 8),
1340 						test->mask,
1341 						test->write);
1342 				break;
1343 			}
1344 		}
1345 		test++;
1346 	}
1347 
1348 	*data = 0;
1349 	return 0;
1350 }
1351 
igb_eeprom_test(struct igb_adapter * adapter,u64 * data)1352 static int igb_eeprom_test(struct igb_adapter *adapter, u64 *data)
1353 {
1354 	struct e1000_hw *hw = &adapter->hw;
1355 
1356 	*data = 0;
1357 
1358 	/* Validate eeprom on all parts but flashless */
1359 	switch (hw->mac.type) {
1360 	case e1000_i210:
1361 	case e1000_i211:
1362 		if (igb_get_flash_presence_i210(hw)) {
1363 			if (adapter->hw.nvm.ops.validate(&adapter->hw) < 0)
1364 				*data = 2;
1365 		}
1366 		break;
1367 	default:
1368 		if (adapter->hw.nvm.ops.validate(&adapter->hw) < 0)
1369 			*data = 2;
1370 		break;
1371 	}
1372 
1373 	return *data;
1374 }
1375 
igb_test_intr(int irq,void * data)1376 static irqreturn_t igb_test_intr(int irq, void *data)
1377 {
1378 	struct igb_adapter *adapter = (struct igb_adapter *) data;
1379 	struct e1000_hw *hw = &adapter->hw;
1380 
1381 	adapter->test_icr |= rd32(E1000_ICR);
1382 
1383 	return IRQ_HANDLED;
1384 }
1385 
igb_intr_test(struct igb_adapter * adapter,u64 * data)1386 static int igb_intr_test(struct igb_adapter *adapter, u64 *data)
1387 {
1388 	struct e1000_hw *hw = &adapter->hw;
1389 	struct net_device *netdev = adapter->netdev;
1390 	u32 mask, ics_mask, i = 0, shared_int = true;
1391 	u32 irq = adapter->pdev->irq;
1392 
1393 	*data = 0;
1394 
1395 	/* Hook up test interrupt handler just for this test */
1396 	if (adapter->flags & IGB_FLAG_HAS_MSIX) {
1397 		if (request_irq(adapter->msix_entries[0].vector,
1398 				igb_test_intr, 0, netdev->name, adapter)) {
1399 			*data = 1;
1400 			return -1;
1401 		}
1402 	} else if (adapter->flags & IGB_FLAG_HAS_MSI) {
1403 		shared_int = false;
1404 		if (request_irq(irq,
1405 				igb_test_intr, 0, netdev->name, adapter)) {
1406 			*data = 1;
1407 			return -1;
1408 		}
1409 	} else if (!request_irq(irq, igb_test_intr, IRQF_PROBE_SHARED,
1410 				netdev->name, adapter)) {
1411 		shared_int = false;
1412 	} else if (request_irq(irq, igb_test_intr, IRQF_SHARED,
1413 		 netdev->name, adapter)) {
1414 		*data = 1;
1415 		return -1;
1416 	}
1417 	dev_info(&adapter->pdev->dev, "testing %s interrupt\n",
1418 		(shared_int ? "shared" : "unshared"));
1419 
1420 	/* Disable all the interrupts */
1421 	wr32(E1000_IMC, ~0);
1422 	wrfl();
1423 	usleep_range(10000, 11000);
1424 
1425 	/* Define all writable bits for ICS */
1426 	switch (hw->mac.type) {
1427 	case e1000_82575:
1428 		ics_mask = 0x37F47EDD;
1429 		break;
1430 	case e1000_82576:
1431 		ics_mask = 0x77D4FBFD;
1432 		break;
1433 	case e1000_82580:
1434 		ics_mask = 0x77DCFED5;
1435 		break;
1436 	case e1000_i350:
1437 	case e1000_i354:
1438 	case e1000_i210:
1439 	case e1000_i211:
1440 		ics_mask = 0x77DCFED5;
1441 		break;
1442 	default:
1443 		ics_mask = 0x7FFFFFFF;
1444 		break;
1445 	}
1446 
1447 	/* Test each interrupt */
1448 	for (; i < 31; i++) {
1449 		/* Interrupt to test */
1450 		mask = BIT(i);
1451 
1452 		if (!(mask & ics_mask))
1453 			continue;
1454 
1455 		if (!shared_int) {
1456 			/* Disable the interrupt to be reported in
1457 			 * the cause register and then force the same
1458 			 * interrupt and see if one gets posted.  If
1459 			 * an interrupt was posted to the bus, the
1460 			 * test failed.
1461 			 */
1462 			adapter->test_icr = 0;
1463 
1464 			/* Flush any pending interrupts */
1465 			wr32(E1000_ICR, ~0);
1466 
1467 			wr32(E1000_IMC, mask);
1468 			wr32(E1000_ICS, mask);
1469 			wrfl();
1470 			usleep_range(10000, 11000);
1471 
1472 			if (adapter->test_icr & mask) {
1473 				*data = 3;
1474 				break;
1475 			}
1476 		}
1477 
1478 		/* Enable the interrupt to be reported in
1479 		 * the cause register and then force the same
1480 		 * interrupt and see if one gets posted.  If
1481 		 * an interrupt was not posted to the bus, the
1482 		 * test failed.
1483 		 */
1484 		adapter->test_icr = 0;
1485 
1486 		/* Flush any pending interrupts */
1487 		wr32(E1000_ICR, ~0);
1488 
1489 		wr32(E1000_IMS, mask);
1490 		wr32(E1000_ICS, mask);
1491 		wrfl();
1492 		usleep_range(10000, 11000);
1493 
1494 		if (!(adapter->test_icr & mask)) {
1495 			*data = 4;
1496 			break;
1497 		}
1498 
1499 		if (!shared_int) {
1500 			/* Disable the other interrupts to be reported in
1501 			 * the cause register and then force the other
1502 			 * interrupts and see if any get posted.  If
1503 			 * an interrupt was posted to the bus, the
1504 			 * test failed.
1505 			 */
1506 			adapter->test_icr = 0;
1507 
1508 			/* Flush any pending interrupts */
1509 			wr32(E1000_ICR, ~0);
1510 
1511 			wr32(E1000_IMC, ~mask);
1512 			wr32(E1000_ICS, ~mask);
1513 			wrfl();
1514 			usleep_range(10000, 11000);
1515 
1516 			if (adapter->test_icr & mask) {
1517 				*data = 5;
1518 				break;
1519 			}
1520 		}
1521 	}
1522 
1523 	/* Disable all the interrupts */
1524 	wr32(E1000_IMC, ~0);
1525 	wrfl();
1526 	usleep_range(10000, 11000);
1527 
1528 	/* Unhook test interrupt handler */
1529 	if (adapter->flags & IGB_FLAG_HAS_MSIX)
1530 		free_irq(adapter->msix_entries[0].vector, adapter);
1531 	else
1532 		free_irq(irq, adapter);
1533 
1534 	return *data;
1535 }
1536 
igb_free_desc_rings(struct igb_adapter * adapter)1537 static void igb_free_desc_rings(struct igb_adapter *adapter)
1538 {
1539 	igb_free_tx_resources(&adapter->test_tx_ring);
1540 	igb_free_rx_resources(&adapter->test_rx_ring);
1541 }
1542 
igb_setup_desc_rings(struct igb_adapter * adapter)1543 static int igb_setup_desc_rings(struct igb_adapter *adapter)
1544 {
1545 	struct igb_ring *tx_ring = &adapter->test_tx_ring;
1546 	struct igb_ring *rx_ring = &adapter->test_rx_ring;
1547 	struct e1000_hw *hw = &adapter->hw;
1548 	int ret_val;
1549 
1550 	/* Setup Tx descriptor ring and Tx buffers */
1551 	tx_ring->count = IGB_DEFAULT_TXD;
1552 	tx_ring->dev = &adapter->pdev->dev;
1553 	tx_ring->netdev = adapter->netdev;
1554 	tx_ring->reg_idx = adapter->vfs_allocated_count;
1555 
1556 	if (igb_setup_tx_resources(tx_ring)) {
1557 		ret_val = 1;
1558 		goto err_nomem;
1559 	}
1560 
1561 	igb_setup_tctl(adapter);
1562 	igb_configure_tx_ring(adapter, tx_ring);
1563 
1564 	/* Setup Rx descriptor ring and Rx buffers */
1565 	rx_ring->count = IGB_DEFAULT_RXD;
1566 	rx_ring->dev = &adapter->pdev->dev;
1567 	rx_ring->netdev = adapter->netdev;
1568 	rx_ring->reg_idx = adapter->vfs_allocated_count;
1569 
1570 	if (igb_setup_rx_resources(rx_ring)) {
1571 		ret_val = 3;
1572 		goto err_nomem;
1573 	}
1574 
1575 	/* set the default queue to queue 0 of PF */
1576 	wr32(E1000_MRQC, adapter->vfs_allocated_count << 3);
1577 
1578 	/* enable receive ring */
1579 	igb_setup_rctl(adapter);
1580 	igb_configure_rx_ring(adapter, rx_ring);
1581 
1582 	igb_alloc_rx_buffers(rx_ring, igb_desc_unused(rx_ring));
1583 
1584 	return 0;
1585 
1586 err_nomem:
1587 	igb_free_desc_rings(adapter);
1588 	return ret_val;
1589 }
1590 
igb_phy_disable_receiver(struct igb_adapter * adapter)1591 static void igb_phy_disable_receiver(struct igb_adapter *adapter)
1592 {
1593 	struct e1000_hw *hw = &adapter->hw;
1594 
1595 	/* Write out to PHY registers 29 and 30 to disable the Receiver. */
1596 	igb_write_phy_reg(hw, 29, 0x001F);
1597 	igb_write_phy_reg(hw, 30, 0x8FFC);
1598 	igb_write_phy_reg(hw, 29, 0x001A);
1599 	igb_write_phy_reg(hw, 30, 0x8FF0);
1600 }
1601 
igb_integrated_phy_loopback(struct igb_adapter * adapter)1602 static int igb_integrated_phy_loopback(struct igb_adapter *adapter)
1603 {
1604 	struct e1000_hw *hw = &adapter->hw;
1605 	u32 ctrl_reg = 0;
1606 
1607 	hw->mac.autoneg = false;
1608 
1609 	if (hw->phy.type == e1000_phy_m88) {
1610 		if (hw->phy.id != I210_I_PHY_ID) {
1611 			/* Auto-MDI/MDIX Off */
1612 			igb_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, 0x0808);
1613 			/* reset to update Auto-MDI/MDIX */
1614 			igb_write_phy_reg(hw, PHY_CONTROL, 0x9140);
1615 			/* autoneg off */
1616 			igb_write_phy_reg(hw, PHY_CONTROL, 0x8140);
1617 		} else {
1618 			/* force 1000, set loopback  */
1619 			igb_write_phy_reg(hw, I347AT4_PAGE_SELECT, 0);
1620 			igb_write_phy_reg(hw, PHY_CONTROL, 0x4140);
1621 		}
1622 	} else if (hw->phy.type == e1000_phy_82580) {
1623 		/* enable MII loopback */
1624 		igb_write_phy_reg(hw, I82580_PHY_LBK_CTRL, 0x8041);
1625 	}
1626 
1627 	/* add small delay to avoid loopback test failure */
1628 	msleep(50);
1629 
1630 	/* force 1000, set loopback */
1631 	igb_write_phy_reg(hw, PHY_CONTROL, 0x4140);
1632 
1633 	/* Now set up the MAC to the same speed/duplex as the PHY. */
1634 	ctrl_reg = rd32(E1000_CTRL);
1635 	ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */
1636 	ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */
1637 		     E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */
1638 		     E1000_CTRL_SPD_1000 |/* Force Speed to 1000 */
1639 		     E1000_CTRL_FD |	 /* Force Duplex to FULL */
1640 		     E1000_CTRL_SLU);	 /* Set link up enable bit */
1641 
1642 	if (hw->phy.type == e1000_phy_m88)
1643 		ctrl_reg |= E1000_CTRL_ILOS; /* Invert Loss of Signal */
1644 
1645 	wr32(E1000_CTRL, ctrl_reg);
1646 
1647 	/* Disable the receiver on the PHY so when a cable is plugged in, the
1648 	 * PHY does not begin to autoneg when a cable is reconnected to the NIC.
1649 	 */
1650 	if (hw->phy.type == e1000_phy_m88)
1651 		igb_phy_disable_receiver(adapter);
1652 
1653 	msleep(500);
1654 	return 0;
1655 }
1656 
igb_set_phy_loopback(struct igb_adapter * adapter)1657 static int igb_set_phy_loopback(struct igb_adapter *adapter)
1658 {
1659 	return igb_integrated_phy_loopback(adapter);
1660 }
1661 
igb_setup_loopback_test(struct igb_adapter * adapter)1662 static int igb_setup_loopback_test(struct igb_adapter *adapter)
1663 {
1664 	struct e1000_hw *hw = &adapter->hw;
1665 	u32 reg;
1666 
1667 	reg = rd32(E1000_CTRL_EXT);
1668 
1669 	/* use CTRL_EXT to identify link type as SGMII can appear as copper */
1670 	if (reg & E1000_CTRL_EXT_LINK_MODE_MASK) {
1671 		if ((hw->device_id == E1000_DEV_ID_DH89XXCC_SGMII) ||
1672 		(hw->device_id == E1000_DEV_ID_DH89XXCC_SERDES) ||
1673 		(hw->device_id == E1000_DEV_ID_DH89XXCC_BACKPLANE) ||
1674 		(hw->device_id == E1000_DEV_ID_DH89XXCC_SFP) ||
1675 		(hw->device_id == E1000_DEV_ID_I354_SGMII) ||
1676 		(hw->device_id == E1000_DEV_ID_I354_BACKPLANE_2_5GBPS)) {
1677 			/* Enable DH89xxCC MPHY for near end loopback */
1678 			reg = rd32(E1000_MPHY_ADDR_CTL);
1679 			reg = (reg & E1000_MPHY_ADDR_CTL_OFFSET_MASK) |
1680 			E1000_MPHY_PCS_CLK_REG_OFFSET;
1681 			wr32(E1000_MPHY_ADDR_CTL, reg);
1682 
1683 			reg = rd32(E1000_MPHY_DATA);
1684 			reg |= E1000_MPHY_PCS_CLK_REG_DIGINELBEN;
1685 			wr32(E1000_MPHY_DATA, reg);
1686 		}
1687 
1688 		reg = rd32(E1000_RCTL);
1689 		reg |= E1000_RCTL_LBM_TCVR;
1690 		wr32(E1000_RCTL, reg);
1691 
1692 		wr32(E1000_SCTL, E1000_ENABLE_SERDES_LOOPBACK);
1693 
1694 		reg = rd32(E1000_CTRL);
1695 		reg &= ~(E1000_CTRL_RFCE |
1696 			 E1000_CTRL_TFCE |
1697 			 E1000_CTRL_LRST);
1698 		reg |= E1000_CTRL_SLU |
1699 		       E1000_CTRL_FD;
1700 		wr32(E1000_CTRL, reg);
1701 
1702 		/* Unset switch control to serdes energy detect */
1703 		reg = rd32(E1000_CONNSW);
1704 		reg &= ~E1000_CONNSW_ENRGSRC;
1705 		wr32(E1000_CONNSW, reg);
1706 
1707 		/* Unset sigdetect for SERDES loopback on
1708 		 * 82580 and newer devices.
1709 		 */
1710 		if (hw->mac.type >= e1000_82580) {
1711 			reg = rd32(E1000_PCS_CFG0);
1712 			reg |= E1000_PCS_CFG_IGN_SD;
1713 			wr32(E1000_PCS_CFG0, reg);
1714 		}
1715 
1716 		/* Set PCS register for forced speed */
1717 		reg = rd32(E1000_PCS_LCTL);
1718 		reg &= ~E1000_PCS_LCTL_AN_ENABLE;     /* Disable Autoneg*/
1719 		reg |= E1000_PCS_LCTL_FLV_LINK_UP |   /* Force link up */
1720 		       E1000_PCS_LCTL_FSV_1000 |      /* Force 1000    */
1721 		       E1000_PCS_LCTL_FDV_FULL |      /* SerDes Full duplex */
1722 		       E1000_PCS_LCTL_FSD |           /* Force Speed */
1723 		       E1000_PCS_LCTL_FORCE_LINK;     /* Force Link */
1724 		wr32(E1000_PCS_LCTL, reg);
1725 
1726 		return 0;
1727 	}
1728 
1729 	return igb_set_phy_loopback(adapter);
1730 }
1731 
igb_loopback_cleanup(struct igb_adapter * adapter)1732 static void igb_loopback_cleanup(struct igb_adapter *adapter)
1733 {
1734 	struct e1000_hw *hw = &adapter->hw;
1735 	u32 rctl;
1736 	u16 phy_reg;
1737 
1738 	if ((hw->device_id == E1000_DEV_ID_DH89XXCC_SGMII) ||
1739 	(hw->device_id == E1000_DEV_ID_DH89XXCC_SERDES) ||
1740 	(hw->device_id == E1000_DEV_ID_DH89XXCC_BACKPLANE) ||
1741 	(hw->device_id == E1000_DEV_ID_DH89XXCC_SFP) ||
1742 	(hw->device_id == E1000_DEV_ID_I354_SGMII)) {
1743 		u32 reg;
1744 
1745 		/* Disable near end loopback on DH89xxCC */
1746 		reg = rd32(E1000_MPHY_ADDR_CTL);
1747 		reg = (reg & E1000_MPHY_ADDR_CTL_OFFSET_MASK) |
1748 		E1000_MPHY_PCS_CLK_REG_OFFSET;
1749 		wr32(E1000_MPHY_ADDR_CTL, reg);
1750 
1751 		reg = rd32(E1000_MPHY_DATA);
1752 		reg &= ~E1000_MPHY_PCS_CLK_REG_DIGINELBEN;
1753 		wr32(E1000_MPHY_DATA, reg);
1754 	}
1755 
1756 	rctl = rd32(E1000_RCTL);
1757 	rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
1758 	wr32(E1000_RCTL, rctl);
1759 
1760 	hw->mac.autoneg = true;
1761 	igb_read_phy_reg(hw, PHY_CONTROL, &phy_reg);
1762 	if (phy_reg & MII_CR_LOOPBACK) {
1763 		phy_reg &= ~MII_CR_LOOPBACK;
1764 		igb_write_phy_reg(hw, PHY_CONTROL, phy_reg);
1765 		igb_phy_sw_reset(hw);
1766 	}
1767 }
1768 
igb_create_lbtest_frame(struct sk_buff * skb,unsigned int frame_size)1769 static void igb_create_lbtest_frame(struct sk_buff *skb,
1770 				    unsigned int frame_size)
1771 {
1772 	memset(skb->data, 0xFF, frame_size);
1773 	frame_size /= 2;
1774 	memset(&skb->data[frame_size], 0xAA, frame_size - 1);
1775 	memset(&skb->data[frame_size + 10], 0xBE, 1);
1776 	memset(&skb->data[frame_size + 12], 0xAF, 1);
1777 }
1778 
igb_check_lbtest_frame(struct igb_rx_buffer * rx_buffer,unsigned int frame_size)1779 static int igb_check_lbtest_frame(struct igb_rx_buffer *rx_buffer,
1780 				  unsigned int frame_size)
1781 {
1782 	unsigned char *data;
1783 	bool match = true;
1784 
1785 	frame_size >>= 1;
1786 
1787 	data = kmap(rx_buffer->page);
1788 
1789 	if (data[3] != 0xFF ||
1790 	    data[frame_size + 10] != 0xBE ||
1791 	    data[frame_size + 12] != 0xAF)
1792 		match = false;
1793 
1794 	kunmap(rx_buffer->page);
1795 
1796 	return match;
1797 }
1798 
igb_clean_test_rings(struct igb_ring * rx_ring,struct igb_ring * tx_ring,unsigned int size)1799 static int igb_clean_test_rings(struct igb_ring *rx_ring,
1800 				struct igb_ring *tx_ring,
1801 				unsigned int size)
1802 {
1803 	union e1000_adv_rx_desc *rx_desc;
1804 	struct igb_rx_buffer *rx_buffer_info;
1805 	struct igb_tx_buffer *tx_buffer_info;
1806 	u16 rx_ntc, tx_ntc, count = 0;
1807 
1808 	/* initialize next to clean and descriptor values */
1809 	rx_ntc = rx_ring->next_to_clean;
1810 	tx_ntc = tx_ring->next_to_clean;
1811 	rx_desc = IGB_RX_DESC(rx_ring, rx_ntc);
1812 
1813 	while (rx_desc->wb.upper.length) {
1814 		/* check Rx buffer */
1815 		rx_buffer_info = &rx_ring->rx_buffer_info[rx_ntc];
1816 
1817 		/* sync Rx buffer for CPU read */
1818 		dma_sync_single_for_cpu(rx_ring->dev,
1819 					rx_buffer_info->dma,
1820 					size,
1821 					DMA_FROM_DEVICE);
1822 
1823 		/* verify contents of skb */
1824 		if (igb_check_lbtest_frame(rx_buffer_info, size))
1825 			count++;
1826 
1827 		/* sync Rx buffer for device write */
1828 		dma_sync_single_for_device(rx_ring->dev,
1829 					   rx_buffer_info->dma,
1830 					   size,
1831 					   DMA_FROM_DEVICE);
1832 
1833 		/* unmap buffer on Tx side */
1834 		tx_buffer_info = &tx_ring->tx_buffer_info[tx_ntc];
1835 
1836 		/* Free all the Tx ring sk_buffs */
1837 		dev_kfree_skb_any(tx_buffer_info->skb);
1838 
1839 		/* unmap skb header data */
1840 		dma_unmap_single(tx_ring->dev,
1841 				 dma_unmap_addr(tx_buffer_info, dma),
1842 				 dma_unmap_len(tx_buffer_info, len),
1843 				 DMA_TO_DEVICE);
1844 		dma_unmap_len_set(tx_buffer_info, len, 0);
1845 
1846 		/* increment Rx/Tx next to clean counters */
1847 		rx_ntc++;
1848 		if (rx_ntc == rx_ring->count)
1849 			rx_ntc = 0;
1850 		tx_ntc++;
1851 		if (tx_ntc == tx_ring->count)
1852 			tx_ntc = 0;
1853 
1854 		/* fetch next descriptor */
1855 		rx_desc = IGB_RX_DESC(rx_ring, rx_ntc);
1856 	}
1857 
1858 	netdev_tx_reset_queue(txring_txq(tx_ring));
1859 
1860 	/* re-map buffers to ring, store next to clean values */
1861 	igb_alloc_rx_buffers(rx_ring, count);
1862 	rx_ring->next_to_clean = rx_ntc;
1863 	tx_ring->next_to_clean = tx_ntc;
1864 
1865 	return count;
1866 }
1867 
igb_run_loopback_test(struct igb_adapter * adapter)1868 static int igb_run_loopback_test(struct igb_adapter *adapter)
1869 {
1870 	struct igb_ring *tx_ring = &adapter->test_tx_ring;
1871 	struct igb_ring *rx_ring = &adapter->test_rx_ring;
1872 	u16 i, j, lc, good_cnt;
1873 	int ret_val = 0;
1874 	unsigned int size = IGB_RX_HDR_LEN;
1875 	netdev_tx_t tx_ret_val;
1876 	struct sk_buff *skb;
1877 
1878 	/* allocate test skb */
1879 	skb = alloc_skb(size, GFP_KERNEL);
1880 	if (!skb)
1881 		return 11;
1882 
1883 	/* place data into test skb */
1884 	igb_create_lbtest_frame(skb, size);
1885 	skb_put(skb, size);
1886 
1887 	/* Calculate the loop count based on the largest descriptor ring
1888 	 * The idea is to wrap the largest ring a number of times using 64
1889 	 * send/receive pairs during each loop
1890 	 */
1891 
1892 	if (rx_ring->count <= tx_ring->count)
1893 		lc = ((tx_ring->count / 64) * 2) + 1;
1894 	else
1895 		lc = ((rx_ring->count / 64) * 2) + 1;
1896 
1897 	for (j = 0; j <= lc; j++) { /* loop count loop */
1898 		/* reset count of good packets */
1899 		good_cnt = 0;
1900 
1901 		/* place 64 packets on the transmit queue*/
1902 		for (i = 0; i < 64; i++) {
1903 			skb_get(skb);
1904 			tx_ret_val = igb_xmit_frame_ring(skb, tx_ring);
1905 			if (tx_ret_val == NETDEV_TX_OK)
1906 				good_cnt++;
1907 		}
1908 
1909 		if (good_cnt != 64) {
1910 			ret_val = 12;
1911 			break;
1912 		}
1913 
1914 		/* allow 200 milliseconds for packets to go from Tx to Rx */
1915 		msleep(200);
1916 
1917 		good_cnt = igb_clean_test_rings(rx_ring, tx_ring, size);
1918 		if (good_cnt != 64) {
1919 			ret_val = 13;
1920 			break;
1921 		}
1922 	} /* end loop count loop */
1923 
1924 	/* free the original skb */
1925 	kfree_skb(skb);
1926 
1927 	return ret_val;
1928 }
1929 
igb_loopback_test(struct igb_adapter * adapter,u64 * data)1930 static int igb_loopback_test(struct igb_adapter *adapter, u64 *data)
1931 {
1932 	/* PHY loopback cannot be performed if SoL/IDER
1933 	 * sessions are active
1934 	 */
1935 	if (igb_check_reset_block(&adapter->hw)) {
1936 		dev_err(&adapter->pdev->dev,
1937 			"Cannot do PHY loopback test when SoL/IDER is active.\n");
1938 		*data = 0;
1939 		goto out;
1940 	}
1941 
1942 	if (adapter->hw.mac.type == e1000_i354) {
1943 		dev_info(&adapter->pdev->dev,
1944 			"Loopback test not supported on i354.\n");
1945 		*data = 0;
1946 		goto out;
1947 	}
1948 	*data = igb_setup_desc_rings(adapter);
1949 	if (*data)
1950 		goto out;
1951 	*data = igb_setup_loopback_test(adapter);
1952 	if (*data)
1953 		goto err_loopback;
1954 	*data = igb_run_loopback_test(adapter);
1955 	igb_loopback_cleanup(adapter);
1956 
1957 err_loopback:
1958 	igb_free_desc_rings(adapter);
1959 out:
1960 	return *data;
1961 }
1962 
igb_link_test(struct igb_adapter * adapter,u64 * data)1963 static int igb_link_test(struct igb_adapter *adapter, u64 *data)
1964 {
1965 	struct e1000_hw *hw = &adapter->hw;
1966 	*data = 0;
1967 	if (hw->phy.media_type == e1000_media_type_internal_serdes) {
1968 		int i = 0;
1969 
1970 		hw->mac.serdes_has_link = false;
1971 
1972 		/* On some blade server designs, link establishment
1973 		 * could take as long as 2-3 minutes
1974 		 */
1975 		do {
1976 			hw->mac.ops.check_for_link(&adapter->hw);
1977 			if (hw->mac.serdes_has_link)
1978 				return *data;
1979 			msleep(20);
1980 		} while (i++ < 3750);
1981 
1982 		*data = 1;
1983 	} else {
1984 		hw->mac.ops.check_for_link(&adapter->hw);
1985 		if (hw->mac.autoneg)
1986 			msleep(5000);
1987 
1988 		if (!(rd32(E1000_STATUS) & E1000_STATUS_LU))
1989 			*data = 1;
1990 	}
1991 	return *data;
1992 }
1993 
igb_diag_test(struct net_device * netdev,struct ethtool_test * eth_test,u64 * data)1994 static void igb_diag_test(struct net_device *netdev,
1995 			  struct ethtool_test *eth_test, u64 *data)
1996 {
1997 	struct igb_adapter *adapter = netdev_priv(netdev);
1998 	u16 autoneg_advertised;
1999 	u8 forced_speed_duplex, autoneg;
2000 	bool if_running = netif_running(netdev);
2001 
2002 	set_bit(__IGB_TESTING, &adapter->state);
2003 
2004 	/* can't do offline tests on media switching devices */
2005 	if (adapter->hw.dev_spec._82575.mas_capable)
2006 		eth_test->flags &= ~ETH_TEST_FL_OFFLINE;
2007 	if (eth_test->flags == ETH_TEST_FL_OFFLINE) {
2008 		/* Offline tests */
2009 
2010 		/* save speed, duplex, autoneg settings */
2011 		autoneg_advertised = adapter->hw.phy.autoneg_advertised;
2012 		forced_speed_duplex = adapter->hw.mac.forced_speed_duplex;
2013 		autoneg = adapter->hw.mac.autoneg;
2014 
2015 		dev_info(&adapter->pdev->dev, "offline testing starting\n");
2016 
2017 		/* power up link for link test */
2018 		igb_power_up_link(adapter);
2019 
2020 		/* Link test performed before hardware reset so autoneg doesn't
2021 		 * interfere with test result
2022 		 */
2023 		if (igb_link_test(adapter, &data[TEST_LINK]))
2024 			eth_test->flags |= ETH_TEST_FL_FAILED;
2025 
2026 		if (if_running)
2027 			/* indicate we're in test mode */
2028 			igb_close(netdev);
2029 		else
2030 			igb_reset(adapter);
2031 
2032 		if (igb_reg_test(adapter, &data[TEST_REG]))
2033 			eth_test->flags |= ETH_TEST_FL_FAILED;
2034 
2035 		igb_reset(adapter);
2036 		if (igb_eeprom_test(adapter, &data[TEST_EEP]))
2037 			eth_test->flags |= ETH_TEST_FL_FAILED;
2038 
2039 		igb_reset(adapter);
2040 		if (igb_intr_test(adapter, &data[TEST_IRQ]))
2041 			eth_test->flags |= ETH_TEST_FL_FAILED;
2042 
2043 		igb_reset(adapter);
2044 		/* power up link for loopback test */
2045 		igb_power_up_link(adapter);
2046 		if (igb_loopback_test(adapter, &data[TEST_LOOP]))
2047 			eth_test->flags |= ETH_TEST_FL_FAILED;
2048 
2049 		/* restore speed, duplex, autoneg settings */
2050 		adapter->hw.phy.autoneg_advertised = autoneg_advertised;
2051 		adapter->hw.mac.forced_speed_duplex = forced_speed_duplex;
2052 		adapter->hw.mac.autoneg = autoneg;
2053 
2054 		/* force this routine to wait until autoneg complete/timeout */
2055 		adapter->hw.phy.autoneg_wait_to_complete = true;
2056 		igb_reset(adapter);
2057 		adapter->hw.phy.autoneg_wait_to_complete = false;
2058 
2059 		clear_bit(__IGB_TESTING, &adapter->state);
2060 		if (if_running)
2061 			igb_open(netdev);
2062 	} else {
2063 		dev_info(&adapter->pdev->dev, "online testing starting\n");
2064 
2065 		/* PHY is powered down when interface is down */
2066 		if (if_running && igb_link_test(adapter, &data[TEST_LINK]))
2067 			eth_test->flags |= ETH_TEST_FL_FAILED;
2068 		else
2069 			data[TEST_LINK] = 0;
2070 
2071 		/* Online tests aren't run; pass by default */
2072 		data[TEST_REG] = 0;
2073 		data[TEST_EEP] = 0;
2074 		data[TEST_IRQ] = 0;
2075 		data[TEST_LOOP] = 0;
2076 
2077 		clear_bit(__IGB_TESTING, &adapter->state);
2078 	}
2079 	msleep_interruptible(4 * 1000);
2080 }
2081 
igb_get_wol(struct net_device * netdev,struct ethtool_wolinfo * wol)2082 static void igb_get_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
2083 {
2084 	struct igb_adapter *adapter = netdev_priv(netdev);
2085 
2086 	wol->wolopts = 0;
2087 
2088 	if (!(adapter->flags & IGB_FLAG_WOL_SUPPORTED))
2089 		return;
2090 
2091 	wol->supported = WAKE_UCAST | WAKE_MCAST |
2092 			 WAKE_BCAST | WAKE_MAGIC |
2093 			 WAKE_PHY;
2094 
2095 	/* apply any specific unsupported masks here */
2096 	switch (adapter->hw.device_id) {
2097 	default:
2098 		break;
2099 	}
2100 
2101 	if (adapter->wol & E1000_WUFC_EX)
2102 		wol->wolopts |= WAKE_UCAST;
2103 	if (adapter->wol & E1000_WUFC_MC)
2104 		wol->wolopts |= WAKE_MCAST;
2105 	if (adapter->wol & E1000_WUFC_BC)
2106 		wol->wolopts |= WAKE_BCAST;
2107 	if (adapter->wol & E1000_WUFC_MAG)
2108 		wol->wolopts |= WAKE_MAGIC;
2109 	if (adapter->wol & E1000_WUFC_LNKC)
2110 		wol->wolopts |= WAKE_PHY;
2111 }
2112 
igb_set_wol(struct net_device * netdev,struct ethtool_wolinfo * wol)2113 static int igb_set_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
2114 {
2115 	struct igb_adapter *adapter = netdev_priv(netdev);
2116 
2117 	if (wol->wolopts & (WAKE_ARP | WAKE_MAGICSECURE))
2118 		return -EOPNOTSUPP;
2119 
2120 	if (!(adapter->flags & IGB_FLAG_WOL_SUPPORTED))
2121 		return wol->wolopts ? -EOPNOTSUPP : 0;
2122 
2123 	/* these settings will always override what we currently have */
2124 	adapter->wol = 0;
2125 
2126 	if (wol->wolopts & WAKE_UCAST)
2127 		adapter->wol |= E1000_WUFC_EX;
2128 	if (wol->wolopts & WAKE_MCAST)
2129 		adapter->wol |= E1000_WUFC_MC;
2130 	if (wol->wolopts & WAKE_BCAST)
2131 		adapter->wol |= E1000_WUFC_BC;
2132 	if (wol->wolopts & WAKE_MAGIC)
2133 		adapter->wol |= E1000_WUFC_MAG;
2134 	if (wol->wolopts & WAKE_PHY)
2135 		adapter->wol |= E1000_WUFC_LNKC;
2136 	device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
2137 
2138 	return 0;
2139 }
2140 
2141 /* bit defines for adapter->led_status */
2142 #define IGB_LED_ON		0
2143 
igb_set_phys_id(struct net_device * netdev,enum ethtool_phys_id_state state)2144 static int igb_set_phys_id(struct net_device *netdev,
2145 			   enum ethtool_phys_id_state state)
2146 {
2147 	struct igb_adapter *adapter = netdev_priv(netdev);
2148 	struct e1000_hw *hw = &adapter->hw;
2149 
2150 	switch (state) {
2151 	case ETHTOOL_ID_ACTIVE:
2152 		igb_blink_led(hw);
2153 		return 2;
2154 	case ETHTOOL_ID_ON:
2155 		igb_blink_led(hw);
2156 		break;
2157 	case ETHTOOL_ID_OFF:
2158 		igb_led_off(hw);
2159 		break;
2160 	case ETHTOOL_ID_INACTIVE:
2161 		igb_led_off(hw);
2162 		clear_bit(IGB_LED_ON, &adapter->led_status);
2163 		igb_cleanup_led(hw);
2164 		break;
2165 	}
2166 
2167 	return 0;
2168 }
2169 
igb_set_coalesce(struct net_device * netdev,struct ethtool_coalesce * ec)2170 static int igb_set_coalesce(struct net_device *netdev,
2171 			    struct ethtool_coalesce *ec)
2172 {
2173 	struct igb_adapter *adapter = netdev_priv(netdev);
2174 	int i;
2175 
2176 	if (ec->rx_max_coalesced_frames ||
2177 	    ec->rx_coalesce_usecs_irq ||
2178 	    ec->rx_max_coalesced_frames_irq ||
2179 	    ec->tx_max_coalesced_frames ||
2180 	    ec->tx_coalesce_usecs_irq ||
2181 	    ec->stats_block_coalesce_usecs ||
2182 	    ec->use_adaptive_rx_coalesce ||
2183 	    ec->use_adaptive_tx_coalesce ||
2184 	    ec->pkt_rate_low ||
2185 	    ec->rx_coalesce_usecs_low ||
2186 	    ec->rx_max_coalesced_frames_low ||
2187 	    ec->tx_coalesce_usecs_low ||
2188 	    ec->tx_max_coalesced_frames_low ||
2189 	    ec->pkt_rate_high ||
2190 	    ec->rx_coalesce_usecs_high ||
2191 	    ec->rx_max_coalesced_frames_high ||
2192 	    ec->tx_coalesce_usecs_high ||
2193 	    ec->tx_max_coalesced_frames_high ||
2194 	    ec->rate_sample_interval)
2195 		return -ENOTSUPP;
2196 
2197 	if ((ec->rx_coalesce_usecs > IGB_MAX_ITR_USECS) ||
2198 	    ((ec->rx_coalesce_usecs > 3) &&
2199 	     (ec->rx_coalesce_usecs < IGB_MIN_ITR_USECS)) ||
2200 	    (ec->rx_coalesce_usecs == 2))
2201 		return -EINVAL;
2202 
2203 	if ((ec->tx_coalesce_usecs > IGB_MAX_ITR_USECS) ||
2204 	    ((ec->tx_coalesce_usecs > 3) &&
2205 	     (ec->tx_coalesce_usecs < IGB_MIN_ITR_USECS)) ||
2206 	    (ec->tx_coalesce_usecs == 2))
2207 		return -EINVAL;
2208 
2209 	if ((adapter->flags & IGB_FLAG_QUEUE_PAIRS) && ec->tx_coalesce_usecs)
2210 		return -EINVAL;
2211 
2212 	/* If ITR is disabled, disable DMAC */
2213 	if (ec->rx_coalesce_usecs == 0) {
2214 		if (adapter->flags & IGB_FLAG_DMAC)
2215 			adapter->flags &= ~IGB_FLAG_DMAC;
2216 	}
2217 
2218 	/* convert to rate of irq's per second */
2219 	if (ec->rx_coalesce_usecs && ec->rx_coalesce_usecs <= 3)
2220 		adapter->rx_itr_setting = ec->rx_coalesce_usecs;
2221 	else
2222 		adapter->rx_itr_setting = ec->rx_coalesce_usecs << 2;
2223 
2224 	/* convert to rate of irq's per second */
2225 	if (adapter->flags & IGB_FLAG_QUEUE_PAIRS)
2226 		adapter->tx_itr_setting = adapter->rx_itr_setting;
2227 	else if (ec->tx_coalesce_usecs && ec->tx_coalesce_usecs <= 3)
2228 		adapter->tx_itr_setting = ec->tx_coalesce_usecs;
2229 	else
2230 		adapter->tx_itr_setting = ec->tx_coalesce_usecs << 2;
2231 
2232 	for (i = 0; i < adapter->num_q_vectors; i++) {
2233 		struct igb_q_vector *q_vector = adapter->q_vector[i];
2234 		q_vector->tx.work_limit = adapter->tx_work_limit;
2235 		if (q_vector->rx.ring)
2236 			q_vector->itr_val = adapter->rx_itr_setting;
2237 		else
2238 			q_vector->itr_val = adapter->tx_itr_setting;
2239 		if (q_vector->itr_val && q_vector->itr_val <= 3)
2240 			q_vector->itr_val = IGB_START_ITR;
2241 		q_vector->set_itr = 1;
2242 	}
2243 
2244 	return 0;
2245 }
2246 
igb_get_coalesce(struct net_device * netdev,struct ethtool_coalesce * ec)2247 static int igb_get_coalesce(struct net_device *netdev,
2248 			    struct ethtool_coalesce *ec)
2249 {
2250 	struct igb_adapter *adapter = netdev_priv(netdev);
2251 
2252 	if (adapter->rx_itr_setting <= 3)
2253 		ec->rx_coalesce_usecs = adapter->rx_itr_setting;
2254 	else
2255 		ec->rx_coalesce_usecs = adapter->rx_itr_setting >> 2;
2256 
2257 	if (!(adapter->flags & IGB_FLAG_QUEUE_PAIRS)) {
2258 		if (adapter->tx_itr_setting <= 3)
2259 			ec->tx_coalesce_usecs = adapter->tx_itr_setting;
2260 		else
2261 			ec->tx_coalesce_usecs = adapter->tx_itr_setting >> 2;
2262 	}
2263 
2264 	return 0;
2265 }
2266 
igb_nway_reset(struct net_device * netdev)2267 static int igb_nway_reset(struct net_device *netdev)
2268 {
2269 	struct igb_adapter *adapter = netdev_priv(netdev);
2270 	if (netif_running(netdev))
2271 		igb_reinit_locked(adapter);
2272 	return 0;
2273 }
2274 
igb_get_sset_count(struct net_device * netdev,int sset)2275 static int igb_get_sset_count(struct net_device *netdev, int sset)
2276 {
2277 	switch (sset) {
2278 	case ETH_SS_STATS:
2279 		return IGB_STATS_LEN;
2280 	case ETH_SS_TEST:
2281 		return IGB_TEST_LEN;
2282 	case ETH_SS_PRIV_FLAGS:
2283 		return IGB_PRIV_FLAGS_STR_LEN;
2284 	default:
2285 		return -ENOTSUPP;
2286 	}
2287 }
2288 
igb_get_ethtool_stats(struct net_device * netdev,struct ethtool_stats * stats,u64 * data)2289 static void igb_get_ethtool_stats(struct net_device *netdev,
2290 				  struct ethtool_stats *stats, u64 *data)
2291 {
2292 	struct igb_adapter *adapter = netdev_priv(netdev);
2293 	struct rtnl_link_stats64 *net_stats = &adapter->stats64;
2294 	unsigned int start;
2295 	struct igb_ring *ring;
2296 	int i, j;
2297 	char *p;
2298 
2299 	spin_lock(&adapter->stats64_lock);
2300 	igb_update_stats(adapter);
2301 
2302 	for (i = 0; i < IGB_GLOBAL_STATS_LEN; i++) {
2303 		p = (char *)adapter + igb_gstrings_stats[i].stat_offset;
2304 		data[i] = (igb_gstrings_stats[i].sizeof_stat ==
2305 			sizeof(u64)) ? *(u64 *)p : *(u32 *)p;
2306 	}
2307 	for (j = 0; j < IGB_NETDEV_STATS_LEN; j++, i++) {
2308 		p = (char *)net_stats + igb_gstrings_net_stats[j].stat_offset;
2309 		data[i] = (igb_gstrings_net_stats[j].sizeof_stat ==
2310 			sizeof(u64)) ? *(u64 *)p : *(u32 *)p;
2311 	}
2312 	for (j = 0; j < adapter->num_tx_queues; j++) {
2313 		u64	restart2;
2314 
2315 		ring = adapter->tx_ring[j];
2316 		do {
2317 			start = u64_stats_fetch_begin_irq(&ring->tx_syncp);
2318 			data[i]   = ring->tx_stats.packets;
2319 			data[i+1] = ring->tx_stats.bytes;
2320 			data[i+2] = ring->tx_stats.restart_queue;
2321 		} while (u64_stats_fetch_retry_irq(&ring->tx_syncp, start));
2322 		do {
2323 			start = u64_stats_fetch_begin_irq(&ring->tx_syncp2);
2324 			restart2  = ring->tx_stats.restart_queue2;
2325 		} while (u64_stats_fetch_retry_irq(&ring->tx_syncp2, start));
2326 		data[i+2] += restart2;
2327 
2328 		i += IGB_TX_QUEUE_STATS_LEN;
2329 	}
2330 	for (j = 0; j < adapter->num_rx_queues; j++) {
2331 		ring = adapter->rx_ring[j];
2332 		do {
2333 			start = u64_stats_fetch_begin_irq(&ring->rx_syncp);
2334 			data[i]   = ring->rx_stats.packets;
2335 			data[i+1] = ring->rx_stats.bytes;
2336 			data[i+2] = ring->rx_stats.drops;
2337 			data[i+3] = ring->rx_stats.csum_err;
2338 			data[i+4] = ring->rx_stats.alloc_failed;
2339 		} while (u64_stats_fetch_retry_irq(&ring->rx_syncp, start));
2340 		i += IGB_RX_QUEUE_STATS_LEN;
2341 	}
2342 	spin_unlock(&adapter->stats64_lock);
2343 }
2344 
igb_get_strings(struct net_device * netdev,u32 stringset,u8 * data)2345 static void igb_get_strings(struct net_device *netdev, u32 stringset, u8 *data)
2346 {
2347 	struct igb_adapter *adapter = netdev_priv(netdev);
2348 	u8 *p = data;
2349 	int i;
2350 
2351 	switch (stringset) {
2352 	case ETH_SS_TEST:
2353 		memcpy(data, *igb_gstrings_test,
2354 			IGB_TEST_LEN*ETH_GSTRING_LEN);
2355 		break;
2356 	case ETH_SS_STATS:
2357 		for (i = 0; i < IGB_GLOBAL_STATS_LEN; i++) {
2358 			memcpy(p, igb_gstrings_stats[i].stat_string,
2359 			       ETH_GSTRING_LEN);
2360 			p += ETH_GSTRING_LEN;
2361 		}
2362 		for (i = 0; i < IGB_NETDEV_STATS_LEN; i++) {
2363 			memcpy(p, igb_gstrings_net_stats[i].stat_string,
2364 			       ETH_GSTRING_LEN);
2365 			p += ETH_GSTRING_LEN;
2366 		}
2367 		for (i = 0; i < adapter->num_tx_queues; i++) {
2368 			sprintf(p, "tx_queue_%u_packets", i);
2369 			p += ETH_GSTRING_LEN;
2370 			sprintf(p, "tx_queue_%u_bytes", i);
2371 			p += ETH_GSTRING_LEN;
2372 			sprintf(p, "tx_queue_%u_restart", i);
2373 			p += ETH_GSTRING_LEN;
2374 		}
2375 		for (i = 0; i < adapter->num_rx_queues; i++) {
2376 			sprintf(p, "rx_queue_%u_packets", i);
2377 			p += ETH_GSTRING_LEN;
2378 			sprintf(p, "rx_queue_%u_bytes", i);
2379 			p += ETH_GSTRING_LEN;
2380 			sprintf(p, "rx_queue_%u_drops", i);
2381 			p += ETH_GSTRING_LEN;
2382 			sprintf(p, "rx_queue_%u_csum_err", i);
2383 			p += ETH_GSTRING_LEN;
2384 			sprintf(p, "rx_queue_%u_alloc_failed", i);
2385 			p += ETH_GSTRING_LEN;
2386 		}
2387 		/* BUG_ON(p - data != IGB_STATS_LEN * ETH_GSTRING_LEN); */
2388 		break;
2389 	case ETH_SS_PRIV_FLAGS:
2390 		memcpy(data, igb_priv_flags_strings,
2391 		       IGB_PRIV_FLAGS_STR_LEN * ETH_GSTRING_LEN);
2392 		break;
2393 	}
2394 }
2395 
igb_get_ts_info(struct net_device * dev,struct ethtool_ts_info * info)2396 static int igb_get_ts_info(struct net_device *dev,
2397 			   struct ethtool_ts_info *info)
2398 {
2399 	struct igb_adapter *adapter = netdev_priv(dev);
2400 
2401 	if (adapter->ptp_clock)
2402 		info->phc_index = ptp_clock_index(adapter->ptp_clock);
2403 	else
2404 		info->phc_index = -1;
2405 
2406 	switch (adapter->hw.mac.type) {
2407 	case e1000_82575:
2408 		info->so_timestamping =
2409 			SOF_TIMESTAMPING_TX_SOFTWARE |
2410 			SOF_TIMESTAMPING_RX_SOFTWARE |
2411 			SOF_TIMESTAMPING_SOFTWARE;
2412 		return 0;
2413 	case e1000_82576:
2414 	case e1000_82580:
2415 	case e1000_i350:
2416 	case e1000_i354:
2417 	case e1000_i210:
2418 	case e1000_i211:
2419 		info->so_timestamping =
2420 			SOF_TIMESTAMPING_TX_SOFTWARE |
2421 			SOF_TIMESTAMPING_RX_SOFTWARE |
2422 			SOF_TIMESTAMPING_SOFTWARE |
2423 			SOF_TIMESTAMPING_TX_HARDWARE |
2424 			SOF_TIMESTAMPING_RX_HARDWARE |
2425 			SOF_TIMESTAMPING_RAW_HARDWARE;
2426 
2427 		info->tx_types =
2428 			BIT(HWTSTAMP_TX_OFF) |
2429 			BIT(HWTSTAMP_TX_ON);
2430 
2431 		info->rx_filters = BIT(HWTSTAMP_FILTER_NONE);
2432 
2433 		/* 82576 does not support timestamping all packets. */
2434 		if (adapter->hw.mac.type >= e1000_82580)
2435 			info->rx_filters |= BIT(HWTSTAMP_FILTER_ALL);
2436 		else
2437 			info->rx_filters |=
2438 				BIT(HWTSTAMP_FILTER_PTP_V1_L4_SYNC) |
2439 				BIT(HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ) |
2440 				BIT(HWTSTAMP_FILTER_PTP_V2_EVENT);
2441 
2442 		return 0;
2443 	default:
2444 		return -EOPNOTSUPP;
2445 	}
2446 }
2447 
2448 #define ETHER_TYPE_FULL_MASK ((__force __be16)~0)
igb_get_ethtool_nfc_entry(struct igb_adapter * adapter,struct ethtool_rxnfc * cmd)2449 static int igb_get_ethtool_nfc_entry(struct igb_adapter *adapter,
2450 				     struct ethtool_rxnfc *cmd)
2451 {
2452 	struct ethtool_rx_flow_spec *fsp = &cmd->fs;
2453 	struct igb_nfc_filter *rule = NULL;
2454 
2455 	/* report total rule count */
2456 	cmd->data = IGB_MAX_RXNFC_FILTERS;
2457 
2458 	hlist_for_each_entry(rule, &adapter->nfc_filter_list, nfc_node) {
2459 		if (fsp->location <= rule->sw_idx)
2460 			break;
2461 	}
2462 
2463 	if (!rule || fsp->location != rule->sw_idx)
2464 		return -EINVAL;
2465 
2466 	if (rule->filter.match_flags) {
2467 		fsp->flow_type = ETHER_FLOW;
2468 		fsp->ring_cookie = rule->action;
2469 		if (rule->filter.match_flags & IGB_FILTER_FLAG_ETHER_TYPE) {
2470 			fsp->h_u.ether_spec.h_proto = rule->filter.etype;
2471 			fsp->m_u.ether_spec.h_proto = ETHER_TYPE_FULL_MASK;
2472 		}
2473 		if (rule->filter.match_flags & IGB_FILTER_FLAG_VLAN_TCI) {
2474 			fsp->flow_type |= FLOW_EXT;
2475 			fsp->h_ext.vlan_tci = rule->filter.vlan_tci;
2476 			fsp->m_ext.vlan_tci = htons(VLAN_PRIO_MASK);
2477 		}
2478 		if (rule->filter.match_flags & IGB_FILTER_FLAG_DST_MAC_ADDR) {
2479 			ether_addr_copy(fsp->h_u.ether_spec.h_dest,
2480 					rule->filter.dst_addr);
2481 			/* As we only support matching by the full
2482 			 * mask, return the mask to userspace
2483 			 */
2484 			eth_broadcast_addr(fsp->m_u.ether_spec.h_dest);
2485 		}
2486 		if (rule->filter.match_flags & IGB_FILTER_FLAG_SRC_MAC_ADDR) {
2487 			ether_addr_copy(fsp->h_u.ether_spec.h_source,
2488 					rule->filter.src_addr);
2489 			/* As we only support matching by the full
2490 			 * mask, return the mask to userspace
2491 			 */
2492 			eth_broadcast_addr(fsp->m_u.ether_spec.h_source);
2493 		}
2494 
2495 		return 0;
2496 	}
2497 	return -EINVAL;
2498 }
2499 
igb_get_ethtool_nfc_all(struct igb_adapter * adapter,struct ethtool_rxnfc * cmd,u32 * rule_locs)2500 static int igb_get_ethtool_nfc_all(struct igb_adapter *adapter,
2501 				   struct ethtool_rxnfc *cmd,
2502 				   u32 *rule_locs)
2503 {
2504 	struct igb_nfc_filter *rule;
2505 	int cnt = 0;
2506 
2507 	/* report total rule count */
2508 	cmd->data = IGB_MAX_RXNFC_FILTERS;
2509 
2510 	hlist_for_each_entry(rule, &adapter->nfc_filter_list, nfc_node) {
2511 		if (cnt == cmd->rule_cnt)
2512 			return -EMSGSIZE;
2513 		rule_locs[cnt] = rule->sw_idx;
2514 		cnt++;
2515 	}
2516 
2517 	cmd->rule_cnt = cnt;
2518 
2519 	return 0;
2520 }
2521 
igb_get_rss_hash_opts(struct igb_adapter * adapter,struct ethtool_rxnfc * cmd)2522 static int igb_get_rss_hash_opts(struct igb_adapter *adapter,
2523 				 struct ethtool_rxnfc *cmd)
2524 {
2525 	cmd->data = 0;
2526 
2527 	/* Report default options for RSS on igb */
2528 	switch (cmd->flow_type) {
2529 	case TCP_V4_FLOW:
2530 		cmd->data |= RXH_L4_B_0_1 | RXH_L4_B_2_3;
2531 		/* Fall through */
2532 	case UDP_V4_FLOW:
2533 		if (adapter->flags & IGB_FLAG_RSS_FIELD_IPV4_UDP)
2534 			cmd->data |= RXH_L4_B_0_1 | RXH_L4_B_2_3;
2535 		/* Fall through */
2536 	case SCTP_V4_FLOW:
2537 	case AH_ESP_V4_FLOW:
2538 	case AH_V4_FLOW:
2539 	case ESP_V4_FLOW:
2540 	case IPV4_FLOW:
2541 		cmd->data |= RXH_IP_SRC | RXH_IP_DST;
2542 		break;
2543 	case TCP_V6_FLOW:
2544 		cmd->data |= RXH_L4_B_0_1 | RXH_L4_B_2_3;
2545 		/* Fall through */
2546 	case UDP_V6_FLOW:
2547 		if (adapter->flags & IGB_FLAG_RSS_FIELD_IPV6_UDP)
2548 			cmd->data |= RXH_L4_B_0_1 | RXH_L4_B_2_3;
2549 		/* Fall through */
2550 	case SCTP_V6_FLOW:
2551 	case AH_ESP_V6_FLOW:
2552 	case AH_V6_FLOW:
2553 	case ESP_V6_FLOW:
2554 	case IPV6_FLOW:
2555 		cmd->data |= RXH_IP_SRC | RXH_IP_DST;
2556 		break;
2557 	default:
2558 		return -EINVAL;
2559 	}
2560 
2561 	return 0;
2562 }
2563 
igb_get_rxnfc(struct net_device * dev,struct ethtool_rxnfc * cmd,u32 * rule_locs)2564 static int igb_get_rxnfc(struct net_device *dev, struct ethtool_rxnfc *cmd,
2565 			 u32 *rule_locs)
2566 {
2567 	struct igb_adapter *adapter = netdev_priv(dev);
2568 	int ret = -EOPNOTSUPP;
2569 
2570 	switch (cmd->cmd) {
2571 	case ETHTOOL_GRXRINGS:
2572 		cmd->data = adapter->num_rx_queues;
2573 		ret = 0;
2574 		break;
2575 	case ETHTOOL_GRXCLSRLCNT:
2576 		cmd->rule_cnt = adapter->nfc_filter_count;
2577 		ret = 0;
2578 		break;
2579 	case ETHTOOL_GRXCLSRULE:
2580 		ret = igb_get_ethtool_nfc_entry(adapter, cmd);
2581 		break;
2582 	case ETHTOOL_GRXCLSRLALL:
2583 		ret = igb_get_ethtool_nfc_all(adapter, cmd, rule_locs);
2584 		break;
2585 	case ETHTOOL_GRXFH:
2586 		ret = igb_get_rss_hash_opts(adapter, cmd);
2587 		break;
2588 	default:
2589 		break;
2590 	}
2591 
2592 	return ret;
2593 }
2594 
2595 #define UDP_RSS_FLAGS (IGB_FLAG_RSS_FIELD_IPV4_UDP | \
2596 		       IGB_FLAG_RSS_FIELD_IPV6_UDP)
igb_set_rss_hash_opt(struct igb_adapter * adapter,struct ethtool_rxnfc * nfc)2597 static int igb_set_rss_hash_opt(struct igb_adapter *adapter,
2598 				struct ethtool_rxnfc *nfc)
2599 {
2600 	u32 flags = adapter->flags;
2601 
2602 	/* RSS does not support anything other than hashing
2603 	 * to queues on src and dst IPs and ports
2604 	 */
2605 	if (nfc->data & ~(RXH_IP_SRC | RXH_IP_DST |
2606 			  RXH_L4_B_0_1 | RXH_L4_B_2_3))
2607 		return -EINVAL;
2608 
2609 	switch (nfc->flow_type) {
2610 	case TCP_V4_FLOW:
2611 	case TCP_V6_FLOW:
2612 		if (!(nfc->data & RXH_IP_SRC) ||
2613 		    !(nfc->data & RXH_IP_DST) ||
2614 		    !(nfc->data & RXH_L4_B_0_1) ||
2615 		    !(nfc->data & RXH_L4_B_2_3))
2616 			return -EINVAL;
2617 		break;
2618 	case UDP_V4_FLOW:
2619 		if (!(nfc->data & RXH_IP_SRC) ||
2620 		    !(nfc->data & RXH_IP_DST))
2621 			return -EINVAL;
2622 		switch (nfc->data & (RXH_L4_B_0_1 | RXH_L4_B_2_3)) {
2623 		case 0:
2624 			flags &= ~IGB_FLAG_RSS_FIELD_IPV4_UDP;
2625 			break;
2626 		case (RXH_L4_B_0_1 | RXH_L4_B_2_3):
2627 			flags |= IGB_FLAG_RSS_FIELD_IPV4_UDP;
2628 			break;
2629 		default:
2630 			return -EINVAL;
2631 		}
2632 		break;
2633 	case UDP_V6_FLOW:
2634 		if (!(nfc->data & RXH_IP_SRC) ||
2635 		    !(nfc->data & RXH_IP_DST))
2636 			return -EINVAL;
2637 		switch (nfc->data & (RXH_L4_B_0_1 | RXH_L4_B_2_3)) {
2638 		case 0:
2639 			flags &= ~IGB_FLAG_RSS_FIELD_IPV6_UDP;
2640 			break;
2641 		case (RXH_L4_B_0_1 | RXH_L4_B_2_3):
2642 			flags |= IGB_FLAG_RSS_FIELD_IPV6_UDP;
2643 			break;
2644 		default:
2645 			return -EINVAL;
2646 		}
2647 		break;
2648 	case AH_ESP_V4_FLOW:
2649 	case AH_V4_FLOW:
2650 	case ESP_V4_FLOW:
2651 	case SCTP_V4_FLOW:
2652 	case AH_ESP_V6_FLOW:
2653 	case AH_V6_FLOW:
2654 	case ESP_V6_FLOW:
2655 	case SCTP_V6_FLOW:
2656 		if (!(nfc->data & RXH_IP_SRC) ||
2657 		    !(nfc->data & RXH_IP_DST) ||
2658 		    (nfc->data & RXH_L4_B_0_1) ||
2659 		    (nfc->data & RXH_L4_B_2_3))
2660 			return -EINVAL;
2661 		break;
2662 	default:
2663 		return -EINVAL;
2664 	}
2665 
2666 	/* if we changed something we need to update flags */
2667 	if (flags != adapter->flags) {
2668 		struct e1000_hw *hw = &adapter->hw;
2669 		u32 mrqc = rd32(E1000_MRQC);
2670 
2671 		if ((flags & UDP_RSS_FLAGS) &&
2672 		    !(adapter->flags & UDP_RSS_FLAGS))
2673 			dev_err(&adapter->pdev->dev,
2674 				"enabling UDP RSS: fragmented packets may arrive out of order to the stack above\n");
2675 
2676 		adapter->flags = flags;
2677 
2678 		/* Perform hash on these packet types */
2679 		mrqc |= E1000_MRQC_RSS_FIELD_IPV4 |
2680 			E1000_MRQC_RSS_FIELD_IPV4_TCP |
2681 			E1000_MRQC_RSS_FIELD_IPV6 |
2682 			E1000_MRQC_RSS_FIELD_IPV6_TCP;
2683 
2684 		mrqc &= ~(E1000_MRQC_RSS_FIELD_IPV4_UDP |
2685 			  E1000_MRQC_RSS_FIELD_IPV6_UDP);
2686 
2687 		if (flags & IGB_FLAG_RSS_FIELD_IPV4_UDP)
2688 			mrqc |= E1000_MRQC_RSS_FIELD_IPV4_UDP;
2689 
2690 		if (flags & IGB_FLAG_RSS_FIELD_IPV6_UDP)
2691 			mrqc |= E1000_MRQC_RSS_FIELD_IPV6_UDP;
2692 
2693 		wr32(E1000_MRQC, mrqc);
2694 	}
2695 
2696 	return 0;
2697 }
2698 
igb_rxnfc_write_etype_filter(struct igb_adapter * adapter,struct igb_nfc_filter * input)2699 static int igb_rxnfc_write_etype_filter(struct igb_adapter *adapter,
2700 					struct igb_nfc_filter *input)
2701 {
2702 	struct e1000_hw *hw = &adapter->hw;
2703 	u8 i;
2704 	u32 etqf;
2705 	u16 etype;
2706 
2707 	/* find an empty etype filter register */
2708 	for (i = 0; i < MAX_ETYPE_FILTER; ++i) {
2709 		if (!adapter->etype_bitmap[i])
2710 			break;
2711 	}
2712 	if (i == MAX_ETYPE_FILTER) {
2713 		dev_err(&adapter->pdev->dev, "ethtool -N: etype filters are all used.\n");
2714 		return -EINVAL;
2715 	}
2716 
2717 	adapter->etype_bitmap[i] = true;
2718 
2719 	etqf = rd32(E1000_ETQF(i));
2720 	etype = ntohs(input->filter.etype & ETHER_TYPE_FULL_MASK);
2721 
2722 	etqf |= E1000_ETQF_FILTER_ENABLE;
2723 	etqf &= ~E1000_ETQF_ETYPE_MASK;
2724 	etqf |= (etype & E1000_ETQF_ETYPE_MASK);
2725 
2726 	etqf &= ~E1000_ETQF_QUEUE_MASK;
2727 	etqf |= ((input->action << E1000_ETQF_QUEUE_SHIFT)
2728 		& E1000_ETQF_QUEUE_MASK);
2729 	etqf |= E1000_ETQF_QUEUE_ENABLE;
2730 
2731 	wr32(E1000_ETQF(i), etqf);
2732 
2733 	input->etype_reg_index = i;
2734 
2735 	return 0;
2736 }
2737 
igb_rxnfc_write_vlan_prio_filter(struct igb_adapter * adapter,struct igb_nfc_filter * input)2738 static int igb_rxnfc_write_vlan_prio_filter(struct igb_adapter *adapter,
2739 					    struct igb_nfc_filter *input)
2740 {
2741 	struct e1000_hw *hw = &adapter->hw;
2742 	u8 vlan_priority;
2743 	u16 queue_index;
2744 	u32 vlapqf;
2745 
2746 	vlapqf = rd32(E1000_VLAPQF);
2747 	vlan_priority = (ntohs(input->filter.vlan_tci) & VLAN_PRIO_MASK)
2748 				>> VLAN_PRIO_SHIFT;
2749 	queue_index = (vlapqf >> (vlan_priority * 4)) & E1000_VLAPQF_QUEUE_MASK;
2750 
2751 	/* check whether this vlan prio is already set */
2752 	if ((vlapqf & E1000_VLAPQF_P_VALID(vlan_priority)) &&
2753 	    (queue_index != input->action)) {
2754 		dev_err(&adapter->pdev->dev, "ethtool rxnfc set vlan prio filter failed.\n");
2755 		return -EEXIST;
2756 	}
2757 
2758 	vlapqf |= E1000_VLAPQF_P_VALID(vlan_priority);
2759 	vlapqf |= E1000_VLAPQF_QUEUE_SEL(vlan_priority, input->action);
2760 
2761 	wr32(E1000_VLAPQF, vlapqf);
2762 
2763 	return 0;
2764 }
2765 
igb_add_filter(struct igb_adapter * adapter,struct igb_nfc_filter * input)2766 int igb_add_filter(struct igb_adapter *adapter, struct igb_nfc_filter *input)
2767 {
2768 	struct e1000_hw *hw = &adapter->hw;
2769 	int err = -EINVAL;
2770 
2771 	if (hw->mac.type == e1000_i210 &&
2772 	    !(input->filter.match_flags & ~IGB_FILTER_FLAG_SRC_MAC_ADDR)) {
2773 		dev_err(&adapter->pdev->dev,
2774 			"i210 doesn't support flow classification rules specifying only source addresses.\n");
2775 		return -EOPNOTSUPP;
2776 	}
2777 
2778 	if (input->filter.match_flags & IGB_FILTER_FLAG_ETHER_TYPE) {
2779 		err = igb_rxnfc_write_etype_filter(adapter, input);
2780 		if (err)
2781 			return err;
2782 	}
2783 
2784 	if (input->filter.match_flags & IGB_FILTER_FLAG_DST_MAC_ADDR) {
2785 		err = igb_add_mac_steering_filter(adapter,
2786 						  input->filter.dst_addr,
2787 						  input->action, 0);
2788 		err = min_t(int, err, 0);
2789 		if (err)
2790 			return err;
2791 	}
2792 
2793 	if (input->filter.match_flags & IGB_FILTER_FLAG_SRC_MAC_ADDR) {
2794 		err = igb_add_mac_steering_filter(adapter,
2795 						  input->filter.src_addr,
2796 						  input->action,
2797 						  IGB_MAC_STATE_SRC_ADDR);
2798 		err = min_t(int, err, 0);
2799 		if (err)
2800 			return err;
2801 	}
2802 
2803 	if (input->filter.match_flags & IGB_FILTER_FLAG_VLAN_TCI)
2804 		err = igb_rxnfc_write_vlan_prio_filter(adapter, input);
2805 
2806 	return err;
2807 }
2808 
igb_clear_etype_filter_regs(struct igb_adapter * adapter,u16 reg_index)2809 static void igb_clear_etype_filter_regs(struct igb_adapter *adapter,
2810 					u16 reg_index)
2811 {
2812 	struct e1000_hw *hw = &adapter->hw;
2813 	u32 etqf = rd32(E1000_ETQF(reg_index));
2814 
2815 	etqf &= ~E1000_ETQF_QUEUE_ENABLE;
2816 	etqf &= ~E1000_ETQF_QUEUE_MASK;
2817 	etqf &= ~E1000_ETQF_FILTER_ENABLE;
2818 
2819 	wr32(E1000_ETQF(reg_index), etqf);
2820 
2821 	adapter->etype_bitmap[reg_index] = false;
2822 }
2823 
igb_clear_vlan_prio_filter(struct igb_adapter * adapter,u16 vlan_tci)2824 static void igb_clear_vlan_prio_filter(struct igb_adapter *adapter,
2825 				       u16 vlan_tci)
2826 {
2827 	struct e1000_hw *hw = &adapter->hw;
2828 	u8 vlan_priority;
2829 	u32 vlapqf;
2830 
2831 	vlan_priority = (vlan_tci & VLAN_PRIO_MASK) >> VLAN_PRIO_SHIFT;
2832 
2833 	vlapqf = rd32(E1000_VLAPQF);
2834 	vlapqf &= ~E1000_VLAPQF_P_VALID(vlan_priority);
2835 	vlapqf &= ~E1000_VLAPQF_QUEUE_SEL(vlan_priority,
2836 						E1000_VLAPQF_QUEUE_MASK);
2837 
2838 	wr32(E1000_VLAPQF, vlapqf);
2839 }
2840 
igb_erase_filter(struct igb_adapter * adapter,struct igb_nfc_filter * input)2841 int igb_erase_filter(struct igb_adapter *adapter, struct igb_nfc_filter *input)
2842 {
2843 	if (input->filter.match_flags & IGB_FILTER_FLAG_ETHER_TYPE)
2844 		igb_clear_etype_filter_regs(adapter,
2845 					    input->etype_reg_index);
2846 
2847 	if (input->filter.match_flags & IGB_FILTER_FLAG_VLAN_TCI)
2848 		igb_clear_vlan_prio_filter(adapter,
2849 					   ntohs(input->filter.vlan_tci));
2850 
2851 	if (input->filter.match_flags & IGB_FILTER_FLAG_SRC_MAC_ADDR)
2852 		igb_del_mac_steering_filter(adapter, input->filter.src_addr,
2853 					    input->action,
2854 					    IGB_MAC_STATE_SRC_ADDR);
2855 
2856 	if (input->filter.match_flags & IGB_FILTER_FLAG_DST_MAC_ADDR)
2857 		igb_del_mac_steering_filter(adapter, input->filter.dst_addr,
2858 					    input->action, 0);
2859 
2860 	return 0;
2861 }
2862 
igb_update_ethtool_nfc_entry(struct igb_adapter * adapter,struct igb_nfc_filter * input,u16 sw_idx)2863 static int igb_update_ethtool_nfc_entry(struct igb_adapter *adapter,
2864 					struct igb_nfc_filter *input,
2865 					u16 sw_idx)
2866 {
2867 	struct igb_nfc_filter *rule, *parent;
2868 	int err = -EINVAL;
2869 
2870 	parent = NULL;
2871 	rule = NULL;
2872 
2873 	hlist_for_each_entry(rule, &adapter->nfc_filter_list, nfc_node) {
2874 		/* hash found, or no matching entry */
2875 		if (rule->sw_idx >= sw_idx)
2876 			break;
2877 		parent = rule;
2878 	}
2879 
2880 	/* if there is an old rule occupying our place remove it */
2881 	if (rule && (rule->sw_idx == sw_idx)) {
2882 		if (!input)
2883 			err = igb_erase_filter(adapter, rule);
2884 
2885 		hlist_del(&rule->nfc_node);
2886 		kfree(rule);
2887 		adapter->nfc_filter_count--;
2888 	}
2889 
2890 	/* If no input this was a delete, err should be 0 if a rule was
2891 	 * successfully found and removed from the list else -EINVAL
2892 	 */
2893 	if (!input)
2894 		return err;
2895 
2896 	/* initialize node */
2897 	INIT_HLIST_NODE(&input->nfc_node);
2898 
2899 	/* add filter to the list */
2900 	if (parent)
2901 		hlist_add_behind(&input->nfc_node, &parent->nfc_node);
2902 	else
2903 		hlist_add_head(&input->nfc_node, &adapter->nfc_filter_list);
2904 
2905 	/* update counts */
2906 	adapter->nfc_filter_count++;
2907 
2908 	return 0;
2909 }
2910 
igb_add_ethtool_nfc_entry(struct igb_adapter * adapter,struct ethtool_rxnfc * cmd)2911 static int igb_add_ethtool_nfc_entry(struct igb_adapter *adapter,
2912 				     struct ethtool_rxnfc *cmd)
2913 {
2914 	struct net_device *netdev = adapter->netdev;
2915 	struct ethtool_rx_flow_spec *fsp =
2916 		(struct ethtool_rx_flow_spec *)&cmd->fs;
2917 	struct igb_nfc_filter *input, *rule;
2918 	int err = 0;
2919 
2920 	if (!(netdev->hw_features & NETIF_F_NTUPLE))
2921 		return -EOPNOTSUPP;
2922 
2923 	/* Don't allow programming if the action is a queue greater than
2924 	 * the number of online Rx queues.
2925 	 */
2926 	if ((fsp->ring_cookie == RX_CLS_FLOW_DISC) ||
2927 	    (fsp->ring_cookie >= adapter->num_rx_queues)) {
2928 		dev_err(&adapter->pdev->dev, "ethtool -N: The specified action is invalid\n");
2929 		return -EINVAL;
2930 	}
2931 
2932 	/* Don't allow indexes to exist outside of available space */
2933 	if (fsp->location >= IGB_MAX_RXNFC_FILTERS) {
2934 		dev_err(&adapter->pdev->dev, "Location out of range\n");
2935 		return -EINVAL;
2936 	}
2937 
2938 	if ((fsp->flow_type & ~FLOW_EXT) != ETHER_FLOW)
2939 		return -EINVAL;
2940 
2941 	input = kzalloc(sizeof(*input), GFP_KERNEL);
2942 	if (!input)
2943 		return -ENOMEM;
2944 
2945 	if (fsp->m_u.ether_spec.h_proto == ETHER_TYPE_FULL_MASK) {
2946 		input->filter.etype = fsp->h_u.ether_spec.h_proto;
2947 		input->filter.match_flags = IGB_FILTER_FLAG_ETHER_TYPE;
2948 	}
2949 
2950 	/* Only support matching addresses by the full mask */
2951 	if (is_broadcast_ether_addr(fsp->m_u.ether_spec.h_source)) {
2952 		input->filter.match_flags |= IGB_FILTER_FLAG_SRC_MAC_ADDR;
2953 		ether_addr_copy(input->filter.src_addr,
2954 				fsp->h_u.ether_spec.h_source);
2955 	}
2956 
2957 	/* Only support matching addresses by the full mask */
2958 	if (is_broadcast_ether_addr(fsp->m_u.ether_spec.h_dest)) {
2959 		input->filter.match_flags |= IGB_FILTER_FLAG_DST_MAC_ADDR;
2960 		ether_addr_copy(input->filter.dst_addr,
2961 				fsp->h_u.ether_spec.h_dest);
2962 	}
2963 
2964 	if ((fsp->flow_type & FLOW_EXT) && fsp->m_ext.vlan_tci) {
2965 		if (fsp->m_ext.vlan_tci != htons(VLAN_PRIO_MASK)) {
2966 			err = -EINVAL;
2967 			goto err_out;
2968 		}
2969 		input->filter.vlan_tci = fsp->h_ext.vlan_tci;
2970 		input->filter.match_flags |= IGB_FILTER_FLAG_VLAN_TCI;
2971 	}
2972 
2973 	input->action = fsp->ring_cookie;
2974 	input->sw_idx = fsp->location;
2975 
2976 	spin_lock(&adapter->nfc_lock);
2977 
2978 	hlist_for_each_entry(rule, &adapter->nfc_filter_list, nfc_node) {
2979 		if (!memcmp(&input->filter, &rule->filter,
2980 			    sizeof(input->filter))) {
2981 			err = -EEXIST;
2982 			dev_err(&adapter->pdev->dev,
2983 				"ethtool: this filter is already set\n");
2984 			goto err_out_w_lock;
2985 		}
2986 	}
2987 
2988 	err = igb_add_filter(adapter, input);
2989 	if (err)
2990 		goto err_out_w_lock;
2991 
2992 	igb_update_ethtool_nfc_entry(adapter, input, input->sw_idx);
2993 
2994 	spin_unlock(&adapter->nfc_lock);
2995 	return 0;
2996 
2997 err_out_w_lock:
2998 	spin_unlock(&adapter->nfc_lock);
2999 err_out:
3000 	kfree(input);
3001 	return err;
3002 }
3003 
igb_del_ethtool_nfc_entry(struct igb_adapter * adapter,struct ethtool_rxnfc * cmd)3004 static int igb_del_ethtool_nfc_entry(struct igb_adapter *adapter,
3005 				     struct ethtool_rxnfc *cmd)
3006 {
3007 	struct ethtool_rx_flow_spec *fsp =
3008 		(struct ethtool_rx_flow_spec *)&cmd->fs;
3009 	int err;
3010 
3011 	spin_lock(&adapter->nfc_lock);
3012 	err = igb_update_ethtool_nfc_entry(adapter, NULL, fsp->location);
3013 	spin_unlock(&adapter->nfc_lock);
3014 
3015 	return err;
3016 }
3017 
igb_set_rxnfc(struct net_device * dev,struct ethtool_rxnfc * cmd)3018 static int igb_set_rxnfc(struct net_device *dev, struct ethtool_rxnfc *cmd)
3019 {
3020 	struct igb_adapter *adapter = netdev_priv(dev);
3021 	int ret = -EOPNOTSUPP;
3022 
3023 	switch (cmd->cmd) {
3024 	case ETHTOOL_SRXFH:
3025 		ret = igb_set_rss_hash_opt(adapter, cmd);
3026 		break;
3027 	case ETHTOOL_SRXCLSRLINS:
3028 		ret = igb_add_ethtool_nfc_entry(adapter, cmd);
3029 		break;
3030 	case ETHTOOL_SRXCLSRLDEL:
3031 		ret = igb_del_ethtool_nfc_entry(adapter, cmd);
3032 	default:
3033 		break;
3034 	}
3035 
3036 	return ret;
3037 }
3038 
igb_get_eee(struct net_device * netdev,struct ethtool_eee * edata)3039 static int igb_get_eee(struct net_device *netdev, struct ethtool_eee *edata)
3040 {
3041 	struct igb_adapter *adapter = netdev_priv(netdev);
3042 	struct e1000_hw *hw = &adapter->hw;
3043 	u32 ret_val;
3044 	u16 phy_data;
3045 
3046 	if ((hw->mac.type < e1000_i350) ||
3047 	    (hw->phy.media_type != e1000_media_type_copper))
3048 		return -EOPNOTSUPP;
3049 
3050 	edata->supported = (SUPPORTED_1000baseT_Full |
3051 			    SUPPORTED_100baseT_Full);
3052 	if (!hw->dev_spec._82575.eee_disable)
3053 		edata->advertised =
3054 			mmd_eee_adv_to_ethtool_adv_t(adapter->eee_advert);
3055 
3056 	/* The IPCNFG and EEER registers are not supported on I354. */
3057 	if (hw->mac.type == e1000_i354) {
3058 		igb_get_eee_status_i354(hw, (bool *)&edata->eee_active);
3059 	} else {
3060 		u32 eeer;
3061 
3062 		eeer = rd32(E1000_EEER);
3063 
3064 		/* EEE status on negotiated link */
3065 		if (eeer & E1000_EEER_EEE_NEG)
3066 			edata->eee_active = true;
3067 
3068 		if (eeer & E1000_EEER_TX_LPI_EN)
3069 			edata->tx_lpi_enabled = true;
3070 	}
3071 
3072 	/* EEE Link Partner Advertised */
3073 	switch (hw->mac.type) {
3074 	case e1000_i350:
3075 		ret_val = igb_read_emi_reg(hw, E1000_EEE_LP_ADV_ADDR_I350,
3076 					   &phy_data);
3077 		if (ret_val)
3078 			return -ENODATA;
3079 
3080 		edata->lp_advertised = mmd_eee_adv_to_ethtool_adv_t(phy_data);
3081 		break;
3082 	case e1000_i354:
3083 	case e1000_i210:
3084 	case e1000_i211:
3085 		ret_val = igb_read_xmdio_reg(hw, E1000_EEE_LP_ADV_ADDR_I210,
3086 					     E1000_EEE_LP_ADV_DEV_I210,
3087 					     &phy_data);
3088 		if (ret_val)
3089 			return -ENODATA;
3090 
3091 		edata->lp_advertised = mmd_eee_adv_to_ethtool_adv_t(phy_data);
3092 
3093 		break;
3094 	default:
3095 		break;
3096 	}
3097 
3098 	edata->eee_enabled = !hw->dev_spec._82575.eee_disable;
3099 
3100 	if ((hw->mac.type == e1000_i354) &&
3101 	    (edata->eee_enabled))
3102 		edata->tx_lpi_enabled = true;
3103 
3104 	/* Report correct negotiated EEE status for devices that
3105 	 * wrongly report EEE at half-duplex
3106 	 */
3107 	if (adapter->link_duplex == HALF_DUPLEX) {
3108 		edata->eee_enabled = false;
3109 		edata->eee_active = false;
3110 		edata->tx_lpi_enabled = false;
3111 		edata->advertised &= ~edata->advertised;
3112 	}
3113 
3114 	return 0;
3115 }
3116 
igb_set_eee(struct net_device * netdev,struct ethtool_eee * edata)3117 static int igb_set_eee(struct net_device *netdev,
3118 		       struct ethtool_eee *edata)
3119 {
3120 	struct igb_adapter *adapter = netdev_priv(netdev);
3121 	struct e1000_hw *hw = &adapter->hw;
3122 	struct ethtool_eee eee_curr;
3123 	bool adv1g_eee = true, adv100m_eee = true;
3124 	s32 ret_val;
3125 
3126 	if ((hw->mac.type < e1000_i350) ||
3127 	    (hw->phy.media_type != e1000_media_type_copper))
3128 		return -EOPNOTSUPP;
3129 
3130 	memset(&eee_curr, 0, sizeof(struct ethtool_eee));
3131 
3132 	ret_val = igb_get_eee(netdev, &eee_curr);
3133 	if (ret_val)
3134 		return ret_val;
3135 
3136 	if (eee_curr.eee_enabled) {
3137 		if (eee_curr.tx_lpi_enabled != edata->tx_lpi_enabled) {
3138 			dev_err(&adapter->pdev->dev,
3139 				"Setting EEE tx-lpi is not supported\n");
3140 			return -EINVAL;
3141 		}
3142 
3143 		/* Tx LPI timer is not implemented currently */
3144 		if (edata->tx_lpi_timer) {
3145 			dev_err(&adapter->pdev->dev,
3146 				"Setting EEE Tx LPI timer is not supported\n");
3147 			return -EINVAL;
3148 		}
3149 
3150 		if (!edata->advertised || (edata->advertised &
3151 		    ~(ADVERTISE_100_FULL | ADVERTISE_1000_FULL))) {
3152 			dev_err(&adapter->pdev->dev,
3153 				"EEE Advertisement supports only 100Tx and/or 100T full duplex\n");
3154 			return -EINVAL;
3155 		}
3156 		adv100m_eee = !!(edata->advertised & ADVERTISE_100_FULL);
3157 		adv1g_eee = !!(edata->advertised & ADVERTISE_1000_FULL);
3158 
3159 	} else if (!edata->eee_enabled) {
3160 		dev_err(&adapter->pdev->dev,
3161 			"Setting EEE options are not supported with EEE disabled\n");
3162 			return -EINVAL;
3163 		}
3164 
3165 	adapter->eee_advert = ethtool_adv_to_mmd_eee_adv_t(edata->advertised);
3166 	if (hw->dev_spec._82575.eee_disable != !edata->eee_enabled) {
3167 		hw->dev_spec._82575.eee_disable = !edata->eee_enabled;
3168 		adapter->flags |= IGB_FLAG_EEE;
3169 
3170 		/* reset link */
3171 		if (netif_running(netdev))
3172 			igb_reinit_locked(adapter);
3173 		else
3174 			igb_reset(adapter);
3175 	}
3176 
3177 	if (hw->mac.type == e1000_i354)
3178 		ret_val = igb_set_eee_i354(hw, adv1g_eee, adv100m_eee);
3179 	else
3180 		ret_val = igb_set_eee_i350(hw, adv1g_eee, adv100m_eee);
3181 
3182 	if (ret_val) {
3183 		dev_err(&adapter->pdev->dev,
3184 			"Problem setting EEE advertisement options\n");
3185 		return -EINVAL;
3186 	}
3187 
3188 	return 0;
3189 }
3190 
igb_get_module_info(struct net_device * netdev,struct ethtool_modinfo * modinfo)3191 static int igb_get_module_info(struct net_device *netdev,
3192 			       struct ethtool_modinfo *modinfo)
3193 {
3194 	struct igb_adapter *adapter = netdev_priv(netdev);
3195 	struct e1000_hw *hw = &adapter->hw;
3196 	u32 status = 0;
3197 	u16 sff8472_rev, addr_mode;
3198 	bool page_swap = false;
3199 
3200 	if ((hw->phy.media_type == e1000_media_type_copper) ||
3201 	    (hw->phy.media_type == e1000_media_type_unknown))
3202 		return -EOPNOTSUPP;
3203 
3204 	/* Check whether we support SFF-8472 or not */
3205 	status = igb_read_phy_reg_i2c(hw, IGB_SFF_8472_COMP, &sff8472_rev);
3206 	if (status)
3207 		return -EIO;
3208 
3209 	/* addressing mode is not supported */
3210 	status = igb_read_phy_reg_i2c(hw, IGB_SFF_8472_SWAP, &addr_mode);
3211 	if (status)
3212 		return -EIO;
3213 
3214 	/* addressing mode is not supported */
3215 	if ((addr_mode & 0xFF) & IGB_SFF_ADDRESSING_MODE) {
3216 		hw_dbg("Address change required to access page 0xA2, but not supported. Please report the module type to the driver maintainers.\n");
3217 		page_swap = true;
3218 	}
3219 
3220 	if ((sff8472_rev & 0xFF) == IGB_SFF_8472_UNSUP || page_swap) {
3221 		/* We have an SFP, but it does not support SFF-8472 */
3222 		modinfo->type = ETH_MODULE_SFF_8079;
3223 		modinfo->eeprom_len = ETH_MODULE_SFF_8079_LEN;
3224 	} else {
3225 		/* We have an SFP which supports a revision of SFF-8472 */
3226 		modinfo->type = ETH_MODULE_SFF_8472;
3227 		modinfo->eeprom_len = ETH_MODULE_SFF_8472_LEN;
3228 	}
3229 
3230 	return 0;
3231 }
3232 
igb_get_module_eeprom(struct net_device * netdev,struct ethtool_eeprom * ee,u8 * data)3233 static int igb_get_module_eeprom(struct net_device *netdev,
3234 				 struct ethtool_eeprom *ee, u8 *data)
3235 {
3236 	struct igb_adapter *adapter = netdev_priv(netdev);
3237 	struct e1000_hw *hw = &adapter->hw;
3238 	u32 status = 0;
3239 	u16 *dataword;
3240 	u16 first_word, last_word;
3241 	int i = 0;
3242 
3243 	if (ee->len == 0)
3244 		return -EINVAL;
3245 
3246 	first_word = ee->offset >> 1;
3247 	last_word = (ee->offset + ee->len - 1) >> 1;
3248 
3249 	dataword = kmalloc_array(last_word - first_word + 1, sizeof(u16),
3250 				 GFP_KERNEL);
3251 	if (!dataword)
3252 		return -ENOMEM;
3253 
3254 	/* Read EEPROM block, SFF-8079/SFF-8472, word at a time */
3255 	for (i = 0; i < last_word - first_word + 1; i++) {
3256 		status = igb_read_phy_reg_i2c(hw, (first_word + i) * 2,
3257 					      &dataword[i]);
3258 		if (status) {
3259 			/* Error occurred while reading module */
3260 			kfree(dataword);
3261 			return -EIO;
3262 		}
3263 
3264 		be16_to_cpus(&dataword[i]);
3265 	}
3266 
3267 	memcpy(data, (u8 *)dataword + (ee->offset & 1), ee->len);
3268 	kfree(dataword);
3269 
3270 	return 0;
3271 }
3272 
igb_ethtool_begin(struct net_device * netdev)3273 static int igb_ethtool_begin(struct net_device *netdev)
3274 {
3275 	struct igb_adapter *adapter = netdev_priv(netdev);
3276 	pm_runtime_get_sync(&adapter->pdev->dev);
3277 	return 0;
3278 }
3279 
igb_ethtool_complete(struct net_device * netdev)3280 static void igb_ethtool_complete(struct net_device *netdev)
3281 {
3282 	struct igb_adapter *adapter = netdev_priv(netdev);
3283 	pm_runtime_put(&adapter->pdev->dev);
3284 }
3285 
igb_get_rxfh_indir_size(struct net_device * netdev)3286 static u32 igb_get_rxfh_indir_size(struct net_device *netdev)
3287 {
3288 	return IGB_RETA_SIZE;
3289 }
3290 
igb_get_rxfh(struct net_device * netdev,u32 * indir,u8 * key,u8 * hfunc)3291 static int igb_get_rxfh(struct net_device *netdev, u32 *indir, u8 *key,
3292 			u8 *hfunc)
3293 {
3294 	struct igb_adapter *adapter = netdev_priv(netdev);
3295 	int i;
3296 
3297 	if (hfunc)
3298 		*hfunc = ETH_RSS_HASH_TOP;
3299 	if (!indir)
3300 		return 0;
3301 	for (i = 0; i < IGB_RETA_SIZE; i++)
3302 		indir[i] = adapter->rss_indir_tbl[i];
3303 
3304 	return 0;
3305 }
3306 
igb_write_rss_indir_tbl(struct igb_adapter * adapter)3307 void igb_write_rss_indir_tbl(struct igb_adapter *adapter)
3308 {
3309 	struct e1000_hw *hw = &adapter->hw;
3310 	u32 reg = E1000_RETA(0);
3311 	u32 shift = 0;
3312 	int i = 0;
3313 
3314 	switch (hw->mac.type) {
3315 	case e1000_82575:
3316 		shift = 6;
3317 		break;
3318 	case e1000_82576:
3319 		/* 82576 supports 2 RSS queues for SR-IOV */
3320 		if (adapter->vfs_allocated_count)
3321 			shift = 3;
3322 		break;
3323 	default:
3324 		break;
3325 	}
3326 
3327 	while (i < IGB_RETA_SIZE) {
3328 		u32 val = 0;
3329 		int j;
3330 
3331 		for (j = 3; j >= 0; j--) {
3332 			val <<= 8;
3333 			val |= adapter->rss_indir_tbl[i + j];
3334 		}
3335 
3336 		wr32(reg, val << shift);
3337 		reg += 4;
3338 		i += 4;
3339 	}
3340 }
3341 
igb_set_rxfh(struct net_device * netdev,const u32 * indir,const u8 * key,const u8 hfunc)3342 static int igb_set_rxfh(struct net_device *netdev, const u32 *indir,
3343 			const u8 *key, const u8 hfunc)
3344 {
3345 	struct igb_adapter *adapter = netdev_priv(netdev);
3346 	struct e1000_hw *hw = &adapter->hw;
3347 	int i;
3348 	u32 num_queues;
3349 
3350 	/* We do not allow change in unsupported parameters */
3351 	if (key ||
3352 	    (hfunc != ETH_RSS_HASH_NO_CHANGE && hfunc != ETH_RSS_HASH_TOP))
3353 		return -EOPNOTSUPP;
3354 	if (!indir)
3355 		return 0;
3356 
3357 	num_queues = adapter->rss_queues;
3358 
3359 	switch (hw->mac.type) {
3360 	case e1000_82576:
3361 		/* 82576 supports 2 RSS queues for SR-IOV */
3362 		if (adapter->vfs_allocated_count)
3363 			num_queues = 2;
3364 		break;
3365 	default:
3366 		break;
3367 	}
3368 
3369 	/* Verify user input. */
3370 	for (i = 0; i < IGB_RETA_SIZE; i++)
3371 		if (indir[i] >= num_queues)
3372 			return -EINVAL;
3373 
3374 
3375 	for (i = 0; i < IGB_RETA_SIZE; i++)
3376 		adapter->rss_indir_tbl[i] = indir[i];
3377 
3378 	igb_write_rss_indir_tbl(adapter);
3379 
3380 	return 0;
3381 }
3382 
igb_max_channels(struct igb_adapter * adapter)3383 static unsigned int igb_max_channels(struct igb_adapter *adapter)
3384 {
3385 	return igb_get_max_rss_queues(adapter);
3386 }
3387 
igb_get_channels(struct net_device * netdev,struct ethtool_channels * ch)3388 static void igb_get_channels(struct net_device *netdev,
3389 			     struct ethtool_channels *ch)
3390 {
3391 	struct igb_adapter *adapter = netdev_priv(netdev);
3392 
3393 	/* Report maximum channels */
3394 	ch->max_combined = igb_max_channels(adapter);
3395 
3396 	/* Report info for other vector */
3397 	if (adapter->flags & IGB_FLAG_HAS_MSIX) {
3398 		ch->max_other = NON_Q_VECTORS;
3399 		ch->other_count = NON_Q_VECTORS;
3400 	}
3401 
3402 	ch->combined_count = adapter->rss_queues;
3403 }
3404 
igb_set_channels(struct net_device * netdev,struct ethtool_channels * ch)3405 static int igb_set_channels(struct net_device *netdev,
3406 			    struct ethtool_channels *ch)
3407 {
3408 	struct igb_adapter *adapter = netdev_priv(netdev);
3409 	unsigned int count = ch->combined_count;
3410 	unsigned int max_combined = 0;
3411 
3412 	/* Verify they are not requesting separate vectors */
3413 	if (!count || ch->rx_count || ch->tx_count)
3414 		return -EINVAL;
3415 
3416 	/* Verify other_count is valid and has not been changed */
3417 	if (ch->other_count != NON_Q_VECTORS)
3418 		return -EINVAL;
3419 
3420 	/* Verify the number of channels doesn't exceed hw limits */
3421 	max_combined = igb_max_channels(adapter);
3422 	if (count > max_combined)
3423 		return -EINVAL;
3424 
3425 	if (count != adapter->rss_queues) {
3426 		adapter->rss_queues = count;
3427 		igb_set_flag_queue_pairs(adapter, max_combined);
3428 
3429 		/* Hardware has to reinitialize queues and interrupts to
3430 		 * match the new configuration.
3431 		 */
3432 		return igb_reinit_queues(adapter);
3433 	}
3434 
3435 	return 0;
3436 }
3437 
igb_get_priv_flags(struct net_device * netdev)3438 static u32 igb_get_priv_flags(struct net_device *netdev)
3439 {
3440 	struct igb_adapter *adapter = netdev_priv(netdev);
3441 	u32 priv_flags = 0;
3442 
3443 	if (adapter->flags & IGB_FLAG_RX_LEGACY)
3444 		priv_flags |= IGB_PRIV_FLAGS_LEGACY_RX;
3445 
3446 	return priv_flags;
3447 }
3448 
igb_set_priv_flags(struct net_device * netdev,u32 priv_flags)3449 static int igb_set_priv_flags(struct net_device *netdev, u32 priv_flags)
3450 {
3451 	struct igb_adapter *adapter = netdev_priv(netdev);
3452 	unsigned int flags = adapter->flags;
3453 
3454 	flags &= ~IGB_FLAG_RX_LEGACY;
3455 	if (priv_flags & IGB_PRIV_FLAGS_LEGACY_RX)
3456 		flags |= IGB_FLAG_RX_LEGACY;
3457 
3458 	if (flags != adapter->flags) {
3459 		adapter->flags = flags;
3460 
3461 		/* reset interface to repopulate queues */
3462 		if (netif_running(netdev))
3463 			igb_reinit_locked(adapter);
3464 	}
3465 
3466 	return 0;
3467 }
3468 
3469 static const struct ethtool_ops igb_ethtool_ops = {
3470 	.get_drvinfo		= igb_get_drvinfo,
3471 	.get_regs_len		= igb_get_regs_len,
3472 	.get_regs		= igb_get_regs,
3473 	.get_wol		= igb_get_wol,
3474 	.set_wol		= igb_set_wol,
3475 	.get_msglevel		= igb_get_msglevel,
3476 	.set_msglevel		= igb_set_msglevel,
3477 	.nway_reset		= igb_nway_reset,
3478 	.get_link		= igb_get_link,
3479 	.get_eeprom_len		= igb_get_eeprom_len,
3480 	.get_eeprom		= igb_get_eeprom,
3481 	.set_eeprom		= igb_set_eeprom,
3482 	.get_ringparam		= igb_get_ringparam,
3483 	.set_ringparam		= igb_set_ringparam,
3484 	.get_pauseparam		= igb_get_pauseparam,
3485 	.set_pauseparam		= igb_set_pauseparam,
3486 	.self_test		= igb_diag_test,
3487 	.get_strings		= igb_get_strings,
3488 	.set_phys_id		= igb_set_phys_id,
3489 	.get_sset_count		= igb_get_sset_count,
3490 	.get_ethtool_stats	= igb_get_ethtool_stats,
3491 	.get_coalesce		= igb_get_coalesce,
3492 	.set_coalesce		= igb_set_coalesce,
3493 	.get_ts_info		= igb_get_ts_info,
3494 	.get_rxnfc		= igb_get_rxnfc,
3495 	.set_rxnfc		= igb_set_rxnfc,
3496 	.get_eee		= igb_get_eee,
3497 	.set_eee		= igb_set_eee,
3498 	.get_module_info	= igb_get_module_info,
3499 	.get_module_eeprom	= igb_get_module_eeprom,
3500 	.get_rxfh_indir_size	= igb_get_rxfh_indir_size,
3501 	.get_rxfh		= igb_get_rxfh,
3502 	.set_rxfh		= igb_set_rxfh,
3503 	.get_channels		= igb_get_channels,
3504 	.set_channels		= igb_set_channels,
3505 	.get_priv_flags		= igb_get_priv_flags,
3506 	.set_priv_flags		= igb_set_priv_flags,
3507 	.begin			= igb_ethtool_begin,
3508 	.complete		= igb_ethtool_complete,
3509 	.get_link_ksettings	= igb_get_link_ksettings,
3510 	.set_link_ksettings	= igb_set_link_ksettings,
3511 };
3512 
igb_set_ethtool_ops(struct net_device * netdev)3513 void igb_set_ethtool_ops(struct net_device *netdev)
3514 {
3515 	netdev->ethtool_ops = &igb_ethtool_ops;
3516 }
3517